当前位置: 仪器信息网 > 行业主题 > >

钛合金检测

仪器信息网钛合金检测专题为您提供2024年最新钛合金检测价格报价、厂家品牌的相关信息, 包括钛合金检测参数、型号等,不管是国产,还是进口品牌的钛合金检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合钛合金检测相关的耗材配件、试剂标物,还有钛合金检测相关的最新资讯、资料,以及钛合金检测相关的解决方案。

钛合金检测相关的资讯

  • 中国先进钛合金航空科技重点实验室成立(图)
    11月17日,先进钛合金航空科技重点实验室在北京中航工业航材院挂牌成立。   先进钛合金航空科技重点实验室评审会由中航工业科技与信息化部主持召开,由多名专家组成的评审小组认真听取了航空重点实验室的设立申请报告,审查了相关支撑资料,并对航空重点实验室进行实地考察。专家组高度评价了钛合金重点实验室的科研水平和技术实力,经过严格质询和深入讨论,专家组一致通过了钛合金科技重点实验室的设立申请。   据了解,作为钛合金航空重点实验室的依托单位,航材院钛合金研究室一直是国内航空钛合金领域的领导者,其部分成果的技术指标达到甚至超过国际先进水平。钛合金航空重点实验室主要定位于开展创新性、探索性的前沿科学研究,以逐步扭转我国航空钛合金领域基础研究相对薄弱的局面。“中航工业和基础院多年来一直在资金和项目上给予我们很大的支持。”钛合金航空重点实验室主任黄旭在接受记者采访时表示,“重点实验室的成立也为我们带来了品牌效应,可以极大促进航材院航空钛合金材料研制和应用研究工作。”   钛合金是飞机和发动机的重要结构材料,因其优异的比强度及抗腐蚀等性能被大量作为航空器的承力构件,其应用程度也是衡量航空装备技术水平的重要指标。北京有色金属研究总院惠松晓教授表示,近年来,我国在钛合金领域研发能力显著增强,取得了多个关键项目的自主知识产权,为扩大钛合金在航空领域的应用范围打下了坚实基础。
  • 借助流化沙浴实现镍钛合金热定型
    借助流化沙浴实现镍钛合金热定型个#Cole-Parmer沙浴用于人体心脏支架工艺#镍钛合金是一种形状记忆合金,能将自身的塑性变形在某一特定温度下自动恢复为原始形状的特种合金,具有良好的可塑性,又称热定型能力,被广泛应用于多个领域包括医疗器械、航空航天、电子等领域。在医疗领域中,镍钛诺可以用于制造支架、人体植入设备,导丝、取石篮、过滤器、针头、牙科锉刀和其他手术器械。高纯度原料和熔融方法可以确保取得均匀的最终产品。行业常采用不同的热处理加工方法来实现最终产品成型。Cole-Parmer系列流化沙浴能够覆盖温度范围从-100°C到700°C的应用,因在超高温度下也能保持温度稳定性和均一性,并且保证温度精密,是镍钛诺热处理的理想选择。✦ ++Cole-Parmer流化沙浴床应用✦ +► 镍钛合金热处理热处理常用于设定镍钛合金的最终形状。如果镍钛合金有合理的冷加工量(大约30%或更多),400℃到 500℃的温度和适当的停留时间将产生一个直的、扁平的或成型的零件。术语“形状设置”通常用于此过程,成型零件是使用定制夹具创建的。一些常见的热处理方法是钢绞线退火(用于直线和管材)、箱式炉、熔盐浴和流化沙浴床。热处理的另一个目的是确定镍钛合金的最终机械性能和转变温度。材料经过冷加工后,适当的热处理将在材料中建立可能的最佳形状记忆或超弹性性能,同时保留足够的残余冷加工效果以抵抗循环过程中的永久变形。► 镍钛合金热处理的难点解决面临的难点:高温情况下的温度均一性合金的热处理需要在一个特定的稳定高温环境下进行,若是温度过高会导致产品的弹性功能丧失,而温度过低则会导致产品没有成功的坚硬化,不利于后期的使用处理难点解决:Cole-Parmer流化沙浴床可以在700℃的温度条件下,提供一个最高±0.01℃的高温环境浴,可以帮助客户轻松地完成各种温度条件下的高温热处理。Cole-Parmer流化沙浴床工作中► Cole-Parmer流化沙浴床更多应用推荐基本通用款高温度稳定性高流量清洗款1、温度探头校准—不规则形状传感器2、聚合物清洁快速清洗,限度地减少昂贵的生产设备停机时间,只需要烘箱1/3时间无刀具损伤、钢丝擦刷、刮伤损坏无人值守清洗,降低了劳动成本不会腐蚀磨料模具轻松处理断路板、模具、喷嘴及其他模具材料的小孔沙浴流化床的能源效率无需耗材、溶剂或任何其他有害的化学物质去除几乎所有的塑料,如PVC、PET、Flouropolymers和PEEK聚合物3、恒温加热—替代水浴盐浴等4、材料热处理—镍钛合金等
  • 力学所在钛合金超高周疲劳研究中取得新进展
    长寿命高可靠是重大工程装备的重要指标,特别是以先进航空发动机和高铁车轴为代表的关键部件,服役寿命内承受了超过107甚至1010周次的循环载荷作用,进入了超高周疲劳(即107周次以上的疲劳)研究范畴,这颠覆了传统基于疲劳极限(对应107周次)的疲劳强度与寿命设计理念,成为近年来疲劳研究的前沿和热点。因此,揭示超高周疲劳的微观机理和规律等科学问题,建立疲劳寿命与疲劳强度的准确预测模型,将具有重要的科学意义和工程应用价值。力学所非线性力学国家重点实验室微结构计算力学课题组以航空发动机用TC17钛合金和增材TC4钛合金为研究对象,揭示了疲劳载荷过程中形成的形变孪晶和纳米晶是钛合金超高周疲劳裂纹萌生和演化的重要因素(图1),提出了钛合金超高周疲劳裂纹萌生和初始扩展机理(图2);通过巧妙的变幅加载设计,测得超高周疲劳裂纹萌生和初始扩展区域的等效裂纹扩展速率在10-13~10-11 m/cyc量级(图3a和3b),进而对超高周疲劳寿命进行了预测,预测结果与实验结果吻合(图3c)。图1 TC17钛合金扫描电子显微镜和电子背散射衍射观测结果(σα=588 MPa, R=–1, Nf=1.4×108 cyc). a: 试样局部区域扫描电子显微镜图像. b-d: 分别是图a中方框区域的反极图、相图以及母体晶粒和孪晶变体基面的施密特因子. e: 微裂纹附近扫描电子显微镜图像. f-h: 分别是图e中方框区域的反极图、相图以及母体晶粒和孪晶变体基面的施密特因子. 加载方向沿着纸面向上和向下.图2 钛合金超高周疲劳裂纹萌生和初始扩展机理示意图. (i)疲劳载荷过程中位错塞积引起的局部高应力诱导孪晶、滑移或微裂纹的形成. (ii) 孪晶系统或位错之间的相互作用导致位错胞或位错墙的形成,进而形成微尺度滑移带和亚微米晶粒,最终形成纳米晶粒 然后,微裂纹沿着纳米晶粒-粗晶粒界面或在纳米晶粒区域内形成. 此过程中,由于微结构不均匀或变形不协调,微裂纹的形成也可以与晶粒细化无关,即微裂纹形成于α相团簇、较大的α相或α-β界面. (iii) 微裂纹增长或联接,并在疲劳载荷过程中进一步诱导晶粒细化或微裂纹的形成. (iv) 过程(iii)继续,直到裂纹萌生和初始扩展阶段结束.图3 增材TC4钛合金超高周疲劳裂纹萌生和初始扩展速率与寿命预测. a: 变幅加载下SEM照片(σα,H= 600 MPa, σα,L= 400 MPa, R=–1, σα,L下累积1.6×108周次). b: 裂纹萌生和初始扩展区域(Fine Granular Area, FGA)内等效裂纹扩展速率与文献中裂纹扩展速率的比较. c: 不同应力比下S–N数据以及R=–1下疲劳寿命预测结果与实验结果的比较.研究发现,材料缺陷不仅会显著降低钛合金的疲劳性能,而且缺陷对高周和超高周疲劳行为的影响与其引入形式密切有关。对于材料内部缺陷,高周和超高周疲劳S–N曲线呈现连续下降特征,而表面人工缺陷试样S–N曲线具有平台区特征(图4)。原位显微镜观测以及扫描电子显微镜和透射电子显微镜观测表明,与内部缺陷诱导的超高周疲劳失效不同,表面人工缺陷诱导的超高周疲劳未呈现伴随纳米晶粒形成的、缓慢的裂纹萌生和初始扩展过程;一旦裂纹萌生,裂纹将快速增长,试样在很少周次内发生失效(图5)。认为这种失效是疲劳载荷与时间相关过程(如水气影响、氢的作用等)的协同作用所致。进一步提出试样几何形状和表面缺陷对钛合金高周和超高周疲劳强度的影响模型。该模型不但能用于关联缺陷对钛合金疲劳强度的影响(图6a),而且也有效用于文献中缺陷(包括裂纹)对一些金属材料高周疲劳强度的影响(图6b-6f)。图4 缺陷引入形式和缺陷尺寸对疲劳性能的影响. (a) 缺陷引入形式对增材TC4疲劳性能影响. (b) 人工表面缺陷对TC17钛合金疲劳性能影响. 实线表示双对数坐标下线性拟合得到的中值S–N曲线.图5 含表面人工缺陷TC17钛合金超高周疲劳原位显微镜观测(σα=368 MPa, R=–1, Nf=1.95×107). 加载方向沿着纸面向上和向下.图6 缺陷对高周和超高周疲劳强度影响的模型结果与实验结果比较.对几种常用的应力比对高周疲劳强度影响模型在超高周疲劳范畴的预测能力也进行了对比研究。多种材料实验数据表明,Walker公式σα,R=σα,-1[(1–R)/2]γ相比Goodman公式σa,R=σα,-1[1–(σm/σb)]和Smith-Watson-Topper公式σa,R=σα,-1[(1–R)/2]1/2更好地预测应力比对超高周疲劳强度的影响(图7),其中σα,R和σα,-1分别是应力比R和–1下的疲劳强度,σm和σb是平均应力和拉伸强度,γ是材料参数。图7实验结果与不同模型预测结果的比较.相关研究得到国家自然科学基金基础科学中心“非线性力学的多尺度力学研究”项目(11988102)、国家自然科学基金重大研究计划“航空发动机高温材料/先进制造及故障诊断科学基础”培育项目(91860112)等支持。部分研究结果是与北交大等合作完成,主要研究成果发表在Int. J. Fatigue 2023, 166: 107299 2023, 167: 107331 2022, 160: 106862 Eng. Fract. Mech. 2022, 259: 108136 2022, 272: 108721 2022, 276: 108940 J. Mater. Sci. Technol. 2022, 122: 128-140 Theor. Appl. Fract. Mech. 2022, 119: 103380。
  • 3D打印钛合金抗疲劳设计制备取得突破性进展
    3D打印,又名增材制造(Additive manufacturing,AM),因其得天独厚的自由成形能力极大地满足了高端装备和构件对高集成性、多功能性、轻量化、一体化的需求,被认为是制造领域的颠覆性技术。因而,3D打印材料在航空航天等领域得到极大关注和初步应用。然而,与传统制造技术相比,3D打印制备的材料在循环载荷下的疲劳性能普遍较差,严重制约了其作为结构承力件的广泛应用。因此,如何提升3D打印材料与构件的疲劳性能是国内外学术界与工程界热切关注的焦点问题。近期,中国科学院金属研究所材料疲劳与断裂团队带头人张哲峰研究员在前期疲劳损伤机制和疲劳预测理论指导下,与轻质高强材料研究部杨锐研究员团队开展合作,在3D打印钛合金抗疲劳设计制备方面取得了突破性进展,制备出具有优异疲劳性能的3D打印钛合金材料。该项研究成果于2024年2月29日以题为“High fatigue resistance in a titanium alloy via near void-free 3D printing”发表在Nature杂志上,金属所博士研究生曲展为论文第一作者,张振军研究员、美国加州大学伯克利分校Robert O. Ritchie教授、张哲峰研究员为论文通讯作者。在文中,研究人员首次明确提出:理想状态下3D打印技术直接制备出的钛合金组织本身(称为Net-AM组织)应具有天然优异的疲劳性能,而打印过程中产生的气孔等缺陷掩盖了其自身组织抗疲劳的优点,导致实际测量的3D打印材料疲劳性能大幅降低。因此,提升3D打印材料疲劳性能的关键在于消除打印气孔的同时,尽可能保留原始打印的组织状态。然而,目前消除气孔的工艺往往伴随组织粗化,而细化组织的处理又会带来气孔复现,甚至引发晶界α相富集等新的不利因素,可谓进退两难。幸运的是,研究人员在Ti-6Al-4V合金中首次发现,高温下3D打印态组织的晶界迁移及气孔长大与相转变过程表现出异步的特性;这意味着,存在一个宝贵的热处理工艺窗口,既可实现板条组织细化,又能有效抑制晶界α相富集及气孔复现。为此,研究人员巧妙地利用了这一工艺窗口,发明了缺陷与组织分步调控的NAMP新工艺(Net-Additive Manufacturing Process)(图1),最终制备出几乎无气孔的近Net-AM Ti-6Al-4V合金。大量疲劳实验表明这一近Net-AM钛合金有效避免了从打印气孔、粗大板条及α相富集晶界等多种疲劳短板处开裂(图2),充分展示出3D打印组织自身所特有的高疲劳抗性:其拉-拉疲劳强度从原始态的475 MPa提升至 978 MPa,增幅高达106%(图3)。通过对比发现,这种近Net-AM组织Ti-6Al-4V合金不仅在所有钛合金材料中具有最高的拉-拉疲劳强度,而且在目前已报道的材料疲劳数据中,还具有最高的比疲劳强度(疲劳强度除以密度)。这项成果更新了人们以往对3D打印材料疲劳性能不高的固有认识,揭示了3D打印技术在抗疲劳制造方面的独特优势,展现了3D打印材料作为结构承力件在航空航天等重要领域的广阔应用前景。该项研究得到了国家自然科学基金创新研究群体(52321001)、优秀青年基金(52322105)、重点基金(52130002)、叶企孙联合基金(U2241245)、中国科学院王宽诚国际合作项目(GJTD-2020-09)与中国科学院青促会(2021192)等项目资助。论文链接:https://www.nature.com/articles/s41586-024-07048-1论文DOI号:10.1038/s41586-024-07048-1图1. 打印态、NAMP态以及其他两种典型状态3D打印钛合金组织和缺陷特征:(a)打印态;(b)热等静压(HIP)态;(c)Near-net-AM态;(d)Net-AM态。图2. 不同组织疲劳裂纹萌生典型位置。(a)疲劳裂纹萌生位置表征的尖角逐层磨抛方法示意图;(b)Net-AM状态;(c)HIP状态;(d)Near net-AM状态。Net-AM状态的疲劳裂纹均从干净的初生β晶界(PBGBs)处萌生,成功避免了从缺陷和粗大组织开裂,从而表现出极高的疲劳抗力。图3. 本研究工作制备的Net-AM组织钛合金的疲劳性能(R=0.1):(a) Net-AM组织钛合金拉-拉疲劳强度与增材和锻造钛合金疲劳强度对比;(b)Net-AM组织钛合金与其他材料的比疲劳强度对比。Net-AM组织钛合金不仅在钛合金中具有最高的疲劳强度,而且在所有材料中表现出最高的比疲劳强度。
