当前位置: 仪器信息网 > 行业主题 > >

海洋的原理

仪器信息网海洋的原理专题为您提供2024年最新海洋的原理价格报价、厂家品牌的相关信息, 包括海洋的原理参数、型号等,不管是国产,还是进口品牌的海洋的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合海洋的原理相关的耗材配件、试剂标物,还有海洋的原理相关的最新资讯、资料,以及海洋的原理相关的解决方案。

海洋的原理相关的论坛

  • 布鲁的HI90高光谱成像系统核心原理与咱们海洋是否一样

    我看了咱们海洋的光谱仪,好像也是光谱成像的原理。哪位出来裁判一下?虽然BLK的宣传很牛,还用了迈克尔干涉仪(我记得这个好像是FTIR核心器件之一),但它那个已经被定死了,但对于用户的分析来说,海洋的光谱仪应用似乎更灵活。不知道这样理解对不?

  • 基于紫外荧光原理的非接触式水中油监测方法在海洋油田的应用研究

    基于紫外荧光原理的非接触式水中油监测方法在海洋油田的应用研究

    基于紫外荧光原理的非接触式水中油监测方法在海洋油田的应用研究崔凯(正大环保 水资源预警事业部) 随着经济快速发展,油类污染物对水质的污染愈发严重,引起了相关环保部门以及国家的大力重视。 在水质监测行业内,通常将水中油类物质的检测称为水中油检测,较常见的的检测方法包括了红外光度法、紫外分光光度法以及紫外荧光法。目前,国际海洋组织已经将紫外荧光法作为海洋水体中油类检测的标准方法,并且在俄罗斯,也已将紫外荧光法作为水中油的标准检测方法。 基于紫外荧光法,市面上已有较多的相关监测设备,但大多数都是通过接触式的采样方式实现在线监测。此类设备最大的弊端体现在它的采样方式上,紫外荧光法作为一种光致发光的原理依据,光信号在检测过程中的传递能力很大程度上决定了相关设备的检测性能,而接触式的采样方式恰恰会对光学镜片带来严重污染,从而影响到设备的长期、稳定运行。 为了应对这一技术难点,我们在光学结构、信号处理、机械结构、电气结构等方面潜心研究的前提下,研制了非接触式水中油监测仪,从源头上避免了以上问题。图1为非接触式水中油监测仪的原理示意图。 http://ng1.17img.cn/bbsfiles/images/2017/03/201703211134_01_2892436_3.png图1非接触式水中油监测仪原理示意图 为了对紫外荧光法在海洋油田监测领域的应用进行推广,我们将非接触式水中油监测仪与CH型含油分析仪(《碎屑岩由藏注水水质指标及分析方法》)进行了现场比对实验,实验地点为中海油渤海湾某钻井油矿平台油矿平台。实验数据:日期时间超滤出口污水含油量(《碎屑岩油藏注水水质指标及分析方法》)(mg/L)超滤出口污水含油量(非接触式水中油监测仪)(mg/L)误差值/mg/L2017.2.2515:00A1X1Z115:30A2X2Z216:00A3X3Z316:30A4X4Z417:00A5X5Z517:30A6X6Z618:00A7X7Z718:20A8X8Z82017.2.268:00A9X9Z99:00A10X10Z1010:00A11X11Z1111:00A12X12Z1214:00A13X13Z1315:00A14X14Z1416:00A15X15Z1517:00A16X16[

  • 请教一下,关于海洋学院的功能室布局

    校里要新建一层海洋学院实验室,但是我对海洋学院必须有的功能室不是很了解,学院里要求实验室分为三个方向,地质与工程、生物与生态、监测与环境,那请问一下这样需要什么样的功能室?谢谢大家了!

