当前位置: 仪器信息网 > 行业主题 > >

测温枪原理

仪器信息网测温枪原理专题为您提供2024年最新测温枪原理价格报价、厂家品牌的相关信息, 包括测温枪原理参数、型号等,不管是国产,还是进口品牌的测温枪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测温枪原理相关的耗材配件、试剂标物,还有测温枪原理相关的最新资讯、资料,以及测温枪原理相关的解决方案。

测温枪原理相关的论坛

  • 考考你:该护士小姐用的该魚跃牌电子测温计是什么原理的?

    我在医院陪护,看见护士小姐用一魚跃牌电子测温计为病患测体温,但奇怪的是她不是人们用额温枪那样,与被测者的额头或手臂有一定距离,而是紧贴着被测者的额头或手臂。我当时只看见有魚跃牌的标志,但没看到型号,也不敢拍照,因为病患在医院毕竟是弱势群体,得罪医护人员,没好果子吃哦! 那该魚跃牌电子测温计,其测温原理是什么?该护士小姐又为什么这样操作?[font=&] 量友[/font][font=宋体][color=#444444]知行合一普朗克~说:[/color][/font]只要是瞬时测温的,还是辐射测温、还是额温枪。

  • 新冠已过,闲置的手持测温枪有其妙用!

    新冠已过,闲置的手持测温枪有其妙用!

    [b][color=#cc0000]新冠已过,家里的手持测温枪就闲置了,送人吧,发现家家都备有测温枪,丢了吧,东东是好的,又是花银子买的,怪可惜的,怎么办?本人有其妙用,这种医用手持测温枪的测温范围在34-42.9度,把它用来测量仪器电路板的电子元件发热情况,非常不错,通常仪器内大多电子元件都会发热,所以[/color][color=#cc0000]可以[/color][color=#cc0000]用[/color][color=#cc0000]测温枪[/color][color=#cc0000]发挥[/color][color=#cc0000]测温[/color][color=#cc0000]功能,[/color][color=#cc0000]红外光束点对点[/color][color=#cc0000]精准[/color][color=#cc0000]测量[/color][color=#cc0000]某个电子元件的发热情况,[/color][color=#cc0000]本人用此法进行仪器维修,确实发现了一些温度异常(如温度超过42.9度测温枪报警)的故障元件,给维修带了快速判断故障的[/color][color=#cc0000]便捷方法,真可谓是一举两得![/color][color=#cc0000][/color][color=#cc0000]此法确实实用有效,大家不要闲着自己家里的测温枪了,让测温枪再次发挥它的余热吧![/color][color=#cc0000]大家对此有什么看法,欢迎讨论![/color][color=#cc0000][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2023/05/202305231759357132_6635_1841897_3.jpg!w500x500.jpg[/img][/color][/b]

  • 红外测温仪工作原理及应用(一)

    红外测温技术在产品质量控制和监测、设备在线故障诊断、安全保护以及节约能源等方面发挥了正在发挥着重要作用。近二十年来,非接触红外测温仪在技术上得到迅速发展,性能不断提高,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。   Baytek(雷泰)公司非接触红外辐射测温产品包括便携式、在线式和扫描式三大系列,并备有各种选配件和相应的计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确地选择红外测温仪型号对用户来说是十分重要的。这里仅提出如何正确选择测温仪型号的思考步骤,供购买者参考。 外测温仪工作原理   了解组外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是为了帮助用户正确地选择和使用红外测温仪。   一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射特性一辐射能量的大小及其按波长的分布一与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 黑体辐射定律:   黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。 物体发射率对辐射测温的影响:   自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。 影响发射率的主要因素在:   材料种类、表面粗糙度、理化结构和材料厚度等。   当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例:双色测温仪与两个波段的辐射量之比成比例。 红外系统:   红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。 选择红外测温仪可分为三个方面:   性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、响应时间等 环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等 其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。随着技术和不断发展,红外测温仪最佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。 确定测温范围:   测温范围是测温仪最重要的一个性能指标。如Raytek(雷泰)产品覆盖范围为-50℃-+3000℃,但这不能由一种型号的红外测温仪来完成。每种型号的测温仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。 确定目标尺寸:   红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。   对于Raytek(雷泰)双色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,没有充满现场,测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,都不会对测量结果产生影响。甚至在能量衰减了95%的情况下,仍能保证要求的测温精度。对于目标细小,又处于运动或振动之中的目标 有时在视场内运动,或可能部分移出视场的目标,在此条件下,使用双色测温仪是最佳选择。如果测温仪和目标之间不可能直接瞄准,测量通道弯曲、狭小、受阻等情况下,双色光纤测温仪是最佳选择。这是由于其直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量,因此可以测量难以接近、条件恶劣或靠近电磁场的目标。 确定光学分辨率(距离及灵敏)   光学分辨率由D与S之比确定,是测温仪到目标之间的距离D与测量光斑直径S之比。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪。光学分辨率越高,即增大D:S比值,测温仪的成本也越高。 确定波长范围:   目标材料的发射率和表面特性决定测温仪的光谱响应或波长。对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的最佳波长是近红外,可选用0.18-1.0μm波长。其他温区可选用1.6μm、2.2μm和3.9μm波长。由于有些材料在一定波长是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用10μm、2.2μm和3.9μm(被测玻璃要很厚,否则会透过)波长 测量玻璃内部温度选用5.0μm波长 测低区区选用8-14μm波长为宜 再如测量聚乙烯塑料薄膜选用3.43μm波长,聚醋类选用4.3μm或7.9μm波长。厚度超过0.4mm选用8-14μm波长 又如测火焰中的C02用窄带4.24-4.3μm波长,测火焰中的C0用窄带4.64μm波长,测量火焰中的N02用4.47μm波长。 确定响应时间:   响应时间表示红外测温仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。bytek(雷泰)新型红外测温仪响应时间可达1ms。这要比接触式测温方法,快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外测温仪。对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。因此,红外测温仪响应时间的选择要和被测目标的情况相适应。 信号处理功能:   测量离散过程(如零件生产)和连续过程不同,要求红外测温仪有信号处理功能(如峰值保持、谷值保持、平均值)。如测温传送带上的玻璃时,就要用峰值保持,其温度的输出信号传送至控制器内。 环境条件考虑:   测温仪所处的环境条件对测量结果有很大影响,应加以考虑、并适当解决,否则会影响测温精度甚至引起测温仪的损坏。当环境温度过高、存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。在确定附件时,应尽可能要求标准化服务,以降低安装成本。当烟雾、灰尘或其他颗粒降低测量能量信号,双色测温仪是最佳选择。在噪声、电磁场、震动或难以接近环境条件下,或其他恶劣条件下,光纤双色测温仪是最佳选择。   在密封的或危险的材料应用中(如容器或真空箱),测温仪通过窗口进行观测。材料必须有足够的强度并能通过所用测温仪的工作波长范围。还要确定操作工是否也需要通过窗口进行观察,因此要选择合适的安装位置和窗口材料,避免相互影响。在低温测量应用中,通常用Ge或Si材料作为窗口,不透可见光,人眼不能通过窗口观察目标。如操作员需要通过窗口目标,应采用既透红外辐射又透过可见光的光学材料,如应采用既透红外辐射又透过可见光的光学材料,如ZnSe或BaF2等作为窗口材料。 操作简单,使用方便:   红外测温仪应该是直观的,操作简单,易于被操作人员使用,其中便携式红外测温仪是一种集测温和显示输出为一体的小型、轻便、由人携带进行测温的仪器,在显示面板上可显示温度和输出各种温度信息,有的可通过遥控或通过计算机软件程序操作。   在环境条件恶劣复杂的情况下,可以选择测温头和显示器分开的系统,以便于安装和配置。可选择与现行控制设备相匹配的信号输出形式。 红外辐射测温仪的标定:   红外测温仪必须经过标定才能使它正确地显示出被测目标的温度。如果所用的测温仪在使用中出现测温超差,则需退回厂家或维修中心重新标定。 请继续阅读:红外测温仪工作原理及应用(二)[em0809]