  • 中科院力学所在航空发动机用钛合金高温疲劳研究中取得进展
    航空发动机被誉为现代工业“皇冠上的明珠”。叶片是航空发动机的关键零部件,其在服役寿命内承受高温高周甚至超高周次(107)循环载荷作用。同时,实际零部件在材料的制备、加工以及使用过程中通常不可避免地存在各种类型缺陷。因此,揭示钛合金高温高周和超高周疲劳特性以及其缺陷敏感性具有重要科学意义和工程应用价值。力学所非线性力学国家重点实验室微结构计算力学课题组,研究揭示航空发动机叶片用TC17钛合金高温(200℃和400℃)高周疲劳裂纹起源于试样表面或内部(图1),表面裂纹萌生是由于富氧层开裂或氧化物脱落导致的(图1a-1g),内部裂纹萌生是位错相互作用导致晶粒细化进而诱导的(图2)。在实验结果基础上,提出400℃时TC17钛合金表面裂纹萌生和内部裂纹萌生竞争模型(图3)。进一步研究表明,含表面缺陷TC17钛合金应力-寿命数据在高周和超高周(107)阶段具有平台区特征。表面缺陷显著降低TC17钛合金室温和高温疲劳强度,但高温并未降低含缺陷试样的疲劳强度(图4a),一个重要原因是高温下形成较硬的氧化层抑制了表面裂纹萌生,提升了疲劳性能。研究还发现,高温和缺陷对TC17钛合金高周和超高周疲劳强度的影响可以近似表示成(图4b):其中σfs疲劳强度(单位:MPa),t是温度(单位:℃),是缺陷垂直于主应力轴的投影面积(单位:μm),。研究成果对于理解钛合金高温高周和超高周疲劳失效机制以及含缺陷钛合金的疲劳强度预测具有重要价值。图1光滑试样疲劳断口SEM图像。a-c:氧化物入侵诱导的表面裂纹萌生(200℃,σa=650 MPa,R=-1,Nf=2.7×104 cyc),b和c分别是a中上面和右侧裂纹萌生区域的放大图。d-g:氧化物脱落诱导的表面裂纹萌生(400℃,σa=520 MPa,R=-1,Nf=7.6×105 cyc),e是d中裂纹萌生区域的放大图,f和g分别是e中相应区域的放大图。h-j:内部裂纹萌生(400℃,σa=520 MPa,R=-1,Nf=1.0×106 cyc),i和j分别是h和i中裂纹萌生区域的放大图。图2 400℃光滑试样(σa=520 MPa,R=-1,Nf=1.0×106)疲劳断口粗糙区域微结构观测结果。a:SEM图像,短线为提取位置。b:a中位置b沿主应力方向剖面SEM观测结果。c-e:a中位置c沿主应力方向剖面的反极图、相图和TEM图片。f和g:分别为e中区域1的暗场像和区域2的放大图。图3 400℃时TC17钛合金表面裂纹萌生和内部裂纹萌生竞争模型。a和b:富氧部位脆性断裂引发表面裂纹萌生的横截面图和侧面图。c和d:氧化物脱落引发表面裂纹萌生的横截面图和侧面图。e和f:内部裂纹萌生的横截面图和侧面图。图4 a: 光滑试样和缺陷试样疲劳强度(2×107 cyc)与温度之间关系. b: 高温和缺陷对TC17钛合金超高周(2×107 cyc)疲劳强度的影响模型与实验数据比较,空心符号表示光滑试样的疲劳强度. 这里应力均为名义应力, 计算截面为试样最小截面相关研究成果发表在J Mater Sci Technol 2022, 122: 128–140. 力学所特别研究助理李根为论文第一作者,孙成奇研究员为通讯作者。研究得到基金委重大研究计划“航空发动机高温材料/先进制造及故障诊断科学基础”培育项目(91860112)支持。
  • XRD冷热台助力我国零膨胀钛合金特殊材料研发
    在航空航天、微电子器件、光学仪器等精密仪器设备中应用的结构部件,对尺寸稳定性有极为严苛的要求。由于温度升高或降低而导致的材料形状变化对其功能特性和可靠性有着很大影响。因此,具有近零热膨胀性能的钛合金在需要高尺寸稳定性的结构中具有极高的应用价值。例如,美国国家航空航天局已针对太空望远镜所需的超高稳定性支撑结构,使用这类钛合金制造了镜体支架。在激光加工领域,已有使用这种材料制造的光学透镜筒体,解决了透镜焦点热漂移的问题。这类材料特殊的热膨胀性能与其内部αʺ马氏体物相的各向异性热膨胀行为有关。但是,现有的通过冷加工工艺获得的低热膨胀系数限制于单相马氏体相区,即使用温度上限通常小于~100℃,限制了其在工程领域的广泛应用。近期东莞理工学院中子散射技术工程研究中心王皓亮博士在冶金材料领域的TOP期刊《Scripta Materialia》上发表题目为《Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb》的研究论文。论文介绍了在宽温域线性零膨胀钛合金特殊热膨胀性能形成机理方面取得的新的进展。论文第一作者为东莞理工学院机械工程学院王皓亮博士,通讯作者为机械工程学院孙振忠教授,共同通讯作者为比利时鲁汶大学Matthias Bönisch博士,合作作者有中国散裂中子源殷雯研究员和徐菊萍博士等。王皓亮博士主要从事金属材料物相晶体结构、微观组织及应力分析;钛合金固态相变及功能性研究;高等级耐热钢焊接接头蠕变失效预测研究。1.拉曼光谱在材料研究中的应用(图1.Ti22Nb合金通过析出纳米尺寸第二相获得的宽温域零膨胀性能)研究人员利用中子衍射技术表征材料微观结构的巨大优势,配合使用XRD冷热台(变温范围 -190℃到600℃ ,温控精度±0.1℃,文天精策仪器科技(苏州)有限公司)实现测试样品的温度变化,精确鉴定了线性零膨胀Ti22Nb钛合金中的物相组成,证实了依靠溶质元素扩散迁移形成的等温αʺiso相也具备调控热膨胀系数的功能。相对于冷加工材料,该研究中通过机械+热循环处理获得的双相复合材料,其低热膨胀行为的作用范围被拓宽至300℃。结合其他原位X-ray衍射和EBSD/TKD电子显微表征技术,在纳米到微米尺寸范围内全面分析了材料微结构要素,澄清了热循环过程中纳米尺寸αʺiso相的形成路径,揭示了微观晶格畸变/相变应变、晶体学取向参量和宏观热膨胀系数的之间的定量关系,为设计具有较宽使用温度范围的低/负热膨胀钛合金提供了新的途径,是从理论研究向技术和产品层面跃进的重要依据和前提。 (图2.(a)不同状态Ti22Nb合金中子衍射谱线,(b)原位升降温XRD谱线(c)母相及析出相衍射峰强度随温度演化规律)(图3.原位升降温XRD测试)图4.原位XRD冷热台
  • Apple Card由纯钛合金制作?扫描电镜揭秘真相
    p   8月份,苹果公司正式面向消费者推出了其虚拟信用卡Apple Card。凭借其隐私处理方式,实用的功能,以及极简的美学设计,Apple Card赢得了赞誉。 br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 340px " src=" https://img1.17img.cn/17img/images/201909/uepic/8a621f29-b269-4f31-a953-a3e4489b0922.jpg" title=" 0.jpg" alt=" 0.jpg" width=" 450" height=" 340" border=" 0" vspace=" 0" / /p p   关于“极简的美学设计”,官方介绍,其整体设计简洁,卡片材质为钛合金,其中一面是苹果LOGO、EMV IC芯片,另一面则是合作伙伴高盛、万事达的LOGO。3月Apple Pay副总裁Jennifer Bailey也表示:“这是有史以来设计最漂亮的信用卡。” /p p   据Apple Card的一份支持文档显示,由于实体Apple Card是钛卡,正面的苹果Logo、持卡人姓名等信息都是激光蚀刻的,而白色亚光背景是通过一些钛基多层涂层材料实现的。 /p p   在这份支持文档中,“ strong Apple Card使用的材料是‘钛’ /strong ”,这句话一共被提及13次之多。那么一张Apple Card信用卡中究竟含有多少钛呢? /p p   近日,为了找到答案,《商业周刊》杂志记者将其Apple Card寄给了加州大学伯克利分校的一位矿物学家Hans-Rudolf WENK教授。 /p p   Hans-Rudolf WENK教授利用 strong 扫描电子显微镜及配置的能谱设备 /strong ,测定了Apple Card的微粒子成分,最终得出的答案是:“ strong 钛”成分大约占90%,而剩余部分是铝成分。 /strong /p p strong /strong /p p   而Apple Card在这方面之所以脱颖而出,也是因为苹果对其金属材质进行了大量宣传。与此同时,这也是自15年前停产PowerBook笔记本电脑以来,苹果推出的第一款主要由坚固、轻质金属制成的产品。有分析人士称,这可能是苹果为今年晚些时候发布的新款钛合金版Apple Watch智能手表试水。 /p p   Hans-Rudolf WENK教授是加州大学伯克利分校的一位矿物学家,本次Apple Card的成分检测就是在加州大学伯克利分校纹理实验室进行的,而进行检测的扫描电镜正是蔡司的EVO 系列的 a href=" https://www.instrument.com.cn/netshow/C83382.htm" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong EVO-10 SEM /strong strong /strong /span /a 。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C83382.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/2132d6e9-0575-48ac-a9ec-93a27ce91846.jpg" title=" 3.jpg" alt=" 3.jpg" / /a /p p    strong 以下是加州大学伯克利分校纹理实验室官网显示的EVO-10的应用描述及具体配置情况: /strong /p p   Zeiss EVO-10可变真空扫描电镜可用于一般研究,可用于二次电子(SE)和背向散射电子(BE)成像。可以使用能量色散X射线检测器(EDS)进行定性化学分析。 SEM还用于电子反向散射图案(EBSP)和取向成像(OIM),用于分析优选取向。 /p p   常见用途:适用于薄型和独立式安装座的样品表面形貌(纹理),晶体结构,取向和成分的成像。 /p p    strong SEM Lab详细信息: /strong /p p   蔡司EVO-10可变真扫描电镜 /p p   钨丝 /p p   大样品室,带9个位置的样品架 /p p   可变压力 /p p   探测器:二次电子 二次电子VP 反向散射电子 /p p   EDAX系统用于硅漂移检测器和薄窗口的化学分析(检测到硼) /p p   用于晶体取向测量的电子背散射衍射(EBSD) /p p   碳蒸发器 /p p   金溅镀膜机 /p p    strong 关于加州大学伯克利分校纹理实验室 /strong /p p   该实验室隶属加州大学伯克利分校的地球和行星科学系,致力于研究多晶材料的优选取向(纹理)和各向异性。各方面是测量,数据分析和解释。应用包括岩石,金属,多晶薄膜,陶瓷,超导体,生物标本(骨骼,贝壳)。根据需求,外部用户可以使用这些设施(X射线衍射,EBSD-SEM),将收取象征性费用以抵消维护费用。我们也为外人做了有限的实验。可提供X射线极图分析和ODF计算(BEARTEX)软件。使用来自同步加速器衍射图像和中子衍射光谱的Rietveld方法进行纹理分析的软件已经与Luca Lutterotti合作开发,Siegfried Matthies可以从网上下载(MAUD)。也可以使用EBSD(SEMTEX和MAPTEX)进行单独定向测量的软件。 /p p    strong Hans-Rudolf WENK教授 /strong /p p style=" text-align: left " & nbsp & nbsp & nbsp & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/f076fb26-2cbd-41af-9ae0-e6f93e15fe17.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p   Hans-Rudolf WENK教授于1967年加入加州大学伯克利分校的地球和行星科学系。他的研究领域是晶体学,矿物学,结构地质学和岩石变形。最近研究重点是通过研究中子衍射,同步辐射X射线和电子显微镜在极限条件(温度和压力)下的优选取向的发展来理解地球中的地震各向异性。该研究由NSF和DOE资助。 他还曾撰写一本由剑桥大学出版社出版的介绍性矿物学书籍《矿物:它们的组成和成因》。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/b84c0fef-3c10-430d-a2e6-017f83aa5ea4.jpg" title=" 6.jpg.png" alt=" 6.jpg.png" / /p
