当前位置: 仪器信息网 > 行业主题 > >

热分析手册

仪器信息网热分析手册专题为您提供2024年最新热分析手册价格报价、厂家品牌的相关信息, 包括热分析手册参数、型号等,不管是国产,还是进口品牌的热分析手册您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热分析手册相关的耗材配件、试剂标物,还有热分析手册相关的最新资讯、资料,以及热分析手册相关的解决方案。

热分析手册相关的资讯

  • 《分析化学手册》(第三版)发行 扩充无机质谱等6册
    仪器信息网讯 2017年2月28日,在北京天文馆召开的2016年北京光谱年会上,《分析化学手册》(第三版)与广大科研工作者正式见面。2016年北京光谱年会上亮相的《分析化学手册》(第三版)《原子光谱分析》分册  《分析化学手册》是一套全面反映现代分析技术、供化学工作者使用的专业工具书。第一版于1979年出版。有6个分册 第二版扩充为10个分册,于1996年至2000年陆续出版。  为更好总结分析化学技术进展,为广大读者服务,化学工业出版社自2010年起开始启动《分析化学手册》(第三版)的修订工作,成立了有分析化学界30余位专家组成的编委会,这些专家包括10位中国科学院院士、中国工程院院士和发展中国家科学院院士,多位长江学者特聘教授和国家杰出青年基金获得者,以及各领域经验丰富的专家。在编委会的领导下,作者、编辑、编委通力合作,历时六年完成了这套1800余万字的大型工具书。  本次修订保持了第二版10分册的基本构架,将其中的3个分册进行拆分,扩充为6册,最终形成了10分册13册的格局。其中原《光谱分析》拆分为《原子光谱分析》和《分析光谱分析》 《核磁共振波谱分析》拆分为《氢-1核磁共振波谱分析》和《碳-13核磁共振波谱分析》 《质谱分析》新增加了无机质谱分析的内容,拆分为《有机质谱分析》和《无机质谱分析》,并对仪器结构及方法原理进行了全面更新。另外,《热分析》增加了量热学方面的内容,分册名变更为《热分析与量热学》。  《分析化学手册》(第三版)格局如下:  1 基础知识与安全知识  2 化学分析  3A原子光谱分析  3B分子光谱分析  4电分析化学  5气相色谱分析  6液相色谱分析  7A氢-1核磁共振波谱分析  7B碳-13核磁共振波谱分析  8热分析与量热学  9A有机质谱分析  9B无机质谱分析  10化学计量学
  • 【精】“热分析老人”钱义祥汇总50年来热分析主要书籍著作
    p style=" text-align: center" img style=" width: 284px height: 400px " src=" http://img1.17img.cn/17img/images/201804/insimg/1381b543-5c59-4406-8bcd-a35cc15e379c.jpg" title=" 00.jpg" height=" 400" hspace=" 0" border=" 0" vspace=" 0" width=" 284" / /p p    strong 前言 /strong /p p   《热分析著作汇编》由热分析“老人”钱义祥钱老师罗列总结了从70年代开始至今,共计39本关于热分析行业的主要系列书籍,并对其进行了摘要与归纳,以供热分析同仁参考使用。尽管很多书籍已是年代久远,也或许和现在的发展形势已有脱离,但是作为热分析的历史、热分析的历程、热分析的基础,编者相信,这些书籍绝不会也不该被热分析同仁所遗忘,毕竟这为我们呈现的是一代代热分析人的心血与热情! /p p   热献网在此再次感谢钱老师为我们做的总结与归纳,也希望钱老师的热情能给到大家以帮助,从而引发一代代新热分析人的新热分析情怀。 /p p   热献网编 /p p   2018年4月 /p p style=" text-align: center "   span style=" color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) "   strong “一、刘振海热分析书籍” /strong /span /p p style=" text-align: center " strong   书名:《聚合物量热测定》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/0ece1de4-a90b-41ce-b54f-2ccd158cc9ff.jpg" title=" 02.jpg" / /p p    strong 摘要: /strong /p p   本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章 第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 4-9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。本书料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。 /p p style=" text-align: center "    strong 书名:《热分析仪器》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/687a8166-2155-43d1-988b-9c0cda537704.jpg" title=" 03.jpg" / /p p    strong 摘要: /strong /p p   本书是《分析仪器使用与维护丛书》的一个分册。 /p p   书中系统介绍了各类热分析与量热仪的原理、基本结构、元件和单元 各类热分析与量热仪及标志仪器性能的各项指标,表征实验数据质量的各项参数 影响实验结果的各种因素和各项标准实验方法 并以药物、矿物和含能材料为例,列举了热分析的典型应用、量热技术在生物化学等方面的应用 仪器常见的故障处理等内容。 /p p   本书可供热分析与量热学科研与技术人员阅读,也可供大专院校、科研单位、工厂等有关人员参考。 /p p style=" text-align: center "    strong 书名:《分析化学手册第六分册-热分析 第一版》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/f8d528b4-0e13-4e14-85ce-1aa08b5a69da.jpg" title=" 04.jpg" / /p p   strong  摘要: /strong /p p   本书系《分析化学手册的第六分册》,是继“基础只是与安全知识”“化学分析”“光学分析与电化学分析”“色谱分析”“核磁共振波普分析”之后,为读者提供的热分析方法与数据集。本书由中日热分析专家合作编著而成,全书由3部分构成:热分析方法、热分析曲线及曲线及数据集。汇集了高分子材料,矿物、建材、药物、含能材料、催化剂、稀土配合物等方面的千余热分析曲线。在热分析常用数据表部分,列出了标定物质的比热容、熔点与融化热、基本物理常数、热分析术语对照等。 /p p   本手册可供各行业中从事热分析工作的技术人员和热分析为测试手段的广大科技人员,大专院校有关专业师生查阅与参考。 /p p style=" text-align: center "    strong 书名:《分析化学手册第八分册-热分析 第二版》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/e94953af-3bdd-4b9d-a516-b82f1612345f.jpg" title=" 05.jpg" / /p p strong   摘要: /strong /p p   第二版《分析化学手册》在第一版的基础上做了较大幅度的调整、增删和补充。全套书由10个分册构成:基础知识与安全知识、化学分析、光谱分析、电分析化学、气相色谱分析、液相色谱分析、核磁共振波谱分析、热分析、质谱分析和化学计量学。第二版《分析化学手册》中注意贯彻了国家标准GB《量和单位》的基本原则,注重所用单位与有关国标规定的一致性。在取材上突出实用性,注重基础知识、基础数据与分析技术的最新进展并容。在内容上注重科学性与准确性。在编排上强调系统性与查阅方便。本分册囊括了热分析的基本原理和各类应用,基本由三部分内容构成:第一部分包括热分析的基本定义、术语以及有关物质的转变、反应和特性参数等约100项应用的原理、实验及数据处理 第二部分是约1000条各类物质(如:聚合物、食品、药物、矿物、含能材料等)的有代表性的热分析曲线及其简明的解释 第三部分是热分析常用数据表。本次修订更加突出反映了中日科学工作者近年在该领域取得的成果。 /p p style=" text-align: center "    strong 书名:《分析化学手册 热分析与量热学 第三版》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/0fbad100-bb0f-4bb3-b19e-afa4b00485ee.jpg" title=" 06.jpg" / /p p strong   摘要 /strong : /p p   《分析化学手册》第三版在第二版的基础上作了较大幅度的增补和删减,保持原手册10个分册的基础上,将其中3个分册进行拆分,扩充为6册,最终形成13册。 /p p   本分册为《热分析与量热学》,在上一版《热分析》的基础上新增补了量热学的内容。全书由两篇组成,第一篇为热分析与量热分析基础,全面阐述了热分析和量热学方法,包括发展历史、基本定义、术语以及有关物质的转变、反应和特性参数,热分析仪器及方法应用的原理、实验与数据处理,量热分析仪器、测量方式、对各类物理化学性质及化学反应热的测定 第二篇为热分析、量热分析曲线与数据集,汇总了聚合物、食品、药物、矿物、含能材料等物质的具有代表性的热分析曲线和数据,以及量热分析在各种领域的应用实例。 /p p style=" text-align: center "    strong 书名:《热分析与量热仪及其应用》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/5424fd56-d61b-43d1-b799-01978b109741.jpg" title=" 07.jpg" / /p p strong   摘要: /strong /p p   本书系统地介绍了各类热分析与量热仪的原理、基本结构、元件和单元 各类热分析与量热仪及标志仪器性能的各项指标,表征实验数据质量的各项参数 影响实验结果的各种因素和各项标准实验方法 数据库的建立、维护与查询,以及计算机病毒的一般性常识 并以聚合物、药物和矿物为例,列举了典型应用,以及微量量热技术在诸多方面的应用 仪器的常见故障处理等。 /p p   本书可供热分析与量热学科研与技术人员阅读,也可供大专院校、科研单位、工厂等有关人员参考。 /p p style=" text-align: center "   strong  书名:《热分析简明教程》  /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/ca1b7245-d263-4519-994b-6e5f201077df.jpg" title=" 08.jpg" / /p p strong   摘要: /strong /p p   《中国科学院大学研究生教材系列:热分析简明教程》是中国科学院大学遴选的研究生教材。首先扼要介绍热分析的发展历程和热分析实施方案的制订。然后系统地介绍了热分析术语,并给出了新的理解和诠释 主要热分析仪器的原理与结构及其最新发展 影响热分析实验结果的各种因素和相关的标准与规范,这是从事热分析工作的基本依据。最后按观测物质的各种转变、反应和特性参数,介绍典型的应用实例。 /p p style=" text-align: center "    span style=" color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) " strong “二、Mettler热分析系列书籍” /strong /span /p p style=" text-align: center "    strong 书名:《热分析应用基础》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/69102ee7-5467-4e2e-8e4e-0d2101e721b6.jpg" title=" 09.jpg" / /p p    strong 摘要: /strong /p p   《热分析应用基础》是为适应广大热分析工作者及相关专业的科技人员对热分析基础和应用方面知识的需求,由陆立明编著的图书,本书是《热分析应用手册系列丛书》的一个重要分册,系统全面介绍了各种热分析方法的基本原理和测量方法,诸如DSC、TGA、TMA、DMA、热光分析、TGA/MS和TGA/FTIR联用技术的定义、原理和应用,以及样品制备、数据处理与表达,并着重阐述了玻璃化、二元相图、纯度测定、多晶型、吸附分析 还从热分析实验方法、条件(参数)选择到评价体系、实施方案制订了若干步骤。最后附有ISO、ICTAC等国际组织制订的各项热分析标准。 /p p style=" text-align: center "    strong 书名:《热塑性聚合物》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/ee366efc-9a67-42e9-a353-a5a60a89db9a.jpg" title=" 010.jpg" / /p p strong   摘要: /strong /p p   热塑性聚合物在加热时熔融或流动,由无规缠结的(无定形热塑性塑料)或以微晶方式部分有序的(半结晶热塑性塑料)线性大分子组成。它们在农业、汽车工业、航空业、建筑工业、电气工业、纺织等行业广泛运用。本书不仅可作为应用手册查询,也可以作为实验指南,对热分析工作者及热分析学习者有帮助和裨益。 /p p style=" text-align: center "   strong  书名:《热固性树脂》  /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/ef3cc6bf-662d-4fec-afc9-fb94d3afb745.jpg" title=" 011.jpg" / /p p strong   摘要: /strong /p p   本书是《热分析应用手册系列丛书》之《热固性树脂》分册。全书共分四个部分:第一部分为全面的评述和对常用于热固性树脂表征的分析技术的扼要说明 第二部分论述各个热固性树脂的化学性能和讨论这些材料的用途。这部分是供热固性聚合物领域的新人和期望学习更多热固性树脂性能和应用的人们使用的 第三部分讨论可用不同热分析技术研究的性能和效应 第四至第九部分集中于实际例子。按照树脂体系类型被细分。应用实例描述了在热固性树脂的生命周期中可被研究、测试或只是检查的不同性能。与其他分册一样,本书以中英文对照方式出版,读者可以阅读中文,同时可对照原著。无论对热分析工作者,还是热分析学习者,应该都有帮助和裨益。 /p p style=" text-align: center "    strong 书名:《弹性体》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/b160e2aa-eedb-4b61-b684-ba68829c9be1.jpg" title=" 012.jpg" / /p p strong   摘要: /strong /p p   热分析应用手册系列丛书& #39 之& #39 弹性体& #39 分册通过大量实例全面深入地介绍和讨论了热分析在聚合物弹性体方面的应用 **至D13章热分析方法简介 弹性体的结构、性能和应用 弹性体的基本热效应 D14至D15章介绍了大量的应用实例 包括对结果的详细解释和导出的结论。 /p p style=" text-align: center "    strong 书名:《逸出气体分析》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/e275f200-1181-40fa-94c4-f65bbe90afe8.jpg" title=" 013.jpg" / /p p strong   摘要: /strong /p p   《热分析应用手册系列丛书》之《逸出气体分析(汉英对照)》分册着重阐述TGA-FTIR和TGA-MS两种联用技术。手册的**部分讲述这两种技术的基本原理,也包括一些实际内容和图谱解析的介绍。第二部分讨论在我们实验室用TGA-FTIR和TGA-MS做的15项不同的应用,以及两个相对较少使用的TMA和MS联用技术的应用 /p p style=" text-align: center "    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " “三、70年代至今热分析系列书籍” /span /strong /p p style=" text-align: center "   strong  书名:《热分析法与药物分析》 王玉 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/c2338f45-bda0-4c7e-b9d3-3afa8ebd1051.jpg" title=" 014.jpg" / /p p strong   摘要: /strong /p p   王玉主编的《热分析法与药物分析(精)/中国药 品检验系列丛书》主要内容涉及热分析基本概念和常 用术语,着重介绍在药物研究中应用很为广泛的三种 热分析技术:热重法、差热分析法、差示扫描量热法 及其基本原理、常用分析方法和常用仪器,讨论了热 分析曲线及反应终点的判断,以及热分析动力学及计 算,结合药物分析的特点,介绍了热分析在药物熔点 测定、鉴别、定性以及纯度测定、药物晶型研究等多 方面的应用实例,很后讨论了热分析技术的进展。 /p p   本书适合广大药学工作者,特别是药物分析、药 品检验人员使用。 /p p style=" text-align: center "    strong 书名《热分析及其应用》 陈镜泓 李传儒 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/d2932479-309a-40e5-a41f-db90faa8e6bc.jpg" title=" 015.jpg" / /p p   strong  摘要: /strong /p p   热分析是测量物质受热或冷却时物理性质与温度关系的一类技术。热分析仪器操作渐变,灵敏,速度快,所需试样量少(以毫克计),得到的科学信息广泛。 /p p   本书公分三篇十四章。在介绍热分析概念,历史,现状和发展趋势的基础上,系统的评述了热衷发(TG),微商热重法(DTG),差热分析发(DTA),差示扫描量热法(DSC),逸出气体和检测法(EGA和EGD)及热分析与其他分析技术的联用。除介绍仪器的原理,类型,构造,操作技术及特点外,还论及热谱图的解释和数据处理及影响实验结果的因素。尤其着力与理论和使用两方面阐述热分析技术在物理,化学,化工,石油,能源,地址,仿制,塑料,橡胶,纤维,医药,食品,生物,陶瓷,玻璃,火药,土壤,冶金,建筑,煤炭,电子及空间技术等领域中的应用。为方便读者,本书还在附录中收入了“国际热分析协会”对于热分析命名法和有关规定,以及各种商品热分析仪器的型号和性能。 /p p   本书可供可言,生产部门的科技人员,从事热分析的专业人员及大专院校有关师生参考。 /p p style=" text-align: center "   strong  书名:《热分析动力学》 胡荣祖 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/6f4f19e2-efcf-48dd-9198-9bc1e2ef5338.jpg" title=" 016.jpg" / /p p strong   摘要: /strong /p p   本书以热分析动力学方程为主线,汇集了近60年来国内外热分析动力学研究的学术成果。全书内容共13章。首先,回顾了热分析动力学理论、方法和技术 两类动力学方程和三类温度积分式的数学推导。其次,系统地总结了近60年发展起来的用微、积分法处理热分析曲线的成果。第三,涉及最概然机理函数的推断 动力学补偿效应 非线性等转化率的微、积分法。第四,阐述了一级及经验级数自催化分解反应动力学参数的数值模拟 诱导温度与诱导时间的关系 等温热分析曲线分析法 等温和非等温结晶过程DSC曲线分析法。第五,扼要地论述了非等温条件下热爆炸临界温度和临界温升速率的估算方法。书中还编入143道源自最新文献的习题,书末附有简明答案。 /p p   本书可作为高等学校物理化学、分析化学、物理无机化学、物理有机化学、高分子物理化学、材料学专业的硕士、博士研究生的教材,也可供科研院所、生产部门的科技工作者及热分析专业技术人员参考。 /p p style=" text-align: center "    strong 书名:《聚合物结构分析》 朱诚身 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/b1b56792-698c-4d7f-9927-d7f09e64d328.jpg" title=" 017.jpg" / /p p strong   摘要: /strong /p p   本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角x射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。 /p p   本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。 /p p style=" text-align: center "    strong 书名:《含能材料热分析》 刘子如 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/bb0198c6-da7a-495e-b271-e09436b856d0.jpg" title=" 018.jpg" / /p p    strong 摘要: /strong /p p   书比较全面地解读热分析曲线和特征量,并以此研究含能材料的热性能、热分解和相互作用。主要内容包括热安定性和相容性的评价 热物理常数测试方法的建立 热分解的动力学和机理 炸药结晶体的& quot 局部化学& quot 行为 液体发药的过冷性质 熔体的非等温动力学。具有创新性的内容,提出了由DSC获得的熔融熔(H)与组成(X)关系建立二元和三元相图的方法 高压DSC特征量与固体推进剂燃速的相关性 用动态力学性能预估复合或交联推进剂的物理老化寿命 极限力学性能与动态力学性能的相关性等。本书涉及的热分析仪器种类较多,有通用的差示扫描量热(DSC)、差热分析(DTA)和热重-微商热重(TG-DTG)技术,还有高压差示扫描量热(PDSC),动态热机械分析(DMA)以及热分析与其他方法如与红外和质谱联用技术:TG-DSC-FTIR、TG-DSC-MS和热裂解红外原位池等先进技术。 /p p style=" text-align: center "    strong 书名:《热分析实验》 徐 颖 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/214aa864-8ff1-445c-97bb-f759e955aa92.jpg" title=" 019.jpg" / /p p strong   摘要: /strong /p p   热分析是研究程序控制温度下物质性质与温度间关系的一个分析测试技术,它涉及的专业知识和所能应用的领域极广,包括无机、有机、高分子、冶金、陶瓷、玻璃、医药、食品、地质、电子、能源、建筑、生物等各个领域。 /p p   由于热分析仪器种类较多,并且在高校科研、教学中应用日益广泛,仪器开放共享已成为必然领域,因而对热分析仪器的实验教学提出新的要求。笔者在培训教学的过程中发现,虽然热分析专著繁多,但是适合实验教学的却很少,因此根据多位专家学者的经典著作,以及平时积累的零星资料,并结合实际工作中的经验摸索,编写了这本《热分析实验》,力图向初学者简明扼要地介绍热分析原理、种类、结构的基本知识,使其系统规范地掌握实验操作、数据处理,深刻理解图谱特征、含义,了解实验影响因素和技巧,进一步提高综合表征能力。 /p p   本书一共七章,第一章介绍了热分析基本的定义、术语、概念和标准,仪器分类、现状和发展,以及常用参考书 第二章介绍了热分析仪器的结构和组成、常用附件、检验和校正的方法 第三、四、五章分别介绍了常用热分析仪器的基本原理、影响因素、实验方法和图谱解读 第六章介绍了热分析仪器的综合表征和联用技术 第七章介绍了常见的热分析实验、仪器操作、注意事项。 /p p    strong 书名:《高聚物与复合材料动态力学的分析》 过梅丽 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/755b513b-9823-4c9c-86b1-a95e08fb0dd8.jpg" title=" 020.jpg" / /p p strong   摘要 /strong /p p   本书分三部分,介绍了动态力学热分析的基本原理,试验方法极其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在试验方法中结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与实验模式的选择原则、可能获得的信息及影响实验结果的因素。在应用部分,列举了打两个研究实例,说明动态力学热分析在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。 /p p style=" text-align: center "    strong 书名:《热分析质谱法》 陆昌伟 奚同庚 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/2d5d3df2-b019-49a7-be6e-3424373c2f31.jpg" title=" 021.jpg" / /p p strong   摘要: /strong /p p   本书系统地介绍热分析和质谱分析联用技术的原理、分析方法、仪器结构和参数选择,以及在材料科学、物理化学、热化学和热物理等领域中的应用。热分析质谱法是热分析和质谱分析两个分支学科交叉形成的一种新的分析方法,体现了热分析和质谱分析两种技术耦合或联用而形成的优势互补,是对传统热分析技术的突破,也是质谱分析的新发展,已成为研究材料热分解过程,反应动力学、热化学反应机制等问题的重要研究手段,发展前景良好。 /p p style=" text-align: center "    strong 书名:《药物分析图谱》 魏觉珍 陈国玺 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/a9fb3501-6817-47ab-8551-914e45c584f9.jpg" title=" 022.jpg" / /p p strong   摘要: /strong /p p   全书内容包括三部分:一是差热、热重分析的基本概念,影响差热、热重分析的因素,药物的差热分析表征及其解析 二是191种药物标准品(含对照品)的差热、热重分析图谱 三是药物的中文名称索引和英文名称索引。本书是药物热分析人员的一部工具书,对药物分析、药物检测和药物工业生产、开发有很大的实用价值。本书还可供医药科研、大专院校有关专业人员参考。 /p p style=" text-align: center "   strong  书名:《ANSYS热分析教程与实例解析》  /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/0a2a7790-6934-4bc3-965a-8f7e081e5d6a.jpg" title=" 023.jpg" / /p p strong   摘要: /strong /p p   《ANSYS热分析教程与实例解析》按照深入浅出的原则,通过图形用户界面和命令流方式对不同的工程应用问题进行了详细讲解,本书的主要特色是通过& quot 提示& quot 的形式为读者提供了大量的分析方法和技巧。 /p p   本书适合理工院校相关专业的硕士研究生、博士研究生及教师使用,可以作为ANSYS学习教材供高等院校学生及科研院所研究人员使用,也可以作为从事热分析领域科学技术研究的工程技术人员的参考用书。 /p p    strong 书名:《矿物热分析粉晶分析相变图谱手册》 陈国玺 张月明 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/310c475d-e01d-4951-bb99-b64c31594412.jpg" title=" 024.jpg" / /p p strong   摘要: /strong /p p   本书是矿物热分析,X光粉晶分析及岩矿鉴定人员的一部工具书,也是矿物,矿物物理,矿物材料,地球化学等有关方面工作者的基本研究资料和实用的参考书,亦可供高等院校有关专业的教学和研究工作参考。 /p p style=" text-align: center "   strong  书名:《热分析法及其在陶瓷领域中的应用》 陈建邦 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/6d8f0ba9-9a37-4108-9978-8084df62e683.jpg" title=" 025.jpg" / /p p strong   摘要: /strong /p p   本书介绍了热茶分析、失重分析和线收缩率测定等发方法的基础只是和作者在热谱曲线判读等方面所积累的经验,并着重介绍利用这些方法来掌握陶瓷原料的相组成和构造特点,以及估计坯料加工工艺的确定提供材料。同事对能使陶瓷制品导致废次的一些烧成缺陷,从坯料的热变化特性和制品装烧制度方面加以剖析,进而提出了解决的措施。书中手机了一些典型陶瓷矿物原料的差热曲线以及作者测绘的国产陶瓷原料、坯釉料200余宗的差热曲线,有助于生产部门参考。 /p p   本书可供从事陶瓷生产和科研的科研人员、大专院校陶瓷专业师生以及从事其他硅酸盐原材料研究的有关人员参考。 /p p style=" text-align: center "    strong 书名:《热分析技术及其应用基础》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/6f0872b1-5433-42cd-ba98-24cd677d02da.jpg" title=" 026.jpg" / /p p strong   摘要: /strong /p p   近一个实际来由于电子技术的迅速发展,热分析仪器日新月异的改变使热分析方法得到了进展,目前热分析技术是具有国际性的,我国的热分析工作者日益增多,并正在各个学科领域中趋向纵深。 /p p   根据广大分析工作者的要求,为更多地了解和推广热分析仪器和方法,本会首次尝试举办一次“热分析技术及其应用基础”的讲座,并撰写了本讲义,其中有国际热分析学者的重要研究,也有我国热分析工作者的本身工作,由于时间匆促,作者水平有限,缺点和错误一定不少,聆请各位专家、学者、热分析工作者以及读者们批评赐教! /p p style=" text-align: center "    strong 书名:《铀矿物和含铀矿物的热分析》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/8472b983-97ff-4cf7-a1cf-1e8d122184c9.jpg" title=" 027.jpg" / /p p style=" text-align: center "   出版社 中国工业出版社 /p p style=" text-align: center "   作 者 ц.л.安巴尔楚缅 /p p style=" text-align: center "   г.и.巴萨洛娃 C.A.戈尔热夫斯卡娅 /p p style=" text-align: center "   H.г.纳扎连科 P.п.霍扎耶 /p p style=" text-align: center "   strong  书名:《矿物差热分析》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/8b80b73a-e0d2-4d31-93c0-b70d4e76c047.jpg" title=" 028.jpg" / /p p style=" text-align: center "   出版社 中国工业出版社 /p p style=" text-align: center "   作 者 辽宁省地质局中心实验室年份 /p p style=" text-align: center "   年 份 1975年 /p p style=" text-align: center "    strong 书名:《实用热分析》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/0093c268-61ac-4b99-ac18-3203f67475e1.jpg" title=" 029.jpg" /    br/ /p p style=" text-align: center "   出版社 纺织工业出版社 /p p style=" text-align: center "   作 者 于伯龄 姜胶东 /p p style=" text-align: center "   年 份 1990年 /p p style=" text-align: center "    strong 书名:《差热分析:DTA技术及其应用指导》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/a9218225-119e-4d49-8cf4-5faa777a974f.jpg" title=" 030.jpg" /    br/ /p p style=" text-align: center "   出版社 北京师范大学出版社 /p p style=" text-align: center "   作 者 波普,尤德 著 杨红征 译 /p p style=" text-align: center "   年 份 2010年 /p p style=" text-align: center "   strong  书名:《常用热分析仪器》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/68845226-527f-40cb-8870-838efa78a969.jpg" title=" 031.jpg" / /p p style=" text-align: center "   出版社 上海科学技术出版社 /p p style=" text-align: center "   作 者 徐国华 袁靖 /p p style=" text-align: center "   年 份 1990年 /p p style=" text-align: center "    strong 书名:《高分子材料热分析曲线集》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/038d8cb4-cf34-4336-9300-71d178ad1c99.jpg" title=" 032.jpg" /    br/ /p p style=" text-align: center "   出版社 科学出版社 /p p style=" text-align: center "   作 者 高家武等 /p p style=" text-align: center "   年 份 1990年 /p p style=" text-align: center "    strong 书名:《矿物差热分析鉴定手册》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/a00f845f-91a6-4225-bcd3-dd36a6e06fb6.jpg" title=" 033.jpg" /    br/ /p p style=" text-align: center "   出版社 科学出版社 /p p style=" text-align: center "   作 者 黄伯龄 /p p style=" text-align: center "   年 份 1987年 /p p style=" text-align: center "   strong  书名:《热分析》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/fd904fc6-dc60-4e36-afdf-3a2d69ba39db.jpg" title=" 034.jpg" /    br/ /p p style=" text-align: center "   出版社 清华大学出版社 /p p style=" text-align: center "   作 者 李余增 /p p style=" text-align: center "   年 份 1987年 /p p style=" text-align: center "    strong 书名:《热分析》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/5a8f613e-a7b0-4209-8b89-366754c3a610.jpg" title=" 035.jpg" / /p p style=" text-align: center "   出版社 科学出版社 /p p style=" text-align: center "   作 者 神户博太郎 著 刘振海等 译 /p p style=" text-align: center "   年 份 1982年 /p p style=" text-align: center "   strong  书名:《热分析》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/c9e456a6-5472-4bbe-ad10-d10455cbe7dd.jpg" title=" 036.jpg" /   br/ /p p style=" text-align: center "   出版社 高等教育出版社 /p p style=" text-align: center "   作 者 蔡正千 /p p style=" text-align: center "   年 份 1993年 /p p style=" text-align: center "    strong 书名:《热学式分析仪器》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/63ebca67-6713-4ba8-bc51-b9c0fe545b6c.jpg" title=" 037.jpg" /    br/ /p p style=" text-align: center "   出版社 中国建筑工业出版社 /p p style=" text-align: center "   作 者 张仲礼 黄兆铭 李选培 /p p style=" text-align: center "   年 份 1984年 /p p style=" text-align: center "    strong 书名:《差热、热重分析与非等温固相反应动力学》 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/26c65bfa-3529-4cd5-856d-ab77d6db7369.jpg" title=" 038.jpg" /    br/ /p p style=" text-align: center "   出版社 冶金工业出版社 /p p style=" text-align: center "   作 者 沈兴 /p p style=" text-align: center "   年 份 1995年 /p p style=" text-align: center "    strong 书名:《炸药热分析》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/5d6906b9-347c-4d79-b94c-049762e7df57.jpg" title=" 039.jpg" / /p p style=" text-align: center "   出版社 科学出版社 /p p style=" text-align: center "   作 者 楚士晋 /p p style=" text-align: center "   年 份 1994年 /p p style=" text-align: center "    strong 书名:《热天平》 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201804/insimg/d469a613-c4e8-4db8-9939-a47efe9ebc40.jpg" title=" 040.jpg" / /p p style=" text-align: center "   出版社 北京中国计量出版社 /p p style=" text-align: center "   作 者 宋鸿恩 /p p style=" text-align: center "   年 份 1985年 /p
  • 2008梅特勒托利多热分析用户会暨热分析技术研讨会
    尊敬的用户/客户: 很荣幸能邀请您参加2008梅特勒托利多热分析用户会暨热分析技术研讨会。 我们今年将在上海举办2008年梅特勒托利多热分析用户会暨热分析技术研讨会。届时,梅特勒托利多完整的热分析实验室将会给您带来全新体验。我们诚邀所有对热分析感兴趣的用户与客户参加,希望能与您共同探讨热分析技术。 【时间】:2008年7月15~18日 【会议地点】:上海 【主要内容】: &bull 用DSC进行成核剂对聚丙烯结晶性能的研究 &mdash &mdash 武培怡 教授/博士 复旦大学高分子科学系主任 &bull 热分析质谱联用技术在材料研究中的应用 &mdash &mdash 陆昌伟 教授 作者 &bull 热分析技术在支化聚乙烯研究中的应用 &mdash &mdash 冯嘉春 副教授/博士 复旦大学高分子系 &bull 《热分析应用手册》介绍 &mdash &mdash 陆立明 经理 梅特勒托利多热分析仪器部经理 &bull 热分析在高分子与电子行业的应用 &mdash &mdash 仲伟霞 博士 梅特勒托利多热分析技术应用顾问 &bull 热分析新技术研讨:温度调制DSC技术、热分析动力学、动态热机械分析 &bull 热分析软件的功能和应用 &bull 热分析仪器的维护、保养与校准 【费用】: 用户:1000元/人(含会务、资料、正餐) 非用户:1500元/人(含会务、资料、正餐) 反馈截止日期至6月30日 下载:2008梅特勒托利多热分析用户会暨热分析技术研讨会 邀请函
  • “《热分析简明教程》读书分享”征集活动
    《热分析简明教程》免费赠送活动已经圆满结束了。从活动开始不到三周300本书籍已经被全部抢空,客户对此书的热情如此之高,使得我们今后会更加重视在应用领域的研究及投入。为了将您对此书的理解及收获让更多人分享,我们在此邀请您参加我们&ldquo 读书分享&rdquo 征集活动,希望通过您的分享,让更多人受益,并以此启发我们今后的工作。 活动地址:http://cn.mt.com/cn/zh/home/supportive_content/news/CN_TA_collection_activities_for_shared_reading.html 我们将从来文中随机抽取30名幸运作者,赠送您指定的礼品一份! 除此之外,如果文章被我们选中且您同意刊登,我们将另外赠送您指定的大奖一份! 互动时间: 即日起至2012年11月30日 字 数: 字数不限,少则寥寥几句,多则百字、千字都可以。 获奖方式及奖品: (一) 来文中随机抽取30名 奖品为《热分析应用手册系列丛书》中各分册或瑞士军刀,该丛书分册如下图所示,由梅特勒托利多瑞士及中国专家团队编辑,东华大学出版社出版。书籍将实用性及学术性相结合,对热分析工作者及学习者大有帮助! (二) 选中并同意刊登若干名 奖品为一套《热分析应用手册系列丛书》,含以下6本分册或瑞士进口MULTI TOOL多功能工具刀,如图所示。 本活动最终解释权归梅特勒托利多所有
