当前位置: 仪器信息网 > 行业主题 > >

纤维仪原理

仪器信息网纤维仪原理专题为您提供2024年最新纤维仪原理价格报价、厂家品牌的相关信息, 包括纤维仪原理参数、型号等,不管是国产,还是进口品牌的纤维仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纤维仪原理相关的耗材配件、试剂标物,还有纤维仪原理相关的最新资讯、资料,以及纤维仪原理相关的解决方案。

纤维仪原理相关的资讯

  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • Park纳米科学原子力显微镜系列讲座培训(1) I 原子力显微镜在纳米研究中的应用:AFM的成像原理
    Park纳米科学原子力显微镜系列讲座培训一原子力显微镜在纳米研究中的应用:AFM的成像原理2021年5月25日(周二)北京时间下午3:30-4:30原子力显微镜(AFM)作为扫描探针显微镜家族的一员,具有纳米级的分辨能力,其操作容易简便,是目前研究纳米科技和材料分析的最重要的工具之一。此外原子力显微镜还具有摩擦性能,纳米机械性能和电学性能等高级性能。 在本研究中,我们将讨论接触模式、非接触模式和轻敲模式等原子力显微镜使用中的不同操作模式;内容将概括到从原子力显微镜测量中常用的原子相互作用的基本理论,到原子力显微镜的主要硬件组成。本讲座还将讨论各模式的关键点(如设定值、反馈)。 在接触模式下,系统会给探针恒定的力作为设定的基准点也就是设定点来物理接触样品。扫描期间为了维持这个设定点而进行反馈。在三种模式中,原理相对简单。然而,由于接触模式很容易对针尖和样品造成损伤。相比之下,非接触模式允许在不接触表面的情况下进行形貌测量。因此,可以很好地保护针尖和样品。轻敲模式与非接触模式原理相似,在扫描过程中,探针轻触样品表面,以获得测量材料属性分布的额外信息(例如模量分布)。 本次讲座主要针对AFM原理的基础知识,帮助大家了解探针和样品之间的相互作用。由三种模式测出的图像对比也将在讲座中呈现。报告人 : Park原子力显微镜应用科学家Chris Jung Chris Jung, is an Application Scientist for Park Systems Korea - Research Application Technology Center (RATC) department. He received his Master’s degree in Physics from the Kyung Hee University, and his Bachelor’s degree in Physics from Dankook University in South Korea. His major project includes Evaluation of Kelvin Probe Force Microscopy (KPFM) at the perspective of resolution.Park原子力显微镜系列讲座列表(5月-9月) 想了解更多详情,请关注微信公众号:Park原子力显微镜 400电话:400-878-6829 Park官网:parksystems.cn
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 免疫荧光显微成像详解(上)——免疫荧光原理、步骤
    前言免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术,它是将不影响抗原抗体活性的荧光色素标记在抗体(或抗原)上,与其相应的抗原(或抗体)结合后,在荧光显微镜下呈现一种特异性荧光反应。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。直接法将标记的特异性荧光抗体,直接加在抗原标本上,经一定的温度和时间的染色,用水洗去未参加反应的多余荧光抗体,室温下干燥后封片、镜检。间接法如检查未知抗原,先用已知未标记的特异抗体(第一抗体)与抗原标本进行反应,用水洗去未反应的抗体,再用标记的抗抗体(第二抗体)与抗原标本反应,使之形成抗体—抗原—抗体复合物,再用水洗去未反应的标记抗体,干燥、封片后镜检。如果检查未知抗体,则表明抗原标本是已知的,待检血清为第一抗体,其它步骤的抗原检查相同。标记的抗抗体是抗球蛋白抗体,同于血清球蛋白有种的特异性,如免疫抗鸡血清球蛋白只对鸡的球蛋白发生反应,因此,制备标记抗体适用于任何抗原的诊断。一、实验步骤免疫荧光实验的主要步骤包括 样片制备、固定及通透(或称为透化)、封闭、抗体孵育、封片及荧光检测等。1、 样品准备对于单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过(70%乙醇中浸泡)的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片即可,操作过程要小心,防止细胞脱片。对于悬浮生长细胞,有两种方式,一种是取对数生长细胞,制备细胞片或直接制备细胞涂片,把细胞片浸入封闭液中固定,封闭后滴加一抗和二抗孵育;另一种是先在悬浮液中进行固定和染色,离心洗脱后,用移液管移至盒式玻片进行后续抗体孵育。对于冰冻切片制备,建议用新鲜组织,否则组织细胞内部结构破坏,易使抗原弥散。组织一定要冷冻适度,切片时选用干净锋利的刀片,防止裂片和脱片。对于石蜡切片的制备,要先进行脱蜡和抗原修复的处理。2、固定做好切片并风干后立即用合适的固定液(固定液包括有机溶剂和交联剂,其选择取决于抗原的性质及所用抗体的特性)进行固定,尤其要较长时间保存的白片,一定要及时固定和适当保存。固定时间则取决于固定组织切片的大小和类型,对大多数组织,18-24h即可,而细胞的固定时间较短。3、通透针对胞内抗原,使用0.5% Triton X-100或丙酮等通透剂进行通透,这一步的目的是使抗体进入胞内。 4、封闭为防止内源性非特异性蛋白抗原的结合,需要在一抗孵育前先用封闭液(一般包括与二抗同一来源的血清、BSA或者羊血清)封闭,减弱背景着色。封闭开始后,要注意样品的保湿,避免样品干燥,否则极易产生较高的背景。5、一抗孵育一抗孵育温度一般分为:4℃、室温、37℃,其中4℃效果更佳;孵育时间与温度、抗体浓度有关,一般37℃孵育1-2h,4℃过夜(从冰箱拿出后37℃复温45min)。具体条件还要根据样品、稀释液等条件进行摸索尝试。6、荧光二抗孵育荧光二抗孵育一般在室温或37℃孵育30min-1h,该过程必须在避光环境下进行,防止荧光淬灭。荧光素标记的二抗随着保存时间的延长,可能会有大量的游离荧光素残留,需要注意配制时采用小包装并进行适当的离心。7、复染一般采用DAPI进行复染,目的是形成细胞轮廓,从而更好地对目标蛋白进行定位。8、封片为了长期保存,我们需要对样本进行封片,用吸水纸吸干爬片上的液体,一般用缓冲甘油等或专门的抗荧光淬灭的封片液。9、 荧光观察有条件的话最好立即用荧光显微镜观察拍照,若不能及时拍照,也要做好封片和封固,保持避光和湿度。荧光显微镜的成像能力对最终的结果也会造成很大的影响,好的荧光显微镜能够最大限度地收集荧光信号,并呈现高分辨率的图片,使细节更清楚,更易得到一张效果极佳的结果图。注意:切片清洗:为了防止一抗、二抗等试剂残留而引起非特异性染色,所以适当地加强清洗(延长时间和增多次数)尤为重要,一般在一抗孵育前的清洗是3min*3次,而一抗孵育后的清洗均为5次*5min。(1)单独冲洗,防止交叉反应造成污染;(2)温柔冲洗,防止切片的脱落。可使用浸洗方式;(3)冲洗的时间要足够,才能彻底洗去结合的物质;(4)PBS的PH和离子强度的使用和要求(建议PH在7.4-7.6,浓度是0.01M;中性及弱碱性条件有利于免疫复合物的形成,而酸性条件则有利于分解;低离子强度有利于免疫复合物的形成,而高离子强度则有利于分解)。根据上述步骤完成免疫荧光实验后,就需要进行荧光显微成像,得到我们想要的结果。选择一款操作简单、成像清晰、效果卓越的荧光显微镜进行观察拍照,才能轻松得到更为理想的结果图,达到事半功倍的效果。Echo Revolve正倒置一体荧光显微镜Echo Revolve正倒置一体荧光显微镜作为一款电动化、智能化的显微镜,具有以下优势:☑ 正倒置一体快速切换:切片、细胞观察随心切换,无惧任何耗材;☑ DHR数字降噪功能:极大地降低了背景噪音和荧光干扰,提高图像锐度,加深细节,得到分辨率更高的图片;☑ 强大的Z-Stacking功能:通过高精度电动化Z轴层扫来扩大景深,解决厚样本观察问题,提高图像分辨率;☑ 500MP单色相机:能够采集更多荧光信号,助力低荧光强度样本观察;☑ 多通道荧光自动拍摄叠加功能:可自动进行多通道成像的叠加,个性化选择查看/保存各通道的组合图像。
  • 科研人员利用HOM原理开发量子显微镜
    格拉斯哥大学和赫瑞瓦特大学的物理学家团队利用一种被称为Hong-Ou-Mandel(HOM)的量子现象来生成图像,在传统光学显微镜失效的情况下生成精细显微图像。相关研究成果发表在《自然-光子学》上。  该技术可用于量子传感,在分光器的输出端和光电探测器之间放置一个透明的表面,为光子被检测的时间引入一个轻微的延迟,该延迟可为精密分析提供一些细节。格拉斯哥团队将其应用于显微镜,使用单光子敏感相机来测量成束和反成束的光子,分析微观图像。他们使用装置生成高分辨率的图像,这些图像被喷在显微镜载玻片上的透明亚克力上。  研究团队表示,传统显微镜中的样本需保持完全静止,微小的振动都可能导致图像模糊。然而,HOM技术只需要测量光子,对稳定性的需求较低。
  • 太原理工大学850万元采购1套聚焦离子束显微镜FIB
    p    strong 仪器信息网讯 /strong 2018年11月14日,太原市宜达科技服务有限公司受太原理工大学的委托,在中国政府采购平台对“太原理工大学多功能聚焦离子显微镜”招标项目进行国内公开招标采购,拟以850万元的预算金额采购1套多功能聚焦离子显微镜。开标时间为12月6日。 /p table style=" width: 646px " width=" 745" cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr style=" height:27px" class=" firstRow" td style=" border: 1px solid black padding: 1px " width=" 38" height=" 27" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 序号 /span /p /td td style=" border-color: black black black currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 154" height=" 27" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 货物名称 /span /p /td td style=" border-color: black black black currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 45" height=" 27" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 数量 /span /p /td td style=" border-color: black black black currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 47" height=" 27" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 单位 /span /p /td td colspan=" 2" style=" border-color: black black black currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 265" height=" 27" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 功能及主要技术指标 /span /p /td td style=" border-color: black black black currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 47" valign=" top" height=" 27" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 备注 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor black black border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 38" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 1 /span /p /td td style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 154" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 多功能聚焦离子显微镜 /span /p /td td style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 45" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 1 /span /p /td td style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 47" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 套 /span /p /td td colspan=" 2" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 265" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 所购置的设备需包含电子束成像系统、离子切割系统,同时配置能谱、电子背散射衍射仪、飞行时间二次离子质谱等附件,具备纳米微观形貌观察、切割加工、元素分布与成分分析、晶体结构微观表征、刻蚀、沉积等多项功能,此外还需配置纳米机械手,可进行透射电镜样品制备,特别是搭载原位分析平台和飞行时间二次离子质谱仪后,设备成为集三维分析、原位分析、透射电镜制样、全部“轻”元素分析、同位素分析、材料加工的综合显微分析平台。 /span /p /td td style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 47" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 进口产品 /span /p /td /tr tr style=" height:25px" td colspan=" 2" style=" border-color: currentcolor black black border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 192" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 是否允许代理商投标 /span /p /td td colspan=" 2" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 93" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 是 /span /p /td td style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 208" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 是否接受联合体投标 /span /p /td td colspan=" 2" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 104" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 否 /span /p /td /tr tr style=" height:25px" td colspan=" 2" style=" border-color: currentcolor black black border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 192" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 具备法律、行政法规规定的其他条件 /span /p /td td colspan=" 5" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 405" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 无 /span /p /td /tr tr style=" height:25px" td colspan=" 2" style=" border-color: currentcolor black black border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 192" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 特殊要求 /span /p /td td colspan=" 5" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 405" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 无 /span /p /td /tr tr style=" height:25px" td colspan=" 2" style=" border-color: currentcolor black black border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 192" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 交货时间 /span /p /td td colspan=" 5" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 405" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 自合同签订之日起 span 180 /span 日历天内完成运输、安装、调试、培训,达到验收标准。 /span /p /td /tr tr style=" height:25px" td colspan=" 2" style=" border-color: currentcolor black black border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 192" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 交货地点 /span /p /td td colspan=" 5" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 405" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 太原理工大学明向校区 span ( /span 山西省晋中市榆次区大学街 span 209 /span 号 span ) /span 物电楼,运费包含送货上门及上楼费用。 /span /p /td /tr tr style=" height:25px" td colspan=" 2" style=" border-color: currentcolor black black border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 192" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 款项支付方式 /span /p /td td colspan=" 5" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 405" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 货到验收合格后一次性支付全款。 /span /p /td /tr tr style=" height:25px" td colspan=" 2" style=" border-color: currentcolor black black border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 192" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 履约保证金 /span /p /td td colspan=" 5" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 405" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 按合同约定执行。 /span /p /td /tr tr style=" height:25px" td colspan=" 2" style=" border-color: currentcolor black black border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 192" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 执行标准与验收标准 /span /p /td td colspan=" 5" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 405" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 执行标准:该采购设备属于近 span 10 /span 年研制推出,国内尚未制定相关国家 span / /span 地方标准,扫描电镜部分符合国家标准《射线衍射仪和荧光分析仪防护标准》,该设备不涉及放射源 span /span /span /p p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 验收标准:整机调试后,清点验收附属零配件,并检查、验证仪器性能是否达到合同规定的技术指标。 /span /p /td /tr tr style=" height:25px" td colspan=" 2" style=" border-color: currentcolor black black border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 1px " width=" 192" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 服务要求 /span /p /td td colspan=" 5" style=" border-color: currentcolor black black currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 1px " width=" 405" height=" 25" p style=" text-align:left line-height:30px text-autospace:ideograph-numeric" span style=" font-size:16px font-family:宋体 color:black" 详见招标文件内商务、技术要求。 /span /p /td /tr /tbody /table p    strong 采购信息如下表: /strong /p p    strong 采购人基本信息 /strong /p p   单位名称:太原理工大学 /p p   单位地址:山西省太原市迎泽西大街79号 /p p   项目联系人:崔老师 /p p   联系电话:0351-6010320 /p p   邮箱:cuisx1964@163.com /p p    strong 采购代理机构基本信息 /strong /p p   单位名称:太原市宜达科技服务有限公司 /p p   单位地址:太原市高新区创业街11号天和科技大楼5层 /p p   项目负责人:王玮萍、王勇 /p p   联系电话:0351-7030399,13327511715 /p p   邮箱:ydgdzs@126.com /p
  • 粗纤维测定仪-一台检测饲料中粗纤维含量的仪器2024实时更新
    型号推荐:粗纤维测定仪-一台检测饲料中粗纤维含量的仪器2024实时更新,在农业、食品及饲料科学领域,纤维含量的准确测定对于评估产品品质、营养价值及加工工艺优化具有重要意义。传统方法往往步骤繁琐、耗时较长,且易受人为操作影响。为此,粗纤维测定仪应运而生,它凭借操作简单、应用灵活的特点,成为了现代实验室中不可或缺的纤维检测工具。 一、技术原理与集成优势 粗纤维测定仪基于酸碱洗涤法原理设计,巧妙地将酸、碱处理、冲洗等多个步骤集成于一体。通过全封闭系统,实现电加温、自动加液、消煮、抽滤及冲洗的连续作业,有效避免了传统方法中可能引入的污染和误差,确保了检测结果的准确性和可靠性。 二、多样化的检测方法 该仪器支持温德法和范式法两种主流检测方法,分别适用于粗纤维和洗涤纤维的测定。用户可根据实际需求灵活选择,满足不同应用场景下的检测需求。无论是植物、饲料、食品还是其他农副产品,粗纤维测定仪都能提供精准的纤维含量数据。 三、广泛的应用领域 粗纤维测定仪的应用领域极为广泛。在农业领域,它可用于评估作物秸秆、牧草等粗纤维资源的品质;在食品工业中,有助于优化产品配方,提升食品营养价值;在饲料行业,则是评估饲料原料和成品质量的重要工具。此外,该仪器还可用于研究纤维素、半纤维素等成分的特性,为相关领域的科学研究提供有力支持。 四、产品特点 1.采用进口芯片集成电路控制系统,保证仪器的高品质高标准; 2.7寸超细彩屏,UI动态显示,界面清晰简单,操作方便; 3.★高吸力抽滤泵,材质耐腐蚀性溶剂,解决了传统吸力不够的难题; 4.★机身无机械开关设计,均采用耐腐蚀高灵敏阀岛组,操作更高效流畅; 5.特制半圆形碳化硅加热器,加热迅速,控温稳定,且耐用; 6.内置反吹泵,解决了样品在坩埚内结饼无法抽滤的问题; 7.★外置试剂预热桶,做实验前可提前加热试剂进行预热,加快了实验时间; 综上所述,粗纤维测定仪凭借其先进的技术原理、多样化的检测方法及广泛的应用领域,在纤维含量检测领域展现出了强大的竞争力和广阔的应用前景。随着科技的不断进步和检测需求的日益增长,粗纤维测定仪必将在更多领域发挥重要作用,为相关行业的发展贡献更多力量。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 多功能单细胞显微操作系统FluidFM BOT的原理与应用介绍
    瑞士Cytosurge AG公司的多功能单细胞显微操作系统FluidFM BOT,是将原子力系统、微流控系统、细胞培养系统合为一体的单细胞操作系统,采用不同孔径的微型纳米注射器,可实现单细胞注射(Injection)、活细胞内物质提取(Extraction)、单细胞分离(Isolation)、粘附力测定(Adhesion)、纳米打印(Nano-printing)等多种功能,全程机械臂操纵,将污染风险和人为误差降到低,提高工作效率与实验可重复性,具有高度自动化、操作速度快与操作度高等特点,能够在单细胞水平上为研究者提供大的便利,可应用于单细胞质谱、单细胞力谱、单细胞基因编辑、细胞系构建、药物研发、医疗等领域。北京大学生命科学学院公共仪器中心的多功能单细胞显微操作系统FluidFM BOT,是国内套多功能单细胞显微操作系统,于2020年9月顺利安装于金光楼126室并开始试运行,由公共仪器中心覃思颖老师负责接样测试与维护管理。目前本中心的FluidFM BOT系统已成功应用于单细胞注射与物质提取(小鼠体外培养原代海马神经元、昆虫叶蝉细胞、MDA-MB-231细胞等)、单细胞分离(植物细胞原生质体、U2OS细胞等)与粘附力测定(细菌侵染细胞时细菌的粘附力、血管内皮细胞对不同基底的粘附力等)等多方面科研需求。以下是多功能单细胞显微操作系统FluidFM BOT的多个功能应用与实例介绍。FluidFM BOT结合原子力系统、微流控系统于一体(https://doi.org/10.1021/nl901384x)FluidFM BOT功能应用单细胞注射实例FluidFM BOT可以将多种不同类型的可溶性物质注入细胞核或细胞质中,可量化注射体积(fL别),可实现批量注射(每小时注射超过100个细胞),尤其适用于使用传统方法难转染的细胞,且对细胞几乎没有损伤。CHO细胞的Lucifier Yellow染料注射C57小鼠体外培养原代海马神经元DIV7的Dextran染料注射(北大生科院数据)活细胞内物质提取实例FluidFM BOT系统的活细胞内物质提取功能十分温和,可直接用微型纳米注射器吸取活细胞的细胞质或细胞核中的物质,无需经过化学或生物学手段进行破膜处理,不会产生裂解的细胞碎片,不会对内部细胞器造成任何破坏,可用于电镜成像、酶活检测、核酸表达检测、代谢组学、基因测序等多方面研究。活细胞提取物可结合电镜观察、酶活测定、转录检测等分析手段(http://dx.doi.org/10.1016/j.cell.2016.06.025)HeLa细胞的细胞质物质提取单细胞分离实例FluidFM BOT可进行无损细胞分离,对于悬浮细胞,可将细胞吸取并转移释放即可。对于贴壁细胞,可在探针的样品池中加入消化液如胰酶,对指定位置的细胞进行消化,然后再进行吸取与转移释放。FluidFM BOT实现的单细胞分离存活率很高,结合单细胞注射可实现快速转染细胞并建立单克隆细胞群,对于工程细胞株的建立十分有效。植物原生质体的单细胞分离(北大生科院数据)贴壁细胞CHO的单细胞分离粘附力测定实例FluidFM BOT系统通过负压将细胞吸附在探针针孔处,对细胞的吸附力比蛋白结合更加牢固,能够直接将细胞从基底上分离。这种方法不需要激活细胞的任何信号通路,可以得到接近细胞原生的数据。不同的探针针孔直径(2、4、8um)可适用于不同大小的细胞粘附力测定,我们甚至可使用孔径为300nm的探针进行更小个体的吸附与粘附力测定,目前在本中心的FluidFM BOT系统已成功应用于金黄色葡萄球菌侵染大鼠肠上皮细胞时的细菌粘附力测定(nN别)。不同大小的单细胞粘附力测定(https://doi.org/10.1038/s41598-019-56898-7)纳米打印实例FluidFM BOT系统还是一台纳米打印设备,可以在实验器材上铺设特定的基底膜,如打印亲水或亲脂性物质,从而实现对细胞贴壁的操纵,构建不同的细胞模式,实现对细胞信号转导机制、肿瘤细胞群落迁徙、神经细胞树突或轴突形成的研究。CMD基底打印cRGDfK的细胞贴壁生长Pattern研究(DOI: 10.1021/acs.langmuir.8b03249)多功能单细胞显微操作系统在高性能单元的监控下,通过全自动的工作站实施操作,可确保实验的平稳、顺利的进行。探针有多种孔径规格可选,也可结合FIB技术进行探针定制,结合不同的探针可实现各式各样的应用,以上仅展现部分应用,更多的新功能有待各位老师与同学结合自己的课题需求进行探索与发掘,欢迎大家联系前来测试样品!