  • 合金分析仪助力钛铝合金材料技术升级,手机变弯将不成问题
    据报道,韩国浦项大学最新研发了一种强度极高的钛铝合金材料,可以近乎完美地解决手机边框强度问题,再也不用担心手机变弯了。 至于钛铝合金的成本,据悉,这种材料是由钢、锰、铝、镍、钛等多种金属组成的合金,成本比传统的钛合金低了90%,智能手机完全能承受这一成本。 三星有望首先用上这种新材料,此外,这种材料还能用在汽车、飞机等领域。未来合金分析仪又将成为手机是否能够弯曲的检测大使。
  • 中消协:8848钛金手机检测“钛”有问题 或涉虚假宣传
    22日,从中国消费者协会获悉,近期有消费者协反映8848钛金手机实物与宣传不符,对此中消协进行了调查并履行提请检测的法定职责。调查及检测结果表明,8848钛金手机线上线下宣传不一致,所用主要材质表述不规范,甚至涉嫌虚假宣传。网络图片  中消协表示,首先,8848钛金手机自造5系钛合金概念,实际材质为普通工业纯钛或钛合金。8848钛金手机官网宣传“采用瑞士名贵腕表所用5系钛合金”,而金属行业不存在5系列钛合金的说法。国家有色金属及电子材料分析测试中心的检测结果显示,8848钛金手机(巅峰版)的背面金属件中的圆形部分基体为工业纯钛,背面金属件中带刻纹部分材质相当于国产TC4钛合金。  其次,钛金属并非稀有贵金属,部分手机边框仅是钛合金镀金。8848钛金手机宣称使用“名贵钛合金”(官网)、“稀有贵金属材质”(实体店宣传材料)。但是,目前国家或者行业等相关标准中,并没有“稀有贵金属”的定义。按照行业惯例分类,稀有金属主要包括稀有轻金属、稀有难熔金属、稀土金属、稀有分散金属和放射性金属,钛金属属于稀有难熔金属。根据各国的约定俗成,贵金属仅包括金、银、铂、钯、钌、铑、锇、铱八种,钛金属不属于贵金属。  同时中消协指出,贵金属价格差别很大,最便宜的银每克5元左右,而铂每克可达200元以上。目前,市场上纯钛每克大约0.06元。单纯从价格上来讲,钛金属也并不名贵。  此外,8848钛金手机官网与线下实体店宣传资料不一致。官方网站宣称“蓝宝石玻璃”、“蓝宝石水晶玻璃”,而线下实体店宣传材料宣传则是“蓝宝石” 官方网站宣称“钛合金”,而线下实体店宣传则是“钛金”。  中消协表示,根据《中华人民共和国消费者权益保护法》规定,消费者享有知悉其购买、使用的商品或者接受的服务的真实情况的权利。经营者应当向消费者提供有关商品或者服务的真实信息,不得做引人误解的虚假宣传。中国消费者协会敦促8848钛金手机经营者正视问题、及时改正,并将监督8848手机经营者履行法定义务,保护消费者合法权益。
  • 首个国家级第三方钛材检测机构落户西工大
    我国首个专门的国家级第三方钛材检测质量机构有望明年在西工大建成,并对外开展检测服务。1月10日上午,“国家钛材产品质量监督检验中心”筹建讨论会在西北工业大学友谊校区举行。与会专家认为,依托西北工业大学学科、人才等诸多优势,西北工业技术研究院具备筹建条件和基础,建议抓紧筹建。   国家认监委、工信部、陕西省质监局、宝鸡市工信局等相关部门领导和专家组成员,学校副校长翁志黔以及材料学院、西北工业技术研究院相关负责同志参加了讨论会。   作为“国家钛材产品质量监督检验中心”项目申请和筹建单位的西北工业技术研究院,是西工大下属专门从事科技成果转化和产业化的专业集成研发机构。院长于忠向专家组和相关领导作筹建工作汇报。据其介绍,由于钛具有高比强度、耐高温、耐腐蚀等特点,被广泛应用于航空航天、船舰、化工和医疗等各个领域,是当代最具技术魅力的金属材料。钛及钛合金产业是国家科技中长期发展规划和“十二五”规划的重要内容,是国家确定的战略性新兴产业领域,但目前该产业急需专门的第三方质检机构发挥监督检测、规范市场、促进产业健康快速发展的作用。鉴于陕西具有“钛谷”的条件基础和西工大在学科、人才、科研方面的优势和设备仪器、检测服务等方面的业务基础,建议设立“国家钛材产品质量监督检验中心”。   专家组认真审议了相关资料,现场考察了材料分析研究中心,还就人员配备、数据库建设等问题作现场质询后,同意在西工大设立“国家钛材产品质量监督检验中心”。以中航工业北京航空材料研究院曹春晓院士为组长的专家组认为,西北工业技术研究院依托西北工业大学,具有较好的钛及钛合金产品检测设施、环境和能力,具有一支专业的人才队伍,具备筹建基础。同时,筹建方案内容完整,定位清晰,具有较好的可操作性,得到了国家及省市相关部门的支持,具有较好的条件,建议进一步完善管理机制,抓紧筹建工作。   国家认监委副主任谢军和工信部科技司副巡视员周健先后发言。谢军表示,建立在对西工大及工研院实力充分了解基础之上的专家组意见,实属“意料之中”。希望质检中心能如期建成,尽早服务于钛及钛合金产业的高质量发展,立足陕西,辐射全国,在稀有贵金属质量检测方面为战略型产业发展做出贡献。周健对质检中心筹建方案通过专家组评审表示祝贺,并表示工信部将一如既往地对西工大的科学快速发展给予支持。   翁志黔代表学校对专家组的辛勤工作深表感谢。她说,“国家钛材产品质量监督检验中心”的建成对学校未来在人才培养、科学上水平、服务社会等方面的发展,无疑会起到非常重要的支持作用。虽然任务艰巨、时间紧迫,但西工大作为支撑单位,将尽快落实专家组意见和建议,全力支持项目建设,争取早日建成产学研用紧密结合的有特色的第三方质检中心。   据了解,“国家钛材产品质量监督检验中心”拟设西安、宝鸡两个中心,年检测能力可达到30万个样品以上,预计明年完成一期建设,正式开展对外检测服务,到2016年实现整体功能建设,具备开展高端检测服务及新材料分析检测方法研究的能力。
  • 攀国家钒钛检测重点实验室牵手上海大学
    5月1日,笔者从攀枝花检验检疫局获悉,近日,国家钒钛检测重点实验室和上海大学所属的上海市钢铁冶金新技术开发应用重点实验室签署框架合作协议。双方初步提出在含钛矿物的钛铁分离研究、钛白原料除磷工艺及方法研究、熔盐电解制备钛合金的新方法与检测分析研究、钒钛新材料的生产工艺重大关键技术及检测方法研究等五个方面达成合作意向。   据了解,国家钒钛检测重点实验室由攀枝花检验检疫局于去年7月开始负责筹建,预计2015年完成全部建设,并通过国家验收。实验室建成后,将专门从事钒钛原材料及制品检测业务,主要开展钒钛、稀土、钢铁、铁合金等原材料及制品检测工作,研究和建立钒钛、钢铁等领域产品的检测方法和标准。   国家钒钛检测重点实验室在注重发挥自身优势的基础上将抓住此次合作契机,充分利用上海大学重点实验室在人才、科研、信息以及区位等方面优势,积极加强科研项目和人员交流培训等重点合作,不断提升技术能力水平,加速推进实验室建设,努力打造具有国际一流钒钛检测水平的重点实验室。
  • 岛津EPMA在形状记忆合金中的应用
    形状记忆合金是通过热弹性与马氏体相变及其逆变而具有形状记忆效应的由两种以上金属元素所构成的材料。迄今为止,人们发现具有形状记忆效应的合金有50多种,在航空航天、机械电子、生物医疗等领域具有广泛的应用。下文将举例介绍电子探针(EPMA)在镍-钛形状记忆合金中的应用。图1. 岛津场发射电子探针EPMA-8050G岛津EPMA-8050G型电子探针(图1)搭载高质量场发射电子光学系统,结合岛津特有的52.5°高X射线取出角和全聚焦晶体,可以实现:01优越的空间分辨率EPMA-8050G可达到的更高级别的二次电子图像分辨率3nm(加速电压30kV)。(加速电压10kV时20nm@10nA/50nm@100nA/150nm@1μA)02大束流更高灵敏度分析可实现其他仪器所不能达到的大束流(加速电压30kV时可达3μA)。在超微量元素的检测灵敏度上实现了质的飞跃,将元素面分析时超微量元素成分分布的可视化成为现实。按原子比由Ti和Ni各占50%的合金称为镍-钛合金(Nitinol),具有良好的形状记忆性能和超弹性性能。形状记忆合金具有一个显著的特点,即变形到任意形状后,加热到相变温度(相变点)或更高时,能恢复变形前的原始形状,而超弹性合金则是在载荷作用下变形,在载荷消除后恢复原始形状。相变温度大致可以在0℃-100℃之间变化,主要通过改变Ti和Ni的合金原子比值或者加入1%或更少的第三相元素(比如Cr、Co、Cu等)。正畸金属丝是一种典型的镍-钛合金,具备形状记忆和超弹性性能,主要的选材差异在于根据患者的牙周状况和对疼痛的敏感程度来选择具有不同相变温度的矫正材料。图2. 展示了正畸金属丝中主要的合金元素面扫描图像及相分析结果,清晰可见材料基体的元素组成以及其中离散分布的微米级别的混合相结构。图2. 正畸金属丝中各合金元素面扫描图像及相分析结果选择三种具有不同相变温度的正畸材料分别进行定量分析,结果如表1所示,总含量低于1%的Cr元素存在较为明显的含量差异。表1. Af27、Af35、Af40型号正畸金属丝元素定量测试结果结合图3. 展示的三种不同型号的元素面扫描结果,可以更清楚地看到Cr元素含量的差异,同时离散分布的点状微结构中Ni元素被替代的情况也存在差别。图3. 各型正畸金属丝中的元素面扫描图像(a)Af27,(b)Af35,(c)Af40图4. 展示了放大条件下Af27材料中微结构的元素面扫描及相分析结果,表明多化合物混合相的存在。图4. Af27正畸金属丝中化合物相分析更多电子探针仪器信息和相关应用敬请关注岛津科技资讯通推文内容。本文内容非商业广告,仅供专业人士参考。
  • 先进合金材料,“能力”永不过时
    先进材料产业是制造业转型提升的核心领域和重要支撑之一,主要解决国家重大战略需求和产业发展瓶颈,提升关键战略材料的保障能力,服务国家战略,政府主管部门出台了一系列支持新材料行业发展的政策。《中国制造2025》、《新材料产业发展的政策》等产业政策为相关产业发展提供了稳定的支持。先进铜及铜合金作为核心导体材料,广泛用于电子信息产业超大规模集成电路引线框架,国防装备的电子对抗、雷达、大功率微波管,高脉冲磁场导体材料,高速轨道交通用架空导线、大功率调频调速异步牵引电动机导条与端环,新能源汽车用电阻焊电极、电池材料、充电桩弹性材料,冶金工业用连铸机结晶器、电真空器件,电气工程用开关触桥和各种导线等。我国军用飞机配套的航空发动机及涉及发动机的维修包括涡轮叶片、涡轮盘等。这些部件主要由高温合金和钛合金制造。先进航空发动机高温合金使用量达到 50%以上,中信证券研究部预测我国军用航空发动机 2025 年对高温合金需求量将达到 16,578 吨。高熵合金是近年来发展起来的新型合金材料,有望突破传统材料的性能极限,已经成为近年来材料科学发展新的热点和方向之一。为促进国内先进合金材料的研究与发展,仪器信息网将于2022年8月10日组织召开 “先进合金材料”主题网络研讨会。依托成熟的网络会议平台,为先进合金材料相关研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。会议日程报告时间报告题目演讲嘉宾9:30-10:00电子薄膜和集成电路用高纯铜及铜合金靶材及其检测技术冯先进(北京矿冶研究总院 研究员/高级工程师)10:00-10:30TBD程书莉(珀金埃尔默公司 首席无机分析应用科学家)10:30-11:00高熵合金加工成形技术张勇(北京科技大学 教授)11:00-11:30镍基单晶高温合金中拓扑密排相的形成机制杜奎(中国科学院金属研究所 研究员)演讲嘉宾(排名不分先后)参会方式本次会议免费参会,参会报名请点击会议官网或扫描二维码:https://www.instrument.com.cn/webinar/meetings/alloy2022/ 扫码报名赞助参会:扫码联系
  • 新检测标准将使6成眼镜企业被淘汰
