当前位置: 仪器信息网 > 行业主题 > >

热谱仪原理

仪器信息网热谱仪原理专题为您提供2024年最新热谱仪原理价格报价、厂家品牌的相关信息, 包括热谱仪原理参数、型号等,不管是国产,还是进口品牌的热谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热谱仪原理相关的耗材配件、试剂标物,还有热谱仪原理相关的最新资讯、资料,以及热谱仪原理相关的解决方案。

热谱仪原理相关的资讯

  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 热重分析仪原理简介
    p   热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪基本结构 /strong /span /p p   热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。 /p p strong 热天平 /strong /p p   热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。 /p p   TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。 /p p   天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。 /p p   天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。 /p p   物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。 /p p strong 加热炉 /strong /p p   炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title=" 炉体结构图.png" / /p p style=" text-align: center " strong 炉体结构图 /strong /p p   1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝 /p p strong 程序控温系统 /strong /p p   加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。 /p p   当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。 /p p strong 气氛控制系统 /strong /p p   气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪测量曲线 /strong /span /p p   热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。 /p p   当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。 /p p   引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。 /p p   同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。 /p
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • Millipore超滤原理、操作及工艺优化交流讨论会
    北京昊诺斯-鼎昊源&ldquo 真心英雄&rdquo 第二季系列活动之东北行 &mdash &mdash Millipore超滤原理、操作及工艺优化交流讨论会 2011年11月17、18日,北京昊诺斯科技有限公司及同一集团下负责仪器生产的北京鼎昊源科技有限公司,携手Merk-Millipore,在中国农业科学院哈尔滨兽医研究所和东北农业大学举办了两场&ldquo Millipore超滤原理、操作及工艺优化交流讨论会&rdquo ,这是继去年昊诺斯-鼎昊源&ldquo 真心英雄&rdquo 第一季东北行活动在吉林长春举办后,又一次走进了东北,选择了北国冰城黑龙江省哈尔滨市。 本次活动邀请了Merk-Millipore生物制药工艺部行业市场主管陈建锋及其台湾同事郑慧中、销售主管林红波,从超滤的原理、膜的特性及选择、超滤操作、工艺优化、除菌及除病毒过滤、搅拌技术、一次性产品等方面做了介绍。Merk-Millipore生物制药工艺部的销售经理戴欣和黑龙江地区的销售李鹏也受邀出席了本次讨论会。在讨论会进行过程中,前来参加的老师、学生及企业工作人员和Merk-Millipore的专家们进行了友好的互动,就工艺优化、除菌过滤、与传统超滤技术的对比等方面展开了讨论,与会人员表示收获颇多。 中国农业科学院兽医研究所讨论会现场 东北农业大学讨论会现场
  • 【综述】红外热成像无损检测技术原理及其应用
    常规的无损检测技术如射线检测、超声波检测、磁粉检测、渗透检测等,这些方法在实践应用中都有各自的缺点及局限性。红外热成像无损检测技术是近年来应用逐渐广泛的一种新兴检测技术,广泛应用于航空航天、机械、医疗、石化等领域。与其他的无损检测技术相比,红外热成像技术的特点有:1. 测量速度快,因为红外探测器通过物体表面发射的红外辐射能来测得物体表面的温度,所以响应极快,能测得迅速变化的温度场;2. 非接触性,拍摄红外图片时,红外摄像仪与被测物体是保持一定距离的,对被测温度场没有干扰,操作安全、方便;3. 测量结果直观形象,热像图以彩色或黑白的图像形式对结果进行输出,从图上可以方便地读取各点的温度值,并且热像图中还包含有丰富的与被测物体有关的其它信息;4. 测温范围广,由于是采用辐射测温,与玻璃测温计和热电偶测温计相比,测温范围大大扩展,理论上可从绝对零度到无穷大;5. 测量精度高;6. 易于实现自动化和实时观测。红外热成像无损检测原理红外线是一种电磁波,为0.78~1000 μm,可分为近红外、中红外和远红外。任何物体只要不是绝对零度,都会因为分子的旋转和振动而发出辐射能量。红外辐射是其中一种,如果把物体看成是黑体,吸收所有的入射能量,则根据斯蒂芬-玻尔兹曼定律,在全波长范围内积分可得到黑体的总辐射度为:式中:为黑体的光谱辐射度;c1、c2为辐射常数,c1=3.7418×108 Wm-2μm4,c2=1.4388×104 μmK;σ为斯蒂芬-玻尔兹曼常数,为5.67×10-8 Wm-2K-4。实际大部分人工或天然材料都是灰体,与黑体不同,灰体材料的发射率ε≠1,灰体表面能反射一部分入射的长波(λ>3 μm)辐射,因此灰体表面的辐射由自身发射的和环境反射的两部分组成,用红外探测器可直接测量灰体发射和反射的总和Map,但无法确定各自的份额。通常假设物体表面为黑体,将Map称为表观辐射度,为便于理解,一般将其转换为人们较熟悉的温度单位,称为表观温度Tap,即:上述表观温度Tap即为红外探测器测量所得温度,在无损检测中测量距离一般较近,可以忽略大气的影响,故被测物体的表面发射率ε的取值是否准确是影响测量精度的关键因素。检测方式1. 主动式检测为了使被测物体失去热平衡,在红外热成像无损检测时为被测物体注入热量。被测物体内部温度不必达到稳定状态,内部温度不均匀时即可进行红外检测的方法即为主动式红外检测。该种检测方式是人为给试样加载热源的同时或延迟一段时间后测量表面的温度场的分布。从而确定金属、非金属、复合材料内部是否存在孔洞、裂缝等缺陷。2. 被动式检测被动式红外热成像无损检测利用周围环境的温度与物体温度差,在物体与环境进行热交换时,通过对物体表面发出的红外辐射进行检测缺陷的一种方式。这种检测方法不需要加载热源,一般应用于定性化的检测。被测物本身的温度变化就能显示内部的缺陷。它经常被应用于在线检测电子元器件和科研器件及运行中设备的质量控制。红外热成像技术在无损检测中的应用1. 材料热物性参数检测与其它的测温技术相比,红外热像仪能迅速、准确地测量大面积的温 值,且测温范围宽。因此,当需要准确测量较大范围的温度边界条件时,红外热像仪具有其它测温仪器不可比拟的优越性。哈尔滨工业大学的研究人员针对焊接温度场中材料的传热系数随温度升高而变化的情况进行了研究,证明了焊接过程热传导系数反演算法的可行性,结合红外热像法与热电偶测量了LY2铝合金固定TIG点焊过程的焊接温度场,通过计算分别获得了加热和冷却过程的热传导系数随温度变化的曲线。热传导反问题的研究,具有广泛的工程应用前景,近年来在热物性参数的识别、边界形状的识别、边界条件的识别、热源的识别等多方面已经取得了很多研究成果。在进行传热反问题研究时,采用红外热像技术测量研究对象的温度图,可以方便快捷地解决温度边界的测量问题,该方法在热传导反问题的研究中已被广泛采用。2. 结构内部损伤及材料强度的检测目前利用红外热像技术进行的结构损伤研究有混凝土内部损伤检测、混凝土火灾损伤研究、焊缝疲劳裂纹检测、碳纤维增强混凝土内部裂纹检测等,由于损伤部位的导热系数的变化,导致红外热像图中损伤位置温度异常。与常规的探伤方法如X射线、超声波等相比,红外热像技术具有不需要物理接触或耦合剂,操作简单方便、无放射性危害等优点。同济大学的研究人员采用红外热像技术对混凝土火灾损伤进行了实验研究,得出了火灾损伤混凝土红外热像的平均温升随时间的变化曲线,及混凝土红外热像的平均温升与其受火温度与强度损失之间的回归方程。将红外热像技术应用于火灾混凝土检测,在国际上尚属首创,突破了传统的检测模式,为进行混凝土的火灾损伤评价开创了一条新途径。但将该方法运用于实际工程检测中,尚有许多问题需要解决,如混凝土强度等级、碳化深度、级配、火灾类型等对检测结果的可靠性的影响,以及检测时的加热措施等。近年在光热红外技术的基础上发展的超声红外技术发挥了红外技术和超声技术的优点,该方法以超声脉冲作为激发源,当超声脉冲在试件中传播遇到裂纹等缺陷时,缺陷引起超声附加衰减而局部升温,从而利用红外热像技术可以检测出这些裂纹缺陷。南京大学的研究人员将红外热像仪与超声波发射器结合起来,用超声波发射器对有疲劳裂纹的铝合金试件进行热量输入,拍摄红外热图像,与计算机模拟计算结果进行比较,试验表明超声红外热像技术对裂纹缺陷、不均匀结构及残余应力非常敏感。3. 在建筑节能中检测的应用在建筑物节能检测方面,瑞典早在1966年就开始采用红外热像技术检测建筑物节能保温,美国、德国等许多国家的研究人员也都进行过这方面的研究工作。在我国随着对建筑节能要求的提高,建筑物的节能检测势在必行。目前我国对建筑围护结构传热系数的检测多采用建筑热工法现场测量,红外热像技术只作为辅助手段,通过检测围护结构的传热缺陷,综合评价建筑物的保温性能。目前我国红外热像技术在节能检测领域的研究尚属于起步阶段,还没有确定的指标对建筑物的红外热像图进行节能定量评价,由于建筑物立面形式和饰面材料的多样性,编制专用的图像分析与处理软件和建立墙体内外饰面材料的发射率基础数据库成为该项研究中一个重要环节。4. 在建筑物渗漏检测中的应用建筑物的渗漏有由供水管道引起的渗漏和屋顶或外墙开裂引起的雨水渗漏等,由于渗漏部位的含水率和正常部位不一样,造成在进行热传导的过程中二者温度有差异,因而可以用红外热像仪拍摄湿度异常部位墙面的红外热图像,与现场直接观察结果进行对比分析,可以找出渗漏源的位置。结语红外热像技术在无损检测中的应用前景非常广泛,相应的研究工作也取得了初步的研究成果,并逐步地从定性研究走向定量研究,但总体来说在目前尚属起步阶段,能应用于实际工程中的研究成果不多,且多属一些定性的结论,缺乏相应的操作规范。因此,应加强定量研究工作,提高对红外热像图的处理能力。
  • 高低温冷热冲击试验箱的原理及特点
    高低温冷热冲击试验箱是金属、塑料、橡胶、电子等材料行业必备的测试设备,用于测试材料结构或复合材料,在瞬间下经极高温及极低温的连续环境下所能忍受的程度,得以在最短时间内检测试样因热胀冷缩所引起的化学变化或物理伤害。分为两厢式和三厢式,区别在于试验方式和内部结构不同,产品符合标准为:GB/T2423.1-2008试验A、GB/T2423.2-2008试验B、GB-T10592-2008、GJB150.3-198、GJB360A-96方法107温度冲击试验的要求。    高低温冷热冲击试验箱制冷工作原理:高低制冷循环均采用逆卡若循环,该循环由两个等温过程和两个绝热过程组成。其过程如下:制冷剂经压缩机绝热压缩到较高的压力,消耗了功使排气温度升高,之后制冷剂经冷凝器等温地和四周介质进行热交换,将热量传给四周介质。后制冷剂经阀绝热膨胀做功,这时制冷剂温度降低。最后制冷剂通过蒸发器等温地从温度较高的物体吸热,使被冷却物体温度降低。此循环周而复始从而达到降温之目的。    高低温冷热冲击试验箱质量优势    主要核心配件均采用国际大品牌的配件如法国泰康,日本路宫/和泉/三菱,施耐德,美国快达/杜邦冷媒,丹麦(DANFOSS),瑞典(AlfaLaval)等配件,假一罚十,能确保高低温冲击测试箱正常高效的运行。相比其他同行:采用国产配件或者是使用伪劣的冒牌配件充当品牌配件,发货到客户处和所说的完全不一致,质量大打折扣。    高低温冷热冲击试验箱技术优势    1.采用7″TFT真彩LCD触摸屏,比其它屏更大,更直观,操作简单,运行稳定,并且更节能。    2.蒸发器采用水浸查漏方法,查漏彻底,确保设备稳定运行。    3.采用模块化制冷机组,能确保制造质量,且维护替换非常方便。    4.采用高均匀度的正压式风道系统,温度均匀高。    5.采用最新的自动除霜技术,使除霜时间缩短,试设备的使用效率大大增加。    6.具有多项安全保护措施,故障报警显示及故障原因和排除方法功能显示。    三箱式高低温冷热冲击试验箱相比其他同行设备:    1.控制器界面较小颜色单一,不便于观察和操作。    2.采用传统方法,肥皂水查漏,不彻底。    3.冷冻机组和机箱底板安装在一起,制造质量和维护性能不佳。    4.无自动除霜技术,需手动除霜之后方可再进行试验,使用效率不佳。    5.同行大部分高低温冲击测试箱,通常在运行一段时间后开始结霜,并且除霜时间非常长,使用效率低下。    6.同行设备为了节省成本,导致设备的安全保护措施单一,非常容易造成安全隐患。    三:三箱式高低温冷热冲击试验箱节能优势:三箱式冷热冲击试验箱采用自主研发的控制系统,精度高,稳定操作简单,控制器抛弃日本韩国等控制器的固定模式,采用最新的模糊运算技术,自动分析负载能力,合理调节冷媒流量,使设备节能高达20%。
  • 12月8日工程师给客户培训气相色谱质谱联用仪检测原理和应用
    2020年12月8日,客户来我司参观和学习,一起讨论分析仪器的日常用法、维护技巧及领域应用。今日我们主讲7700B 气相色谱质谱联用仪检测原理和应用:7700高性能双腔双泵单四极杆气质联用仪采用离子源和四极杆质量分析器独立排气的双涡轮分子泵设计,离子源和四极杆质量分析器分别处于两个独立真空腔室,形成高效的真空系统。此优化设计能够保证质谱的高真空度,降低离子源污染,减少离子源的维护频率;在开机半小时内即可进行样品分析,提高仪器的稳定性。气相色谱质谱联用仪7700B优于一款高性能单四极杆气相色谱质谱联用仪,检出限优于10fg,达到世界同类型产品主流水平,可广泛应用于科学研究、农残检测、环境监测和代谢组学等高要求领域。应用1,参照标准《HJ 716-2014 水质 硝基苯类化合物的测定 气相色谱-质谱法》,配制不同浓度硝基苯类化合物标准品为测试样品,用GC-MS 7700B测定,根据保留时间和质谱图定性,外标法定量。硝基苯类全扫描模式总离子色谱图应用2,参考标准《HJ834-2017 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》,用GC-MS 7700B测定土壤和沉积物 半挥发性有机物的测定20ppm 76种半挥发性有机物全扫描总离子流色谱图应用3,参考标准《HJ644-2013环境空气 挥发性有机物的测定 吸附管采样-热脱附 气相色谱-质谱法》,用GC-MS 7700B测定环境空气中挥发性有机物的测定。环境空气中挥发性有机物的测定应用4,参考《HJ 753-2015 水质 百菌清及拟除虫菊酯类农药的测定 气相色谱-质谱法》,使用气相色谱质谱联用仪检测,根据保留时间、质谱图及特征离子对有机氯标准品进行定性,外标法定量。除虫菊酯类全扫描模式总离子色谱图 感谢客户的好学聆听,互相交流才有进步,才能更好地发挥仪器所长,节约用户成本,......欲了解更多仪器详情请关注谱标科技,并欢迎来电咨询!