  • 梅特勒托利多:《热分析应用基础》即将出版
    由梅特勒托利多公司瑞士总部热分析专家著作、由梅特勒托利多中国热分析专家翻译的《热分析应用手册系列丛书》之《热分析应用基础》(中文版)即将于2011年1月由东华大学出版社出版。 《热分析应用基础》是该系列丛书的一个重要分册,系统全面介绍了各种热分析方法的基本原理和测量方法,诸如DSC、TGA、TMA、DMA、热光分析、TGA/MS和TGA/FTIR联用技术的定义、原理和应用,以及样品制备、数据处理与表达,并着重阐述了玻璃化、二元相图、纯度测定、多晶型、吸附分析;还从热分析实验方法、条件(参数)选择到评价体系、实施方案制订了若干步骤。最后附有ISO、ICTAC等国际组织制订的各项热分析标准。 截止到目前,《热分析应用手册系列丛书》中文版已有《热塑性聚合物》、《热固性树脂》、《弹性体》、《逸出气体分析》及本书在内的5本分册。 《热塑性聚合物》介绍了热塑性聚合物在加热时熔融或流动,由无规缠结的(无定形热塑性塑料)或以微晶方式部分有序的(半结晶热塑性塑料)线性大分子组成。它们在农业、汽车工业、航空业、建筑工业、电气工业、纺织等行业广泛运用。本书不仅可作为应用手册查询,也可以作为实验指南,对热分析工作者及热分析学习者有帮助和裨益。 《弹性体》分册通过大量实例全面深入地介绍和讨论了热分析在聚合物弹性体方面的应用,第1至第3章热分析方法简介,弹性体的结构、性能和应用;弹性体的基本热效应,第4至第5章介绍了大量的应用实例,包括对结果的详细解释和导出的结论。 《热固性树脂》分册通过大量实例全面深入地介绍和讨论了热分析在热固性树脂方面的应用。主要内容:热分析技术DSC、TMDSC、TGA、TMA和DMA等简介;热固性树脂的结构、性能和应用;热固性树脂的基本热效应;环氧树脂、不饱和聚酯树脂、酚醛树脂、丙烯酸类树脂、聚氨酯树脂等的热分析一固化反应(等温固化、光固化、后固化、反应动力学等)、玻璃化转变(Tg与固化度、Tg的各种测试法、固化反应中的玻璃化、凝胶化、时间一温度转换图等)、填料和增强纤维等的影响、印制线路板分析(Tg、分层、老化)、缩聚、加聚、层压板、黏合剂等。 《逸出气体分析》分册着重阐述TGA-FTIR和TGA-MS两种联用技术。第一部分讲述这两种技术的基本原理,也包括一些实际内容和介绍图谱的解析。第二部分讨论用TGA-FTIR和TGA-MS做的15项不同的应用,以及两个相对较少使用的TMA和MS联用技术的应用。 相信这套丛书的出版,会对我国热分析技术的普及与提高起到重要的推动作用,特别对热分析仪器的直接操作者和应用者具有实际的指导意义。 若有需要,可通过全国新华书店、各网站及东华大学出版社购买。
  • 梅特勒托利多热分析用户会暨技术研讨会通知
    尊敬的用户/客户: 在您的大力支持下,梅特勒托利多的热分析业务又走过了辉煌的一年。我们在2008年的业务得到了长足的发展,可以说是飞跃的一年。面对着全球严重的金融危机,尽管有困难,我们的业务迄今仍然保持着很好的发展。 兹定于7月中旬在青岛举办“2009梅特勒托利多热分析用户会议暨技术研讨会”。今年的会议将更集中于专题研讨,深入交流热分析在热塑性/热固性聚合物和弹性体方面的应用。会上,我们将赠送即将由东华大学出版社出版的《热分析应用手册丛书》之《热固性树脂》分册,该书为16开本,324页,包含了热分析在热固性聚合物方面的深入知识和全面应用,将由中科院长春应用化学研究所刘振海教授详细介绍该书的精华。 同时我们将依据《热分析应用手册丛书》之《弹性体》分册(该也将于今年底前出版),详细介绍热分析在弹性体方面的应用。还有热塑性聚合物方面的专题报告(OIT、结晶动力学等)。具体安排如下: 【时间】:2009年7月15~17日(14日报到) 【会议地点】:青岛(具体地点待定) 【主要内容】: - “热分析在热固性树脂方面的应用”:中科院长春应用化学研究所刘振海教授主讲 - “热分析在热弹性体方面的应用”:唐远旺主讲 - “PE和PP氧化诱导时间OIT的测量”:仲伟霞博士主讲 - “热塑性聚合物的结晶动力学”:仲伟霞博士主讲 - “比热容的DSC测量-直接法、蓝宝石法和温度调制法及其比较”: 唐远旺主讲 - Tg测量的不同标准(ASTM/DIN/Richardson)和不同技术(DSC/TMA/DMA)及其比较:陆立明主讲 - “新产品熔点仪MP超越系列”简介 - 热分析软件的功能和应用;热分析仪器的维护、保养与校准 【费用】:梅特勒托利多热分析用户:1000元/人(含会务、资料、正餐)非梅特勒托利多热分析用户:1200元/人(含会务、资料、正餐) 请在此填写反馈表 我们真诚邀请您参加!回执反馈截止日期至6月30日,我们将会在7月1日为反馈者发布第二轮会议通知。 本活动解释权归梅特勒托利多所有 梅特勒托利多(中国) 热分析仪器部
  • 2010年梅特勒托利多热分析用户会暨技术研讨会圆满结束
    正值上海世博会精彩进行期间,2010年7月20~22日,梅特勒托利多(中国)在上海华美达新园酒店举办了为期三天的&ldquo 2010年梅特勒托利多热分析用户会暨技术研讨会&rdquo ,来自全国高校、研究所和公司的70多名教授、专家、技术人员参加了此次会议。 会上,中科院硅酸盐研究所研究员陆昌伟、复旦大学高分子系教授冯嘉春等作了专题报告:《热质联用的定性及定量方法在材料研究中的应用》、《热分析技术在聚烯烃结构分析中的应用》、《热固性树脂的热分析表征》。与会者与专家们进行了深入的交流讨论。 梅特勒托利多亚太技术经理柳建宇博士作了《DSC实验的技巧》的专题介绍;梅特勒托利多(中国)热分析技术应用专家唐远旺介绍了由他翻译新出版的《热分析应用手册丛书》之《逸出气体分析》一书;梅特勒托利多应用和服务工程师们就热分析应用和仪器维护等与与会者进行了广泛交流。 会上,应与会者要求,梅特勒托利多(中国)热分析仪器部经理陆立明还进行了现场签售《热分析应用手册丛书》之《热塑性聚合物》、《热固性树脂》和《弹性体》三本书。 会上还透露了梅特勒托利多即将在全球同步上市的创新型仪器-闪速差示扫描量热仪Flash DSC。该仪器采用MEMS(微机电系统)技术的芯片传感器,动态功率补偿测量热流,降温速率达到6个数量级,升温速率达到7个数量级。是一个全新的商品化超高速DSC仪器,可制备明确定义的结构性能的材料,可在测量时防止结构改变,可研究极快反应或结晶过程动力学。 本次研讨会圆满结束了,让我们深感高兴的是,我们不仅给客户带来了梅特勒托利多先进的热分析技术,而且也为客户提供了一个与热分析领域的教授专家以及梅特勒托利多公司人员接触和沟通的平台,这样的平台加深了彼此之间的了解,有助于更快更好地建立相互间信赖的合作关系。
  • 什么是热分析(TA)及热分析实验技巧
    热分析(thermal analysis,TA)是在程序控温和一定气氛下,测量试样的某种物理性质与温度或时间关系的一类技术。常用的热分析术语1)热重thermogravimetry, TG;热重分析 thermogravimetric analysis, TGA在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。2)差热分析differential thermal analysis,DTA在程序控温和一定气氛下,测量试样和参比物温度差与温度(扫描型)或时间(恒温型)关系的技术。3)差示扫描量热法differential scanning calorimetry,DSC在程序控温和一定气氛下,测量输给试样和参比物能量(差)[热流量(差)、热流速率(差)或功率(差)] 与温度或时间关系的技术。a. 热流型(heat-flux) DSC按程序控温改变试样和参比物温度时,测量与试样和参比物温差相关的热流量与温度或时间的关系。热流量与试样和参比物的温差成比例。b. 功率补偿型(power-compensation) DSC在程序控温并保持试样和参比物温度相等时,测量输给试样和参比物热流速率差与温度或时间的关系。4)温度调制式差示扫描量热法modulated temperature differential scanningcalorimetry, MTDSC 或 MDSCMDSC 是由 DSC 演变的一种方法,该法是对温度程序施加正弦扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。即在传统线性变温基础上叠加一个正弦振荡温度程序,最后效果是可随热容变化同时测量热流量。利用傅立叶变换可将热流量即时分解成可逆的热容成分(如玻璃化转变、熔化)和不可逆的动力学成分(如固化、挥发、分解)。5)联用技术multiple techniques在程序控温和一定气氛下,对一个试样采用两种或多种分析技术。6)热重曲线thermogravimetric curve, TG curve由热重法测得的数据以质量(或质量分数)随温度或时间变化的形式表示的曲线。曲线的纵坐标为质量 m (或质量百分数),向上表示质量增加,向下表示质量减小;横坐标为温度 T 或时间 t ,自左向右表示温度升高或时间增长。7)微商热重曲线derivative thermogravimetric curve, DTG curve以质量变化速率与温度(扫描型)或时间(恒温型)的关系图示由热天平测得的数据。当试样质量增加时,DTG 曲线峰朝上;质量减小时,峰应朝下。8)差热分析曲线differential thermal analysis curve, DTA curve由差热分析测得的记录是差热分析曲线(DTA 曲线)。曲线的纵坐标是试样和参比物的温度差(Δ T ),按以往已确定的习惯,向上表示放热效应(exothermic effect),向下表示吸热效应(exothermic effect)。9)差示扫描量热曲线differential scanning calorimetry curve, DSC curve图示由差示扫描量热仪测得的输给试样和参比物的能量(差)与温度(扫描型)或时间(恒温型)的关系曲线。曲线的纵坐标为热流量(heat flow)或热流速率(heat flow rate),单位为 mW(mJ/s);横坐标为温度或时间。按热力学惯例,曲线向上为正,表示吸热效应;向下为负,表示放热效应。热重分析、差热分析和差示扫描量热分析是在催化研究领域应用较多的热分析技术。热分析技术1、 热重法原理:热重法(TG)是测量试样的质量随温度或时间变化的一种技术。如分解、升华、氧化还原、吸附、解吸附、蒸发等伴有质量改变的热变化可用 TG 来测量。TG 测量使用的气体有:Ar、Cl2 、CO2 、H2 、N2 、O2 、空气等气体。热重曲线:热重分析得到的是程序控制温度下物质质量与温度关系的曲线,即热重曲线(TG 曲线)。图1:TG与DTG曲线2、 差热分析原理:差热分析仪一般由加热炉、试样容器、热电偶、温度控制系统及放大、记录系统等部份组成,其基本原理见图 2。将样品和参比放在相同的加热或冷却条件下,同时测温热电偶的一个端插在被测试样中,另一个热端插在待测温度区间内不发生热效应的参比物中,因此试样和参比物在同时升温或降温时,测温热电偶可测定升温或降温过程中二者随温度变化所产生的温差(ΔT),并将温差信号输出,就构成了差热分析的基本原理。由于记录的是温差随温度的变化,故称差热分析。按以往已确定的习惯,向上表示放热效应(exothermic effect),向下表示吸热效应(endothermic effect)。图2:热电偶和温差热电偶差热曲线DTA 曲线的记录曲线如图 3。图3:典型DTA曲线3、差示扫描量热法原理:差示扫描量热法(DSC)就是为克服差热分析在定量测定上存在的这些不足而发展起来的一种新的热分析技术。它测量与试样热容成比例的单位时间功率输出与程序温度或时间的关系,通过对试样因发生热效应而发生的能量变化进行及时的应有的补偿,保持试样与参比物之间温度始终保持相同,无温差、无热传递,使热损失小,检测信号大。图4:功率补偿DSC示意图差示扫描量热曲线差示扫描量热曲线(DSC 曲线)与 DTA 曲线十分相似,这里不再重复。固体催化剂表面酸碱性表征对于许多化学反应,催化剂的选择和它的转化率与其固体表面酸性活性中心的数量、强度密切相关。因此,对催化剂酸/碱性的评价是非常重要的。固体催化剂表面酸碱性的测量目前主要是利用碱性气体吸附-色谱程序升温热脱附技术,但是在吸附质有分解的情况下,此法准确性差。然而,若利用碱性气体吸附-热重程序升温热脱附技术则可以弥补这一缺陷。同样,采用酸性气体吸附-热重或差热程序升温热脱附技术可以实现对固体催化剂表面碱性的表征。热分析实验技巧1 、升温速率的影响快速升温易产生反应滞后,样品内温度梯度增大,峰(平台)分离能力下降;DSC 基线漂移较大,但能提高灵敏度、峰形较大;而慢速升温有利于DTA、DSC、DTG相邻峰的分离;TG相邻失重平台的分离;DSC 基线漂移较小,但峰形也较小。对于 TG 测试,过快的升温速率有时会导致丢失某些中间产物的信息。一般以较慢的升温速率为宜。对于 DSC 测试,在传感器灵敏度足够、且不影响测样效率的情况下,一般也以较慢的升温速率为佳。2 、样品用量的控制样品量小可减小样品内的温度梯度,测得特征温度较低些也更“真实”一些;有利于气体产物扩散,使得化学平衡向正向发展;相邻峰(平台)分离能力增强,但 DSC 峰形也较小。而样品量大能提高 DSC 灵敏度,有利于检测微小的热量变化,但峰形加宽,峰值温度向高温漂移,相邻峰(平台)趋向于合并在一起,峰分离能力下降;且样品内温度梯度较大,气体产物扩散亦稍差。一般在 DSC与热天平的灵敏度足够的情况下,亦以较小的样品量为宜。3、 气氛的选择3.1 动态气氛、静态气氛与真空根据实际的反应模拟需要,结合考虑动力学因素,选择动态气氛、静态气氛或真空气氛。静态、动态与真空气氛的比较:静态下气体产物扩散不易,分压升高,反应移向高温;且易污染传感器。真空下加热源(炉体)与样品之间只通过辐射进行传热,温度差较大。且在两者情况下天平室都缺乏干燥而持续的惰性气氛的保护。一般非特殊需要,推荐使用动态吹扫气氛。若需使用真空或静态气氛,须保证反应过程中释出的气体无危害性。3.2 气氛的类别对于动态气氛,根据实际反应需要选择惰性(N2 、Ar、He)、氧化性(O2 、air)、还原性与其他特殊气氛等,并作好气体之间的混合与切换。为防止不期望的氧化反应,对某些测试必须使用惰性的动态吹扫气氛,且在通入惰性气氛前往往须作抽真空-惰性气氛置换操作,以确保气氛的纯净性。常用惰性气氛如N 2 ,在高温下亦可能与某些样品(特别是一些金属材料)发生反应,此时应考虑使用“纯惰性”气氛(Ar、He)气体密度的不同影响到热重测试的基线漂移程度(浮力效应大小)。为确保基线扣除效果,使用不同的气氛须单独作热重基线测试。3.3 气体的导热性常用气氛的导热性顺序为:He N2 ≈ air O2 Ar选择导热性较好的气氛,有利于向反应体系提供更充分的热量,降低样品内部的温度梯度,降低反应温度,提高反应速率;能使峰形变尖变窄,提高峰分离能力,使峰温向低温方向漂移;在相同的冷却介质流量下能加快冷却速率;缺点是会降低DSC灵敏度。若采用不同导热性能的气氛,需要作单独的温度与灵敏度标定。3.4 气体的流量提高惰性吹扫气体的流量,有利于气体产物的扩散,有利化学反应向正反应方向发展,减少逆反应;但带走较多的热量,降低灵敏度。对于需要气体切换的反应(如反应中从惰性气氛切换为氧化性气氛),提高气体流量能缩短炉体内气体置换的过程。不同的气体流量,影响到热重测试的基线漂移程度(浮力效应)。因此对TG测试必须确保气体流量的稳定性,不同的气体流量须作单独的基线测试(浮力效应修正)。4 、坩埚加盖与否的选择坩埚加盖的优点:a. 改善坩埚内的温度分布,有利于反应体系内部温度均匀。b. 有效减少辐射效应与样品颜色的影响。c. 防止极轻的微细样品粉末的飞扬,避免其随动态气氛飘散,或在抽取真空过程中被带走。d. 在反应过程中有效防止传感器受到污染(如样品的喷溅或泡沫的溢出)。坩埚盖扎孔的目的:a. 使样品与气氛保持一定接触,允许一定程度的气固反应,允许气体产物随动态气氛带走。b. 使坩埚内外保持压力平衡。坩埚加盖的缺点:a. 减少了反应气氛与样品的接触,对气固反应(氧化、还原、吸附)有较大碍。b. 对于有气相产物生成的化学反应,由于产物气体带走较慢,导致其在反应物周围分压较高,可能影响反应速率与化学平衡(DTG峰向高温漂移),或对于某些竞争反应机理可能影响产物的组成(改变TG失重台阶的失重率)。了解了加盖的目的、优缺点,那么具体做实验时,应如何决定呢?下面简单介绍几种情况:1. 对于物理效应(熔融、结晶、相变等)的测试或偏重于DSC的测试,通常选择加盖。2. 对于未知样品,出于安全性考虑,通常选择加盖。3. 对于气固反应(如氧化诱导期测试或吸附反应),使用敞口坩埚(不加盖)。4. 对于有气体产物生成的反应(包括多数分解反应 )或偏重于TG的测试,在不污染损害样品支架的前提下,根据反应情况与实际的反应器模拟,进行加盖与否的选择。5. 对于液相反应或在挥发性溶剂中进行的反应,若反应物或溶剂在反应温度下易于挥发,则应使用压制的Al坩埚(温度与压力较低)或中压、高压坩埚(温度与压力较高)。对于需要维持产物气体分压的封闭反应系统中的反应同样如此。5 、DSC 基线DSC基线漂移程度的主要影响因素是参比端与样品端的热容差异(坩埚质量差、样品量大小)、升温速率、样品颜色及热辐射因素(使用Al 2 O 3 坩埚时)等。在实验中,参比坩埚一般为空坩埚。若样品量较大,也可考虑在参比坩埚中加适量的惰性参比物质(如蓝宝石比热标样)以进行热容补偿。在比热测试时,对基线重复性的要求非常严格。一般使用Pt/Rh坩埚,参比坩埚与样品坩埚质量要求相近,基线测试、标样测试与样品测试尽量使用同一坩埚,坩埚的位置尽量保持前后一致。TG 热重法TG/FTIR热重法/傅立叶变换红外光谱法TG/GC热重法/气相色谱法TG/MS热重法/质谱分析TG-DSC热重法-差示扫描量热法TG-DTA热重法-差热分析参考文献[1] 刘振海,白山 立子,分析化学手册(第二版),第八分册,化学工业出版社,北京,2000.[2] 辛勤,固体催化剂研究方法,科学出版社,北京,2004.[3] 辛勤,罗孟飞,现代催化研究方法,科学出版社,北京,2009.
  • 2013梅特勒托利多热分析技术及交流会天津站
    尊敬的先生/女士: 您好! 梅特勒托利多热分析技术及应用交流会将于2013年4月23日在天津晋滨国际大酒店举行,现诚邀您免费参加本次会议。除中国区技术专家,会议还将邀请梅特勒托利多亚太区资深技术专家现场报告并与讨论解答各类技术问题。 领先技术 梅特勒托利多是一家全球领先的精密仪器制造商,自1964年推出世界上第一台商品化热重/差热同步热分析仪以来,生产热分析产品已有49年的历史,欧洲市场占有率始终稳居第一,是全球最主要的热分析仪器供应商之一。在近50年的发展中不断追求技术的进步及创新,凭借传感器技术及超快速差式扫描量热Flash DSC技术先后两次获得美国R&D100大奖。除此之外,多频温度调制技术TOPEM、依托世界一流天平技术和独特水平炉体设计的同步热分析仪、施力达到40N,频率高达1000Hz的动态热机械分析仪、可以在液体中进行测试的新型DMA1、以及可以准确分析任何复杂化学反应的专利非模型动力学软件MFK等,其领先的技术及精湛的制造工艺无不彰显着梅特勒托利多热分析事业对技术的孜孜以求,及享誉全球的瑞士品质。 应用支持 近50年的热分析制造及销售经验为我们累积了大量的应用案例,用户行业涉及高分子、石化、汽车、轮胎、药物、食品、矿物、陶瓷等几乎所有材料领域的研发和质量控制。针对大量应用实例,技术专家潜心编辑了《热分析应用系列丛书》各分册,出版发行后深受业内人士的青睐。在全球范围内,越来越多的实验室已经使用了我们的技术,我们的技术服务专家随时准备为您提供最佳的实验解决方案。 经验分享 本次会议我们将邀请高校、科研院所、各行业公司的热分析专家、教授、科研工作者、研发技术经理的光临,为您创造一个相互交流、经验分享的学习平台。如您需要购买或有兴趣了解热分析领域的相关信息,请及时与我们联系参加。 会议内容 1:创新型DSC技术-闪速Flash DSC1及其应用; 2:高灵敏度、抗腐蚀的DSC1及其扩展技术及应用; 3:热重及同步热分析仪TGA/DSC1技术及应用; 4:动态热机械分析仪SDTA861e和DMA1技术及应用; 5:热分析在新材料中的应用; 6:热分析药物方面的应用; 8:讨论&交流&自由问答; 9:幸运抽奖 演讲嘉宾 演讲嘉宾1:Craig Gordon,热分析亚太区市场经理,资深技术专家,从事热分析工作二十多年; 演讲嘉宾2:陆立明,热分析部门高级经理,资深技术专家,参与编写《热分析简明教程》和翻译《热分析应用手册系列丛书》等书籍; 演讲嘉宾3:唐远旺,热分析部门高级技术服务主管,具有丰富应用经验,参与编写《热分析简明教程》和翻译《热分析应用手册系列丛书》等书籍。 时间安排 4月23日 9:00-17:00 报到8:30-9:00 天津晋滨国际大酒店 二楼多功能厅 和平区鞍山道135号,电话:022-83311818 参会要求 我们热情期待各大高校、科研院所、各行业公司的热分析专家、教授、科研工作者、质量控制技术人员的光临。因席位有限,各单位、部门仅限1-3位名额,敬请提前预约。 咨询预约 杨献玲 Tel:021-64850435*1733 Mobile:13818489304 Email: thermalanalysis@mt.com 郭振山 Tel:022-23268844 Mobile:13920011915 Email: Eric.Guo@mt.com 为确保活动效果,本次会议最多接受报名人数60人(以报名次序为准),请务必于2013年4月20日前填写回执并通过以上方式进行确认。免费提供会刊资料、精美礼品与午餐。名额有限,敬请提前预约! 专业的技术盛宴,您怎能错过! 梅特勒托利多热分析仪器部
  • 2010梅特勒托利多热分析用户会暨技术研讨会 邀请函
    尊敬的客户:您好! 梅特勒托利多公司定于2010年7月20-22日在上海华美达新园酒店举办热分析用户会暨技术研讨会。 会议主题有以下几个方面: -- 中科院长春应用化学研究所刘振海教授:&ldquo 热固性树脂的热分析表征&rdquo ; -- 中科院上海硅酸盐研究所陆昌伟教授:&ldquo 热质联用的定性及定量方法在材料研究中的应用&rdquo ; -- 复旦大学高分子科学系冯嘉春教授:&ldquo 热分析技术在聚烯烃结构分析中的应用&rdquo ; -- 梅特勒托利多亚太区热分析应用专家柳建宇博士:&ldquo 做好热分析实验的技巧&rdquo ; -- 梅特勒托利多中国公司唐远旺:&ldquo 新书《逸出气体分析》介绍&rdquo ; -- 梅特勒托利多中国公司陆立明:&ldquo 热分析应用基础:技术指标定义、基本测量原理及数据处理&rdquo ; -- 梅特勒托利多中国公司唐幸初:&ldquo 热分析仪器的故障分析与维护&rdquo ; 我们热情期待着与您共同聆听专家的报告,并切磋交流热分析专业技术。 点击注册并参与此次研讨会 【会议时间】2010年7月20~22日(19日报到) 【会议地点】上海华美达新园酒店 (上海市漕宝路509号www.ramadacaohejing.com) 【注意事项】 1)19日报到时请携带此通知单,出示您的名片,在签到处免费领取会议资料; 2)如果您因故不能前来,可推荐您的同事代为参加,并出示被邀请人名片和本人名片,我们将协调其参会; 3)入住时请告知&ldquo 梅特勒托利多会议用户&rdquo 即可享受优惠价,标间400元/天、单人间400元/天;(需自理) 4)会务费(含会务、资料、餐饮、团队活动等):1500元/人。 梅特勒托利多(中国) 热分析仪器部 2010年5月 题目:热固性树脂的热分析表征 邀请嘉宾:中科院长春应用化学研究所刘振海教授 简介:著名热分析专家,国际热分析与量热协会教育委员,国际期刊《热分析与量热学杂志》编委。发表论文100余篇,出版专著14部,包括《热分析导论》、《Handbook of Thermal Analysis》等影响广泛的专著。现为梅特勒托利多热分析技术顾问。 题目:热质联用的定性及定量方法在材料研究中的应用 邀请嘉宾:中科院上海硅酸盐研究所陆昌伟教授 简介:专门从事热-质联用研究20年,是国内该领域的著名专家。在国内外重要刊物发表了大量研究文章。专著有《热分析质谱法》。 题目:热分析技术在聚烯烃结构分析中的应用 邀请嘉宾:复旦大学高分子科学系冯嘉春教授 简介:在聚烯烃方面研究成果突出,发表了许多研究论文。热分析技术深入应用于聚烯烃方面研究。中国石油和化工协会科技进步一等奖获得者。 题目:做好热分析实验的技巧 邀请嘉宾:梅特勒托利多亚太区热分析应用专家柳建宇博士 简介:留德博士,资深热分析技术应用专家,从事热分析应用多年。现在梅特勒托利多台湾亚太热分析实验室工作。 题目:热分析应用基础:技术指标定义、基本测量原理及数据处理 演讲者:梅特勒托利多中国公司热分析部门经理陆立明 简介:曾在德国进修三年,从事高分子物理合作研究。加入梅特勒托利多13年来一直从事热分析工作。已翻译出版《热分析应用手册丛书》3册:《热塑性聚合物》、《热固性树脂》和《弹性体》。 题目:新书《逸出气体分析》介绍 演讲者:梅特勒托利多中国公司热分析技术应用专家唐远旺 简介:《热分析应用手册丛书》之《逸出气体分析》的译者,现任梅特勒托利多中国公司高级热分析技术应用顾问。 题目:热分析仪器的故障分析与维护 演讲者:梅特勒托利多中国公司热分析维修服务主管唐幸初 简介:从事热分析技术服务多年,现全面负责梅特勒托利多中国热分析的售后服务。 2010梅特勒托利多热分析用户会暨技术研讨会 回 执 基本信息 姓名:_________________ 性别:____________________ 工作单位:________________________________________ 部门:_________________ 职务:____________________ 电话/手机:______________ E-Mail:__________________ 通讯地址:________________________________________ 住宿选择 标间(同____________合住)400元/天 含早 标间(由会务组安排与他/她人合住)400元/天 含早 单间 400元/天 含早 以上信息请务必填写正确,以便为您进行后续通知。反馈日期截止至2010年7月10日! 您可以通过以下任意方式反馈回执 传真:021-64959748 致电021-64850435*1733、13818489304 E-mail至xianling.yang@mt.com 或 邮寄至:上海市桂平路589号 梅特勒托利多仪器(上海)有限公司,200233 联系人:热分析部门 杨献玲
  • 2012梅特勒托利多热分析用户会暨技术研讨会邀请函
    尊敬的客户:您好! 目前在中国,梅特勒-托利多热分析品牌的影响力正在逐步深入,客户群也在空前壮大,这其中除了依托瑞士品质一贯的精密可靠,主要还是得益于大家对我们热分析应用技术及服务的认可。为了加强与用户和其他客户的沟通,让大家进一步掌握热分析技术,不断拓展现有仪器的应用范围,最大化的发挥现有设备的作用,梅特勒-托利多公司定于2012年7月25-27日在北京前门建国饭店举办热分析用户会暨技术研讨会,届时将有多位国内外热分析领域知名专家与大家展开面对面的交流与讨论,欢迎用户们和一切对热分析技术有兴趣的客户参加! 会议内容将围绕以下主题: - DSC在生物体系中的应用; - 温度调制式差式扫描量热仪及其在聚合物共混当中的应用; - 温敏聚合物聚(N-异丙基)丙烯酰胺的相变机理的TOPEM-DSC研究; - DSC-光学系统(UV-DSC、DSC-显微镜系统、DSC-化学发光系统、DSC-热台); - 热分析曲线的解释; - 热分析仪器的操作技巧; - 热分析仪器的维护; 【会议时间】2012年7月25~27日 (24日报到) 【会议地点】北京前门建国饭店 群英厅 (北京市宣武区永安路175号,010-63016688) 【注意事项】1)24日报到时请携带此通知单,出示您的名片,在签到处免费领取会议资料; 2)如果您有事不能前来,可推荐您的同事代为参加,并出示被邀请人名片和本人名片,我们将协调其参会; 3)会务费1800元/人(含培训费、资料、餐饮等),住宿可统一安排,费用自理; 如有疑问或交流详情,请联系如下: 联 系 人:杨献玲 邮 箱:thermalanalysis@mt.com 联系电话:021-64850435*1733 手 机:13818489304 梅特勒托利多(中国) 热分析仪器部 2012年5月 点击这里注册参加会议 【报告内容】 题目:温度调制式差式扫描量热仪及其在聚合物共混当中的应用 邀请嘉宾:刘振海 著名热分析专家,中科院长春应用化学研究所教授,国际热分析与量热协会教育委员,国际期刊《热分析与量热学杂志》编委。发表论文100余篇,出版专著14部,包括《热分析导论》、《Handbook of Thermal Analysis》等影响广泛的专著。 题目:DSC在生物体系中的应用 邀请嘉宾:尉志武 清华大学理学院教授、博士生导师,中国化学会理事,化学热力学与热分析专业委员会副主任、主任,国际热分析与量热学联合会理事。他在化学热力学等领域取得了突出成绩。主持包括国家基金委、教育部在内的科研项目多项,在国内外专业杂志和国际会议发表学术论文100多篇。 题目:温敏聚合物聚(N-异丙基)丙烯酰胺的相变机理的TOPEM-DSC研究 邀请嘉宾:汪辉亮 北京师范大学化学学院教授、博士生导师,主要从事高分子材料表面功能化改性和智能高分子材料的研究。近年来,出版多部著作和教材,发表论文数十篇,主持和参与多项科研项目。 题目:DSC-光学系统(UV-DSC、DSC-显微镜系统、DSC-化学发光系统、DSC-热台) 邀请嘉宾:Craig Gardon 梅特勒-托利多亚太区技术专家,自1989年加入梅特勒托利多公司以来从事热分析产品工作已有23年,先后在南非、瑞士总部工作并担任不同的角色,包括热分析产品经理、市场经理以及国际销售部经理。目前在马来西亚担任亚太区经理,负责热分析产品在整个亚洲地区的推广工作。 题目:热分析曲线的解释、热分析仪器的操作技巧 演讲者:唐远旺 梅特勒-托利多中国公司热分析技术应用主管,热分析专家,长期从事热分析仪器的应用研究工作,《热分析应用手册丛书》之《热塑性聚合物》、《逸出气体分析》等的译者,中科院研究生教材《热分析简明教程》编者之一,熟悉DMA、DSC、TGA、TMA等热分析仪器在各行业的应用。 题目:热分析仪器的维护 演讲者:唐幸初 梅特勒-托利多中国公司热分析维修服务主管,从事热分析技术服务多年,熟悉各类热分析仪器的性能、故障分析及维护保养现,现全面负责梅特勒托利多中国热分析的售后服务。 会议主持人:陆立明 简介:梅特勒-托利多中国公司热分析部门经理,曾在德国进修三年,从事高分子物理合成研究。加入梅特勒托利多15年来一直从事热分析工作。《热分析应用手册丛书》之《热塑性聚合物》、《热固性树脂》、《弹性体》、《药物和食品》和《热分析应用基础》的译者,中科院研究生教材《热分析简明教程》编者之一。 本活动最终解释权归梅特勒-托利多所有
  • 从沃特世新品看热分析发展的两个特征
    p   近期,美国TA仪器发布了两款热分析仪新品 a href=" https://www.instrument.com.cn/news/20200313/533842.shtml" target=" _self" 多样品Discovery X3差示扫描量热仪 /a 和 a href=" https://www.instrument.com.cn/news/20200315/533891.shtml" target=" _self" TAM IV Micro XL微量热仪 /a 。其中, 多样品Discovery X3差示扫描量热仪能够提供多达3个样品的测试,而TAM IV Micro XL微量热仪则聚焦于锂离子电池的寄生反应。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/bc3129ca-c274-4c20-8362-420ae3345938.jpg" title=" 多样品Discovery X3差示扫描量热仪.png" alt=" 多样品Discovery X3差示扫描量热仪.png" / /p p style=" text-align: center " 多样品Discovery X3差示扫描量热仪 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/4abb9506-43f0-414a-b8f9-55d560eb6994.jpg" title=" TAM IV Micro XL微量热仪.png" alt=" TAM IV Micro XL微量热仪.png" / /p p style=" text-align: center " TAM IV Micro XL微量热仪 /p p   从两款热分析仪新品出发,折射出了热分析技术发展的两个特征: /p p   1. 高通量检测、集成技术与自动化 /p p   传统DSC一般一次只能检测1个样品,然而随着对于材料研究领域的火热兴起以及热分析技术的普及,热分析测试的需求不断增加。这对于热分析仪而言,意味着检测压力越来越大,使得研究人员检测和等待的时间被不断延长。检测人员越来越需要能在相同时间内检测更多样品的热分析仪,这意味着节省时间并提高效率。 /p p   其中,高通量检测又涉及到集成技术和自动化。多台仪器固然可以实现多个样品的同时测定,但是对于大多数实验室而言,实验室空间可谓是寸土寸金,且对于每套设备而言存在诸多附件,更是加剧了占用空间问题。因此,如何实现功能的集成具有重要的意义。 /p p   此外,大批量样品的检测同时带来的是7*24小时的不间断检测问题,频繁更换试样对于自动化也提出了更高的要求。 /p p   2. 聚焦细分领域‘ /p p   对于热分析仪器而言,其实本身能够通用于多个领域,但对于细分领域的使用者而言,仅仅这样是远远不够的。使用者更希望能够得到切合自身领域的使用细则和手册,从而更好地利用仪器完成自己的分析测试目的。因此,更加专门化的仪器成为了发展的必然。尤其对于热门领域而言,随着热门领域的发展,其对于检测也提出了更苛刻的要求,通用仪器可能越来越难于满足其需要。此外,热门领域的发展使得检测设备的迭代速度加快,促进仪器厂商开发出新的产品来满足该领域使用者新的需要。 /p p br/ /p
  • 安徽工业大学110.00万元采购热机械分析仪,同步热分析仪
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 安徽工业大学低碳研究院设备采购包别2(第二次)招标公告 安徽省-马鞍山市-雨山区 状态:公告 更新时间: 2023-01-20 项目概况 安徽工业大学低碳研究院设备采购包别2(第二次)的潜在投标人应在马鞍山市公共资源交易系统获取招标文件,并于2023年02月08日10时30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:MASCG-0-F-H-2023-0026 项目名称:安徽工业大学低碳研究院设备采购包别2(第二次) 预算金额:110万元 最高限价:110万元 采购需求:采购1台特种同步热分析仪,具体内容详见招标文件 合同履行期限:自合同签订之日起90日内供货并安装调试完毕 本项目是否接受联合体投标:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策需满足的资格要求: 2.1本项目是否专门面向中小企业:否 2.1.1本项目符合财政部、工业和信息化部制定的《政府采购促进中小企业发展管理办法》第六条规定,为非专门面向中小企业采购项目。具体原因如下:本项目为高校学科设备采购,本设备生产需要专业技术。按照本办法规定预留采购份额无法确保充分供应、充分竞争,或者存在可能影响政府采购目标实现的情形。 2.1.2如对此项内容有疑问,可通过书面形式(纸质提交或登录马鞍山市公共资源交易系统在线提交)进行质疑。具体要求详见采购文件中“质疑与投诉”内容。” 3、本项目的特定资格要求:无 4、投标人不得存在以下不良信用记录情形之一: (1)投标人被人民法院列入失信被执行人的; (2)投标人被市场监督管理部门列入企业经营异常名录的; (3)投标人被税务部门列入重大税收违法案件当事人名单的; (4)投标人被政府采购监管部门列入政府采购严重违法失信行为记录名单的; (5)投标人或其法定代表人或配备项目经理(项目负责人)被人民检察院列入行贿犯罪档案的。 5、已从马鞍山市公共资源交易系统获取招标文件。 6、投标人须符合下列情形之一(不良行为记录以《马鞍山市公共资源交易主体不良行为信息处理暂行办法》(马公管〔2016〕35号)为准): (1)开标日前两年内未被马鞍山市、县公共资源交易监督管理部门记不良行为记录或记不良行为记录累计未满5分的。 (2)最近一次被马鞍山市、县公共资源交易监督管理部门记不良行为记录累计记分达5分到9分(含9分)且公布日距开标日超过3个月。 (3)最近一次被马鞍山市、县公共资源交易监督管理部门记不良行为记录累计记分达10分到19分(含19分)且公布日距开标日超过6个月。 (4)最近一次被马鞍山市、县公共资源交易监督管理部门记不良行为记录累计记分达20分到29分(含29分)且公布日距开标日超过12个月。 (5)最近一次被马鞍山市、县公共资源交易监督管理部门记不良行为记录累计记分30分以上(含30分)且公布日距开标日超过24个月。 三、获取招标文件 时间:2023年01月18日至2023年02月03日17时30分(北京时间)。 地点:马鞍山市公共资源交易系统 方式:进入马鞍山市公共资源交易系统获取 售价:免费 四、提交投标文件截止时间、开标时间和地点 2023年02月08日10时30分(北京时间)。 开标地点:马鞍山市雨山区印山东路2009号(印山东路与湖东中路交叉口)汇通大厦附楼五楼第5开标室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、本项目需落实的(节能环保、中小微型企业扶持)等相关政府采购政策详见招标文件。 2、获取招标文件和其他相关资料时间期限:同招标文件获取时间。 3、本项目不收取投标保证金。 4、获取招标文件注意事项:(1)投标人进入马鞍山市公共资源交易中心网(网址:http://zbcg.mas.gov.cn)办理网上用户登记,然后登录马鞍山市公共资源新版交易系统(http://zbcg.mas.gov.cn/TPBidderNew/)获取招标文件和其他相关资料。网上用户登记详见《马鞍山市公共资源电子化交易网上用户登记流程须知》。(2)如本项目有两个或两个以上包别,投标人参加其中任何一个包别的投标,必须从马鞍山市公共资源交易系统获取该包别的招标文件和其他相关资料。(3)网上资料获取、投标技术支持联系电话:400-998-0000,0555-5200194。 5、电子投标文件制作:详见《马鞍山市公共资源新版交易系统投标人端操作手册》,网址:http://zbcg.mas.gov.cn/masggzy/0be0099b-bc8b-4033-88d5-8ed94c8522d1/85681480-2d0f-4b0d-b9f4-bb8e42e536c5/马鞍山市公共资源新版交易系统投标人端操作手册.docx 6、根据《关于积极应对疫情做好公共资源交易工作保障经济平稳运行的通知》(马公管办〔2020〕10号)文件要求,本项目采取投标人远程解密的方式解密电子投标文件,投标人不得派代表前往开标现场。若本项目有现场陈述、现场演示等要求,详见招标文件。 七、对本次招标提出询问,请按以下方式联系 1、采购人信息 名称:安徽工业大学 地址:安徽省马鞍山市湖东路59号 联系方式:张满堂0555-2311291 2、采购代理机构信息 名称:马鞍山市兴马项目咨询有限公司 地址:马鞍山市雨山区印山东路2009号(印山东路与湖东中路交叉口)汇通大厦主楼七楼 联系方式:0555-5200278、5200272 3、项目联系方式 项目联系人:戴玉玲、高杨 电话:0555-5200278、5200272 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:热机械分析仪,同步热分析仪 开标时间:2023-02-08 10:30 预算金额:110.00万元 采购单位:安徽工业大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:马鞍山市兴马项目咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 安徽工业大学低碳研究院设备采购包别2(第二次)招标公告 安徽省-马鞍山市-雨山区 状态:公告 更新时间: 2023-01-20 项目概况 安徽工业大学低碳研究院设备采购包别2(第二次)的潜在投标人应在马鞍山市公共资源交易系统获取招标文件,并于2023年02月08日10时30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:MASCG-0-F-H-2023-0026 项目名称:安徽工业大学低碳研究院设备采购包别2(第二次) 预算金额:110万元 最高限价:110万元 采购需求:采购1台特种同步热分析仪,具体内容详见招标文件 合同履行期限:自合同签订之日起90日内供货并安装调试完毕 本项目是否接受联合体投标:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策需满足的资格要求: 2.1本项目是否专门面向中小企业:否 2.1.1本项目符合财政部、工业和信息化部制定的《政府采购促进中小企业发展管理办法》第六条规定,为非专门面向中小企业采购项目。具体原因如下:本项目为高校学科设备采购,本设备生产需要专业技术。按照本办法规定预留采购份额无法确保充分供应、充分竞争,或者存在可能影响政府采购目标实现的情形。 2.1.2如对此项内容有疑问,可通过书面形式(纸质提交或登录马鞍山市公共资源交易系统在线提交)进行质疑。具体要求详见采购文件中“质疑与投诉”内容。” 3、本项目的特定资格要求:无 4、投标人不得存在以下不良信用记录情形之一: (1)投标人被人民法院列入失信被执行人的; (2)投标人被市场监督管理部门列入企业经营异常名录的; (3)投标人被税务部门列入重大税收违法案件当事人名单的; (4)投标人被政府采购监管部门列入政府采购严重违法失信行为记录名单的; (5)投标人或其法定代表人或配备项目经理(项目负责人)被人民检察院列入行贿犯罪档案的。 5、已从马鞍山市公共资源交易系统获取招标文件。 6、投标人须符合下列情形之一(不良行为记录以《马鞍山市公共资源交易主体不良行为信息处理暂行办法》(马公管〔2016〕35号)为准): (1)开标日前两年内未被马鞍山市、县公共资源交易监督管理部门记不良行为记录或记不良行为记录累计未满5分的。 (2)最近一次被马鞍山市、县公共资源交易监督管理部门记不良行为记录累计记分达5分到9分(含9分)且公布日距开标日超过3个月。 (3)最近一次被马鞍山市、县公共资源交易监督管理部门记不良行为记录累计记分达10分到19分(含19分)且公布日距开标日超过6个月。 (4)最近一次被马鞍山市、县公共资源交易监督管理部门记不良行为记录累计记分达20分到29分(含29分)且公布日距开标日超过12个月。 (5)最近一次被马鞍山市、县公共资源交易监督管理部门记不良行为记录累计记分30分以上(含30分)且公布日距开标日超过24个月。 三、获取招标文件 时间:2023年01月18日至2023年02月03日17时30分(北京时间)。 地点:马鞍山市公共资源交易系统 方式:进入马鞍山市公共资源交易系统获取 售价:免费 四、提交投标文件截止时间、开标时间和地点 2023年02月08日10时30分(北京时间)。 开标地点:马鞍山市雨山区印山东路2009号(印山东路与湖东中路交叉口)汇通大厦附楼五楼第5开标室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、本项目需落实的(节能环保、中小微型企业扶持)等相关政府采购政策详见招标文件。 2、获取招标文件和其他相关资料时间期限:同招标文件获取时间。 3、本项目不收取投标保证金。 4、获取招标文件注意事项:(1)投标人进入马鞍山市公共资源交易中心网(网址:http://zbcg.mas.gov.cn)办理网上用户登记,然后登录马鞍山市公共资源新版交易系统(http://zbcg.mas.gov.cn/TPBidderNew/)获取招标文件和其他相关资料。网上用户登记详见《马鞍山市公共资源电子化交易网上用户登记流程须知》。(2)如本项目有两个或两个以上包别,投标人参加其中任何一个包别的投标,必须从马鞍山市公共资源交易系统获取该包别的招标文件和其他相关资料。(3)网上资料获取、投标技术支持联系电话:400-998-0000,0555-5200194。 5、电子投标文件制作:详见《马鞍山市公共资源新版交易系统投标人端操作手册》,网址:http://zbcg.mas.gov.cn/masggzy/0be0099b-bc8b-4033-88d5-8ed94c8522d1/85681480-2d0f-4b0d-b9f4-bb8e42e536c5/马鞍山市公共资源新版交易系统投标人端操作手册.docx 6、根据《关于积极应对疫情做好公共资源交易工作保障经济平稳运行的通知》(马公管办〔2020〕10号)文件要求,本项目采取投标人远程解密的方式解密电子投标文件,投标人不得派代表前往开标现场。若本项目有现场陈述、现场演示等要求,详见招标文件。 七、对本次招标提出询问,请按以下方式联系 1、采购人信息 名称:安徽工业大学 地址:安徽省马鞍山市湖东路59号 联系方式:张满堂0555-2311291 2、采购代理机构信息 名称:马鞍山市兴马项目咨询有限公司 地址:马鞍山市雨山区印山东路2009号(印山东路与湖东中路交叉口)汇通大厦主楼七楼 联系方式:0555-5200278、5200272 3、项目联系方式 项目联系人:戴玉玲、高杨 电话:0555-5200278、5200272