    眼镜架的镍析出量超标,会导致人体健康受损。国际标准化组织和欧盟标准化组织对此有着严格的管理措施,而中国目前尚没有写入国家标准。一旦将镍析出量的要求写入国家标准,国内六成以上工艺简单、设备落后、质量低端的生产企业将可能面临消亡。   中国制造的眼镜架产品广泛采用镀镍工艺,这种工艺成本低廉。但镍是一种容易导致皮肤接触性过敏的重金属元素。医学观察证明了长期接触含镍物品,会引起皮肤过敏甚至致癌。早在上个世纪90年代,国际标准化组织(ISO)和欧盟标准化组织(CEN),就在标准中对金属眼镜架的镍析出量及检测提出了严格的要求,而中国目前与眼镜产品有关的各项标准,尤其是国家标准《GB/T14214眼镜架通用要求和试验方法》,对此尚未涉足。   近期,欧盟标准化组织与中国方面的专家进行了数次友好而含蓄的沟通,希望中国方面认真考虑镍析出量标准的问题。这对中国眼镜行业发出了一个信号:一旦欧盟将眼镜架的镍析出量列入强制管理的范畴,中国将有相当一部分企业面临生死挑战。     国际标准压力下的两难选择   国际上对金属眼镜架的镍析出量有着严格的规定和检测标准,镍析出量不合格的产品,不允许销售给最终消费者。早在1994年6月,欧盟就颁布了94/27/EC 指令,规定了产品相关镍析出量的标准。1997年7月,欧盟又发布了3个协调标准,明确了对镍析出量进行定性分析的方法。ISO/TS24348《眼镜架—对金属和合金镜架的模拟佩带以及镍析出量的检测方法》国际标准于2007年正式颁布,其中明确规定:眼镜架与佩带者的皮肤直接和长时间接触的金属和合金部分的镍析出量,不得超出0.5μg/cm2/每周。即将颁布的ISO12312-1《太阳镜》国际标准直接引用了这个规定,并要求:太阳镜的设计和制造不得危及佩带者的健康或安全,应把由镜片或镜架材料析出的可能伤害佩带者皮肤的危险降至最低。   中国标准化研究院光学工程研究室主任王莉茹研究员介绍说,近年来,欧盟标准化组织正在重新制定眼镜产品的标准,考虑到中国目前已经成为眼镜产品的制造和出口大国,该组织的官员通过各种渠道与中国标准化相关部门进行沟通。   日前,ISO/TC172/SC7眼科光学和仪器技术委员会的秘书长亲自致信王莉茹,极力邀请她在方便的时候去欧洲参加关于眼镜架镍析出量标准方面的沟通工作。她在信中指出:虽然是欧盟标准化组织在出面组织关于眼镜架的镍析出量的国际比对和标准修订,但并非与中国毫无关联,中国是世界上最大的眼镜生产、出口和消费大国,欧洲市场上大量的中低端眼镜架来自中国 而且,中国自己也有几亿的消费者。SC7秘书长代表欧盟CEN170诚挚地希望中国同行能够早日介入、并在这个领域做出相应的贡献。   从多次沟通的情况看,欧盟和国际ISO组织是在极为认真地考虑这个事情,关于眼镜架镍析出量的标准,中国是绕不过去的。   王莉茹研究员说,SC7秘书长善意而含蓄的表达流露出一个潜台词:中国应尽快考虑制定关于眼镜架镍析出量的检测标准问题。中国的眼镜产品,无论是面对国际市场还是国内消费者,如果镍析出量不合格,那结局就只有一个:被淘汰出局。   作为新《太阳镜》国家标准的主要起草人和ISO国际专家,王莉茹研究员在为是否将镍析出量的要求写入标准费尽了脑汁,她左右为难。   一方面,中国眼镜行业,属于劳动密集型的传统制造行业,且一直以生产和出口中低端产品为主,一旦将镍析出量的要求写入国家标准,六成以上的工艺简单、设备落后、质量低端的生产企业将可能面临消亡。这对于刚刚起步并占据国际绝大多数市场的中国眼镜行业来说,无疑是一个巨大打击。   另一方面,眼镜架的镍析出量与人们的健康安全息息相关,如果不写入国家标准,并强制企业提高产品质量,保证消费安全,这对国内近8亿的消费者是不公平的,同时,也将直接影响中国眼镜产品在国际市场的声誉。   所以,写,还是不写,都是一个重大的两难抉择,绝不仅仅只是一个标准的问题。   王莉茹表示,制定与消费者健康有关的标准,始终要面对许多挑战,一个行业的发展就应该随着产业的技术进步不断自然淘汰一批落后的工艺和落后的生产企业,如果政府仅仅出于呵护企业的目的,不倒逼企业进行技术与设备升级,到头来,损害了消费者的利益不说,也不利于整个产业的健康发展。   标准的强制性与选择性   王莉茹还透露,她个人认为,必须对眼镜架的镍析出量提出要求并进行检测,无论是《太阳镜》、还是《眼镜架》国家标准,都不能也不应该回避这个技术内容。需要斟酌的是,是将其作为强制性内容写入标准,还是作为选择性内容写入国家标准的附录。关于这个问题还需要在业内展开广泛的讨论。她接到SC7秘书长的亲笔信后,已经在第一时间内将有关信息传递给了广东、江苏和浙江等眼镜生产基地。   王莉茹还指出:一旦在眼镜产品的国家标准中出现了关于镍析出量的概念和要求,即使暂时不做强制性测试,也使标准的用户和广大消费者对镍析出量这项安全性指标有了知情权和选择权。也就是说,生产企业可以不检测,但是消费者有权选择镍析出量检测合格的产品。   镍析出量:消费者不能忽视的安全指标   普通消费者在验配眼镜时,对选择什么样的眼镜架通常知识匮乏,即使是准备充分的消费者,也仅仅是把注意力集中在眼镜架的光泽与弹性、镜片的透光性、配装眼镜的屈光度上面,而对于金属镜架的镍析出量这个关系到人体健康的重要指标却知之甚少,或完全不知情。   镍析出量,是欧盟标准化组织(CEN)和国际标准化组织(ISO)关于眼镜架安全性的一项重要检测指标。迄今为止,中国的国家标准尚未引用上述规定和要求。   所以,尽管一些眼镜专业验配店在出售产品时都会向消费者提供产品的检测合格证书,但这些检测合格的指标通常基于国家标准的相关规定,而对根本未写入国家标准的内容,例如对产品镍析出量的要求,眼镜专业验配店与消费者一样,都无法得到进一步的信息。眼镜产品生产企业,对国家标准没有规定的指标,要么是不了解,要么是为了追求低廉的成本而不去主动检测。金属类或合金类的眼镜架,或者塑胶镜架带有金属装饰的产品,一旦镍析出量超标,对人们健康的危害显而易见,甚至可能致癌。检测镍析出量的意义就在于,它构筑了一道金属类产品损害人体健康的防火墙,把不合格的产品排除在市场之外,把可能的损害降到最低。   那么,为什么眼镜产品中会有重金属成份?它又会造成什么样的健康危害呢?   一般中低端的金属镜架以铜合金、镍铜合金为主,中高端的镜架产品则主要采用钛合金、纯钛或贵金属材料制成。贵金属产品相对安全,但价格较高,只针对社会中少数的高端消费群体。普通大众多以中低端的铜合金、镍铜合金或钛合金制成品为主。镍元素释放量,主要产生于中低端的金属类眼镜架产品中。   金属镜架的制造一般都是以某种金属为底材,然后对其表面进行电镀处理,电镀工艺能够使产品耐磨、防腐、美观。中低端的眼镜架多采用镀铬与镀镍工艺,这种工艺成本低,光泽度好,无须精磨就可达到使用要求。但铬和镍容易释放出危害环境与人体健康的重金属元素,尤其是眼镜架,长期与皮肤接触,再遇上汗液侵蚀,活跃度更高,容易引发皮肤过敏,重则致癌。生活中经常有一些消费者在佩戴金属类镜架时,会发生皮肤红肿甚至溃烂的现象,大多与重金属释放量超标有关。   眼镜产品作为一个大众消费商品,低价低质的产品在消费大众中有着巨大的市场,因为普通的消费人群对眼镜产品缺乏科学的消费知识,故而促使低端生产企业采用成本相对低廉的工艺和材质,以降低产品价格,提高销售量获得生存。据业内人士介绍,在浙江义乌眼镜批发市场,一些金属类眼镜架的批发价仅为3.5元左右,材质与工艺低劣,产品安全隐患很大。   中国有近4亿屈光不正消费者、1.5亿老花镜消费者、加上太阳镜的使用人群,眼镜产品覆盖了约8亿人。产品质量问题,实质上已经与人们的健康息息相关。镍析出量,不得不成为一个产品质量领域令人关注的话题。   新国标将成为行业洗牌导火索   长期以来,中国眼镜生产企业有一个理不清、走不出的怪圈。   在中国传统中,有一条“车到山前必有路”的古训,这当然是一种乐观的态度。然而,在眼镜架产品质量标准上,我们面对镍析出量的问题,无法过于乐观。关于镍析出量的话题,将成为眼镜产品安全领域的一个导火索,它会不断引导消费者在消费行为中,持续地思考关于眼镜产品与健康安全的问题。而在国际市场上关于对眼镜架的镍析出量进行检测的贸易壁垒,又让原先已经走向国际市场的中国产品,转个圈回到原地去叩自家的大门。可是,自家的门内,早已经“狼来了”。   国内的高端眼镜消费市场早就被依视路、尼康等国际眼镜巨头垄断着,占据着绝大部分份额。留给中国眼镜产品的仍然是低利润率、低附加值的低端市场。而与此同时,中国的眼镜产品还要不断地通过降低成本、用一贯不变的低质低价的产品形象往国际市场上挤。在目前金融危机的影响下,国外市场消费萎缩,出口受到大幅挤压,再加上镍析出量这样的贸易壁垒,国内中低端眼镜生产企业的路在何方?   是怪圈,也是制约中国眼镜行业发展的瓶颈:一方面,国内眼镜企业品牌意识落伍,大部分眼镜生产企业满足于贴牌和代工生产,不思进取,没有通过发展打造自有品牌。国内一些较为先进的生产企业,虽然有做品牌的意识,但品牌运作乏力,标识混乱,在国内市场上,虽然质量与工艺与国际品牌相差无几,但消费认知度极低,甚至连进入北京、上海这样的一线城市的消费市场,都非常困难 另一方面,依赖单一的微薄利润,缺乏创新与研发的投入,久而久之,既没有培养出自己的人才队伍,也缺乏创新的环境,在高端产品的设计、技术研发方面受制于人。从国内生产环节看,虽然最终的产品质量与国际品牌相比,差距并不大,但是其原材料、加工设备、模具技术等还是要从国外购买,国内企业只能靠低廉的人工费用去赚取一点点加工费。   中国早已是世界著名的眼镜王国,但距离实现眼镜强国之梦还很遥远。低质、低价和低端的消费群,一直制约着中国眼镜行业做强做大。从中国眼镜行业的现状来看,中国眼镜产量占到世界眼镜总量的70%以上,但利润却仅占国际眼镜市场的15%左右。中国眼镜产品60%用于出口,并占据了国际低端市场80%的份额,但大多数生产企业一直停留在低成本、低效率、低附加值的行业链末端,普遍存在生产技术落后、设计力量欠缺的问题,大量的企业没有自主品牌,不具备研发能力,仅为国外眼镜厂商代工生产,加工制造设备、甚至连测量设备都要依赖进口。这种状况导致中国眼镜行业很难形成核心竞争力,更遑论塑造国际品牌。   随着原材料的不断攀升,国内劳动力成本也在上升,中国眼镜行业多年赖以生存的低成本策略,已经没有了可持续性。在目前国内产品还没有培育出知名品牌的境况下,中低端眼镜生产企业的出路,令人堪忧。   据国家眼镜产品质量监督检测中心常务副主任王本平说,如果将镍析出量的指标写入国家标准,国内大部分中低端生产企业都要面临设备和工艺的改造和升级的挑战,生产成本将有一定幅度的上扬。一度以低成本优势占领低端消费市场的企业,既无法割舍固有低成本逐利心态,也没有能力去搞升级换代,这一类企业的前景不容乐观。   链接   王莉茹   硕士生导师,中国标准化研究院研究员, ISO/TC94/SC6中国注册专家,ISO9342-2国际标准主笔人,若干国家标准及计量检定规程的主笔人。   专业领域:眼科光学标准化和计量,光学和光学仪器测量。   主要科研成果:研究并建立顶焦度国家计量基准 研究并建立验光仪顶焦度工作基准 研究并建立角膜接触镜顶焦度工作基准 研究并建立眼镜片中心透射比标准测量装置 研究并建立瞳距测量仪的研制及标准测量装置。有多项发明专利成果。
  • 世界首台基于LIBS真空合金冶炼在线检测设备工程样机研制成功
    p   记者从中科院光电研究院获悉,在国家重大科学仪器设备开发专项的支持下,该院基于激光诱导光谱检测(缩写为LIBS)技术,研制出世界首台用于真空合金冶炼的在线检测设备工程样机。 /p p   高端精炼合金的技术水平制约了我国以航空发动机为代表的诸多产业的发展。在传统冶金制造领域,我国与德、美、日等先进国家相比仍存在较大差距,尤其表现在环境影响、产品品质、批次一致性、生产成本方面。 /p p   “实时诊断与分析是影响冶金水平和合金成分精确控制的主要因素。目前国内外的钢铁冶炼主要是采用炉前离线分析,制约了冶金生产技术水平的进一步提高。”中国科学院光电研究院赵天卓研究员介绍,LIBS检测技术是由激光烧蚀待测样品,通过对离子发射谱线进行检测,快速定性定量分析样品元素成分的技术。 /p p   该技术具有无需样品预处理、0.001‰级检出限、分析时间短至数十秒钟、多元素同时检测的优势,是实现复杂合金生产在线检测的有效手段。研究成果表明,该项目研究的技术能够提高生产效率、避免废品事件、提高产品品质及批次一致性。 /p p style=" text-align: left "   “根据生产企业现有情况估算,每台冶金炉容量2—3吨,年冶炼约1000炉,冶炼材料成本大约为4—5个亿,年直接效益可达千万。”赵天卓说。   /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/0b291d70-aa61-4b19-a027-9c3d45f6807f.jpg" style=" width: 292px height: 423px " title=" 1.JPG" width=" 292" height=" 423" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/32966beb-b556-4fac-82a2-ec1660db634e.jpg" style=" " title=" 2.JPG" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/4b03564f-de77-497b-8738-681b215a55d4.jpg" style=" " title=" 3.JPG" / /p p   中国钢铁研究总院教授级高工、中国工程院院士王海舟认为,该项目为高端冶金制造降低产品成本、提高产业竞争力、提高复杂合金新产品的研发速度和技术水平提供了关键支持。该项目技术还能够形成对传统制造业绿色智能升级的发展带动,成为绿色智能制造应用示范。 /p p br/ /p
  • 国家镁及镁合金产品质量检测中心建成