  • 高低温交变湿热试验箱:基本原理、特点和应用场景
    高低温交变湿热试验箱是一种用于模拟不同环境条件的试验设备,可以在短时间内模拟出极端温度和湿度的环境,以测试各种材料和产品的性能。本文将从基本原理、特点和应用场景等方面对高低温交变湿热试验箱进行介绍。上海和晟 HS-80A 高低温交变湿热试验箱高低温交变湿热试验箱主要由箱体、温度控制单元、湿度控制单元、空气循环系统等组成。其中,温度控制单元和湿度控制单元是试验箱的核心部件。温度控制单元通过制冷系统和加热系统来控制试验箱内的温度,湿度控制单元则通过加湿系统和除湿系统来控制试验箱内的湿度。空气循环系统则用于将试验箱内的空气循环,以保证试验箱内的环境均匀。高低温交变湿热试验箱的适用范围非常广泛,可以应用于航空航天、汽车、电子、化工、医疗等各个行业。通过模拟不同环境条件,可以测试各种材料和产品的性能,如耐高低温、耐腐蚀、抗老化等。同时,高低温交变湿热试验箱还可以用于产品的研发和改进,以提高产品的性能和质量。高低温交变湿热试验箱的技术特点主要包括高精度温度控制、高精度湿度控制、快速温度变化速率、可靠的安全保护等。其中,高精度温度控制和湿度控制可以保证试验箱内的环境稳定,快速温度变化速率可以模拟出更加极端的环境条件,安全保护措施则可以保证试验箱的安全运行。在使用高低温交变湿热试验箱时,需要注意以下几点:首先,要严格按照试验箱的操作规程进行操作,避免出现意外事故;其次,要定期对试验箱进行维护和保养,以保证其正常运行;最后,要对试验箱的运行数据进行记录和分析,以便对试验结果进行准确的评估。综上所述,高低温交变湿热试验箱是一种重要的试验设备,可以模拟不同环境条件下的各种材料和产品的性能。随着科技的不断进步和应用领域的不断拓展,高低温交变湿热试验箱将会发挥更加重要的作用。
  • 阿蛋学仪器 | 色谱分离的原理 So Easy !
    广州绿百草推出全新连载短篇小说【阿蛋学仪器】, 不定期的跟大家讲述关于学渣阿蛋在工作后不得不学习仪器知识的苦逼经历。夸张的剧情下都是以现实为原型,记得准时关注哦!夏天的风正暖暖吹过,穿过头发穿过耳朵.........话说在那天气晴朗万里无云的某个周末,正在抠着大脚丫吃着冰西瓜思考人生意义的胖##突然接到领导的一个任务。“喂。小胖呀~ 上头下了个任务,要拍一个化学知识视频,我看你一向最受学生欢迎,就随便摆弄一下吧。课题已经帮你选好了,色谱分析原理。”“额,不不不,虽然为了科学教育的发展我上刀山下火海都在所不辞,但是......”“别啰嗦,就这么定了。告诉你啊,给我做的好好的,不然你今年的考评....88”嘟嘟嘟。。。胖##现在已经无法继续好好玩耍了,学生喜欢他都是因为他风流一趟玉树临风知识渊博心地善良从不让人挂科呀~真是。。。冷冷清清凄凄惨惨戚戚呀~内心再抗拒,生活还是要继续的。胖##叫来了以前跟他一起打LOL的阿蛋,浑浑噩噩迷迷糊糊想了三天三夜的剧本,终于开拍了。( 导演和其它演员的召唤,这里就不详细说啦哈! )导演:色谱分析原理So Easy 剧组 Action!!!场景预设 ——色谱柱:为一间双门房子,一门可进,一门可出。分析的样品:胖##,高大威猛略胖。阿蛋,形象气质佳小明星(剧情需求,大家多多包涵,少吐些。)Part 1 —— 反相柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:众美女都喜欢帅哥,不断有人拉阿蛋的手并要求合影签名。胖##由于高大威猛,也有部分小萝莉喜欢,但是还是比阿蛋少,走的自然比阿蛋快。结果胖##和阿蛋的距离越来越远,出门的时候,已经分离的很好了。分离度3.0,柱效15万/m。反相柱分离注意事项:1)不可用于分离帅得离谱的人(非极性太强的物质),会造成美女互相踩伤践踏拥挤的现象,造成柱堵塞,柱压升高;心脏不好的美女会由于过于激动而休克,甚至兴奋而死,造成柱子过早老化,降低柱效。另外,还会造成吸附现象,出峰时间太久甚至不出峰。2)不可用于分离过于猥琐丑陋可怕的人(极性太强的物质),会导致美女流失,造成柱效下降,出峰时间太快,影响分离效果。不过这时有个色谱柱再生方法可以回复柱效,就说“牛掰了”的鞋正挥泪大甩卖,美女将迅速赶回,恢复柱效!Part 2 —— 正相柱分析原理屋子里有一大群男子,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:阿蛋由于太帅招人嫉妒率先被赶出来。胖##被同胞惺惺相惜,留下来吃饭唱K看电影,最后才依依不舍的含泪送别。分离度2.8,柱效13万/m。正相柱分离注意事项:并不适用于分离Gay男(无保留物质)。Part 3 —— 体积排阻色谱柱分析原理屋子里面变成了溶洞效果,溶洞里的洞有大有小,非常好玩。胖##和阿蛋从一个门进入,穿过溶洞,从另一个门出来。结果:本以为阿蛋个头小灵活,会早点爬出来,谁知是体积庞大的胖##先出来啦。因为两人一钻溶洞,便仿佛回到了童年,逮着洞就想钻。阿蛋个子小,钻来钻去玩得不亦乐乎。而胖##在意思到自己已非3岁的小胖胖后,害怕被小洞卡住而崴了,只好作罢,沿大路走了出来,扼腕叹息“时光蹉跎,青春少年已不复!”Part 4 —— 离子对色谱柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。胖##痛苦回忆:美女都喜欢帅哥,不断有人拉住阿蛋吟诗作对自拍萌萌哒,拉胖##的仅有几个发育不全的小萝莉。结果胖##和阿蛋渐行渐远。。。胖##对策:往事不堪回首,所以第二天再过这间屋子的时候,带上了他的必杀技——萌萌哒小鲜肉胖小子。结果:胖##抱着胖小子和阿蛋一起穿过屋子,美女们发现居然还有个小鲜肉,纷纷过来捏捏小脸蛋。“美女,敢吃青椒吗?” 胖小子搭配美女的功夫一点也不含糊呢。胖##色眯眯的看着围着的众美女,美其名曰为胖小子报仇,把美女的脸蛋一一捏了个编。直到胖小子微怒言 “爸比,我饿了!” ,才恋恋不舍的抱起小胖,发话 “最后再捏一遍!......” 阿蛋在门口,秒倒!Part 4 拍摄花絮 ——1)观众问:美女为什么喜欢小鲜肉抛弃阿蛋呢? 回复:现在流行小鲜肉。另外,女人总是有母爱的,这是与生俱来的本能,所以此处美女年龄要大些。呵呵。2)拍完这段以后,导演“卡”了N次。因为胖小子被捏后没有表现出天真烂漫可爱的样子,反而哭了N次,最终拍得胖小子又累又饿又痛才终被导演放行。3)Case结束时,镜头正面是胖##得意而归的表情,远端发现众美女一脸哀怨的正在揉脸,忿忿曰“死胖子,手够狠啊!̷�!”By the way, 这次拍摄的视频非常受欢迎,胖##终于又能在领导的眼皮底下好好思考人生了!想知道阿蛋后续又有怎样的遭遇?记得持续关注广州绿百草微信公众号~我们会不定期推出续集哦~关注广州绿百草微信公众号,获取更多资讯!
  • 差示扫描量热仪原理简介
    p   差示扫描量热法是在程序控温和一定气氛下,测量流入流出试样和参比物的热流或输给试样和参比物的加热功率与温度或时间关系的一种技术,使用这种技术测量的仪器就是差示扫描量热仪(Differential scanning calorimeter-DSC)。 /p p   扫描是指试样经历程序设定的温度过程。以一个在测试温度或时间范围内无任何热效应的惰性物质为参比,将试样的热流与参比比较而测定出其热行为,这就是差示的含义。测量试样与参比物的热流(或功率)差变化,比只测定试样的绝对热流变化要精确的多。 /p p   差热分析法是测量试样在程序控温下与惰性参比物温差变化的技术,使用这种技术测量的仪器就是差热分析仪(Differential thermal analyzer-DTA)。DTA是将试样和参比物线性升温或降温,以试样与参比间的温差为测试信号。DTA曲线表示试样与参比的温差或热电压差与试样温度的关系。 /p p   现在,DTA主要用于热重分析仪(TGA)等的同步测量,市场上已难觅单独的DTA仪器。 /p p   DSC主要有两类:热通量式DSC和功率补偿式DSC。 /p p span style=" color: rgb(255, 0, 0) " strong 热通量式DSC /strong /span /p p   热通量式DSC是在程序控温和一定气氛下,测量与试样和参比物温差相关的热流与温度或时间关系的一种技术和仪器。热通量式DSC是通过试样与参比物的温差测量流入和流出试样的热流量。 /p p   热通量式DSC的测量单元根据所采用的传感器的不同而有所区别。 /p p   如下图所示为瑞士梅特勒-托利多公司采用金/金-钯热电偶堆传感器设计的DSC测量单元示意图。传感器下凹的试样面和参比面分别放置试样坩埚和参比坩埚(一般为空坩埚)。热电偶以星形方式排列,以串联方式连接,在坩埚位置下测量试样与参比的温差。试样面和参比面的热电偶分布完全对称。几十至上百对金/金-钯热电偶串联连接,可产生更高的测量灵敏度。传感器的下凹面提供必要的热阻,而坩埚下的热容量低,可获得较小的信号时间常数。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/f02e8309-d24c-4db9-9b02-ba4b239805a5.jpg" title=" 金_金-钯热电偶堆传感器热通量式DSC测量单元截面示意图.jpg" width=" 400" height=" 345" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 345px " / /p p style=" text-align: center " strong 金/金-钯热电偶堆传感器热通量式DSC测量单元截面示意图 /strong /p p   如下图所示为美国Waters公司采用的康铜传感器设计的DSC测量单元示意图。康铜是一种铜-镍合金(55%Cu-45%Ni)。康铜与铜、铁、镍/铬等组成热电偶时,灵敏度较高(μV/K较大)。与贵金属铂、金/金-钯等相比,康铜耐化学腐蚀性较差。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/be5eca73-9eb5-41bf-83a6-dd1c6a5325a1.jpg" title=" 康铜传感器热通量式DSC测试单元示意图.jpg" width=" 400" height=" 255" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 255px " / /p p style=" text-align: center " strong 康铜传感器热通量式DSC测试单元示意图 /strong /p p   传感器上凸的试样面和参比面分别放置试样坩埚和参比坩埚(一般为空坩埚)。两对热电偶分别测量试样温度和参比温度,测得温差。 /p p   热通量式DSC的炉体一般都由纯银制造,加热体为电热板或电热丝。可选择不同的冷却方式(自然或空气、机械式或液氮冷却等)。 /p p   热通量式DSC热流的测量 /p p   以金/金-钯热电偶堆传感器设计的DSC为例,热流Φ以辐射状流过传感器的热阻 热阻以环状分布于两个坩埚位置下面。热阻间的温差由辐射状排列的热电偶测量。根据欧姆定律,可得到试样面的热流Φ1(由流到试样坩埚和试样的热流组成)为 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/13d50f86-2166-44cc-93f7-4a0dfc48a0e2.jpg" title=" DSC-1.jpg" / /p p 式中,T sub s /sub 和T sub c /sub 分别为试样温度和炉体温度 R sub th /sub 为热阻。 /p p   同样可得到参比面的热流Φr(流到参比空坩埚的热流)为 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/66a68742-b966-4f01-80ea-6940d21e12f9.jpg" title=" DSC-2.jpg" / /p p 式中,T sub r /sub 为参比温度。 /p p   DSC信号Φ即样品热流等于两个热流之差: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/8b903427-9007-493f-8229-23065fe62ac7.jpg" title=" DSC-3.jpg" / /p p   由于温差由热电偶测量,因此仍需定义热电偶灵敏度的方程S=V/ΔT。式中,V为热电压。于是得到 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/54c0c2b1-c913-449b-84db-541255ac821e.jpg" title=" DSC-4.jpg" / /p p 式中,热电压V为传感器信号 R sub th /sub S的乘积称为传感器的量热灵敏度 R sub th /sub 和S与温度有关 令R sub th /sub S为E,E与温度的关系可用数学模型描述。 /p p   在DSC曲线上,热流的单位为瓦/克(W/g)=焦耳/(秒· 克)[J/(s· g)],以峰面积为例,热流对时间(s)的积分等于试样的焓变ΔH,单位为焦耳/克(J/g)。 /p p   热通量式DSC试样温度的测量 /p p   炉体温度T sub c /sub 用Pt100传感器测量。Pt100基本上是由铂金丝制作的电阻。 /p p   DSC测试所选择的的升温速率基于参比温度而不是试样温度,因为试样可能发生升温速率无法控制的一级相变。 /p p   与热阻有关的温差ΔT对于热流从炉体流到参比坩埚是必需的。该温差通常是通过升高与ΔT等值的炉体温度实现的。炉体温度T sub c /sub 与参比温度T sub r /sub 的时间差等于时间常数τ sub lag /sub ,与升温速率无关。 /p p   在动态程序段中,计算得到的温度升高ΔT加在炉体温度设定值上,因而参比温度完全遵循温度程序。 /p p   严格来说,试样内的温度与测得的试样坩埚的温度存在微小差别。通过在软件中正确选择热电偶的灵敏度,可补偿该差别。 /p p   采用康铜传感器设计的DSC仪器,试样坩埚温度由热电偶直接测量。也需要通过软件中正确选择热电偶的灵敏度,通过修正来获得试样内的温度。 /p p span style=" color: rgb(255, 0, 0) " strong 功率补偿式DSC /strong /span /p p   功率补偿式DSC是在程序控温和一定气氛下,保持试样与参比物的温差不变,测量输给试样和参比物的功率(热流)与温度或时间关系的一种技术。与热通量(热流)式DSC采用单独炉体不同,功率补偿式DSC以两个独立炉体分别对试样和参比物进行加热,并各有独立的传感装置。炉体材料一般为铂铱合金,温度传感器为铂热电偶。 /p p   如下图所示为美国珀金埃尔默公司功率补偿式DSC测量单元的示意图。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c459d34d-d427-453c-acdf-3a462e04e3e4.jpg" title=" 功率补偿式DSC测量单元示意图.jpg" width=" 400" height=" 263" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 263px " / /p p style=" text-align: center " strong 功率补偿式DSC测量单元示意图 /strong /p p   由于采用两个小炉体,与热通量式DSC相比,功率补偿式DSC可达到更高的升降温速率。 /p p   功率补偿式DSC对两个炉体的对称性要求很高。在使用过程中,由于试样始终只放在试样炉中,两个炉体的内部环境会随时间而改变,因此容易发生DSC基线漂移。 /p p   功率补偿式DSC热流的测量 /p p   功率补偿式DSC仪器有两个控制电路,测量时,一个控制升降温,另一个用于补偿由于试样热效应引起的试样与参比物的温差变化。当试样发生放热或吸热效应时,电热丝将针对其中一个炉体施加功率以补偿试样中发生的能量变化,保持试样与参比物的温差不变。DSC直接测定补偿功率ΔW,即流入或流出试样的热流,无需通过热流方程式换算。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/4b2384fe-4770-4f1b-af33-e5d731956a4c.jpg" title=" DSC-5.jpg" / /p p 式中,Q sub S /sub 为输给试样的热量 Q sub R /sub 为输给参比物的热量 dH/dt为单位时间的焓变,即热流,单位为J/s。 /p p   由于试样加热器的电阻RS与参比物加热器的电阻R sub R /sub 相等,即R sub S /sub =R sub R /sub ,因此当试样不发生热效应时, /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/13c863c9-be1e-4808-942f-e0765844b444.jpg" title=" DSC-6.jpg" / /p p 式中,I sub S /sub 和I sub R /sub 分别为试样加热器和参比加热器的电流。 /p p   如果试样发生热效应,则输给试样的补偿功率为 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1fa7ba2d-3a0b-4911-a86b-801d2336f395.jpg" title=" DSC-7.jpg" / /p p 设R sub S /sub =R sub R /sub =R,得到 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/83f06029-71c9-4e13-bf3e-d2c6b64eed1a.jpg" title=" DSC-8.jpg" / /p p 因总电流I sub T /sub =I sub S /sub +I sub R /sub ,所以 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/35825b17-b30d-4aa7-9bc8-a8a1ae877397.jpg" title=" DSC-9.jpg" / /p p 式中,ΔV为两个炉体加热器的电压差。 /p p   如果总电流I sub T /sub 不变,则补偿功率即热流ΔW与ΔV成正比。 /p p br/ /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong DSC仪器性能评价的重要参数 /strong /span /p p strong DSC仪器的灵敏度和噪声 /strong /p p   每个传感器都具有一定的灵敏度。灵敏度是指单位测量值的电信号大小,用每度热电压(V/K)表示。例如,室温时的铜-康铜热电偶的灵敏度约为42μV/K,金-金钯热电偶约为9μV/K,铂-铂铑(10%铑,S型)热电偶约为6.4μV/K。 /p p   信号的噪声比灵敏度更加重要,因为现代电子装置能将极其微弱的信号放大,但同时也会将噪声放大。噪声主要有三个来源:量的实际随机波动(如温度的微小波动) 传感器产生的噪声(统计测量误差) 放大器和模-数转换器的噪声。 /p p   噪声与叠加在信号上的不同频率的交流电压相一致。因此,对于交流电压,噪声可用均方根值(rms)或峰-峰值(pp)表示。rms值得计算式为 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/8355adf9-cd1e-46b0-9538-67ac7bd524e4.jpg" title=" DSC-10.jpg" / /p p 式中,n为信号值个数 x sub i /sub 为单个信号值 x为平均信号值。 /p p   对于正弦振动,pp/rms比为2 (2.83左右) 对于随机噪声,比值为4~5。 /p p   灵敏度与检测极限是不同的。检测极限(常误称为“灵敏度”)指可检出的测试信号的最小变化量。检测极限比背景噪声明显要大,如10倍与rms值(或pp值的2倍)。信号和噪声水平决定最终的检测极限。 /p p   值得指出的是,通过数学光滑方法可容易地获得低噪声水平,但这样会同时“修剪”掉微弱却真实的试样效应,所以噪声水平低并不一定表示灵敏度高。 /p p   TAWN灵敏度最初是由荷兰热分析学会提出的方法,用来比较不同的DSC仪器。TAWN灵敏度测试法测量一个已知弱效应的试样,用峰高除以峰至峰噪声得到的信/噪比来表征DSC仪器的灵敏度。峰高/噪声的比值越高,DSC仪器的灵敏度越好。 /p p strong DSC仪器的分辨率与时间常数 /strong /p p   在很小温度区间内发生的物理转变的分辨率(分离能力)是DSC仪器的重要性能特征。分辨率好的仪器给出高而窄的熔融峰,换言之,峰宽应小而峰高应大。 /p p   分辨率的表征方法有多种,常用的有铟熔融峰峰高与峰宽比、TAWN分辨率和信号时间常数等。 /p p   由铟熔融峰测定的分辨率=峰高/半峰宽,数值越高表明分辨率越好。TAWN分辨率为基线至两峰之间DSC曲线的最短距离与小峰高度之比,数值越低表明分辨率越好。信号时间常数τ定义为从峰顶降到后基线的1/e,即降63.2%的时间间隔。信号时间常数τ是热阻R sub th /sub 与试样、坩埚和坩埚下传感器部分的热容之和(C)的乘积,τ=R sub th /sub C。显然,较轻的铝坩埚可得到较小的信号时间常数。信号时间常数越小,DSC分辨率越好。 /p
  • 高效液相色谱(HPLC)的基本原理和系统组成
    高效液相色谱(HPLC)是色谱法的一个重要分支,其应用范围广泛,对样品的适用性广,且不受分析对象的挥发性和热稳定性的限制。 几乎所有的化合物,包括高沸点、极性、离子化合物和大分子物质都可以用高效液相色谱法进行分析测定,从而弥补了气相色谱法的缺点。 目前已知的有机化合物中,约20%可以通过气相色谱法进行分析,而80%需要通过高效液相色谱法进行分析。 高效液相色谱法具有分离效率高、分析速度快、检测灵敏度好等特点,可以分析分离高沸点且不能汽化的热不稳定生理活性物质。 分离与分析技术在该领域的重要应用。基本原理色谱法的分离原理是:溶于流动相中的各组分经过固定相时,由于与固定相(stationphase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。高效液相色谱法以经典的液相色谱为基础,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有颗粒极细的高效固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。系统组成HPLC 系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。此外,还可根据需要配置梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC 仪还备有自动馏分收集装置。
  • 光谱光度辐射度计Photo Research技术原理及介绍
    ‍‍简介美国Photo Researc公司成立于1941年,现地点位于纽约州罗彻斯特的North Syracuse(北锡拉丘兹),是一家专门致力于光度、色度、辐射度测量仪器研究、生产的世界著名公司;同时,PR也是全球第一家生产光谱式亮度计的厂家,在全球拥有13个自己独立的光学校准实验室,溯源NIST(美国国家计量局)标定标准;Aunion昊量光电作为Photo Research公司在国内的一级代理商,总部位于上海,在西安、成都分别建立办事处,为国内客户提供快捷的本地校准及维修服务。‍‍一、理论介绍PR-6系列和PR-7系列是真正意义上的的光谱辐射度计;通过物镜或者其他光学配件有效收集光学辐射信号(光信号)。光信号通过反射镜上的孔径光阑(洞)到达衍射光栅(参见图2)。光栅把光按波长展开,就像棱镜把白色的光转换成彩虹一样。一个宽带光,例如太阳光是由很多不同波长的光组成的。当衍射光栅暴露在这种类型的光下,它将从多角度反射光线产生了一个分散的光谱就像一道彩虹。类似地,如果光栅接触了一种单一光源,比如一束激光,那么只有激光的特定波长的光会被反射。图1 PR-788光谱测量范围对于PR-655、PR-670和PR-788测量波长范围是380纳米(nm)(紫色)到780nm(深红色)-即电磁波的可见光谱段 (参见图1)。衍射光谱到达CCD探测器;PR-655探测器是128位的线性探测器,PR-670探测器是256位的线性探测器,PR-788探测器是512位的线性探测器;每个探测器单元均代表不同的颜色。测量时,辐射光通过自适应灵敏度算法在某个特定的时间内被取样测量,自动适配感应器自动会根据光信号的强弱确定合适曝光时间。光测量后,探测器用同样积分时间再次测量探测器的暗电流,然后从每个探测器单元的光测量结果中减去暗电流的光信号贡献值。图2 简化方框图图3 PR系列亮度计光路图仪器出厂时已通过相应的校准系数校准光谱数据,校正系数包括波长精确度修正、光谱分布修正和光度修正。波长校准采用的是具有特征光谱的氦灯光源,线光源提供了已知的光谱发射谱线通过光栅分光后投射到多探测器上再通过软件显示;用于波长校准的氦谱线包括388.6nm,447.1 nm,471.3 nm,587.6 nm,667.8 nm,706.5 nm和728.13 nm;接下来,可用光谱校准系数校准这些数据;这些校准系数确保被测目标光谱能量分布(SPD)和由此计算出的数据比如CIE色度值经过了正确的溯源。最后,校准系数(光度系数)确保光度测试结果的准确性,如亮度或照度。重要参数计算公式校正后的光谱数据用来计算光度和色度值包括亮度,CIE 1931 x,y和1976 u’, v’的色坐标、相关色温(CCT)和主波长。以下是一些基本的光度色度参数计算公式:图4 CIE 1931 三刺激值函数CIE XYZ三刺激值和光度:X,Y,和Z是CIE的三刺激值。X表示红色,Y是绿色,Z是蓝色。Y还可表示光度值-在使用标准的MS-75镜头时,Y给出的是cd /m²-国际亮度单位。footlamberts(英制亮度单位)可以用cd / m²值乘0.2919 得到fc 单位数值。