  • 梅特勒托利多:创新型闪速DSC 引领热分析技术发展
    梅特勒托利多:创新型闪速DSC 引领热分析技术发展 &mdash &mdash 专访梅特勒托利多中国区热分析部门经理、热分析资深应用专家陆立明   在业内,说起梅特勒托利多,大家自然而然会联想到天平,因为在天平领域,梅特勒已经是无人不知、无人不晓,但在热分析领域,梅特勒托利多也一直是世界上热分析仪器的主要制造商和供应商之一,作为全球热分析技术领域的领导者,多年来,在欧洲的热分析市场上,占有率始终是第一。2010年12月7日,梅特勒托利多公司在上海衡山宾馆举办&ldquo 2010年热分析技术交流暨新产品发布会&rdquo ,在会后,中国化工仪器网记者有幸采访到了梅特勒托利多中国区热分析部门经理、热分析资深应用专家陆立明,让我们跟随他的视角去了解梅特勒托利多热分析技术、了解新产品闪速DSC、了解热分析技术的发展趋势。 采访现场:梅特勒托利多陆经理(左边)和中国化工仪器网记者陆经理很随和,在采访时,脸上一直洋溢着暖人的笑容。他的亲切,彻底打乱了先前我对技术型经理的定义。他以热分析为基点,结合新产品闪速DSC,面对记者侃侃而谈。从他的话语中,我仿佛看到了他十三年如一日的在梅特勒托利多热分析部门探索、耕耘、前行,并为热分析的发展倾注了自己所有的力量;同时也让梅特勒托利多在中国的热分析领域从无到有、从开始摸索尝试到革命性的创新、从客户不了解到客户信任&hellip &hellip      Chem17:您好,非常感谢您能够抽出宝贵时间接受我们中国化工仪器网的采访,作为全球热分析技术领域的领导者,梅特勒托利多一定有着非同一般的发展历程,请您简单为我们介绍下梅特勒托利多在热分析领域的发展历程?      陆立明:1945年,欧莱德· 梅特勒博士发明了令世界瞩目的首台单秤盘替代法天平,同年,梅特勒公司在瑞士建立的。上世纪60年代初,Hans-GeorgWiedemann博士加入梅特勒,开始热分析仪器的研究开发。      Hans-GeorgWiedemann博士最初的想法是,天平+加热测试炉=&ldquo 热天平&rdquo 。经过反复研究,世界上第一台热重/差热(TGA/DTA)同步分析仪于1964年诞生,温度最高可至2000° C。研发团队采用电磁力补偿法改进纯粹的机械半微量天平,使天平信号能以图形方式记录在笔尖记录器上,同时开发了炉体、温度传感器和控制器,能进行温度编程。还引入了真空技术首次实现了真空热分析。尽管仪器的价格不菲,当时世界上大多数著名的从事材料研究的实验室很快配置了该仪器,并在无机化合物和陶瓷材料等领域得到广泛应用。      随后几年,梅特勒公司开始研制差示扫描量热仪(DSC),并于1971年上市首款热流型DSC,温度范围从&ndash 170至500° C,适合于有机化合物和迅速发展的聚合物材料的研究。同时,成功实现了将模拟测量数据数字化从而采用计算机来处理数据。      1981年推出TA3000系统,包括DSC、TGA和TMA仪器。该系统引入了新的方法概念:自动测量和自动处理热分析数据。特别对于质量控制的日常测试可实现高效自动化。热机械分析仪同时可进行周期性变化负载的编程,首次引入了创新性的动态负载TMA(DLTMA)技术。      得益于功能强大且价格便宜的个人电脑的普及使用,于上世纪90年代中期推出完全现代意义的STARe热分析系统,现包括DSC及高压DSC、超快速DSC(FlashDSC)、热重分析仪TGA及TGA/DSC同步热分析仪、热机械分析仪TMA、动态热机械分析仪DMA全部热分析品种。      近半个世纪以来,梅特勒托利多一直是世界上热分析仪器的主要制造商和供应商之一。很多年来,在欧洲的热分析市场上,市场占有率始终是第一。      Chem17:我们知道梅特勒托利多产品覆盖面很广,在中国市场上的占有率也很高,陆经理您作为梅特勒托利多中国区热分析部门经理,请您为我们介绍下公司在中国的市场现状?      陆经理:梅特勒托利多仪器(上海)有限公司成立于1990年,但热分析仪器在中国的销售起步于上世纪末,而且也走过了一段比较艰辛的历程,因为梅特勒托利多是后来者,让客户从了解到认识,再到信任,我们走过了好几年的时间,近些年来,我们发展快速,技术也日趋成熟。在市场占有率方面,也在不断的与其他知名企业缩小差距,相信不久就会不差上下,然后超越。      Chem17:在全球热分析技术领域,我们都知道,像梅特勒托利多、美国TA、珀金埃尔默、德国耐驰等都是行业知名企业,而美国TA也在11月推出了DISCOVERYDSC新品,请问,梅特勒托利多这次推出的新型超快速扫描量热仪&mdash 闪速DSC(FLASHDSC),与同类产品相比,有哪些突出的优势?      陆立明:从扫描速率来分,各种量热仪达到的速率区间可见于下图:      珀金埃尔默的HyperDSC的最高扫描速率大约为750° C/min,美国TA的DISCOVERYDSC属于常规DSC。而梅特勒托利多推出的FlashDSC的扫描速率最高可达到两百多万° C/min,完全不在同一数量级上,但是低速部分是与常规DSC重迭的。      闪速DSC有几个重要的特点。首先是DSC传感器,用的是基于MEMS(微机电系统)技术的芯片传感器,由氮化硅和二氧化硅制成,很小,试样面直径只有0.5mm。用16对均匀分布的热电偶测量温度,保证高灵敏度和基线平稳性,灵敏度要比常规DSC高得多。特别是分辨率极高,信号时间常数只是常规DSC的千分之一。与常规DSC使用坩埚不同,极少量(几十纳克)的试样直接放在传感器的试样面上。所以试样制备必须在显微镜下进行。其次是测量原理,为动态对称功率补偿。第三是扫描速率,这是最重要的指标,升温速率从30到2,400,000° C/min,降温速率从6到240,000° C/min。最后是软件,功能必须强大,因为一次测试实验得到的数据庞大,必须能够批量处理。      Chem17:通过上面陆经理对这款新仪器的介绍,我们听到了一个新名词-闪速DSC,请问这是否是热分析技术的创新?您能简单为我们谈谈热分析技术近年来主要的技术创新有哪些?      陆立明:确实,无论是制造技术,还是功能,闪速DSC与市场上其它DSC仪器有极大的不同,是一款创新型的差示扫描量热仪。      多年来,梅特勒托利多不断推出突破性的技术,引领着世界热分析技术的发展。2002年推出的高频/大应力DMA迄今为止明显领先于同类仪器。独有的热电偶堆DSC传感器,因为在灵敏度上的突破性提高获得了2006年美国R&D100奖,得奖评语说:&ldquo 灵敏度为现有市场上别的最好的DSC的五倍&rdquo 。2005年推出随机温度调制DSC技术TOPEM,克服了正弦调制DSC的缺陷,能独立测定材料的显热热流(可逆热流)、潜热热流(不可能热流)和总热流,并可测量可逆热流的频率依赖性。在调制DSC领域,TOPEM是最先进和完善的技术。      今年9月全球同步上市了闪速DSC,在这一领域,梅特勒托利多又领先了。      Chem17:我们都知道这款闪速DSC(FLASHDSC)是一款非常优秀的产品,请问陆经理,这款仪器的主要应用领域有哪些?是否有在新的领域内有所应用?近年来热分析仪器在哪些新领域内得到了成功的应用?      陆立明:闪速DSC的主要应用领域是聚合物材料的研究,更具体说,可能是下面几个方面。一个是材料中结构形成过程的详细分析,特别是升降温过程中结构的形成过程,不同的升降温会产生不同的结构。其次是直接测量快速结晶,包括动态结晶过程和等温结晶过程。例如聚丙烯(PP)的等温结晶,用HyperDSC可能测量到110° C时的等温结晶过程,再低就不行了,因为在降温过程中PP已经结晶。但FlashDSC能进行直至-95° C的等温结晶测试。再次是测定快速反应的反应动力学。有的反应过程极快,常规DSC才开始升温反应就已完成。而闪速DSC就可能可以测试。最后是模拟生产条件下的测试,例如添加剂的作用机理。举例说,注塑成型工艺中,成型材料以每秒几百度的速度冷却,所添加进去的成核剂是否起作用,或者起到怎样的作用,用FlashDSC可进行模拟实验。当然还有其它各种应用,例如只有极少的样品,无法用常规DSC测量,就可用闪速DSC来测。      因为是新技术新仪器,它的应用,无论是广度还是深度,都需要在用户的实际使用中得到发展。      事实上,每种新仪器的推出,都为使用者提供了新的测试和研究手段。新的想法需要由实验手段去验证,新的手段也可激发新的思想。例如随机调制DSC技术TOPEM,可测定熔融的可逆与不可逆过程,这在以前,对热分析来说是一件困难的事情。又如梅特勒托利多的DMA,可以全程测量一个材料从液态改变到坚硬固态全过程的动态力学性能变化,例如环氧树脂黏合剂的固化全过程,这在别的DMA上无法做到。      现代热分析技术经过半个多世纪的发展已相当成熟,近年来值得关注的发展主要在两个方面,一是功能的扩展与提高,二是软件的发展。前者例如:DSC光量热技术(俗称UV-DSC)、DSC-显微镜系统、DSC-化学发光测试系统、TGA-FTIR/MS联用、TGA-水分吸附测试系统等。后者如随机温度调制DSC技术、非模型化学反应动力学等。例如热分析非模型动力学,由于能处理各种复杂的化学反应过程,所以在固化反应方面得到了很多实际应用。      Chem17:我们知道梅特勒托利多在中国经常举办一些技术交流会和新品发布会,请问公司举办这类会议的初衷是什么,它能给公司带来哪些帮助,您觉得这次会议的最大收获是什么?      陆立明:俗话说:&ldquo 酒香不怕巷子深。&rdquo 但这不符合现代社会的情况,再好的技术和仪器,再好的东西,一定要让尽可能多的人了解,人们才会购买和使用,从中得益。举办技术交流会和新品发布会只是形式之一,主要是起广而告之的作用。例如这次会议,有这么多的专家和客户参加,还有新闻界的朋友前来,通过交流,大家知道了我们的新仪器、新技术,如果觉得有用,会对今后的研究工作有帮助,就可能考虑购买。而且,相信大家会传布消息,会有更多人了解我们的新产品和新技术。      其实,我们还做了并在继续进行很多深入的工作。例如,我们正在翻译出版梅特勒托利多的《热分析应用手册丛书》,由东华大学出版社出版,著名热分析专家、中科院长春应用化学研究所刘振海研究员做技术顾问。《热塑性聚合物》、《热固性树脂》、《弹性体》、《逸出气体分析》分册已经出版,《热分析应用基础》分册即将出版,还有其它后续分册。我们希望,我们不仅是在销售仪器,还在推广先进的应用技术和先进的研究成果,希望对促进我们国家的热分析以及与之有关的研究开发和产品生产有所帮助。      Chem17:梅特勒托利多在响亮的品牌旗帜和客户的口碑下,我相信一定有着一份相符的产品质量和服务质量支持着,请您为我们介绍下梅特勒公司是如何控制产品质量和实行售后服务的?      陆立明:梅特勒托利多是一个强势品牌,走中高端路线,特别重视产品质量。所有的热分析仪器都在瑞士苏黎世的总部生产,而且质量是有口皆碑的,连德国人都夸瑞士产品质量过硬。      我是学高分子材料的,13年前加入梅特勒托利多时担任的是热分析技术应用工程师。对于热分析仪器使用,我深知技术支持和售后服务的重要性。在我的部门有专门的团队,有专门的主管,负责全国的热分析技术支持和售后服务。其中有许多资深人员,已在公司服务很多年,经验丰富,技术过硬。      在瑞士总部热分析SBU,也有一个专门的团队负责技术应用和维修,其中多人已在公司工作几十年。《热分析应用手册》都是由他们著作的。若我们遇到疑难问题,可直接通过电子邮件或电话向他们咨询,寻求帮助支持。我们都能得到快速响应,从而保证我们服务好客户。      Chem17:陆经理您作为热分析领域资深应用专家,请您谈谈热分析仪器在未来的技术发展趋势和市场发展趋势?      陆立明:我个人认为有以下几个方面的发展趋势,1)随着梅特勒托利多闪速DSC仪器的上市,开拓了超快速DSC的测量技术,预计其它热分析仪器公司也会跟紧开发超快速DSC。      2)热分析仪器的功能扩展方面还有很多可以开拓和发展的地方,例如联用的扩展和提高。      3)软件功能的发展:例如温度调制技术的进一步完善和提高;热分析动力学的发展和提高。      4)在仪器本身的性能方面尚有进一步提高的余地,例如DSC灵敏度和分辨率还有提高的可能,从而可扩大其应用,可用更少试样,测定更弱的效应。      后记      对陆经理的采访进行了将近50分钟,可是自始至终,看到的都是其乐融融的笑容,听到的都是朴实的话语,他是一名管理者,可是从他身上却寻觅不到一丝不苟言笑和领导&ldquo 威严&rdquo 的影子;他是一名技术人员,他津津乐道,成竹于胸,驰骋于热分析技术领域,跟他交流,脑海中突然闪现出上学时恩师的影子。      采访陆经理已经过去好几天,可是头脑一直都浮现采访当天的情景,不得不说,他是智者,而从他身上所折射出的对工作的执着精神和极其乐观的心态值得我们慢慢的去品去悟。   陆经理简介:   1985年在华东理工大学获聚合物材料工学硕士,后在上海市合成树脂研究所从事聚合物研究开发工作12年(其中3年在德国柏林技术大学进修高分子物理),担任研究室主任。1997年加入梅特勒托利多 (中国) 公司以来一直从事热分析的技术应用和管理工作,现任热分析仪器部经理。 信息来源:中国化工仪器网 作者:李冠 文章链接:中国化工仪器网 http://www.chem17.com/news_people/Detail/308.html
  • 2011梅特勒托利多热分析用户会暨技术研讨会邀请函(第一轮)
    尊敬的客户:您好! 梅特勒托利多公司定于2011年8月10-12日在厦门举办热分析用户会暨技术研讨会。会议主题有以下几个方面: 1. 中科院长春应用化学研究所刘振海研究员:&ldquo 热分析术语&rdquo ; 2. 集美大学机械工程学院院长何宏舟教授:&ldquo 应用热分析技术研究煤质的燃烧特性&mdash 方法、原理与应用&rdquo 3. 梅特勒托利多热分析亚太区经理Craig Gordon:&ldquo 热分析在聚合物方面的应用&rdquo ; 4. 梅特勒托利多中国公司热分析仪器部经理陆立明:&ldquo 新书《热分析应用手册丛书:药物和食品》介绍&rdquo ; 5. 梅特勒托利多中国公司热分析仪器部技术应用主管唐远旺:&ldquo 热分析应用基础&rdquo ; 6. 其它相关内容(软件应用、仪器维护等)。 欢迎所有梅特勒托利多热分析仪器用户和所有对热分析感兴趣的客户光临! 我们热情期待着与您共同聆听专家和技术人员的报告,并切磋交流热分析专业技术。 我要报名 【会议时间】2011年8月10~12日 (9日报到) 【会议地点】厦门(酒店待定) 【注意事项】 1)9日报到时请携带此通知单,出示您的名片,在签到处免费领取会议资料; 2)如果您因故不能前来,可推荐您的同事代为参加,并出示被邀请人名片和本人名片,我们将协调其参会; 3)入住酒店时请告知&ldquo 参加梅特勒托利多会议&rdquo (需自理); 4)会务费(含会务、资料、餐饮、团队活动等):1600元/人。
  • 第九届热分析及联用技术网络会议第一轮通知
    热分析技术当前广泛应用于材料、化工、生命科学与制药、食品、烟草等多个领域,是应用极为广泛的表征技术之一。仪器信息网将于2022年8月29日举办第九届热分析及联用技术主题网络研讨会暨热分析技术发展现状与未来方向研讨会,本届会议将聚焦于热分析领域的最新技术及前沿应用,并邀请专家针对当下热分析技术的发展瓶颈与未来方向进行探讨,利用互联网技术为国内的广大科研及相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到材料研究及热分析技术专家的精彩报告,节省时间和资金成本。欢迎国内外仪器厂商参与会议,通过网络会议的形式介绍新产品新技术,开展品牌宣传和数字营销,进一步与用户互动交流。主办单位:仪器信息网支持单位:北京化工大学新材料校友会& 河北省化学会热力学与热分析专业委员会会议日程:第九届热分析及联用技术(2023年8月29日)报告时间报告内容报告人09:30--16:00主持人中国科学院工程热物理研究所研究员 夏红德09:31--10:00热分析联用技术的规范表示及常见问题分析中国科学技术大学教授级高级工程师/博士生导师 丁延伟10:00--10:30稀土功能配合物的热分解反应动力学及热力学河北师范大学研究员 张建军10:30--11:00待定梅特勒托利多11:00--11:30单一热分析和联用技术在材料中的应用研究华东理工大学副研究员 于惠梅11:30--12:00绝热加速量热原理、仪器化及应用中国计量大学副教授 丁炯14:00--14:30量热与热分析技术在能源材料研究中的应用中国科学院大连化学物理研究所研究组长/研究员 史全14:30--15:00两种磷腈基金属有机框架材料对环氧树脂阻燃及热性能的影响河北大学主任/教授 屈红强15:00--15:30热分析联用技术在含能材料研究中的应用进展西北大学副院长/教授 徐抗震15:30--16:00Flash DSC表征微尺度材料热导率南京大学(胡文兵教授团队)博士研究生 任晓宁扫码报名嘉宾介绍:中国科学院工程热物理研究所研究员 夏红德夏红德,博士,现工作于中国科学院工程热物理研究所。目前,主要研究质谱定量解析技术、反应过程机理的分析与研究,重点研究热反应过程控制机理与工艺流程改进。建立了基于反应过程特征参数的临界时刻及其状态的检测分析方法体系,形成了十多项发明专利,并开发了相关的智能解析算法。在国际上首次提出了基于质谱工作原理的反应过程定量分析理论——等效特征图谱法(ECSA®),实现了复杂反应过程逸出气体中不同组分质量流量的精准测量,为深度解析基元反应过程及其动力学特性提供了坚实的技术基础。该技术已获得日本、德国、美国等全球领先设备供应商的高度认可,目前获得日本理学公司的支持,研发国际领先的质谱解析方法,与德国耐驰公司建立长期数据分析合作伙伴关系。中国科学技术大学教授级高级工程师/博士生导师 丁延伟丁延伟,博士、中国科学技术大学教授级高级工程师,博士生导师。精通多家主流热分析生产厂商多种热分析仪器的工作原理、结构及应用,开发多种基于商品化仪器的附件和实验装置。自2002年开始从事热分析与吸附技术的分析测试、仪器应用和实验方法研究等工作。现任中国化学会化学热力学与热分析专业委员会委员、中国仪器仪表学会分析仪器分会热分析专业委员会委员、中国分析测试协会青年委员会委员、全国教育装备标准化委员会化学分委会委员、中国材料与试验团体标准委员会科学试验领域委员会委员等。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020), 以主要作者发表SCI论文30余篇,获授权专利7项。以第一作者或唯一作者身份出版《热分析基础》、《热分析实验方案设计与曲线解析概论》、《热重分析 —方法、实验方案设计与曲线解析》等热分析相关著作5部。河北师范大学研究员 张建军张建军,河北深泽县人,研究员,三级教授岗,河北省中青年骨干教师,河北省化学会理事,河北省化学会热力学与热分析专业委员会主任,河北省“三三三人才工程”人选,河北省杂环化合物重点实验室学术委员会委员,河北省氮化物工程陶瓷技术创新中心技术委员会委员,河北省自然科学研究系列高级职称评审委员会专家,国家自然科学基金委员会函审专家。河北师范大学学报(自然科学版)编委,曾担任多届光谱实验室杂志副主编。2021年入选全球顶尖前10万科学家榜单。2008年、2011年2013年获河北省优秀硕士论文指导教师,2018年获学校研究生优秀指导教师。为Journal of Hazardous Materials Journal of Chemical Thermodynamics、中国科学、科学通报、化学学报、高等学校化学学报等国内外五十多种学术杂志的审稿人,两次被《物理化学学报》聘为客座编辑,组织《热分析动力学与热动力学》专刊的出版,主要研究方向为热化学、热力学、热分析动力学及稀土配位化学。作为课题负责人主持国家自然科学基金4项、主持河北省自然科学基金和河北省教育厅自然科学基金项目8项, 2002年、2006年、2010年和2015年获河北省自然科学三等奖四项 (均第一完成人),1995年获河北省科技进步三等奖一项(第一完成人)。已在DaltonTransactions,Journal of Chemical Thermodynamics,Physico-ChimicaSinica等国内外学术刊物上共计发表论文270多篇,其中被SCI收录190余篇,EI收录90余篇。合作主编《热分析动力学》第二版,参编《量热学基础与应用》,参编《分析化学手册第8分册热分析与量热学》第三版。华东理工大学副研究员 于惠梅于惠梅,博士,华东理工大学材料科学与工程学院副研究员,中国化学会热力学和热分析专业委员会委员,上海市科技翻译学会理事。报告人长期从事热分析研究工作,开展了联用技术以及脉冲热分析方法研究,建立了热分析-质谱联用技术中逸出气体的定量新方法,申请实用新型和国家发明专利共7项。2012~2013年赴美Pennsylvania State University,开展了温室气体CO2的捕获和转化利用研究工作。起草制定了多项国家标准方法、行业标准和上海市企业标准,完成了国家自然科学基金、国家科技支撑(攻关)计划课题、中国科学院仪器研制等项目,在国内外核心期刊和会议上发表论文共40余篇。中国计量大学副教授 丁炯丁炯,男,现为中国计量大学副教授,硕士生导师,中国计量测试学会热物性专业委员会委员,中国仪器仪表学会朱良漪分析仪器青年创新奖获得者,《计量学报》青年编委,先后在浙江大学生物医学工程专业获得学士与博士学位,曾在中国科学技术大学从事博士后研究工作,长期致力于热学传感与测量、量热技术与仪器、细胞量热学方面的研究,近5年主要学术成绩有:主持国家自然科学基金重大科研仪器研制项目课题1项;主持国家自然科学基金青年项目1项;主持浙江省基础公益研究计划项目2项(已结题,其中基金项目为优秀);以分项目负责人承担国防科工局某工程专项1项(已结题,技术验收优秀);主持企业合作项目多项;以唯一第一/通讯作者在传感器领域权威期刊IEEE Sensors Journal,Sensors and Actuators A: Physical,科学仪器领域期刊Review of Scientific Instruments,热分析与量热仪器领域权威期刊Thermochimica Acta、Journal of Thermal Analysis and Calorimetry等发表高水平SCI期刊论文12篇,其它国内高质量论文6篇;以第一发明人申请国家发明专利14项,其中8项已获得授权,申请PCT国际专利1项;主持和参与制定国家计量技术规范、国防军工计量技术规范或团体标准4项。近年来,以高校青年博士教师下企业为载体,研制和产业化了多款热测量仪器,构建了标准化生产线,新增销售额过亿元,部分仪器市场占有率超四成,解决了我国面向本质安全的热测量仪器的“卡脖子”问题,并获2021年度公共安全科学技术学会科学技术一等奖1项。中国科学院大连化学物理研究所研究组长/研究员 史全史全,男,博士,中国科学院大连化学物理研究所研究员、博士生导师、热化学研究组长。现任中国化学会热力学与热分析专业委员会委员、中国计量测试学会热物性专业委员会委员、Chemical Thermodynamics and Thermal Analysis编委、辽宁省能源材料热化学重点实验室主任、大连市能源材料热力学技术创新中心主任。致力于热化学量热技术与能源材料热力学研究,研究方向包括:(1)热化学与量热技术:针对能源与材料研究领域的热化学问题,开展量热技术开发与仪器研制工作;(2)能源材料热力学性质:利用绝热量热、弛豫量热、差示扫描量热及落入式量热技术,准确测定与研究能源材料热力学性质,从热力学角度阐释材料结构状态与功能性质的关联;(3)相变材料:设计合成新型相变储能材料,构建相变储热/控温功能器件,探索相变材料应用新途径。建立了1.9-1700K温区热容准确测量装置与功能拓展技术,为能源材料研究提供了热力学基础数据与量热方法;开发了多功能-可穿戴-智能化相变材料体系与应用器件,实现了其在热量管理与温度控制方面的应用;在国内外学术期刊上发表论文160余篇,申请及授权专利100余项,主持多项国家及省部级科研项目。河北大学主任/教授 屈红强屈红强, 教授,博士研究生导师,河北省阻燃材料与加工技术创新中心主任,河北省化学会常务理事,《中国塑料》、《上海塑料》杂志编委。迄今为止,在Journal of Hazardous Materials、Composites Part B、IECR、Applied Surface Science及Polymer Degradation and Stability等国内外重要刊物发表学术论文100余篇,其中SCI收录论文60余篇;获授权中国发明专利 12项,先后主持了国家自然科学基金青年基金项目及面上项目、河北省应用基础研究计划重点基础研究项目、河北省创新能力提升计划项目“京津冀”协同创新共同体专项、河北省自然科学基金重点项目及各类横向项目等10余项课题。西北大学副院长/教授 徐抗震徐抗震,男,西北大学三级教授,博士生导师,副院长。中国化学会高级会员、中国化工学会专业会员、陕西省化工学会理事。航天165所兼职研究员。《含能材料》、《火炸药学报》、《兵器装备工程学报》等期刊编委。先后在香港科技大学和美国密苏里大学进行访学。主要从事新型含能材料、纳米复合材料、固体推进剂功能助剂以及热分析等研究工作,先后主持国家自然科学基金、国防科技基础计划、军委装发部项目等40余项,发表高水平论文140余篇,出版专著教材4部。授权中国发明专利13件,成果转化4项。获得陕西省科学技术奖二等奖、三等奖等省部级奖励6项。指导学生荣获第十三届“挑战杯”中国大学生创业计划竞赛全国金奖。南京大学(胡文兵教授团队)博士研究生 任晓宁任晓宁,博士研究生,南京大学胡文兵教授团队。热分析研究方向:(1)高分子材料结晶研究;(2)高速扫描量热技术研究;(3)含能材料热性能热分析研究。1999-2003年,就读于长安大学化学工程与工艺专业,分析化学方向;2016-2019年,就读于西北大学化学工程专业,热分析方向;2021年-至今,就读于南京大学高分子化学与物理专业,受导师胡文兵教授悉心指导,深入钻研高分子材料结晶相关研究和量热技术原理、应用与开发等科研训练。主持在研(完成)10余项国家级科研项目,作为主要人员参与完成多项国家级科研项目。在含能材料热分析行业领先开展高速量热系列研究、热分解气体产物的热质联用定量表征与应用研究、组分反应边界特性及相互作用的热分析研究等,作为技术负责人修订热分析相关国军标1项、制定企业标准12项,以第1作者/通讯作者发表SCI/EI/核心期刊等论文30余篇、授权专利5项,获省部级奖5项。报名方式:扫码报名
  • 热分析群雄聚首论道——仪器厂商助力热分析研究领域高质量发展
    p    strong 仪器信息网讯 /strong 在近日闭幕的2018年热分析技术及应用研讨会上,有这样一个群体,以他们专业的背景和优质的服务为中国的热学研究增砖添瓦,他们的出席为会议带来了别样的风采,科技事业的发展同样离不开他们的倾力相助,他们就是本届大会上一道亮丽的风景线——仪器厂商。 br/ & nbsp & nbsp 于本次会议参展的仪器厂商有(以会议手册厂商名录排序)耐驰科学仪器商贸(上海)有限公司、梅特勒-托利多国际贸易(上海)有限公司、TA仪器、北京艾迪佳业技术开发有限公司、毕克气体仪器贸易(上海)有限公司、林赛斯(上海)科学仪器有限公司、热安(上海)仪器仪表有限公司、日立高新技术公司以及西安夏溪电子科技有限公司。其中本次会议的三家一级赞助商(以会议报告顺序排序), span style=" color: rgb(38, 38, 38) " 梅特勒-托利多国际贸易(上海)有限公司、耐驰科学仪器商贸(上海)有限公司、TA仪器公司 /span ,分别派出其在热分析领域的资深技术工程师,于三号仪器分会场上,为与会专家学者带来了各自精彩的前沿技术。 br/ /p p style=" text-align: center " span style=" font-family: 隶书, SimLi font-size: 20px color: rgb(0, 176, 240) " strong 华山论剑 谁与争锋 风云际会 翘首以盼 /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/cb77a1ac-5a8c-4a23-93f0-8c2cc6e75ff7.jpg" title=" 范玲婷.jpg" alt=" 范玲婷.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /p p style=" text-align: center " strong 梅特勒-托利多国际贸易(上海)有限公司热分析仪器部技术应用主管 范玲婷 br/ /strong /p p style=" text-align: center " strong 报告题目:《TGA-GC/MS联用技术》 /strong /p p   热重分析仪(TGA)是检测样品升温过程中重量的变化,并同时研究其组分或分解温度的热分析仪器。通过热重分析可以对样品的组分、热稳定性、分解动力学进行研究和分析。 /p p   实验中有时会需要鉴别一些未知的样品,或者对某种产品分解反应的机理进行研究,包括部分企业会经常碰到的产品实效分析等问题。处理这类问题时,仅依靠热重分析有时难以解决,这是由于热重分析仪是比较简单的对样品含量进行定量分析的仪器,无法提供对样品成分定性分析的信息,例如通过图线中某个失重台阶确定分解产物,或者通过分解产物倒推反应物质。此时可以通过热重与一些定性分析手段的结合,达到对分解产物进行研究的目的。 /p p   定性分析的方法较多,例如红外分析仪、直谱仪、气相色谱-质谱联用(GC/MS)等分析手段都是十分常见的。直谱是将样品电离之后击碎成不同的质核子,达到分离和鉴别的作用,灵敏度非常高,但是无法对离子碎片进行分离。红外分析的特点是对测试样品的化学特异性很高,不过相比直谱灵敏度略低,由于分解产物是小分子,红外的检测效果具有一定的局限性,同样没有对分解产物进行分离,分解产物在进入红外分析仪后,同一阶段的分解产物可多达十余种,这对解谱造成一定困难。GC/MS是通过利用色谱柱对气体起到分离的作用,不同极性和分子量的样品在GC中保留时间不同,样品通过色谱柱出口从GC转入MS,再通过MS来进行对分离出的分子产物的鉴别。 /p p   GC/MS存在一个问题是分离物在GC中分离和停留时间较长,但热重实验是一个连续分解的过程,即时将样品停留在特定温度同样会持续发生分解。通过直接联用TGA和GC/MS的方法去检测特定温度点的分解产物是不现实的。TGA实验中试样的连续分解和GC/MS较慢的分离速度之间存在矛盾,这也是TGA-GC/MS联用具有局限性的原因。梅特勒-托利多在2014年开发出一套TGA-GC/MS联用系统,其基本原理是:热重的分解产物随着载气从热重出气口转出,进入中间的接口装置(一种将TGA和GC/MS联用起来的设备,称为IST),通过该接口装置,不仅可以实现传输分解产物的目的,还能对分解产物进行储存。由于GC的分离速度非常慢,故可将热重分解的产物先储存在IST中,待所需分解产物储存好后,再将分解产物注入GC/MS中进行测试。这样的过程可实现将TGA不同温度下的分解产物分别用GC进行分离,从而达到鉴别和分析的目的。 /p p   接口装置IST 16的贮箱结构中,包含两个六通阀和一个十六位的存储槽,在其上部分别设有两条加热传输管线,通过管线可从TGA的出气口,连接到IST,再从IST连接到GC的进样口。贮箱和管线的设定温度最高可达300℃,对于绝大多数气体分解产物,均可实现在测试过程中不出现冷凝的目的。测试有两种模式:一种是存储模式,将不同分解产物分别存储起来,待收集完成后再逐一注入到GC/MS中进行测试 另一种是连续进样模式,多重注射或连续进样模式,适用于小分子的检测,可设定每分钟向GC进一次样。 /p p   TGA-GC/MS联用的基本测试流程是:首先进行单独的热重实验,以确定感兴趣的温度点及对应时间,并在IST软件中进行设置 之后再进行联用测试,首先TGA实验开始运行,并向IST接口传输信号同时IST开始计时,达到设定时间点后会打开存储槽收集阀门并开始储气,每个槽的储存容量为250μL,待五个存储槽全部收集满待测气体后,IST会由存储模式切换为注射模式,将样品按照设定程序依次注入GC/MS中进行测试。GC每个循环分离程序结束后,会向IST反馈实验完成的信号,IST再向GC注入下一帧样品。通过这样的模式,可在TGA实验结束后,通过IST对GC的间断性气体注入控制,进行无人状态下长时间的自动测试并获取数据。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/1f07a96a-1760-4396-92fd-1b2c3aa0d95e.jpg" title=" 王荣.jpg" alt=" 王荣.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /p p style=" text-align: center " strong 耐驰科学仪器商贸(上海)有限公司应用实验室应用支持经理 王荣 br/ /strong /p p style=" text-align: center " strong 报告题目:《模型动力学反应研究与工艺优化的有力工具》 /strong /p p   科学的发展进程中,会从苹果坠落、闪电等常见的自然现象中,寻找一定的规律,再使用一定的方程来表征,通过现象发现规律,再整合规律改变生活。 /p p   模型方法对化学反应的动力学研究具有积极的意义。使用方程推导实验数据的分析研究方式,会消耗研究者大量的时间与精力。而将数学方程导入计算机软件并建立模型,会使计算过程方便许多。 /p p   进行反应动力学的研究,需要通过不同温度梯度、不同升温速率条件下得到的测试曲线,从中发现反应规律并对反应进行分析,再建立动力学模型方程并对反应进行预测,或结合模型对现有工艺作出改进。 /p p   动力学研究的是反应速率与温度或反应转化率的关系,并使用阿仑尼乌斯方程[dα/dt=f(α)*k(T)=f(α)*A*e-Ea/RT]进行表征。dα/dt表示反应转化率,f(α)是与转化率相关的机理函数,以及与温度相关的速率常数k(T),A为指前因子,Ea为活化能。对于特定反应而言,A与Ea为定值,k仅与温度相关,仅需确定机理函数后即可表征反应的速率和进程。 /p p   单步反应中,确定出该反应的动力学三因子(活化能、指前因子和机理函数),方程就可被表征出来。多步反应中,则需要单独确定每步反应的动力学三因子,表征出每一步反应随温度的转化关系,再整合所有步骤,即可得出整个反应的进程。 /p p   动力学分析分为无模型动力学与模型动力学两大类。应用的领域包括:树脂固化、塑料结晶、陶瓷烧结、化学反应等过程的动力学研究。 /p p   无模型动力学又可细分为单点法无模型动力学与等转化率法无模型动力学。单点法无模型动力学,主要依据转化率或反应速率随温度或时间的变化,来得到某单一反应的Ea、A数据 等转化率法无模型动力学,主要基于等转化率条件下的对应升温速率或对应温度图谱,得到Ea与A随转化率的变化关系信息,是研究中应用较多的方法。 /p p   无模型动力学研究中,通常假定f(α)为简单的一级反应。模型动力学分析,则会关注Ea、A,以及f(α)三项因素,而无模型动力学目前不能全面考虑f(α)的影响。反应的f(α)须通过不同的反应类型确定,通常可分为化工、合成等方面的液相反应,固体反应,以及液固反应。不同类型反应的f(α)不同。分解反应通常包含多个步骤,两步反应是其中比较简单的情形,两步反应之间存在连串、平行、竞争三种关系。对于更多步的反应,也可将其分解为类似的关系,如连串与竞争、或者平行与竞争的组合。应针对独立的每一步反应找出动力学三因子,再分别表征每一步反应转化率与温度间的关系,最后通过整合各部分来表征整体反应。模型动力学分析很重要的一项功能是进行反应预测,依靠模型动力学分析的结果,可通过软件直接作出预测。 /p p   对于一步反应可直接通过无模型动力学分析得出反应速率方程 对于比较简单的两步反应,如平行反应或连串反应,可利用等转化率法无模型动力学分析得出反应速率方程 对于比较复杂的反应,如吸热同放热重叠的反应、存在竞争路径的反应、增重与失重重叠的反应,无模型动力学无法做出比较准确的分析,应选用模型动力学方法。因此通常将无模型动力学的结果作为参考和基础参数,去进行模型动力学分析,可对反应进行更为准确的表征。模型的建立大大方便了之后的科研工作,减少了试探性实验的工作量,通过模型寻找感兴趣或比较好的实验条件,再有针对性的去进行实际验证。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/62afa6e6-87b3-48a2-b101-a035b207ef5a.jpg" title=" 林超颖.jpg" alt=" 林超颖.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /p p style=" text-align: center " strong TA仪器公司热分析产品线应用支持工程师 林超颖 br/ /strong /p p style=" text-align: center " strong 报告题目:《高级热分析技术及解决方案》 /strong /p p   目前TA仪器旗下有热分析、流变、微量热和热物性产品线。近年来Rubotherm吸附产品的加入,使得TA仪器的吸附设备既能实现水蒸气或有机蒸汽的吸附,也可实现常压或高压的测试,大大丰富了TA仪器的热分析产品线。 /p p   TA仪器在此次热分析会议上介绍了几项特色技术,可为科研工作提供更多帮助。第一项是调制技术,即在线性升温的基础上叠加了一个振荡升温的程序,此时温度程序以振荡上升的形式进行升温或降温。调制程序与不同的仪器搭配,形成了MDSC、MTMA、以及MTGA三项技术。调制DSC技术最为常用,该技术可将与比热容变化相关的可逆热流和与动力学因素相关的不可逆热流区分,探测可逆热流曲线中可能存在的转变。与MDSC类似,MTMA技术也能从复杂结果中有效分离玻璃化转变。MTGA技术,振荡升温程序赋予了分解过程中变化的升温速率,可获得分解反应的活化能曲线(活化能为化学反应所需的最低能量)。此外,基于活化能数据和特定的模型,还可获得热老化寿命。 /p p   在TGA中,TA仪器还提供了三种高分辨技术,恒定反应速率法、动态速率法、自动步阶等温法。这三种方法均可根据实验中样品的分解速率来调控加热速率,实现几个重叠反应的分离,在共混或复合体系的成分解析中极其有用。 /p p   热机械分析技术,是一项通过量测样品的膨胀性能、模量或损耗因子等的变化,进而得到转变温度的技术。与DSC相比,其分辨率和灵敏度相对更高。 /p p   TA仪器的热机械分析仪产品,有1N的TMA Q400,18N的Discovery DMA 850,35N的RSA G2,22N~15kN的ELECTROFORCE& reg 系列,以及20kN的805系统。新推出的Discovery DMA 850,其力控制和位移控制较前一代的Q800而言更为优异,瞬态实验的响应时间也更为快速。此外,还引入了多项新功能,如Direct Strain直接应变、Auto-Ranging自动范围设定等。针对用户操作界面,TA仪器也进行了改进,新增了专为初学者的Express快捷模式,以及针对资深用户的Unlimited高级模式。高级模式的引入,可为用户提供不同模式的自由组合,如瞬态模式和振荡模式可在一个实验中同时实现。 /p p style=" text-align: center " br/ span style=" font-family: 隶书, SimLi font-size: 20px " strong span style=" font-family: 隶书, SimLi color: rgb(0, 176, 240) " 厂商风采 /span /strong /span /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/SH100162/" target=" _blank" img src=" https://img1.17img.cn/17img/images/201810/uepic/1dbc8e4d-ed8d-4fe2-b382-4f2a64a15457.jpg" title=" 耐驰.jpg" alt=" 耐驰.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /a /p p style=" text-align: center " strong 耐驰科学仪器商贸(上海)有限公司 /strong br/ /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/SH100270/" target=" _blank" img src=" https://img1.17img.cn/17img/images/201810/uepic/8f40c6e4-91b0-495b-9f7f-b9c5f5a66ede.jpg" title=" 梅特勒-托利多.jpg" alt=" 梅特勒-托利多.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /a /p p style=" text-align: center " strong 梅特勒-托利多国际贸易(上海)有限公司 /strong br/ /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/SH100670/" target=" _blank" img src=" https://img1.17img.cn/17img/images/201810/uepic/edd2cea8-9973-4923-9b64-55641826e000.jpg" title=" TA仪器.jpg" alt=" TA仪器.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /a /p p style=" text-align: center " strong TA仪器公司 /strong br/ /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/SH102537/" target=" _blank" img src=" https://img1.17img.cn/17img/images/201810/uepic/5fc07c1d-3a7a-4282-857c-87eb9ed3ac11.jpg" title=" 艾迪佳业.jpg" alt=" 艾迪佳业.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /a /p p style=" text-align: center " strong 北京艾迪佳业技术开发有限公司 /strong br/ /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/SH102240/" target=" _blank" img src=" https://img1.17img.cn/17img/images/201810/uepic/c75f0fe7-d187-4148-a4c6-6b40ceddb2ae.jpg" title=" 毕克.jpg" alt=" 毕克.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /a /p p style=" text-align: center " strong 毕克气体仪器贸易(上海)有限公司 /strong br/ /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/SH100688/" target=" _blank" img src=" https://img1.17img.cn/17img/images/201810/uepic/473f6dcf-b59a-44a1-beef-78ddb85b5aa8.jpg" title=" 林赛斯.jpg" alt=" 林赛斯.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /a /p p style=" text-align: center " strong 林赛斯(上海)科学仪器有限公司 /strong br/ /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/SH103909/" target=" _blank" img src=" https://img1.17img.cn/17img/images/201810/uepic/916cde69-723d-43a1-a7cd-4ef12e1ecca6.jpg" title=" 热安.jpg" alt=" 热安.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /a /p p style=" text-align: center " strong 热安(上海)仪器仪表有限公司 /strong br/ /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/SH102446/" target=" _blank" img src=" https://img1.17img.cn/17img/images/201810/uepic/7571137c-6930-498d-887c-b87058975670.jpg" title=" 日立高新.jpg" alt=" 日立高新.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /a /p p style=" text-align: center " strong 日立高新技术公司 /strong br/ /p p style=" text-align:center" a href=" https://www.instrument.com.cn/netshow/SH102932/" target=" _blank" img src=" https://img1.17img.cn/17img/images/201810/uepic/6cc70ce8-592a-4332-8678-c256249f9eb0.jpg" title=" 夏溪.jpg" alt=" 夏溪.jpg" width=" 400" height=" 267" border=" 0" vspace=" 0" style=" width: 400px height: 267px " / /a /p p style=" text-align: center " strong 西安夏溪电子科技有限公司 /strong br/ /p p    span style=" font-family: 隶书, SimLi color: rgb(31, 73, 125) " 热分析仪器厂商济济一堂,你来我往,不禁让人憧憬起来年会展将碰撞出怎样灿烂的火花?是否会有更多的优质企业磨砻淬砺、纷至沓来?还让我们拭目以待! /span /p p br/ a href=" https://www.instrument.com.cn/news/20181014/472856.shtml" target=" _blank" 相关资讯:《金秋十月,太湖之滨,群英荟萃,共襄盛举—2018年热分析技术及应用研讨会隆重召开》 /a br/ a href=" https://www.instrument.com.cn/news/20181016/473063.shtml" target=" _blank" 相关资讯:《戊戌深秋意难忘 己亥季夏再相会——2018年热分析技术及应用研讨会圆满落幕》 /a br/ a href=" https://www.instrument.com.cn/news/20181018/473218.shtml" target=" _blank" 相关资讯:《三会场交相辉映,热分析大放异彩——2018年热分析技术及应用研讨会分会报告摘录》 /a br/ br/ /p