  • 色度测定仪工作原理及仪器维护
    工作原理仪器使用 220V、100W,色温为 2750±50K 的内磨砂乳壳灯泡为标准光源。光源光经由乳白色玻璃片和日光滤色 33 玻璃片滤色后,所得到的标准光的光谱特性类似于自然光。标准光经由平面反射镜,棱镜组成二条平行光束,其大小形状完全相同,分别均匀地照射在标准色盘的颜色玻璃片上和比色管的试样上。标准色盘上有 26个 Ø14光孔,其中 25顺序装有(1~25)色号的标准颜色玻璃片,第 26孔为空白,色盘安装在仪器右侧由手轮转动。试验时用于选择正确的标准颜色。比色管为内径 Ø32毫米,高(120~130)mm的无色平底玻璃管。比色管由仪器顶部的小盖位置放入。观察目镜由凹镜和分隔栅组成,在目镜中可同时看到二个半圆色,其左边的为试样颜色。其右边的为标准色颜色,光学目镜具有光线调节和调焦能力,使用方便。仪器的维护1,光学目镜系统,已经调焦和光线调节正确,使用时不宜多动,如需调整需专业人士调整,或返修厂家。2,标准颜色玻璃片每隔半年,须用 SH/T0168规定的标定比色液作校验一次如发现色片颜色与相当色号的比色液颜色相差达一个色号时,应更换新的色盘或送请制造厂重新标定。3,请勿随意拆卸目镜。4,目镜表面附着脏物,影响观察,客户只能做简单处理,将目镜从仪器上取下,倒放在干净的平台上,用洁净的洗耳球,轻吹目镜表面,如问题未解决,必须返厂处理,或请专业人员进行清理。相关仪器ENDBT-0168石油产品色度测定仪符合SH/T0168-92标准,可与GB6540的16个色号相对应,适用于测定润滑油及其他石油产品的颜色。测定时将欲测定的石油产品试样注入比色管内,然后与标准色片相比较就可以确定其色度色号。仪器特点1、仪器由标准色盘、观察光学镜头、光源、比色管组成2、采用磨砂乳壳灯泡为发光源3、光源经滤色后能分别均匀照射在标准色盘的颜色玻璃片和比色管4、光学目镜具有光线调节和调焦能力,使用方便技术参数比色管内径:Φ32mm 高:120~130mm环境温度:5℃~40℃相对湿度:≤85%电源电压:交流220V±10% 50Hz±10%功率消耗:
  • 瓶口边厚仪是如何测量瓶口边缘厚度的?基于何种技术或原理
    在现代工业生产中,瓶口边厚仪作为一种关键的质量控制设备,广泛应用于医药、化工、食品等多个领域,尤其在玻璃瓶、塑料瓶等包装容器的生产中发挥着至关重要的作用。本文将深入探讨瓶口边厚仪的工作原理、所采用的技术或原理。一、瓶口边厚仪的工作原理概述瓶口边厚仪是一种高精度测试设备,主要用于测量玻璃瓶或塑料瓶瓶口边缘的厚度。其工作原理基于机械接触式测量技术,通过精确的传感器和数据处理系统,实现对瓶口边缘厚度的准确测量。该设备不仅具有高度的测试准确性和重复性,还能在不对被测物体造成损伤的情况下完成测量,确保测试结果的可靠性。二、机械接触式测量技术详解1. 探头组件与传感器的作用瓶口边厚仪的核心部件包括探头组件和传感器。探头组件通常采用碳纤维等轻质高强度材料制成,确保在测量过程中既能稳定接触瓶口边缘,又不会对瓶子造成损伤。传感器则负责将探头接触到的物理信号(如位移、压力等)转换为电信号,供后续数据处理系统分析。2. 信号处理与显示转换后的电信号经过信号放大器放大后,进入数据处理系统。该系统利用先进的数字信号处理技术,对信号进行滤波、去噪、线性化等处理,最终得出瓶口边缘的厚度值。测量结果通过数字显示屏实时显示,便于操作人员读取和记录。三、高精度测量的实现1. 精密的机械结构设计为了实现高精度的测量,瓶口边厚仪的机械结构设计十分精密。探头组件与瓶口边缘的接触点需保持恒定且均匀的压力,以确保测量结果的准确性。同时,设备的整体结构需具备较高的刚性和稳定性,以抵抗外界干扰和振动对测量结果的影响。2. 先进的测量算法除了精密的机械结构外,瓶口边厚仪还采用先进的测量算法对信号进行处理。这些算法能够自动校正测量过程中的系统误差和随机误差,提高测量结果的精度和稳定性。同时,算法还能实现数据的实时处理和统计分析,为质量控制提供有力支持。四、非接触式测量技术的探索虽然机械接触式测量技术在瓶口边厚测量中占据主导地位,但非接触式测量技术也在不断发展和探索中。例如,基于激光或超声波的非接触式测量技术具有不损伤被测物体、测量速度快等优点,但其在瓶口边厚测量中的应用还需进一步研究和验证。五、应用实例与市场需求1. 医药行业的应用在医药行业中,瓶口边厚仪被广泛应用于药品包装容器的质量检测中。通过测量瓶口边缘的厚度,可以评估包装容器的密封性、耐压性等关键性能指标,确保药品在储存和运输过程中的安全性和有效性。2. 化工行业的需求化工行业对包装容器的要求同样严格。瓶口边厚仪在化工瓶罐的生产过程中发挥着重要作用,通过测量瓶口边缘的厚度,可以及时发现并纠正生产过程中的偏差和缺陷,提高产品的整体质量和市场竞争力。3. 市场需求与未来展望随着工业生产的不断发展和消费者对产品质量要求的不断提高,瓶口边厚仪的市场需求将持续增长。未来,随着技术的不断进步和创新,瓶口边厚仪将更加智能化、自动化和便携化,为各行各业提供更加高效、准确的质量控制手段。六、结语瓶口边厚仪作为现代工业生产中的重要质量控制设备,其工作原理和技术特点决定了其在多个领域中的广泛应用和重要地位。通过不断的技术创新和产品优化,瓶口边厚仪将不断提高测量精度和稳定性,为企业的质量控制和市场竞争提供有力支持。同时,我们也期待非接触式测量技术在瓶口边厚测量中的进一步发展和应用,为工业生产的智能化和自动化注入新的活力。
  • 《石英晶体微天平-原理与应用》 一书出版
    由华南理工大学 张广照教授和中国科学技术大学刘光明教授合著的“石英晶体微天平-原理与应用”一书,近日由科学出版社出版。该书从石英晶体微天平的原理入手,深入浅出,详细介绍了使用石英晶体微天平在界面接枝高分子构象行为、高分子表面接枝动力学、聚电解质多层膜、磷脂膜、抗蛋白吸附以及纳米气泡表面清洁技术中的应用。本书在介绍石英晶体微天平基本原理的基础上,重点向读者展示了如何利用石英晶体微天平作为一项表征技术去研究界面上的一些重要科学成果。为了便于回答有关疑问,本书的应用例子均选自作者实验室的研究成果。
  • 电镜应用小Tips|看Axia如何应对纤维类不导电样品(一)
    随着经济的发展和人们生活水平的提高,纤维制品已经成为我们生产和生活的必需品,为了满足人们对纤维制品的高要求,各种纤维制品推陈出新,质地复杂多变,与此同时也给纤维的检验工作带来新的挑战。纤维制品的检测方法有多种,扫描电镜凭借其出色的特点在纤维微观形态分析方面发挥重要的作用,特别是扫描电镜-能谱仪的应用,更加适用于纤维的检验,被普遍应用于各个行业。 Axia ChemiSEM是新一代的扫描电镜,旨在提供最高效的SEM-EDS用户体验。Axia ChemiSEM将无需对中的操作与独有的即时定量元素分布图结合在一起,让之前从未接触过扫描电镜的用户也能轻松操作。Axia ChemiSEM的全新平台支持业内最大的扫描电镜样品重量,在牢固性和灵活性方面达到了全新的高度。 利用扫描电子显微镜扫描纤维织物表面的微观区域,观察织物纤维与纤维交联处的微观特征,确定相关成分含量,并通过观察其表面光滑程度以及粗细,对研究改性的生产工艺,开发新用途都具有重要的意义。上图1~4是利用Axia的ETD探头,在样品喷金的条件下,所获得的扫描电镜图像。图中从500倍~10000倍,我们均获得了高质量的清晰图片。即使在高倍条件下,纤维表面的附着物依然清晰可见。上图5是采用Axia的CBS探测器所获得的衬度像。Axia的背散射电子探测器是一个2分割的可伸缩探测器,可以呈现优异的衬度像。并且,内环可采集高角度背散射电子(BSE)以提供纯粹的成分衬度,而外环则可接收低角度BSE以提供拓扑结构信息。图6、7是ColorSEM实时能谱。图中信息显示了纤维的主要成分,并实时显现在分析图像上。Axia ChemiSEM提出了全新的EDS分析理念,优化了收集、处理和呈现样品成分信息的流程。使用 Axia ChemiSEM,电子束打开后用户即可通过图像中的颜色来观察定量元素信息。这样,相关的成分信息便即时可用,同时减少了传统EDS工作流程的大多数步骤。这极大地提高了分析的速度、易用性和完整性。 参考文献:[1]黄滟波,刘站.扫描电镜低真空模式在纤维表面形貌分析中的应用[J].造纸科学与技术,2014,33(01):69-72.[2]马非非,徐亚民.扫描电镜的原理及其在纤维物证鉴定方面的应用[J].中国纤检,2008(05):30-31.