683是可将流明转换成瓦的一个常数。对于亮场环境(白天),555nm处683流明等同于1瓦的功率。S(l) = 校正的光谱数据, 是CIE三刺激值函数曲线,D(l)是光谱增量 ,对于PR-655的增量是4nm,PR-670的增量是2nm,PR-788的增量是1nm。得出这三个三刺激值表达后,有用的色度值比如CIE 1931 x,y和1976 u,v”可以通过下面的公式计算:CIE 1931 x, y:CIE 1976 u’, v’:光谱式亮度计:速度相对缓慢但是精度高,适合LCD\OLED\Mini-LED\Micro-LED\硅基OLED研发等领域。滤片式亮度计:速度快,但是精度差,适合背光模组,产线上Flicker以及响应时间测试。二、 Spectroradiometer 分光辐射度计SpectraScan分光辐射度计是测量辐射度的高端专业仪器. 具有专利的Pritchard观景器。它们易于使用,高准确性和可靠性,使这一系列产品最广泛应用于光的量测。PR-655 :多功能,极高性价比,配件丰富PR-670 :自动多光阑和自动快门,微区测量PR-680(L) :集光谱式与滤光片式一体,一机多用PR-740/745: 制冷型线阵探测器,超低亮度与超短时间内(最短200ms)测量,同类产品中最敏感。PR-745光谱范围扩展到380-1080nm。PR-788宽动态范围的分光亮度计:是基于超灵敏PR74X系列光谱测试系统而研制的,当前应用于R&D、QC、QA以及工厂生产。具有业界领先的1000000:1 的动态范围 ,它提供了在不必增加外部衰减或改变几何光学(例如测量场地尺寸)的情况下,即可从黑到全白测试设备输出的解决方案,这是在市场上可得到的最高速度。特别地,针对OLED屏幕测试 PR-788满足暗态和超高灵敏度的需求!较宽的动态范围:测试显示/背光不需要添加外部过滤或者改变光阑;可变的光谱带宽:光谱分辨率能够满足LCD甚至激光投影仪的显示技术;极暗态下亮度测试:0.000,034-6,850,000 cd/㎡高速循环时间:测试/校准显示产品的总时间急剧减少;USB、RS232,蓝牙接口:易于集成到自动测试环境(ATE)PR-730/740/735/745技术规格:PR-788 技术规格:光阑&对应光斑尺寸:PR-788亮度范围:三、应用光谱式亮度计在面板显示和照明行业有着广泛的应用。重要可以测量亮度,色度,亮度均匀性,色度均匀性,Gamma值以及某些光学材料的透过率和反射率等应用。还可以作为标准,来校正机差,以及校正成像亮度计参数。不仅是科研,也是工厂中亮度,色度测量解决方案的首选。
  • 深大学子使用色谱原理研发出食品安全检测仪
    p   最近在广州举行的第十三届“挑战杯”广东大学生课外学术科技作品竞赛终审决赛上,由深圳大学推荐的“食品安全检测仪”项目获得特等奖,团中央书记处书记傅振邦会见了该项目的研发团队,给予了亲切鼓励。 /p p   食品安全检测仪是由深圳大学的20多名大学生研发出来的,该仪器获得了4项国家专利和1项软件著作权,并已顺利投产。项目领头人张小虎是深圳大学2011级信息工程学院毕业生,目前就读于北京大学深圳研究生院。这个年仅23岁、对新技术有着特殊敏感的大男孩,凭借食品安全检测仪技术创业开办了自己的公司,实现了从技术到应用的转化。 /p p strong 历时两年研发成功 /strong /p p   食品安全检测仪于2011年开始研发,那时张小虎在深圳大学读本科一年级。 /p p   “三鹿奶粉事件,把中国的食品安全问题再一次推向了风口浪尖。短短几年的时间,致病的瘦肉精、毒米、毒面、毒油,为什么问题一再出现?中国的食品安全问题该如何解决?”张小虎说,由于食品中的有毒物质具有多样性和微量性,传统的检测设备不能满足要求,他因此萌发了自主研发一款针对中国食品安全问题的绿色食品安全检测仪器的心思。 /p p   在学校的支持与老师的指导下,张小虎带领深大信息工程学院的20多名大学生开始研发这款化学分析仪器,并一直坚持了两年多的时间。“有一次,有一个不合格的氘灯电源损坏了氘灯,氘灯光源不稳定导致输出的基线数据不稳定。开始我们不知道问题在哪里,因为影响基线稳定的因素很多,我们费了九牛二虎之力才最终定位问题。中途,我们几乎都想放弃了,在老师的鼓励和帮助下,我们还是挺过来了。”张小虎说。 /p p   2013年底,绿色食品安全检测仪研发成功。这个仪器有两个30寸传统电视机叠加起来大小,检测时,食物样品由自动进样器进入设备,被高压泵打入色谱柱,在色谱柱中进行分离,再到达检测器的流通池,经过光电管,用24位高精度AD采集数据,电脑计算出图谱并进行比较分析,实现了一键式全程操作。 /p p   2014年该仪器通过了广东省计量院的测试,并获得了广东省技术监督局颁发的生产许可证,正式投产。 /p p strong 技术上实现多项创新 /strong /p p   这款食品安全检测仪在技术上实现了多项创新,其中用液相色谱原理设计制作更属于国际国内首创。 /p p   张小虎介绍,液相色谱技术由于具有高分辨率、高灵敏度、速度快、色谱柱可反复利用以及流出组分易收集等优点,比传统的基于分光光度法原理的食品安全检测仪灵敏度更高,定性定量分析更准确。“在检测食品中的有毒物质时,我们往往不知道有毒物质是什么,这时我们就要利用大数据的图谱分析方法,通过工作量的图谱在几千张,人工读图要花费很多时间。而我们利用自己编写的MapReduce来处理图谱数据,使用计算机代替人工大量读图。” /p p   食品安全检测仪目前已获得了4项国家专利和1项软件著作权。其中一项专利技术“双流通池系统”,在不降低性能的同时可大幅度降低系统成本。“这种双系统特别适用于那些要检测大量的,相同类型的样品,比如食品的原料检测等。” /p p   项目的开发成功让张小虎有了创业的冲动,他迫切希望能将技术予以应用,从而将技术的价值最大化。在父母的支持下,他与伙伴于2012年12月6日成立了“通用深圳仪器公司”,同时他还被聘请为深圳市分析测试协会委员。 /p p   而这款针对中国食品安全问题的绿色食品安全检测仪器投放市场后也颇受青睐,目前已拥有广州饲料添加剂厂、佛山富维生物饲料有限公司、广州格拉姆生物科技有限公司等几十家饲料和生物制品企业“客户”。 /p p strong 用高科技创业成功概率大 /strong /p p   2014年10月,张小虎被北京大学深圳研究生院录取为研究生,继续着他的学业,他的导师亦非常支持他的项目。而他的企业,从原来的3个人发展到现在的16个人,几乎都是青春勃发的大学生,其中还有一个麻省理工学院的博士。 /p p   “从小到大,我都希望能成为一个通过自己努力实现个人梦想、掌控自己生活的人。小到成功拆装一个玩具、读完一本喜欢的书籍,大到选择自己热爱的专业、做出几项发明专利、创办自己的公司,很幸运的是,我正按照自己的人生规划,如愿地逐步实现自己的人生目标。每当实现一个目标,我都有深深的满足感和成就感。”张小虎说,尤其当自己创办的公司做出了对人们生活质量有所促进的产品的时候,“我感觉自己的成就感不仅来自于实现个人梦想、掌控自己的生活,而更大的来自于自己对于社会的价值和意义。” /p p   对于未来,张小虎充满了信心:“食品安全检测设备的市场很大,全国有大小近百家生产企业,但他们用的技术大都是分光光度法原理或比色试纸原理。这两种方法的检测精度都很低,不能有效检出食品中的微量有毒物质。市场急需新的高灵敏的检测设备,我们基于液相色谱原理的食品安全检测仪会有广阔的市场空间。” 他打算以“直销”和“代理”的模式,继续推广食品安全检测仪。 /p p   作为一个大学生创业成功的“典型”,时常有学弟学妹追问张小虎“成功的秘诀”。他的切身体会是:“大学生创业应该具有非常强的专业知识,用高科技创业成功的概率会大得多。同时,项目开发最重要的是团队开发管理的能力和设计模式。”而创业更让他感受到了责任,也让他有了更高的目标:争取创立食品安全的行业标准,最终为解决中国现有的食品安全问题贡献自己的一分力量。 /p p /p
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • HORIBA讲座回放视频|光栅光谱仪原理简介
    课程内容 光谱测量系统组成 光栅技术 光栅光谱仪原理 小结讲师介绍熊洪武,HORIBA 应用技术主管,负责光学光谱仪的应用支持,光学背景深厚,有着丰富的光学系统搭建经验。可根据用户需求提供性能优异,功能独特的的光谱测试方案,如光致发光、拉曼、荧光、透射/反射/吸收等。课程链接识别下方“二维码”即可观看我们录制好的讲解视频了,您准备好了吗? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • X射线光电子能谱(XPS)的原理及应用
    01 原理XPS是利用 X 射线辐射样品,使得样品的原子或分子的内层电子或者价电子受到激发而成为光电子,通过测量光电子的信号来表征样品表面的化学组成、元素的结合能以及价态。X 射线光电子能谱技术作为一种高灵敏超微量的表面分析技术,对所有元素的灵敏度具有相同的数量级,能够观测化学位移,能够对固体样品的元素成分进行定性、定量或半定量及价态分析,广泛地应用于元素分析、多相研究、化合物结构分析、元素价态分析。此外在对氧化、腐蚀、催化等微观机理研究,污染化学、尘埃粒子研究,界面及过渡层研究等方面均有所应用。02 应用1 XPS在木质材料中的应用XPS 技术成为木质材料分析、应用领域的重要手段。XPS 对木材领域的分析不仅可以获得材料本身的元素组成和物质结构,而且对木材的修饰、应用等方面的研究有重要意义。运用 XPS的表层与深层分析,在木材加工、合成、防护等领域都有着重要作用,在测得材料成分的含量与性质后,也可以得知涂饰性能、风化特性、硬度、抗弯度等基本性质,再对木材分类以进行定向加工,这将极大提高木材的利用效率,扩大应用领域。2 XPS在能源电池中的应用麦考瑞大学黄淑娟和苏州大学马万里等人报道了在钙钛矿表面沉积同源溴化物盐以实现表面和本体钝化以制造具有高开路电压的太阳能电池的策略。与先前工作给出的结论不同,即FABr等同源溴化物仅与 PbI2反应在原始钙钛矿之上形成大带隙钙钛矿层,该工作发现溴化物也穿透大部分钙钛矿薄膜并使钙钛矿中的钙钛矿钝化。通过吸光度和光致发光 (PL) 观察到的小带隙扩大;在飞行时间二次离子质谱 (TOF-SIMS) 和深度分辨 X 射线光电子能谱 (XPS) 中发现溴化物元素比例的增加。各种表征证实了钙钛矿器件中非辐射复合的明显抑制。使用同种溴化物钝化的非封装器件在环境储存2500 小时后仍保持其初始效率的97%,在85°C下进行520小时热稳定性测试后仍保持其初始效率的59%。该工作提供了一种简单而通用的方法来降低单结钙钛矿太阳能电池的电压损失,还将为开发其他高性能光电器件提供启示,包括基于钙钛矿的串联电池和发光二极管 (LED)。3 XPS的表面改性物质表面的化学组成改变和晶体结构变形都会影响材料性能,如黏附强度、防护性能、生物适应性、耐腐蚀性能、润滑能力、光学性质和润湿性等。一种材料可能包含几种优良性能。XPS 分析技术广泛应用于材料的表面改性,主要有以下几点原因:(1) XPS对表面测量灵敏度高,用其进行表面改性是一种有效方法;(2) 由于 XPS分析技术可以获得相应的化学价态信息,因此通常用来检测改性时的表面化学变化;(3) 由于 XPS 只能检测样品表面 1~10 nm 的薄层,故 XPS 可以测量改性表层的化学组成分布情况。4 XPS在生物医学中的应用XPS 逐渐被应用在生物医学研究以及生物大分子的组成、状态和结构等方面。由于生物试样在制备过程中有一定难度,因此 XPS在医学上的应用仍处于探索阶段。03 来源文献[1]杨文超,刘殿方,高欣,吴景武,冯均利,宋浅浅,湛永钟.X射线光电子能谱应用综述[J].中国口岸科学技术,2022,4(02):30-37.[2]Homologous Bromides Treatment for Improving the Open-circuit Voltage ofPerovskite Solar Cells[J]. Advanced Materials, 2021.
  • 深蓝云直播课堂 | PCR,Real-time PCR,digital PCR三代PCR技术发展和原理
    PCR技术自发明至今,为生命科学的发展做出了不可磨灭的贡献。Real-time PCR(实时荧光定量PCR)和digital PCR(数字PCR技术)是基于一代PCR技术开发的第二代和第三代技术,目前已经得到了广泛的应用。Real-time PCR技术是利用标准曲线对样品进行定量分析;数字PCR技术通过生成单层平铺的微滴阵列的单分子PCR进行终点法检测,基于泊松分布计算的绝对定量方法,三代PCR技术之间有哪些异同之处呢?让我们从根源着手,从PCR,Real-time PCR,digital PCR三代PCR基本原理出发去一探究竟。北京深蓝云生物科技有限公司为您解答疑惑,提供“PCR,Real-time PCR,digital PCR三代PCR技术发展和原理”网络直播课,与大家共同探讨PCR技术和应用。想要了解更多关于PCR,Real-time PCR,digital PCR三代PCR相关的信息,快来参加4月15日的直播课堂吧!赶紧扫描上方二维码报名参加吧!