  • 红外测温仪工作原理及应用(二)

    3.红外测温   3.1红外测温仪器的种类   红外测温仪器主要有3种类型:红外热像仪、红外热电视、红外测温仪(点温仪)。60年代我国研制成功第一台红外测温仪,1990年以后又陆续生产小目标、远距离、适合电业生产特点的测温仪器,如西光IRT-1200D型、HCW-Ⅲ型、HCW-Ⅴ型;YHCW-9400型;WHD4015型(双瞄准,目标D 40mm,可达15 m)、WFHX330型(光学瞄准,目标D 50 mm,可达30 m)。美国生产的PM-20、30、40、50、HAS-201测温仪;瑞典AGA公司TPT20、30、40、50等也有较广泛的应用。DL-500 E可以应用于110~500 kV变电设备上,图像清晰,温度准确。红外热像仪,主要有日本TVS-2000、TVS-100,美国PM-250,瑞典AGA- THV510、550、570。近期,国产红外热像仪在昆明研制成功,实现了国产化。   3.2红外测温仪工作原理   了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇集其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号。该信号经过放大器和信号处理电路按照仪器内部的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。   一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。    黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。   物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。   影响发射率的主要因纱在:材料种类、表面粗糙度、理化结构和材料厚度等。   当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。   红外系统:红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。   3.3红外测温仪性能   红外测温仪是通过接收目标物体发射、反射和传导的能量来测量其表面温度。测温仪内的探测元件将采集的能量信息输送到微处理器中进行处理,然后转换成温度读数显示。在带激光瞄准器的型号中,激光瞄准器只做瞄准使用。其性能说明如表1。        测温范围  -32℃--400℃  显示分辩率   0.1℃(199.1℃时 )     精度    23 ℃时±1%  工作环境温度范围  0--50 ℃     重复性   23 ℃时±1%  相对湿度     30 ℃时 10—95%     响应时间  500ms     电源        9V     响应光谱  7 -18micron  尺寸       137 × 41 × 196mm     最大值显示 Have      重量       270g     发射率   0.95Preset   防水        根据消防部队要求特殊制作 表1红外测温仪性能  为了获得精确的温度读数,测温仪与测试目标之间的距离必须在合适的范围之内,所谓“光点尺寸”(spot size)就是测温仪测量点的面积。您距离目标越远,光点尺寸就越大。右图所示为距离与光点尺寸的比率,或称D:S。在激光瞄准器型测温仪上,激光点在目标中心的上方,有12mm(0.47英寸)的偏置距离。   测量距离与光点尺寸   在定测量距离时,应确保目标直径等于或大于受测的光点尺寸。右图所标示的“1号物体”(object 1 )与测量仪之间的距离正,因为目标比被测光点尺寸略大一些。而“2号物体”距离太远,因为目标小于受测的光点尺寸,即测温仪同在测量背景物体,从而降低了读数的精确性。 4.红外测温仪正确选择   选择红外测温仪可分为3个方面:   (1)性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、窗口、显示和输出、响应时间、保护附件等;   (2)环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等;   (3)其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。   随着技术和不断发展,红外测温仪最佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。其他选择方面,如使用方便、维修和校准性能以及价格等。在选择测温仪型号时应首先确定测量要求,如被测目标温度,被测目标大小,测量距离,被测目标材料,目标所处环境,响应速度,测量精度,用便携式还是在线式等等;在现有各种型号的测温仪对比中,选出能够满足上述要求的仪器型号;在诸多能够满足上述要求的型号中选择出在性能、功能和价格方面的最佳搭配。   4.1确定测温范围   确定测温范围:测温范围是测温仪最重要的一个性能指标。如Raytek(雷泰)产品覆盖范围为-50℃- +3000℃,但这不能由一种型号的红外测温仪来完成。每种型号的测温仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。一般来说,测温范围越窄,监控温度的输出信号分辨率越高,精度可靠性容易解决。测温范围过宽,会降低测温精度。例如,如果被测目标温度为1000摄氏度,首先确定在线式还是便携式,如果是便携式。满足这一温度的型号很多,如3iLR3,3i2M,3i1M。如果测量精度是主要的,最好选用2M或1M型号的,因为如果选用3iLR型,其测温范围很宽,则高温测量性能便差一些;如果用户除测量1000摄氏度的目标外,还要照顾低温目标,那只好选择3iLR3。   4.2确定目标尺寸   红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。对于比色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,不充满视场,测量通路上存在烟雾、尘埃、阻挡,对辐射能量有衰减时,都不对测量结果产生重大影响。对于细小而又处于运动或震动之中的目标,比色测温仪是最佳选择。这是由于光线直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量。   对于Raytek(雷泰)双色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,没有充满现场,测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,都不会对测量结果产生影响。甚至在能量衰减了95%的情况下,仍能保证要求的测温精度。对于目标细小,又处于运动或振动之中的目标;有时在视场内运动,或可能部分移出视场的目标,在此条件下,使用双色测温仪是最佳选择。如果测温仪和目标之间不可能直接瞄准,测量通道弯曲、狭小、受阻等情况下,双色光纤测温仪是最佳选择。这是由于其直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量,因此可以测量难以接近、条件恶劣或靠近电磁场的目标。   4.3确定距离系数(光学分辨率)   距离系数由D:S之比确定,即测温仪探头到目标之间的距离D与被测目标直径之比。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目