  • 帕克网络讲堂:原子力显微镜测定力—距离曲线的原理和应用
    日期和时间:6月28日 上午10点-11点整主讲人: 帕克公司资深售后服务工程师&应用专家,AFM从业经验8年针尖-样品相互作用的力值量测 力-距离(F-D)曲线是一种分光镜检查技术,在Z轴扫描仪伸缩的同时,测量针尖与样品表面间的垂直相互作用。直接测量针尖与样品间的相互作用力时,对比悬臂偏转功能与压电扫描仪延伸,反映表面的力学性能。原子力显微镜包含各种各样的扫描模式可以到样品的形貌图或其他对应的特性分析图, 而这其中的力和距离曲线在表面科学,纳米技术,生物科学和许多其他研究领域中也扮演了非常重要角色。 在帕克的每一台设备的基本配置中都包含力和距离光谱分析。它不需要一些特殊的辅助模块进行操作,只是在探针和样品接触后分离的状态下,去获得相应点的力曲线。但是看似简单地操作, 却也涉及到了很多难点,想探针的选择,参数的设定,悬臂的校准等等。并且,液下力曲线,力曲线成像,更如PinPoint模式也都是这个领域的延伸。 而对于特殊材料进行力曲线分析,如细胞等,探针的改良也是一种保护样品不被破坏的途径,并能够让测量变成更容易的几何运算。它也是一种力曲线分析的难点之一。 这些信息都会在本次研讨会上进行讨论和分析。请参考友情链接,进入官网免费申请听取网络讲堂!
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 纤维电子器件连续自动化制备技术及设备研制
    成果名称 纤维电子器件连续自动化制备技术及设备研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 纤维电子器件是近年来在国际上兴起的热点研究领域。它是在纤维上集成光、电、热、磁等功能,并最终可以直接以纤维形态应用的新形态电子器件。目前国际上报道的真正意义上的纤维电子器件包括纤维太阳能电池、纳米压电机、纤维电容器、纤维发光二极管等。这些光电子器件的最终应用形态是纤维状的,故可以利用成熟的纺织工业技术生产各种便携式、可穿戴的电子设备。因此,如何将纤维电子器件的制备方法与最终织物制造工艺相结合,实现从基本材料到纤维器件再到织物电子设备的制备是一个亟待解决的重大课题,也是国际、国内相关技术领域的一个空白和潜在的原创性产业技术开发机会。 2012年,北京大学化学学院邹德春教授申请的&ldquo 纤维电子器件连续自动化制备技术及设备研制&rdquo 项目获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金的支持下,通过相关部件的购买和材料的加工,该课题组开展了富有成效的工作,包括:(1)纤维基底表面连续处理技术的研究;(2)功能超薄膜纤维基底上的连续沉积、生长技术的研究;(3)由功能纤维自动组装纤维电子器件技术研究;(4)纤维电子器件制备系统的计算机控制。通过以上工作,相关原理样机试制成功,项目顺利结题。 应用前景: 该项目的成果和经验可以发展成为工业化制备纤维电子设备的蓝本,为将来的纤维太阳能电池在内等多种纤维电子器件的规模化生产奠定了基础。
  • 第三届微流控细胞分析学术报告会圆满落幕——新原理、新技术未来可期
    2021年9月29日,为期两天的第三届微流控细胞分析学术报告会在北京中国国际展览中心(天竺新馆)圆满落幕。本届论坛由中国分析测试协会和清华大学化学系联合举办,旨在为从事相关领域专家学者、科研人员等提供多学科交叉学术交流平台。本届会议,共计20余位资深专家学者就微流控细胞分析领域的最新科研成果分别作精彩报告!会议首日,10余位专家就器官模拟与细胞代谢分析等领域进行分享探讨(点击查看首日精彩报告:微流控技术大有可为)。会议次日,7位专家学者分别就微流控新原理、新技术等方向带来精彩主题报告,详情如下:报告人:南京大学 李仲秋副研究员报告题目:《生物传感和能源转化的纳流控器件》李仲秋副研究员报道了各类纳流控器件应用于不同的材料与生物的成果,对比说明了纳流控器件之于传统器件在性能上的优势,并提出了纳米通道中分子检测方法的一般模型。报告人:南方科技大学 蒋兴宇教授报告题目:《微流控-液态金属的细胞调控与分析》蒋兴宇教授介绍了用微流控芯片来提升细胞分析检测性能的系列方法与各类应用,此外还着重介绍了结合微流控芯片的金属高分子导体(MPC),拓展了微流控芯片研究的新思路。报告人:北京工业大学 汪夏燕教授报告题目:《基于超薄可控温微坑阵列芯片的单细胞胞内递送》汪夏燕教授介绍了一整套单细胞操作的基本流程,包括对细胞的捕获、固定到探针递送等步骤,结合三光路显微镜成像技术,能有效实现对单个细胞的精准检测研究。报告人:中国农业大学 林建涵教授报告题目:《用于病原微生物快速检测的微流控生物传感器研究》林建涵教授提出了食源性致病微生物检测的重要性,并针对此问题提出了免疫磁珠分选的方法,实现了对目标微生物的高通量检测;此外还针对提升检测灵敏度介绍了电化学生物传感器等有效新型分析方法。报告人:清华大学 梁琼麟教授报告题目:《药物分析“芯”方法》梁琼麟教授介绍了建立“芯片药物实验室”的基本思路,并基于此设计了一系列的芯片器官与仿生材料,以物理结构重现、细胞结构重现和器官功能重现为目标,完成了肾小球模拟的重要工作。报告人: Chinese Chemical Letters编辑部 郭焕芳副主编报告题目:《中国化学快报进展》郭焕芳副主编介绍了CCL杂志的创办理念与该期刊目前取得的优异成绩,并呼吁各位学者在撰写高水平论文的同时,保持学术端正。报告人:华中农业大学 何子怡副研究员报告题目:《微流控芯片质谱联用细胞分析仪器的研制与应用》何子怡副研究员通过总结传统芯片液滴产生的模式,提出了基于声控产生液滴的新型方法,兼备了仪器的便携性与实验的可控性,为芯片液滴技术发展提供了新的思路。报告环节过后,清华大学林金明教授就闭幕式致辞。清华大学林金明教授闭幕式致辞林金明教授总结了为期两天的专家报告内容,为各位从事微流控生命分析的学者们提出了期许,希望大家铭记该会议的追求创新的精神,共同推动中国微流控分析领域更上一层楼。后记放眼未来,林金明教授认为微流控芯片在单细胞分析等领域应用意义重大,将会对生命科学的研究起到巨大的促进作用。与此同时,我们期待各位专家学者在微流控细胞分析技术领域取得更多的突破与创新,也期待在下一届微流控细胞分析技术学术会议能继续为听众带来如此前沿技术的饕餮盛宴。
  • 如何选择一台适合自己的显微镜——显微镜的种类选择
    2022年的春节已接近尾声,科研的小伙伴已经开始忙碌起来了,对于新学期是不是也有新的计划,发一篇sci的文章顺利毕业,脱单flag,头发多一点点,细胞养好,科研项目进展顺利,老师能给买台心仪已久的显微镜;你想知道选择什么种类的显微镜,正置还是倒置,宽场显微镜、超高分辨率显微镜、激光共焦显微镜等等,小本本备好,我们开始了。1不同成像原理,不同分辨率的显微镜如何选择显微镜作为生命科学领域研究的必须工具,其结构复杂,配置繁多,根据不同的配置和结构,相应的价格有很大的差异。那很多用户在实际采购过程中,看到长串的配置不知如何去选择,怎么用合理的价格去买到一个完全能够满足自己实验需求的显微镜呢?从今天这期推文开始,将会着重介绍选择显微镜的几个关键核心问题,目的是让用户能够在自己的预算范围内选择出符合自己实验需求的显微镜。首先要知道显微镜从开始诞生发展到现在,主要通过分辨率来划分,分为宽场显微镜、超高分辨率显微镜、激光共焦显微镜以及电镜。这一系列显微镜的分辨率从光镜的200纳米到超高与共聚焦的100多到几十纳米再到电镜的0.2纳米。并不是说显微镜的分辨率越高,就越适合我们的研究。分辨率越高,意味着其价格和操作的难度系数是逐级增长的。那我们如何去选择一个适合我们的显微镜呢?要根据老师和用户自己样品的大小去选择。2不同机型的选择我们在根据样品的大小和观察的实验需求,确定了某一类型的显微镜之后。我们需要根据实验样品去选择相对应的合适机型。显微镜的主要机型,根据其光路设计的不同,主要分为体视显微镜、正置显微镜和倒置显微镜。体视显微镜:体视显微镜,是一种具有正像立体感的显微镜,被广泛应用于材料宏观表面观察、失效分析、断口分析等工业领域。以及生物学、医学、农林、工业及海洋生物各部门。因为体视显微镜的光路设计,符合人体眼睛夹角的偏角,所以通过体视显微镜观察物体时,类似于我们眼睛的成像光路,这样会让我们看到立体的图像呈现。正是由于此设计,体视显微镜的分辨率要远低于传统的正置或倒置显微镜。体视显微镜更多的是观察小物体的宏观表象,而不是更为精细的细节。正置显微镜:正置显微镜作为最早诞生的机型它更多的是要配合玻片来对样品实现显微观察。如何来定义正置显微镜呢?显微镜物镜朝下,观察的样品在物镜的下方,这样的显微镜我们称之为正置显微镜。一般适用于的观察样品为:透明样品、薄的样片、生物切片、涂片等。但由于正置显微镜的机械设计,样品位于载物台与物镜中间。低倍物镜齐焦时,与载物台之间的距离大约为三厘米左右。像无法切割的厚样品,类似矿石、零件或者是在孔板、培养皿、培养瓶中培养的细胞,就无法在正置显微镜下进行观察,那由此人们设计了倒置显微镜。倒置显微镜:顾名思义,倒置显微镜与正置显微镜正好相反,那么定义也是相反的,物镜朝上,要观察的样品在物镜的上方,此类显微镜我们称之为倒置显微镜。我们可以看到倒置显微镜,物镜和载物台之间不再放观察的样品,样品是放于载物台的上面,所以样品的厚度就不会受到载物台与物镜之间距离的限制。因此倒置显微镜主要用于微生物、细胞、细菌、组织培养、悬浮体、沉淀物等的观察。介绍了三种不同形式的显微镜,相信我们的老师和用户对自己的样品适用于什么类型的显微镜已经有了一个大体的判断。当我们更多的去观察样品的立体结构,对细节和分辨率没有更高追求的时候,我们通常会选择体视显微镜。当我们的样品无法制成玻片或者不能放在玻片上时,我们就去选择倒置显微镜。如果能制成玻片就选择正置。为什么说能制成玻片就去选择正置呢?因为对于倒置显微镜来说,正置显微镜的高倍数观察更方便,比如60X和100X的油镜。同时,因为它的光路要比倒置更短,搭配高分辨率聚光器后分辨率更高,对比度更好。通过我们这期推文的介绍,老师对于选择哪种分辨率水平的显微镜,以及什么类型的显微镜会有一个较为清楚的了解。这些只是我们采购或选择显微镜的第一步,就是我们确定显微镜的类型。针对不同的观察样品,又会有其更为适应的观察方式,又有不同的光源,不同品质的物镜,供我们去选择。欲知后事如何,且听下回分解。|申请试用|ECHO 显微镜可以申请试用哦!关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 质粒抽提的基本原理及操作流程
    质粒抽提的基本原理及操作流程⒈质粒抽提基本原理在其中采用几种水溶液及其硅酸化学纤维膜(超滤膜柱)。 水溶液Ⅰ:50 mM果糖 / 25 mMTris-HCl/ 10 mMEDTA,pH 8.0;水溶液Ⅱ:0.2 N NaOH / 1%SDS; 水溶液Ⅲ:3 M 醋酸钾/ 2 M 醋酸/75%乙醇。水溶液Ⅰ果糖是使飘浮后的大肠埃希菌不容易迅速堆积到水管的底端;EDTA是Ca2+和Mg2+等二价金属材料正离子的螯合剂,其关键目地是以便鳌合二价金属材料正离子进而达到抑制DNase的特异性;可加上RNase A消化吸收RNA。水溶液Ⅱ此步为碱解决。在其中NaOH关键是以便融解体细胞,释放出来DNA,由于在强偏碱的状况下,细胞质产生了从两层膜结构工程向微囊构造的转变。SDS与NaOH联用,其目地是以便提高NaOH的强偏碱,一起SDS做为阳离子表活剂毁坏脂两层膜。那步要记牢二点:首位,时间不可以太长,由于在那样的偏碱标准下基因组DNA-p段也会渐渐地破裂;其次,务必温柔混和,要不然基因组DNA会破裂。水溶液Ⅲ水溶液III的功效是沉定蛋白质和中和反应。在其中醋酸钾是以便使钾离子换置SDS中的钾离子而产生了PDS,由于十二烷基硫酸钠(sodium dodecylsulfate)碰到钾离子后变为了十二烷基硫酸钾 (potassium dodecylsulfate, PDS),而PDS不是溶水的,一起1个SDS分子结构均值融合2个碳水化合物,钾钠正离子换置所造成的很多沉定大自然就将绝大多数蛋白沉定了。2 M的醋酸是以便中合NaOH。基因组DNA如果产生破裂,要是是50-100 kb尺寸的片段,就没有方法再被 PDS共沉淀了,因此碱解决的时间要短,并且不可猛烈震荡,要不然蕞终获得的质粒上都会有很多的基因组DNA渗入,琼脂糖电泳能够 观查到这条浓浓总DNA条带。75%乙醇关键是以便清理盐分和抑止Dnase;一起水溶液III的强酸碱性都是以便使DNA尽快融合在硅酸化学纤维膜上⒉质粒抽提流程⑴应用质粒提取试剂盒获取质粒时请参照实际试剂盒的操作指南。如Omega企业的E.Z.N.A.? Plasmid Mini Kit I, Q(capless) Spin (质粒提取盒)。⑵碱裂解手提式法:此方式适用少量质粒DNA的获取,获取的质粒DNA可立即用以酶切、PCR测序、银染编码序列分析。方式给出:①接1%含质粒的大肠埃希菌体细胞于2mlLB培养液。②37℃震荡塑造留宿。③取1.5ml菌体于Ep管(离心管),以4000rpm抽滤3min,弃上清液。④加0.lml水溶液I(1%果糖,50mM/LEDTApH8.0,25mM/LTris-HClpH8.0)充足混和。⑤添加0.2ml水溶液II(0.2mM/LNaOH,1%SDS),轻轻地旋转搅拌,放置冰浴5min.⑥添加0.15m1预冷水溶液III(5mol/LKAc,pH4.8),轻轻地旋转搅拌,放置冰浴5min.⑦以10,000rpm抽滤20min,取上清液于另翻新Ep管。⑧添加等容积的异戊醇,搅拌后静放10min.⑨以10,000rpm抽滤20min,弃上清。⑩用70%酒精0.5ml清洗一回,吸干全部液体。待沉定干躁后,溶解50ulTE缓冲液中(或60℃温育双蒸水)。
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 一看就懂|动图解析16种仪器原理