  • 【海洋之心】海洋光纤光谱的认识历程

    【海洋之心】海洋光纤光谱的认识历程

    海洋光纤光谱的认识历程提起海洋光纤光谱,真的很陌生,(毕竟来中国才5年,再说也没真正使用过)。虽说鄙人做原子吸收光谱接近10年,对光谱也算略有了解,譬如原子吸收,原子荧光,分子荧光,紫外等都操作的很熟了,但是面对海洋光纤光谱这个微型光谱时,却一脸茫然,到底是神马神秘的光谱呢?首先要感谢仪器信息网,如果没有这个网络平台,我不会这么快了解和认识海洋光纤光谱;如果有这个网络平台,而我恰恰又不是做光谱的分析者,那么估计我也不会对光谱感兴趣。因此,有了信息网,有了我的化学专业,有了我的分析经验,有了光谱的操作经历,我又恰好注册了账号,也做了原子吸收光谱的一个小版主,这种种的有了的结合,造就了我认识海洋,了解光纤,熟悉光谱。这也许就是所谓的冥冥中的上天安排,面对海洋光纤光谱,先是好奇,后面又有想了解的欲望。因此,就这样,莫名其妙的加入到了光纤光谱版面,并且入住为一个居民。阅读了版规,看到了海洋之心征文活动,虽然我没有使用过光纤光谱,也尚未正式申请试用,但,我在充满好奇中,对海洋光纤光谱进行了一个月的认识和了解。在这里突破常规,写出心得,留下思绪,作为自己的原创,也作为海洋之心征文的原创,因为这是为了海洋光纤光谱而整理,也为了让和我一样的版友能更进一步地了解光纤光谱而整理,这就是和海洋光纤光谱所结的缘分。也许,这是网魔附身的结果。Tangtang老师说的很好,网络不是全部,生活中有许多比网络更好的东西,需要我们自己去体会,自己去把握,不要因为错过了日出而伤感,因为还有晚霞,还有明月,还有闪耀的星星……。写心得的最终目的:让和我一样对海洋光纤光谱感兴趣,但都很忙碌,没有时间仔细了解海洋光纤光谱的版友快速了解,分享经验,共同探讨,引起共鸣,共同关注海洋光纤光谱。海洋光学集中运用了大量的光子学科技,包括先进的微型光谱仪,强健的过程控制系统,光纤光化学传感,薄膜及其光学元器件。他们的产品富于创新,平均每星期都有一种新产品问世,很神速,这个没有创新的科研精神和强劲的科研团队是永远无法做到的。海洋光学已经销售了200,000台以上的光谱仪,它们被应用于不同的领域。他们的光谱仪及其新技术已传送至月球,赶赴火星,深埋于活火山,穿梭于热带雨林,攀登于珠峰之巅(试想,从太空到地下,从陆地到海洋,他们无处不在,浩瀚星空,茫茫宇宙中,我们地球人应该可窥海洋光纤光谱之全貌,虽说在全球销售200,000台件也不算很多,但应用领域之广,非一般仪器所能企及)。海洋光学是世界公认的微型光纤光谱仪的发明者,他们公司依靠“一切皆有可能”在同行业中已建立了良好的口碑。 他们将针对终端客户的应用需求提供可靠、便利的解决方案。海洋光学生产的光谱仪已被广泛应用于火山观测、 太空探索、疾病诊断和教育教学等领域。 无论您是身处实验室、教室、野外或者工业生产线上, 海洋光学都能为终端客户提供解决问题的最优方案。(能揣摩客户的心,想客户所想,为客户量身式的订做,一切为了客户需求而创新,只有想不到的,没有做不到的,的确“一切皆有可能”,可敬!无论身处何地,他们都能根据客户的提供解决问题,面对各个领域的要求设计创新。充分说明了海洋的科研团队是个善于创新,敢于挑战,勇于拼搏的强劲团队,能为各个领域设计制造,那么市场前景是多么的大,我们可以想象得到,因此,祝福海洋光纤光谱越走越远!)说了一大堆废话,但都是肺腑之言。现在步入正题,其实海洋光纤光谱开坛后也参与了不少讨论,但是大家到底了解多少,中国到底有多少客户使用海洋光纤光谱,海洋光纤光谱到底如何开拓市场,何去何从,等等,冲浪版主也是一一做了些许回应,中国市场几千个客户,目前开拓市场以高校合作、大型实验室合作的模式进行等等……鄙人经过一个多月的了解,现对海洋光纤光谱有了一个小小的了解,在这里整理出来,作为海洋之心征文的另类原创作品,发布上来,不管模式如何,因为我都打破了常规,打破了海洋之心征文的常规,但是,我相信,我的打破常规的发布,将是一个改革,一个全新的改革,也符合市场规律。现在,让我们一起了解海洋光纤光谱。一、重量级的新闻1.海洋光学(Ocean Optics)氧传感器及pH传感器通过美国药典六级(USP ClassicVI)认证;(这个认证的确的不容易,光纤光谱能如此,了不起,也为中国药典检测使用光纤光谱埋下了伏笔,做了铺垫)2.《时代杂志》评选出2010年十大科学发现第3位:月球有水;(登上月球的贡献,名列第三,不可小觑,因此2011年也就有了海洋光学赶赴火星的这个特大新闻)3.Jaz-SPL脚本语言为海洋光学Jaz模块光谱仪提供全新支持;(专门支持了海洋光学的脚本语言,赞一个)4.古玩界玩高科技:北京古玩专家采用光谱仪进行古玩鉴定;(能准确快速鉴定古玩,对于全球的古玩界都是一个福音)二、重量级的应用