  • 【资料】——热电偶测温的应用原理

    热电偶测温的应用原理 热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下:① 组成热电偶的两个热电极的焊接必须牢固;② 两个热电极彼此之间应很好地绝缘,以防短路;③ 补偿导线与热电偶自由端的连接要方便可靠;④ 保护套管应能保证热电极与有害介质充分隔离。3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。来源于网络。

  • 热电阻测温原理及材料

    热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。2、热电阻的类型1)普通型热电阻从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更准确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla--B3c级区内具有爆炸危险场所的温度测量。

  • 非接触式红外测温仪工作原理

    [size=15px][b]工作原理:[/b][/size]非接触式红外测温仪(以下简称“测温仪”)可以通过测量目标表面所辐射的红外能量来确定表面温度。非接触式红外测温仪采用超低功耗智能设计。超低功耗设计确保产品能够更长时间的工作,为用户减少频繁更换电池及工作时欠电的烦恼。智能设计帮助用户更方便测试、更快捷捕捉到被测物体的真实值,同时仪表能够智能选择电池或USB连接供电。[size=12px][color=#7b7f83]来源:仪电圈[/color][/size]

  • 热电阻测温原理

    热电偶测温基本原理将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。什么是热电偶 热电偶与热电阻均属于温度测量中的接触式测温,尽管其作用相同都是测量物体的温度,但是他们的原理与特点却不尽相同. 热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传4-20mA电信号,便于自动控制和集中控制。热电偶的测温原理是基于热电效应。将两种不同的导体或半导体连接成闭合回路,当两个接点处的温度不同时,回路中将产生热电势,这种现象称为热电效应,又称为塞贝克效应。闭合回路中产生的热电势有两种电势组成;温差电势和接触电势。温差电势是指同一导体的两端因温度不同而产生的电势,不同的导体具有不同的电子密度,所以他们产生的电势也不相同,而接触电势顾名思义就是指两种不同的导体相接触时,因为他们的电子密度不同所以产生一定的电子扩散,当他们达到一定的平衡后所形成的电势,接触电势的大小取决于两种不同导体的材料性质以及他们接触点的温度。目前国际上应用的热电偶具有一个标准规范,国际上规定热电偶分为八个不同的分度,分别为B,R,S,K,N,E,J和T,其测量温度的最低可测零下270摄氏度,最高可达1800摄氏度,其中B,R,S属于铂系列的热电偶,由于铂属于贵重金属,所以他们又被称为贵金属热电偶而剩下的几个则称为廉价金属热电偶。热电偶的结构有两种,普通型和铠装型。普通性热电偶一般由热电极,绝缘管,保护套管和接线盒等部分组成,而铠装型热电偶则是将热电偶丝,绝缘材料和金属保护套管三者组合装配后,经过拉伸加工而成的一种坚实的组合体。但是热电偶的电信号却需要一种特殊的导线来进行传递,这种导线我们称为补偿导线。不同的热电偶需要不同的补偿导线,其主要作用就是与热电偶连接,使热电偶的参比端远离电源,从而使参比端温度稳定。补偿导线又分为补偿型和延长型两种,延长导线的化学成分与被补偿的热电偶相同,但是实际中,延长型的导线也并不是用和热电偶相同材质的金属,一般采用和热电偶具有相同电子密度的导线代替。补偿导线的与热电偶的连线一般都是很明了,热电偶的正极连接补偿导线的红色线,而负极则连接剩下的颜色。一般的补偿导线的材质大部分都采用铜镍合金。

  • 您有必要知道的-红外测温原理

    您有必要知道的-红外测温原理

    [align=center][b][size=18px]您有必要知道的-红外测温原理[/size][/b][/align][align=left][size=16px]来源:海纳计量[/size][/align][align=left][size=16px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align][align=left][b][img=,690,416]https://ng1.17img.cn/bbsfiles/images/2020/02/202002011458254227_180_1626275_3.jpg!w690x416.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002011458332135_1042_1626275_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002011458420707_809_1626275_3.jpg!w690x517.jpg[/img][/b][/align][align=left][b][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002011508372257_8400_1626275_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002011508454601_4050_1626275_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/02/202002011508525860_1385_1626275_3.jpg!w690x517.jpg[/img][/b][/align]

  • 红外测温仪工作原理

    红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。   在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布 —— 与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。   黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为 1 。但是,自然界中存在的实际物体,几乎都不是黑体,为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称 黑体辐射定律 。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于 1 的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。红外测温仪影响发射率的主要因素在:材料种类、表面粗糙度、理化结构和材料厚度等。   当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。