    9月8日,国家镁及镁合金产品质检中心建成,实验室进入检测试运行阶段。   国家镁及镁合金产品质量检测中心位于淇滨区湘江路以南,兴鹤大街东侧,于2011年3月8日获得国家质检总局批准建设。该中心建筑面积1.4万平方米,内部设置了力学实验室、三坐标实验室、探伤室等20余个实验室。“实验室采用半透明式设计,在设计中就考虑到通风、光线、电磁辐射、振动影响等因素,合理布局了实验室水路、电路、排风、透光等功能区,检测面积2500多平方米,实验室布局和环境条件达到国内同行业领先水平。”市质量技术监督检验测试中心建材室主任钱亚锋向记者介绍。   实验室内,几名工人正在调试设备。钱亚锋说:“我们投资1100多万元购置了直读光谱仪、三坐标测量机、ICP光谱仪等国内一流的专业设备。中心目前已经拥有金属镁专业检验检测设备50余台套,其中进口大型设备11台套。”据了解,该中心配置了国际先进、国内一流的检测设备,检测能力基本覆盖镁及镁合金产品的原料和成品。“以前,国内没有专业镁及镁合金产品检测机构,金属镁产品都送到有色金属研究院等机构检验,国家镁及镁合金产品质量检测中心建成以后具备镁产品的质量检验、仲裁检验、标准制定、科学研究、技术服务等多种功能,能够承担国家、省、市监督抽查和定期监督抽查任务。总体达到国内一流水平。”   “国家镁及镁合金产品质量检测中心的建成,对我市打造‘中国镁谷’将产生重大而深远的影响。”市质监局副局长黄华说。
  • 手持合金分析光谱仪可以检测铜合金材料吗
    铜合金具有出色的材料性能,可用于许多场景。在过去的数千年中,纯铜一直是最重要的金属之一,与其他金属相比,它的优点在于:导电性好、高导热率、强度和可塑性的杰出结合、在许多环境中的耐腐蚀性。  关于如何分类铜合金呢?  由于铜合金中的合金元素含量都不同,要测得准,光谱仪精度必须足够高,铜合金和铝合金、钢铁有所不同,它通常要对含量达到80%~90% 的材质进行检测。  手持光谱仪在铜合金材料检测中具有以下优势:  非破坏性检测:手持光谱仪可以通过物质的光谱特征来进行分析,而无需对样品进行破坏性测试或取样。这样可以保持材料的完整性和可用性,并节省时间和成本。  实时性和迅速性:手持光谱仪通常具备快速采集和处理数据的能力,可以在几秒钟内给出结果。这使得在现场或实时监测环境下,能够迅速获得铜合金材料的检测结果。  便携性和灵活性:手持光谱仪通常具有小巧轻便的设计,易于携带和操控。使用者可以随时随地进行检测,无需将材料送到实验室或专门设备的限制。  宽泛的应用范围:手持光谱仪可用于检测不同类型、形状和大小的铜合金材料,例如铜合金管、板、线等。同时,它也可用于其他材料的检测,具有较高的适用性。  数据准确性和可靠性:手持光谱仪通常采用先进的光谱分析技术,能够提供准确和可靠的检测结果。通过与预先建立的光谱数据库进行比对,可以准确确定铜合金材料的成分和特性。  赢洲科技作为仪景通一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢洲科技为您提供原装零部件替换、维修。
  • 金属材料检测或试验标准汇总
    p    span style=" color: rgb(0, 112, 192) " strong 金属材料化学成分分析 /strong /span /p p   GB/T 222—2006钢的成品化学成分允许偏差 /p p   GB/T 223.X系列钢铁及合金X含量的测定 /p p   GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) /p p   GB/T 4698.X系列海绵钛、钛及钛合金化学分析方法X量的测定 /p p   GB/T 5121.X系列铜及铜合金化学分析方法第X部分:X含量的测定 /p p   GB/T 5678—1985铸造合金光谱分析取样方法 /p p   GBT 6987.X系列铝及铝合金化学分析方法& amp #823& amp #823 /p p   GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 /p p   GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) /p p   GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 /p p   GB/T 13748.X系列镁及镁合金化学分析方法第X部分X含量测定& amp #823& amp #823 /p p    span style=" color: rgb(0, 112, 192) " strong 金属材料物理冶金试验方法 /strong /span /p p   GB/T 224—2008钢的脱碳层深度测定法 /p p   GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) /p p   GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 /p p   GB/T 227—1991工具钢淬透性试验方法 /p p   GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 /p p   GB/T 1979—2001结构钢低倍组织缺陷评级图 /p p   GB/T 1814—1979钢材断口检验法 /p p   GB/T 2971—1982碳素钢和低合金钢断口检验方法 /p p   GB/T 3246.1—2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法 /p p   GB/T 3246.2—2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法 /p p   GB/T 3488—1983硬质合金显微组织的金相测定 /p p   GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 /p p   GB/T 4236—1984钢的硫印检验方法 /p p   GB/T 4296—2004变形镁合金显微组织检验方法 /p p   GB/T 4297—2004变形镁合金低倍组织检验方法 /p p   GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 /p p   GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 /p p   GB/T 4334.6—2015不锈钢5%硫酸腐蚀试验方法 /p p   GB/T 4462—1984高速工具钢大块碳化物评级图 /p p   GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) /p p   GB/T 5168—2008α-β钛合金高低倍组织检验方法 /p p   GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 /p p   GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 /p p   GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 /p p   GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 /p p   GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 /p p   GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法 /p p   GB/T 10851—1989铸造铝合金针孔 /p p   GB/T 10852—1989铸造铝铜合金晶粒度 /p p   GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 /p p   GB/T 13298—2015金属显微组织检验方法 /p p   GB/T 13299—1991钢的显微组织检验方法 /p p   GB/T 13302—1991钢中石墨碳显微评定方法 /p p   GB/T 13305—2008不锈钢中α-相面积含量金相测定法 /p p   GB/T 13320—2007钢质模锻件金相组织评级图及评定方法 /p p   GB/T 13825—2008金属覆盖层黑色金属材料热镀锌单位面积称量法 /p p   GB/T 13912—2002金属覆盖层钢铁制件热浸镀层技术要求及试验方法 /p p   GB/T 14979—1994钢的共晶碳化物不均匀度评定法 /p p   GB/T 15711—1995钢材塔形发纹酸浸检验方法 /p p   GB/T 30823—2014测定工业淬火油冷却性能的镍合金探头试验方法 /p p   GB/T 14999.1—2012高温合金试验方法第1部分:纵向低倍组织及缺陷酸浸检验 /p p   GB/T 14999.2—2012高温合金试验方法第2部分:横向低倍组织及缺陷酸浸检验 /p p   GB/T 14999.3—2012高温合金试验方法第3部分:棒材纵向断口检验 /p p   GB/T 14999.4—2012高温合金试验方法第4部分:轧制高温合金条带晶粒组织和一次碳化物分布测定 /p p   YB/T 4002—2013连铸钢方坯低倍组织缺陷评级图 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料力学性能试验方法 /span /strong /p p   GB/T 228.1—2010金属材料拉伸试验第一部分:室温试验方法 /p p   GB/T 228.2—2015金属材料拉伸试验第2部分:高温试验方法 /p p   GB/T 229—2007金属材料夏比摆锤冲击试验方法 /p p   GB/T 230.1—2009金属材料洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺) /p p   GB/T 231.1—2009金属材料布氏硬度试验第1部分:试验方法 /p p   GB/T 232—1999金属材料弯曲试验方法 /p p   GB/T 233—2000金属材料顶锻试验方法 /p p   GB/T 235—2013金属材料薄板和薄带反复弯曲试验方法 /p p   GB/T 238—2013金属材料线材反复弯曲试验方法 /p p   GB/T 239.1—2012金属材料线材第1部分:单向扭转试验方法 /p p   GB/T 239.2—2012金属材料线材第2部分:双向扭转试验方法 /p p   GB/T 241—2007金属管液压试验方法 /p p   GB/T 242—2007金属管扩口试验方法 /p p   GB/T 244—2008金属管弯曲试验方法 /p p   GB/T 245—2008金属管卷边试验方法 /p p   GB/T 246—2007金属管压扁试验方法 /p p   GB/T 1172—1999黑色金属硬度及强度换算值 /p p   GB/T 2038—1991金属材料延性断裂韧度JIC试验方法 /p p   GB/T 2039—2012金属材料单轴拉伸蠕变试验方法 /p p   GB/T 2107—1980金属高温旋转弯曲疲劳试验方法 /p p   GB/T 2358—1994金属材料裂纹尖端张开位移试验方法 /p p   GB/T 2975—1998钢及钢产品力学性能试验取样位置及试样制备 /p p   GB/T 3075—2008金属材料疲劳试验轴向力控制方法 /p p   GB/T 3250—2007铝及铝合金铆钉线与铆钉剪切试验方法及铆钉线铆接试验方法 /p p   GB/T 3251—2006铝及铝合金管材压缩试验方法 /p p   GB/T 3252—1982铝及铝合金铆钉线与铆钉剪切试验方法 /p p   GB/T 3771—1983铜合金硬度和强度换算值 /p p   GB/T 4156—2007金属材料薄板和薄带埃里克森杯突试验 /p p   GB/T 4158—1984金属艾氏冲击试验方法 /p p   GB/T 4160—2004钢的应变时效敏感性试验方法(夏比冲击法) /p p   GB/T 4161—2007金属材料平面应变断裂韧度KIC试验方法 /p p   GB/T 4337—2008金属材料疲劳试验旋转弯曲方法 /p p   GB/T 4338—2006金属材料高温拉伸试验方法 /p p   GB/T 4340.1—2009金属材料维氏硬度试验第1部分:试验方法 /p p   GB/T 4340.2—2012金属材料维氏硬度试验第2部分:硬度计的检验与校准 /p p   GB/T 4340.3—2012金属材料维氏硬度试验第3部分:标准硬度块的标定 /p p   GB/T 4341.1—2014金属材料肖氏硬度试验第1部分:试验方法 /p p   GB/T 5027—2007金属材料薄板和薄带塑性应变比(r值)的测定 /p p   GB/T 5028—2008金属材料薄板和薄带拉伸应变硬化指数(n值)的测定 /p p   GB/T 5482—2007金属材料动态撕裂试验方法 /p p   GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法 /p p   GB/T 6400—2007金属材料线材和铆钉剪切试验方法 /p p   GB/T 7314—2005金属材料室温压缩试验方法 /p p   GB/T 7732—2008金属材料表面裂纹拉伸试样断裂韧度试验方法 /p p   GB/T 7733—1987金属旋转弯曲腐蚀疲劳试验方法 /p p   GB/T 10120—2013金属材料拉伸应力松弛试验方法 /p p   GB/T 10128—2007金属材料室温扭转试验方法 /p p   GB/T 10622—1989金属材料滚动接触疲劳试验方法 /p p   GB/T 10623—2008金属材料力学性能试验术语 /p p   GB/T 12347—2008钢丝绳弯曲疲劳试验方法 /p p   GB/T 12443—2007金属材料扭应力疲劳试验方法 /p p   GB/T 12444—2006金属材料磨损试验方法试环-试块滑动磨损试验 /p p   GB/T 12778—2008金属夏比冲击断口测定方法 /p p   GB/T 13239—2006金属材料低温拉伸试验方法 /p p   GB/T 13329—2006金属材料低温拉伸试验方法 /p p   GB/T 14452—1993金属弯曲力学性能试验方法 /p p   GB/T 15248—2008金属材料轴向等幅低循环疲劳试验方法 /p p   GB/T 15824—2008热作模具钢热疲劳试验方法 /p p   GB/T 16865—2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法 /p p   GB/T 17104—1997金属管管环拉伸试验方法 /p p   GB/T 17394.1—2014金属材料里氏硬度试验第1部分试验方法 /p p   GB/T 17394.2—2012金属材料里氏硬度试验第2部分:硬度计的检验与校准 /p p   GB/T 17394.3—2012金属材料里氏硬度试验第3部分:标准硬度块的标定 /p p   GB/T 17394.4—2014金属材料里氏硬度试验第4部分硬度值换算表 /p p   GB/T 17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢 /p p   GB/T 17600.2—1998钢的伸长率换算第2部分奥氏体钢 /p p   GB/T 26077—2010金属材料疲劳试验轴向应变控制方法 /p p   GB/T 22315—2008金属材料弹性模量和泊松比试验方法 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料无损检测方法 /span /strong /p p   GB/T 1786—2008锻制圆饼超声波检验方法 /p p   GB/T 2970—2004厚钢板超声波检验方法 /p p   GB/T 3310—1999铜合金棒材超声波探伤方法 /p p   GB/T 4162—2008锻轧钢棒超声检测方法 /p p   GB/T 5097—2005无损检测渗透检测和磁粉检测观察条件 /p p   GB/T 5126—2001铝及铝合金冷拉薄壁管材涡流探伤方法 /p p   GB/T 5193—2007钛及钛合金加工产品超声波探伤方法 /p p   GB/T 5248—2008铜及铜合金无缝管涡流探伤方法 /p p   GB/T 5616—2014无损检测应用导则 /p p   GB/T 5777—2008无缝钢管超声波探伤检验方法 /p p   GB/T 6402—2008钢锻件超声检测方法 /p p   GB/T 6519—2013变形铝、镁合金产品超声波检验方法 /p p   GB/T 7233.1—2009超声波检验第1部分:一般用途铸钢件 /p p   GB/T 7233.2—2010铸钢件超声检测第2部分:高承压铸钢件 /p p   GB/T 7734—2004复合钢板超声波检验 /p p   GB/T 7735—2004钢管涡流探伤检验方法 /p p   GB/T 7736—2008钢的低倍缺陷超声波检验法 /p p   GB/T 8361—2001冷拉圆钢表面超声波探伤方法 /p p   GB/T 8651—2002金属板材超声波探伤方法 /p p   GB/T 8652—1988变形高强度钢超声波检验方法 /p p   GB/T 9443—2007铸钢件渗透检测 /p p   GB/T 9445—2015无损检测人员资格鉴定与认证 /p p   GB/T 10121—2008钢材塔形发纹磁粉检验方法 /p p   GB/T 11259—2015无损检测超声检测用钢参考试块的制作和控制方法 /p p   GB/T 11260—2008圆钢涡流探伤方法 /p p   GB/T 11343—2008无损检测接触式超声斜射检测方法 /p p   GB/T 11345—2013焊缝无损检测超声检测技术、检测等级和评定 /p p   GB/T 11346—1989铝合金铸件X射线照相检验针孔(圆形)分级 /p p   GB/T 12604.1—2005无损检测术语超声检测 /p p   GB/T 12604.2—2005无损检测术语射线照相检测 /p p   GB/T 12604.3—2005无损检测术语渗透检测 /p p   GB/T 12604.5—2008无损检测术语磁粉检测 /p p   GB/T 12604.6—2008无损检测术语涡流检测 /p p   GB/T 12604.7—2014无损检测术语泄漏检测 /p p   GB/T 12604.8—1995无损检测术语中子检测 /p p   GB/T 12604.9—2008无损检测术语红外检测 /p p   GB/T 12604.10—2011无损检测术语磁记忆检测 /p p   GB/T 12604.11—2015无损检测术语X射线数字成像检测 /p p   GB/T 12605—2007无损检测金属管道熔化焊环向对接接头射线照相检测 /p p   GB/T 12966—2008铝合金电导率涡流测试方法 /p p   GB/T 12969.1—2007钛及钛合金管材超声波探伤方法 /p p   GB/T 12969.2—2007钛及钛合金管材涡流探伤方法 /p p   GB/T14480.1—2015无损检测仪器涡流检测设备第1部分:仪器性能和检验 /p p   GB/T 14480.2—2015无损检测仪器涡流检测设备第2部分:探头性能和检验 /p p   GB/T 14480.3—2008无损检测涡流检测设备第3部分系统性能和检验 /p p   GB/T 15822.1—2005无损检测磁粉检测第1部分:总则 /p p   GB/T 15822.2—2005无损检测磁粉检测第2部分检测介质 /p p   GB/T 15822.3—2005无损检测磁粉检测第3部分设备 /p p   GB/T 18694—2002无损检测超声检验探头及其声场的表征 /p p   GB/T 18851.1—2005无损检测渗透检测第1部分总则 /p p   GB/T 18851.2—2008无损检测渗透检测第2部分:渗透材料的检验 /p p   GB/T 18851.3—2008无损检测渗透检测第3部分:参考试块 /p p   GB/T 18851.4—2005无损检测渗透检测第4部分设备 /p p   GB/T 18851.5—2005无损检测渗透检测第5部分验证方法 /p p   GB/T 19799.1—2005无损检测超声检测1号校准试块 /p p   GB/T 19799.2—2005无损检测超声检测2号校准试块 /p p   GB/T 23911—2009无损检测渗透检测用试块 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料腐蚀试验方法 /span /strong /p p   GB/T 1838—2008电镀锡钢板镀锡量试验方法 /p p   GB/T 1839—2008钢产品镀锌层质量试验方法 /p p   GB/T 10123—2001金属和合金的腐蚀基本术语和定义 /p p   GB/T 13303—1991钢的抗氧化性能测定方法 /p p   GBT 15970.X系列金属和合金的腐蚀应力腐蚀试验第X部分 /p p br/ /p
  • 青岛众瑞受邀参与“2019上海环境监测行业现场监测与采样仪器、设备推荐会”
    上海市环境科学学会环境监测分会于2019年4月9日举办了环境监测行业现场监测与采样仪器、设备的推荐会,青岛众瑞受邀参与此次交流活动。众瑞的技术总监向在座的各位环境监测工作者介绍了公司的发展情况,并结合对新标准的解读,现场展示了当下重点推荐的产品。其中,就目前快速直读类仪器的发展趋势也做出了预测和分析,与在座的监测工作从业者共同探讨未来监测仪器的技术攻关重点与难点。 现场重点推介产品ZR-7100型便携式烟尘直读测试仪 利用β射线吸收称重原理与等速跟踪法或恒流采样法相结合进行测量;采样管采用钛合金材质,轻便且全程加热,防止烟气冷凝;进口的高灵敏度的β射线接收器,机检出限低,满足超低排放中颗粒物浓度低于0.5mg/m3的排放场所的现场直读的监测要求,仪器颗粒物浓度测量范围为(0.1~100mg/m3); ZR-7022型环境粉尘连续监测仪 利用β射线吸收称重+dhs(动态加热系统)原理直接测量颗粒物质量浓度;获得cpa证书,浓度测量范围(0~10000ug/m3),浓度示值误差不超过±10%;可选配不同的切割器进行tsp、pm10和pm2.5浓度的实时测量。采用低活度c14 β源,安全可靠。便携性好,现场安装迅速,交直流两用,连续自动运行,可适用于多种测试用途。 ZR-d05c型烟气预处理器 采用符合国标方法的加注磷酸法,有效降低so2等的损失,消除或减小氨、硫化氢等气体的干扰;采用变频压缩机制冷,通过自主设计的冷凝结构,可处理含湿量高达30vol.%的烟气,适用于高湿、烟气成分浓度低的工况;内置整机加热功能,可在(-20―50)℃的环境温度中稳定工作,保证额定除湿能力,输出气体露点稳定; ZR-d25型一体式烟气多功能采样管 一体化结构设计,烟尘、烟气、含湿量、流速、烟温同时满足的五合一采样管;含湿量、流速、烟温可以直读,可实时显示分钟数据,确保数据比对的连续性;五寸彩色触摸屏,触摸+按键操作;配备钛合金一体式采样嘴,适用于高湿低浓度收集固定污染源颗粒物; ZR-5211型动态气体配气仪 高精度质量流量控制器,3路配气通道,可配制混合标气用于干扰测试;快接头设计,使用更便捷;配气流路采用防腐蚀,防吸附设计;可选配加湿功能,配制特定含湿量的气体; ZR-3730型污染源真空箱气袋采样器 采用真空箱抽负压、气袋被动抽气原理,样气从采样管直接进入气袋,避免样品污染;选配专用的全程伴热模块,防止产生冷凝水,保证样品无污染; 青岛众瑞智能仪器有限公司始终坚持“以质量求生存,以服务求市场,以科技求发展”的理念,聚焦核心科技,以专业精神为客户创造价值。2019,青岛众瑞将继续积极奔赴各地参与并开展技术交流活动,致力于环境监测行业的发展和自身技术硬实力的提升,也努力为广大客户提供优质的服务。
  • 众瑞仪器发布ZR-3760型 便携式油烟检测仪新品
    详细介绍产品概述ZR-3760型便携式油烟检测仪是适用于餐饮业油烟污染状态实时快速监测的一体式直读仪器,该仪器配备全程伴热、气路稀释以及测量工况等功能,采用恒流采样和激光散射的方式来测量烟道内的油烟浓度,能够高效、快速和准确的测量油烟浓度,提高监测的效率,减轻监测的工作量。产品特点l 整机选用钛合金材料,一体式设计,体积小、重量轻,便携性好;l 油烟检测采用激光法,能实现油烟浓度的快速直读,同时也可检测沥青烟、松香烟等非食用油烟的浓度值;l 仪器具备测量含湿量、烟温和流速等工况的功能、系统集成度高;l 整机具备全程伴热和气路稀释功能,伴热温度可设,确保检测的油烟浓度准确度,仪器抗污染的性能好,数据重复性好;l 具备油烟浓度的实时显示功能,后续无需进行实验室分析,并自动换算并显示为标准干烟气下的油烟浓度;l 采样时间1min-30min可设,可自动进行烟气流速的实时跟踪并自动换算油烟小时排放量;l 内置锂电池供电,无需外接AC220V交流电即可在现场直接测量,满足快速监测需求;l 具备过滤器、气密性检测、归零校正和清洗功能,保证数据准确无误和提高使用寿命;l 采用高精度电子流量计和长寿命采样泵,确保流量的准确性和仪器的长时间工作;l 采用高清彩色触摸屏,且带有按键功能,同时支持按键和触控操作;l 内置蓝牙模块和USB口,可无线打印数据和U盘快速导出采样数据;l 内置存储器,能够保存100000组采样数据,可以查询和导出数据。创新点:1、适用于餐饮业油烟污染状态实时快速监测的一体式直读仪器; 2、配备全程伴热、气路稀释以及测量工况等功能,采用恒流采样和激光散射的方式来测量烟道内的油烟浓度; 3、整机选用钛合金材料,一体式设计,体积小、重量轻,便携性好; 4、具备油烟浓度的实时显示功能,后续无需进行实验室分析,并自动换算并显示为标准干烟气下的油烟浓度。 ZR-3760型 便携式油烟检测仪
  • 《铝用炭素检测方法》等129项有色金属标准审定会召开
    2011年3月24日~27日,全国有色金属标准化技术委员会在扬州召开了 《铝用炭素检测方法》等129项有色金属标准审定会、讨论会和任务落实会。来自全国有色金属行业的200多名代表参加了此次会议。   会议对《变形铝及铝合金扁铸锭》、《铝电解槽技术参数测量方法》和《镁及镁合金化学分析方法》系列标准等27项轻金属标准进行审定、预审和讨论 对《加工铜及铜合金化学成分与产品形状》、《电工用火法精炼再生铜线坯》、《铜精矿化学分析方法》等14项重金属标准进行审定、预审和讨论 对《碳化钨粉安全生产规程》、《钼化学分析方法》、《钛及钛合金带、箔材》等79项稀有金属、粉末冶金标准进行审定和预审 对《金珠》、《银条》等9项贵金属标准进行讨论。