  • 求科普:海洋光学R1000-4探头如何改善有色及浑浊环境中的pH响应

    官网上看到,海洋光学新型R1000-4反射探头将极大提高pH测定效率。R1000-4与海洋光学非侵入式反射pH感应补丁搭配使用,可以克服使用单一方式检测的弊端,在浑浊或有色环境中实现精确的pH反应。问题:如何进行pH测定?反射探头的工作原理是什么?谢谢老师们了。。。

  • 海洋光学2013年春耕之“ACCUMAN推广培训会”圆满落幕

    海洋光学2013年春耕之“ACCUMAN推广培训会”圆满落幕

    2013年2月1日,海洋光学“ACCUMAN推广培训会”在上海工厂成功举办,来自全国的20余名各级分销商参加了此次培训。自2012年8月海洋光学正式发布了新一代针对药厂原辅料检验的便携式拉曼小巨人“ACCUMAN”以来,短短半年,便以其更高的灵敏度和优良的信噪比,以及对棕色瓶内药物的快速检验这一难题的克服,在业内赢得了一致好评。http://ng1.17img.cn/bbsfiles/images/2013/03/201303071306_428980_2475975_3.jpg与会人员合影留念海洋光学亚太区销售市场总监范永忠首先向与会人员致欢迎辞并介绍了相关负责团队,随后,海洋光学亚太区技术支持主管文豪博士从拉曼技术开始,依次介绍了ACCUMAN的原理、相关技术背景及产品演示。接着,海洋光学全球产品市场经理宋宏平从市场的角度为与会人员解析了拉曼的市场状况、ACCUMAN的应用及未来的发展方向,并和与会人员就客户关注的热点课题做了深入交流。http://ng1.17img.cn/bbsfiles/images/2013/03/201303071306_428981_2475975_3.jpg销售市场总监范永忠总监向与会人员致辞并介绍相关负责团队http://ng1.17img.cn/bbsfiles/images/2013/03/201303071306_428982_2475975_3.jpg技术支持主管文豪博士介绍拉曼相关技术原理在交流过程中,各位发表者均通过有奖问答的方式,和与会人员进行了非常良好的的互动,现场氛围相当活跃。多位分销商表示,通过这次培训和考核,他们获得了更为专业的知识和技能,从而能够为客户提供更高品质的服务。海洋光学亚太区销售市场总监范永忠表示:“通过与各级分销商的交流,海洋光学获得了良好的市场反馈,相信在不久的将来我们就会看到更加贴心和强大的第二代ACCUMAN。”

  • 另解海洋光学

    海洋光学是光学与海洋学之间的边缘科学。它主要研究海洋的光学性质、光辐射与海洋水体的相互作用、光在海洋中的传播规律,以及和海洋激光探测、光学海洋遥感、海洋中光的信息传递等应用技术有关的基础研究。海洋光学的发展简史 早在19世纪初,就有人用透明度盘目测自然光在海中的铅直衰减。不过直到19世纪末,海洋学家才开始注意研究海洋的光学性质,并结合海洋初级生产力的研究,用光电方法测量海洋的辐照度。到了20世纪30年代,瑞典等国的科学家设计制造了测定海水的线性衰减系数、体积散射系数和光辐射场分布的海洋光学仪器,进行了一系列现场测量。 从第二次世界大战后到20世纪60年代中期,是海洋光学的形成时期,人们研制了各种测定海洋水体光学性质的海洋光学仪器,对各大洋光学性质进行了现场测量和调查。