  • 新品发布|低本底多道γ能谱仪的技术原理和参数_霍尔德
    【低本底多道γ能谱仪←点击此处可直接转到产品界面,咨询更方便】低本底多道γ能谱仪原理:采用低本底铅室及低钾NaI(Tl)探头实现对待检测样品的放射性测量,基于高性能数字化能谱仪实现对NaI(Tl)探头的高精度伽马能谱测量,通过上位机能谱测量与分析软件实现对能谱的采集、存储、处理与解谱分析,最终实现对检测样品中放射性核素的识别与放射性比活度的测量。低本底多道γ能谱仪应用领域:医院放射性核素γ能谱测量分析;建材、土壤、生物、地质样品等γ能谱测量分析;建筑材料的快速无损检测;铀矿地质样品镭(铀)、钍、钾含量分析;可按用户要求配备铀、铯、钴、碘等人工核素分析软件。低本底多道γ能谱仪功能特点:1、具备实时快速低能γ射线稳谱技术的低本底数字化能谱仪,可保证开机快速测量以及长期稳定性;传统低本底数字化能谱仪需要人工反复调整谱仪参数才能够工作,且无法长时间稳定工作;2、自带数字化稳谱功能,可选择本底镅源γ射线稳谱、天然特征峰稳谱等数字化稳谱方式;3、支持粒子图谱、能谱曲线、梯形成形信号与原始脉冲信号显示;4、数字化能谱仪具备LIST-MODE模式,可实现粒子事件信息(时间、位置、幅度等)的实时采集,各通道数字化谱仪具备时钟同步功能,同步精度不低于15ns;粒子事件信息可传输到计算机上成谱,从而满足快速移动测量的要求;5、双谱测量:支持能谱与时间谱测量;6、高分辨率:采用16位80MSPS高速高精度模数转换器;7、高数字成形频率:数字成形频率高达80MHz。低本底多道γ能谱仪技术参数:探测器:Φ50×50mmNaI(Tl)晶体;总道数:512、1024、2048、4096、8192、16384道任选,标准道数:2048道;能量分辨率:37Bq/kg):10%;电源:220V(±10%)50Hz;温度范围:+5℃~+40℃;相对湿度:≤90%
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 万字讲懂离子色谱仪原理、结构、分类、应用、常见品牌等 | 仪器博物馆
    离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。今天小谱就其发展史、检测原理、结构等和大家进行探讨,一文把离子色谱仪讲通透。(如果读完文章您觉得还有哪些想听的知识点没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎您积极留言。)01离子色谱的“前世今生”1975年,Dow Chemical(陶氏化学)的H.Small等人发表的第一篇离子色谱方面的论文在美国分析化学上;在分离用的离子交换柱后端加入不同极性的离子交换树脂填料,该树脂填料呈氢型或氢氧根型。如阴离子交换柱后端加入氢型的阳离子,交换树脂填料阳离子交换柱后端加入氢氧根型的阴离子,交换树脂填料当由分离柱流出的携带待测离子的洗脱液在检测前发生两个简单而重要的化学反应,一个是将淋洗液转变成低电导组分以降低来自淋洗液的背景电导,另一个是将样品离子转变成其相应的酸或碱以增加其电导。这种在分离柱和检测器之间降低背景电导值而提高检测灵敏度的装置后来组成独立组件称为抑制柱(或抑制器),通过这种方式使电导检测的应用范围扩大了;在H-Small等人提议下称这种液相色谱为离子色谱。离子色谱一经诞生就立即商品化;1975年,第一家离子色谱公司诞生——戴安公司(Dow Ion Exchange),由H-Small和T-S.Stevens研发;1979年,美国阿华州大学的J.S.Fritz等人建立了单柱型离子色谱,许多其它公司生产了离子色谱;1983年,中国核工业第五研究所刘开禄研究员刘开禄带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1,并实现产业化。性能基本与国外同类仪器(美国Dionex-14型)相接近,填补了国内空白;第六届“科学仪器行业研发特别贡献奖”获奖者 刘开禄ZIC-1型离子色谱仪第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。1985年6月,赵云麒、刘开禄研制ZIC-2型离子色谱仪,包含双模式理论和适用于阳离子分析的“五级电导检测”电路。1987年12月22日 ,ZIC-2型离子色谱仪通过了专家鉴定并投产,核心技术目前仍应用在中国的核潜艇水质监测。1995年,ZIC-3型离子色谱仪由张烈生、荆建增设计完成并获得国家科技成果完成者证书。左:ZIC-2型离子色谱仪、中:ZIC-2A型离子色谱仪、右:ZIC-3型离子色谱仪目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。02离子色谱的原理和结构离子色谱的原理基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。离子色谱的结构离子色谱仪一般由流动相输送系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统六大部分组成。1、流动相输送系统离子色谱的输液系统包括贮液罐、高压输液泵、梯度淋洗装置等,与高效液相色谱的输液系统基本一致。1.1贮液罐溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:(1)必须有足够的容积,以保证重复分析时有足够的供液;(2)脱气方便;(3)能承受一定的压力;(4)所选用的材质对所使用的溶剂一律惰性。出于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0.5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。脱气方法有多种,在离子色谱中应用比较多的有如下方法:(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。(2)吹氧气或氮气脱气法:氧气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左看,可以达到脱气日的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可白动对琳洗液进行在线自动脱气。1.2高压输液泵高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱。泵应采用全塑Peek材料制作。(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。(5)流量在一定范围任选,并能达到一定精度要求。(6)部分输液泵具有梯度淋洗功能。目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。1.3梯度淋洗装置梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:(1)低压梯度低压梯度是采用比例调节阀,在常压下预先按一定的程序将溶剂混合后,再用泵输入色谱柱系统,也称为泵前混合。(2)高压梯度它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。2、进样系统离子色谱的进样主要分为3种类型:即气动、手动和自动进样方式。(1)手动进样阀手动进样采用六通阀,其工作原理与HPLC相同,但其进样量比HPLC要大,一般为50μL。其定量管接在阀外,一般用于进样体积较大时的情况。样品首先以低压状态充满定量管,当阀沿顺时针方向旋至另一位置时,即将贮存于定量管中固定体积的样品送入分离系统。(2)气动进样阀气动阀采用一定氮气或氮气气压作动力,通过两路四通加载定量管后,进行取样和进样,它有效地减少了手动进样因动作不同所带来的误差。(3)自动进样自动进样器是在色谱工作站控制下,自动进行取样、进样、清洗等一系列操作,操作者只须将样品按顺序装入贮样机中。自动进样可以达到很宽的样品进样量范围的目的。3、分离系统分离系统是离子色谱的核心和基础。离子色谱柱是离子色谱仪的“心脏”,要求它具有柱效高、选择性好、分析速度快等特点。离子色谱柱填料的粒度一般在5~25μm之间,比高效液相色谱的柱填料略大,因此其压力比高效液相色谱的要小,一般为单分散,而且呈球状。3.1高分子聚合物填料离子色谱中使用得最广泛的填料是聚苯乙烯——二乙烯苯共聚物。其中阳离子交换柱一般采用磺酸或羧酸功能基,阴离子交换柱填料则采用季胺功能基或叔胺功能基。离子排斥柱填料主要为全磺化的聚苯乙烯 二乙烯苯共聚物,这类离子交换树脂可在pH0~14范围内使用。如果采用高交联度的材料来改进,还可兼容有机溶剂,以抗有机污染。一般来说,离子交换型色谱柱的交换容量均很低。3.2硅胶型离子色谱填料该填料采用多孔二氧化硅柱填料制得,是用于阴离子交换色谱法的典型薄壳型填料。它是用含季胺功能基的甲基丙烯十醇酯涂渍在二氧化硅微球上制备的。阳离子交换树脂是用低相对分子质量的磺化氟碳聚合物涂渍在二氧化硅微粒上制备的。这类填料的pH值使用范围为4~8,一般用于单柱型离子色谱柱中。3.3色谱柱结构一般分析柱内径为4mm,长度为100~250mm,柱子两头采用紧固螺丝。高档仪器特别是阳离子色谱柱一般采用聚四氟乙烯材料,以防止金属对测定的干扰。随着离子色谱的发展,细内径柱受到人们的重视,2mm柱不仅可以使溶剂消耗量减少,而且对于同样的进样量,灵敏度可以提高4倍。4、离于色谱的抑制系统对于抑制型(双柱型)离子色谱系统,抑制系统是极其重要的一个部分,也是离子色谱有别于高效液相色谱的最重要特点。抑制器的发展经历了多个发展时期,而目前商品化的离子色谱仪亦分别采用不同的抑制手段及相关研究成果。4.1树脂填充抑制柱该抑制系统采用高交换容量的阳离子树脂填充柱(阴离子抑制),通过硫酸,将树脂转化为氢型。它抑制容量不高,需要定期再生,而且死体积比较大,对弱酸根离子由于离子排斥的作用,往往无法准确定量。目前这类抑制器目前已经基本不用。4.2纤维抑制器这种抑制系统采用阳离子交换的中空纤维作为抑制器,外通硫酸作为再生液,可连续对淋洗液进行再生,这种抑制器的死体积比较大,抑制容量也不高。4.3微膜抑制器这种抑制系统采用阳离子交换平板薄膜,中间通过淋洗液,而外两侧通硫酸再生液。这种抑制器的交换容量比较高,死体积很小,可进行梯度淋洗。4.4电解抑制器这种抑制系统采用阳离子交换平板薄膜,通过电解产生的H+,对淋洗液进行再生。早期的这类抑制器是由我国厦门大学田昭武发明,并投入了生产,但它需要定期加入硫酸来补充H+。美国Dionex公司对这类抑制器进行了改进,使之成为自再生,只要用淋洗液自循环或去离子水电解就可能实现再生,抑制容量可以通过改变电流的大小加以控制,而且死体积很小。5、检测系统5.1电导检测器电导检测是离子色谱检测方式中最常用的一种。它是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。由于电导池中的等效电容的影响,施加到电导池上的电压和电流之间的关系是非线性的,这给测量电导值带来很大困难。另外,流动相中本底电导值很高,从较大的背景值中准确测量待测组分的信号,也是电导检测中的重要问题。目前采用较多的方法有:(1)双极脉冲检测器:在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。容易受到电极极化和双电层的影响。(2)四极电导检测器:在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。(3)五极电导检测器:在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。5.2安培检测器安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。安培检测主要包括恒电位(直流安培)、脉冲安培以及积分安培三种方式。(1)直流安培检测模式:该方法是将一个恒定的直流电位连续地施加于检测池的电极上,当被测物被氧化时,电子从待测物转移至电极,得到电流信号。在此过程中,电极本身为惰性,不参与氧化反应。该方法具有较高的灵敏度,可以测定pmol级的无机和有机离子,主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。(2)脉冲安培检测模式:脉冲安培检测器出现在20世纪80年代初,是美国Dionex公司为满足糖的测定而研制的。糖类化合物的pKa值为12~14,在强碱性介质中以阴离子形式存在,可以用阴离子交换色谱分离。因为糖的分离是在碱性条件下完成的,检测方法必须与此相匹配,用金电极的脉冲安培检测法适合于这个条件。金电极的表面可为糖的电化学氧化反应提供一个反应环境。用脉冲安培检测法可检测pmol~fmol级的糖,而且不需要衍生反应和复杂的样品纯化过程。该检测器主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测,不可检测硫的氧化物。(3)积分脉冲安培检测模式:积分脉冲安培检测法为脉冲安培检测的升级模式,于1989年由Welch等人首先提出,并运用此技术,用金电极实现了对氨基酸的检测。与脉冲安培检测法相似,积分脉冲安培检测法中加到工作电极上的也是一种自动重复的电位对时间的脉冲电位波形,不同之处是:脉冲安培检测法是对每次脉冲前的单电位下产生的电流积分;而积分脉冲安培检测法是对每次脉冲前循环方波或三角波电位下产生的电流积分,即是对电极被氧化形成氧化物和氧化物还原为其初始状态的一个循环电位扫描过程中产生的电流积分。由积分整个高-低采样电位下的电流所得到的信号仅仅是被分析物产生的信号。在没有待测物(可氧化物)存在时,静电荷为零。积分脉冲安培检测法的优点在于通过施加方波或三角波电位消除了氧化物形成和还原过程中产生的电流。正、反脉冲方向的积分有效地扣除了电极氧化产生的背景效应,使得那些可受金属氧化物催化氧化的分子产生较强的检测信号和获得稳定的检测基线成为现实。此外,离子色谱还可以采用紫外、可见光、荧光等高效液相色谱常用的检测器,其原理与常规的高效液相色谱检测相似。6、数据处理系统离子色谱一般柱效不高,与气相色谱和高效液相色谱相比一般情况下离子色谱分离度不高,它对数据采集的速度要求不高,因此能够用于其他类型的数据处理系统,同样也可用于离子色谱中。而且在常规离子分析中,色谱峰的峰形比较理想,可以采用峰高定量分析法进行分析。主要数据处理系统为:6.1记录仪记录仪要求满刻度行程时间≤1s,输入阻抗高,屏蔽好,纸速稳定。采用双笔式记录仪,可以同时测量样品中高浓度和痕量浓度组分,也可进行双检测器分析。6.2自动积分仪它是一种通过A/D转换,采用固定程序,分析色谱信息,打印色谱图的仪器。采用自动积分仪大大减少了记录仪中色谱手工处理的繁琐手续。6.3数据工作站通过A/D转换,将数据采集于电脑,然后通过对采集的数据分析,得到相关的色谱信息。随着个人电脑的普及,数据工作站将得到广泛的应用。03离子色谱的分类通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。离子交换色谱:离子交换色谱以离子间间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。根据应用场景可分为:实验室、便携式、在线离子色谱。便携式离子色谱:适用的主要场景比如户外检测、或者在移动检测车上使用等等。在线离子色谱:适用的主要场景,比如大气环境的连续监测、或者工厂流水线中的连续监测等等。实验室离子色谱:相对来讲,就是最常规的离子色谱类型了,用户采购量也是相对最大。04离子色谱的应用离子色谱作为20世纪70年代发展起来的一项新的分析技术,由于具有快速、灵敏、选择性好等特点,尤其在阴离子检测方面有着其它方法所的优势,因此被广泛地应用于化工、医药、环保、卫生防疫、半导体制造等行业,并在某些领域被列为标准测定方法。涉及离子色谱的国内标准分析方法行业标准部分国际标准05离子色谱使用的注意事项1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。3、高压泵sp 岛埃仑YC3000离子色谱仪青岛埃仑YC7000型离子色谱仪 等▲ 青岛埃仑YC3000离子色谱仪B. 岛津
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 今日抽奖:《集成电路材料基因组技术》+《扫描电镜和能谱仪的原理与实用分析技术》
    仪器信息网2023年10月18-20举办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会,围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件和材料分析、可靠性测试、失效分析、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。为答谢广大用户,本次大会每个专场都设有一轮抽奖送专业图书活动。今日抽取的专业图书是《集成电路材料基因组技术》和《扫描电镜和能谱仪的原理与实用分析技术》。一、主办单位:仪器信息网&电子工业出版社二、会议时间:2023年10月18-20日三、会议日程第四届“半导体材料器件分析检测技术与应用”主题网络研讨会时间专场名称10月18日全天半导体材料分析技术新进展10月19日可靠性测试和失效分析技术可靠性测试和失效分析技术(赛宝实验室专场)10月20日上午缺陷检测与量测技术四、“半导体材料分析技术新进展”日程时间报告题目演讲嘉宾专场:半导体材料分析技术新进展(10月18日)专场主持人:汪正(中国科学院上海硅酸盐研究所 研究员)9:30等离子体质谱在半导体用高纯材料的分析研究汪正(中国科学院上海硅酸盐研究所 研究员)10:00有机半导体材料的质谱分析技术王昊阳(中国科学院上海有机化学研究所 高级工程师)10:30牛津仪器显微分析技术在半导体中的应用进展马岚(牛津仪器科技(上海)有限公司 应用工程师)11:00透射电子显微镜在氮化物半导体结构解析中的应用王涛(北京大学 高级工程师)11:30集成电路材料国产化面临的性能检测需求桂娟(上海集成电路材料研究院 工程师)午休14:00离子色谱在高纯材料分析中的应用李青(中国科学院上海硅酸盐研究所 助理研究员)14:30拉曼光谱在半导体晶圆质量检测中的应用刘争晖(中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师)15:00半导体—离子色谱检测解决方案王一臣(青岛盛瀚色谱技术有限公司 产品经理)15:30宽禁带半导体色心的能量束直写制备及光谱表征徐宗伟(天津大学精密测试技术及仪器国家重点实验室 教授)16:00专业图书介绍及抽奖送书王天跃(电子工业出版社电子信息分社 编辑)五、参会方式本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/icsmd2023/ 或扫描二维码报名
  • 快速水份测定仪基础知识一:定义与基本原理
    快速水份测定仪基础知识一,定义与基本原理1. 什么是快速水份测定仪? 快速水份测定仪利用热失重法测定样品的水份含量,由称量与加热装置(红外)组成。 它通常亦称作水份天平或水份测定仪。 2. 快速水份测定仪的工作方式?卤素快速水份测定仪按照热重原理(通常亦称作“热失重”(LOD)原理)运行。 快速水份测定仪由两个组件构成,即:天平装置与加热装置。 为了测量水份含量,首先记录样品的初始重量,然后在内置天平持续记录样品重量的同时,卤素灯对样品进行加热和烘干。 当样品不再失重时,仪器关闭并且计算水份含量。 总失重量用于计算水份含量。 3. 什么是“热失重”(LOD)原理?LOD表示热失重。 大多数标准方法属于热失重法。 热失重法是一种通过分析加热时样品的失重测定样品水份含量的方法。 将失重解释为样品的水份损失。 当所有水份从样品中排出时,样品的重量不再发生变化。 然后,通过将样品的初始重量同干重或样品最终重量进行比较,计算出样品的水份含量。 4. 如何加热样品? 样品吸收卤素快速水份测定仪的红外辐射,因此可快速升温。 另外,样品的温度取决于其吸收特点,因此一定不是显示温度。 这与烘箱不同,烘箱是通过对流方式对样品加热,并且需要很长时间才能烘干。 5. 卤素技术与红外技术之间的区别是什么? 卤素加热也是红外技术。 采用卤素辐射体进行干燥是红外干燥法的进一步发展。 加热元件由充满卤素气体的玻璃灯管组成, 由于卤素辐射体远轻于传统红外辐射体,因此可以快速获得最大热量输出,并实现卓越的可控性甚至是热分布。 6. 快速水份测定仪的适合对象?烘箱是测定水份含量的正规方法。 如今,许多客户使用快速水份测定仪,因为他们希望使用更快速的方法分析水份含量。 快速水份测定仪在许多行业中使用,例如:食品、化学、制药与塑料制造行业。 由于水份含量会对产品的质量和保质期产生影响,因此测定食品中的水份含量尤为重要。 7. 什么是水份? 水份指加热时蒸发(“热失重”)的所有物质。 除了水之外,分析的水份含量还包括脂肪、酒精与溶剂。 8. 水份与水是否一样?不一样,这两种概念经常被混淆。 水份指加热时蒸发的所有物质。 水专门指水分子(H20)。 为了测定水份含量,最好使用卡尔费休滴定仪。
  • 一看就懂|动图解析16种仪器原理
    p span style=" color: rgb(31, 73, 125) " strong 紫外分光光谱UV /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title=" 紫外分光光谱UV.jpeg" width=" 400" height=" 290" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 290px " / /strong /span /p p strong i 分析原理 /i /strong :吸收紫外光能量,引起分子中电子能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :相对吸收光能量随吸收光波长的变化 /p p i strong 提供的信息 /strong /i :吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 /p p style=" text-indent: 2em " 物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title=" 光线传输.gif" / br/ /p p style=" text-align: center " strong 光线传输 /strong /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title=" 光衍射.gif" / /strong /p p style=" text-align:center" strong 光衍射 /strong br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title=" 探测.gif" / br/ /p p style=" text-align: center " strong 探测 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title=" 数据输出.gif" / br/ /p p style=" text-align: center " strong 数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 红外吸收光谱法IR /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title=" 红外吸收光谱法IR.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 /p p i strong 谱图的表示方法 /strong /i :相对透射光能量随透射光频率变化 /p p strong i 提供的信息 /i /strong :峰的位置、强度和形状,提供功能团或化学键的特征振动频率 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title=" 红外光谱测试.gif" / br/ /p p style=" text-align: center " strong 红外光谱测试 /strong /p p style=" text-indent: 2em " 红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。 /p p style=" text-indent: 2em " 以下是甲醇红外光谱分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title=" 甲醇红外光谱结构分析过程1.