  • 贵州玉屏拟建铁合金权威检测机构
    贵州省玉屏自治县质监局拟建黔东铁合金系列产品检测中心,该中心预计耗资近80万元,建成后,可为我省的玉屏、岑巩、镇远以及湖南新晃等地企业提供服务。   目前,玉屏自治县(含大龙开发区)共有14家铁合金企业,临近的岑巩、镇远也有多家铁合金企业,“玉岑镇”沿线已成为我省较大的铁合金产品生产基地。此外,湖南新晃自治县也在挨近大龙开发区的地方建设工业园,也将上马铁合金企业。   拟建设的黔东铁合金系列产品检测中心需要资金87万元。据悉,省质监局同意出资70%,其余30%则需要玉屏自治县配套。   长期以来,铜仁地区以及玉屏周边都未建权威的铁合金产品检测机构,企业遇到原料或产品质量纠纷,当地质监局无法进行仲裁。如要对产品进行检验,只能送样品到贵阳,或者邀请在贵阳的检测机构前来检测,十分不便。有企业负责人说,如果该中心建成,企业就不必再建实验室,还可以把相关的业务委托给该机构,能节省开支。(
  • 162项推荐性国家标准公开征求意见 涉及多种仪器检测
    近日,《纺织品 抗病毒活性的测定》、《数字航空摄影测量 控制测量规范》、《用气体超声流量计测量天然气流量》、《照明光源颜色的测量方法》、《分布式光纤应变测试系统参数测试方法》等162项推荐性国家标准征求意见。其中,多项与仪器分析检测方法相关,如电感耦合等离子体原子发射光谱法、气相色谱法、拉曼成像法、电感耦合等离子体原子发射光谱法、原子荧光光谱法和固体进样直接法等。162项推荐性国家标准(征求意见稿)序号计划号项目名称制修订截止日期120141600-T-519航空用钛合金100°沉头大底脚螺纹抽芯铆钉制订2022/8/21220141601-T-519航空用钛合金凸头大底脚螺纹抽芯铆钉制订2022/8/21320210877-T-469表面化学分析 词汇 第一部分:通用术语及谱学术语修订2022/8/21420204869-T-469食品容器用镀锡或镀铬薄钢板全开式易开盖质量通则修订2022/8/21520213006-T-604超硬磨料制品 精密刀具数控磨削用砂轮制订2022/8/21620204865-T-469柑橘罐头质量通则修订2022/8/21720204866-T-469桃罐头质量通则修订2022/8/21820204867-T-469金枪鱼罐头质量通则修订2022/8/21920211843-T-605金属和合金的腐蚀 金属和合金在表层海水中暴露和评定的导则修订2022/8/211020204868-T-469爪式旋开盖质量通则修订2022/8/211120203779-T-605铁矿石 化学分析用有证标准样品的制备和定值制订2022/8/211220211774-T-604磨具回转强度试验方法修订2022/8/211320214693-T-469航空航天 可热处理强化不锈钢零件表面清理制订2022/8/211420214880-T-604超硬磨料制品 半导体芯片精密划切用砂轮制订2022/8/211520202686-T-605炭素材料洛氏硬度测定方法制订2022/8/201620204779-T-605石墨材料 当量硼含量的测定 电感耦合等离子体原子发射光谱法制订2022/8/201720210914-T-469焦化甲苯 烃类杂质含量的测定 气相色谱法修订2022/8/201820202649-T-608纺织品 含相变材料的纺织品蓄热和放热性能的测定制订2022/8/201920213005-T-604人造金刚石磁化率测定方法制订2022/8/202020213007-T-604超硬磨料制品 安全要求制订2022/8/202120202900-T-605炭素材料表面粗糙度试验方法制订2022/8/202220213375-T-469合格评定 管理体系审核认证机构要求 第12部分:合作商业关系管理体系审核与认证能力要求制订2022/8/202320211723-T-604普通磨料 球磨韧性测定方法修订2022/8/202420214878-T-604涂附磨具 通用安全要求制订2022/8/202520214838-T-604固结磨具 形状类型、标记和标志修订2022/8/202620193071-T-604质子交换膜燃料电池 电池堆通用技术条件修订2022/8/192720210897-T-469钢质管道带压封堵技术规范修订2022/8/192820214278-T-469智慧城市 公共卫生事件应急管理平台通用要求制订2022/8/192920204791-T-608纺织品 抗病毒活性的测定制订2022/8/193020210898-T-469钢质管道内检测技术规范修订2022/8/193120213620-T-416激光雷达测风数据可靠性评价技术规范制订2022/8/193220210685-T-604机器人 服务机器人性能规范及其试验方法 第2部分:导航金属旋压成形性能与试验方法 第1部分:成形性能、成形指标及通用试验规程制订2022/8/16343520211994-T-469照明光源颜色的测量方法修订
  • 安徽省镁铝合金产品质量检验检测中心落户池州
    日前,《安徽省市场监管局关于同意筹建安徽省镁铝合金产品质量检验检测中心的批复》下发,正式批准以池州市质量监督检验研究院(国家非金属矿质检中心)(以下简称“市质检院”)为母体单位,在江南新兴产业集中区筹建安徽省镁铝合金产品质量检验检测中心。  据介绍,镁铝合金产品广泛应用于汽车、建筑、包装、交通运输、电力、航空航天、军工、光伏太阳能、家电家居等领域。“十四五”期间,省委、省政府大力发展新材料产业,实施包括镁基、铝基在内的“六基”提升计划。当前,我市正聚焦镁基、铝基新材料产业发展,立足全国、全省战略布局,发挥宝镁轻合金项目龙头带动作用,加快补链延链固链强链,推动产业链向价值链高端延伸。该中心建成后,将以市场需求为主导,促进政产学检研深度融合,降低研发和检测成本,提高企业效益,助力镁基、铝基产业高质量发展。  作为该中心的承建单位,市质检院拥有近800余台先进仪器设备,先后通过CNAS和CMA资质认定,检测产品和参数达1000多个,检验检测能力覆盖非金属矿产品、非金属和建筑材料、食品、药品、保健食品、化妆品、农资、轻工、化工、小家电等领域。“市质检院将加紧项目实施,加强与重庆大学等科研院校合作,进一步整合资源、链接要素,全面提升技术能力和管理水平,确保如期建成一个集产品检验、标准研制、技术研发、信息交流的国家级质检平台,不断提升平台能级、扩大平台影响。”该院院长汪安表示。
  • 这项揭榜挂帅申报工作已开展!鼓励检测机构参与
    工业和信息化部办公厅 国家药监局综合司关于组织开展生物医用材料创新任务揭榜挂帅(第一批)工作的通知工信厅联原函〔2022〕325号各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、药品监督管理部门,有关中央企业,有关行业协会:生物医用材料是生产诊断、治疗、修复和替代人体组织、器官或增进其功能所需医疗器械不可或缺的新材料,包括高分子材料、金属材料、无机非金属材料等,对保障人民群众健康具有重要意义。为加快我国生物医用材料研制生产及应用进程,推进生物医用材料上下游协同创新攻关,更好支撑医疗器械产业高质量发展,工业和信息化部、国家药监局联合开展生物医用材料创新任务揭榜挂帅工作。有关事项通知如下。一、任务内容和预期目标生物医用材料创新任务揭榜挂帅工作聚焦高分子材料、金属材料、无机非金属材料三大重点方向,征集遴选一批掌握关键核心技术、具备较强创新能力的单位集中攻关,重点突破一批量大面广、技术先进、带动性强、安全可靠的标志性生物医用材料,材料性能符合临床应用要求、形成稳定可靠的规模化生产能力,加速在相关下游医疗器械产品领域实现落地应用。(一)高分子材料用于人工血管、覆膜支架、人工关节、椎间融合器、可吸收缝合线、球囊导管、血液透析器、体外膜肺氧合机等医疗器械产品的高分子材料,包括但不限于聚氨酯、聚L-丙交酯-己内酯(PLCL)、医用聚醚醚酮(PEEK)、医用聚乳酸衍生物(PLA/PLGA)、医用聚对二氧环己酮(PDO)、超细聚乙烯纤维屏蔽材料、聚四氟乙烯(PTFE)、膨体聚四氟乙烯(ePTFE)、非邻苯类增塑剂、医用植入硅橡胶、聚甲醛(POM)、医用聚砜(PSU)、医用聚醚砜(PES)、超高分子量聚乙烯、环烯烃聚合物(COP/COC)、尼龙及其弹性体、聚乙醇酸(PGA)、聚4-甲基-1-戊烯(PMP)等。(二)金属材料用于心脏起搏器、心脏瓣膜、神经刺激器、神经血管导丝、血管支架、人工关节、骨科植入器械等医疗器械产品的金属材料,包括但不限于超薄钛及钛合金、超细钛丝、镍钛合金管材、超细镍钛丝、铂钨/铂镍/铂铱合金超细丝材、镍钴铬钼合金丝材、超细铂合金管材/环材、钴铬合金管材/棒材/丝材、可降解医用镁合金材料、医用增材制造用钽粉等。(三)无机非金属材料用于仿生复合骨支架、义齿、骨缺损填充及修复材料等医疗器械产品的无机非金属材料,包括但不限于双相磷酸钙(BCP)陶瓷、义齿微晶玻璃、氧化锆复合氧化铝、再生修复用生物玻璃等无机非金属材料等。二、推荐条件(一)揭榜申报主体须是材料生产企业和医疗器械生产企业组建的上下游联合体,鼓励医疗卫生机构、高校及科研院所、检测机构等共同参与,牵头单位为1家。参与联合体的单位须为在中华人民共和国境内注册、具有独立法人资格的企事业单位,具有较强的技术创新能力和产业化应用能力。(二)各省、自治区、直辖市及计划单列市工业和信息化主管部门会同药品监督管理部门作为推荐单位,优先推荐技术指标先进、技术路线成熟、推广应用方案完备、经费预算合理、揭榜团队综合能力强的项目。(三)每个单位牵头申报项目不能超过3个,已列入前期相关揭榜挂帅项目的不得重复申报。三、工作要求(一)申报主体可通过申报系统(http://biomed.caict.ac.cn/)进行申报,完成注册后填写申报所需材料。申报截止时间为2023年2月10日。(二)推荐单位于2023年2月24日前使用账号登录系统并确认推荐名单。(三)请推荐单位高度重视生物医用材料创新任务揭榜挂帅工作,充分调动重点企业、专精特新“小巨人”企业、单项冠军企业、医疗卫生机构、高校及科研院所、相关产业联盟及行业协会的积极性申报揭榜挂帅项目,按照政府引导、企业自愿、公开公正的原则做好推荐工作,并结合区域产业优势和临床资源,加大对“揭榜挂帅”重点品种、重点企业配套支持力度,优先配置入选“揭榜挂帅”的项目用地、用能、排污等指标资源,出台鼓励应用推广的配套政策。(四)工业和信息化部、国家药监局委托第三方专业机构组织遴选并公布入围揭榜单位名单,建立“赛马机制”,每个揭榜产品择优选择揭榜团队(原则上不超过3家)进行攻关,拟将揭榜挂帅攻关方向纳入现有政策支持渠道,依托国家产融合作平台提供投融资对接服务,并优先提供审评相关的技术咨询服务。(五)入围揭榜挂帅单位完成攻关任务后(原则上名单公布之日起3年内),工业和信息化部、国家药监局委托专业机构开展测评工作,择优确定揭榜优胜单位(每个揭榜方向原则上不超过2家)。鼓励完成揭榜任务的相关材料以医疗器械主文档形式进行登记,并通过新材料首批次应用保险补偿等政策加大应用推广支持力度。(六)中国信息通信研究院、国家药监局医疗器械技术审评中心和中国医疗器械行业协会为揭榜挂帅工作提供过程管理、平台建设、评估组织、协调服务等支撑工作。联系人及电话:工业和信息化部原材料工业司 王成龙010-68205568 刘伯民010-68205564工业和信息化部消费品工业司 符一男010-68205638国家药监局医疗器械注册管理司 胡雪燕010-88330635工作咨询:中国信息通信研究院 李 曼010-62302915 王子函010-62305979国家药监局医疗器械技术审评中心 孙小闻010-86452726中国医疗器械行业协会 苏文娜010-58691200-8012工业和信息化部办公厅国家药监局综合司2022年12月7日
  • 赛恩思光谱仪为精密合金产业提供先进的检测技术
    随着先进材料科学与工程技术的迅猛发展,对于精密合金的需求也随之日益增长。而在这一领域,品质和精确度始终处于核心地位。对于众多合金生产企业而言,确保产品质量与合金成分的精确度就显得至关重要。而四川赛恩思仪器,正为这些行业领头企业提供了先进、可靠的检测技术。东莞市天耀五金实业有限公司,作为专业的精密镁合金压铸、铝合金压铸生产商,近日采购了赛恩思OES-802直读光谱仪。作为该领域的行业领头,天耀五金实业非常注重其产品的质量与合金成分的精确度。赛恩思OES-802直读光谱仪将帮助他们进行四系铝合金以及镁合金的检测,确保A356、A365等铝合金牌号的产品品质始终保持在行业的前列。赛恩思OES-802直读光谱仪凭借其卓越的性能,准确地检测合金的元素成分,确保合金生产过程中的严格质控,为客户带来更高的产品信赖度。无论是对于精密合金压铸,还是高要求的技术研发与产品应用,这款仪器都能提供强大的技术支持。四川赛恩思仪器,多年来一直致力于研发与生产先进的分析检测仪器。与国内外的许多知名企业建立了长期稳固的合作关系,积累了丰富的经验。公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • 聚焦科研热点,透视特色技术丨合金储氢研究检测岛津特色技术