  • 红外热像仪测温原理在线夹检测上的应用

    红外热像仪测温原理在线夹检测上的应用

    在输电系统中,线夹是重要设备,但线夹常常由于接触不良、腐蚀等原因,出现异常过热点,严重影响安全供电。使用利用Fluke红外热像仪测温原理可以准确地检测出过热点,及时排除隐患,确保供电安全。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_01_3169614_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_02_3169614_3.png线夹热缺陷形成原因线夹作为输电线路的重要金具,其可靠性是影响电网长期安全稳定运行的重要因素。根据缺陷所产生的原因不同,我们通常归纳为以下几类:1 长期暴露在空气中的部件,由于温度湿度的影响,或表面结垢而引起的接触不良。2 由于外力作用所引起的部件损伤,因而使得的导电截面积减少而产生的发热。如接头连接不良,螺栓,垫圈未压紧或过紧。3 长期运行腐蚀氧化;大气中的活性气体、灰尘引起的腐蚀;元器件材质不良,加工安装工艺不好造成导体损伤;机械振动等各种原因所造成的导体实际截面降低。4 负荷电流不稳或超标等。热缺陷的划分 根据GB763-90以及实测数据统计分析,按照热缺陷温升的高低及对设备的危害程度可将其分为一般性热缺陷、严重性热缺陷和危险性热缺陷三种。1 一般性热缺陷:其温升范围在10~20℃之间,与相同运行条件下的设备相比,该接头有一定的温升,用红外成像仪测量仅有轻微的热像特征,此种情况应引注意,检查是否系负荷电流超标引起,并加强跟踪,防止缺陷度的加深。2 严重性热缺陷:发热点温升范围在20~40℃之间,或实际温度在60~80℃之间,或设备相间温差范围在1.5~2.0倍之间,热像特征明显,缺陷处已造成严重热损伤,对设备运行构成严重的威胁,此种缺陷应严加监视,条件允许时应尽快安排停运处理。3 危险性热缺陷:发热点温升超过40℃,或者最高温度已超过国标GB763-90所规定的该材料最高允许值。热像图非常清晰,该种缺陷随时可能造成突发性事故,应立即退出运行,进行彻底检修。Fluke红外热像仪的优势1 Fluke已申请专利的IR-Fusion技术除了拍摄红外图像外,还同时捕获一幅数字照片,将其融合在起,有助于识别和定位故障,从而能够在第一时间正确的修复故障。2 Fluke Ti系列热像仪配备了功能强大的软件,用于存储和分析热图像并生成专业报告。通过该软件,可以对存储在从热像仪下载的图像中发射率、反射温度补偿以及调色板等关键参数进行调节,更好地利用红外热像仪测温原理。而这些都可以在办公室进行,提高了检查的安全性和方便性。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_03_3169614_3.png http://ng1.17img.cn/bbsfiles/images/2016/12/201612191648_04_3169614_3.png没有进行修正的线夹 进行发射率及背景温度修正的线夹如何才能做好线夹的检测? 线夹因测量距离较远,利用红外热像仪测温原理测量时一般需加配一个长焦(望远镜)镜头,镜头的放大倍数以3倍(或称9°镜头)为宜。在正常状态下,线夹的温度比周围的环境温度高,如环境温度为10℃,线夹温度通常为20℃至30℃;但有时使用热像仪检测到的线夹温度却低于环境温度,这是由于下列原因所造成的:1 没有准确聚焦 红外热像仪需要进行准确的调焦才能得到准确的辐射能量;当没有准确调焦,热像仪得到的辐射能量会大大减少,根据红外热像仪测温原理,这样检测的温度值自然就会出现较大误差;Fluke红外热像仪的画中画(PIP)功能可以帮助进行准确聚焦,其操作非常简单直观:被检测线夹所在的输电线路穿过红外及可见光部分,转动调焦旋钮,当红外部分的输电线与可见光部分的输电线衔接完好时调焦完成,反之红外和可见光部分的输电线不能完好衔接。2 发射率修正 线夹的检测与其他变、配电设备的检测不同,一般需要检测其真实的绝对温度而非相对温差,故对线夹的发射率进行修正是必要的,以目前常用的高氧化铝材质的线夹为例,其发射率需修正为0.30,若使用红外热像仪上工厂设置值0.95进行检测,就可能出现较大误差。3 背景温度补偿修正 线夹的红外热像检测是向上往天空方向,故线夹的背景温度必需以天空的温度进行修正而非线夹所处的环境温度。若天空晴朗,背景温度会超过热像仪测量下限,这时背景温度补偿参数以所能够设置的最低温度进行修正;若天空有云,则背景温度补偿参数以实际检测的天空温度进行修正。http://ng1.17img.cn/bbsfiles/images/2016/12/201612191649_01_3169614_3.png

  • 红外测温原理

    物体处于绝对零度以上时,因为其内部带电粒子的运动,以不同波长的电磁波形式,向外辐射能量,波长涉及紫外、可见、红外光区,但主要处于0.8-0.15µm的近、中、外红外区。物体的红外辐射能量的大小及其按波长的分布与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。测温范围 -32℃--400℃显示分辩率 0.1℃(199.1℃时 )精度 23 ℃时±1% 工作环境温度范围 0--50 ℃重复性 23 ℃时±1% 相对湿度 30 ℃时 10—95%响应时间 500ms 电源 9V响应光谱 7 -18micron 尺寸 137 × 41 × 196mm最大值显示 Have 重量 270g发射率 0.95Preset ――――

  • 红外测温仪工作原理及应用(一)