  • 热分析钱义祥老先生:热分析仪器(方法)选择的哲理
    p & nbsp & nbsp & nbsp span style=" color: rgb(112, 48, 160) " (本文系仪器信息网独家约稿,未经许可,其它媒体不得转载)   /span /p p & nbsp & nbsp & nbsp 应用先进仪器和方法进行科学与技术的基础研究和应用开发。如何选用近代先进仪器和科学方法呢?钱义祥老先生的这篇“热分析仪器(方法)选择的哲理”将有助你选择先进仪器和科学方法。帮助你从多种备选对象中进行挑选与确定,使你学会择优选择。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/25eddf60-8d71-4ed7-b6ac-1205345e0568.jpg" title=" " style=" width: 450px height: 503px " height=" 503" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " strong 钱义祥老先生某次出差夜晚其学生拍摄 /strong /p p    strong 1.1 & quot 选择& quot 的哲理 /strong /p p   人,不由自己的选择而出生,朦胧地踏上漫长的选择之路。选择伴随科学人的一生,渐进渐行,格物致理(探究事物的原理法则,而总结为理性知识并加以运用)。人是选择的主体,“选择”是一个最易产生共鸣的话题。 /p p   从哲学的角度看,选择是反映主体与客体关系的一个范畴,主体与客体在相互作用过程中,主体根据其自身的存在现状、目的需要、价值尺度,对依赖主体活动而存在的事物的多种可能性关系进行分析、比较,抉择。它是主体积极能动、自觉自由的本质力量的一种表现。这种力量存在于人的一切活动过程中,既存在于人的思维过程中,也存在于人的实践行为中。 /p p   1.1.1研究方法是一个不断发展的动态过程。 /p p   科学研究是一个动态的永无止境的探索过程。研究方法总是以符合研究需要为前提,与科学研究相适应,因此研究方法也是一个不断发展的更新过程。 /p p   前人的研究成果,概括地说,无非是资料、研究方法和结论三个方面。我们研究前人的研究成果,主要目的是了解他获得的结论及获得这个结论的方法。科学史的书籍记录了科学家的发现和科学家获得发现的方法。可见研究方法及其选择在科学研究中的重要性。方法的选择要具有合理性、新颖性、独创性、可实现性。为避免选择性偏差,对研究课题和热分析方法了解得越深越多,选择热分析方法就越有依据,就越合理和适用,越能满足科学研究的需要。 /p p   1.1.2热分析方法选择的主体是人 /p p   选择是一个词语,这个词语主要是指一个人要挑选什么,要做出什么决定,选取什么.这是一个很重要的字眼。“选择”是存在于人的思维和实践行为方式中的积极能动的能力。 /p p   热分析方法选择的主体是人,是人的实践行为。人的具体行为方式是由人的选择来确定的。选择决定于主体,并不是说主体可以随意选择。主体的选择不仅受到客观外部条件的制约,也受到主体自身存在状况的限制。 /p p   在一定的外部条件下,人的能力是选择的关键。应该培养,发展、完善主体, 提高主体的选择能力。成功的选择,能最大限度地实现目的,满足主体的需要。 /p p   热分析方法的选择不仅受到主体自身存在状况的限制,也受到客观外部条件的制约。受仪器的制约和限定的典型事例是微重力下的热分析研究。微重力科学作为一门近代科学,是随着载人航天活动的发展而迅速发展的。微重力的热分析研究有望应用于空间材料科学,其研究障碍乃在于缺乏研究仪器和研究方法。目前商品化的热分析仪器仅适用于在万有引力条件下进行热分析实验,微重力条件下的热分析仪器尚待开发。微重力的热分析研究必定伴生新的研究方法的创立。方法的创立反过来又指导微重力的热分析研究。 /p p   选择意味着在多种事物中挑选一种事物或多种事物。热分析方法选择过程中,选择本身也是一种探索,乃是对人的选择能力的一种检验。 /p p   选择是一个过程,有可能在弹指一瞬间完成;有时通过“试错”来选择热分析方法和实验方法 某些特例,也有可能永远选择不到一个好的方法来研究你的问题。如热分析动力学研究,要从诸多的热分析动力学方法中选择、修改或建立新的动力学方程并非是件容易的事。实验、选择和修改动力学方程常常耗费几个月或更长的时间。 /p p   1.1.3高分子物理近代研究方法 /p p   选择正如人要走路,面对多条路,走哪条路?如何走这条路?便是你的选择了。科学研究亦如此。“高分子物理近代研究方法”是一本如何选择科学研究方法进行高分子物理研究的参考资料。 /p p   “高分子物理近代研究方法”由高分子物理和近代研究方法二个词复合组成。“高分子物理”的研究内容是高分子的结构、高分子材料的性能和分子运动的统计学 近代研究方法有高分子光谱及波谱分析、X射线分析、高聚物热分析、高聚物显微分析。人们选择近代研究方法研究高分子物理中的诸多问题。选择过程是属于人的行为活动,需要宽厚、交叉的基础知识和精深的专业知识,而且要有丰富的实践活动。由具有高分子物理背景和科学分析仪器背景的复合型人才担当高聚物结构(性能)的表征和研究是最佳的选择。因为他们具有“多种学科在他头脑里汇合”的优势。 /p p    strong 1.2热分析方法选择 /strong /p p   “热分析方法选择”是在第二届江苏省热分析技术应用与进展学术研讨会(2008年—扬州)上提出来的。是几十年的热分析实践中悟出的一个概念,是关于“热分析方法选择”问题的哲学思考。 /p p   “热分析方法选择”有二层意思: /p p   第一层意思是:“选择”是一个哲学问题(概念),是一种思维方式。“热分析方法选择”是“选择”的哲学思想在科学研究中的应用实例。 /p p   第二层意思是:“选择”是一种行为活动,贯穿于热分析方法选择和实验条件选择的全过程。 /p p   1.2.1科学研究与方法的关系: /p p   每一项科学技术研究成果的取得,都是运用一定的研究方法的结果。而每一项重大的科学理论或技术突破,往往伴生新的研究方法的创立。方法的创立来源于实践,反过来又指导科学技术研究实践活动。 /p p   科学研究是一个艰苦的探索过程,没有行之有效的方法,就无法达到研究的目的。方法的选择和应用是否适当是决定研究工作是否有成效的一项关键性因素。 /p p   方法是指用于完成一个既定目标的具体技术和工具。要方法行之有效,就必须对方法进行有选择的、合理的运用。 /p p   方法问题是解决实际问题不可逾越的现实问题,方法的选择很大程度上决定着研究的进展和效果。要针对具体问题,有目的地选择适用的方法。对于方法选择的准则依次是适用,高效简单、完美。在科学研究中选择热分析方法时可参考这个标准。 /p p   1.2.2热分析仪器(方法)选择 /p p   热分析方法是近代研究方法之一,它在科学研究中有极为广泛的应用。在对热分析方法已基本掌握的基础上,讨论这些方法的优缺点和适用范围, 择优选择。 /p p   在科学研究中,“热分析方法选择”突出体现了“选择”的哲学思想的普适性。它包括二个内容:热分析方法(仪器)选择和实验方法(条件)建立。 /p p   热分析方法包括 DSC、TG/DTA、TMA、DMA 和热分析+。各种方法有各自的特点和适用范围,同时它们之间又存在密切的联系。不同的热分析仪器(方法)应用在不同的研究领域。科研人员根据研究内容,选择合适的热分析方法,如下图。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/30e9b3e7-7048-4006-ae95-bae75680a739.jpg" title=" 1.png" / /p p   上图表明:热分析应用是按转变、反应与热物性参数进行分类。这种分类 /p p   方法具有很强的概括性。可以囊括各个学科领域的所有应用。热分析应用进一 /p p   步细分,并选择相应的热分析方法。 /p p   物理转变: /p p   涵盖结晶、晶型转变、汽化、升华、吸附、解吸附、吸水、居里点转变、玻璃化、液晶转变、热容转变等。 /p p   化学反应: /p p   涵盖分解、氧化、还原、固态反应、燃烧、聚合、树脂固化、橡胶硫化、催化反应等。 /p p   物质特性参数: /p p   比定压热容、纯度、膨胀系数、热导率等。 /p p   热分析是一种解决问题的实用技术。“热分析怎样来解决你的问题?你的问题怎样用热分析来解决?”,你面临的就是选择热分析仪器(方法)来解决你的问题。选择先于实验,贯穿于科学研究的整个过程。根据研究内容,选择热分析仪器(方法)。选择活动的主体是科研人员,要体现主体的能动性,即体现科研人员的能力和特有的积极能动的自由本质力量。在选择过程中,科研人员对研究内容和热分析仪器(方法)进行分析、比较,然后做出合理有效的选择。针对具体问题,有目的地选择合适的热分析方法。 /p p   列举几个实例: /p p   1. 玻璃化转变测量方法的选择 /p p   高分子物理中有一个重要的转变—玻璃化转变。研究玻璃化转变有三种热分方法:DSC、TMA、DMA。哪种方法好呢?根据样品的特性,你要做出合理的选择。一般情况下,粉末样品通常选用DSC方法; 树脂固化样品通常选用TMA方法 成型制品通常选用DMA方法。 /p p   DSC、TMA、DMA测量玻璃化转变的方法原理及灵敏度不同,如下表: /p p   DSC:检测的物理量是比热容 Cp 比热容变化约30% /p p   TMA:检测的物理量是膨胀系数 α 膨胀系数增加多至300% /p p   DMA:检测的物理量是模量 E 模量变化高达3个数量级 /p p   由上表可知:仪器灵敏度DSC & lt TMA & lt DMA。 测量高聚物的玻璃化转变,DSC方法制样方便。但玻璃化转变的信号很微弱时,那么就要改为选用TMA、DMA方法。封装材料使用的环氧树脂,通常选用TMA测定固化产物的玻璃化转变温度Tg和△Tg。 /p p   2. 高聚物次级转变的热分析方法选择 /p p   为什么要选择DMA方法来研究次级转变呢? /p p   从被选择的客体及其特性说起。被选择的客体是DMA方法和次级转变。 /p p   用DSC方法测量高聚物的热性能,能够检测到高聚物的Tg,但检测不到高聚物的次级转变Tβ。因而研究工作就在玻璃化转变层面戛然而止。仅仅测量玻璃化转变满足不了材料力学性能研究的需要。 /p p   DMA方法研究高聚物在交变应力作用下的力学状态和热转变。非晶高聚物力学性质随温度变化,它的力学状态是玻璃态、玻璃化转变区、高弹态及黏流态;发生的转变有次级转变、玻璃化转变、流动转变。DMA方法方便地测试到高聚物的次级转变、玻璃化转变、流动转变,因此用DMA方法研究次级转变打破了高聚物研究止步于玻璃化转变的现状。 /p p   高聚物发生的次级转变和玻璃化转变都是松弛过程。玻璃化转变是高聚物中链段由冻结到自由运动的可逆转变。次级转变是高聚物中小尺寸运动单元由冻结到自由运动的可逆转变。从材料结构、分子运动角度进行逻辑推理,潜意识感到次级转变和玻璃转变存在一定的关联性。但高分子物理和研究报告中,很少有人提及次级转变和玻璃转变的关联性,故只能淡墨轻描。选择DMA方法测试次级转变、玻璃化转变及其关联性就有它的现实价值。DMA方法测量高分子材料的玻璃化转变和次级转变,获得与材料的结构、分子运动、加工与应用有关的特征参数。因而在评价材料的耐热性与耐寒性、共混高聚物的相容性、树脂-化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。研究高聚物次级转变和玻璃化转变都很重要,都是不容忽视的。选择DMA方法研究高聚物的玻璃化转变、次级转变和Tβ-Tg是一个富有创造性的想象力。 /p p   高聚物在玻璃化温度以下,链段运动是冻结的,但更小的运动单元仍然可以发生运动,出现多个次级转变。高聚物次级转变之一是Tβ,它是一个非常有用的参数:它表征材料韧-脆转变,是材料的脆化温度和低温使用的极限温度;Tβ-Tg是高聚物发生物理老化的温度区间;β转变时力学内耗峰tanδ值与材料的冲击强度有对应关系;Tβ-Tg是屈服冷拉的温度区间,是加工工艺的必须控制的参数之一。 /p p   DMA是利用分子运动由局部原子振动变为区域的链段运动及更小的运动单元的运动引起高聚物的黏弹性大幅变化的原理测量高聚物的热转变。DMA方法的灵敏度高,它不仅可测定玻璃化转变温度Tg,还可测定次级转变温度Tβ。图中蓝颜色框中的tanδ即为高聚物的次级转变温度Tβ。均相非晶态高聚物的 /p p   DMA曲线如图所示。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/fe1a822b-e30b-4dce-a087-c79623b71406.jpg" title=" 2.jpg" / /p p style=" text-align: center " strong 均相非晶态高聚物的DMA曲线 /strong /p p   3. 物理老化和化学老化研究的热分析方法选择 /p p   高聚物在使用过程中,会发生化学老化、物理老化和光老化。它们发生在不同的温度区间,测定这些特征温度是必须的。 /p p   化学老化通常发生在Tg以上,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。 /p p   物理老化通常发生在Tβ-Tg之间,采用DSC、TMA、DMA方法测定得到玻璃化转变温度Tg。选择DMA方法测量得到次级转变温度Tβ。 /p p   膜的物理老化研究选择调制DSC和TMA、DMA方法。膜的调制DSC曲线和应力-温度曲线如图所示: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/1209b375-4e9a-4bcc-b5db-4ec484081cc2.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 分子链残留内应力和热焓松弛的MDSC曲线 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/bc98072a-f72a-4853-a5b2-1e02ad87eb7d.jpg" title=" 4.jpg" / /p p style=" text-align: center " strong   膜的物理老化涂层的应力-温度曲线 /strong /p p style=" text-align: center " strong   未物理老化涂层A /strong /p p style=" text-align: center " strong   物理老化涂层B /strong /p p   涂层温度低于Tg时,发生物理老化。由于物理老化涂层的应力对温度的依赖性,用Tg曲线区域内的极小值表征(图中B线2点处),其幅度的大小与物理老化程度有关。物理老化影响材料的机械、热和电性能。一般来说,弹性模量和硬度随着物理老化而增大,而应力松弛速率变化使玻璃态的膨胀性降低。 /p p   光老化选择光化学反应量热仪PDC方法。PDC的结构示意图如下: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/d33624e5-302b-4758-a971-9a1d491bff47.jpg" title=" 5 (2).jpg" / /p p style=" text-align: center "    strong PDC的结构示意图 光化学反应量热仪PDC /strong /p p   光化学反应量热仪PDC的原理:是将不同波长、不同照射强度下的紫外光照射在试样上,测量热效应。它既可进行光固化实验,也可以进行高聚物的光老化研究。 /p p   4. 选用多种热分析方法,全面表征高聚物的热性能。 /p p   为了全面表征高聚物的热性能,“全选”不失为一种很好的选择。就是选择DSC、TG、TMA、DMA方法,全面表征高聚物的热性能。 /p p   成功的科学家往往把所需要的各种方法巧妙地结合起来综合运用。这也是常见的方法选择。如热分析与FTIR、GC/MS、MS联用。 /p p   5. 绝热材料的热分析方法选择 /p p   温石棉是导热性极差的绝热材料。 /p p   温石棉中含有Mg(OH)2。Mg (OH)2脱水方程式如下: /p p style=" text-align: center "   Mg(OH)2 → MgO + H2O↑-△H /p p   由方程式可知:Mg (OH)2脱水时,它既有重量损失,而且伴有能量吸收。因此Mg(OH)2含量可用TGA方法定量,也可以用DSC方法测定。 /p p   由于温石棉导热性差,选用DSC方法,依吸热峰面积定量Mg(OH)2含量,误差较大。而选用TGA方法,TG曲线上显现的失重台阶就是氢氧化镁的脱水量。根据失重台阶计算Mg(OH) sub 2 /sub 的含量,数据准确,重复性好。 /p p   6. 标准试验方法 /p p   鉴于热分析方法的结果受诸多实验因素的影响,为利于热分析的学术交流 /p p   和相互间的数据比较,国际标准化组织就几种主要热分析方法及应用制定了一系列标准和规范。如差示扫描量热法(仪)的标准和规范、热重法的标准、热机械分析的标准、动态力学性能的标准。实验都要按标准和规范执行。如玻璃化温度测定、熔融-结晶过程测量、比热容测定、氧化诱导期测定、结晶动力学测定、分解温度和分解速率测定、分解动力学测定、线性膨胀系数测定、针入度测定、模量、损耗因子、应力-应变曲线等。 /p p   研究材料和制造产品时,有相应的国际标准、国家标准、行业标准,产品标准。按标准试验方法进行实验是一种强制性的选择。如封装材料T260/T288/T3O0(Time to Delaminate)热分层时间或称“爆板时间”测定必须按规定的标准方法进行。 /p p   借鉴热分析文献综述中提及的热分析方法和实验方法也是一种选择。 /p p   开发新的热分析方法和实验方法,适应研究的需要。 /p p   7. 改造已有的方法以适应解决实际问题的需要 /p p   外加电场、拱形铜片、夹具组合等DMA实验是夹具适应性改造的实例。 /p p   外加电场的DMA实验 /p p   外加电场:将外加电场加在样品两端,测定试样在外加电场的条件下,实时原位研究纳米复合材料的电刺激--形状记忆效应。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/a874a62b-fbcd-4369-826c-51f93a236e14.jpg" title=" 6.jpg" / /p p style=" text-align: center " strong 拱形铜片的应变—应力曲线测试 /strong /p p   选用压缩夹具。样品嵌在自制的限止长度变化的试样固定器上,整体置放在下探头。上探头临界接触试样的弧形部位,如图所示。 /p p   采用应力控制模式,测定应力 —应变曲线。就得到了客户要求的规定形变量下的应力值。它是挠度测定的反过程。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/6567bd82-1dbb-4380-9fdf-8ae80e26e752.jpg" title=" 7.jpg" / /p p style=" text-align: center " strong 夹具组合 —“蹦床夹具”实验 /strong /p p   标准夹具组合使用:上夹具用压缩夹具,下夹具用双悬臂夹具。 /p p   用下夹具夹持薄膜试样。薄膜试样上固定放置一个直径6mm的氧化锆圆柱体。然后将上夹具(压缩夹具)压在氧化锆圆柱体上。 /p p   循环加载/下载应力,进行应力—应变循环实验。 /p p   测定试样蹦床落点的力学性能。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/96453279-d8d2-424c-b8af-b3ea6b5d214e.jpg" title=" 8.jpg" / /p p style=" text-align: center " strong DMA模拟蹦床实验示图 /strong /p p   8. 移植方法 /p p   移植方法是当前科学方法发展的重要方面。移植包括科学概念、原理、方 /p p   法以及技术手段等,从一个领域移植到另一个领域,或科学方法相互渗透和转移,多种方法形成一个新的方法。移植方法是科学整体化趋势的表现之一。热重/差热分析-固相微萃取-气相色谱-质谱联用系统是移植方法的实例。 /p p   固相微萃取(SPME)是一种广泛使用的集萃取、浓缩、解吸、进样于一体的样品前处理新技术。将其移植到“热重/差热分析--气相色谱-质谱联用系统”中,即将固相微萃取(SPME)接入到“热重/差热分析--气相色谱-质谱联用系统”中去,改造成“热重/差热分析-固相微萃取-气相色谱-质谱联用系统。” 实验时划分温度段取样,解决逸出气取样问题,该系统已应用于原儿茶醛热解行为的研究。 /p p   1.2.3选择实验条件,建立实验方法 /p p   热分析实验结果常常依赖于实验条件,因此根据样品的特点选择实验条件,建立试验方法。 strong 见下图。 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/55058ec9-039f-4514-a5b4-52594968ae1a.jpg" title=" 9.jpg" / /p p   列举几个实例: /p p   1. 含能材料的热分析方法和试验方法的选择 /p p   热性能是含能材料的非常重要的性能之一,热分析能全面地表征含能材料的热性能,它在含能材料研究中得到了广泛的应用。由于含能材料分解过程的复杂性,要遵循“选择先于实验”的原则,切忌拿到一个含能材料的样品,随手称取10mg样品,冒失地进行TG实验或DSC实验。这将可能发生爆炸,损坏仪器和造成人员伤害。 /p p   含能材料的热分析实验前,你必须先了解含能材料的分解特性和爆炸特性,谨慎地选择实验条件。试样量是致关重要的,因含能材料分解时放热量大,特别是有强烈自加热的分解过程。为防止峰的扭曲,试样量应尽量少,如0.05-0.3mg。然后谨慎地进行TG实验。如选择DSC方法,实验时要防止试样溢出,污染传感器。含能材料的TG/DTA曲线和DSC曲线如图所示: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/6ea118da-ce02-4330-ae46-1e021cd8c1c1.jpg" title=" 10.jpg" / /p p style=" text-align: center "    strong 含能材料的TG/DTA曲线 含能材料的DSC曲线 /strong /p p   含能材料的TG/DTA曲线上的失重和放热峰呈歪斜型,是强放热造成的扭曲。样品量减少到0.3mg以下,峰型趋于正常。 /p p   2. 聚丙烯玻璃化温度测定 /p p   选择是目的性很强的实践行为。按选定的热分析方法和实验条件进行热分析实验,常常是一次或多次“试错”的选择过程。当实验结果达不到主体的要求时,可选择另一种热分析方法或更改实验条件,再次进行实验。多次试错,直至你得到了满足需要的结果。例如选择DSC方法测定聚丙烯玻璃化温度。升温速率选用10℃/min时,弱小的热效应难以被发现,DSC曲线上未见玻璃化转变峰。随着升温速率的提高,仪器灵敏度大大提高, 当升温速率达到150℃/min时,其玻璃化转变过程中的台阶状变化变得明显 strong , /strong 如图所示。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/17f85e3d-9bde-4dce-ba00-bdb474182035.jpg" title=" 11.png" / /p p   3. 选择真空或加压条件解决热分析峰的分离问题 /p p   热分析峰的分离问题常常是通过改变实验条件来解决的。例如塑料中增塑剂的挥发和塑料分解,在常压条件下,两种效应可能在相同的温度区间发生。而减压条件下,塑料中添加的增塑剂在塑料分解之前挥发,那么实验就可选择在真空条件下进行。多种热分析仪器可在真空条件下进行实验。 /p p   如果在常压下发生两个重叠的化学反应,其中一个反应可能受压力升高的影响比另一个反应大。在这种情况下,可以选择压力DSC将两个反应进行分离。例如有机物的分解温度随惰性气体压力的增大而提高。 /p p   4. 选择“强化影响因素”的实验条件 /p p   有多种因素影响热分析的测量结果。可以使用简化、纯化、强化实验影响因素的方法,加速现象的进程。当然它与在自然条件下获得的结果是有差别的。可进行科学、合理的补偿和修改。在纯氧条件下进行氧化诱导期测定,是强化实验影响因素的实例之一。 /p p   1.2.4热分析方法的取代和重新选择 /p p   热分析方法随研究“需要”而“变”。物质热性能研究的深入,促进热分析方法的发展。热分析方法的发展,又促使研究工作顺利进行。 /p p   批判性思维是以逻辑思维为基础。以一种批判、分析和评价的方式思考热分析方法的选择。被选择的热分析方法不是凝固不变的,而是随着研究实践出相应的改变或重新选择。 /p p   “问题-方法-标准”的思维模式具有普适性。研究不同的问题选择不同的热分析方法,探索问题的本质和规律。对方法规范化的表述可制订为标准。制订的标准也是不断修订。 /p p   实例1:选择热分析方法测定药物熔点 /p p   热分析方法介入药物熔点测定。选择热分析方法测定药物熔点,取代毛细管法,已成趋势。 /p p   在药品检验中,药物的熔点是鉴别药物真伪和衡量质量优劣的重要指标。药物熔点通常是用经典的毛细管法测定,人为视觉误差大,初熔点难以判别。2015中国药典推荐热分析方法取代毛细管法。 /p p   选择DSC或DTA方法测量药品熔融的全过程,可提供准确的熔化温度,熔程、熔融焓及多晶型、纯度等信息。对那些熔融伴随分解、熔距较长,用毛细管法测定较困难的样品,选择热分析方法则能取得较理想的结果。选择几种热分析方法如DSC与TGA相结合的方法可给出更准确地判断。 /p p   实例2:热分析方法自身在发展,方法选择也在演变。 /p p   热重法是热分析技术中发明最早的。常常选择TG研究高聚物的热分解。随着TG技术的发展,新的功能不断出现,研究内容也不断深化。选择的TG方法也随科学研究的深化而演变。 /p p   TG方法的演变,促使高聚物热分解的研究不断深化,如下表: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/f1f85a2e-ad5d-413f-abfe-9890dfc34bff.jpg" title=" 12.jpg" / /p p   表中提及了观察系统。观察系统是热分析的新功能,引入图形思维概念。热分 /p p   析实验同时得到热分析曲线和形貌图像。对热分析曲线和观察到的形貌图像同 /p p   步进行解析,追溯热变化的物理-化学过程。 /p p   1.2.5方法选择中的创造性思维和批判性思维 /p p   创造性思维是能引发新的和改进解决问题方法的思维方式。创造性思维引发新观念的产生,批判性思维是对所提供的解决问题的方式进行检验,以保证其有效性的思维方式。批判性思维包含了几个核心要素:解读、分析、评价、推理等。在方法选择中,要批判性地思考热分析方法问题。 /p p   热分析方法选择过程中,要求创造性思维和批判性思维平衡发展。创造性思 /p p   维和批判性思维将推动热分析方法和仪器的发展。 /p p   实例1:骤冷PET初始结晶度测定 /p p   选择传统DSC测定骤冷PET的初始结晶度。DSC曲线表明:通过熔融焓与结晶焓的焓值之差计算得到初始结晶度,热焓值之差为50.77-36.59=14.18J/g,表明它是部分结晶高聚物。而广角X射线衍射测定的结论:骤冷PET是无定形,与DSC结果相矛盾。这个矛盾逼迫科研人员以一种批判、分析和评价的方式去思考。科研人员凭借辨析和判断能力,判明数据真伪。 /p p   温度调制DSC方法的创新思维是对传统DSC方法局限性的批判。温度调制DSC选择了一种特殊的升温方式:在一般线性加热或冷却的基础上,叠加了一个正弦的加热速率,这是创新;以基础升温的慢的升温速率来改善分辨率,并以瞬时快速升温速率提高灵敏度,这是对升温速率影响分辨率与灵敏度规则的遵循。从而使调制DSC将高分辨率与高灵敏度巧妙地结合在一起,实现了在同一个实验中既有高的灵敏度,又有高的分辨率。温度调制DSC既有创造性,创造性中又包括对规则遵循。温度调制DSC是对规则遵循中孕育创造性的范例 /p p   创新,就是选择方法,创造新的可能性。温度调制DSC使可逆峰与不可逆峰的分离成为可能。温度调制DSC利用傅里叶变换的叠加法,得到可逆热流和不可逆热流,可逆峰与和不可逆峰被区分开来,从而显著提高微弱转变、多相转变和定量测定结晶度的可信度。选择温度调制DSC ( MTDSC )方法测定骤冷PET的初始结晶度。如图所示: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/bd043b05-4380-4e3a-8a5a-c8de6e507766.jpg" title=" 13.jpg" / /p p   温度调制DSC曲线显示:骤冷PET初始结晶焓值由冷结晶焓与熔融焓之差得到,其值为134.3-134.6=-0.3 J/g,表明骤冷PET初始结晶度极低,基本上为无定形形态。温度调制DSC的实验结果和广角X射线衍射测定的结果相符合。 /p p   实例2:油品氧化诱导期测定 /p p   常压下测定油品的氧化诱导期,由于油品蒸(挥)发,导致数据波动。基于高压能延迟挥发。创造性思维引发新观念的产生,高压DSC仪器出现了。人们放弃常压下测定油品的氧化诱导期的方法,而选择高压DSC测定油品的氧化诱导期,并编制了油品的氧化诱导期测定的相关标准。 /p p    strong 1.3“热分析方法选择”的编辑 /strong /p p   全球无数台的热分析仪器每天都在运行,专业人员实时解析由实验得到的热分析曲线,并撰写成成千上万篇的研究报告发表在科学杂志上。这是科学研究中运用热分析方法的成果积累和沉淀。整理、编辑这些对科学有价值的资料,进而建立“热分析方法选择”的数据库和检索系统是人们的期盼。编写“热分析方法选用实例”是一项聚沙成塔的工作,编辑工作只有起点没有终点。 /p p   “热分析方法选择”表格可以由实验室(个人)编辑。“热分析方法选择”的数据库和检索系统,必须由图书馆、出版社和专业技术学会编辑。 /p p   1.3.1实验室编辑“热分析方法选用” /p p   热分析的专业工作者和科研人员,每天都在选择热分析方法,设计试验方法,进行大量的热分析实验。积累的资料如淙淙的小溪,常流不断,常流常新。经常翻一翻、查一查积攒下的实验资料,从自己的实验实践中,寻找研究内容和热分析方法的对应性,有助于今后热分析方法选择。将你的热分析实践活动用表格记录下来,成为自己编写的“热分析方法选用”的实例,供自己查用。 /p p   “热分析方法选用实例”示意如表1: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/8f3c3f0a-65cc-4c71-8dd5-e22d63225641.jpg" title=" 14.jpg" / /p p   每个实验室都可以绘制一张“热分析方法选择”实例的表格。天天填写新的实例,就像每天记日记一样,持之以恒。当表格内储存量足够丰富时,就成了个人的数据库,可把它当作个人的手册查询。当你拿到一个样品或欲进行一项科学研究时,你可以从“热分析方法选择”实例的表格中检索到你所需要的热分析方法和实验条件。 /p p   某实验室绘制的“热分析方法选用”实例的表格,如表2示例。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/b92eb8d6-f844-424f-b9cd-fe4b33fa3934.jpg" title=" 15.jpg" / /p p   “热分析方法选择”和“热分析应用”是孪生的文本。“热分析方法选用”和“热分析应用”的内容是互通的。编辑“热分析应用”的表格或文本,与“热分析方法选择”相对应。 /p p style=" text-align: center "    strong 表三 热分析应用的文本格式 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/0c1dab46-ea77-47b9-8e36-0e674fbdabb1.jpg" title=" 16.jpg" / /p p   每个实验室编辑、制作“热分析方法选择”表格,各具特色,绽放选择之美。 /p p   1.3.2“热分析方法选择”的检索系统建立 /p p   热分析主要学术刊物与著作有热分析杂志、热化学学报、热分析文摘、热分析文献综述及刘振海等人的学术著作和热分析国际会议和国内的热分析专业会议的论文集。在网上和文库可搜索到更多的选择热分析方法进行科学研究的科学论文。按美国科学信息研究所的科学网站统计,每年仅就报道DSC一种技术用于结晶过程的论文就超过1100篇。 /p p   以“热分析文献综述”为例。“热分析文献综述”是从二年间发表的几千篇热分析文献中,收录其中的200篇。“热分析综述”涵盖包括热分析方法和校准、热力学、动力学、以及热分析在无机物、聚合物、含能材料药物、生物化学和生物学方面的应用。“热分析文献综述”既阐述了科学研究的内容,也涉及热分析方法的选择。 /p p   文献综述和科技论文的基本内容是:谁,研究了什么问题、选择了什么方法、得到了什么结论。将热分析文献综述和科技论文的文体转换为以“研究内容”和“热分析方法选择”为关键词的文本形式,就成为“热分析方法选用”的文本系统,如表四示例。 /p p style=" text-align: center "    strong 表四 研究报告的文本转换 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201610/insimg/e806a669-89d1-4099-9c64-5cb3e577b9c1.jpg" title=" 17.jpg" / /p p   “热分析方法选用”索引分类,可以按材料分类;也可以按物理转变、化学反应、热物性参数测定分类;或者按时间顺序排列。编辑数据库和检索系统的意义是能够满足研究方法选择的需要,根据研究内容,快速地选择到相应的热分析方法。 /p p   “热分析方法选择”数据库和检索系统的编辑非个人能力所能担当。应由自然科学资金资助,委托图书馆、档案馆、出版社和热分析专业学会进行。 /p p   1.3.3选择云端中“热分析”那朵云 /p p   在当今大数据时代里,云端飘浮朵朵云彩,我选择“热分析”那朵。利用云端的热分析资料,对热分析数据进行计算、解析,实现它的科学价值。 /p p   耄耋之年仰望科学的天空,浏览“云数据”,好似天真的玩童仰望令人神往的宇宙星空一样,托腮观测无边无界的边际,享受浩瀚之美! /p
  • 看完才发现不会TG/DSC数据分析——九位专家解读热分析在科研和生产中的应用