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title=" 甲醇红外光谱结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title=" 甲醇红外光谱结构分析过程3.gif" / /p p style=" text-align:center" strong 甲醇红外光谱结构分析过程 /strong br/ /p p span style=" color: rgb(31, 73, 125) " strong 核磁共振波谱法NMR /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title=" 核磁共振波谱法NMR.jpeg" width=" 400" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 240px " / /strong /span /p p i strong 分析原理 /strong /i :在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :吸收光能量随化学位移的变化 /p p i strong 提供的信息 /strong /i :峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title=" NMR结构.gif" / br/ /p p style=" text-align: center " strong NMR结构 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title=" 进样.gif" / br/ /p p style=" text-align: center " strong 进样 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title=" 样品在磁场中.gif" / br/ /p p style=" text-align: center " strong 样品在磁场中 /strong /p p style=" text-indent: 2em " 当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style=" float:none " title=" 核磁共振及数据输出1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style=" float:none " title=" 核磁共振及数据输出2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style=" float: none width: 400px height: 225px " title=" 核磁共振及数据输出3.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 核磁共振及数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 质谱分析法MS /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title=" 质谱分析法MS.jpeg" width=" 400" height=" 282" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 282px " / /strong /span /p p strong i 分析原理 /i /strong :分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化 /p p i strong 提供的信息 /strong /i :分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 /p p i strong FT-ICR质谱仪工作过程: /strong /i /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title=" 离子产生.gif" / br/ /p p style=" text-align: center " strong 离子产生 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title=" 离子收集.gif" / br/ /p p style=" text-align: center " strong 离子收集 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title=" 离子传输.gif" / br/ /p p style=" text-align: center " strong 离子传输 /strong /p p style=" text-indent: 2em " FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style=" float:none " title=" 离子回旋运动1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style=" float:none " title=" 离子回旋运动2.gif" / /p p style=" text-align:center" strong 离子回旋运动 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title=" 傅立叶变换.gif" / br/ /p p style=" text-align: center " strong 傅立叶变换 /strong /p p span style=" color: rgb(31, 73, 125) " strong 气相色谱法GC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title=" 气相色谱法GC.jpeg" width=" 400" height=" 364" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 364px " / /strong /span /p p i strong 分析原理 /strong /i :样品中各组分在流动相和固定相之间,由于分配系数不同而分离 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :峰的保留值与组分热力学参数有关,是定性依据 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title=" 气相色谱仪检测流程.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 气相色谱仪检测流程 /strong /p p style=" text-indent: 2em " 气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title=" 注射器.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 注射器 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title=" 色谱柱.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 色谱柱 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title=" 检测器.gif" width=" 400" height=" 212" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 212px " / br/ /p p style=" text-align: center " strong 检测器 /strong /p p span style=" color: rgb(31, 73, 125) " strong 凝胶色谱法GPC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title=" 凝胶色谱法GPC.jpeg" width=" 400" height=" 298" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 298px " / /strong /span /p p i strong 分析原理 /strong /i :样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :高聚物的平均分子量及其分布 /p p style=" text-indent: 2em " 根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title=" 只依据尺寸大小分离,大组分最先被洗提出.gif" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / br/ /p p style=" text-align: center " strong 只依据尺寸大小分离,大组分最先被洗提出 /strong /p p style=" text-indent: 2em " 色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title=" 直径小于孔径的组分进入凝胶孔道.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 直径小于孔径的组分进入凝胶孔道 /strong /p p style=" text-indent: 2em " 小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title=" 依据尺寸差异,样品组分分离.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 依据尺寸差异,样品组分分离 /strong /p p style=" text-indent: 2em " 体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。 /p p span style=" color: rgb(31, 73, 125) " strong 热重法TG /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title=" 热重法TG.jpeg" width=" 400" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 268px " / /strong /span /p p i strong 分析原理 /strong /i :在控温环境中,样品重量随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品的重量分数随温度或时间的变化曲线 /p p strong i 提供的信息 /i /strong :曲线陡降处为样品失重区,平台区为样品的热稳定区 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title=" 自动进样过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 222px " / br/ /p p style=" text-align: center " strong 自动进样过程 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程2.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 热重分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 静态热-力分析TMA /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title=" 静态热-力分析TMA.png" width=" 400" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 400px " / /p p i strong 分析原理 /strong /i :样品在恒力作用下产生的形变随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品形变值随温度或时间变化曲线 /p p i strong 提供的信息 /strong /i :热转变温度和力学状态 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title=" TMA进样及分析1.gif" style=" float: none width: 400px height: 223px " width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title=" TMA进样及分析2.gif" width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 223px " / /p p style=" text-align: center " strong TMA进样及分析 /strong /p p strong span style=" color: rgb(31, 73, 125) " 透射电子显微技术TEM /span /strong /p p style=" text-align:center" strong span style=" color: rgb(31, 73, 125) " img src=" https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title=" 透射电子显微技术TEM.jpeg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /span /strong /p p i strong 分析原理 /strong /i :高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 /p p i strong 谱图的表示方法 /strong /i :质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 /p p i strong 提供的信息 /strong /i :晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title=" TEM工作图.gif" / br/ /p p style=" text-align: center " strong TEM工作图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title=" TEM成像过程.gif" / br/ /p p style=" text-align: center " strong TEM成像过程 /strong /p p style=" text-indent: 2em " STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title=" STEM分析图.gif" / br/ /p p style=" text-align: center " strong STEM分析图 /strong /p p style=" text-indent: 2em " 入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title=" EELS原理图.gif" / br/ /p p style=" text-align: center " strong EELS原理图 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描电子显微技术SEM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title=" 扫描电子显微技术SEM.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /p p i strong 分析原理 /strong /i :用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 /p p i strong 谱图的表示方法 /strong /i :背散射象、二次电子象、吸收电流象、元素的线分布和面分布等 /p p i strong 提供的信息 /strong /i :断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title=" SEM工作图.gif" / br/ /p p style=" text-align: center " strong SEM工作图 /strong /p p style=" text-indent: 2em " 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title=" 电子发射图.gif" / br/ /p p style=" text-align: center " strong 电子发射图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title=" 二次电子探测图.gif" / br/ /p p style=" text-align: center " strong 二次电子探测图 /strong /p p style=" text-indent: 2em " 二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title=" 二次电子扫描成像.jpeg" / br/ /p p style=" text-align: center " strong 二次电子扫描成像 /strong /p p style=" text-indent: 2em " 入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title=" 背散射电子探测图.gif" / br/ /p p style=" text-align: center " strong 背散射电子探测图 /strong /p p style=" text-indent: 2em " 用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title=" EBSD成像过程.gif" / br/ /p p style=" text-align: center " strong EBSD成像过程 /strong /p p span style=" color: rgb(31, 73, 125) " 原子力显微镜AFM /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title=" 原子力显微镜AFM.jpeg" width=" 400" height=" 176" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 176px " / /p p i strong 分析原理 /strong /i :将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息 /p p i strong 谱图的表示方法 /strong /i :微悬臂对应于扫描各点的位置变化 /p p i strong 提供的信息 /strong /i :样品表面形貌的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title=" AFM原理:针尖与表面原子相互作用.gif" / br/ /p p style=" text-align: center " strong AFM原理:针尖与表面原子相互作用 /strong /p p style=" text-indent: 2em " AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title=" 接触模式.gif" / br/ /p p style=" text-align: center " strong 接触模式 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描隧道显微镜STM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title=" 扫描隧道显微镜STM.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /p p i strong 分析原理 /strong /i :隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。 /p p i strong 谱图的表示方法 /strong /i :探针随样品表面形貌变化而引起隧道电流的波动 /p p i strong 提供的信息 /strong /i :软件处理后可输出三维的样品表面形貌图 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title=" 探针.gif" / br/ /p p style=" text-align: center " strong 探针 /strong /p p style=" text-indent: 2em " 隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title=" 隧道电流.gif" / br/ /p p style=" text-align: center " strong 隧道电流 /strong /p p style=" text-indent: 2em " 针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title=" 三维图像1.gif" style=" float: none " / br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style=" float:none " title=" 三维图像2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style=" float:none " title=" 三维图像3.gif" / /p p span style=" color: rgb(31, 73, 125) " strong 原子吸收光谱AAS /strong /span br/ /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title=" 原子吸收光谱AAS.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /strong /span /p p i strong 分析原理 /strong /i :通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title=" 待测试样原子化.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / br/ /p p style=" text-align: center " strong 待测试样原子化 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title=" 原子吸收及鉴定1.gif" style=" float: none width: 400px height: 222px " width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title=" 原子吸收及鉴定2.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / /p p style=" text-align: center " strong 原子吸收及鉴定 /strong /p p span style=" color: rgb(31, 73, 125) " strong 电感耦合高频等离子体ICP /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title=" 电感耦合高频等离子体ICP.jpeg" width=" 400" height=" 255" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 255px " / /strong /span /p p i strong 分析原理 /strong /i :利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title=" Icp设备构造.