    1.概述   红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红外测温仪型号对用户来说是十分重要的。   红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分布情况,具有准确、实时、快速等优点。任何物体由于其自身分子的运动,不停地向外辐射红外热能,从而在物体表面形成一定的温度场,俗称“热像”。红外诊断技术正是通过吸收这种红外辐射能量,测出设备表面的温度及温度场的分布,从而判断设备发热情况。目前应用红外诊技术的测试设备比较多,如红外测温仪、红外热电视、红外热像仪等等。像红外热电视、红外热像仪等设备利用热成像技术将这种看不见的“热像”转变成可见光图像,使测试效果直观,灵敏度高,能检测出设备细微的热状态变化,准确反映设备内部、外部的发热情况,可靠性高,对发现设备隐患非常有效。   红外诊断技术对电气设备的早期故障缺陷及绝缘性能做出可靠的预测,使传统电气设备的预防性试验维修(预防试验是50年代引进前苏联的标准)提高到预知状态检修,这也是现代电力企业发展的方向。特别是现在大机组、超高电压的发展,对电力系统的可靠运行,关系到电网的稳定,提出了越来越高的要求。随着现代科学技术不断发展成熟与日益完善,利用红外状态监测和诊断技术具有远距离、不接触、不取样、不解体,又具有准确、快速、直观等特点,实时地在线监测和诊断电气设备大多数故障(几乎可以覆盖所有电气设备各种故障的检测)。它备受国内外电力行业的重视(国外70年代后期普遍应用的一种先进状态检修体制),并得到快速发展。红外检测技术的应用,对提高电气设备的可靠性与有效性,提高运行经济效益,降低维修成本都有很重要的意义。是目前在预知检修领域中普遍推广的一种很好手段,又能使维修水平和设备的健康水平上一个台阶。   采用红外成像检测技术可以对正在运行的设备进行非接触检测,拍摄其温度场的分布、测量任何部位的温度值,据此对各种外部及内部故障进行诊断,具有实时、遥测、直观和定量测温等优点,用来检测发电厂、变电所和输电线路的运转设备和带电设备非常方便、有效。   利用热像仪检测在线电气设备的方法是红外温度记录法。红外温度记录法是工业上用来无损探测,检测设备性能和掌握其运行状态的一项新技术。与传统的测温方式(如热电偶、不同熔点的蜡片等放置在被测物表面或体内)相比,热像仪可在一定距离内实时、定量、在线检测发热点的温度,通过扫描,还可以绘出设备在运行中的温度梯度热像图,而且灵敏度高,不受电磁场干扰,便于现场使用。它可以在-20℃~2000℃的宽量程内以0.05℃的高分辨率检测电气设备的热致故障,揭示出如导线接头或线夹发热,以及电气设备中的局部过热点等等。 带电设备的红外诊断技术是一门新兴的学科。它是利用带电设备的致热效应,采用专用设备获取从设备表面发出的红外辐射信息,进而判断设备状况和缺陷性质的一门综合技术。 2.红外基础理论   1672年,人们发现太阳光(白光)是由各种颜色的光复合而成,同时,牛顿做出了单色光在性质上比白色光更简单的著名结论。使用分光棱镜就把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光。1800年,英国物理学家F. W. 赫胥尔从热的观点来研究各种色光时,发现了红外线。他在研究各种色光的热量时,有意地把暗室的唯一的窗户用暗板堵住,并在板上开了一个矩形孔,孔内装一个分光棱镜。当太阳光通过棱镜时,便被分解为彩色光带,并用温度计去测量光带中不同颜色所含的热量。为了与环境温度进行比较,赫胥尔用在彩色光带附近放几支作为比较用的温度计来测定周围环境温度。试验中,他偶然发现一个奇怪的现象:放在光带红光外的一支温度计,比室内其他温度的批示数值高。经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。红外线是一种电磁波,具有与无线电波及可见光一样的本质,红外线的发现是人类对自然认识的一次飞跃,对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。   红外线的波长在0.76~100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。   温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号后,成像装置的输出信号就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理,传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。   2.1热像仪原理   红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光图像相比,缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热分布场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实标校正,伪色彩描绘等技术   2.2热像仪的发展   1800年,英国物理学家F. W. 赫胥尔发现了红外线,从此开辟了人类应用红外技术的广阔道路。在第二次世界大战中,德国人用红外变像管作为光电转换器件,研制出了主动式夜视仪和红外通信设备,为红外技术的发展奠定了基础。 二次世界大战后,首先由美国德克萨兰仪器公司经过近一年的探索,开发研制的第一代用于军事领域的红外成像装置,称之为红外寻视系统(FLIR),它是利用光学机械系统对被测目标的红外辐射扫描。由光子探测器接收两维红外辐射迹象,经光电转换及一系列仪器处理,形成视频图像信号。这种系统、原始的形式是一种非实时的自动温度分布记录仪,后来随着五十年代锑化铟和锗掺汞光子探测器的发展,才开始出现高速扫描及实时显示目标热图像的系统。   六十年代早期,瑞典AGA公司研制成功第二代红外成像装置,它是在红外寻视系统的基础上以增加了测温的功能,称之为红外热像仪。   开始由于保密的原因,在发达的国家中也仅限于军用,投入应用的热成像装置可的黑夜或浓厚幕云雾中探测对方的目标,探测伪装的目标和高速运动的目标。由于有国家经费的支撑,投入的研制开发费用很大,仪器的成本也很高。以后考虑到在工业生产发展中的实用性,结合工业红外探测的特点,采取压缩仪器造价。降低生产成本并根据民用的要求,通过减小扫描速度来提高图像分辨率等措施逐渐发展到民用领域。   六十年代中期,AGA公司研制出第一套工业用的实时成像系统(THV),该系统由液氮致冷,110V电源电压供电,重约35公斤,因此使用中便携性很差,经过对仪器的几代改进,1986年研制的红外热像仪已无需液氮或高压气,而以热电方式致冷,可用电池供电;1988年推出的全功能热像仪,将温度的测量、修改、分析、图像采集、存储合于一体,重量小于7公斤,仪器的功能、精度和可靠性都得到了显著的提高。   九十年代中期,美国FSI公司首先研制成功由军用技术(FPA)转民用并商品化的新一红外热像仪(CCD)属焦平面阵列式结构的一种凝成像装置,技术功能更加先进,现场测温时只需对准目标摄取图像,并将上述信息存储到机内的PC卡上,即完成全部操作,各种参数的设定可回到室内用软件进行修改和分析数据,最后直接得出检测报告,由于技术的改进和结构的改变,取代了复杂的机械扫描,仪器重量已

  • 【基础知识】--红外测温仪工作原理

    一、概述   红外测温技术在生产过程,产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红外测温仪型号对用户来说是十分重要的。   红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分布情况,具有准确、实时、快速等优点。任何物体由于其自身分子的运动,不停地向外辐射红外热能,从而在物体表面形成一定的温度场,俗称“热像”。红外诊断技术正是通过吸收这种红外辐射能量,测出设备表面的温度及温度场的分布,从而判断设备发热情况。目前应用红外诊断技术的测试设备比较多,如红外测温仪、红外热电视、红外热像仪等等。像红外热电视、红外热像仪等设备利用热成像技术将这种看不见的“热像”转变成可见光图像,使测试效果直观,灵敏度高,能检测出设备细微的热状态变化,准确反映设备内部、外部的发热情况,可靠性高,对发现设备隐患非常有效。   红外诊断技术对电气设备的早期故障缺陷及绝缘性能做出可靠的预测,使传统电气设备的预防性试验维修(预防试验是20世纪50年代引进前苏联的标准)提高到预知状态检修,这也是现代电力企业发展的方向。特别是目前大机组、超高电压的发展,对电力系统的可靠运行,因其关系到电网的稳定,提出了越来越高的要求。随着现代科学技术不断发展成熟与日益完善,利用红外状态监测和诊断技术具有远距离、不接触、不取样、不解体,又具有准确、快速、直观等特点,实时地在线监测和诊断电气设备大多数故障(几乎可以覆盖所有电气设备各种故障的检测)。它备受国内外电力行业的重视(20世纪70年代后期国外普遍应用的一种先进状态检修体制),并得到快速发展。红外检测技术的应用,对提高电气设备的可靠性与有效性,提高运行经济效益,降低维修成本都有很重要的意义。是目前在预知检修领域中普遍推广的一种很好手段,又能使维修水平和设备的健康水平上一个台阶。   采用红外成像检测技术可以对正在运行的设备进行非接触检测,拍摄其温度场的分布、测量任何部位的温度值,据此对各种外部及内部故障进行诊断,具有实时、遥测、直观和定量测温等优点,用来检测发电厂、变电所和输电线路的运转设备和带电设备非常方便、有效。   利用热像仪检测在线电气设备的方法是红外温度记录法。红外温度记录法是工业上用来无损探测,检测设备性能和掌握其运行状态的一项新技术。与传统的测温方式(如热电偶、不同熔点的蜡片等放置在被测物表面或体内)相比,热像仪可在一定距离内实时、定量、在线检测发热点的温度,通过扫描,还可以绘出设备在运行中的温度梯度热像图,而且灵敏度高,不受电磁场干扰,便于现场使用。它可以在-20℃~2000℃的宽量程内以0.05℃的高分辨率检测电气设备的热致故障,揭示出如导线接头或线夹发热,以及电气设备中的局部过热点等等。   带电设备的红外诊断技术是一门新兴的学科。它是利用带电设备的致热效应,采用专用设备获取从设备表面发出的红外辐射信息,进而判断设备状况和缺陷性质的一门综合技术。  来源:网络