    p    strong 仪器信息网讯& nbsp /strong 热分析是在程序温度(和一定气氛)下,测量物质的物理性质与温度或时间关系的一类技术。无论在科研论文的表征部分以及生产企业的质量控制中,热分析技术的应用都不可或缺。而热分析仪器就是基于热分析技术,用于测量能量、质量、力性能、电性能、磁性能等物理量随温度或时间变化规律的分析仪器,并被广泛应用于化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 256px " src=" https://img1.17img.cn/17img/images/201911/uepic/edf05fbd-73bb-4d5c-929d-1a2e9cdff6c2.jpg" title=" 第五届“热分析研究进展及前沿应用”主题网络研讨会.jpg" alt=" 第五届“热分析研究进展及前沿应用”主题网络研讨会.jpg" width=" 600" height=" 256" border=" 0" vspace=" 0" / /p p   TG/DSC数据分析对于诸多行业、各类物质的研究工作至关重要,仪器信息网特此邀请到热分析领域的9位专家,于2019年11月28日带来第五届“ span style=" color: rgb(255, 0, 0) " strong 热分析研究进展及前沿应用 /strong /span ”主题网络研讨会,为广大热分析从业人员介绍热分析相关知识与应用技巧,包含化工、制药、高分子、碳纳米材料、含能材料等多个行业领域。 /p p    strong 会议日程 /strong 如下: /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 526px " src=" https://img1.17img.cn/17img/images/201911/uepic/b6ebcbb8-4cfe-415f-9ede-1d8b783aaab0.jpg" title=" 会议日程.png" alt=" 会议日程.png" width=" 600" height=" 526" border=" 0" vspace=" 0" / /p p    strong 演讲嘉宾阵容 /strong : /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 612px " src=" https://img1.17img.cn/17img/images/201911/uepic/c8eec4b4-279d-4ff8-aced-1df5daca8095.jpg" title=" 演讲嘉宾.png" alt=" 演讲嘉宾.png" width=" 600" height=" 612" border=" 0" vspace=" 0" / /p p    strong 演讲嘉宾简介 /strong : /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 268px " src=" https://img1.17img.cn/17img/images/201911/uepic/5e6bdd42-611c-436a-90d2-5108f778133f.jpg" title=" 中国科学技术大学 丁延伟.jpg" alt=" 中国科学技术大学 丁延伟.jpg" width=" 200" height=" 268" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国科学技术大学 丁延伟 /strong /p p   丁延伟,博士、高级工程师、中国科学技术大学理化科学实验中心副主任。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作。中国化学会化学热力学与热分析专业委员会委员。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2018、JY/T 0589.8、JY/T 0589.9,以主要作者发表SCI论文30余篇。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 267px " src=" https://img1.17img.cn/17img/images/201911/uepic/d3969f9f-041d-4373-bf84-9962350b92cf.jpg" title=" 河北师范大学 张建军.jpg" alt=" 河北师范大学 张建军.jpg" width=" 200" height=" 267" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 河北师范大学 张建军 /strong /p p   张建军,河北深泽县人,研究员,三级教授岗,硕士研究生导师,河北省中青年骨干教师,中国化学会热力学与热分析专业委员会委员。河北省化学会理事,河北省化学会热力学与热分析专业委员会主任委员,河北省杂环化合物重点实验室学术委员会委员,河北省“三三三人才工程”人选。主要研究方向为热分析与热分析动力学、化学热力学及稀土配位化学。作为课题负责人主持国家自然科学基金和河北省自然科学基金等课题15余项,参与国家基金和省基金课题多项,以第一完成人获河北省科学技术奖五项。为 Journal of Hazardous Materials、J. Chem. Thermodynamics、中国科学、科学通报等国内外二十多种学术杂志的审稿人,已在Dalton Trans.、Appl Organometal Chem.、New J. Chem.、RSC Adv.、Ind. Eng.Chem. Res.等国内外学术刊物上共计发表论文200多篇,其中被SCI收录160余篇。多次在全国性学术会议上做邀请报告并主持报告会。合作主编《热分析动力学》第二版,参编《量热学基础与应用》,参编《分析化学手册第8分册热分析与量热学》第三版。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 280px " src=" https://img1.17img.cn/17img/images/201911/uepic/97c23dcf-9371-4a9e-b4d0-31cb74a6790d.jpg" title=" 中国计量大学 胡东芳.jpg" alt=" 中国计量大学 胡东芳.jpg" width=" 200" height=" 280" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国计量大学 胡东芳 /strong /p p   胡东芳(中国计量大学),胡东芳,中国计量大学教师,化学工程博士。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 267px " src=" https://img1.17img.cn/17img/images/201911/uepic/ddc4b2c7-afd7-4206-bd13-f1dc1d9e15c1.jpg" title=" 苏州玛瑞柯测试科技有限公司 刘彬.jpg" alt=" 苏州玛瑞柯测试科技有限公司 刘彬.jpg" width=" 200" height=" 267" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 苏州玛瑞柯测试科技有限公司 刘彬 /strong br/ /p p   2013-2016 联化科技股份有限公司 工艺安全实验室 工艺安全研究员 /p p   主要负责工艺安全评估方面工作,熟悉DSC/RC1/ARC/RSD等各种量热设备使用,对各仪器的量热原理,数据解读以及设备维护使用有深入理解。完成众多项目小试到中试的完整工艺安全评估 负责化学反应热、燃烧等相关物化性质计算。 /p p   2016-至今 苏州玛瑞柯测试科技有限公司 化学品测试业务技术负责人 /p p   负责THT相关量热设备产品的应用拓展和技术支持 负责苏州玛瑞柯工艺安全实验室的化学品测试业务,自2016年开始陆续完成近100个各种类型反应的热安全评估工作。2016年曾参加国际热分析专家Arcady 博士在南京理工大学举办的TSS热安全软件相关培训讲座,熟悉各种量热数据的分析处理、动力学模型构建以及热模拟。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 289px " src=" https://img1.17img.cn/17img/images/201911/uepic/8de24b40-056b-4dfe-91f2-f7a32a1648ca.jpg" title=" 江苏科技大学 李照磊.png" alt=" 江苏科技大学 李照磊.png" width=" 200" height=" 289" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 江苏科技大学 李照磊 /strong /p p   李照磊,1984年1月生,理学博士,副教授。中国化学会会员,江苏省热分析专业委员会委员。2012年8月至2016年6月,南京大学化学化工学院攻读博士学位,导师为胡文兵教授。目前任教于江苏科技大学材料科学与工程学院,主要从事大分子凝聚态结构转变的热分析研究,尤其是快速扫描量热技术表征高分子结晶与成核动力学研究。同时对金属材料的腐蚀防护技术也有涉猎,主要包括高效、环保缓蚀剂和树脂基涂层等方面。主持国家自然科学青年基金项目、江苏省高校自然科学基金面上项目,以及多项校企合作横向课题项目。在ACS Macro Letters、Electrochimica Acta、Journal of Polymer Science, Part B: Polymer Physics、Polymer、Thermochimica Acta、Polymer Testing、Polymer International、Journal of Thermal Analysis and Calorimetry等刊物上发表学术论文30余篇,获授权专利10项。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 267px " src=" https://img1.17img.cn/17img/images/201911/uepic/9b33dea7-b614-4a8b-b8e0-095a84c24553.jpg" title=" 北京市理化分析测试中心 刘伟丽.jpg" alt=" 北京市理化分析测试中心 刘伟丽.jpg" width=" 200" height=" 267" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 北京市理化分析测试中心 刘伟丽 /strong /p p   刘伟丽(北京市理化分析测试中心),博士,研究员,专业为材料物理与化学。长期从事新材料分析测试方法开发及标准研制工作,先后参与和主持材料分析测试相关的国家级和省部级竞争性科研课题8项、企业委托技术开发项目50 余项,发表学术论文60 余篇,参与著书3部,研究成果获北京市科学技术奖、中国分析测试协会科学技术奖等5项奖励。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 257px " src=" https://img1.17img.cn/17img/images/201911/uepic/d6091fd1-008b-4923-adc9-e53ae0523f49.jpg" title=" 江苏省食品药品监督检验研究院 李忠红.jpg" alt=" 江苏省食品药品监督检验研究院 李忠红.jpg" width=" 200" height=" 257" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 江苏省食品药品监督检验研究院 李忠红 /strong /p p   李忠红,江苏省食品药品监督检验研究院,检验技术研究中心副主任,主任药师,博士。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 267px " src=" https://img1.17img.cn/17img/images/201911/uepic/0675cc42-b203-42b5-a697-eceeb3489e0a.jpg" title=" 西安近代化学研究所 王晓红.jpg" alt=" 西安近代化学研究所 王晓红.jpg" width=" 200" height=" 267" border=" 0" vspace=" 0" / /p p style=" text-align: center "    strong 西安近代化学研究所 王晓红 /strong /p p   王晓红,女,1976年8月生,中共党员,1999年7月大学毕业入西安近代化学研究所工作至今,副研究员职称。从事含能材料热分析,动力学,构效关系及计量学研究,2014年~2015年在加州大学圣克鲁兹分校生物与化学系物理化学专业访学。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 200px " src=" https://img1.17img.cn/17img/images/201911/uepic/6c4b3ab7-9e6f-447c-976f-f40b1f505bc6.jpg" title=" 中国科学院上海硅酸盐研究所 陶冶.jpg" alt=" 中国科学院上海硅酸盐研究所 陶冶.jpg" width=" 200" height=" 200" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 中国科学院上海硅酸盐研究所 陶冶 /strong /p p   陶冶,中国科学院上海硅酸盐研究所分析测试中心热物理性能课题组,助理研究员,从事薄膜材料热扩散率测量、材料比热测量、热仿真计算等工作,在材料的热物性测试方法方面积累了一定经验。通过重新定义时间零点,对闪光法的有限脉冲时间效应进行的修正,可使激光脉冲法适合更薄样品的测量。通过仿真计算,对天宫二材料实验装置的在轨实验与地面实验的工况进行了模拟计算,研究空间与地面的传热特性差异,找到地面样品模拟空间样品热环境的等效条件。入职4年来,作为技术骨干参与“国家重点研发计划、天宫二材料实验装置热分析”等在内的科研项目5项,发表论文10余篇,申请专利7项。 /p p   span style=" color: rgb(255, 0, 0) " strong  如何 a href=" https://www.instrument.com.cn/webinar/meetings/thermalanalysis2019/" target=" _self" 报名 /a 参与? /strong /span /p p   方式一、复制粘贴下方链接到浏览器中或直接点击下方链接,进入会议报名页面,点击页面上的“我要参会”按钮,填写报名信息即可报名参与。 /p p a href=" https://www.instrument.com.cn/webinar/meetings/thermalanalysis2019/" target=" _self" https://www.instrument.com.cn/webinar/meetings/thermalanalysis2019/ /a /p p   方式二、点击或扫描下方二维码,点击页面上的“我要参会”按钮,填写报名信息即可报名参与。 /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/thermalanalysis2019/" target=" _self" img style=" max-width: 100% max-height: 100% width: 200px height: 200px " src=" https://img1.17img.cn/17img/images/201911/uepic/72e202c4-fe83-416b-84b9-b1c521f1fcc7.jpg" title=" 报名.png" alt=" 报名.png" width=" 200" height=" 200" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " strong 报名地址 /strong /p p   报名开放时间为即日起至 span style=" color: rgb(255, 0, 0) " strong 2019年11月28日 /strong /span ,您也可以通过扫描上方的二维码了解实时的会议日程(会议日程以活动页面实时日程为准) 为使更多用户能够通过网络平台进行学习与交流,“热分析研究进展及前沿应用”主题网络研讨会不收取任何费用。 /p p    strong 参会指南 /strong /p p   1.报名参会并通过审核后,您将会收到邮件通知,并在会前一天收到提醒参会的短信通知。 /p p   2. a href=" http://webinar.instrument.com.cn" target=" _self" 会议当天进入仪器信息网网络讲堂首页(webinar.instrument.com.cn),点击“进入会场”,填写报名时手机号,即可登录会场参会。 /a /p p   扫下方二维码,进入热分析技术交流群,第一时间了解会议信息,以及热分析在行业的最新应用,与同行进行互动交流。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 200px height: 197px " src=" https://img1.17img.cn/17img/images/201911/uepic/e2c7897b-6d3f-4e75-89dd-ccf18ba1ffa2.jpg" title=" 热分析技术交流群.jpg" alt=" 热分析技术交流群.jpg" width=" 200" height=" 197" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 热分析技术交流群 /strong /p p    /p p br/ /p
  • 钱义祥——高分子物理与聚合物热分析
    p style=" text-align: center " strong span style=" font-size: 24px " 高分子物理与聚合物热分析 /span /strong /p p style=" text-align: right " 热分析老人 钱义祥 /p p style=" text-align: right " 2018-05-10 /p p   « 高分子物理» 、« 高分子物理的近代研究方法» 、« 新编高聚物的结构与性能» 、« 聚合物结构分析» 、« 聚合物量热测定» 、« 热分析与量热学» 手册、« 高聚物与复合材料的动态力学热分析» 等专著中,论述了高分子物理理论和近代研究方法。聚合物热分析是高分子物理的近代研究方法之一,高分子物理是高聚物热分析的理论基础,用高分子物理的概念解析热分析曲线,探索聚合物结构与性能的关系。 /p p   一、高分子物理与聚合物热分析 /p p   1.聚合物热分析 /p p   热分析是在程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。热分析是研究物质变化和变化规律及调控变化的近代研究方法。聚合物热分析的研究对象是高聚物。聚合物热分析最常用的热分析方法是差示扫描量热仪DSC和动态热机械分析DMA。在特别情况下,也采用热机械分析(TMA)和热分析联用技术(TG/气体分析)。差示扫描量热仪DSC是在程序控温(和一定气氛)下,测量输入给试样和参比物之间的热流速率或加热功率(差)与温度或时间关系的技术。DSC在高聚物研究中的应用有: /p p   研究结构及动态变化 /p p   表征玻璃化转变和熔融行为 /p p   分析多组分高聚物体系的组成 /p p   研究高聚物链缠结及化学交联 /p p   研究高聚物的结晶行为 /p p   表征高聚物的微相结构 /p p   研究高聚物共混相溶性 /p p   反映共混高聚物中组分间的相互作用 /p p   研究聚合物的热历史和处理条件对高聚物结构的影响。 /p p   动态热机械分析DMA是用来测量样品在周期交变应力作用下,其动态力学性能与时间、温度、频率等函数关系的一种仪器。动态力学热分析测定高分子材料(非晶高聚物、结晶聚合物、交联聚合物、共混高聚物)在一定条件(温度、频率、应力或应变水平、气氛和湿度)下的刚度与阻尼 测定材料的刚度与阻尼随温度、频率或时间的变化,得到高聚物的温度谱、频率谱和时间谱。用高分子物理理论解读DMA的温度谱、频率谱和时间谱,获得与材料的结构、分子运动、加工与应用有关的特征参数。 /p p   聚合物热分析是高分子物理的近代研究方法之一,是近几十年中热分析发展最活跃的领域。它已经应用到聚合物结构与性能研究的几乎所有领域。运用聚合物热分析研究(测试)聚合物的非晶态(玻璃化转变及ΔTg) 聚合物的结晶态(结晶-熔融过程、熔点和熔融晗ΔH、结晶温度和结晶晗、温度对结晶速度的影响、结晶温度对熔点的影响、、高分子的链结构对熔点的影响、共聚物的熔点、杂质对聚合物熔点的影响、结晶度测定) 聚合物液晶态 高分子共混物的相容性、嵌段共聚物的微相分离、聚合物的高弹性与黏弹性(聚合物的力学松弛-蠕变、应力松弛、滞后现象、力学损耗、黏弹性与时间、温度的关系-时温等效)、表征力学松弛和分子运动对温度和频率的依赖性等。上述热分析研究的问题都是高分子物理所关注的问题。 /p p   热分析是高分子物理的近代研究方法,它辅以其它近代研究方法,如光谱、波谱、色谱、激光光散射、X射线和电子显微技术等方法,运用高分子物理理论,弄清高聚物的一级、二级和聚集态结构,并研究结构与材料功能和性能之间的关系。由此合成具有预定性能的高分子材料,或根据需要通过物理和化学方法改性合成高聚物或天然高分子以创建新的材料。同时,研究高聚物结构对材料加工流动性的影响,确定材料加工成型工艺。研究高聚物分子运动,弄清材料的力学性能、流变性、电学性能。由此,在高分子物理指导下不断制备出预期的高分子材料。 /p p   热分析方法是在不断发展的。如示差扫描量热仪DSC 技术,自20世纪60年代以来,DSC技术的快速发展使其成为高分子物理尤其是高分子结晶学相关问题研究的常规实验手段。然而随着对高分子结晶和熔融研究的进一步深入,研究者们对DSC 的温度扫描速率提出了更高的要求。首先,对于结晶速率较快的半结晶高分子而言,在不够快的冷却速率条件下从熔体降温至较低温度的过程总是能够发生结晶成核,从而干扰了在较低温度区域对高分子结晶成核行为的研究。 /p p   其次,高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中发生结晶时的冷却速率均大于常规DSC 所能提供的降温速率,因此很难利用常规DSC 模拟研究高分子在实际加工过程中所经历的结晶环境。第三,大多数半结晶高分子折叠链片晶都处于亚稳状态。在常规DSC 的升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而干扰最终的熔融实验结果,使得我们难以获得最初的高分子晶体内部聚集态结构相关信息。 /p p   近年来,出现了商业化的闪速示差扫描量热仪Flash DSC。推动了高分子结晶研究的进展。因为高分子结晶与熔融问题的研究不仅对高分子科学的发展至关重要,与高分子材料在生产生活中的实际应用也密切相关。随着对相关问题的深入研究,高分子结晶与熔融行为的表征对实验手段提出了新的、更高水平的要求。闪速示差扫描量热仪Flash DSC所具备的快速升降温能力、超高的时间分辨率、易于操作等特点,在高分子结晶与熔融问题的研究上已经得到了广泛的应用。 /p p   Flash DSC在高分子的结晶方面的应用有:Flash DSC 可以实现对熔体降温过程中结晶成核和生长的精确控制,甚至可以得到大多数半结晶高分子的无定形态,从而为大过冷度下高分子等温结晶的研究创造了有利条件。同时,Flash DSC 所具备的超快速降温能力可与加工过程中的冷却速率相匹配,这为加工过程中结晶行为的模拟研究提供了更多的可能。 /p p   Flash DSC 研究高分子结晶问题的实例有:等温总结晶动力学 等温晶体成核动力学 非等温结晶峰比较 成核剂和填料对结晶行为的影响 共聚单元对高分子结晶的影响。 /p p   Flash DSC用于高分子晶体的熔融研究:快速升温可精确地判断高分子晶体的升温退火行为,并且时间窗口与分子模拟相互衔接,在一定程度上可了解亚稳态原生高分子晶体的信息。通过进一步的应用与拓展,诸如多尺度下高分子晶体的熔融行为和极性大分子热降解温度之上的熔融行为都可以得到有益的探讨。 /p p   Flash DSC 研究高分子晶体熔融问题的实例有:升温扫描过程中多重熔融峰的鉴别 高分子片晶不可逆熔融 高分子片晶可逆熔融 极性大分子晶体的熔融。 /p p   总之,Flash DSC 在高分子结晶和熔融行为相关问题的研究上有望发挥更加重要的作用,有助于推动高分子结晶学相关基础理论的进一步深化与完善。[1] /p p   2.高分子物理 /p p   高分子物理物理学是探讨物质的结构和运动基本规律的学科。高分子物理属于物理学的一个分支。高分子物理从分子运动的观点阐明高分子的结构和性能的关系。通过分子运动揭示分子结构与材料性能之间的内在联系及基本规律。 /p p   高分子物理的内容主要由三个方面组成。第一方面是高分子的结构,包括单个分子的结构和凝聚态结构。结构对材料的性能有着决定性性的影响。第二方面是高分子材料的性能,其中主要是黏弹性,这是高分子材料最可贵之处,也是低分子材料所缺乏的性能。研究黏弹性可以借助于力学方法(DMA方法)。结构和性能之间又是通过什么内在因素而连接起来的呢?这就是分子运动。因为高分子是如此庞大,结构又如此复杂,它的运动形式千变万化,用经典力学研究高分子的运动有着难以克服的困难,只有用统计力学的方法才能描述高分子的运动。通过分子运动的规律,把微观的分子结构与宏观的物理性能联系起来。因此,分子运动的统计学是高分子物理的第三个方面。 /p p   高分子结构、高分子材料的性能和分子运动统计学三部分组成高分子物理。高分子物理涉及高聚物结构表征、分子运动、物理改性及理论研究。在高分子科学的发展历程中,高分子化学是基础。高分子化学研究高分子化合物的分子设计、合成及改性,它担负着高分子科学研究提供新化合物、新材料及合成方法的任务。高分子物理是高分子科学的理论基础,它指导着高分子化合物的分子设计和高聚物作为材料的合理使用。高分子物理涉及高分子及其凝聚态结构、性能、表征,以及结构与性能、结构与外场力的影响之间的相互关系。另一方面高分子工程研究涉及聚合反应工程、高分子成型工艺及聚合物作为塑料、纤维、橡胶、薄膜、涂料等材料使用时加工成型过程中的物理、化学变化及以此为基础而形成的高分子成型理论、成型新方法等内容。当前的高分子科学已形成高分子化学、高分子物理、高分子工程三个分支领域互相交融、互相促进的整体学科。[2] /p p   高分子科学是一门新兴科学。它经历了漫长的历程才艰难诞生。高分子物理也就在这个过程产生,并且为高分子科学的诞生和发展起了重要作用。高分子科学领域诺贝尔奖获得者H.Staudinger(1953年),Ziegler和Natta(1963年)、P.J.Flory(1974年)、A.J.Heeger,GacDiarrnid及H.Shirakawa(2000年)的重大贡献主要是建立在可靠的高分子表征基础上。我国老一辈高分子科学家钱人元、唐敖庆、冯新德、钱保功、徐 僖、程镕时等均具有坚实的高分子物理理论基础,他们为高分子科学与教育事业的发展做出了巨大贡献。[3] /p p   3. 高分子物理与聚合物热分析 /p p   高分子物理的基本理论、研究领域及研究方法是高分子物理的基本内容。聚合物热分析研究对象辖于高分子,是高分子物理的近代研究方法之一。聚合物热分析的研究领域和高分子物理的研究领域常常是相叠的,热分析研究的问题常常就是高分子物理所关注的问题。下面从四个方面讨论高分子物理与聚合物热分析的关系。 /p p   1)« 高分子物理» 关于高分子物理的研究方法的论述 /p p   何曼君编著的« 高分子物理» 一书的内容提要中,特别指出该书较为系统全面地介绍了高分子物理的基本理论及研究方法。表明高分子物理的基本理论及研究方法是高分子物理的基本内容。 /p p   « 高分子物理近代研究方法» 一书基于高分子物理基本原理和理论,介绍了如何测定和研究高聚物的近代研究方法。高分子物理近代研究方法很多,热分析是高分子物理近代研究方法之一。 /p p   2)高分子物理是一门理论和实验结合的精确科学 /p p   高分子物理是一门理论和实验结合的精确科学。为了有效地研究和开发高聚物新材料,常常运用高分子物理和近代研究方法(热分析)研究聚合物结构与性能和功能的关系。 /p p   3)高分子物理理论解析热分析曲线 /p p   热分析是高分子近代物理研究方法之一。热分析实验得到高聚物的热分析曲线,仅显示真理,却不证明真理。高分子物理是聚合物热分析的理论基础。只有用高分子物理理论对热分析曲线进行解析才能阐明高分子的性能与结构之间的关系。 /p p   用热分析方法研究新材料,通常步骤是:材料的热分析测试—用高分子物理理论解析热分析曲线—改进后的材料再进行热分析测试和热分析曲线解析。如此循环往复直至开发得到性能优异的新材料。当然,研发过程中辅以其它近代研究方法是必不可少的。 /p p   4)运用高分子物理和近代研究方法研发新材料 /p p   新材料的研发是建立在可靠的表征上。高分子物理在高分子科学中的地位体现在运用近代研究方法(热分析)表征高聚物的结构与性能,研究高分子结构与功能和性能之间的关系,在高分子物理指导下制备出预期的高分子材料。表征高聚物结构与性能和功能关系的近代研究方法有光谱、波谱、激光光散射、X射线、电子显微技术和热分析。热分析是表征高聚物结构、性能和功能的重要方法之一。运用高分子物理近代研究方法(热分析)研究高分子结构和性质的关系离不开高分子物理理论的指导。 /p p   由上表明:高分子物理的基本理论及研究方法是高分子物理的基本内容。高分子物理与聚合物热分析的关系是:热分析是高分子物理的近代研究方法,高分子物理是高聚物热分析的理论基础。运用高分子物理理论解析热分析曲线,关联转变与高聚物结构与性能的关系。高分子物理与热分析是相辅相佐的学科。许多学者进行两栖跨界研究。如中科院长春应化所刘振海长期从事高分子物理和热分析工作。编著了十八本热分析著作。他师从唐敖庆、冯之榴, 在高分子物理方面也很有建树。1962年,在中科院长春应化所举办的全国高分子学术论文报告会上,发表的论文“聚丁二烯吸氧动力学”评为优秀论文 在上世纪60年代初,从苏联杂志“高分子化合物”翻译的译文,有关聚丁二烯结构与性能的文章发表在« 化学通报» 上,另外,还有多篇有关高分子物理的译文发表在四川主办的一份快报上。 /p p   在上世纪50年代末60年代初,常常是利用手头现有的设备亲自动手制备线膨胀仪、应力松弛仪等,为实现自动记录,迫切需要将变量转换成电信号,这其中的关键部件就是差动变压器。刘振海最先绕制了零点低、对称性好的差动变压器,这在当年的科学报上曾有过报道。北京航天航空大学过梅丽跨界高分子物理和热分析两个领域,既教授« 高分子物理» 课程,又从事热分析,特别是DMA的实验研究。她编著了« 高分子物理» 、« 高聚物与复合材料的动态力学热分析» 的著作。 /p p   南京大学胡文兵编著了« 高分子物理» ,参加翻译出版了斯特罗伯著的高分子物理教材。他的最新研究是高分子结晶和熔融行为的Flash DSC研究。在张建军教授承办的中国化学会第四届全国热分析动力学与热动力学学术会议上发表了Flash DSC研究聚丙烯的结晶和熔融行为的论文。陆立明:1985年就读华东理工大学获得聚合物材料工学硕士,后又前往德国柏林技术大学攻读高分子物理三年。在上海市合成树脂研究所工作期间,从事聚合物开发研究,运用热分析等近代研究方法表征高分子塑料合金的特性和特征。2009年,陆立明等人编译出版热分析应用手册丛书,这套丛书汇集梅特勒-托利多公司瑞士总部和梅特勒-托利多(中国)公司科技人员的智慧而潜心编著的。有热塑性聚合物、热固性树脂、弹性体、热重-逸出气体分析、食品和药物、无机物、化学品、认证等分册。其中塑性聚合物、热固性树脂、弹性体等分册通过大量实例深入地介绍和讨论了热分析在聚合物方面的应用,并用高分子物理解析聚合物的热分析曲线。 /p p   4.用高分子物理解析高聚物热分析曲线 /p p   论述« 热分析曲线解析» 的文章初见于2006年的热分析专业会议上。十多年过去了,热分析曲线解析的现状还是像« 热分析法与药物分析» 一书中所说的那样,至今还没有一本通用的专著可查考,也没有一套完整的解析方法可借鉴,各种物质的热分析表征散见于有关学术期刊与著作中。聚合物热分析曲线解析的现状亦如此。 /p p   下面说说用高分子物理解析高聚物热分析曲线的问题。在科学研究中,实验和解析是认知学中的两个元素。用高分子物理解析高聚物热分析曲线具有探索性和研讨性。热分析曲线是热变化时物理量变化的轨迹。解析热分析曲线就是循着物理量变化的轨迹逆向追溯热变化的物理-化学归属。用高分子物理理论解析高聚物的热分析曲线,探索结构与材料功能和性能之间的关系,是热分析曲线的价值体现。用实验的真实数据作图得到热分析曲线。物质变化的现象在热分析曲线上显现是对事物本质和规律反映的一种形象,是显性信息。显性信息显示真理,却不证明真理。简单地说出曲线的变化情况,即看图说话而缺乏深度分析,它是不能揭示变化规律的。唯有用高分子物理理论对高聚物的热分析曲线进行解析,曲线才具有价值。 /p p   用高分子物理理论对热分析曲线进行解析,进行分子运动-高聚物结构-性能与加工之间的关联 解析热分析曲线时,既要解析显性信息,还要解析隐性信息,如变化的规律性、与热变化同时发生的结构变化及蕴含在曲线内的曲线(如DMA曲线中隐藏的李萨如曲线),追问曲线的内涵,诠释曲线,揭示变化的本质和规律,对曲线进行深层次的探索和关联,这就是热分析曲线的解释学。用高分子物理理论解析热分析曲线完成了“存在→价值”的转换过程。热分析曲线是存在,当热分析曲线同你的研究(需要)发生联系时,曲线便产生了价值!愿你踏上解析热分析曲线的实践活动之旅,使热分析曲线由存在转变为价值的曲线。 /p p   为了要解析高聚物的热分析曲线,热分析工作者要通晓高分子物理,要像物理学家那样思考高分子物理问题。用高分子物理理论解析热分析曲线就是将高聚物的转变与高聚物结构-性能-加工进行关联的过程。关联是一种受经验、知识、理论支配的活动,不同的人由于其具备的经验、知识、理论的背景不同,关联的深度和宽度不尽相同。 /p p   下面列举一个用高分子物理解析典型非晶态聚合物的DMA曲线实例:高分子材料黏弹性是高分子物理研究的主要内容,通常选用动态热机械分析DMA来研究高分子材料黏弹性(动态模量和力学损耗)。典型非晶态聚合物的DMA曲线(温度谱)如图所示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/949131bc-639b-4526-bf50-e274436c8e6b.jpg" title=" 典型非晶态聚合物的DMA曲线(温度谱).jpg" / /p p style=" text-align: center " 典型非晶态聚合物的DMA曲线(温度谱) /p p   由图可以看到,随温度升高,模量逐渐下降,并有若干段阶梯形转折,Tanδ在谱图上出现若干个突变的峰,模量跌落与Tanδ峰的温度范围基本对应。温度谱按模量和内耗峰可以分成几个区域,不同区域反映材料处于不同的分子运动状态。转折的区域称为转变,分主转变和次级转变。这些转变和较小的运动单元的运动状态有关,各种聚合物材料由于分子结构与聚集态结构不同,分子运动单元不同,因而各种转变所对应的温度不同。玻璃态与高弹态之间的转变为玻璃化转变,转变温度用Tg表示 高弹态与黏流态之间的转变为流动转变,转变温度用Tf表示。 /p p   玻璃化转变反映了聚合物中链段由冻结到自由运动的转变,这个转变称为主转变或α转变,这段模量急趋下降外,Tanδ急剧增大并出现极大值后再迅速下降。在玻璃态,虽然链段运动已被冻结,但是比链段小的运动单元(局部侧基、端基、极短的链节等)仍可能有一定程度的运动,并在一定的温度范围发生由冻结到相对自由的转变,所以在DMA温度谱的低温区,E’-T曲线上可能出现数个较小的台阶,同时在E”-T和Tanδ曲线上有数个较小的峰,这些转变称为次级转变,从高温到低温依次命名为β、γ、δ转变,对应的温度分别记为Tβ、Tγ、Tδ。每一种次级转变对应于哪一种运动单元,则随聚合物分子链的结构不同而不同,需根据具体情况进行分析。据文献报道,β转变常与杂链高分子中包含杂原子的部分(如聚碳酸脂主链上的-O-CO-0-、聚酰胺主链上的-CO-NH-、聚砜主链上的-SO2-)的局部运动,较大的侧基(如聚甲基丙烯酸甲酯上的侧酯基)的局部运动,主链上3个或4个以上亚甲基链的曲柄运动有关。γ转变往往与那些与主链相连体积较小的基团如α-甲基的局部内旋转有关。δ转变则与另一些侧基(如聚苯乙烯中的苯基、聚甲基丙烯酸甲酯中酯基内的甲基)的局部扭振运动有关。 /p p   当温度超过Tf时,非晶聚合物进入黏流态,储能模量和动态黏度急剧下降,Tanδ急剧上升,趋向于无穷大,熔体的动态黏度范围为10~106Pa.s。从DMA温度谱上得到的各种转变温度在聚合物材料的加工与使用中具有重要的实际意义:对非晶态热塑性塑料来说,Tg是它们的最高使用温度以及加工中模具温度的上限 Tf是它们以流动态加工成型(如注塑成型、挤出成型、吹塑成型等)时熔体稳定的下限 Tg~Tf是它们以高弹态成型(如真空吸塑成型)的温度范围。对于未硫化橡胶来说,Tf是它们与各种配合剂混合和加工成型的温度下限。此外,凡是具有强度较高或温度范围较宽的β转变的非晶态热塑性塑料,一般在Tβ~Tg的温度范围内能实现屈服冷拉,具有较好的冲击韧性,如聚碳酸脂、聚芳砜等。在Tβ以下,塑料变脆。因此,Tβ也是这类材料的韧-脆转变温度。另一方面,正是由于在Tβ~Tg温度范围内,高分子链段仍有一定程度的活动能力,所以能通过分子链段的重排而导致自由体积的进一步收缩,这正是所谓物理老化的本质。[4] /p p   以上实例说明,动态力学热分析是研究材料黏弹性的重要手段,非晶态聚合物的玻璃化转变和次级转变准确地反映了聚合物分子运动的状态,每一特定的运动单元发生“冻结”?自由转变(α、β、γ、δ)时,均会在动态力学热分析的温度谱和频率谱上出现一个模量突变的台阶和内耗峰。高分子物理从分子运动的观点出发解析非晶态聚合物的DMA曲线,揭示材料结构与材料性能之间的内在联系及基本规律。 /p p   二. 高分子物理著作 /p p   五十年代未,高分子物理学基本形成。自六十年代以来,高分子研究重点转移到高分子物理方面,并出版了很多高分子物理的著作。何平笙所著的« 新编高聚物的结构与性能» 书未的附录详细地介绍了有关高分子物理的教学参考书。本文特将此附录列于文后,供参考。并把其中几本高分子物理的著作做一简单的介绍。 /p p   1. 胡文兵 « 高分子物理» 英文版 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1aa4cea4-6b0f-494d-a8a3-5ee692a50104.jpg" title=" Polymer Physics.jpg" width=" 400" height=" 597" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 597px " / /p p style=" text-indent: 2em " A molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands. /p p   该书受欢迎程度继续位列2017斯普林格出版社电子图书的前四分之一。胡文兵教授的另一本高分子物理译作是: /p p   StroblG. 1997. ThePhysics of Polymers. 2nd Ed. Berlin:Springer /p p   这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金 译《高分子物理学》,北京:科学出版社,2009。 /p p   胡文兵教授最新研究:高分子结晶和熔融行为的Flash DSC研究。 /p p   2. 何平笙编著 « 新编高聚物的结构与性能» 科学出版社2009 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/88e02164-b40b-4d8a-855b-151089d39859.jpg" title=" 新编高聚物的机构与性能.jpg" width=" 400" height=" 506" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 506px " / /p p 前言 /p p   自中国科学技术大学1958年成立高分子化学和高分子物理系以来,由已故的钱人元院士开设的& quot 高聚物结构与性能& quot 课程已50余年了,根据钱先生讲课笔记整理出版的《高聚物的结构与性能》一书(科学出版引,1981年第二版)被许多高校选做教材。近10年来、编者不但在授课时添加了高分子物理的新成果、新发现,更重要的是对课程进行了深入的教学研究,加深了对已有体系、知识点的全新理解,深受学生好评,因而在2005年获得安徽省教学成果奖一等奖和国家级教学成果奖二等奖,“高聚物结构与性能”也被评为国家级精品课程。本书就是在上述教学研究的基础上新编而成的。 /p p   高分子科学由高分子化学、高分子物理和高分子加工三大部分组成。高分子化学主要是研究如何从小分子单体合成(聚合)得到高分子化合物——高聚物,高分子加工则是研究如何把高聚物制成实用的制品,而高分子物理则包含有以高聚为对象的全部物理内容。 /p p   作为大学本科生的课程,“高分子物理”实在难以承担这个“包含有以高聚物为对象的全部物理内容”的重任。这一方面是由于“高分子物理”目前还达不到通常物理学各分支的成熟程度,另一方面是由于仍隶属于化学大框架下的高分子专业学生也难以接受更多、更深的物理和数学知识。事实上,“高分子物理”目前还主要是讲述高聚物材料的结构与性能,以及它们之间的相互关系,因此,我们仍然采用“新编高聚物的结构与性能”作为书名。依据相对分子质量的大小,高分子化合物大致可分为低聚物和高聚物,但作为材料来使用的大多是相对分子质量很高的高聚物。低聚物主要用作黏合剂、高能燃料等,不包含在本书的范围之内。因此,全书仍然使用“高聚物”这个名称。 /p p   本课程的基本任务就是探求高聚物的结构与性能,揭示结构与性能之间的内在联系及其基本规律,以期对高聚物材料的合成、加工、测试、选材和开发提供理论依据。编者认为,高聚物结构与性能的关系有三个层次,即通过分子运动联系“分子结构与材料性能”关系、通过产品设计联系“凝聚态结构与制品性能”关系和通过凝聚态物理知识联系“电子态结构与材料功能”关系。由于历史的原因,无论是国内教材,还是国外教材大都只涉及上述的第一个结构层次,内容基本上只是“分子结构与材料性能”的关系,要详细理解第二和第三个结构层次,需要开设正规的“流变学”和“凝聚态物理”的专门课程,尽管这已经超出了本书的范围,但上述高聚物结构与性能关系三个层次的理念,已牢牢树立在编者心中,并力求在本书编写中体现出来。 /p p   值得指出的是,我国高分子物理学家以高分子链单元间的相互作用,特别是从链单元间的相互吸引在凝聚态形成过程中的作用这一国际上独创的观点出发,纵观高聚物的全部相态——高聚物溶液、非晶态、晶态和液晶态中存在的问题,开展了深入系统的研究工作、取得了若干国际前沿性的研究成果。在高分子物理领域提出了一些新概念,形成了有我国特色的高分子物理学派,还独创了全新的电磁振动塑化挤出加工方法等,编者都尽量在本书中反映这些成果。此外,本书还增添了高聚物宏观单晶体、可能的二维橡胶态等新内容,指出了不同结晶方式(先聚合、后结晶,还是先结晶、后聚合)会得到完全不同的高聚物晶体、重新考虑了Williams-Landel-Ferry(WLF)方程的意义,认为它是高聚物特有分子运动所服从的特殊温度依赖关系等,全面介绍了编者对已有体系和知识点的新理解。 /p p   如前辈所言,编书如造园,取他山之石,引他池之水,但一山一水如何排布却彰显造园者的构思。书中引用了众多国内外公开出版的教材和专著中的论述或研究成果,谨向所有作者致以深切的谢意,不及面询允肯,敬请海涵。感谢朱平平教授、杨海洋副教授对书稿所提的宝贵意见,感谢李春娥高工为本书打录和校订文稿 本书内容在中国科学技术大学高分子科学与工程系连年讲授,也在中国科学院长春应用化学研究所讲授过7次,校、所多届学生对课程内容和安排都提过不少好的建议,在此一并表示感谢。书后附录中列出了有关高分子物理详细的教材和参考书目录,以供读者查询和进一步阅读。附录中还列出了编者近十年来公开发表的三十余篇有关高分子物理教学研究论文的目录,读者可参考阅读并分享编者教学研究的心得。由于编者水平有限,书中难免存在缺漏和不足之处,敬请读者和专家不吝批评、斧正。 /p p style=" text-align: right "   何平笙 2009年4月 /p p 内容简介 /p p   本书是国家级精品课程“高聚物的结构与性能”的新编教材,是2005年“全面提升高分子物理重点课程的教学质量”国家级教学成果奖二等奖内容的全面体现。全书系统讲述高聚物的近程、远程和凝聚态结构,以及高聚物的力学、电学、光学、磁学、热学、流变和溶液性能,通过分子运动揭示“分子结构与材料性能”之间的内在联系及基本规律,更进一步提出包括“凝聚态结构与制品性能”关系和“电子态结构与材料功能”关系在内的三个层次的结构与性能关系理念,以期对高聚物材料的合成、加工、测试、选材、使用和开发提供理论依据。全书还介绍了我国学者的研究成果及编者多年教学研究的心得和对已有体系、知识点的新理解、新认识。 /p p   本书可作为高等学校理科化学类、化工、轻工纺织、塑料、纤维、橡胶、复合材料等工科材料类本科学生的教材,也可作为有关专业研究生的参考教材、对从事高聚物材料工作的有关工程技术人员和科研人员也是一本有用的参考书。 /p p   3. 何曼君 张红东 陈维孝等. « 高分子物理» 第三版 复旦大学出版社2007 /p p   是国内有代表性的高分子物理教材,为多所高校所选用。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/8d4bba6b-93c0-4f52-be05-deb5b6a543d9.jpg" title=" 高分子物理.jpg" width=" 400" height=" 519" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 519px " / /p p 序 /p p   本书自1983年出版以来,是国内高分子物理教学的首选用书,虽在1990年作了修订,到现在也达十多年了。为了反映高分子科学的飞速发展,需要更新。编者们结合多年来的教学经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新,将本书重新编写,使之更能符合当前教学和科研的需要。相信本书会得到广大教师和学生们的欢迎。当然,还会有不尽完善的地方,欢迎使用者对编者提出宝贵意见与建议。 /p p style=" text-align: right "   于同隐 /p p style=" text-align: right "   2006年10月 /p p style=" text-align: left " 1990年修订版序 /p p   高分子科学的发展,以20世纪30年代H.Staudinger建立高分子学说为开端。此后高分子的化学,特别是高分子的合成方面,有了飞跃的发展,现代的大型高分子合成材料工业,大都肇始于这一时期的研究。其中最突出的成就,是W.H.Carothers的缩合聚合,K.Ziegler和G.Natta的定向聚合,对理论和生产都是巨大的贡献。与此同时,高分子物理化学也有相应的发展,主要是研究高分子的溶液,为测定高分子的分子量莫定了基础。 /p p   60年代以来,研究重点转移到高分子物理方面,逐渐阐明了高分子结构和性质的关系,为高分子的理论和实际应用建立了新的桥梁。这一时期的著名代表是P.J.Flory,他对高分子物理化学和高分子物理都作出了很多贡献。Staudinger ,Ziegler,Natta和Flory都因此获得诺贝尔化学奖金。 /p p   本书的内容主要从分子运动的观点,来阐明高分子的结构和性能,着重在力学性质和电学性质方面,同时也兼顾到物理化学和近代的研究方法,可以供大专学校作为教材,也可供有关的高分子工作者参考。 /p p   本书由何曼君、陈维孝、董西侠编写,于同隐校订。最初以油印讲义的形式,在复旦大学试用,得到南京大学、四川大学、中国科技大学、交通大学、兰州大学、厦门大学、黑龙江大学、南开大学、华南工学院等单位有关同志的鼓励,特别是顾振军、王源身、史观一等同志提出宝贵意见,在此表示衷心的感谢。复旦大学高分子教研室的许多同志和复旦大学出版社协助本书的出版,也一并表示感谢。 /p p   由于高分子物理正处在蓬勃发展的阶段,本书内容有很多值得商讨的地方 加上编者的水平和技术上的原因,本书还存在很多错误,望读者不吝指正。 /p p style=" text-align: right "   于同隐 /p p 第三版前言 /p p   本书是为高等学校理科高分子专业高年级本科生编写的,也适用于低年级研究生和其他与高分子相关专业的学生。本书的内容涉及面较宽,阐述深入浅出,便于自学,还附有习题和详细的参考资料,也可供广大科技工作者阅读和参考。 /p p   建国初期,我国高分子方面的工作起步较晚,由于钱人元等老一辈科学家纷纷回国,在国内开创了高分子的教学和科研事业,在他们的带领下,少数高校中建立了课题小组或科研组,开始培养高分子方面的人才,并为教育事业打下扎实的基础,一批批的优秀人才脱颖而出,其中有些人已晋升为院士。 /p p   随着时代的前进、科技的进步,尤其是改革开放以来、高等教育突飞猛进,大部分商校都设有高分子专业,有的已发展成为一个系甚至一个学院,并设立了很多相关的专业,它们大都把高分子物理作为必修的课程。1983年我和陈维孝、董西侠合编的《高分子物理》一书编印出版,并在1990年作了修订,该书在国内被广泛采用,当时满足了广大师生的需求,得到了好评。此书曾获得国家教委颁发的优秀教材奖。然而,高分子物理这门学科近年来有较大的进展,理论在发展,观念在更新,国内外新的专著也很多。自从我翻阅了2005年全国高分子学术年会的论文后,更加感觉到,我们需要将这些新的内容介绍给读者。为此,本人特邀请陈维孝和董西侠两位抽出时间来和我一起在1990版教材的基础上,重新编写此书,同时还邀请了复旦大学在第一线从事教学工作的张红东教授参加本书的编写。 /p p   首先,在本书内加入“第一章概论”。使初学者对高分子物理有一初步的认识,并将相对分子质量及其分布的内容也写入这一章内 在第二章中引入了Kuhn链段的概念,并在高分子构象中介绍了末端距的概率分布函数的另一种推导方法 在第三章的高分子溶液性质中增加了de Gennes的标度概念、θ温度以下链的塌陷,以及溶液浓度和温度对高分子链尺寸的影响等 在新增加的第四章高分子多组分体系中,介绍共混聚合物和嵌段共聚物的相分离和界面 关于高分子的凝聚态分设为非晶态和晶态两章,在非晶态章中删去了与高分子成型加工课程中有重复的部分,并在其黏流态中介绍了高分子链运动的蛇行理论 原先聚合物的力学性质内容较多,现也分设为第七、第八两章,在第八章中增加了高弹性的分子理论 在第九章中除了介绍聚合物的电学性能外,还介绍了聚合物的光学性质、透气性以及高分子的表面和界面等 在本书的最后一章中,除原先介绍的近代研究方法和有关的一些仪器、它们的原理和应用实例外,还介绍了各种仪器的近代发展情况,如测相对分子质量及其分布的绝对方法——飞行时间质谱,小角中子散射、激光共聚焦显微镜、原子力显微镜等。 /p p   本书的分工是:第一章由董西侠编写,本人修改 第二章由张红东编写,本人修改 第三、四、九、十章由我和张红东合编 第五、六、七、八章由陈维孝编写,本人修改 全书由我主审并定稿。 /p p   在编写此书时,我总是怀念起老一辈科学家们对我的教导和指点,谨以此书表示对他们的敬意和怀念。在编写过程中还得到了不少专家和学生们的支持和帮助,在此表示感谢。 /p p style=" text-align: right "   何曼君 /p p style=" text-align: right "   2006平10月1日 /p p 内容提要 /p p   本书于1983年首次出版,1990年出版了修订版,曾获得过国家教委颁发的“优秀教材奖”等奖项、二十多年来一直是国内高分子物理教学的首选用书。为了反映高分子科学的飞速发展,编者们结合了多年的教学与科研经验,参考了大量的国内外新教材和有关文献,删繁就简,推陈出新、重新编写了本书,使之更能符合当前教学和科研的需要。 /p p   全书较为系统全面地介绍了高分子物理的基本理论及研究方法。共分十章,包括高分子的链结构,高分子的溶液性质,高分子的聚集态结构,高分子多组分体系,聚合物的结晶态、非晶态,聚合物的力学、电学、光学等性质,以及聚合物的分析与研究方法等等。从分子运动的观点出发,阐述高分子的性能与结构之间的关系。 /p p   本书内容涉及面较宽,阐述深入浅出,还附有详细的参考资料,适合作为高等学校高分子专业的教材某些较深入的内容可供教师参考和学有余力的学生阅读,也可供广大科技工作者和研究人员参考。 /p p   4. 过梅丽 赵得禄 主编 « 高分子物理» 北京航空航天大学 2005 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/2ff9663c-26c9-48de-97e6-13af091fd610.jpg" title=" 高分子物理2.jpg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /p p 序 /p p   处于知识爆炸时代,信息如原子裂变一样快速增长:处于改革年代,人们有更多的选择与机会。 /p p   与20世纪50年代我国高分子物理专业初创时期缺乏教材的情况不同,目前仅国内出版的《高分子物理》教材就已有多个版本。不论深浅,全都包括高聚物结构、分子运动及性能三大部分。但作为业基础课教材,各编者又自然而然地按所在专业后续课程的需要选择了具体内容,各具特色。 /p p   自我国改革开放以来,北京航空航天大学的高分子物理课程经历了较大的变更,1987年以前,与大多数工科院校一样,该课程定位为高分子材料专业的专业基础课,课堂教学约80学时,自1987年起,该校材料科学工程系在拓宽专业面的思想指导下,率先开设了全系公共专业基础课程——材料科学与工程导论。它以金属物理和高分子物理的部分内容为主,综述了金属、陶瓷和高分子材料在结构和性能上的共性与特性。与此同时,相应削减了高分子材料专业中高分子物理的教学时数。此后,随着教改的深人,不断调整教学计划。在2000年制定的教学计划中,高分子物理(54学时)与高分子化学、金属物理、电化学原理及近代测试技术等课程一起,被定位为材料科学与工程大类专业的公共基础课。 /p p   本教材就是在上述背景下,根据高分子物理在大类专业中的地位、作用和具体要求编写的。与国内大多数高分子物理教材相比,本教材的主要特点如下: /p p   普及与提高相结合。全书由基础部分和提高部分(带*号)两大模块组成。在基础部分,主要通过与金属、陶瓷材料的对比,阐明高聚物在结构、分子运动和性能方面的基本特点、内在联系及基本研究方法 在提高部分,适度引进了理论推导、研究新方法与最新进展,为有兴趣深入高分子材料领域的学生提供必要的基础知识。 /p p   紧密结合高分子材料及成型加工的实践与应用,重点放在高聚物的凝聚态结构、力学状态、高弹性、粘弹性和熔体流变性方面 除结合热塑性高分子材料以外、较多地涉及热固性树脂体系与复合材料 除结合通用高分子材料以外,较多地涉及航空航天用高分子材料 此外,适当涉及功能材料的功能性。适当结合高分子科学发展史引入概念。简化已在其他课程中涉及的基础知识和基本研究方法,如晶体结构与研究方法、相图分析、波谱分析原理与方法及一般力学性能等。 /p p   本书所涉及量的名称和单位符合国标规定,但有下列例外: /p p   聚合物的分子量:按照国标,应该用相对分子质量替换传统名称分子量。但由于聚合物的相对分子质量范围可以很宽,不像小分子物质那样有一个确定的值 对于一个具体的聚合物样品,其相对分子质量又具有多分散性,须用各种统计平均值表示,如数均相对分子质量、重均相对分子质量等 在聚合物-性能关系中,还涉及临界相对分子质量等。为简明起见,本书仍沿用分子量这一名称。 /p p   高分子溶液浓度按照国标,应该用溶液中溶质的摩尔分数表示。但在未知聚合物样品确切的平均分子量之前,无法从溶质质量计算其摩尔分数,因此,通常多以溶液中溶质的质量百分数表示浓度。本书也采用这一习惯表示法。 /p p   温度按照国标,T代表热力学温度,单位为K。但在本书引用的插图中,有相当一部分都以摄氏度为坐标,如果改为热力学温度,可能会改变曲线形状,为读者参考原文带来不便 如果用t代表摄氏温度,则又有悖于高分子物理中以T x表示各种特征温度的规则。为此,本书同时采用了T/K和T/℃这两种表示温度的方法。 /p p   本教材第2、9章由过梅丽和赵得禄(中国科学院化学研究所高分子物理和化学国家重点实验室研究员)合作编写。其他章由过梅丽编写。 /p p   在本教材编写过程中,还得到北京化工大学高分子材料系华幼卿教授的热情帮助,在此表示诚挚感谢。同时也非常感谢北京航空航天大学材料科学与工程学院高分子材料系杨继萍副教授在教材整理中的细致工作和良好建议。 /p p   编者希望本教材更适用于材料科学和工程大类专业。效果如何,尚待实践检验。诚请老前辈、同仁和学生们提出批评和建议。 /p p style=" text-align: right "   编者 /p p style=" text-align: right "   2005年3月14日 /p p 内容简介 /p p   本书系统地介绍高分子物理的基本理论,即高聚物的结构、分子运动与性能和行为之间的关系,突出高聚物区别于金属、陶瓷和其他低分子物质的特点。内容涉及力、热、电及光学等性能,但从航空航天材料科学与工程的需要出发,以力学性能为主,兼顾其他性能。本书由基础和提高(带*号)两大部分构成,以适应不同层次专业对高分子物理的教学要求。基础部分重在基本概念、基本理论及基本研究方法 提高部分涉及一些理论推导。 /p p   本书可作材料科学和工程类专业的教材,也可供高分子材料科学与工程技术人员参考。 /p p   5.过梅丽 « 高聚物与复合材料的动态力学热分析» 化工出版社2002,是一本很好的有关高聚物东台力学测试的著作。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/4208e7e3-d019-4baa-ac7f-eeab1bb30bb7.jpg" title=" 高聚物与复合材料的动态力学热分析.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p 前言 /p p   著名高分子物理学家A.Tobolsky曾说过:“如果对一种聚合物样品只允许你做一次实验,那么所做的选择应该是一个固体试样在宽阔温度范围内的动态力学试验(If you are allowed to run onlyone test on a polymer sample, the choice should be a dynamic mechanical test of a solid sample over a wide temperature range)”。 /p p   材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下做出的响应。它不同于材料的静态力学行为,后者是指材料在恒定或单调递增应力(或应变)作用下的行为。材料的疲劳行为也属动态力学行为之一,但疲劳测试通常是在较高的应力水平(例如在材料断裂强度的5O%以上)下进行的,而本书所述的动态力学分析则一般在很低的应力水平(远低于材料的屈服强度)下进行,所得到的基本性能参数是材料的动态刚度与阻尼。 /p p   测定材料在一定温度范围内动态力学性能的变化就是所谓的动态力学热分析(dynamicmechanical thermal analysis}简称DM-TA)。动态力学热分析是研究材料粘弹性的重要手段。在20世纪50~60年代,由于缺乏商品仪器,大多数实验室都用自行研制的设备进行研究。70年代以来,商品仪器一一问世,迅速更新换代。仪器的功能、控制与测试的精度、数据采集与处理的速度不断提高,在材料研究特别在高聚物与复合材料的研究中应用越来越广泛。 /p p   推动动态力学热分析技术迅速发展的根本动力无疑是该项技术在材料科学与工程中的重要意义。具体地说,主要表现在以下几方面。 /p p   ①于任何材料,不论结构材料或功能材料,力学性能总是最基本的性能。对于在振动条件下使用的材料或制品,它们的动态力学性能比静态力学性能更能反映实际使用条件下的性能。 /p p   ②聚物及其复合材料是典型的粘弹性材料。动态力学试验能同时提供材料的弹性与粘性性能。 /p p   ③态力学热分析通常只需要用很小的试样就能在宽阔的温度和/或频率范围内进行连续测试,因而可以在较短的时间内获得材料的刚度与阻尼随温度、频率和/或时间的变化。这些信息对检验原材料的质量、确定材料的加工条件与使用条件、评价材料或构件的减振特性等都具有重要的实用价值。 /p p   ④ 态力学热分析在测定高分子材料的玻璃化转变和次级转变方面,灵敏度比传统的热分析 技术如DTA、DSC之类的高得多,因而在评价材料的耐热性与耐寒性、共混高聚物的相容性与混溶性、树脂-固化剂体系的固化过程、复合材料中的界面特性和高分子的运动机理等方面具有非常重要的实用与理论意义。 /p p   目前,先进的动态力学热分析仪已拓展到能兼测材料的静态粘弹性,如蠕变、应力松弛等。 /p p   但是,与静态力学测试技术和传统的热分析技术相比,动态力学热分析技术的发展历史毕竟较短,因而人们对它的原理与应用潜力还认识不足。虽然在国内已出版过一些有关动态力学分析的译著,但一方面,其中所涉及的数学与物理理论较深,另一方面,所涉及的仪器已明显跟不上动态力学热分析仪蓬勃发展的趋势。而在有关热分析的著作中,则对动态力学分析技术的介绍一般都相对单薄。 /p p   笔者所在的北京航空航天大学高分子物理实验室,于20世纪70年代学习、仿制并改进了振簧仪和悬线式动态粘弾谱仪,从此开始了动态力学热分析技术的应用研究。80年代引进了杜邦公司的DuPont DMA 982/1090B,在多项研究工作的基础上,汇集了数十幅DMA温度谱,纳入《高分子材料热分析曲线集》,由科学出版社于1990年正式出版。同时,也开展了超声传播法测定各向异性复合材料动态刚度的研究。但是上述动态力学试验法均主要适用于刚性材料,且不便于测定材料的动态力学性能频率谱。为适应品种繁多、性能范围宽阔、试样形式多样和应用目标各异的高分子材料与复合材料的研究,本实验室于90年代引进了Rheometric Scientific DMTA Ⅳ,并在研究工作的基础上,编制了中华人民共和国航空工业标准《塑料与复合材料动态力学性能的强迫非共振型试验方法》(HB 7655~1999)。在近30年的实践中,笔者对动态力学热分析技术及其应用有了一些体会,也获得了一些经验,遂萌生了总结一下的想法,以便与同行交流共勉。 /p p   动态力学热分析是一门理论性和应用性都很强的科学与技术。但对大多数同行而言,更侧重于应用。因此,本书撰写的指导思想是实用。目的是阐明几个普遍关注的问题。 /p p   动态力学热分析能提供哪些信息? /p p   这些信息的物理意义是什么? /p p   如何处理与应用这些信息了? /p p   为此在撰文中坚持下列几项原则。避免过于深奥的理论与数学推导重点阐明物理概念。 /p p   在全面阐述自由衰减振动法、强迫共振法、强迫非共振法和声波传播法的基础上,介绍目前应用越来越广泛的强迫非共振法。紧密结合最新的ISO和ASTM标准讨论试验方法。结合典型实例(但无意作文献综述〉阐明动态力学热分析的应用性突出在新材料与新工艺中的应用。结合实践讨论动态力学热分析数据的相对性与绝对性。提供较多图谱,提高直观性与可读性。但不同于手册,不求全。原理部分,给出示意图谱实例部分,给出实测图谱。 /p p   但是,囿于本实验室的仪器类型有限,笔者只可能主要围绕所使用过的仪器进行讨论,难免有挂一漏万之嫌。所幸者,目前国际上许多先进的商品动态力学热分析仪,尤其是强迫非共振仪,尽管在结构、外形上各具特色,规范、明细上略有差异,但它们的基本原理与功能正日趋一致。因此,相信“解剖麻雀”的哲学思想定会被同行所理解与接受。 /p p   在本实验室动态力学热分析技术的建设与发展中,刘士昕先生曾做出重要贡献,虽然他目前不再从事该项工作。在本书撰写过程中,得到了他的热忱支持,并获得他的同意,引用我们曾经的合作成果,在此谨表示诚挚的感谢。 /p p   在动态力学热分析技术的应用与推广中,笔者的研究生孙永明、刘贵春、阳芳、王志、范欣愉、汪少敏和董伟等做了许多实验工作,笔者深切地体会到师生合作、教学相长的愉悦。 /p p   在本书撰写过程中,美国Rheometric Scientific有限公司及其中国总代理北京瑞特恩科技公司在提供资料、联络同行专家、养护设备等方面都给予了大力支持,在此一并感谢。 /p p   在本书图谱绘制过程中,笔者的丈夫,陈寿祜先生,以惊人的毅力和耐心,帮助笔者完成了细致繁琐的工作,笔者的感激之情难于言表。鉴于笔者水平有限,书中难免有误,诚请读者批评指正。 /p p   内容提要 /p p   本书分三角部分。介绍了动态力学热分析的基本原理、试验方法及其在高分子材料、工艺研究中的应用。在原理部分,介绍了高分子材料的粘弹性在动态力学行为上的反映、主要参数的物理意义及时-温叠加原理。在式验方法中,结合ISO、ASTM和GB试验标准,全面介绍了自由衰减振动法、强迫共振法、强迫非共振法和超声传播法的仪器与计算分析,并以强迫非共振法为重点,详细讨论了形变模式与试验模式的选择原则、可能获得的信息及影响试验结果的因素。在应用部分,列举了大量研究实例,说明动态力学热分析技术在塑料、橡胶、纤维、复合材料的评价、设计和工艺研究中的实用性,还给出了数十幅典型材料(包括部分金属材料在内)的典型动态力学性能温度谱,或频率谱,或时间谱。本书可供大专院校的学生和研究测试人员参考。 /p p   6. 朱诚身 « 聚合物结构分析» 科学出版社2010 /p p style=" text-align: left text-indent: 2em " 该书用101页的篇幅介绍了热分析方法。 /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201807/insimg/84c55c0a-7579-43f9-b5fe-e1dd74957aef.jpg" title=" 聚合物结构分析.jpg" width=" 400" height=" 506" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 506px " / /p p 第一版序 /p p   聚合物是重要的结构与功能材料。随着当代科学的发展,合成高分子材料在工农业生产、国防建设和日常生活的各个领域发挥着日益重要的作用,21世纪将成为高分子的世纪。以前那种仅停留在研究合成方法、测试其性能、改善加工技术、开发新用途的模式已远不能适应现代科学技术对聚合物材料发展的需要,而代之以通过研究合成反应与结构、结构与性能、性能与加工之间的各种关系,得出大量实验数据,从而找出内在规律,进而按照事先指定的性能进行材料设计,并提出所需的合成方法与加工条件。在此研究循环中,对聚合物结构分析提出了越来越高的要求,从而使之成为高分子科学各个领域中必不可少的研究手段。因此聚合物结构分析已成为高分子材料科学与工程学科的重要组成部分,熟练掌握高聚物结构分析技术不仅对学术研究至为重要,也将为生产实际提供必要的技术保证。 /p p   由华夏英才基金资助、郑州大学朱诚身教授主编的《聚合物结构分析》一书,正是为从事高分子材料科学与工程研究的学者、教师、学生、工程技术人员提供的一本有关聚合物分析方面的专著与参考书。本书主要内容是关于现代仪器分析技术在聚合物结构分析中的应用,以及结构分析中所涉及的理论、思维方式、实验方法等。有关材料来源于最新出版的学术专著、学术期刊中的有关论文,以及作者多年从事该领域研究的成果与经验。 /p p   与目前已出版的国内外同类著作相比,本书具有以下特点:①内容全面。本书是目前已出版著作中内容相对最完备,介绍方法最多的著作 ②操作与思维方法并重。本书一改同类著作中仅介绍方法原理与操作方法的传统,通过对各种方法发展历史、现状与展望,全面介绍其发展历程与趋势,在方法介绍的同时使读者学到系统的思维方法,使之从发展的角度掌握各种研究方法,指出了创新之路 ③应用性强。通过对各种应用实例,特别是作者亲自研究体会的介绍,使读者能更容易掌握各种结构分析方法的应用。因此本书是一本内容完整,体例新颖,富有特色的学术著作。 /p p   相信本书的出版,将对我国高分子材料科学与工程学科的发展做出积极的贡献。 /p p style=" text-align: right "   程镕时 /p p style=" text-align: right "   中国科学院 院士 /p p 第一版前言 /p p   随着高分子材料科学与工程的迅猛发展,对高聚物结构的认识愈加深人和全面的同时,对聚合物结构分析提出了更为繁重的任务,掌握现代分析技术,测定高分子各层次的结构,探讨结构与性能之间的关系,已成为每位从事高分子科学与工程工作、研究与学习的人士必备的基本功。本书正是为从事高分子物理、高分子化学、高分子材料、高分子合成、高分子加工等领域的学者、教师、学生、工程技术人员等提供的一本有关聚合物结构分析方面的专著与参考书。 /p p   本书是在作者多年来从事高分子科学研究,并吸取该领域最新研究成果的基础上集体完成的。其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由王红英、孙宏执笔 第三章核磁共振由孙宏、王红英执笔 第四章热分析由朱诚身、任志勇、何素芹执笔 第五章动态热力分析与介电分析由何索芹、朱诚身执笔 第六章气相色谱与凝胶色谱由汤克勇执笔 第七章裂解色谱与色质联用由汤克勇执笔 第八章透射电镜与扫描电镜由何家芹、朱诚身执笔 第九章广角X射线衍射和小角X射线散射由毛陆原、李铁生执笔 第十章液态与固态激光光散射由李铁生、毛陆原执笔。全书由朱诚身统稿。 /p p   本书的出版得到了华夏英才基金的资助,以及北京化工大学金日光教授、四川大学吴大诚教授的热情推荐。在此表示衷心的感谢。在编辑过程中,本书责任编辑、科学出版社杨震先生给予多方指导,杨向萍女士在立项过程中给予热情帮助 在撰写过程中郑州大学材料工程学院王经武教授、曹少魁教授对本书内容的确定提供了宝贵意见!郑州大学材料学专业硕士生陈红、张泉秋、刘京龙、历留柱在文字打印和插图绘制等方面作了许多具体工作,在此一并表示衷心地感谢。 /p p   特别要感谢中国科学院院士程镕时先生,百忙中为本书写序,给予热情推介。最后还要感谢作者的家人,在事业与写作方面给予的理解与支持。 /p p   由于作者学识、经验方面的局限,和学科方面的飞速发展,本书内容与行文方面难免存在欠妥之处,敬请读者不吝赐教。 /p p style=" text-align: right "   朱诚身 /p p 第二版前言 /p p   本书自2004年出版以来,受到读者的欢迎与支持,很快被第二次印刷、被许多学校选做教材和考研参考书,并在2007年获得河南省科技进步三等奖。由于近年来高分子科学的飞速发展,聚合物结构分析方面的研究对象日益增多,深度与广度越来越大,研究方法与手段日新月异,因此在本书库存几乎告罄之际,责任编辑杨震先生建议作者修订再版,就有了本书,即《聚合物结构分析》的第二版。 /p p   参加第一版撰写的作者,除王红英不幸英年早逝,任志勇、孙红因其他工作没有参加编写外,其余都参加了修订 刘文涛、申小清、郑学晶、周映霞、朱路也参加了修订工作。 /p p   与第一版相比,第二版主要删除了每种研究方法中一些较老、目前已不采用的研究内容与制样手段,补充了最新的研究成果和每种研究方法的最新发展趋势。每章参考文献删除了一些较早文献,补充了最新研究文献。 /p p   修订较大的章节有: /p p   第四章热分析。删除了部分由仪器本身误差造成的影响,增加了近年来受关注的操作条件影响因素 增加了若干近年来出现的新型仪器,以及新近出现的各种仪器之间的联用技术。 /p p   第八章考虑到涉及的各种分析方法,将题目由。“透射电镜与扫描电镜”改为“显微分析” 删除了透射电镜制样技术,增加了电子能谱和扫描隧道显微镜的内容。 /p p   第十章在第一版中的体例与其他章有些不一致,第二版中第九、十两章作了较大的调整:第九章题目由“广角X射线衍射和小角X射线散射”改为“广角X射线衍射” 原来小角X射线散射的内容调到第十章,该章题目由“液态与固态激光光散射”改为“小角激光散射和小角X射线散射”。 /p p   全书由朱诚身策划,其中第一章绪论由朱诚身执笔 第二章振动光谱与电子光谱由刘文涛、申小清、周映霞执笔 第三章核磁共振与顺磁共振由毛陆原、申小清、郑学晶执笔 第四章热分析由申小清、刘文涛、朱诚身执笔 第五章动态热机械分析与介电分析由何素芹、申小清、刘文涛执笔 第六章气相色谱与凝胶色谱由汤克勇、郑学晶、朱诚身执笔 第七章裂解色谱与色质联用由郑学晶、汤克勇、周映霞执笔 第八章显微分析由何素芹、刘文涛、朱诚身执笔 第九章广角X射线衍射由毛陆原、朱路、李铁生执笔 第十章 小角激光散射和小角X射线散射由李铁生、朱路、毛陆原执笔,全书由朱诚身统稿。 /p p   本书责任编辑科学出版社杨霞、周强先生在修订过程中给予多方指导,在此表示衷心地感谢。 /p p   鉴于学科方面的发展之迷,而作者见闻之携、本书桀误之处势所难免,尚请读者不吝赐教。 /p p style=" text-align: right "   朱诚身 /p p style=" text-align: right "   2009年7月16日 /p p 内容简介 /p p   本书系统介绍了现代仪器分析技术在高聚物结构分析中的应用以及结构分析中所涉及的理论、思维方式、实验方法等。内容包括:振动光谱、电子光谱、核磁共振、顺磁共振、热分析、动态热机械分析、动态介电分析、气相色谱、凝胶色谱、裂解色谱、色质联用、显微分析、广角X射线衍射、小角激光散射、小角X射线散射等方法的基本原理、仪器结构、发展历史、发展趋势,在聚合物结构分析中的应用实例及解析方法等。 /p p   本书可供高分子科学与工程专业本科生、硕士生、博士生以及从事有关高分子物理、高分子化学、高分子材料合成与加工研究和生产方面的专家、学者和工程技术人员参考。 /p p   7.现代高分子物理学(上、下册) 殷敬华 莫志深主编 科学出版社 2001 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/f9697a33-0ebd-4e17-9955-760bc0976eeb.jpg" title=" 现代高分子物理学上.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/220cdbe7-135f-46c5-b68e-0ccd89169b70.jpg" title=" 现代高分子物理学下.jpg" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p 内容简介: /p p   本书为中国科学院研究生教学丛书之一。本书全面介绍高分子物理的主要发展领域和现代高分子物理的主要研究方法和手段。全书共二十六章,分上、下两册出版,上册,主要介绍高分子物理的主要研究领域包括高分子链结构和聚集态结构、高分子的形态学、晶体结构和液晶态、高分子杂化材料、导电高分子和生物降解高分子结构特点和应用、高聚物共混体系的界面和增容及统计热力学、高聚物的物理和化学改性等。下册主要介绍现代高分子物理的主要研究方法和手段,包括原子力显微镜、X射线衍射、质谱学基础、电子显微镜、热分析、表面能谱、顺磁共振、电子自旋共振波谱、振动光谱和光学显微镜等的基本原理及其在高聚物中的应用。各章既有基础理论、基本原理深入浅出的介绍,也有翔实的应用实例。本书可作为高等院校和研究院所攻读高分子科学硕士和博士学位研究生的教学用书,也可供从事高分子科学研究和高分子材料生产的研究人员、工程技术人员参考。 /p p   8. 张俐娜 薛奇 莫志深 金熹高编著 « 高分子物理的近代研究方法» 武汉大学出版社2003 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/4e055736-d49c-48ed-a4cc-f7992a9da969.jpg" title=" 高分子物理近代研究方法.jpg" width=" 400" height=" 541" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 541px " / /p p style=" text-indent: 2em " 该书的第五章高聚物热分析和热-力分析,详细介绍了热分析在高聚物研究中的应用。DSC在高聚物研究中的应用研究结构及动态变化表征玻璃化转变和熔融行为分析多组分高聚物体系的组成研究高聚物链缠结及化学交联研究高聚物的结晶行为表征高聚物的微相结构研究高聚物共混相溶性反映共混高聚物中组分间的相互作用研究热历史和处理条件对高聚物结构的影响DMA动态力学分析在高聚物研究中的应用评价高聚物材料的使用性能研究材料结构与性能的关系表征高聚物材料的微相结构研究高聚物的相互作用表征高聚物的共混相容性研究高聚物的溶液-凝胶转变行为。 /p p   序言 /p p   高分子化学是一门迅速发展起来的基础和应用科学,并且高聚物材料及产品的迅速增长已经对世界经济产生了巨大影响。进入21世纪后高分子科学与技术将发生更大变革和突破,而且对人类生存、健康与发展起更大作用。为适应高分子科学的发展,要求在该领域的工作者对高分子物理的理论、实验方法和原理以及实际应用有足够的了解和认识。尤其对于很多高分子科学工作者而言,他们需要知道运用哪些高分子物理近代仪器和方法以及如何得到可靠的数据和信息采指导他们的科研。 /p p   同时,为了培养一大批从事高分子科学与技术的高级科技人才,必须全面提高研究生培养的质量。研究生教材建设是提高研究生培养质量的重要工作之一,为此武汉大学研究生院组织了国内一批在高分子物理前沿工作而且又具有丰富教学经验的教授和科学家以及该校青年教师编写《高分子物理近代研究方法》一书。环顾近年高分子化学与物理方面的教科书及专著,都力求包含最新成果,因而内容越来越广,深度越来越深,篇幅也越来越长。为此,这本书采用了创新的格式把研究生必修的内容用简明的语言和图表阐明,同时列举大量的最新研究成果作为实例帮助读者理解、记忆和正确运用高分子物理理论和方法。因此,这本书具有简单、明确、知识新和学习效率高的特点。我衷心祝愿新一代高分子学子能从书中受益,并为我国高分子科学发展作出重大贡献。 /p p style=" text-align: right "   中国科学院院士 /p p style=" text-align: right "   南京大学教授 /p p style=" text-align: right "   2002年5月 /p p 内容简介 /p p   本书基于高分子物理基本原理和理论,简要介绍了如何测定和研究高聚物的分子量及其分布、链构象、化学结构及其组成、结晶度及取向、熔点、玻璃化转变温度、分子运动及力学松弛、热性能、界面及表面、复合物粘接、力学性能、电学性能及生物降解性等方面的先进方法,以及光谱、波谱、色谱、激光光散射、X射线和电子显微技术。本书收集了大量具有创新思想和科学价值的实例,以指导读者更有效地应用先进仪器和方法从事高分子科学与技术的基础研究和应用开发。全书共收集约400篇参考文献,内容丰富、新颖、简明易懂,是一本较全面、深入的高分子物理教材,适合高分子化学和物理、橡胶、塑料及高聚物材料工程等方面的研究生、教师、科技人员及企业管理人员参考。 /p p   9. 刘振海 « 聚合物量热测定» 化工出版社2002 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/84786940-732a-4fb5-999e-aa7cb65e5742.jpg" title=" 聚合物量热测定.jpg" width=" 400" height=" 548" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 548px " / /p p 前言 /p p   自1963年差示扫描最热法(differential scanning calorimetry,DSC)产生以来,在高分子材料的研究和表征中这种方法一直扮演着重要角色,虽然DSC仅是诸多热分析方法中的一种,可从近年高分子热分析的发展趋向来看,DSC这种方法构成了高分子热分析的主要组成部分。近年高分子科学出现了一系列以DSC为主或仅基于此种方法的学术著作,诸如《聚合物材料的热表征》(E.A. Turi ed. Thermal Characterization of Polymeric Materials. NewYork:Academic Press, 1981 2nd Edition, 1997), 该书由第1版的970页发展到第2版的2420页《热分析基础及其在聚合物科学中的应用》(T. Hatakeyama, F. X. Quin, Thermal AnalysisFundamentals and Applications to Polymer Science, Chichester:JohnWiley & amp Sons,1994 2ndEdition, 1999) 《高分子DSC》(V. A.Bershtein, V. M. Egorov. Differential Scanning Calorimetry ofPolymers. New York:Ellis Horwood, 1994) 国际刊物Journal ofThermal Analysis and Calorimetry于2000年第1期出版专辑Advances in Thermal Characterization of polymeric Materials。 /p p   尤应注意到,就在近年(1992年)在DSC的基础上推出一种更新的热分析方法——调制式差示扫描量热法(temperaturemodulated differential scanning calorimetry, TMDSC ), 这种方法一出现,就引起了人们的极大兴趣,就1998年的不完全统计已有300多篇论文发表,并很快出版了专辑【JTherm Anal,1998,54(2)】。预计这种调制技术可用于各种热分析方法,将引起热分析技术一系列新变革。 /p p   作者长期从事高分子热分析科研、教学和学会工作,近年还各自主持了一段学术期刊工作,我们有着几乎完全相同的业务经历。我们合著有中、英文版《热分析手册》(中文版,北京化学工业出版社, 1999 英文版, Chichester: John Wiley & amp Sons, 1998)。并分别出版了《热分析导论》(北京:化学工业出版社,1991)与& quot Thermal Analysis Fundamentals and Applications to PolymerScience& quot (详见上述),主编《应用热分析》(东京:日刊工业新闻社,1996)。我们合著这本《聚合物量热测定》,连同上述著作,望能描绘出热分析一个较为完整的轮廓。 /p p   这本书系统介绍高分子DSC的基础(如热力学基础,DSC和MDSC的基本原理及其产生与发展,高分子的结晶、熔融和玻璃化转变等及由此而引申的各项应用,如相图、单体纯度的测定),及其在该领域在国内外取得的最新成就(如高分子合金的相容性、液晶的多重转变、水在聚合物中的存在形式及其相互作用、联用技术等)。热力学和量热学分别是热分析的理论与技术基础,Wunderlich教授所著由Academic Press(New York)出版的学术专著: Macromolecular Physics Vol 3 Crystal Melting (1980),ThermalAnalysis (1990)和 Thermal Characterization of Polymeric Materials(2nd Edn,Turi E D ed,1997)一书的第二章对热分析的热力学基础做了十分精辟和系统的论述 G.W.H.Hohne,W.Hemminger, H. J. Flammersheim所著Differential ScanningCalorimetry An Introduction for Practitioners ( Berlin:Springer,1996)堪称在阐述量热学(量热仪的传热过程)方面的佳作。作为国际热分析协会教育委员,我们愿将上述著作的有关内容介绍给国内的广大读者,本书基础部分——第一、三章和第二章的编写,分别参考了上述著作,以飨读者。 /p p   本书的第一、二、三章及附表由刘振海参考上述学术专著编写,第四、六、七、十章由畠山立子(T.Hatakeyama)编写,第五章由刘振海、陈学思、宋默编写,第八章由刘振海、陈学思编写,第九章由张利华编写。 /p p   借此机会,对于此书撰写和出版过程中给予我们鼎力相助的热分析与量热学杂志主编J.Simon教授、国际热分析协会教育委员会主席E.A.Turi教授、福井工业大学畠山兵衞教授、中科院长春应用化学研究所黄葆同院士、汪尔康院士、中科院长春分院黄长泉研究员、吉林大学陈欣方教授、中科院长春应用化学研究所王利祥研究员、唐涛研究员、化学工业出版社任惠敏编审、杜进祥编辑,以及对给予出版资助的国家科学技术学术著作出版基金委员会和精工电子有限公司一并表示衷心感谢。 /p p   受篇幅所限,本书侧重于原理的叙述,而对于浩如烟海的大量文献资料未能充分收入,日后如有机会出增订版,乐于做进一步的增补。也因时间仓促,本书定有许多疏漏,望读者不吝指正。 /p p style=" text-align: right "   刘振海(长春)畠山立子(东京)2001年9月 /p p 内容提要 /p p   本书系统地介绍了聚合物材料量热分析的基本原理和各类应用,着重介绍差示扫描量热法和近年出现的调制式差示扫描量热法,突出反映了该领域国内外最新成果与研究进展。全书分为两部分,共10章:第1-3章为基础部分,介绍热分析的热力学基础知识、差示扫描量热法、调制式差示扫描量热法以及结晶聚合物的熔融与结晶过程 第4~9章介绍DSC在聚合物分析方面的应用,包括在聚合物的玻璃化转变、热焓松弛、多相聚合物体系、液晶性质、水与高分子的作用、高分子合成、聚合物辐射效应等方面的研究与应用 第10章介绍热分析与其他分析方法的联用技术。 /p p   本书资料翔实,内容丰富,语言精炼,可供从事聚合物热分析、高分子材料研究及其相关专业技术人员学习参考。 /p p   近年来,国内又出版了几本新的高分子物理著作,如马德柱主编 « 聚合物结构与性能» (结构篇、性能篇)科学出版社2013。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b8d46319-7149-4855-9981-f1bc2f4732d9.jpg" title=" 聚合物结构与性能结构篇.png" width=" 400" height=" 571" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 571px " / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/8ab8609d-34fd-45b9-b521-9b7c8af3bcd2.jpg" title=" 聚合物结构与性能性能篇.png" width=" 400" height=" 519" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 519px " / /p p style=" text-indent: 2em " 华幼卿 金日光 2013,« 高分子物理» ,第四版,北京:化学工业出版社 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/01683dd6-bae7-4b66-8ee0-953320ede7f3.jpg" title=" 高分子物理3.png" width=" 400" height=" 556" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 556px " / /p p   焦 剑主编 2015 高分子物理 西北工业大学出版社 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/61354d67-bc56-4530-8714-c418d24e384f.jpg" title=" 高分子物理4.png" width=" 400" height=" 606" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 606px " / /p p   本文编撰过程中,参阅了上述高分子物理著作并作为文献引用,在此表示感谢! /p p style=" text-indent: 0em "   参考文献 /p p style=" text-indent: 0em "   [1] « 高分子结晶和熔融行为的Flash DSC 研究进展» 李照磊1,2周东山1胡文兵1 /p p style=" text-indent: 0em "   [2] 何曼君 张红东 陈维孝. « 高分子物理» 第三版 复旦大学出版社2007 /p p style=" text-indent: 0em "   [3] 张俐娜 薛奇 莫志深 金熹高编著 « 高分子物理的近代研究方法» 武汉大学出版社2003 /p p style=" text-indent: 0em "   [4] 朱诚身 « 聚合物结构分析» 科学出版社2010 /p p style=" text-indent: 0em "   [5] 何平笙编著 « 新编高聚物的结构与性能» 科学出版社2009 /p p style=" text-indent: 0em "   附录 /p p style=" text-indent: 0em "   有关高分子物理的教学参考书 (按出版时代排列) /p p style=" text-indent: 0em "   Alfrey. 1948.Mechanical Properties of High Polymers. New York:Interscience Publishers /p p style=" text-indent: 0em "   是早期有关高聚物力学性能的专著、至今仍有参考价值。 /p p style=" text-indent: 0em "   Flory P J. 1953. Principle of Polymer Chemistry. Ithaca: Cornell University Press /p p style=" text-indent: 0em "   是高分子科学的经典教材,被誉为高分子科学的”圣经”,一直到现在仍被美国众多大学选为教材,Flory也是高分子界获得诺贝尔化学奖的科学家。 /p p style=" text-indent: 0em "   钱人元,1958,高聚物的分子量测定,北京:科学出版社 /p p style=" text-indent: 0em "   是我国科学家自己的科研成果和撰写的有关专著,被翻译成英文和俄文出版,至今仍有现实的参考价值。 /p p style=" text-indent: 0em "   柯培可Ⅱ Ⅱ,1958,非晶态物质。钱人元,钱保功等译,北京:科学出版社 /p p style=" text-indent: 0em "   介绍原苏联学者的研究成果和观点,对我国有相当影响。 /p p style=" text-indent: 0em "   Mason P. Wookey N. 1958. The Rheology of Elastomers. Paris:Pergamon Press /p p style=" text-indent: 0em "   是为数不多专门讲授弹性体力学性能的著作。 /p p style=" text-indent: 0em "   徐僖,1960,高分子物化学原理。北京:化学工业出版社 /p p style=" text-indent: 0em "   为国内高校工科院校早期的高分子专业教科书,有一定影响。 /p p style=" text-indent: 0em "   Tobolsky A V. 1960. Properties and Structure of Polymers. New York: John Wiley & amp Sons lnc /p p style=" text-indent: 0em "   是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。