    p span style=" color: rgb(31, 73, 125) " strong 紫外分光光谱UV /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title=" 紫外分光光谱UV.jpeg" width=" 400" height=" 290" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 290px " / /strong /span /p p strong i 分析原理 /i /strong :吸收紫外光能量,引起分子中电子能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :相对吸收光能量随吸收光波长的变化 /p p i strong 提供的信息 /strong /i :吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 /p p style=" text-indent: 2em " 物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title=" 光线传输.gif" / br/ /p p style=" text-align: center " strong 光线传输 /strong /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title=" 光衍射.gif" / /strong /p p style=" text-align:center" strong 光衍射 /strong br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title=" 探测.gif" / br/ /p p style=" text-align: center " strong 探测 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title=" 数据输出.gif" / br/ /p p style=" text-align: center " strong 数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 红外吸收光谱法IR /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title=" 红外吸收光谱法IR.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 /p p i strong 谱图的表示方法 /strong /i :相对透射光能量随透射光频率变化 /p p strong i 提供的信息 /i /strong :峰的位置、强度和形状,提供功能团或化学键的特征振动频率 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title=" 红外光谱测试.gif" / br/ /p p style=" text-align: center " strong 红外光谱测试 /strong /p p style=" text-indent: 2em " 红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。 /p p style=" text-indent: 2em " 以下是甲醇红外光谱分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title=" 甲醇红外光谱结构分析过程1.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title=" 甲醇红外光谱结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title=" 甲醇红外光谱结构分析过程3.gif" / /p p style=" text-align:center" strong 甲醇红外光谱结构分析过程 /strong br/ /p p span style=" color: rgb(31, 73, 125) " strong 核磁共振波谱法NMR /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title=" 核磁共振波谱法NMR.jpeg" width=" 400" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 240px " / /strong /span /p p i strong 分析原理 /strong /i :在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :吸收光能量随化学位移的变化 /p p i strong 提供的信息 /strong /i :峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title=" NMR结构.gif" / br/ /p p style=" text-align: center " strong NMR结构 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title=" 进样.gif" / br/ /p p style=" text-align: center " strong 进样 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title=" 样品在磁场中.gif" / br/ /p p style=" text-align: center " strong 样品在磁场中 /strong /p p style=" text-indent: 2em " 当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style=" float:none " title=" 核磁共振及数据输出1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style=" float:none " title=" 核磁共振及数据输出2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style=" float: none width: 400px height: 225px " title=" 核磁共振及数据输出3.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 核磁共振及数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 质谱分析法MS /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title=" 质谱分析法MS.jpeg" width=" 400" height=" 282" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 282px " / /strong /span /p p strong i 分析原理 /i /strong :分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化 /p p i strong 提供的信息 /strong /i :分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 /p p i strong FT-ICR质谱仪工作过程: /strong /i /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title=" 离子产生.gif" / br/ /p p style=" text-align: center " strong 离子产生 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title=" 离子收集.gif" / br/ /p p style=" text-align: center " strong 离子收集 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title=" 离子传输.gif" / br/ /p p style=" text-align: center " strong 离子传输 /strong /p p style=" text-indent: 2em " FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style=" float:none " title=" 离子回旋运动1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style=" float:none " title=" 离子回旋运动2.gif" / /p p style=" text-align:center" strong 离子回旋运动 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title=" 傅立叶变换.gif" / br/ /p p style=" text-align: center " strong 傅立叶变换 /strong /p p span style=" color: rgb(31, 73, 125) " strong 气相色谱法GC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title=" 气相色谱法GC.jpeg" width=" 400" height=" 364" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 364px " / /strong /span /p p i strong 分析原理 /strong /i :样品中各组分在流动相和固定相之间,由于分配系数不同而分离 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :峰的保留值与组分热力学参数有关,是定性依据 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title=" 气相色谱仪检测流程.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 气相色谱仪检测流程 /strong /p p style=" text-indent: 2em " 气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title=" 注射器.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 注射器 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title=" 色谱柱.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 色谱柱 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title=" 检测器.gif" width=" 400" height=" 212" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 212px " / br/ /p p style=" text-align: center " strong 检测器 /strong /p p span style=" color: rgb(31, 73, 125) " strong 凝胶色谱法GPC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title=" 凝胶色谱法GPC.jpeg" width=" 400" height=" 298" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 298px " / /strong /span /p p i strong 分析原理 /strong /i :样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :高聚物的平均分子量及其分布 /p p style=" text-indent: 2em " 根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title=" 只依据尺寸大小分离,大组分最先被洗提出.gif" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / br/ /p p style=" text-align: center " strong 只依据尺寸大小分离,大组分最先被洗提出 /strong /p p style=" text-indent: 2em " 色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title=" 直径小于孔径的组分进入凝胶孔道.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 直径小于孔径的组分进入凝胶孔道 /strong /p p style=" text-indent: 2em " 小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title=" 依据尺寸差异,样品组分分离.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 依据尺寸差异,样品组分分离 /strong /p p style=" text-indent: 2em " 体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。 /p p span style=" color: rgb(31, 73, 125) " strong 热重法TG /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title=" 热重法TG.jpeg" width=" 400" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 268px " / /strong /span /p p i strong 分析原理 /strong /i :在控温环境中,样品重量随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品的重量分数随温度或时间的变化曲线 /p p strong i 提供的信息 /i /strong :曲线陡降处为样品失重区,平台区为样品的热稳定区 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title=" 自动进样过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 222px " / br/ /p p style=" text-align: center " strong 自动进样过程 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程2.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 热重分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 静态热-力分析TMA /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title=" 静态热-力分析TMA.png" width=" 400" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 400px " / /p p i strong 分析原理 /strong /i :样品在恒力作用下产生的形变随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品形变值随温度或时间变化曲线 /p p i strong 提供的信息 /strong /i :热转变温度和力学状态 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title=" TMA进样及分析1.gif" style=" float: none width: 400px height: 223px " width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title=" TMA进样及分析2.gif" width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 223px " / /p p style=" text-align: center " strong TMA进样及分析 /strong /p p strong span style=" color: rgb(31, 73, 125) " 透射电子显微技术TEM /span /strong /p p style=" text-align:center" strong span style=" color: rgb(31, 73, 125) " img src=" https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title=" 透射电子显微技术TEM.jpeg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /span /strong /p p i strong 分析原理 /strong /i :高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 /p p i strong 谱图的表示方法 /strong /i :质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 /p p i strong 提供的信息 /strong /i :晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title=" TEM工作图.gif" / br/ /p p style=" text-align: center " strong TEM工作图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title=" TEM成像过程.gif" / br/ /p p style=" text-align: center " strong TEM成像过程 /strong /p p style=" text-indent: 2em " STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title=" STEM分析图.gif" / br/ /p p style=" text-align: center " strong STEM分析图 /strong /p p style=" text-indent: 2em " 入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title=" EELS原理图.gif" / br/ /p p style=" text-align: center " strong EELS原理图 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描电子显微技术SEM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title=" 扫描电子显微技术SEM.