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong Icp设备构造 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title=" 形成激发态的原子和离子.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 形成激发态的原子和离子 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title=" 检测器检测.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 检测器检测 /strong /p p span style=" color: rgb(31, 73, 125) " strong X射线衍射XRD /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title=" X射线衍射XRD.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 /p p style=" text-indent: 2em " 满足衍射条件,可应用布拉格公式:2dsinθ=λ /p p style=" text-indent: 2em " 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title=" XRD结构.jpeg" width=" 400" height=" 421" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 421px " / /p p style=" text-indent: 2em " 以下是使用XRD确定未知晶体结构分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title=" XRD确定未知晶体结构分析过程1.gif" style=" float: none " / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title=" XRD确定未知晶体结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title=" XRD确定未知晶体结构分析过程3.gif" / /p p style=" text-align: center " strong XRD确定未知晶体结构分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 纳米颗粒追踪表征 /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title=" 纳米颗粒追踪表征.jpeg" width=" 400" height=" 261" border=" 0" hspace=" 0" vspace=" 0" style=" text-align: center width: 400px height: 261px " / /p p i strong 分析原理 /strong /i :纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title=" 不同粒径颗粒的散射光成像在CCD.gif" width=" 400" height=" 168" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 168px " / br/ /p p style=" text-align: center " strong 不同粒径颗粒的散射光成像在CCD /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title=" 实际样品测试效果.gif" width=" 400" height=" 301" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 301px " / br/ /p p style=" text-align: center " strong 实际样品测试效果 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title=" 不同技术的数据对比.jpeg" width=" 400" height=" 377" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 377px " / br/ /p p style=" text-align: center " strong 不同技术的数据对比 /strong /p
  • 沃特世质谱成像技术、原理及应用
    p   质谱成像是一种前沿质谱技术,由于其技术的新颖性与应用的广泛性,近期受到了很高关注。该技术应用潜力巨大,它是将质谱检测与影像技术相结合的新型分子影像研究手段。特点是无需标记、所需时间短、耗费低、不局限于单分子,同时还可以提供组织切片中多化合物空间分布和分子结构信息。 /p p   作为质谱领域最具前景的技术之一,质谱成像技术现已经成为仪器厂商、科研院所的重要关注焦点,预测未来市场争夺也将日益激烈。沃特世公司在MALDI质谱成像技术研发与应用方面具有较强的实力。为提升用户对质谱成像技术、应用的了解,促进质谱成像技术的推广应用,仪器信息网特别邀请沃特世公司对其质谱成像技术中的DESI及MALDI技术的原理与应用进行了讲解。 /p p    strong 1. 解吸电喷雾电离(DESI)技术 /strong /p p   质谱成像是对样品中的化合物进行成像分析,以获得基于化合物组成、空间分布情况及相对丰度的一种快速分析技术。解吸电喷雾电离(DESI)是一种快速的大气压环境下的质谱成像技术,完美兼容组织病理学的工作流程 适用于监测整个组织或器官中各类化合物的分布情况,以及应用于指纹的司法鉴定、微生物的成像、植物样品中活性成分或代谢产物分析和其他快速分析领域。 /p p strong   工作原理 /strong /p p style=" text-align: left "   喷雾溶剂连接于毛细管上,施加一定的高电压,在氮气的辅助下形成带电喷雾液滴,轰击样品表面,带电溶剂与待分析物同时发生解吸和电离(电荷转移),去溶剂化后,沿着传输毛细管进入质谱。 /p p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/bc55b344-cfc2-4da3-a7aa-e6b97d85e91a.jpg" / /p p strong   DESI的特点 /strong /p p   ○ 最新的沃特世喷嘴可以达到20 μm的空间分辨率 /p p   ○ 可分析新鲜样品,几乎不需要做样品前处理 /p p   ○ 适用于各类生物组织样本、指纹、表面等成像分析 /p p   ○ 点对点的高通量快速分析 /p p   DESI技术与与Waters高分辨质谱(Xevo G2-XS QTof 或 SYNAPT G2-Si HDMS)均可连接使用,效果非常好,并有配套的数据分析软件。可实现同时采集DESI与离子淌度IMS数据,并实现其处理。还可通过软件对数据进行OPLS-DA等数据分析,借助软件找出目标marker。 /p p    strong DESI应用 /strong /p p style=" text-align: center " img title=" 002.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/8089f096-646b-49fd-8d9c-dd887bbc64d1.jpg" / /p p style=" text-align: center " img title=" 003.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/446f205d-c87a-4001-9c3f-7304f7d781df.jpg" / /p p style=" text-align: center " img title=" 004.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/9350b4b2-7535-4112-a592-54ee39c7c6be.jpg" / /p p style=" text-align: center " img title=" 005.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/f6e0a14d-96c8-443c-881c-4b13a647e6d8.jpg" / /p p style=" text-align: center " img title=" 006.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/1d5ffd80-1c32-4134-8f09-c03df7356632.jpg" / /p p style=" text-align: center " img title=" 007.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/7de51864-111c-49e0-83a8-a0ba735f139c.jpg" / /p p    strong 2. 基质辅助激光解析电离(MALDI)技术 /strong /p p   MALDI SYNAPT G2-Si由一台脉冲频率为2.5KHz的固态激光器驱动,可实现分析过程中光谱采集速率的最大化。光斑大小可根据试验需要进行配置,不论是定性分析中灵敏度和速度的优化还是成像研究中测定最高空间分辨率下化合物的空间分布均适用。 /p p style=" text-align: center " img width=" 450" height=" 495" title=" 0.png" style=" width: 450px height: 495px " src=" http://img1.17img.cn/17img/images/201712/insimg/c0952ffc-a11e-4e31-9224-cc9104f219cc.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   由于Tof分析仪的正交几何结构,离子源在质谱分析中实现“去耦合”。因此,与轴向MALDI-Tof或Tof/Tof仪器不同,该设备能够确保在广泛的质量范围内,对于MS和MS/MS模式都能获得高分辨率和准确质量数。此外,SYNAPT非常适合处理绝缘样品,例如石蜡包埋型组织切片或载玻片等。 /p p   在同一个精简的成像工作流程中,MALDI SYNAPT G2-Si HDMS融合了T-Wave IMS和QuanTof技术,以提供无与伦比的选择性、清晰度和可靠性。 /p p   HDI MALDI解决方案提供了一系列独特且强大的多靶向(IMS/MS/MS)和无靶向(IMS/MSE)工作流程,包括以图像为中心的方法设置、数据处理和图像生成。综合相关(基于与空间位置漂移时间相关的碎片离子)与统计工具(例如PCA、OPLS-DA、S-plots、聚类分析)相结合,提供了更智能、更可靠的成像分析。 /p p   在SYNAPT上可以使用全面的UPLC/MS/MS功能,同时能够在同一个平台上对生物液体或激光切割组织切片进行高效定量和定性分析。 /p p   Waters基质辅助激光解吸电离技术(MALDI) 的特点: /p p   § 卓越的空间分辨率 /p p   § 广泛的应用范围 /p p   § 成熟的质谱成像方法 /p p   § 可同时采集离子淌度数据,有效降低噪音干扰 /p p   MALDI SYNAPT G2-Si 质谱系统适用于成像、化工材料鉴定、蛋白质组学和制药领域, /p p strong   一、MALDI SYNAPT G2-Si 质谱系统应用于小鼠组织中黄腐酚及其代谢物的成像: /strong /p p   样品的制备: /p p style=" text-align: center " img title=" 009.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/f947bb12-f3a1-46f8-84e8-18fb97a56f7d.jpg" / /p p   小鼠肠道中黄腐酚及其代谢物的成像: /p p style=" text-align: center " img title=" 010.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/238d8baf-872c-417b-bca6-ef9d218e6c5c.jpg" / /p p style=" text-align: center " img title=" 011.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/7734a6a9-4919-4679-8e91-c890dd36a5af.jpg" / /p p strong   二、组织中N-糖异构体的成像研究 /strong /p p style=" text-align: center " img width=" 450" height=" 441" title=" 012.jpg" style=" width: 450px height: 441px " src=" http://img1.17img.cn/17img/images/201712/insimg/677094a5-24fd-4c2c-8cd5-be6e6f90ecbe.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   使用离子淌度(IMS)可有效降低噪音的干扰: /p p style=" text-align: center " img width=" 450" height=" 484" title=" 013.jpg" style=" width: 450px height: 484px " src=" http://img1.17img.cn/17img/images/201712/insimg/232442ff-c0a9-48f9-8467-d0c7b929f264.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   strong   /strong 成像结果: /p p style=" text-align: center " img width=" 450" height=" 563" title=" 014.jpg" style=" width: 450px height: 563px " src=" http://img1.17img.cn/17img/images/201712/insimg/4e11f6ee-0c1e-4934-b976-790304951a9a.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p
  • 盘点:三代PCR仪原理及应用
    p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 前言 /span /strong /p p   人类对于核酸的研究已经有100多年的历史。20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。Khorana于1971年最早提出核酸体外扩增的设想:经过DNA变性,与合适引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因。 /p p   但由于测序和引物合成的困难,以及70年代基因工程技术的发明使克隆基因成为可能,所以,Khorana的设想被人们遗忘了。 /p p   1985年,美国科学家穆利斯在高速公路的启发下,经过两年的努力,发明了PCR(聚合酶链式反应)技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。从此,PCR技术开始走进生命科学界,应用于各大小实验室,成为生命科学实验室不可或缺的技术手段和工具,极大地推动了生命科学的研究进展。穆利斯也因此而获得1993年的诺贝尔化学奖。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/42353234-b84b-4124-8228-ad9e5dd139c7.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 穆利斯 /span /strong br/ /p p   PCR是分子生物学研究极其重要的工具,是一种用于放大扩增特定的DNA片段的分子生物学技术,基本原理是在试管中模拟细胞内的DNA复制,即人为创造核酸半保留复制条件,使目的DNA在细胞外完成扩增的过程,它可被看作是生物体外的特殊DNA复制。 /p p   根据PCR原理,商业公司在PCR仪的基础功能上不断进行创新和改进。至今,PCR仪已经更新至第三代技术。为方便读者朋友理解,本文将对三代PCR仪的原理、特点、主要厂商及产品、应用领域做一系统梳理。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第一代——标准PCR仪 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/41d48cc2-6454-41a4-80a2-32d8206eeb55.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 标准PCR反应过程 /span /strong br/ /p p   标准PCR仪也叫做终点PCR仪,是指目的基因仅经过预变性、变性、退火、延伸阶段产生大量的核酸序列的PCR仪,PE-Cetus公司推出的世界上第一台PCR自动化热循环仪属于此种。根据PCR退火温度和扩增条件(细胞内/外),标准PCR又可以分为三类:普通PCR、梯度PCR和原位PCR。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/2749e6d5-017a-46c5-9cae-a379b96def96.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p    strong 普通PCR仪 /strong :一般把一次PCR扩增只能运行一个特定退火温度的PCR仪,称之为普通PCR仪。如果要用它做不同的退火温度则需要多次运行。主要是用作简单的、对单一退火温度的目的基因的扩增。 /p p   主要应用于科研、教学、临床医学、检验、检疫等。 /p p    strong 梯度PCR仪 /strong :普通PCR仪衍生出的带梯度PCR功能的基因扩增仪。梯度PCR仪每个孔的温度可以在指定范围内按照梯度设置,一次性PCR扩增可以设置一系列不同的退火温度条件(通常12种温度梯度)。由于被扩增的DNA片段不同,其最佳退火温度也不同,通过梯度设置,可一次性筛选出最佳的退火温度。这样既可节省试验时间,提高实验效率,又能节约实验成本。在不设置梯度的情况下亦可当做普通的PCR用。 /p p   梯度PCR仪多应用于科研、教学机构。 /p p    strong 原位PCR仪 /strong :是将PCR技术的高效扩增与原位杂交的细胞定位结合起来,用于从细胞内靶DNA的定位分析的细胞内基因扩增仪,从而在组织细胞原位检测单拷贝或低拷贝的特定DNA或RNA序列。原位PCR技术的待检标本一般先经化学固定,以保持组织细胞的良好形态结构。细胞膜和核膜均具有一定的通透性,当进行PCR扩增时,各种成分,如引物、DNA聚合酶、核苷酸等均可进进细胞内或细胞核内,以固定在细胞内或细胞核内的RNA或DNA为模板,于原位进行扩增。 /p p   原位PCR仪对于在分子和细胞水平上研究疾病的发病机理和临床过程及病理的转变有着重要意义。 /p p   需要说明的是,以上三种类型PCR仪并非是对立的,许多普通PCR仪结合了以上两种或者两种以上功能。 /p p   市售标准PCR仪种类繁多,国内外公司都有相应产品,赛默飞旗下PCR仪占据国内生命科学实验室的半壁江山,其次分别是是伯乐、罗氏和艾本德。 /p p style=" text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 此处列出部分在仪器信息网参展并且是仪器信息网新品或者仪器信息网“绿色仪器”的一代PCR仪。 /span /strong /p p style=" text-align: center text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201812/uepic/d7059e6f-1922-4b57-b5f8-f58abfaedd51.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " Eppendorf Mastercycler X50 梯度 PCR 仪(绿色仪器) /span /strong /p p   艾本德此款PCR仪采用2D-梯度技术,能够同时优化退火与变性条件,升温速度高达10° C/s,10台仪器可直接并组成网,适用于高通量应用或者人员众多需求复杂的实验室。 /p p   strong span style=" color: rgb(0, 112, 192) "   /span /strong a href=" https://www.instrument.com.cn/netshow/C273735.htm" target=" _self" title=" 详情请点击" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/cd7674e4-20aa-44cb-8e24-97e172abc108.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 力康Trident 960基因扩增仪(新品) /span /strong /p p   此款基因扩增仪与今年5月上市,创新点在于它是多模块PCR仪,可同时运行三种控温程序 界面采用安卓系统,操作体验大幅提升 最大升温速率达到6℃/s。 /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/netshow/C288657.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第二代——qPCR(实时定量PCR) /span /strong /p p   1996年Applied Biosystems(现被赛默飞收购)公司推出了实时荧光定量PCR(RTFQ PCR)技术,并发明了世界上第一台荧光定量PCR仪,开始了从定性到定量的跨越。 /p p   实时定量PCR仪是指在PCR反应体系中加入能够指示DNA片段扩增过程的荧光染料(SYBR Green等)或荧光标记的特异性的探针(TaqMan Probe等),在普通PCR仪设计基础上增加荧光信号激发和采集系统和计算机分析处理系统,形成了具有荧光定量PCR功能的仪器,通过对PCR过程中产生的荧光信号积累实时监测整个PCR过程,再结合相应的计算机软件对所获得的荧光信号数据进行分析,计算待测样品特定DNA片段的初始浓度。 /p p   目前根据荧光信号反应样品浓度主要有两种该方法: /p p    strong 1.Taqman探针法 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a439631b-e389-434b-9801-df6dd2552a4a.jpg" title=" taqman.jpg" alt=" taqman.jpg" / /p p style=" text-indent: 2em " 探针两端分别为报告荧光基团R和荧光淬灭基团Q,当探针完整时,R发出的荧光被Q吸收,检测不到荧光信号。探针随机结合到DNA单链上,PCR扩增时,探针被水解,R与Q分离,R发出的荧光就会被检测到。每扩增一条DNA链都会生成一个荧光分子。 /p p    strong 2. SYBR Green Ι染料法 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/38bc15e1-e944-4d6b-b2e8-8cba519b1f26.jpg" title=" ranliao.jpg" alt=" ranliao.jpg" / /p p style=" text-indent: 2em " SYBR Green Ι是一种只有在和双链DNA结合时才会发荧光的染料。