其中有关化学应力松弛的内容仍然具有权威性。 /p p style=" text-indent: 0em "   Tanford C. 1961. Physical Chemistry of Macromolecules. New York: John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本在高分子溶液方面写得较好的教材。 /p p style=" text-indent: 0em "   卡尔金,斯洛尼姆斯基,1962。聚合物物理化学概论、郝伯林等译。北京:科学出版牡 /p p style=" text-indent: 0em "   是前苏联学者的一本著作,对我国高分子物理起步有较大影响。 /p p style=" text-indent: 0em "   Bueche F. 1962. Physical Properties of Polymers. New York: Interscience Publishers /p p style=" text-indent: 0em "   是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有相当的影响。 /p p style=" text-indent: 0em "   Nielsen L.E. 1962. Mechanical Properties of Polymers. New York: Reinhold Publishing Corporation /p p style=" text-indent: 0em "   也是一本比较经典的高分子物理教材性质的书,对我国高分子物理教学有较大的影响,有中文翻译本,即1965年冯之榴等译《高聚物的力学性能》,上海科学技术出版社。 /p p style=" text-indent: 0em "   Volkenstein M V. 1963. Configutational Statistics of Polymeric Chains. New York :Interscience /p p style=" text-indent: 0em "   是原苏联学者的专著,俄丈原书系1959年莫斯科苏联科学院出版社出版· 有很高价值, /p p style=" text-indent: 0em "   卡尔金等,1964,高分子物理进展(论文集),钱人元等译,北京:科学出版社 /p p style=" text-indent: 0em "   是一本较全面介绍原苏联学者成果的书。 /p p style=" text-indent: 0em "   高分子学会,1965,レオロジーハンドブック (流变学手册),东京:丸善株式会社 /p p style=" text-indent: 0em "   有很多早期的实验教据图。 /p p style=" text-indent: 0em "   MandelkernL. 1965. Crystallization of Polymers. New York:McGraw-Hill Book Company /p p style=" text-indent: 0em "   Andrews E. H. 1968. Fracture in Polymers. Edinburgh: Oliver & amp Boyd /p p style=" text-indent: 0em "   是有关高聚物断裂和强度的专著,因为是文革期同出的书,国内图书馆较少有收藏。 /p p style=" text-indent: 0em "   Alexander L E.1970. X-ray Diffraction Methods in Polymer Science. New York: John Wiley & amp .Sons Inc /p p style=" text-indent: 0em "   和田八三久.1971.高分子的固体物性,东京:培风馆 /p p style=" text-indent: 0em "   日本学者撰写的内容比较深的高分子物理著作。国内没有流行。 /p p style=" text-indent: 0em "   Billmeyer F W. 1971. Textbook of Polymer Science. New York,:Wiley Inierscience Inc /p p style=" text-indent: 0em "   这是一本在西方影响很大的教材,但一直没有再版, /p p style=" text-indent: 0em "   Peebols J J H. 1971. Molecular Weight Distributions in Polymers. New York,:John Wiley & amp SonsInc /p p style=" text-indent: 0em "   有不少关于聚合反应动力学统计理论的内容, /p p style=" text-indent: 0em "   Tobolsky A V, Mark H F. 1971. Polymer Science and Materials. New York,:Wiley Interscience /p p style=" text-indent: 0em "   有中文译本,即1977年托博尔斯基AV,马克HF编,聚合物科学与材料翻译译组译《聚合物科学与材料》,北京:科学出版社。 /p p style=" text-indent: 0em "   Kakudo M. Kasai N. 1972. X-ray Diffraction Methods in Polymer Science. New York: Wiley Interscience /p p style=" text-indent: 0em "   Jenkins A D. 1972. Polymer Science,A materials science handbook, 1 and 2. Amsterdam: North-Holland Publishing Company /p p style=" text-indent: 0em "   这是一本上下两册大部头著作,内容极为丰富。 /p p style=" text-indent: 0em "   TreloarL R G. 1958. The Physics of Rubber Elasticity. 3rd Ed. Oxford: University Press /p p style=" text-indent: 0em "   一本最详细介绍有关橡胶高弹性的专著。国内有中文译本,20世纪60年代的第一版就翻译成中文,第三版由王梦蛟,王培国,薛广智译,吴人洁校,北京:化学工业出版社,1982。 /p p style=" text-indent: 0em "   高分子学会,1972,高分子的分子设计3:分子设计和高分子材料的展望,东京:培风馆 /p p style=" text-indent: 0em "   论述通过分子设计来制备高分子材料的设想· 在当时有相当的影响。 /p p style=" text-indent: 0em "   小野木重治,1973,高分子材料科学,东京:诚文堂新光社 /p p style=" text-indent: 0em "   是来自日本的一本教材,也有一定影响, /p p style=" text-indent: 0em "   Kausch H H, Hassell J A, Jaffee R I. 1973. Deformation and Fracture of High Polymers,NewYork: Plenum Press /p p style=" text-indent: 0em "   内容较专一。 /p p style=" text-indent: 0em "   Haward R N. 1973. The Physics of Glassy Polymers.London: Applied Science Publishers Ltd /p p style=" text-indent: 0em "   对玻璃态高聚物的力学性能有详细介绍, /p p style=" text-indent: 0em "   晨光化工厂,1973,塑料测试,北京:燃料化学工业出版社 /p p style=" text-indent: 0em "   这是一本有管高聚物性能测试早期的著作,当时有相当的影响。 /p p style=" text-indent: 0em "   Wunderlich B. 1973. Macromolecular Physics. Vol. Ⅰ, Ⅱ,Ⅲ. New York:Academic Press /p p style=" text-indent: 0em "   三卷的大著,专门讲述高聚物的结晶行为,很有参考价值。 /p p style=" text-indent: 0em "   Samuels R J. 1974. Structured Polymer Properties. New York: Wiley Interscience /p p style=" text-indent: 0em "   莫特N等.1975.材料——微观结构及物理性能的概述.中国科学技术大学《材料》翻译组译, /p p style=" text-indent: 0em "   北京:科学出版社 /p p style=" text-indent: 0em "   该书有关“高聚物材料的本质& quot 和& #39 & #39 复合材料的本质”两章有很好的参考价值,其中Mark提出的提高高聚物性能的三角形原理有参考价值。 /p p style=" text-indent: 0em "   Arridge R G C. 1975. Mechanics of Polymers. Oxford:Clarendon Press /p p style=" text-indent: 0em "   是一本从力学观点讲述的高聚物力学性能的专著。 /p p style=" text-indent: 0em "   Tager A. 1978. Physical Chemistry of Polymers. Moscow: MIP Publisher /p p style=" text-indent: 0em "   是一本由原苏联学者撰写的高分子物理教材,用英文出版,从中可了解不少原苏联学者的科研成果。 /p p style=" text-indent: 0em "   Andrews E H. 1979. Developments in polymer Fracture-1. London: Applied Science Publishers /p p style=" text-indent: 0em "   是Andrews又一本关于高聚物断裂和强度的编著,有相当参考价值。 /p p style=" text-indent: 0em "   Tadokoro H. 1979. Structure of Crystlline Polymers. New York:John Wiley & amp . Sons Inc /p p style=" text-indent: 0em "   Blythe A R 1979. Electrical Properties of Polymers. Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   是剑桥大学& quot Cambridge Solid State Science Series& quot 系列中的一本书。 /p p style=" text-indent: 0em "   中国科学院上海有机化学研究所十二室,1980,压电高聚物,上海:上海科学技术文献出版社 /p p style=" text-indent: 0em "   Cherry B W. 1980. Polymer Surface Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   是剑桥大学”Cambridge Solid State Science Series”系列中的一本书。 /p p style=" text-indent: 0em "   Williams J G. 1980. Stress Analysis of Polymers. 2nd Ed. New York: John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本从力学观点讲述的专著,书中数学内容较深。 /p p style=" text-indent: 0em "   Ferry J D. 1980. Viscoelastic Properties of Polymers. New York:John Wiley & amp Sons Inc /p p style=" text-indent: 0em "   是一本高聚物黏弹性的专著,有很好的参考价值。 /p p style=" text-indent: 0em "   林尚安,陆耘,粱兆熙,1980,高分子化学,北京:科学出版社 /p p style=" text-indent: 0em "   由于全书既有高分子化学又有高分子物理内容,不便使用,影响不大。 /p p style=" text-indent: 0em "   施良和,1980,凝胶色谱法,北京:科学出版社 /p p style=" text-indent: 0em "   对普及凝胶色谱法有很好作用。 /p p style=" text-indent: 0em "   Bailey R T, North A M, Pethrick R A. 1981. Molecular Motion in High polymers. Oxford: Clar- /p p style=" text-indent: 0em "   endon Press /p p style=" text-indent: 0em "   Young R J. 1981. Introduction to Polymers. London: Chapman and Hall /p p style=" text-indent: 0em "   这是一本非常简明的高分子教材,其中有不少有关作者本人的研究成果,如聚双炔类宏观单晶体的结构与性能。英文也非常通顺易读。 /p p style=" text-indent: 0em "   Bassett D C. ] 981. Principles of Polymer Morphology, Cambridge: Cambridge University press /p p style=" text-indent: 0em "   是剑桥大学”Cambridge Solid State Science Series”系列中的一本书。有中文译本,即1987 /p p style=" text-indent: 0em "   年巴西特著,张国耀,梨书樨译《聚合物形态学原理》,北京:科学出版社。 /p p style=" text-indent: 0em "   潘鉴元,席世平,黄少慧.1981.高分子物理,广州:广东科技出版社 /p p style=" text-indent: 0em "   该书介绍的有关形变-温度曲线的论述仍有参考价值。 /p p style=" text-indent: 0em "   彼得· 赫得维格,1981,聚合物的介电谱,第一机械工业部桂林电器科学研究所译,北京:机械工业出版社 /p p style=" text-indent: 0em "   范克雷维伦D W.1981.聚合物的性质:性质的估算及其与化学结构的关系,许元泽,赵得禄,吴大诚译,北京:科学出版社 /p p style=" text-indent: 0em "   至今仍有参考价值。 /p p style=" text-indent: 0em "   尼尔生L E.1981,高分子和复合材料的力学性能.丁佳鼎译,北京:轻工业出版杜 /p p style=" text-indent: 0em "   赵华山,姜胶东,吴大诚等,1982,高分子物理学,北京:纺织工业出版社 /p p style=" text-indent: 0em "   是为化学纤维专业写的教材。 /p p style=" text-indent: 0em "   沈得言.1982、红外光谱法在高分子研究中的应用.北京科学出版社 /p p style=" text-indent: 0em "   是我国学者写的较早的有关高分子物理的专著。 /p p style=" text-indent: 0em "   Seanor D A. 1982. Electrical Properties of Polymers. New York: Academic Press /p p style=" text-indent: 0em "   Ward I M. 1982. Developments in Oriented Polymers. London: Applied Science Publishers /p p style=" text-indent: 0em "   Bohdanecky M, Ková rJ. 1982. Viscosity of Polymer Solutions. New York: Elsevier Scientific /p p style=" text-indent: 0em "   Burchard W, Patterson G D. 1983. Light cattering from Polymers. New York: Springer-Verlag /p p style=" text-indent: 0em "   尼尔生L E.1983,聚合物流变学。范庆荣,宋家琪译,北京:科学出版社。 /p p style=" text-indent: 0em "   WilliamsDJ.1983.Nonlinear Optical Properties of Organic and Polymeric Materials.WashingtonD. C. :American Chemical Society /p p style=" text-indent: 0em "   是一本以编著形式撰写的书。 /p p style=" text-indent: 0em "   Ward IM 1983. Mechanical Properties of Solid Polymers. 2nd Ed. New York: Wiley-Interscience /p p style=" text-indent: 0em "   这是一本Ward写的英国研究生教材,国内曾前后两次把它的第一版和第二版翻译成中文出版,即1988年沃德著,徐懋,漆宗能等译校《固体高聚物的力学性能》,第二版,北京:科学出版社。仍有相当的参考价值。 /p p style=" text-indent: 0em "   斯坦R S.1983.散射和双折射方法在高聚物织态研究中的应用,徐懋等译.北京:科学出版社 /p p style=" text-indent: 0em "   Kinloch A J, Young R J. 1983. Fracture Behavior of Polymers. London:Applied Science Publishers /p p style=" text-indent: 0em "   内容比较全面的有关高聚物断裂的专著。 /p p style=" text-indent: 0em "   北京大学化学系高分子化学教研室,1983,高分子物理实验,北京:北京大学出版社 /p p style=" text-indent: 0em "   Williams J G. 1984. Fracture Mechanics of Polymers. New York:John Wiley & amp Sons lnc /p p style=" text-indent: 0em "   塞缪尔斯R J.1984.结晶高聚物的性质,徐振森译。北京:科学出版社 /p p style=" text-indent: 0em "   Elias H G. 1984. Macromolecules I, structure and Properties. 2nd Ed. New York: Plenum Press /p p style=" text-indent: 0em "   韩CD、1985.聚合物加工流变学、徐僖,吴大诚等译,北京:科学出版社 /p p style=" text-indent: 0em "   Aklonis J. MacKnight W J. 1972. Minchel Shen, Introduction to Polymer Viscoelasticity. NewYork:Wiley-Interscience /p p style=" text-indent: 0em "   这是一本很好的有关高聚物黏弹性的入门书,1983年第二版,并由吴立衡翻译为中文,即吴立衡译,徐懋校《聚合物粘弹性引论》,北京:科学出版社,1986。可惜的是作者之一的华人科学家沈明琦英年早逝,没有能参加这第二版的写作。位沈明琦1979年在复旦大学讲课为后来出版的《高聚物的粘弹性》一书打下了基础,即于同隐,何曼君,卜海山,胡加聪,张炜编著《高聚物的粘弹牲》,上海:上海科学技术出版社,1986。 /p p style=" text-indent: 0em "   冯新德,唐敖庆,钱人元等,1984,高分子化学与物理专论,广东:中山大学出版社 /p p style=" text-indent: 0em "   其中钱人元和于同隐有关高分子凝聚态基本物理问题和玻璃化转变的章节很有参考价值。奥戈凯威斯R M.1986,热塑性塑料的性能和设计,何平笙等译,北京:科学出版社 /p p style=" text-indent: 0em "   是钱人无院士推荐翻译的有关材料性能与制品关系的专著,是高聚物结构与性能的进一步深入。 /p p style=" text-indent: 0em "   吴大诚,1985,高分子构象统计理论导引,成都:四川教育出版社 /p p style=" text-indent: 0em "   可供有关专业研究生阅读。 /p p style=" text-indent: 0em "   唐敖庆等,1985,高分子反应统计理论,北京:科学出版社 /p p style=" text-indent: 0em "   卓启疆,1986,聚合物自由体积,成郁:成都科技大学出版社 /p p style=" text-indent: 0em "   是一本专门讲述高聚物中自由体积的小册子。 /p p style=" text-indent: 0em "   钱保功,许观藩,余赋生等,1986,高聚物的转变与松弛,北京:科学出版社 /p p style=" text-indent: 0em "   是中国科学院长春应用化学研究所多年工作的总结,有大量的实验数据。 /p p style=" text-indent: 0em "   考夫曼H S,法尔西塔J J.1986,聚合物科学与工艺学引论,吴景诚,钱文藻,杨淑兰译,北京:科学出版社 /p p style=" text-indent: 0em "   郑昌仁,1986,高聚物分子量及其分布,北京:化学工业出版社 /p p style=" text-indent: 0em "   Doi M, Edwards S F. 1986. The Theory of Polymer Dynamics. Clarendon: Oxford University /p p style=" text-indent: 0em "   Press /p p style=" text-indent: 0em "   有机玻璃疲劳和断口图谱编委会.1987,有机玻璃疲劳和断口图谱,北京:科学出版社 /p p style=" text-indent: 0em "   夏炎.1987.高分子科学简明教程,北京:科学出版社 /p p style=" text-indent: 0em "   是为师范生写的教材。 /p p style=" text-indent: 0em "   拉贝克JF. 1987,高分子科学实验方法,物理原理与应用,吴世康,漆宗能等译,北京:化学工业出版社 /p p style=" text-indent: 0em "   提供大量的高分子实验,是一本高分子实验方面的权威性著作。 /p p style=" text-indent: 0em "   何家骏,1987,高分子溶液理论导论,兰州:兰州大学出版社 /p p style=" text-indent: 0em "   斯珀林L H.1987,互穿聚合物网络和有关材料,黄宏慈,欧玉春译,佟振合校、北京:科学出版社 /p p style=" text-indent: 0em "   吴大诚,1987~1989,现代高分子科学丛书,成都:四川教育出版社 /p p style=" text-indent: 0em "   共十本书,其中与高分子物理有关的是: /p p style=" text-indent: 0em "   (1)孙鑫,《高聚物中的孤子和极化子》,1987。 /p p style=" text-indent: 0em "   (2)吕锡慈,《高分子材料的强度与破坏》,1988。 /p p style=" text-indent: 0em "   (3)吴大诚,谢新光,徐建军,《高分子液晶》,1988。 /p p style=" text-indent: 0em "   (4)许元泽,(高分子结构流变学》,1988。 /p p style=" text-indent: 0em "   (5)古大治。《高分子流体动力学》,1988。 /p p style=" text-indent: 0em "   (6)江明,《高分子合金的物理化学》,1988。 /p p style=" text-indent: 0em "   (7)赵得禄,吴大诚,《高分子科学中的Monte Carlo方法》,1988。 /p p style=" text-indent: 0em "   (8)吴大诚,Hsu S L,《高分子的标度和蛇行理论》,1989。 /p p style=" text-indent: 0em "   日本纤维机械学会,纤维工学出版委员会,1988,纤维的形成、结构及性能、丁亦平译,北京:纺织工业出版社 /p p style=" text-indent: 0em "   朱永群,1988,高分子物理基本概念与问题,北京:科学出版社 /p p style=" text-indent: 0em "   是第一本有关高分子物理习题的书。 /p p style=" text-indent: 0em "   鲁丁J A.1988,聚合物科学与工程学原理,徐支祥译,北京:科学出版社 /p p style=" text-indent: 0em "   潘道成,鲍其鼎,于同隐,1988,高聚物及其共混物的力学性能,上海:上海科学技术出版社 /p p style=" text-indent: 0em "   朱善农等,1988,高分子材料的剖析,北京:科学出版社 /p p style=" text-indent: 0em "   穆腊亚马,1988,聚合物材料的动态力学分析,福特译,北京:轻工业出版社 /p p style=" text-indent: 0em "   李斌才,1989,高聚物的结构与物理性质,北京:科学出版社 /p p style=" text-indent: 0em "   周贵恩,1989,聚合物X射线衍射、合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   Campbell D, WhiteJ R 1989. Polymer Characterization: Physical Techniques. London: Chapman& amp Hall /p p style=" text-indent: 0em "   国内少有人拥有此书。 /p p style=" text-indent: 0em "   王正熙,1989,聚合物红外光谱分析和鉴定,成都:四川大学出版社 /p p style=" text-indent: 0em "   林师沛,1989,塑料加工流变学,成都:成都科技大学出版社 /p p style=" text-indent: 0em "   雀部博之,1989,导电高分子材料,曹镛,叶成,朱道本译,北京:科学出版社 /p p style=" text-indent: 0em "   克里斯坦森R M.1990,粘弹性力学引论,郝松林,老亮译,北京:科学出版社 /p p style=" text-indent: 0em "   杨挺青,1990,粘弹性力学,武汉:华中理工大学出版社 /p p style=" text-indent: 0em "   胡徳,1990,高分子物理与机械性质(上、下册),台北:渤海堂文化公司 /p p style=" text-indent: 0em "   是我国台湾学者编写的高分子物理教材,内容偏重高聚物本体的性能,不涉及凝聚态以及溶液和相对分子质量等。 /p p style=" text-indent: 0em "   Fujita H. 1990. Polymer Solutions. Amsterdam:Elsevier /p p style=" text-indent: 0em "   Schmitz K S.1990. An Introduction to Dynamic Light Scattering by Macromolecules. San Diego,Academic Press /p p style=" text-indent: 0em "   弗洛里PJ.1990,链状分子的统计力学,吴大诚,高玉书,许元泽等译,吴大诚校,成都:四川科学技术出版社 /p p style=" text-indent: 0em "   是弗洛里又一本大著,是高分予理论最重要的经典著作之一。 /p p style=" text-indent: 0em "   朱锡雄,朱国瑞,1992,高分子材料强度学,杭州:浙江大学出版社 /p p style=" text-indent: 0em "   JoachimD E.1992,Relaxation and Thermodynamics in Polymers Glass Transition. Berlin: Akademie Verlag /p p style=" text-indent: 0em "   郑武城,安连生,韩娅娟等,1993,光学塑料及其应用.北京:地质出版社 /p p style=" text-indent: 0em "   周其凤,王新久,1994,液晶高分子,北京:科学出版社 /p p style=" text-indent: 0em "   有不少作者自己的研究成果。 /p p style=" text-indent: 0em "   Grosberg A Y, Khokhlov A R. 1994. Statistical Physics of Macromolecules. Woodbury: AIP Press /p p style=" text-indent: 0em "   黄维垣,闻建勋,1994,高技术有机高分子材料进展,北京:化学工业出版社 /p p style=" text-indent: 0em "   是当年的一本进展性质的汇编。 /p p style=" text-indent: 0em "   左渠,1994,激光光散射原理及在高分子科学中的应用,郑州:河南科学技术出版社 /p p style=" text-indent: 0em "   谢缅诺维奇,赫拉莫娃,1995,聚合物物理化学手册,闫家宾,张玉昆译,北京:中国石化出版社 /p p style=" text-indent: 0em "   薛奇,1995,高分子结构研究中的光谱方法,北京:高等教育出版社 /p p style=" text-indent: 0em "   Gedde U W. 1995. Polymer Physics. London: Chapman & amp Hall /p p style=" text-indent: 0em "   叶成,习斯 J.1996,分子非线性光学的理论与实践,北京:化学工业出版社 /p p style=" text-indent: 0em "   大柳康,1996,实用高分子合金,吴忠文等译,长春:吉林科学技术出版社 /p p style=" text-indent: 0em "   周光泉,刘孝敏,1996,粘弹性理论,合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   这是一本由力学专家写的书,对数学的推导有独特之处。 /p p style=" text-indent: 0em "   吴培熙,张留成,1996,聚合物共混改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   朱善农等,1996,高分子链结构,北京:科学出版社 /p p style=" text-indent: 0em "   Doi M. 1996.Introduction to Polymer Physics. Clarendon: Oxford University Press /p p style=" text-indent: 0em "   复旦大学高分子科学系,高分子科学研究所,1996,高分子实验控术,修订版,上海:复旦大学出版社 /p p style=" text-indent: 0em "   已出第二版。 /p p style=" text-indent: 0em "   Hans-Georg E. 1997, An Introduction toPolymer Science. New York: VCH Press /p p style=" text-indent: 0em "   刘凤歧,汤心颐,1997,高分子物理,北京:高等教育出版社 /p p style=" text-indent: 0em "   2004年出了第二版。 /p p style=" text-indent: 0em "   何天白,胡汉杰,1997,海外高分子科学的新进展,北京:化学工业出版社 /p p style=" text-indent: 0em "   StroblG. 1997. ThePhysics of Polymers. 2nd Ed. Berlin:Springer /p p style=" text-indent: 0em "   这是一本近十年来有影响的高分子物理教材,Strobl本人多次来国内讲授有关他提出的高聚物结晶的理论,中文译本是斯特罗伯著,胡文兵,蒋世春,门永锋,王笃金译《高分子物理学》,北京:科学出版社,2009。 /p p style=" text-indent: 0em "   Shi L H, Zhu D B. 1997. Polymers and Organic Solids, Beijing: Science Press /p p style=" text-indent: 0em "   这是为纪念钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果,钱人元,1998,无规与有序——高分子凝聚态的基本物理问题研究,长沙:湖南科学技术出版社 /p p style=" text-indent: 0em "   是钱人元院士带领开展的国家攀登项目“高分子凝聚态的基本物理问题研究”的研究成果的通俗介绍,我国很多科学家对高分子物理的贡献都有深入浅出的论述。 /p p style=" text-indent: 0em "   蔡忠龙,冼杏娟,1997,超高模量聚乙烯纤维增强材料,北京:科学出版社 /p p style=" text-indent: 0em "   该书中有关聚乙烯热学性能的介绍很有参考价值。 /p p style=" text-indent: 0em "   邵毓芳,嵇根定,1998,高分子物理实验,南京:南京大学出版社 /p p style=" text-indent: 0em "   江明,府寿宽,1998,高分子科学的近代论题,上海:复旦大学出版社 /p p style=" text-indent: 0em "   是纪念于同隐教授和钱人元院士80寿辰而汇编的文集,由国内外著名学者介绍当今最新科技成果。 /p p style=" text-indent: 0em "   吴人洁等,1998,高聚物的表面与界面,北京:科学出版社 /p p style=" text-indent: 0em "   吴培熙,张留成,1998,聚合物共混改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   沈家瑞,贾德民,1999,聚合物共混物与合金,广州:华南理工大学出版社 /p p style=" text-indent: 0em "   托马斯EL. 1999,聚合物的结构与性能,北京:科学出版社 /p p style=" text-indent: 0em "   是一本详细介绍高分子物理近年成果的专著,适合作为进一步深造的参考书。 /p p style=" text-indent: 0em "   朱道本,王佛松,1999,有机固体,上海:上海科学技术出版社 /p p style=" text-indent: 0em "   介绍导电高聚物的专著,有许多我国科学家的研究成果。 /p p style=" text-indent: 0em "   王国全,王秀芬等,2000,聚合物改性,北京:中国轻工业出版社 /p p style=" text-indent: 0em "   梁伯润,屈凤珍等,2000,高分子物理学,北京:中国纺织出版社 /p p style=" text-indent: 0em "   是为合成纤维专门化的学生写的教材。 /p p style=" text-indent: 0em "   顾国芳,浦鸿汀,2000,聚合物流变学基础,上海:同济大学出版社 /p p style=" text-indent: 0em "   金日光,华幼卿,2000,高分子物理,第二版,北京:化学工业出版社 /p p style=" text-indent: 0em "   工科院校所用教材,2007年已出第三版。 /p p style=" text-indent: 0em "   闻建勋,2001,诺贝尔百年鉴——奇妙的软物质,上海:上海科学教育出版社 /p p style=" text-indent: 0em "   是一本有关高分子学界诺贝尔奖获得者的通俗介绍,对了解高分子科学的发展轨迹有启发。 /p p style=" text-indent: 0em "   杨玉良,胡汉杰,2001,跨世纪的高分子科学丛书——高分子物理(分册),北京:化学工业出版社 /p p style=" text-indent: 0em "   何天白,胡汉杰,2001,功能高分子与新技术,北京:化学工业出版社 /p p style=" text-indent: 0em "   平郑骅,汪长春,2001,高分子世界,上海:复旦大学出版社 /p p style=" text-indent: 0em "   是一本有关高分子科学的高级通俗读本。 /p p style=" text-indent: 0em "   Sperling L H. 2001. Introduction of Physical Polymer Science. 3rd Ed. New York: Wiley /p p style=" text-indent: 0em "   布里格,2001,聚合物表面分析,曹立礼,邓宗武译,北京:化学工业出版社 /p p style=" text-indent: 0em "   殷敬华,莫志深,2001,现代高分子物理学(上、下册),北京:科学出版社 /p p style=" text-indent: 0em "   名为研究生教材,实际上是一本很好的进展性专著。 /p p style=" text-indent: 0em "   韩哲文,张得震,杨全兴等,2001,高分子科学教程,上海:华东理工大学出版社 /p p style=" text-indent: 0em "   既有高分子化学内容也有高分子物理内容。 /p p style=" text-indent: 0em "   Bower D I. 2002. An Introduction to Polymer Physics. Cambridge: Cambridge University Press /p p style=" text-indent: 0em "   化学工业出版社2004年以”国外名校名著”系列影印出版了该书。 /p p style=" text-indent: 0em "   刘振海,2002,聚合物量热测定,北京:化学工业出版社 /p p style=" text-indent: 0em "   杨小震,2002,分子模拟与高分子材料,北京:科学出版社 /p p style=" text-indent: 0em "   附有软件光盘,很实用,其软件可利用来开设高分子物理实验。 /p p style=" text-indent: 0em "   过梅丽,2002,高聚物与复合材料的动态力学热分析,北京:化学工业出版社 /p p style=" text-indent: 0em "   是一本很好的有关高聚物动态力学测试的著作。 /p p style=" text-indent: 0em "   吴其晔,巫静安,2002,高分子材料流变学、北京:高等教育出版社 /p p style=" text-indent: 0em "   是一本详细介绍聚合物流变学的研究生教材。内容详尽,很有参考价值。 /p p style=" text-indent: 0em "   Qian R Y (钱人元),2002. Perspectives on the Macromolecular Condensed State. Singapore: World Scientific /p p style=" text-indent: 0em "   这是钱人元院士把自己在& #39 & #39 高分子凝聚态物理中若干基本问题”国家攀登项目中的成果介绍给世人的一本专著,包括很多我国科学家对高分子物理的贡献。 /p p style=" text-indent: 0em "   Colby R B. 2002. Polymer Physics. Oxford: Oxford University Press /p p style=" text-indent: 0em "   TeraokaI. 2002. Polymer Solutions: An Introduction to Physical Properties. New York: John /p p style=" text-indent: 0em "   Wiley & amp Sons Inc /p p style=" text-indent: 0em "   非常好的有关高分子溶液的专著,内容较深。 /p p style=" text-indent: 0em "   张祖德,朱平平等,2001,中国科学院一中国科学技术大学硕士研究生入学考试化学类科目考试纲要,合肥:中国科学技术大学出版社 /p p style=" text-indent: 0em "   是中国科学院各研究所和中国科大研究生必读参考书,2002第二版。 /p p style=" text-indent: 0em "   de Gennes. 1979. Scaling Concepts in Polymer Physics. Ithaca:Cornell University PressGennes /p p style=" text-indent: 0em "   Gennes是又一位高分子界获得诺贝尔奖的科学家,他把理论物理中的许多概念用在了高分子科学上,创立了高分子物理中著名的“标度理论“。该书已由吴大诚等翻译成中文、即德让 /p p style=" text-indent: 0em "   摘自« 新编高聚物的结构与性能» 何平笙编著 科学出版社 /p