  • 海洋学家拟建海洋酸化国际监测网络

    中国科技网讯 据《自然》网站近日报道,全球海洋学家努力追踪海洋酸化状况的计划正在逐步成型,他们本周拟定将搭建国际监测网络,借助远程传感器等测量二氧化碳所致的海洋酸化对于水生生物的影响。 海洋酸化是指由于吸收大气中过量的二氧化碳,导致海水酸碱度降低的现象。海洋表层水的pH值约为8.2,呈弱碱性。研究人员估计,自19世纪工业革命以来,海洋的酸度已经上升了30%。以此种酸化速度,2100年这一数字或将下降到7.8。海水酸性的增加,将改变海水化学的种种平衡,使依赖于化学环境稳定性的多种海洋生物乃至生态系统面临巨大威胁,例如,越来越酸的海水能够破坏珊瑚和牡蛎贝壳中包含的碳酸钙,或是损坏某些海洋浮游生物的骨骼等。因此,科研人员需要更清晰的数据来评估海洋酸化严重的地区,并利用模型对未来的发展趋势进行推测。 美国国家海洋和大气管理局下属太平洋海洋环境实验室的理查德费利表示,科研人员经过数十年的巡航考察发现,大部分的海水酸化发生在少数的几个公海地点,但这种监测方式十分昂贵。他说:“我们正在尝试建立大量具有自动化系泊设备的监测点,其可以通过卫星将数据传输给研究人员,使科学家基于相关数据验证海洋的酸化模型。”费利等人期望,监测点的数量能够在未来10年从20个攀升至60个,形成追踪海洋酸化状况的全球监测网络,并使每个国家都能支持自己的酸化监测,令酸化监测成为巡航舰载测量的例行部分。这一监测计划将由海洋酸化国际协调中心领导,由国际原子能机构主持。 费利坦言,目前沿海生态系统的监测功能最弱,然而这些区域却最需要对于海洋酸化程度的追踪。以太平洋西北地区为例,酸化程度可因上升流携带的大量溶解的二氧化碳而增强,致使牡蛎培育的收益率在2005年至2008年间下降80%左右。而当地研究小组提供的有关上升流的监测设备,可使培育机构及时调整运营部署,避开酸性海水的突袭。这一战略能在2011年为太平洋西北地区的牡蛎产业节省3500万美元,可谓是监察观测系统十分实用的一个方面。(张巍巍) 《科技日报》(2012-07-12 二版)

  • 南海海洋研究所热带海洋生物资源与生态重点实验室研究团队:痕量铝影响海洋碳循环与气候变化研究获进展

    近日,中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究团队联合德国赫姆霍兹基尔海洋研究中心、英国帝国理工学院、加拿大国立科学研究院等,采用痕量金属洁净培养技术、[font=等线][sup][size=13px]55[/size][/sup][/font]Fe同位素示踪方法,开展了多项实验,发现痕量铝添加可以显著提高受铁限制硅藻的叶绿素合成速率、光合效率和生长率。该研究揭示了痕量铝有益于铁限制海洋硅藻叶绿素合成的新现象,为铁铝假说提供了新证据,也为在南大洋等铁限制海域开展海洋铝施肥负排放技术研究提供了重要基础。相关研究成果以Promoting effects of aluminum addition on chlorophyll biosynthesis and growth of two cultured iron-limited marine diatoms为题,发表在《湖沼与海洋》(Limnology and Oceanography)上。[align=center][img=,600,220]https://img1.17img.cn/17img/images/202404/uepic/1297eec2-03f0-4aa1-84f7-6961c9b394fe.jpg[/img][/align]铝是地壳中含量最高的金属元素,普遍存在于各种环境与生物体。然而,目前尚未发现铝具有确切的生物学功能。铝在淡水和土壤中的浓度可达mmol/L,相较而言,海水中溶解铝的浓度要低几个数量级,常处于痕量水平。中国科学院南海海洋研究所热带海洋生物资源与生态重点实验室研究团队从十多年前开始关注铝添加对海洋浮游植物生长的影响,开展了一系列现场和室内实验研究,发现痕量铝添加可促进海洋浮游植物固碳,增强生源碳向深海输出、埋藏封存,从而影响海洋碳汇效能,进而调节气候变化。有证据表明,过去80万年,通过沙尘沉降输入到南大洋的铝与铁通量与冰期-间冰期气候回旋存在密切关联。通常认为,南大洋浮游植物生长受铁限制,铁输入的变动被认为是调节碳汇与气候变化的关键因子。研究人员发现,铝与铁协同作用,很可能是南大洋等海域碳输出、埋藏的关键,因而提出了“铁铝假说”,指出铝与铁一样,可能是调控海洋碳循环和碳汇形成的关键因子,在冰期-间冰期气候变化过程发挥重要作用。研究团队证实痕量铝添加显著提高硅藻净固碳量,降低颗粒有机碳分解速率。根据铁铝假说,研究团队提出“海洋铝施肥”观点,认为这有可能发展成为潜在高效的负排放技术与方法,并预测南大洋等受铁限制的高营养盐低叶绿素海域是开展铝施肥及铁铝同时施肥的理想区域。然而,在大规模现场施肥实验之前,仍需要在不同时空尺度上检验海洋铝施肥的效能及其潜在环境影响。痕量铝添加如何影响铁限制浮游植物尤其是硅藻的生长,是需要解答的关键问题之一。这些结果表明,铝可能会促进叶绿素的生物合成,有利于叶绿素受限硅藻的光合效率和生长。我们推测,添加 Al 可通过促进超氧化物介导的细胞内叶绿素生物合成,提高细胞内铁的利用效率。研究工作得到国家留学基金、广东省自然科学基金、南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项等的支持。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【求助】2007 海洋监测规范