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /p p i strong 分析原理 /strong /i :用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 /p p i strong 谱图的表示方法 /strong /i :背散射象、二次电子象、吸收电流象、元素的线分布和面分布等 /p p i strong 提供的信息 /strong /i :断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title=" SEM工作图.gif" / br/ /p p style=" text-align: center " strong SEM工作图 /strong /p p style=" text-indent: 2em " 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title=" 电子发射图.gif" / br/ /p p style=" text-align: center " strong 电子发射图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title=" 二次电子探测图.gif" / br/ /p p style=" text-align: center " strong 二次电子探测图 /strong /p p style=" text-indent: 2em " 二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title=" 二次电子扫描成像.jpeg" / br/ /p p style=" text-align: center " strong 二次电子扫描成像 /strong /p p style=" text-indent: 2em " 入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title=" 背散射电子探测图.gif" / br/ /p p style=" text-align: center " strong 背散射电子探测图 /strong /p p style=" text-indent: 2em " 用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title=" EBSD成像过程.gif" / br/ /p p style=" text-align: center " strong EBSD成像过程 /strong /p p span style=" color: rgb(31, 73, 125) " 原子力显微镜AFM /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title=" 原子力显微镜AFM.jpeg" width=" 400" height=" 176" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 176px " / /p p i strong 分析原理 /strong /i :将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息 /p p i strong 谱图的表示方法 /strong /i :微悬臂对应于扫描各点的位置变化 /p p i strong 提供的信息 /strong /i :样品表面形貌的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title=" AFM原理:针尖与表面原子相互作用.gif" / br/ /p p style=" text-align: center " strong AFM原理:针尖与表面原子相互作用 /strong /p p style=" text-indent: 2em " AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title=" 接触模式.gif" / br/ /p p style=" text-align: center " strong 接触模式 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描隧道显微镜STM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title=" 扫描隧道显微镜STM.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /p p i strong 分析原理 /strong /i :隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。 /p p i strong 谱图的表示方法 /strong /i :探针随样品表面形貌变化而引起隧道电流的波动 /p p i strong 提供的信息 /strong /i :软件处理后可输出三维的样品表面形貌图 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title=" 探针.gif" / br/ /p p style=" text-align: center " strong 探针 /strong /p p style=" text-indent: 2em " 隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title=" 隧道电流.gif" / br/ /p p style=" text-align: center " strong 隧道电流 /strong /p p style=" text-indent: 2em " 针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title=" 三维图像1.gif" style=" float: none " / br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style=" float:none " title=" 三维图像2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style=" float:none " title=" 三维图像3.gif" / /p p span style=" color: rgb(31, 73, 125) " strong 原子吸收光谱AAS /strong /span br/ /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title=" 原子吸收光谱AAS.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /strong /span /p p i strong 分析原理 /strong /i :通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title=" 待测试样原子化.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / br/ /p p style=" text-align: center " strong 待测试样原子化 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title=" 原子吸收及鉴定1.gif" style=" float: none width: 400px height: 222px " width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title=" 原子吸收及鉴定2.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / /p p style=" text-align: center " strong 原子吸收及鉴定 /strong /p p span style=" color: rgb(31, 73, 125) " strong 电感耦合高频等离子体ICP /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title=" 电感耦合高频等离子体ICP.jpeg" width=" 400" height=" 255" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 255px " / /strong /span /p p i strong 分析原理 /strong /i :利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title=" Icp设备构造.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong Icp设备构造 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title=" 形成激发态的原子和离子.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 形成激发态的原子和离子 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title=" 检测器检测.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 检测器检测 /strong /p p span style=" color: rgb(31, 73, 125) " strong X射线衍射XRD /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title=" X射线衍射XRD.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 /p p style=" text-indent: 2em " 满足衍射条件,可应用布拉格公式:2dsinθ=λ /p p style=" text-indent: 2em " 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title=" XRD结构.jpeg" width=" 400" height=" 421" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 421px " / /p p style=" text-indent: 2em " 以下是使用XRD确定未知晶体结构分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title=" XRD确定未知晶体结构分析过程1.gif" style=" float: none " / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title=" XRD确定未知晶体结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title=" XRD确定未知晶体结构分析过程3.gif" / /p p style=" text-align: center " strong XRD确定未知晶体结构分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 纳米颗粒追踪表征 /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title=" 纳米颗粒追踪表征.jpeg" width=" 400" height=" 261" border=" 0" hspace=" 0" vspace=" 0" style=" text-align: center width: 400px height: 261px " / /p p i strong 分析原理 /strong /i :纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title=" 不同粒径颗粒的散射光成像在CCD.gif" width=" 400" height=" 168" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 168px " / br/ /p p style=" text-align: center " strong 不同粒径颗粒的散射光成像在CCD /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title=" 实际样品测试效果.gif" width=" 400" height=" 301" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 301px " / br/ /p p style=" text-align: center " strong 实际样品测试效果 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title=" 不同技术的数据对比.jpeg" width=" 400" height=" 377" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 377px " / br/ /p p style=" text-align: center " strong 不同技术的数据对比 /strong /p
  • 先进生物显微技术知多少?目前最新!首次!唯一!