  • 【分享】如何正确选择红外测温仪

    红外测温技术在产品质量控制和监测、设备在线故障诊断、安全保护以及节约能源等方面发挥了正在发挥着重要作用。近二十年来,非接触红外测温仪在技术上得到迅速发展,性能不断提高,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。 外测温仪工作原理 了解组外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是为了帮助用户正确地选择和使用红外测温仪。 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射特性一辐射能量的大小及其按波长的分布一与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 黑体辐射定律: 黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。

  • 红外热像仪测温原理及发展趋势

    红外热像仪测温原理及发展趋势

    红外热成像是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外热像仪测温原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。  人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C(0.005°F)的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。  例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。http://ng1.17img.cn/bbsfiles/images/2016/06/201606271045_598269_3116934_3.jpg  热像仪是一种无需与设备直接接触便可检测出红外波长频谱中的热图案的设备。参见图。早期型号的热像仪称为“光导探测器”。从1916年至1918年,美国发明家TheodoreCase利用光导探测器做实验,通过与光子(而不是热能)直接交互作用产生信号。最终发明了速度更快、更灵敏的光导探测器。20世纪四十年代和五十年代期间,为了满足日益增长的军事应用领域的需求,热成像技术不断演变,取得了长足的发展。德国科学家发现,通过冷却光导探测器可以提高整体性能。  直到20世纪六十年代,热成像技术才被用于非军事应用领域。虽然早期的热成像系统很笨重、数据采集速度缓慢而且分辨率不佳,但它们还是被用于工业应用领域,例如检查大型输配电系统。20世纪七十年代,军事应用领域的持续发展造就了第一个便携式系统。该系统可用于建筑诊断和材料无损测试等应用领域。  现在红外热像仪也经过几十年的发展,已经发展成非常轻便的现场测试设备。由于测试往往产生的温度场差异不大和现场环境复杂等因素,优质的热像仪必须具备320*240像素、分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。根据红外热像仪测温原理,红外热成像技术能够进行非接触式的、高分辨率的温度成像,能够生成高质量的图像,可提供测量目标的众多信息,弥补了人类肉眼的不足,因此已经在电力系统、土木工程、汽车、冶金、石化、医疗等诸多行业得到广泛应用,未来的发展前景更不可限量。  红外热像仪的品牌非常多,客户在选择时,有点无从下手,在选择红外热像仪时,建议选择大品牌的红外热像仪。 福禄克(Fluke)公司是世界电子测试工具生产、分销和服务的领导者。福禄克公司于1948年成立,作为丹纳赫集团的全资子公司,福禄克是一个跨国公司,总部设在美国华盛顿州的埃弗里德市,工厂分别设在美国、英国,荷兰和中国。销售和服务分公司遍布欧洲、北美、南美、亚洲和澳大利亚。福禄克公司已授权的分销商遍布世界100多个国家,雇员约2400人。  更多详情 ,请查看福禄克红外热像解决方案中心,从精密到简便,从主管到基层,皆有所选!

  • 简述红外测温仪的工作原理

    红外测温仪接收多种物体自身发射出的不可见红外能量,红外辐射是电磁频谱的一部分,它包括无线电波、微波、可见光、紫外、R射线和X射线。红外位于可见光和无线电波之间,红外波长常用微米表示,波长范围为0.7微米-1000微米,实际上,0.7微米-14微米波带用于红外测温。

  • 想给宝宝买个耳温枪,这玩意准吗?

    宝宝还小容易发热发烧,用水银温度计嘛容易破碎伤人、用电子体温计嘛好像又不太准,听人介绍有种进口耳温枪,测温度挺准的,也才几百元。不晓得是不是真的?恳请各位给个意见。 而且个人也比较好奇,有那种红外测体温的,照额头就可以测温度;还有照耳朵测温度的?这都是什么原理啊?准确性能保证吗?

  • 热电偶测温与红外测温比较

    测温方法 测温原理传感器和仪表 特点测温范围(℃)接触式金属热电偶的热电势铜-康铜(分度号T) 0-200℃是最准确的,精度高,低温灵敏度高-200—350 铁-康铜(分度号J) 100℃以下线性好,有较高灵敏度。-40—600非接触式热辐射能量变化部分辐射法由光电池、光敏电阻及其它红外探测元件作热敏元件,因它们有一定的光谱选择性,故非全光谱的因仪表的工作波段可选择,因此可以避开中间介质的吸收峰 -50--3000 比色法比较二个光波辐射能量之比反应速度快,接近真实温度,受中间介质的影响小 50—2000

  • 【分享】红外测温仪的视场是怎样规定的

    红外测温仪工作原理:红外测温仪由光学系统,光电探测器,信号大器及信号处理.显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,红外能量聚焦在光电探测器上并转变为相应的电信号,该信号再经换算转变为被测目标的温度值。选择红外测温仪主要考虑:温度范围:CEM(香港)产品的温度范围为-50~1600度(分段),每种型号的测温仪都有其特定的测温范围。所选仪器的温度范围应与具体应用的温度范围相匹配。 目标尺寸:测温时,被测目标应大于测温仪的视场,否则测量有误差。建议被测目标尺寸超过测温仪视场的50%为好。 光学分辨率(D:S):即测温仪探头到目标直径之比。如果测温仪远离目标,而目标又小,应选择高分辨率的测温仪。

  • 【转帖】如何正确选择红外测温仪

    红外测温技术在产品质量控制和监测、设备在线故障诊断、安全保护以及节约能源等方面发挥了正在发挥着重要作用。近二十年来,非接触红外测温仪在技术上得到迅速发展,性能不断提高,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。 Raytek(雷泰)公司非接触红外辐射测温产品包括便携式、在线式和扫描式三大系列,并备有各种选配件和相应的计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确地选择红外测温仪型号对用户来说是十分重要的。这里仅提出如何正确选择测温仪型号的思考步骤,供购买者参考。 红外测温仪工作原理 了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是为了帮助用户正确地选择和使用红外测温仪。 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射特性——辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。 物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。 影响发射率的主要因纱在:材料种类、表面粗糙度、理化结构和材料厚度等。 当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。 红外系统:红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。