    急求助2007海洋监测规范的完整版: GB 17378.1-2007 海洋监测规范 第1部分:总则 GB 17378.2-2007 海洋监测规范 第2部分:数据处理与分析质量控制 GB 17378.3-2007 海洋监测规范 第3部分:样品采集、贮存与运输 GB 17378.4-2007 海洋监测规范 第4部分:海水分析 GB 17378.5-2007 海洋监测规范 第5部分:沉积物分析 GB 17378.6-2007 海洋监测规范 第6部分:生物体分析 GB 17378.7-2007 海洋监测规范 第7部分:近海污染生态调查和生物监测chailang上传的只是范本,正文只能看1页,不完整的东东,最好不要上传

  • 海洋光学光谱仪用于希望宝石与海洋之心的检测

    在这里分享一下2005年美国海军实验室用海洋光学的光谱仪测试著名的希望宝石与海洋之心的应用案例。先介绍一下背景吧:希望宝石(HOPE DIAMOND): 现存最大的蓝色钻石,重45.52克拉。传说是印度一座神像的眼睛之一,后被法国冒险家盗走,被盗走的第二天神庙的人下了诅咒,诅咒所有起于私心而拥有宝石的人。而随后拥有希望宝石的人也都如被诅咒一般遭到了厄运。当然这只是传说,详细地介绍见:http://zh.wikipedia.org/wiki/%E5%B8%8C%E6%9C%9B%E9%92%BB%E7%9F%B3。 这颗钻石有个非常特别的地方:当用UV灯照射时,它如其他的蓝色钻石一样,会呈现淡淡的磷光,但移走UV灯后,它的磷光会很快转变为红色,如同从火里取出的烧热的碳的颜色一般,而且会持续较长的时间。以前人们只是把这个现象拍摄下来过,但还从未进行过科学分析。海洋之心(BLUE HEART): 这颗蓝色钻石我想我不用介绍了,泰坦尼克号上ROSE戴的那颗就是,如果有人没看过泰坦尼克的就去墙边划圈圈吧。海军实验室利用海洋光学的光谱仪对这两颗钻石以及其他的蓝色钻石进行了吸收、拉曼、磷光、荧光以及其他光谱分析。最终发现希望宝石出现这个现象是因为其磷光颜色是由500和660nm这两个波长的磷光共同组成的,这两个磷光峰的强度比例不一样就导致了他们呈现不同的颜色,而在被UV灯照射后,希望宝石的500nm的磷光峰很快就衰减了,而660nm的磷光峰却持续了很长时间,因此呈现很长时间的红色。

  • 如何理解海洋中的重金属污染

    如何理解海洋中的重金属污染

    海洋重金属污染(marine heavy metal pollution),指某些比重大的金属经各种途径进入海洋而造成的污染。 由于人类活动将重金属导入海洋而造成的污染。目前污染海洋的重金属元素主要有汞、镉、铅、锌、铬、铜等。它的来源有哪些?危害体现在哪,如何防止?http://ng1.17img.cn/bbsfiles/images/2013/09/201309262229_467725_2140715_3.jpg