    生物显微成像作为观察微观世界的主要手段,近些年来技术突飞猛进。生物显微技术在分子机制基础研究、药物靶点发现、疾病诊断中都有重要应用。荧光显微、共聚焦显微、电子显微、光片显微等生物显微技术的进步极大的促进了生命科学事业的发展。 本次直播将由来自北大、西安交大、中科院及四大仪器厂商的11位专家为我们全方位地介绍显微技术在生命科学领域的新应用及创新性进展,从超分辨显微成像方法到高速原子力显微镜,从三维显微成像技术到冷冻电镜,将理论与实践相结合,为您带来一场显微盛宴,诚邀您的出席,定不负您的期待!会议时间:8月10日 9:00-16:00会议日程:报名占位时间报告题目报告嘉宾9:00下一代的活细胞超分辨率成像-新原理,新应用陈良怡(北京大学)9:30液体环境下对生物高分子的高分辨三维观测陈强(岛津企业管理(中国)有限公司)10:00基于高速原子力显微镜的生物物理研究焦放(中国科学院物理研究所)10:3050 fps新速度:NanoRacer视频级AFM助力分子动力学研究王鑫(布鲁克纳米表面测量部)11:00高速大视场彩色三维显微成像技术及应用雷铭(西安交通大学)11:30多模态结构光超分辨显微镜技术开发与应用李栋(中国科学院生物物理研究所)13:30基于流式光片的毫米级样品高通量三维成像李辉(中国科学院苏州生物医学工程技术研究所)14:00日立电子显微镜在生物医学领域的解决方案王勐(日立科学仪器(北京)有限公司)14:30冷冻光电关联成像技术在原位结构生物学中的应用李硕果(中国科学院生物物理研究所)15:00冷冻电子断层扫描在生命科学领域的最新应用与进展陈晨(赛默飞世尔科技)15:30电镜技术在生物学中的发展与应用孔妤(中国科学院脑科学与智能技术卓越创新中心)部分报告摘要:《下一代的活细胞超分辨率成像-新原理,新应用》报名占位【摘要】 这里我们将介绍发明的三种活细胞超分辨率成像方法。第一,用于活细胞长期超分辨成像的海森结构光超分辨率显微镜。第二,稀疏解卷积方法首次实现计算超分辨率成像,也是推动现有活细胞荧光显微镜的时空分辨率极限的通用工具。第三,荧光-无标记相位双模态超分辨率显微镜SR-FACT (Super-Resolution Fluorescence Assisted diffraction Computation Tomography),在细胞生物学中广泛适用。《高速大视场彩色三维显微成像技术及应用》报名占位【摘要】 生物体表面色彩的不同色相、饱和度和明度在很大程度上反映了其微观结构和光学性质的不同。以激光共聚焦扫描显微镜为代表的点扫描显微成像技术具有三维层析成像能力,然点扫描显微成像技术的颜色通道十分有限,通常仅有三至四个,不能反映样品的全部色彩信息。研究团队开发了三维多视场成像技术,该技术是目前唯一的将高分辨、三维、大视场、彩色、定量和快速六大成像要素集为一体的光学显微成像技术。最大三维光切片速度100fps@1024×1024pixels。《基于流式光片的毫米级样品高通量三维成像》报名占位【摘要】 以毫米尺度的微小模式生物、类器官等为对象,进行发育、疾病机制以及药物筛选的研究不仅需要高分辨的三维成像,还需要对大量样品进行高通量的表征与统计分析。本报告将介绍基于流式和光片扫描的高通量三维活体成像技术与系统,对斑马鱼等微小模式动物根据尺寸、存活、是否成功标记荧光等的高速检测和分选,以及对分选后的样本法人高分辨全自动三维成像,从而实现根据大量样品三维图像的形态/功能特征进行统计分析。《冷冻光电关联成像技术在原位结构生物学中的应用》报名占位【摘要】 针对结构生物学原位生物大分子的高分辨率结构解析技术需求,依托生物成像中心自主研发的基于高真空冷台的冷冻光电关联成像系统HOPE,实现对目标区域的冷冻光镜-扫描电镜关联成像,导航聚焦离子束对目标区域进行减薄,获得包含目标物的200nm冷冻含水切片样品,助力高分辨率冷冻透射电镜的高效原位结构解析。 更多精彩欢迎参与直播,还可以和专家老师互动,获得现场答疑的机会哦! 点击报名吧!报名占位
  • 弯月面法测量纤维润湿性
    方法介绍弯月面法是一种基于弯月面接触角测量纤维润湿性的光学方法,弯月面的接触角是由垂直浸入纤维上的毛细力而产生的。纤维接触角与哪些问题有关?许多工艺和产品都涉及纤维和液体之间的作用。通常,润湿性扮演着重要的作用。例如,在开发护发产品时,了解洗发后头发的润湿行为是研发配方过程中至关重要的一环。在复合材料中,纤维与聚合物基体相容性也可以通过润湿性来表征。除此之外,接触角对于纺织品的制造和护理也很重要。弯月面法是什么原理?采用弯月面法测量纤维时,需将附着在支架上的纤维样品垂直浸入液体中。纤维上形成的弯月面在三相点形成接触角,通过该接触角可表征纤维和液体间的润湿性。相机将全程记录浸入的过程,并且通过视频图像进行轮廓分析以测定接触角。在浸入的纤维处形成弯月面,轮廓分析以测定接触角KRÜ SS设计的纤维支架与任何液滴形状分析仪的针头滴定系统都兼容,由于是直接连接到针头,因此不需要更换整个滴定装置。如果滴定装置可通过软件进行高度调节,则在纤维浸入和拉出的过程中也可以动态测量接触角,以测定前进角和后退角。纤维接触角既然可由张力仪测量,为什么还需要有新的纤维测量方法?事实上,采用张力仪的Wilhelmy方法测量基于润湿力的纤维接触角通常是标准做法。弯月面法不会取代Wilhelmy法测纤维的接触角,但这种方法对光学接触角测量仪的用户来说是一个很好的补充,他们可以使用该模块来扩大他们的样品的测量范围,而无需采用另一台仪器,投资也很少。除此之外,采用这种新的方法的优势在于:与Wilhelmy方法不同,这种测量方法在测量时不要输入纤维直径和液体的表面张力,因为接触角是直接通过光学法测量的,这也减少了测量前的准备工作,避免了这两个容易出现测量误差的参数造成测试不准确的可能性。在什么情况下应该用张力仪测量纤维接触角?弯月面法不适用于润湿性差的样品,即接触角大于90°的样品,比如防水纺织品。在这种情况下,没有毛细管粘附,而是毛细管凹陷,即弯液面反转,三相点低于水平面。在这种情况下,光学测量很难实现。另一个极端情况是测量特别小的接触角,因为通过图像分析无法精确测定到三相点。而对于张力仪的Wilhelmy方法来说,润湿性的好坏对样品的测量不会产生影响。
  • 网络讲堂 | 热分析的基本原理及案例分析
    热分析是在程序控温下,测量物质的某种物理性质与温度或时间关系的一种技术。随着科技的发展,新领域的诞生,各行各业对于新材料的需求日益加剧。热分析作为研究材料性能的常见手段,也在飞速发展。热分析可用于分析各种材料,从航空航天材料到平时喝的矿泉水瓶,从研究领域到品质管理都可以用到热分析。 本讲座旨在梳理热分析的基本知识点,如果您刚接触热分析相关工作,欢迎参加我们在7月28日14:00-15:00举办的直播网络讲堂,您将了解到: 1. DSC的基本原理及案例分析 2. STA的基本原理及案例分析3. TMA的基本原理及案例分析4. DMA的基本原理及案例分析5. 问题和答疑 微信扫描下方二维码或点击链接,即可报名参加。日立高新技术公司是日立集团旗下的一家仪器设备子公司。全球雇员超过10,000人,在世界上26个国家及地区共有百余处经营网点。企业发展目标是"成为独步全球的高新技术和解决方案提供商",即兼有掌握先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料。其中,生命科学领域产品包括电子显微镜、原子力显微镜和分析仪器(色谱、光谱、热分析)等。咨询热线:400-630-5821。
  • 纺织纤维成分快速测定的春天来了
    为保护消费者的合法权益,几乎所有的国家都规定纺织 品上必须有标注原料成分标签,纺织品原料成分的定量分析是纺织品生产者、消费者、贸易关系人及各国政府监管部门十分重视的一项工作。然而,现有的纺织品成 分分析方法(化学溶解法、显微镜法)存在着诸多缺点,如检测周期长、对样品的破坏性、使用有毒有害化学试剂、对检测人员的要求高等。因此,开发一种快速、 简便的分析方法是一种迫切需求。 近红外光谱分析(NIR)是一种快速、高效、环保的技术,它是集光谱测量技术、计算机技术、化学计量学技术于一体的新技术,其原理是将近红外光谱所反映的 样品基因、组成或物态信息与认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预 测其组成或性质。 成熟完善的模型对实现近红外的快速测定是至关重要的,为了建立更适合用户的模型,聚光科技联合江西省出入境检验检疫局收集和分析全国各出入境检验检疫局实验室的数据,确定常见纺织品的种类;收集20000多个纺织样品,进行纺织样品收集和实验条件摸索,在确定了最佳的实验条件下,进行样品的近红外光谱采集;利用化学计量学方法,结合样品的经典方法检测结果,最终建立了纺织品原料组份的分析模型;并通过实验室自我验证、外部比对和专家现场验证的方式,对模型进行优化,对优化后的模型进行大量的样品验证,模型的预测结果与经典方法的检测结果进行统计分析,证明两者不存在显著差异;将开发成熟的成果转化为方法标准。 尽管模型建立和最终方法标准的形成是相当地辛苦和费 神,天道酬勤,应用光谱测量技术、计算机技术、化学计量学技术将近红外光谱所反映的纺织品纤维组分信息与经典方法测得的纤维组分信息数据相结合,采用化学 计量学技术建立校正模型,然后通过对未知纺织品光谱的测定和建立的校正模型,实现快速、准确测定纺织纤维组分含量,使传统检测需要17小时的检测缩短为3 分钟,研究成果“填补了近红外光谱技术在纺织品成分检测领域的国内外空白”。 本项目的另一大创新点是首次研发并制定纺织品纤维组分近红外检测方法并形成方法标准,已经对外检测出证100000余批次。“纺织品 纤维定量分析 近红外光谱法”获工信部标准立项,项目号:2013-1732T-FZ本项目不但做到了这些,还实现了: 首次建立了近红外光谱法快速测定用纺织品纤维组分样品和质控样品的制备方法,提高了校正模型的准确性和适用范围并为检测过程提供了结果准确的质控样品。 首次开发纺织品近红外检测附件,提高了纺织品纤维组分近红外检测结果的稳定性和可靠性。 首次开发针对市场纺织品不同纤维含量分布的统计软件,极大提升了近红外纺织品纤维组分检测的适应性和覆盖率。 纺织纤维近红外光谱法具有检测速度快、便于操作、不使用化学试剂、不破坏样品等优点,除在监督管理部门使用,还可应用于纺织品的质量监管、生产企业质量监控、纺织品流通等多个领域,有助于提高检测效率、有效保障产品质量。 近日中国纺织品工业联合会为保障在全国纺织行业科学研究、技术创新、成果推广、高新技术产业化中做出的突出贡献,为聚光科技颁发了科学技术进步奖。获奖证书聚光科技近红外产品家族