  • 红外测温仪的使用须知

    [align=center][b]红外测温仪的使用须知[/b][/align][size=16px][color=rgba(0, 0, 0, 0.298039)][back=#f2f2f2]原创[/back][/color][/size] [size=15px][color=rgba(0, 0, 0, 0.298039)][color=#576b95]李跃[/color][/color][/size] [size=15px]计量论坛[/size] [size=15px][color=rgba(0, 0, 0, 0.298)]今天[/color][/size] 近期大量用户购买了非接触测温的红外线测温仪用于体温筛查,但是身边很多朋友疑惑,为什么和温度计测量出来的值不一样呢? 首先要确认红外线测温仪有没有计量,最好是找当地的计量机构进行检定!检定合格后使用。使用中反映问题最多的有偏高的,有偏低的,偏低的比较多,这和使用不正确有关,这里要特别注意~!偏低了和不用有什么区别?![align=center][b]测量方法[/b][/align][list=1][*]先用红外测温仪测自己或同事的额头(多人)比较,再测被测人相同的位置,多次测量。注意距离尽量一致,推荐距离(2~5cm),位置也尽量一致。这里可以先用玻璃体温计将自己的体温记录下来和红外测温仪保持一致。比如测量额头,就都测量额头,不要测量不同部位。要测量暴露在空气中的位置,有带帽子或围巾需要脱掉一会再进行测量。[*]如果发现温度偏差很大,使用其它测温设备确认,如玻璃体温计、耳温枪等。[*]使用中千万不可照射眼睛。[*]测量场合尽量保持一致,如在室外,第一条也应在室外进行。[/list][align=center][b]问答[/b][/align]问:红外测温仪和玻璃体温计谁比较准?答:玻璃体温计。问:工业用红外测温仪能测体温吗?答:可以,但不推荐。需要用上述的测量方式,距离和位置,调整发射率,皮肤表面大约在0.83。问:红外线测温仪对身体测温有害吗?答:无害。问:玻璃体温计、红外测温仪、额温枪和耳温枪哪个好?答:玻璃体温计耳温枪额温枪红外测温仪。

  • 【资料】如何确保红外测温仪测温精度

    如何确保红外测温仪测温精度? 红外技术及其原理的无异议的理解为其精确的测温。当由红外测温仪 测温时,被测物体发射出的红外能量,通过红外测温仪的光学系统在探测器上转换为电信号,该信号的温度读数显示出来,有几个决定精确测温的重要因素,最重要的因素是发射率、视场、到光斑的间隔和光斑的位置。发射率,所有物体会反射、透过和发射能量,只有发射的能量能指示物体的温度。当红外线测温仪测量表面温度时,仪器能接收到所有这三种能量。因此,所有红外测温仪 必需调节为只读出发射的能量。 测量误差通常由其它光源反射的红外能量引起的。有些红外测温仪可改变发射率,多种材料的发射率值可从出版的发射率表中找到。其它仪器为固定的予置为0.95的发射率。该发射率值是对于多数有机材料、油漆或氧化表面的表面温度,就要用一种胶带或平光黑漆涂于被测表面加以补偿。使胶带或漆达到与基底材料相同温度时,测量胶带或漆表面的温度,即为其真实温度。间隔与光斑之比,红外测温仪的光学系统从圆形测量光斑收集能量并聚焦在探测器上,光学分辨率定义为红外测温仪 到物体的间隔与被测光斑尺寸之比(D:S)。比值越大,红外测温仪 的分辨率越好,且被测光斑尺寸也就越小。激光瞄准,只有用以匡助瞄准在测量点上。红外光学的最新改进是增加了近焦特性,可对小目标区域提供精确测量,还可防止背景温度的影响。视场,确保目标大于红外测温仪测量时的光斑尺寸,目标越小,就应离它越近。当精度特别重要时,要确保目标至少2倍于光斑尺寸。

  • 如何正确选择红外测温仪(1)

    如何正确选择红外测温仪红外测温技术在产品质量控制和监测、设备在线故障诊断、安全保护以及节约能源等方面发挥了正在发挥着重要作用。近二十年来,非接触红外测温仪在技术上得到迅速发展,性能不断提高,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。  Baytek(雷泰)公司非接触红外辐射测温产品包括便携式、在线式和扫描式三大系列,并备有各种选配件和相应的计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确地选择红外测温仪型号对用户来说是十分重要的。这里仅提出如何正确选择测温仪型号的思考步骤,供购买者参考。外测温仪工作原理  了解组外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是为了帮助用户正确地选择和使用红外测温仪。  一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射特性一辐射能量的大小及其按波长的分布一与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。黑体辐射定律:  黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。物体发射率对辐射测温的影响:  自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。影响发射率的主要因素在:  材料种类、表面粗糙度、理化结构和材料厚度等。  当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例:双色测温仪与两个波段的辐射量之比成比例。红外系统:  红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。选择红外测温仪可分为三个方面:  性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、响应时间等 环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等 其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。随着技术和不断发展,红外测温仪最佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。确定测温范围:  测温范围是测温仪最重要的一个性能指标。如Raytek(雷泰)产品覆盖范围为-50℃-+3000℃,但这不能由一种型号的红外测温仪来完成。每种型号的测温仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。确定目标尺寸:  红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。  对于Raytek(雷泰)双色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,没有充满现场,测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,都不会对测量结果产生影响。甚至在能量衰减了95%的情况下,仍能保证要求的测温精度。对于目标细小,又处于运动或振动之中的目标 有时在视场内运动,或可能部分移出视场的目标,在此条件下,使用双色测温仪是最佳选择。如果测温仪和目标之间不可能直接瞄准,测量通道弯曲、狭小、受阻等情况下,双色光纤测温仪是最佳选择。这是由于其直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量,因此可以测量难以接近、条件恶劣或靠近电磁场的目标。确定光学分辨率(距离及灵敏)  光学分辨率由D与S之比确定,是测温仪到目标之间的距离D与测量光斑直径S之比。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪。光学分辨率越高,即增大D:S比值,测温仪的成本也越高。确定波长范围:  目标材料的发射率和表面特性决定测温仪的光谱响应或波长。对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的最佳波长是近红外,可选用0.18-1.0μm波长。其他温区可选用1.6μm、2.2μm和3.9μm波长。由于有些材料在一定波长是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用10μm、2.2μm和3.9μm(被测玻璃要很厚,否则会透过)波长 测量玻璃内部温度选用5.0μm波长 测低区区选用8-14μm波长为宜 再如测量聚乙烯塑料薄膜选用3.43μm波长,聚醋类选用4.3μm或7.9μm波长。厚度超过0.4mm选用8-14μm波长 又如测火焰中的C02用窄带4.24-4.3μm波长,测火焰中的C0用窄带4.64μm波长,测量火焰中的N02用4.47μm波长。确定响应时间:  响应时间表示红外测温仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。bytek(雷泰)新型红外测温仪响应时间可达1ms。这要比接触式测温方法,快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外测温仪。对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。因此,红外测温仪响应时间的选择要和被测目标的情况相适应。