  • NMT能为海洋研究贡献什么?|旭月中标中科院南海海洋所

    NMT能为海洋研究贡献什么?|旭月中标中科院南海海洋所

    [align=left]2018年6月27日,[b]美国扬格/旭月北京非损伤微测系统,顺利[/b][color=#ff0000][b]中标[/b][/color][b]中国科学院南海海洋研究所[/b]。中科院南海海洋研究所主要致力于热带海洋环境动力与生态过程、边缘海地质演化与油气资源、热带海洋生物资源可持续利用与生态保护、海洋环境观测体系及其关键技术的研究。NMT作为一个通过离子分子流速检测,揭示活体生物与外界环境进行信息交换的工具,它到底能为海洋研究带来哪些新的成果与机遇呢?[/align][align=left][b]1.基于生物信号的水环境监测系统[/b][/align][align=left]尽管生物检测的理念自古有之,旭月“水安全速检仪”的创新在于,放弃了国外目前仍在使用的斑马鱼等材料,创造性地找到了更适合中国国情的指示生物-水丝蚓,不仅实现了对西方检测技术的超越,而且更简单、更灵敏、成本更低,检测速度也更快,能够对水安全进行实时互联网预警和日常监测。[/align][b]2.海洋富营养化治理研究[/b]2008年北京奥运会前夕,青岛奥帆赛场海域出现的大量浒苔曾让我们为帆船比赛能否顺利举行捏了一把汗。彼时,旭月公司受邀携非损伤微测系统紧急赶赴青岛,进行浒苔生长机理的量化研究,为浒苔的控制和清除提供决策依据。研究结果显示,浒苔在爆发前夕,其活体个体的H[sup]+[/sup]流、O[sub]2[/sub]流,会出现特有的谱图。[b]3.海洋水产(鱼类)研究[/b]旭月研究院研究顾问、台湾师范大学的林豊益教授,长期从事海洋酸化对鱼类生理指标的影响。林教授利用NMT在鱼类生理研究领域,已发表[b][color=red]SCI[/color][/b]文章11篇,相关成果介绍请参考下方链接。除了上文提到的斑马鱼研究外,对青鳉(F2013-017、F2012-011、F2010-004),虹鳟(F2000-016),罗非鱼(F2009-004)等经济鱼类,也有诸多的研究成果。可以前往旭月研究院,自行搜索文献编号下载全文。[b]4.海洋水产(植物)研究[/b]海藻组织培养是品种改进、遗传工程中重要的微体繁殖工具。但限于微体繁殖研究的现有机制,其发展要远落后于高等植物组培研究。江篱,琼胶的主要原料,是食品工业中的重要原材料。国内学者利用NMT,研究了江篱移植栽培后,不定枝形成的机制。[b]5.海洋生物医药[/b]NMT虽然在医药研究领域成果有限,但鉴于NMT可对活体样品进行研究这一独特的技术优势,医药领域的科研机会巨大,在海洋生物医药研究上,同样如此。截止2018年5月份,国内学者发表的[color=#d92142][/color]NMT相关[b][color=#ff0000]SCI[/color][/b]文章共[color=#ff0000][b]216[/b][/color]篇,[b]总影响因子[/b]为[color=#ff0000][b]846.033[/b][/color]。[b][color=#c00000]注:SIET、MIFE、SVET、SPET等技术名称,已经统一为Non-invasive Micro-test Technology,中文名“非损伤微测技术”,简称NMT。[/color][/b][align=center][b]想要了解更多的NMT文献,请自助获取论文集[/b][/align]

  • 海洋世界 21

    [b][color=#cc0000]海洋世界 21[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251911467442_6153_1841897_3.png[/img]

  • 海洋世界 20

    [b][color=#cc0000]海洋世界 20[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251910301992_3974_1841897_3.png[/img]

  • 海洋世界 17

    [b][color=#cc0000]海洋世界 17[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251907027530_5888_1841897_3.png[/img]

  • 海洋世界 7

    [b][color=#cc0000]海洋世界 7[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251852070881_9828_1841897_3.png[/img]

  • 海洋世界 19

    [b][color=#cc0000]海洋世界 19[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251909248287_648_1841897_3.png[/img]

  • 海洋世界 9

    [b][color=#cc0000]海洋世界 9[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251854077427_7789_1841897_3.png[/img]

  • 海洋世界 8

    [b][color=#cc0000]海洋世界 8[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251853134420_8460_1841897_3.png[/img]

  • 海洋世界 10

    [b][color=#cc0000]海洋世界 10[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251855289478_2733_1841897_3.png[/img]

  • 海洋世界 14

    [b][color=#cc0000]海洋世界 14[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251902043112_5137_1841897_3.png[/img]

  • 海洋世界 5

    [b][color=#cc0000]海洋世界 5[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251849484550_7613_1841897_3.png[/img]

  • 海洋世界 11

    [b][color=#cc0000]海洋世界 11[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251856312824_553_1841897_3.png[/img]

  • 海洋世界 15

    [b][color=#cc0000]海洋世界 15[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251903508415_9351_1841897_3.png[/img]

  • 海洋世界 13

    [b][color=#cc0000]海洋世界 13[/color][/b][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251859507934_6486_1841897_3.png[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制