    氢能在汽车动力、电子、食品、冶金、航空航天等方面有着广泛的应用,但是由于氢气与其他物质在相同体积下的质量相比过轻,并且易燃、易爆,所以储存起来十分困难,限制了其开发利用的发展。固态储氢是安全高密度储氢的重要形式,合金氢化物储氢,是固体储氢技术中的一种。在提高合金储氢热力学与动力学的研究中,研究检测会涉及X射线光电子能谱仪(XPS)、电子探针显微分析仪(EPMA)、电感耦合等离子体原子发射光谱仪(ICP-OES)、X射线衍射仪(XRD)、激光衍射式粒度分布测定装置(SALD)、差示扫描量热仪(DSC)、热重分析仪(TGA)等,岛津公司均可提供相关仪器及应用方案。其中岛津公司X射线光电子能谱仪(XPS AXIS SUPRA+ )、电子探针显微分析仪(EPMA-8050G/1720H)、激光衍射式粒度分布测定装置(SALD-2300)在合金储氢研究中可提供有针对性的、特色测试表征方案。 特色技术一:岛津电子探针EPMA11种全聚焦型晶体设计,稀土元素、轻质元素含量测定更准确典型应用:岛津电子探针EPMA在镁锌稀土合金测试中的应用镁基合金是储氢研究中的一个热点方向,稀土改性亦是合金储氢研究方向之一。通常加入稀土元素,可提高合金储氢能力及合金稳定性。电子探针作为样品显微观察和微区分析有效结合起来的定量分析工具,对镁合金进行微米级别的无损分析,有助于了解合金在微区尺度的成分信息,同时对稀土元素进行准确测定。采用EPMA-1720HT对镁锌合金进行测试。 图1 电子探针显微分析仪EPMA-1720HT 图2 Mg-Zn 稀土合金元素分布位置和形态 图3 细节放大后各元素分布特征(图上的数字为定量测试位置)从面分布结果可以看出,试样合金中的稀土几乎全部分布于晶界,但不连续,平均晶粒尺寸直径为24.5μm,晶界相宽度约2.4μm。富集于晶粒表面及晶界位置的稀土活性元素可以填充晶界处的晶界空位,改善晶界附近的组织形态,提高高温抗蠕变性能。表1 镁锌系稀土合金Mg-Zn-RE不同位置定量测试(Wt%) EPMA 作为微区分析仪器,相对于SEM+EDS,在灵敏度和分辨率两个重要指标上都高出一个数量级,而其具有原位分析的特点,使其在镁合金基础材料研究、镁合金产品开发设计、失效品分析等各领域中可发挥重要的作用。特色技术二:岛津X射线光电子能谱仪(XPS AXIS SUPRA+ )的荷电中和技术对于凹凸不平的样品,可实现直接测定典型应用:光电子能谱技术表征镁合金表面保护膜储氢合金使用X射线光电子能谱仪进行合金的元素以及化学状态分析,可以分析获得合金的元素组成及相对含量,以及化学状态等方面的信息。XPS技术作为一种表面分析手段,常规分析深度10nm以内,因此普遍用于金属表面纳米厚度的钝化层的表征。采用岛津Axis Supra+仪器对两种镁合金材料表面进行测试,辅助分析表面保护膜组成。 图4 全自动、多技术成像型X射线光电子能谱仪 AXIS SUPRA+1、 样品信息分析条件激发源:单色Al 靶(Al Kα,1486.6 eV)X射线高压:15 kV发射电流:全谱10 mA,元素精细谱15 mA停留时间(Dwell time):200 ms通能:全谱160 eV,精细谱40 eV分析区域:slot 模式扫描速度:全谱1 eV,窄谱0.1 eV2、 样品及处理合金样品采用化学转化处理法得到表层保护膜,样品性状:片状固体。3、 实验结果 图5 镁合金全谱扫描结果对合金进行全谱扫描,结果见图5,可知表面主要存在元素为C、O、Mg、Al、Si、F、V 等元素,其他未标注谱峰为非特征轨道或者俄歇峰,未发现其他明显的合金掺杂金属元素特征峰,是由于XPS 技术主要检测材料最表层的元素构成,C 元素主要来源于表面污染。结合全谱结果可初步判断该镁合金表面采用的为含钒物种保护膜。 图6 镁合金精细谱扫描结果进一步对该样品采集精细谱数据分析,见图6,分别对各元素进行化学态分析,C 元素主要以C-C、C-O、 C=O、CO32- 的化学态形式存在,其结合能分别是284.8 eV、286.2 eV、287.2 eV 和289.3 eV;O 元素主要以钒酸盐、CO32- 形式存在,其结合能位置在531.3 eV 和532.8 eV;V 元素主要以钒酸盐的化学态形式存在,V 2p3/2 结合能位置分别在517.0 eV;Mg 元素主要以金属态Mg(1303.4 eV)、表层自然氧化物Mg Oxide(1304.6 eV)的化学态形式存在;Al 元素主要以氧化铝(74.1 eV)的化学态形式存在;Si 元素主要以自然氧化态(101.8 eV)的形式存在;F 元素主要以金属氟化物(684.7 eV)的化学态形式存在。推测其中F 元素为处理后离子残留,Al、Si 为合金中掺杂,表面保护膜成分主要为钒酸盐物种。合金样品往往具有一定厚度,采用岛津AXIS Supra+ 双高度样品条可以直接应对,无需对样品进行前处理。采用岛津Axis Supra+仪器成功完成改性处理后的镁合金材料的表征,通过XPS 的结果给出了材料表面各元素的化学态等信息,证明了表面保护膜层的元素及结构信息。特色技术三:岛津广域、高灵敏度粒度分析系统SALD-2300可测至0.1ppm微量粒子,同时对深颜色甚至黑色样品亦可轻松检测典型应用:SALD-2300测定四氧化三钴粉末样品的粒径分布颗粒的大小影响催化剂对于储氢合金的催化效果,粒度分布测定仪可以计算样品分散状态下的粒径大小和分布区间。使用岛津激光粒度仪SALD-2300和MS23型循环流通池,以纯水为分散介质,在超声和搅拌条件下测试四氧化三钴粉末的粒径大小和分布。 图7 岛津激光衍射式粒度分布测定装置SALD-23001、 分析条件本次测试体条件如下表2所示表2 SALD-2300测试四氧化三钴粉末条件 2、 样品及处理测试样品钴材料A和B,取适量粉末用纯水搅拌均匀,经外部超声分散后,滴加至循环流通池中进行测试。3、 实验结果 图8 四氧化三钴粉末A粒径分布图 图9 四氧化三钴粉末B粒径分布图 图10 粒径分布对比图从图8、9、10可看出,四氧化三钴粉末A和B粒径分布均呈正态分布,但存在明显差异。四氧化三钴粉末的粒度测试结果见下表3所示。表3 粒度测试结果 岛津激光粒度仪SALD-2300循环流通池可实现纯水自动添加、超声和搅拌、自动清洗等功能,软件特有的光强分布再计算(LDR)功能,可自动计算物质的最佳折射率,获得可靠的粒径分布数据。本应用使用岛津激光粒度仪 SALD-2300 湿法测试四氧化三钴粉末的粒径大小和分布,方法简单易行,测试速度快,数据稳定且重复性好,满足四氧化三钴粉末粒度的测试要求。本文内容非商业广告,仅供专业人士参考。
  • 三元素分析仪可检测普碳钢及低合金钢
    三元素分析仪可检测普碳钢及低合金钢 微机三元素高速分析仪是用于多元素分析的三通道光电比色分析仪。该仪器在国内外先进技术的基础上,首次采用了&ldquo 智能动态跟踪&rdquo 和&ldquo 标样曲线的非线性回归&rdquo 等先进技术,使传统比色仪的日常调整和标样曲线的建立方法起了根本性的变化。使本仪器跻身于高档分析仪器的行列。 QL-BS3型微机三元素分析仪也可以单独作为一台数据处理计算机使用,使其处理功能得到充分发挥。微机三元素分析仪主要可检测普碳钢及低合金钢,更适用于对金属等材料中的硅、锰、磷、镍、铬、铜、稀土、镁、铜、铁、铝、钒、钨、钛等多种元素的比色分析,现已大量地在冶金、机械、化工等行业,对炉前、成品、来料化验等均可使用。它是新一代比色分析仪器的理想换代产品。 南京麒麟分析仪器有限公司技术部
  • 民航局与南山铝业签订建立民用航空材料检测实验中心合作协议
    2012年9月20日,民航局与南山铝业股份有限公司(以下简称“南山铝业”)在京签订了建立民用航空材料检测实验中心合作协议。该协议旨在支持南山铝业在我国建立高标准、世界一流的民用航空材料检测实验中心,使之具备满足适航管理要求的民用航空材料检测实验能力,为确保民用航空安全、促进我国航空材料产业的科学健康发展服务。   协议提出了期待通过双方合作实现的目标,即南山铝业建立满足国际先进标准的民用航空材料检测实验中心,民用航空材料检测实验中心获得CAAC委任单位代表资格,民用航空材料检测实验中心为民用航空材料适航审定技术和管理研究提供服务。同时,协议也对双方具体的工作内容进行了细分。   据了解,我国民用航空工业发展几经曲折,导致我国航空铝合金材料基础也相对比较薄弱。如今,航空材料已经成为制约我国航空装备发展的一个瓶颈,是决定飞机及其发动机性能、可靠性、寿命和经济性的重要因素之一。   对于我国航空材料的现状,民航局总工程师张红鹰表示,虽然与欧美发达国家相比,我国生产航空铝合金材料的水平相差较远,但随着我国大飞机项目的发展及航空材料、机载设备最终要靠自主研制战略目标的确立,国产航空铝合金材料出现了较为广阔的发展前景。因此,在中国航空发展的征程上,航空材料必须立足国内,自主发展。   张红鹰认为,航空材料的安全可靠是保障民用航空产品安全的基础,检测实验则是判断材料是否符合标准规范的必要手段。满足适航管理规章要求的民用航空材料检测实验能力,必须达到国际认可水平,制定的材料标准规范必须跟国际上普遍采用的相一致,这样生产的航空材料才能够通过严格的适航检查,保证航空器的适航性和先进性。他说,南山铝业有计划也有实力建设一个满足国际先进标准的民用航空材料检测实验中心,局方愿意给予相关政策支持,确保实验中心顺利建成,并建立健全民用航空铝合金适航标准,开展民用航空铝合金检测分析和适航审定工作,为确保民用航空安全、促进我国航空材料产业的科学健康发展服务。   南山铝业作为国内一家知名民营企业,在民用铝合金的研发生产上已具规模。该公司近年来一直有进军航空铝合金产业、为我国大飞机战略目标提供优质材料的强烈意愿和实际行动,民用航空材料检测实验中心就是其发展计划的项目之一。据悉,南山铝业计划投资100多亿元,建设世界级航空工业高端装备制造的材料基地,其中包括航空预拉伸板生产线、高端材料挤压生产线、航空大型模锻件生产线、材料及技术研发中心、材料检测实验中心、航空硬铝合金熔铸和钛合金熔铸等项目。
  • 合金焊接质量保证,合金表面油脂污染度焊接清洁度检测方案
    翁开尔是析塔清洁度仪独家代理商,欢迎致电咨询析塔清洁度仪在合金焊接上的技术应用。汽车轻量化成为使命,汽车制造商越发对轻质材料情有独钟,以寻求降低能耗和最小化腐蚀风险。汽车设施从钢转向铝材,这些铝材组件是需要焊接冲压或机加工的。然而,将钢焊接技术应用于铝焊接时,事情就不是那么简单了。虽然铝焊接本身是最主要的任务,但必须满足一个前提条件——保证焊接铝材表面的清洁度。对于从钢焊接工艺过渡到铝焊接工艺的设施,焊接前的表面处理是必须考虑的因素。不单单对于汽车制造而言,对精密工具制造、造船、轨道交通、航天航空、大型机械制造等行业的焊接准备中都会清洁钢和铝表面。这也意味着过去从不需要零件清洗机的工厂将不得不将零件清洗系统集成到他们的制造过程中,在焊接前确保零件表面足够干净,以此确保焊接良品率。┃ 铝与钢焊接焊接钢和铝之间的根本区别在于铝具有更高的电阻和熔化温度。熔池中较高的温度会产生足够的热能来增加氢的溶解度和扩散率。如果零件表面存在污染物,容易导致焊缝出现气孔或开裂。┃ 铝污染物的主要类型从大规模零售制造铝到达焊接工作室,铝会暴露在几种主要类型的污染物中。这些污染物如下: 油或者油脂 墨水 润滑脂 颗粒污垢许多东西在焊接前都会弄脏和污染铝,这种污染物的存在会对焊接质量产生严重的持久影响。这就是为什么在焊接前对铝件进行清洗的原因。如果铝件表面不够干净,在焊接的过程中,则容易出现烟灰,焊缝未熔合,不确定的电弧和附加电阻等现象。┃ 清洁表面对焊接的重要性在精细化制造要求下,清洁度一定意义上决定了焊接的质量。清洁的表面助于实现成功焊接:00001. 一致性:清洁焊接材料在制造实验室中提供了一定程度的一致性,并允许您将铝用作焊接性能的控制变量。00002. 无孔隙率:孔隙率是由碳氢化合物或氧化等污染物焊接到金属中引起的金属表面质量缺陷。如果金属变得有多孔,它会形成结构较差的接头,如果金属在焊接部位有足够的多孔,则该接头甚至可能因此而失效。但如果铝是干净的,焊缝就不会有隐藏的缺陷,接头应该能按预期工作。00003. 高强度:因为没有污染物,所以用纯铝进行的焊接比用受污染的铝或含有氧化铝的铝进行的焊接具有更高的抗拉强度。由于金属焊缝在建造后承担着建造项目的整体安全性和耐久性的责任,因此所使用的焊缝必须尽可能坚固,以防止意外的结构损坏。┃析塔清洁度仪是检测铝件表面清洁情况的重要仪器在焊接铝件前,往往需要对铝件进行脱脂去除水分和残留污染物,以及采用激光清洗或机械清洗氧化层。那么怎样的清洗程度铝件才算干净呢?德国析塔清洁度检测仪可以有效量化金属件表面清洁情况,更好的保证激光焊接质量,减少激光焊接缺陷。焊接气孔会降低坚固性和密封性,下图显示在激光焊接前使用析塔清洁度仪对工件表面进行清洁度检测,当工件表面清洁度高于65%,焊接气孔数量明显降低,当工件表面清洁度低于65%时,焊接气孔数量明显增加。 德国析塔SITA表面清洁度仪采用共焦法原理,通过光源发射出最佳波长的UV光检测金属表面的污染物,内置的传感器精准探测污染物引起的荧光强度,该荧光强度的大小取决于基材表面有机物残留情况,从而能精准量化检测金属表面清洁度。德国析塔SITA清洁度测试仪可以广泛运用在焊接接头质量、安全气囊点火装置的焊接组件等方面,工件表面污染物会影响焊接质量,焊接气孔会导致泄露,因此在焊接工艺前检测工件表面清洁度非常有必要,可以有效降低焊接次品率。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制