  • 红外线非接触体温计的工作原理及用途

    非接触式红外测温仪的工作原理及应用什么是红外线温度计红外测温仪是专门用来测量人体温度的,它还可以测量环境温度、物体温度等。采用红外测温探头,测量精度高,性能更稳定。红外测温仪具有体温高时的声音提示功能,自动关机的省电功能更受消费者欢迎。红外线体温计原理红外线体温计是利用通过红外线的原理进行测量体温的一种温度计。晶闸管(可控硅)/模块红外线体温计的组成一个物件主要是由于电子产品配件。因此,红外温度计是否准确取决于所使用的电子元件。 红外温度计属于电子仪器,使用时会有一定的误差,但测量结果不会有太大的偏差,不会影响测量结果。我们常用的“温度计枪”是一种红外线温度计。使用时,只要枪口对准要测量的物体,物体的温度就可以直接在“枪尾”的显示屏上用数字报告,这种奇妙的“温度枪”可以测量零下20 ~ 1600摄氏度的温度范围呢!当一个人走近它时,测量结果会自动转换为口腔温度。测温枪用在有传染病发生的地区。它利用远红外线发射光信号,在不接触人体的情况下测量人体温度。达林顿管它在SARS和禽流感中有特殊用途。温度设计为-50~480℃,-50℃的低温测量容易实现,在东北、西北等低温地区也能正常使用。红外测温仪的测温工作原理是将物体进行发射的红外线技术具有的辐射能转变成一个电信号,达林顿晶体管阵列红外线辐射能的大小与物体(如钢水)本身的温度相对应,根据学生转变成通过电信号数据大小,可以作为确定目标物体(如钢水)的温度。红外线体温计的用途1.精确测量人体温度,取代传统的水银体温计。测量皮肤表面温度,如医疗用途。3、测量一个物体的表面进行温度,比如可用于茶杯外表的温度控制测量。4、测量工作液体的温度,如婴儿洗澡水的温度,奶瓶内进行牛奶以及温度等。测温技术范围-50℃~480℃。首先,红外温度计的原理在自然界中,只要一个物体的温度超过绝对零度,它每时每刻都会向外界发射相应的红外波长。通过红外测温仪可以准确地检测出物体发射的红外波长。然后,该仪器根据数据的波长分析物体的温度(其中也包含空气的温度)。利用光学会聚系统测量物体的温度分布,并将测得的波长转换为光电探测器上相应的电信号。这些电信号经过微弱的放大和滤波,由 CPU 进行分析,确定物体的平均温度和各处的温度,并绘制出相应的物体温度分布图。第二,红外测温仪的应用红外测温仪在之前进行一般运用在气象管理部门和安全监督检查相关部门,用来分析检测以及城市的实时平均工作温度和城市热量分布。随着社会我们可以科学信息技术在红外测温仪上的高速经济发展,功能需要不断地通过增加,品种变得越来越多,应用的领域也就变得逐渐得到广泛了。现在红外测温仪的“市场占有率在逐步的提升。逐步地走在家庭教育之中,在家庭中实时监测室外的温度,让用户自己能够有效及时的更换穿着的衣服,避免存在一些病症的出现,再就是能够实现实时的测绘出家庭温度的分布图,有利于提高我们国家能够提供及时地改变家中温度不平的问题。三、红外测温仪使用中的注意事项红外线温度计只测量物体的表面温度。如果我们通过玻璃测量温度,红外温度计的读数可能不准确。3、在使用进行红外测温仪的时候可以尽量避免学生在有需要大量蒸汽或者是灰尘的地方政府使用。以免损坏仪器。第四,红外温度计的一般性能参数使用的温度范围在 -50 °C 至1600 °C 之间。使用的距离在50米之内。准确度是0.001。对应的时间小于1秒。电源电压在220V 至。[url=https://www.szcxwdz.com][b]创芯为电?[/b][/url]主要从事各类[url=https://www.szcxwdz.com][b]电?元器件[/b][/url]的销售。提供[url=https://www.szcxwdz.com][b]BOM采购[/b][/url]服务,减少采购物料的时间成本,在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,免费供样!

  • 红外测温仪的正确使用方法

    选择红外测温仪的正确方法点击次数红外测温技术在产品质量控制和监测、设备在线故障诊断、安全保护以及节约能源等方面发挥了正在发挥着重要作用。近二十年来,非接触红外测温仪在技术上得到迅速发展,性能不断提高,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。 选择红外测温仪可分为三个方面:性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、响应时间等;环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等;其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。随着技术和不断发展,红外测温仪最佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。 确定测温范围:测温范围是测温仪最重要的一个性能指标。每种型号的测温仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。 确定目标尺寸:红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。 确定光学分辨率(距离系灵敏) 光学分辨率由D与S之比确定,是测温仪到目标之间的距离D与测量光斑直径S之比。如果红外测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪。光学分辨率越高,即增大D:S比值,测温仪的成本也越高。 确定波长范围:目标材料的发射率和表面特性决定测温仪的光谱响应或波长。对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的最佳波长是近红外,可选用0.18-1.0μm波长。其他温区可选用1.6μm、2.2μm和3.9μm波长。由于有些材料在一定波长是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用1.0μm、2.2μm和3.9μm(被测玻璃要很厚,否则会透过)波长;测量玻璃内部温度选用5.0μm波长;测低区区选用8-14μm波长为宜;再如测量聚乙烯塑料薄膜选用3.43μm波长,聚酯类选用4.3μm或7.9μm波长。厚度超过0.4mm选用8-14μm波长;又如测火焰中的CO2用窄带4.24-4.3μm波长,测火焰中的CO用窄带4.64μm波长,测量火焰中的NO2用4.47μm波长。 确定响应时间:响应时间表示红外测温仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。这要比接触式测温方法快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外测温仪。对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。因此,红外测温仪响应时间的选择要和被测目标的情况相适应。 信号处理功能:测量离散过程(如零件生产)和连续过程不同,要求红外测温仪有信号处理功能(如峰值 保持、谷值保持、平均值)。如测温传送带上的玻璃时,就要用峰值保持,其温度的输出信号传送至控制器内。 环境条件考虑:测温仪所处的环境条件对测量结果有很大影响,应加以考虑并适当解决,否则会影响测温精度甚至引起测温仪的损坏。当环境温度过高、存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。在确定附件时,应尽可能要求标准化服务,以降低安装成本。当烟雾、灰尘或其他颗粒降低测量能量信呈悍,双色测温仪是最佳选择。在噪声、电磁场、震动或难以接近环境条件下,或其他恶劣条件下,光纤双色测温仪是最佳选择。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制