  • iCEM 2016特邀报告:像差校正电镜原理与应用
    p style=" TEXT-ALIGN: center" strong 第二届电镜网络会议(iCEM 2016)特邀报告 /strong /p p style=" TEXT-ALIGN: center" strong 像差校正电镜原理与应用 /strong /p p style=" TEXT-ALIGN: center" & nbsp img title=" 于 荣.jpg" style=" HEIGHT: 231px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201610/noimg/d52e7af2-b526-418b-9e1b-cec74a4911ff.jpg" width=" 250" height=" 231" / /p p style=" TEXT-ALIGN: center" strong 于荣 教授 /strong /p p style=" TEXT-ALIGN: center" strong 清华大学北京电子显微镜中心 /strong /p p strong 报告摘要: /strong /p p   作为文明的物质载体的材料都是由原子构成的。但原子到底是以怎样的方式构成材料?它们又是怎样影响材料的功能?对这些问题的探索就是材料的原子结构研究。在现代社会,这已不仅仅是纯科学的好奇。因为材料的原子结构从根本上决定了材料的功能,所以也是工程技术研究的重要内容。 /p p   与材料研究的需求相适应,近年来在材料原子结构的实验与理论分析领域都取得了长足进展。尤其是在高分辨透射电镜上实现了像差校正,成为电子显微学发展的里程碑。这不仅使人们具有了亚埃尺度的分辨能力,而且对材料表面、界面、催化剂颗粒等局域结构的原子位置的测量达到了皮米精度,可以与X射线衍射对宏观单晶的原子位置的测量精度相媲美。这从根本上改变了高分辨电子显微学长期以来以定性分析为主的局面,给材料研究带来了重大机遇。目前,世界上高端的透射电子显微镜不仅在大学与科研院所逐渐普及,也大量安装在各大高科技企业。本报告将简要介绍像差校正电镜的基本原理及典型应用。 /p p strong 报告人简介: /strong /p p   于荣,清华大学材料学院教授,北京电子显微镜中心主任,国家杰出青年基金获得者。1996年毕业于浙江大学,1999年与2002年分别获中国科学院金属研究所硕士与博士学位,随后在美国劳伦斯伯克利国家实验室与英国剑桥大学从事博士后研究,2008年起任教于清华大学材料学院。 /p p   主要从事材料的高分辨电子显微学和第一性原理计算研究,在原子尺度探索材料的微观结构、电子状态、及其与宏观性能的相互关联。在Phys. Rev. Lett., Angew. Chem., Acta Mater., Nature Comm.等SCI期刊发表论文90余篇 他引1600余次。 /p p   担任中国晶体学会常务理事,中国电子显微镜学会物理与材料科学专业委员会副主任,中国物理学会固体缺陷专业委员会委员,中国有色金属学会理化检验学术委员会委员,Science China Materials编委,《中国科学:技术科学》青年工作委员会委员等。 /p p strong 报告时间:2016年10月25日下午 /strong /p p a title=" " href=" http://www.instrument.com.cn/webinar/icem2016/index2016.html" target=" _self" span style=" COLOR: #ff0000" img src=" http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width=" 600" height=" 152" / /span /a span style=" COLOR: #ff0000" /span /p
  • 热机械分析仪原理简介
    p   热机械分析是在程序控温非振动负载下(形变模式有膨胀、压缩、针入、拉伸或弯曲等不同形式),测量试样形变与温度关系的技术,使用这种技术测量的仪器就是热机械分析仪(Thermomechanical analyzer-TMA)。 /p p   热机械分析仪的结构如图所示。试样探头上下垂直移动,探头上的负载由力发生器产生,探头由固定在其上面的悬臂梁和螺旋弹簧支撑,通过加马力马达对试样施加载荷,位移传感器测量探头的位置。探头直接放置于试样上,或者放置于试样上的石英圆片上 测量试样温度的热电偶置于试样下。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b6873b57-b49c-48ca-813d-250f596f2cd4.jpg" title=" 热机械分析仪结构示意图.jpg" width=" 400" height=" 339" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 339px " / /p p style=" text-align: center " strong 热机械分析仪结构示意图 /strong /p p style=" text-align: center " 1.气体出口旋塞 2.螺纹夹 3.炉体加热块 4.水冷炉体加套 5.试样支架 6.炉温传感器 7.试样温度传感器 8.反应气体毛细管 9.测量探头 10.垫圈 11.恒温测量池 12.力发生器 13.位移传感器(LVDT) 14.弯曲轴承 15.校正砝码 16.保护气进口 17.反应气进口 18.真空连接与吹扫气入口 19.冷却水 20.试样 /p p   TMA的核心部件是LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/633cd90b-c338-4e46-9cce-ad33b88907d8.jpg" title=" TMA常用测量模式示意图.jpg" width=" 400" height=" 134" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 134px " / /p p style=" text-align: center " strong TMA常用测量模式示意图 /strong /p p strong 压缩或膨胀 /strong /p p   两面平行的试样上覆盖一片石英玻璃圆片,以使压缩应力均匀分布。膨胀测试时,作用在圆柱体试样上力仅产生很小的压缩应力。 /p p strong 针入模式 /strong /p p   这种模式通常用来测定试样在负载下软化或形变开始的温度。通常用球点探头作针入测试,开始时球点探头仅与试样上的很小面积接触,加热时如果试样软化,则探头逐渐深入试样,接触面积增大,形成球星凹痕,导致测试过程中压缩应力下降。 /p p strong 三点弯曲 /strong /p p   这种模式非常适合在压缩模式中不会呈现可测量形变的硬材料如纤维增强塑料或金属。 /p p strong 拉伸模式 /strong /p p   适合薄膜或纤维。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 典型的TMA测量曲线 /span /strong /p p strong 热膨胀系数测量曲线 /strong /p p   热膨胀系数(coefficient of thermal expansion,CTE)也简称为膨胀系数。 /p p   大多数材料在加热时膨胀。线膨胀系数α定义如下: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/774dbd00-e900-436f-b22e-2a114baf6286.jpg" title=" TMA-1.jpg" / /p p 式中,dL为由温度变化dT引起的长度变化 L sub 0 /sub 为温度T sub 0 /sub (通常为室温25℃)时的原始长度 α单位为10 sup -6 /sup K sup -1 /sup 。 /p p strong 玻璃化转变的TMA测量曲线 /strong /p p   测定玻璃化转变温度是TMA最常进行的测试之一。在玻璃化转变处,由于热膨胀系数增大,导致膨胀测量曲线斜率明显增大。通过外推两段具有不同斜率热膨胀系数曲线所得到的焦点,即为玻璃化转变温度。 /p p strong 测量杨氏模量的DLTMA曲线 /strong /p p   如果采用振动负载,即负载呈周期性变化,则称为动态负载热机械分析(dynamic load thermomechanical analysis-DLTMA),该模式为TMA的扩展功能,可测量试样的杨氏模量。如果能确保在测试过程中施加在整个试样上的机械应力相同,就可由DLTMA曲线测定杨氏模量(弹性模量)。 /p p   从原理上来说,DLTMA曲线类似于DMA曲线,傅里叶分析可得到应力应变之间的关系,可将复合模量分成储能模量和损耗模量。然而由于若干原因,这些计算并不准确,特别是用弯曲模式。因此,若想测定储能模量和损耗模量,最好用动态热机械分析DMA。 /p
  • 欧盟发布最新纺织纤维标识法规
    10月18日,欧盟于官方公报上发布了欧洲议会和理事会有关纺织纤维名称、标签以及纺织产品纤维成分的标识法规(EU)1007/2011,原理事会指令73/44/EEC、96/73/EC和2008/121/EC作废   详细内容参考   http://www.tsinfo.js.cn/SIS/WTO/database/warn/eu-1007-2011-e.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制