在PCR变性时,无荧光产生,到了复性和延伸阶段则能检测到荧光信号。 /p p   实时荧光定量PCR仪主要应用于病原体检测、药物疗效考核、肿瘤基因检测、基因表达研究、转基因研究、单核苷酸多态性(SNP)及突变分析等细分研究方向,广泛应用于临床医学检测、生物医药研发、食品行业等研究领域。 /p p   目前市售qPCR仪种类繁多,伯乐、罗氏、赛默飞均推出系列定量PCR仪产品,国内生物公司也相继进入这一市场,并取得了不错的口碑,如博日、力康、福生生物等。 /p p style=" text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 本篇列出部分在仪器信息网参展的新品qPCR仪: /strong /span /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f9abfbd2-a173-48ae-925e-cdd3516dc9e2.jpg" title=" olumeikesi.jpg" alt=" olumeikesi.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 鲁美科斯实时荧光定量PCR AriaDNA-4(新品) /span /strong br/ /p p   鲁美科斯此款荧光定量PCR仪主要创新点如下: 1.采用专利冻干微芯片技术,实现超微量进样分析,和常规PCR试剂和样品大大减少,普通PCR15微升,LUMEX实时微芯片PCR进样量1-2微升,节省进样量和后续使用成本 2.专利冻干微芯片技术,避免试剂冷链储存,动感试剂涂布在芯片上,可实现一次性检测多种DNA和RNA样品,实现常温储存运输。 /p p    a href=" https://www.instrument.com.cn/netshow/C278549.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d3a9640c-b164-4331-9c13-5879ae51e203.jpg" title=" 天隆科技.jpg" alt=" 天隆科技.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 天隆科技Gentier 96E实时荧光定量PCR检测系统(优秀新品) /span /strong /p p   Gentier 96E实时荧光定量PCR检测系统是天隆科技最新一代、为满足高端用户的实验需求而量身定制。该款产品具有科学高效的温控系统与光电系统、强大易用的软件分析功能、人性化的操控方式、六通道同步检测等诸多优势,能够轻松实现下游多重基因检测、定量分析、SNP分析、HRM分析等应用。 /p p   strong span style=" color: rgb(0, 112, 192) "   /span /strong a href=" https://www.instrument.com.cn/netshow/C260668.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第三代——dPCR(数字PCR) /span /strong /p p   不同于qPCR 对每个循环进行实时荧光测定的方法,数字 PCR 技术是在扩增结束后对每个反应单元的荧光信号进行采集。 /p p   数字PCR是一种基于PCR反应(聚合酶链反应)的单分子绝对定量技术。如图1,在数字PCR的过程中:(a) PCR反应体系(含有荧光染料或探针)被分割为数以万计的均一微液滴,(b) 其中部分微液滴内会含有一个或多个模板,(c) 将这些微液滴收集到试管内进行PCR反应,其中含有模板的微液滴会产生扩增产物,由此具有较强的荧光,成为阳性微液滴,(d) 在PCR反应完成后,依次对每个微液滴内的荧光进行检测,(e) 根据微液滴信号的峰值高度,绘制出微液滴荧光分布的散点图,(f) 通过合理的荧光分类阈值将微液滴内的荧光强度数字化,判断出其中具有较强荧光的阳性微液滴(图1f中绿色的数据点,称为“1”)和具有较弱荧光的阴性微液滴(图1f中蓝色的数据点,称为“0”),并通过“1”和“0”的个数来实现绝对定量。因此,与实时定量PCR不同,数字PCR不需要使用标准曲线,即可直接对核酸拷贝数的绝对值进行定量。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d60f8316-ce67-4b06-81fb-9f90f95250f2.jpg" title=" 数字PCR的原理示意图.jpg" alt=" 数字PCR的原理示意图.jpg" width=" 427" height=" 489" style=" width: 427px height: 489px " / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 数字PCR原理示意图 /span /strong /p p   最后通过直接计数或泊松分布公式计算得到样品的原始浓度或含量。 /p p   迄今为止,目前市面上常见的数字PCR仪器主要有两种,根据微反应的形成原理不同,主要分为 “芯片数字PCR”与“微滴数字PCR”两类。 /p p    strong 1.芯片数字PCR /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f4f13392-c096-4bbd-abde-2bd2e3719bb7.jpg" title=" 芯片数字PCR.jpg" alt=" 芯片数字PCR.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 芯片数字PCR原理图 /span /strong br/ /p p    strong 2.液滴数字PCR /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/1f2874f7-5e13-494d-a138-f50fbd7fe98b.jpg" title=" 22.jpg" alt=" 22.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 微液滴数字PCR原理图 /span /strong /p p   液滴数字PCR源于乳液PCR( emulsion PCR) 技术,即将DNA模板与连接引物的磁性微球以极低的浓度(比如单拷贝) 包裹于油水两相形成的纳升至皮升级液滴中进行 PCR 扩增,扩增后的产物富集在磁性微球上,收集破乳后进行测序。通过油水两相间隔得到的以液滴为单位的 PCR 反应体系,比微孔板和 IFC 系统更容易实现小体积和高通量,而且系统简单,成本低,因此成为理想的数字PCR技术平台。 /p p   数字PCR技术主要应用于不稳定性分析、肿瘤早期研究、产前诊断、致病微生物检测、癌症标志物稀有突变检测等研究领域,也用于验证NGS中的低频突变、 DNA甲基化检测、突变多重检测等方向。 /p p   基于数字PCR精准、灵敏、高效的应用场景,巨头公司(伯乐、罗氏和赛默飞)纷纷在这一领域布局,并相继推出数字PCR产品,许多国产数字PCR厂商如泛生子、顺德永诺生物、科维思、 诺禾致源、小海龟科技也争相进入市场,数字PCR大有可为。 /p p    strong span style=" color: rgb(192, 0, 0) " 本篇列出在仪器信息网参展的部分数字PCR仪产品 /span /strong strong span style=" color: rgb(192, 0, 0) " : /span /strong /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/f8fdec21-ba5e-48ef-b8dc-c83c1ba0d937.jpg" title=" 11.jpg" alt=" 11.jpg" style=" text-align: center " / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 伯乐QX200 微滴式数字PCR系统 /span /strong br/ /p p   Bio-Rad的技术主要来源于QuantaLife公司,QuantaLife 利用油包水微滴生成技术开发了微滴式数字PCR技术,这也是最早出现的相对成熟的数字PCR平台,在运行成本和实验结果稳定性方面都基本达到了商品化的标准。2011年,QuantaLife 公司被Bio-Rad公司收购,其微滴式数字PCR仪产品更名为QX100型号仪继续在市场上销售,这个早期型号为dPCR概念的普及和应用领域的拓展发挥了重要作用。2013年该公司又推出了升级型号QX200。 /p p    a href=" https://www.instrument.com.cn/netshow/C293849.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a75e17b8-0d45-4394-9f8e-afb3ad61b6c7.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 赛默飞QuantStudio 3D Digital PCR System /span /strong /p p   Applied Biosystems于2013年也推出了产品,Quant Studio 3D数字PCR系统。采用高密度的纳升流控芯片技术,样本均匀分配至20,000个单独的反应孔中。在整个工作流程中,样本之间保持完全隔离,可以有效地防止样品交叉污染,减少移液过程,简化操作步骤。同时芯片式设计避免了微滴式系统可能面临的管路堵塞问题。作为Applied Biosystems在OpenArray芯片平台之外推出的全新的芯片式数字PCR系统,值得一提的是,这个全新的系统在设计理念上综合考虑了系统稳定性与运行成本因素,直接反映了该系统“适合所有分子生物学实验室使用的数字PCR系统”的市场定位。2013年,Thermo Fisher收购Applied Biosystems。 /p p    a href=" https://www.instrument.com.cn/netshow/C194603.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/35dde0a8-6e31-4ee4-b590-e7284aa84e5e.jpg" title=" 13.jpg" alt=" 13.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " Naica crystal微滴数字PCR系统 /span /strong /p p   NaicaTMcrystal 微滴数字PCR系统是法国Stilla公司开发的下一代核酸绝对定量技术。使用cutting-edge微流体创新型芯片——Sapphire芯片作为数字PCR过程的唯一耗材。样品通过毛细通道网格以30,000个微滴的形式进入2D芯片中,可称作Crystal微滴。PCR扩增实验在芯片上实现。对微滴成像用以检测包含扩增片段的微滴。最后一步是对阳性微滴计数从而得到精准的核酸绝对数量。 /p p    a href=" https://www.instrument.com.cn/netshow/C277808.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/80eaf629-bff9-48a9-af5b-629dcf2eb49c.jpg" title=" 14.jpg" alt=" 14.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 新羿TD-1 微滴式数字PCR系统 /span /strong /p p   新羿TD-1微滴式数字PCR系统由Drop Maker 样本制备仪和 Chip Reader 生物芯片阅读仪及其他相关试剂耗材构成。Drop Maker 样本制备仪采用光、机、电一体化设计,配套具有自主知识产权的微流控芯片,可以将水相样本快速制备成纳升体积的液滴,液滴数与样本体积相关,30微升样本可制备约5万个液滴。液滴尺寸均一,并可在PCR扩增后保持稳定。 /p p   Chip Reader R1生物芯片阅读仪采用光、机、电一体化设计,及激光共聚焦原理,配套具有自主知识产权的微流控芯片,可以准确快速地定位、识别纳升体积微液滴,获取其荧光信号值。经过泊松统计分析,提供研究者所需的阳性、阴性液滴数绝对数值,从而推算出起始靶标核酸分子精确浓度。Chip Reader R1 生物芯片阅读仪兼容Taqman水解探针和EVAGreen检测。 /p p    a href=" https://www.instrument.com.cn/netshow/C289823.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p    span style=" color: rgb(0, 0, 0) " strong 与传统定量 PCR 不同,数字 PCR 通过直接计数的方法,可以实现起始 DNA 模板的绝对定量但是,目前的数字 PCR 技术仍然存在一些不足,制约了该技术广泛应用。例如,数字 PCR 自身特点决定了其分析的样品通量很低,基本每块芯片上万个反应单元都是针对单一样本的分析。而荧光检测技术的局限性限制了多个芯片的同时检测,因此该技术目前在常规基因表达分析中不具备优势。此外,数字PCR技术的灵敏度(分辨率) 和准确性有待进一步提高和优化,在临床诊断中需要进行大量的比较和验证实验(对照传统方法) 。基于精密仪器和复杂芯片的数字 PCR 技术成本高昂,也是制约其广泛应用的一个原因。 /strong /span /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 小结 /span /strong /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/31e8b226-4e10-4fd4-b9e4-40cf1c10a698.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 582" height=" 265" style=" text-align: center width: 582px height: 265px " /    span style=" text-align: center " /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td width=" 121" valign=" top" style=" border-width: 1px border-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " 代次 /span /span /p /td td width=" 151" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px word-break: break-all " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 标准 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第一代) /span /span /p /td td width=" 142" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 定量 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第二代) /span /span /p /td td width=" 146" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 数字 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第三代) /span /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px word-break: break-all " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 定量能力 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 定性 /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 半定量 /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 绝对定量 /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 分子数灵敏度 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 100 /span span style=" line-height: 150% color: rgb(51, 51, 51) " 个分子 /span /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 10 /span span style=" line-height: 150% color: rgb(51, 51, 51) " 个分子 /span /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 1 /span span style=" line-height: 150% font-family: 宋体 color: rgb(51, 51, 51)" 个分子 /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 稀有突变灵敏度 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 10-50% /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 1-5% /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 0.1% /span /p /td /tr /tbody /table p style=" text-indent: 2em " PCR技术已在生命学、医学诊断、遗传工程、法医学和考古学等领域广泛应用,在临床检验中的应用,对疾病的诊断提高到基因水平,众多的疑难病症得到及时确诊和有效的治疗。 br/ /p p   对于不同的应用场景,三代PCR各有优势,但是可以看出,数字PCR具有绝对定量的优势,是未来临床标准化分子诊断的首选技术。 /p p   相信在未来的几年里将会不断有新的技术和产品出现,不断扩展其应用范围,使之成为新一代分子诊断工具。 /p p strong 附: a href=" https://www.instrument.com.cn/zc/133.html" target=" _self" 仪器信息网PCR仪专场 /a /strong /p
  • 热分析仪核心部件原理简介
    p   常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。 /p p   热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 电子天平 /strong /span /p p   电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。 /p p   电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示: /p p style=" text-align: center " F=KBLI /p p   其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。 /p p   无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热电偶传感器 /strong /span /p p   热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。 /p p   热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。 /p p   热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 /p p   热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 位移传感器 /strong /span /p p   位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。 /p p   LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p
  • 普洛帝药典0903不溶性微粒分析仪光阻法检测原理解读
    不溶性微粒分析仪阻法检测原理药典规定检测原理—光阻法满足《美国药典》、《中国药典》、《药包材标准》及输液器具 GB8368-2018 等要求。待测液体流过流通池,流通池两侧装有光学玻璃,激光器的光束通过透镜组准直 穿过流通池,照射在光陷阱上。若待测液体中没有微粒,则光电探测器接收不到光信号;若液体中有微粒,与液体流向垂直的入射光,由于被微粒阻挡而减弱,因此由传感器输出的信号降低,这种信号变化与微粒的截面积成正比。根据信号的幅度和个数可以对液体中的微小微粒进行计数检测。图.光阻法检测原理示意图PULUODY 的创新型双激光窄光微粒检测技术不仅对微粒的探测范围宽广更具有精度高、重复性好的特点,让任何微粒无处遁形。
  • 一文读懂丨热裂解-气相色谱-质谱联用技术PY-GCMS
    01、 PY-GCMS介绍热裂解-气相色谱-质谱联用技术(PY-GC-MS)是将热裂解技术和气相色谱-质谱联用技术相结合的分析方法。由于一定条件下高分子材料遵循一定的规律裂解,即特定的样品能够产生特征的裂解产物及产物分布,据此可对原样品进行表征,其原理是将微量的高分子样品在惰性气氛中快速加热而生成裂解产物,直接将裂解产物导入气相色谱系统进行分离,然后进入质谱仪进行检测,通过对高温裂解后的特征碎片离子进行定性定量分析,判定样品组成。▷ PY-GCMS构成a.热裂解器(PY):在惰性气氛下,将高分子样品快速加热生成可挥发的小分子裂解产物;b.气相色谱(GC):将各种裂解产物在色谱柱中彼此分离;c.质谱(MS):为检测器,按质荷比(M/Z)不同,根据MS谱图检索,对裂解产物进行定性定量。▷ PY-GCMS应用>分离效能高,能对样品快速、有效的识别>灵敏度高,样品用量很少>分析速度快,信息量大>适用于各种形式的样品,特别是难溶和高沸点物质,且一般不需预处理▷ PY-GCMS优点>高分子分析:如胶粘剂、橡胶、油漆、涂料及塑料材质鉴别>高分子添加剂分析:如抗氧剂、交联剂、光引发剂、抗静电剂等>高分子痕量物质分析>微塑料的定性定量分析02、PY-GCMS检验标准● GB/T39699-2020 橡胶聚合物的鉴定 裂解气相色谱-质谱法● GB/T29613.1-2013橡胶 裂解气相色谱分析法第1部分:聚合物(单一及并用)的鉴定● GB/T39560.8-2021/IEC 62321-8-2017电子电气产品中某些物质的测定第8部分:气相色谱-质谱法(GC-MS)与配有热裂解/热脱附的气相色谱-质谱法(Py/TD-GC-MS)测定聚 合物中的邻苯二甲酸酯● SN/T4565-2016电子电气产品聚合物材料中三(2-氯乙基)磷酸酯的测定 裂解-气相色谱-质谱定性筛选法● SN/T5297-2021电子电气产品聚合物材料中六溴环十二烷的测定 裂解-气相色谱-质谱定性筛选法03、PY -GCMS检测的因素影响☑ 裂解温度:高分子材料的裂解机理与其内在结构和化学组成有关,裂解温度过高或过低都难以形成反映高聚物结构的裂解产物特征谱图。因此要通过实验去摸索,使样品达到瞬间裂解。针对高聚物的研究一般可以从500℃开始试,绝大多数高聚物的裂解温度在500~600℃之间。如果要分析高分子材料中一些低沸点的添加剂,可以降低温度。☑ 裂解器的洁净程度:裂解过程产生的一些残留物或碳化物容易粘附在裂解器内壁,会对后续样品的测试产生干扰,因此需要定期洁净裂解器,并做好空白对照试验,充分控制好测试过程中的干扰因素。☑ 样品量:GC-MS灵敏度非常高,需要的样品量非常少,因此在测试的过程中需要控制好样品量,过多的样品在裂解的过程中不一定都能分解,会残留在裂解器里,影响下一个甚至是好几个样品的测试分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制