  • 分析方案 | 赛默飞世尔气相色谱石化分析方案手册
    赛默飞世尔在新一代的模块化气相色谱仪的平台上推出了更完善,更具竞争力的专用仪以及定制化气相色谱方案,满足不同行业特殊样品分析用户的需求。该手册主要针对赛默飞世尔气相色谱石油化工样品分析专业方案进行介绍,针对石化行业特定的气相色谱应用需求,开发出了多种分析专用方案。点击 赛默飞世尔气相色谱石化分析方案手册 了解更多
  • 关于编辑《中国分析仪器商务手册》的征稿通知
    中国仪器仪表行业协会分析仪器分会于近日启动了《中国分析仪器商务手册》的征编工作,征稿通知如下:   关于编辑《中国分析仪器商务手册》的征稿通知   理事单位、会员单位、相关企业:   分析仪器广泛应用于工业监控、环境保护、生物化学和医疗、空间探索及军事等领域,是满足定性、定量、常量、微量以及痕量分析等特定需求分析的重要科学工具。近年来随着科技发展,智能、高端分析仪器已成为仪器仪表行业新的发展趋势,也是未来抢占尖端产品市场的主力军。   近几十年来,我国工业因过快发展、非良性竞争,加之化肥、农药、激素、添加剂的过度滥用,造成环境、大气、水体污染日趋严重的后果,粮食安全、食品安全形势十分严峻。不仅环保分析需求巨大,而冶金、制造等工业分析需求也在扩大,随着海洋安全、国防建设的紧迫需要,以及航空航天、登月工程等尖端高科技项目开发的需要,对高端分析仪器的需求日益增强。当前是实现强国梦的关键机遇期,为了及时总结、推广、应用、提升国内分析仪器的科技创新成果 为了缩短高端产品研发周期、节约巨额成本、使国际知名品牌分析仪器直接为我国现代化建设服务 为了使分析仪器开发商、生产商、代理商、销售商、原材料供应商互通信息、实现有效对接、方便采购与商务合作,十分必要把我国分析仪器创新产品和国际知名品牌结集成册推广,促进本行业快速、持续、健康发展,因此,我会决定组织行业专家共同编辑《中国分析仪器商务手册》(以下简称《手册》),《手册》分为三卷,上卷为分析仪器制造供应商 中卷为分析仪器制造商 下卷为分析仪器使用的用户。   作为本行业当务之急,对该书的出版发行则是应需而生。《手册》作为本行业的一部大型工具书,其编辑任务繁重,需要全行业的鼎力支持。为保证及时、顺利地完成编辑任务,《手册》编委会委托北京亿洋天成国际广告有限公司负责本书设计、制作、出版发行等工作,望各有关单位接到通知后,积极配合,大力支持、共同完成这项艰巨工作。   (备注:1、本书征编工作2013年11月启动,2、编辑具体要求详见附件。)   附件:征稿通知
  • Lovibond水质分析产品手册已经推出
    Lovibond水质产品的手册经过东南科仪市场编辑部的努力已经全书翻译为中文,方便中国广大用户参阅与选购产品。欢迎广大新老客户来电来函索取。与此同时,Lovibond水质产品已同步更新在东南科仪官方网站,如需了解更多信息请参阅Lovibond水质产品手册。 相关链接: 2011年6月起Lovibond授权东南科仪为其水质产品的一级代理商。 Lovibond在水质检测领域开拓研发各种不同环境及行业要求的水质分析仪器品牌COD、TOC、NH3、NO3、BOD等上百项水质快速测量仪器及专用环保药剂系列。被世界各地的客户誉为创新能力和经济实用的知名品牌,是水质产品行业的佼佼者。Lovibond水质产品适用范围广,同时lovibond的试剂可与HACH的产品通用。 免费服务热线:400-113-3003 广州:天河北路华庭路4号富力天河商务大厦1506-07(510610)电话:020-83510088(十线) 83510550 83510358传真:020-83510388 北京:海淀区学清路9号汇智大厦B1217室(100085)电话:010-62268660 62260833 62238029传真:010-62238297 上海:延安西路1358号迎龙大厦4A-1室(200052)电话:021-52586771/72/73传真:021-52586778 杭州:杭州市文二西路1号元茂大厦613室(310012) 电话:0571-88068711 88068722 传真:0571-88068733 成都:高升桥路2号瑞金广场2-6E(610041)电话:028-68597087 028-68597088传真:028-68597089 西安:陕西省西安市朱雀大街132#阳阳国际B座21106室 (710061) 电话:029-62221598 传真:029-62221599 深圳:深圳市南山区科技园电话:0755-86623748传真:0755-86623748 香港:九龙荃湾柴湾角街77-81号致利工业大厦C座16/F电话:852-25650348 传真:852-24169253 mail:dongnan@sinoinstrument.comhttp://www.sinoinstrument.com www.sinoinstrument.cn
  • 浅谈热分析技术与同步热分析仪的应用
    p span style=" color: rgb(0, 176, 240) font-size: 20px " strong 浅谈热分析技术 /strong /span /p p   热分析(Thermal Analysis),顾名思义,可以解释为以热进行分析的一种方法。 /p p   在目前热分析可以达到的温度范围内,从-150℃至1500℃(或2400℃),任何两种物质的所有物理、化学性质是不会完全相同的。因此,热分析的各种曲线具有物质“指纹图”的性质。 /p p   通俗来说,热分析是通过测定物质加热或冷却过程中物理性质(目前主要是重量和能量)的变化来研究物质性质及其变化,或者对物质进行分析鉴别的一种技术。 /p p   1977年在日本京都召开的国际热分析协会(ICTA)第七次会议上,给热分析下了如下定义:即热分析是在程序控制温度下,测量物质的物理性质与温度的关系的技术。 /p p style=" text-align: center " 数学表达式为:P=f(T) /p p   其中:P代表物质的一种物理量 T为物质温度。 /p p   所谓程序控制温度一般是指线性升温或线性降温,当然也包括恒温、循环或非线性升温、降温。也就是把温度看作是时间的函数:T=Φ(t),其中t是时间,则P=f(T或t)。 /p p span style=" color: rgb(0, 176, 240) font-size: 20px " strong 热分析的起源和发展 /strong /span /p p   1899年英国罗伯特-奥斯汀(Roberts-Austen)第一次使用了差示热电偶和参比物,大大提高了测定的灵敏度。正式发明了差热分析(DTA)技术。1915年日本东北大学本多光太郎,在分析天平的基础上研发了“热天平”即热重法(TG),后来法国人也研发了热天平技术。 /p p   1964年美国瓦特逊(Watson)和奥尼尔(O’Neill)在DTA技术的基础上发明了差示扫描量热法(DSC),美国PE公司最先生产了差示扫描量热仪,为热分析热量的定量作出了贡献。 /p p   1965年英国麦肯才(Mackinzie)和瑞德弗(Redfern)等人发起,在苏格兰亚伯丁召开了第一次国际热分析大会,并成立了国际热分析协会。 /p p span style=" font-size: 20px " strong span style=" color: rgb(0, 176, 240) " 热分析研究内容、方法及应用 /span /strong /span /p p strong 热分析方法 /strong /p p style=" text-align: left "   通过对物质加热、冷却等反应实验,热分析可得到如下研究内容: br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/90b4db0f-6c3a-4927-94b6-92d8ef1f996e.jpg" title=" 热分析研究内容.png" alt=" 热分析研究内容.png" / /p p   应用最广泛的方法是 span style=" color: rgb(255, 0, 0) " 热重法(TGA) /span 和 span style=" color: rgb(255, 0, 0) " 差热分析法(DTA) /span ,其次是 span style=" color: rgb(255, 0, 0) " 差示扫描量热法(DSC) /span ,这三者构成了热分析的三大支柱,占到热分析总应用的 span style=" color: rgb(255, 0, 0) " 75% /span 以上。 /p p   热分析只能给出试样的重量变化及吸热或放热情况,解释曲线常常是困难的,特别是对多组分试样作的热分析曲线尤其困难。目前,解释曲线最现实的办法就是把热分析与其它仪器串联或间歇联用,常用气相色谱仪、质谱仪、红外光谱仪、X射线衍射仪等对逸出气体和固体残留物进行连续的或间断的,在线的或离线的分析,从而推断出反应机理。 /p p strong 热分析仪的应用 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 568" tbody tr class=" firstRow" td width=" 568" colspan=" 5" valign=" top" style=" border-width: 1px border-style: solid border-color: windowtext padding: 0px 7px " p style=" line-height: 125% text-indent: 0em " span style=" font-family:宋体" TGA /span span style=" font-family:宋体" (热重分析仪) span & nbsp & nbsp & nbsp & nbsp DTA /span (差热分析仪) span & nbsp & nbsp & nbsp & nbsp DSC /span (示差扫描量热仪) /span /p p style=" line-height: 125% text-indent: 0em " span style=" font-family:宋体" & nbsp & nbsp & nbsp & nbsp TMA/DMA /span span style=" font-family:宋体" (热机械分析仪) span & nbsp & nbsp & nbsp & nbsp & nbsp EGA /span (复合分析联用) /span /p /td /tr tr td width=" 114" valign=" top" style=" border-right: 1px solid windowtext border-bottom: 1px solid windowtext border-left: 1px solid windowtext border-top: none padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 橡胶、高分子 /span /p p style=" line-height:125%" span style=" font-family:宋体" 塑料、油墨 /span /p p style=" line-height:125%" span style=" font-family:宋体" 纤维、涂料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 染料、粘着剂 /span /p /td td width=" 114" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 食品 /span /p p style=" line-height:125%" span style=" font-family:宋体" 生物体、液晶 /span /p p style=" line-height:125%" span style=" font-family:宋体" 油脂、肥皂 /span /p p style=" line-height:125%" span style=" font-family:宋体" 洗涤剂 /span /p /td td width=" 119" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 医药、香料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 化妆品 /span /p p style=" line-height:125%" span style=" font-family:宋体" 有机 span / /span 无机药品 /span /p p style=" line-height:125%" span style=" font-family:宋体" 病理检测 /span /p /td td width=" 108" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 电子材料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 木材、造纸 /span /p p style=" line-height:125%" span style=" font-family:宋体" 建筑材料 /span /p p style=" line-height:125%" span style=" font-family:宋体" 工业废弃物 /span /p /td td width=" 114" valign=" top" style=" border-top: none border-left: none border-bottom: 1px solid windowtext border-right: 1px solid windowtext padding: 0px 7px " p style=" line-height:125%" span style=" font-family:宋体" 冶金、矿物 /span /p p style=" line-height:125%" span style=" font-family:宋体" 玻璃、电池 /span /p p style=" line-height:125%" span style=" font-family:宋体" 陶瓷、黏土 /span /p p style=" line-height:125%" span style=" font-family:宋体" 纺织、石油 /span /p /td /tr /tbody /table p   热分析具有试样需求量少、方法灵敏、快速,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息。 /p p   热分析仪已成为我国现阶段部分行业重要的质控分析方法: /p p   ①金行业里铁合金、保护渣检验等生产前期原料控制过程中,热分析已列为控制最终产品质量的重要分析方法之一 /p p   ②在我国申报新药中,热分析已列为控制药品质量的重要分析方法之一 /p p   ③在煤炭/焦碳行业,热分析已成为测定产品品级的重要分析手段 /p p   ④陶瓷行业的主要原料检测仪器。 /p p span style=" color: rgb(0, 176, 240) font-size: 20px " strong 恒久高温综合热分析仪器简介 /strong /span /p p   HCT-4综合热分析仪是北京恒久实验设备有限公司根据国际热分析协会制定的热重分析法与差热分析法为理论标准,结合国际技术发展情况实现全部自主研发、生产,拥有自主知识产权的国内先进的热重法与差热法综合热分析仪器。该仪器具有温度高,恒温时间长,重复性高等特点。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/8fb6f84f-33a3-4142-8486-70c3f1e68ab6.jpg" title=" HCT-4综合热分析仪.jpg" alt=" HCT-4综合热分析仪.jpg" width=" 400" height=" 316" border=" 0" vspace=" 0" style=" width: 400px height: 316px " / br/ strong span 恒久HCT-4综合热分析仪 /span /strong /p p    strong 差热测量系统: /strong 采用哑铃型平板式差热电偶,它检测到的微伏级差热信号送入差热放大器进行放大。差热放大器为直流放大器,它将微伏级的差热信号放大到0-5伏,送入计算机进行测量采样。 /p p    strong 热重测量系统:采 /strong 用上皿、不等臂、吊带式天平、光电传感器,带有微分、积分校正的测量放大器,电磁式平衡线圈以及电调零线圈等。当天平因试样质量变化而出现微小倾斜时,光电传感器就产生一个相应极性的信号,送到测重放大器,测重放大器输出0-5伏信号,经过A/D转换,送入计算机进行绘图处理。 /p p    strong 温度测量系统: /strong 测温热电偶输出的热电势,先经过热电偶冷端补偿器,补偿器的热敏电阻装在天平主机内。经过冷端补偿的测温电偶热电势由温度放大器进行放大,送入计算机,计算机将自动计算出此热电势的毫伏值。 /p p   HJ热分析工具软件使用微量样品一次采集即可同步得到温度、热重和差热分析曲线,使采集曲线对应性更好,有助于分析辨别物质热效应机理。对TG曲线进行一次微分计算可得到热重微分曲线(DTG曲线),能更清楚地区分相继发生的热重变化反应,精确提供起始反应温度、最大反应速率温度和反应终止温度,方便地为反应动力学计算提供反应速率数据,精确地进行定量分析。 /p p   HCT系列热分析仪器应用范围涉及无机物、有机物、高分子化合物、冶金、地质、电器及电子用品、陶瓷、生物及医学、石油化工、轻工、纺织、农林等领域应用于物质的鉴定、热力学研究、动力学研究,结构理化性能关系的研究。广泛应用于科研所、设计院、高等院校等专业实验室、及应用在化工/安全/矿业等生产检测部门。 /p p style=" text-align: right " strong (供稿:北京恒久) /strong /p
  • 《国产好仪器(2013-2014)手册》即将发布 资料征集中……
    &ldquo 国产好仪器(2013-2014年度)&rdquo 系&ldquo 国产科学仪器腾飞行动&rdquo 的核心活动,该活动由中国仪器仪表行业协会指导,仪器信息网主办,我要测网协办。自2013年9月5日在云南腾冲启动以来,有86家有代表性的国产科学仪器企业参加本次活动,申报282台仪器 按照初审条件严格筛选,用户基础相对较好的142台国产仪器入围 按照&ldquo 用户说好才是真的好&rdquo 的原则,针对这入围142台仪器,组织、征集大量的网上、网下用户进行调研,根据用户综合打分和用户推荐数筛选出70台入选&ldquo 国产好仪器(2013-2014)&rdquo ,正在按章公示。   国产仪器推广活动即是&ldquo 国产好仪器(2013-2014)&rdquo 重要目标,更是&ldquo 国产科学仪器腾飞行动&rdquo 的重点工作任务。我们将于2014年9月20日前出版《国产好仪器(2013-2014)手册》印刷版,2014年10月出刊电子版手册 以手册宣传的形式,把入围的142台仪器和入选的仪器向政府采购部门、企业实验室以及仪器信息网广大用户进行展示并推荐,为树立国产科学仪器的口碑和形象添加助力。   为了保证手册如期出版,需要142台国产仪器入围企业提供以下材料(入围名单详见附录):   产品图片:15cm× 15cm 分辨率300像素/英寸, 数量:1张   格式:JPG、PSD、矢量图   厂商相关资料提交截止日期:9月10日   印刷出版日期:9月20日   另外,如果您希望在该手册上更加突出宣传和展示入选的仪器,可以联系销售客服,010-51654077-8023 齐先生。 附录一 2013-2014入选仪器名录(70台),部分名单还在公示中 仪器名称 所属厂商 SP-3420A气相色谱仪 北京北分瑞利分析仪器(集团)有限责任公司 UV-1801紫外/可见分光光度计 北京北分瑞利分析仪器(集团)有限责任公司 WFX-210原子吸收分光光度计 北京北分瑞利分析仪器(集团)有限责任公司 LC3000半制备梯度高效液相系统 北京创新通恒科技有限公司 GC-4000A系列气相色谱仪 北京东西分析仪器有限公司 GC-MS3100型气相色谱-质谱联用仪 北京东西分析仪器有限公司 AA-7020型原子吸收分光光度计 北京东西分析仪器有限公司 AF-7500型原子荧光光度计 北京东西分析仪器有限公司 AFS-9700全自动注射泵原子荧光光度计 北京海光仪器公司 HK-3C型台式精密酸度计 北京华科仪电力仪表研究所 HK-218实验室硅表|硅酸根分析仪 北京华科仪电力仪表研究所 FIA-6000型 全自动流动注射分析仪 北京吉天仪器有限公司 SA-10型 原子荧光形态分析仪 北京吉天仪器有限公司 AFS-9130型 全自动内置式顺序注射原子荧光光度计 北京吉天仪器有限公司 全自动比表面及孔径分析仪 北京精微高博科学技术有限公司 循环水冷却器 北京莱伯泰科仪器股份有限公司 全自动消解仪 北京莱伯泰科仪器股份有限公司 1901系列紫外可见分光光度计 北京普析通用仪器有限责任公司 TAS-990原子吸收分光光度计 北京普析通用仪器有限责任公司 全自动电位滴定仪 北京先驱威锋技术开发公司 全自动卡氏水分(水份)测定仪 北京先驱威锋技术开发公司 M5000直读光谱仪 北京盈安科技有限公司 CHEETAH 中压快速纯化制备色谱(CHEETAH MP 200) 博纳艾杰尔科技 P1201高效液相色谱仪 大连依利特分析仪器有限公司 数控型磁力搅拌器(加热&不加热) 大龙兴创实验仪器(北京)有限公司(DragonLab) Bettersize2000智能激光粒度仪 丹东百特仪器有限公司 双燃烧炉红外碳硫分析仪钢研纳克检测技术有限公司 脉冲红外热导氧氮氢分析仪 钢研纳克检测技术有限公司 火花直读光谱仪 钢研纳克检测技术有限公司 P850A 全自动旋光仪(自动校准) 海能仪器 海能K1100全自动凯氏定氮仪 海能仪器 SDLA718工业分析仪 湖南三德科技股份有限公司 湘仪H2050R台式高速冷冻离心机 湖南湘仪实验室仪器开发有限公司 手持式土壤重金属分析仪 江苏天瑞仪器股份有限公司 气相色谱质谱联用仪 江苏天瑞仪器股份有限公司X荧光测厚光谱仪 Thick 800A 江苏天瑞仪器股份有限公司 崂应2050D型 智能空气/TSP综合采样器 崂应-青岛崂山应用技术研究所 PIC-10A型离子色谱仪 青岛普仁仪器有限公司 研究级CIC-300型离子色谱仪 青岛盛瀚色谱技术有限公司 灭菌器|高压灭菌器|消毒锅-立式压力灭菌器(博迅) 上海博迅实业有限公司 双光束紫外-可见分光光度计 上海光谱仪器有限公司 原子吸收分光光度计 上海光谱仪器有限公司 高精度智能卡尔费休水分测定仪 上海禾工科学仪器有限公司 Master-S超纯水系统(标准版) 上海和泰仪器有限公司 GC9800型网络化气相色谱仪 上海科创色谱仪器有限公司 全能型薄层色谱扫描仪KH-3100型 上海科哲生化科技有限公司 752S紫外可见分光光度计 上海棱光技术有限公司 F97系列荧光分光光度计 上海棱光技术有限公司 UV-1800PC型紫外/可见分光光度计 上海美谱达仪器有限公司 MP511实验室PH计 上海三信仪表厂 过程气体质谱分析仪 上海舜宇恒平科学仪器有限公司 FA系列电子分析天平 上海舜宇恒平科学仪器有限公司 GC7980气相色谱仪 上海天美科学仪器有限公司 LC-100高效液相色谱系统 上海伍丰科学仪器有限公司 70罐超高通量密闭微波消解/萃取工作站(微波消解仪) 上海新仪微波化学科技有限公司 DDSJ-308F型电导率仪 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) ZD-2型自动电位滴定仪 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) 气相色谱仪 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) 721G/722G可见分光光度计 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) PHS-3C 型pH计 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) TOPEX全能型微波化学工作平台 上海屹尧仪器科技发展有限公司 恒温培养振荡器 上海智城分析仪器制造有限公司 UTM4000微机控制电子万能试验机 深圳三思纵横科技股份有限公司 傅立叶变换红外光谱仪 天津港东科技发展股份有限公司 荧光分光光度计 天津港东科技发展股份有限公司 CS-8800C高频红外碳硫分析 无锡市金义博仪器科技有限公司 TY-9610型光电直读光谱仪 无锡市金义博仪器科技有限公司 高频红外碳硫分析仪 无锡英之诚高速分析仪器有限公司 CS350电化学工作站/电化学测试系统 武汉科思特仪器有限公司 GC9720气相色谱仪 浙江福立分析仪器有限公司 附录二 2013-2014国产好仪器入围仪器名录(72台) 仪器名称 所属厂商 大气颗粒物监测仪 安徽蓝盾光电子股份有限公司 长光程空气质量连续自动监测系统 安徽蓝盾光电子股份有限公司 APL奥普乐MD8H专家型微波消解仪 奥谱勒仪器有限公司 WQF-510A傅立叶变换红外光谱仪 北京北分瑞利分析仪器(集团)有限责任公司 AF-640A环保/节约型双道原子荧光光谱仪 北京北分瑞利分析仪器(集团)有限责任公司 MiniSmart 掌上离心机 北京鼎昊源科技有限公司 Imaging G6电动凝胶分析系统 北京鼎昊源科技有限公司 DHS PCR-Sealer96孔板热封机 北京鼎昊源科技有限公司 TL2020高通量组织研磨仪 北京鼎昊源科技有限公司 自动凝胶染色工作站 北京鼎昊源科技有限公司 东胜龙二代ETC-811新款PCR仪 北京东胜创新生物科技有限公司 GC-4085B矿井气体多参数色谱自动分析仪 北京东西分析仪器有限公司 微机差热天平(综合热分析仪)同步热分析仪 DTA-TGA-DSC连用仪 北京恒久科学仪器厂 HK-7100A型可燃气体探测器 北京华科仪电力仪表研究所 HK-338型电导率仪 北京华科仪电力仪表研究所 APLE-2000型 全自动快速溶剂萃取仪 北京吉天仪器有限公司 GPC Cleanup 800 全自动凝胶净化系统 北京莱伯泰科仪器股份有限公司 全自动固相萃取系统 北京普立泰科仪器有限公司全自动石墨消解仪 北京普立泰科仪器有限公司 微生物比浊法测定仪 北京先驱威锋技术开发公司 抑菌圈(抗生素效价)自动测量分析仪 北京先驱威锋技术开发公司 太阳能电池QE/IPCE(量子效率)测量系统 北京卓立汉光仪器有限公司 晶芯LuxScan 10K微阵列芯片扫描仪 博奥生物有限公司生物芯片北京国家工程研究中心 甲醛测定仪 长春吉大· 小天鹅仪器有限公司 农药残留快速检测仪 长春吉大· 小天鹅仪器有限公司 水煤浆粘度计成都仪器厂 微量水分仪 成都仪器厂 氦质谱检漏仪(计算机型) 成都仪器厂 动态断口图像分析仪 钢研纳克检测技术有限公司 稀土快速鉴别仪 钢研纳克检测技术有限公司 金属原位分析仪 钢研纳克检测技术有限公司 SOX500脂肪测定仪 海能仪器 A650 全自动折光仪 海能仪器 海能TANK微波消解仪 海能仪器 海能MP430全自动熔点仪 海能仪器 在线总有机碳(TOC)分析仪 杭州泰林生物技术设备有限公司 杭州高得医疗器械有限公司 最新型微生物限度检测仪 杭州泰林生物技术设备有限公司 杭州高得医疗器械有限公司 HTY-601智能集菌仪 杭州泰林生物技术设备有限公司 杭州高得医疗器械有限公司 迅数_G6型全自动菌落分析仪 杭州迅数科技有限公司 乌氏粘度仪 智能粘度度仪 杭州中旺科技有限公司 SDS616定硫仪 湖南三德科技股份有限公司SDCHN435碳氢氮元素分析仪 湖南三德科技股份有限公司 JK9880全自动凯氏定氮仪 济南精密科学仪器仪表有限公司 Cs-Prep隔膜式防爆工业制备色谱系统 江苏汉邦科技有限公司 Mars-550过程气体质谱分析仪 聚光科技(杭州)股份有限公司 聚光SupNIR-1000便携式近红外分析仪 聚光科技(杭州)股份有限公司 OMA-3510硫磺比值仪 聚光科技(杭州)股份有限公司 LGA-4100激光在线气体分析系统(聚光科技) 聚光科技(杭州)股份有限公司 聚光SupNIR-2700系列近红外分析仪 聚光科技(杭州)股份有限公司 油气回收多参数检测仪 崂应-青岛崂山应用技术研究所 化学需氧量在线分析仪 力合科技(湖南)股份有限公司 重金属在线分析仪 力合科技(湖南)股份有限公司 氨氮在线分析仪(光度法) 力合科技(湖南)股份有限公司 浮游菌采样器 青岛众瑞智能仪器有限公司 Reeko CEi-SP20 毛细管电泳仪 睿科仪器(厦门)有限公司 生物安全柜-IIA2安全柜(博迅) 上海博迅实业有限公司PQ001|| 核磁共振分析仪 上海纽迈电子科技有限公司 密闭式智能微波消解/萃取仪 上海新拓分析仪器科技有限公司 二氧化碳培养箱(红外传感器)-专业级细胞培养 上海一恒科学仪器有限公司 液相色谱仪 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) 970CRT型荧光分光光度计 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) 原子吸收分光光度计 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) DZB-718型便携式多参数分析仪 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) JPSJ-605F型溶解氧仪 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) 自动阿贝折射仪(恒温) 上海仪电科学仪器股份有限公司(原上海精密科学仪器有限公司) 机械式高温蠕变持久试验机 深圳三思纵横科技股份有限公司 LumiFox 8000在线发光细菌毒性监测系统 深圳市朗石生物仪器有限公司 NanoTek 2000便携式重金属测定仪 深圳市朗石生物仪器有限公司 全自动多用吸附仪 天津市先权工贸发展有限公司 UV-4802/UV-4802S双光束扫描型紫外可见分光光度计大屏幕(LCD显示) 尤尼柯(上海)仪器有限公司 ZZW水质多参数现场测试仪 郑州沃特测试技术有限公司TR-Ⅲ系列烟气在线分析仪 中科天融(北京)科技有限公司 国产好仪器项目组 2014年9月4日 010-51654077-8037
  • 高胜利:热分析检测技术与相图构筑
    p    strong 仪器信息网讯 /strong  热分析检测技术广泛应用于材料物性的测定。现代的热分析检测技术指在程序控温下,测量物质的物理性质随温度变化的一类技术。通过检测样品本身的热物理性质随温度或时间的变化,来研究物质的分子结构、聚集态结构、分子运动的变化等。热物理性质主要指的是温度和热焓、质量、尺寸、力学特性和电磁学的变化。 /p p   陕西师范大学刘志宏通过对TG-DTA曲线的研究,发现了一种发光材料的热转化法制备。传统的高温固相法,能以ZnO、H3BO3、Eu2O3为原料,在900℃条件下,生成ZnB2O4:Eu3+。但通过对2ZnO· 3B2O3· 7H2O的TG-DTA曲线研究,发现在700℃条件下,2ZnO· 3B2O3· 7H2O可以转化为ZnB4O7:Eu3+,而在900℃条件下又可以转变为ZnB2O4:Eu3+。研究发现,TG没有失重,用热水洗涤除去B2O3后,由这种热转化法得到的ZnB2O4:Eu3+材料具有较好的分散性和较光滑的表面以及较高的纯度。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 274px " src=" https://img1.17img.cn/17img/images/201905/uepic/38835347-2c7b-4c48-8b9c-73b0291e3e9d.jpg" title=" 高温固相法(左)和热转化法(右).jpg" alt=" 高温固相法(左)和热转化法(右).jpg" width=" 600" height=" 274" border=" 0" vspace=" 0" / /p p style=" text-align: center " 高温固相法(左)和热转化法(右) br/ /p p   DSC技术可应用于燃烧催化剂的筛选。西北大学谢钢对不同组分的燃烧催化剂进行了DSC测试,根据DSC曲线峰位置的变化情况,找出了最佳催化效果的燃烧催化剂组分。 /p p style=" text-align: center "    img style=" max-width: 100% max-height: 100% width: 400px height: 311px " src=" https://img1.17img.cn/17img/images/201905/uepic/1cbb0075-aacc-41e8-9593-7dc3cfaf64e1.jpg" title=" 燃烧催化剂的DSC测试曲线.jpg" alt=" 燃烧催化剂的DSC测试曲线.jpg" width=" 400" height=" 311" border=" 0" vspace=" 0" / /p p style=" text-align: center "   燃烧催化剂的DSC测试曲线 /p p   热分析技术除了对物质转化的研究,还可以用于相图的构筑。 /p p   相图是指采用的热力学变量不同构成不同的图。狭义相图是用来表示相平衡系统的组成与一些参数(如温度、压力)之间关系的一种图。它在物理化学、矿物学和材料科学中具有很重要的地位。广义相图是在给定条件下体系中各相之间建立平衡后热力学变量强度变量的轨迹的集合表达,相图表达的是平衡态,严格说是相平衡图。 /p p   相图是用来表示材料相的状态和温度及成分关系的综合图形,其所表示的相的状态是平衡状态。对于多相体系,各相间的相互转化(新相的形成、旧相的消失)与温度、压力、组成有关。根据实验数据可以绘制出表示对应的相图,从中可以直观看出多相体系中各种聚集状态和它们所处的条件(温度、压力、组成)。 /p p   因此,相图是表达混合材料性质的一种很简便的方式。山东农业大学兰孝征小组在J. Phys. Chem. C上报道了研究工作“Size-Dependent Phase Behavior of the Hexadecane-Octadecane System Confined in Nanoporous Glass”。兰孝征采用差示扫描量热法和温度相关粉末X射线衍射研究了十六烷-十八烷 (n-C16H34-C18H38,C16-C18) 体系在块体和限制在受控多孔玻璃 (CPG) 中的固液相行为,并绘制出了固-液相图。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 400px height: 299px " src=" https://img1.17img.cn/17img/images/201905/uepic/c22f06d7-54d0-4269-9dd3-fbd94a3aadff.jpg" title=" C16-C18体系的固-液相图.jpg" alt=" C16-C18体系的固-液相图.jpg" width=" 400" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center "   C16-C18体系的固-液相图 /p p   而之后在RSC Advances上报道的“Polymorphism of a hexadecane–heptadecane binary system in nanopores”工作研究了十六烷-十七烷 (n-C16H34-C17H36、C16-C17) 二元体系在纳米孔中的多态性。通过差示扫描量热曲线结果分析,发现相转变温度随孔径减小而降低,固-固相转变出现明显的削弱甚至消失。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 320px " src=" https://img1.17img.cn/17img/images/201905/uepic/f637529e-45ff-43b8-84f4-2ef2144269bc.jpg" title=" 不同组分十六烷-十七烷体系的DSC曲线.jpg" alt=" 不同组分十六烷-十七烷体系的DSC曲线.jpg" width=" 600" height=" 320" border=" 0" vspace=" 0" / /p p style=" text-align: center "   不同组分十六烷-十七烷体系的DSC曲线 /p p   河北师范大学武克忠在“相变贮热材料四氯合钴酸铵共析物的制备和热性能”中,通过研究不同C10Co质量分数的C10Co-C18Co的DSC曲线,克服盲目性与经验参半阶段,达到能设计材料,找出相变温度T范围在2.13到141.12J/g之间。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 304px " src=" https://img1.17img.cn/17img/images/201905/uepic/86869e56-11da-4e5f-9909-8383c0815c46.jpg" title=" 不同C10Co质量分数的C10Co-C18Co的DSC曲线(左)和相变相图(右.png" alt=" 不同C10Co质量分数的C10Co-C18Co的DSC曲线(左)和相变相图(右.png" width=" 600" height=" 304" border=" 0" vspace=" 0" / /p p style=" text-align: center "   不同C10Co质量分数的C10Co-C18Co的DSC曲线(左)和相变相图(右) /p p   武克忠课题组发表的其它二元体系还有C10Zn-C12Zn, C10Zn-C16Zn, C12Zn-C16Zn, C12Zn-C18Zn, C10Co-C16Co, C12Co-C16Co, C10Mn-C14Mn 和C12Mn-C16Mn等。 /p p strong 参考文献 /strong /p p Li Ping Wang, Qi Feng Li, Chao Wang, and Xiao Zheng Lan. Size-Dependent Phase Behavior of the Hexadecane–Octadecane System Confined in Nanoporous Glass.& nbsp J. Phys. Chem. C, 118(31), 18177-18186 /p p Jian Suia, Shi Qi Zhanga, Min Zhaia, Fang Tiana, Jian Zhangb and Xiao Zheng Lan. Polymorphism of a hexadecane–heptadecane binary system in nanopores. RSC Adv., 7, 10737-10747 /p p 武克忠,孙晓龙,陈磊,阮北. 相变贮热材料四氯合钴酸铵共析物的制备和热性能[J].& nbsp 物理化学学报, 2015,31(7):1260-1264 /p p Li-jun Qiao, Xia Wang, Zhi-Hong Liu. A series of Eu3+ doped Zn[B3O3(OH)5]· H2O/ZnB4O7/ZnB2O4 phosphors: Facile preparation and photoluminescence properties. Mater. Res. Bull., 70, 75-81. /p p 崔成梅,雷鸽娟,李娜,耿艳敏,谢钢,陈三平. 石榴状Bi@C中空纳米复合材料的合成及性能研究 《中国化学会第29届学术年会摘要集——第33分会:纳米材料合成与组装》[C].,2014. /p p 致谢:本文由西北大学教授高胜利所提供相关资料经编辑整理而成,特此致谢! /p
  • 药物热分析讲座 第四部分:全自动软件流程 – 热分析数据分析的有力助手
    药物热分析讲座第四部分:全自动软件流程 – 热分析数据分析的有力助手率耐驰热分析学苑 No.16课程描述分析仪器的应用过程中,软件的作用越来越重要。对于分析软件,基本的要求是直观、操作简便、分析结果可靠。在热分析行业,耐驰公司提供的AutoEvaluation 和Identify毫无疑问是里程碑式的软件工具。它们提供的自动分析、自动识别和检索功能是业界绝无仅有的。对于DSC和TGA用户来说,这些工具不但节省时间,而且极大地减少了人为因素的干扰,使分析结果更为可靠。AutoEvaluation是业界第一个自动分析软件。它可以自动检测并分析热效应,无需人工干涉。例如可以使用此功能分析包含多个吸热、放热峰的DSC曲线。Identify是一个图谱检索和数据库系统。使用者通过几次鼠标点击就可以完成数据库检索。目前系统标配的数据库中包含了1200多条参考曲线,其中也包括了药物和有机物的数据。而且,Identify也可用于质量控制。本次课程将介绍如何使用这些软件工具,或者说NETZSCH的软件系统如何能帮助使用者提高日常测量的效率及可靠性。课程安排时间 2018年12月13日,星期四,10:00-11:00 上午,北京时间授课语言 中文设备软件 台式机、笔记本:在初次点击链接进入会议室时,链接会自动引导安装Go to Webinar软 件,并加入会议; 手机、平板电脑:需事先下载安装Go to Webinar客户端软件,后输入会议ID加入。
  • 耐驰热分析技术在电池检测与电极材料研究中的应用
    温度对于锂离子电池的稳定性和安全性有较大的影响,因而热分析表征在锂电研究中具有重要意义。在热分析仪器领域,耐驰拥有60余年的应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质/热红联用,都能提供一系列具有高精度及高稳定性的仪器,高温领域可达2800℃,低温可达-180℃。仪器信息网整理了2020年耐驰热分析技术在锂电研究中的最新应用。  点击报告题目,即可进入视频页面进行观看。报告题目主讲人锂电行业热分析解决方案介绍耐驰科学仪器商贸(上海)有限公司应用支持经理 王荣电极材料中碳含量的综合热质联用分析德国耐驰仪器制造有限公司 市场与应用总监 曾智强
  • 热分析领域的重大自主原创技术变革:矢量热分析的发展、应用与未来
    摘要:热分析应用于物质热物理变化和反应过程的检测已历经两百余年,期间包括联用技术的各类硬件不断更新、升级、换代,其主要目标在于更科学分析反应过程的动态特征。然而,面对实际复杂反应过程时,基于物质总包变化的热分析方法仍以各类单纯的、主观经验性数学手段为主,尚缺乏具有准确物理内涵的理论和方法体系。北京科技大学和中国科学院工程热物理所的研究人员经过十余年的磨砺,提出基于摩尔计量的矢量化逻辑分析反应过程,构建了多参数高维检测表征信号与(复杂)反应本征信息之间的矢量化方程,形成了高度自洽的解析算法和完整的矢量热分析(vector Thermal Analysis)理论框架,既为复杂反应过程的检测分析提供了科学的研究范式,更从根本原理上支撑国产热分析仪器发展打破国外技术壁垒,并实现未来的技术引领。近日,北京科技大学李荣斌、中国科学院工程热物理研究所夏红德等人的研究成果以“Insight into mechanisms behind complex reactions by high-dimensional vectorized dynamic analysis”为题发表在了《Fuel》上。研究人员构建了全新的矢量化热分析(英文简称vTA® )理论框架、方程方法,突破了传统热分析在面向复杂反应过程分析中固有局限,如总包信号单纯数学处理导致物理内涵缺失、易引入人为主观误差、分析结果与反应特征无严格物理对应关系等,这一理论和方法推动了反应热分析领域的革命性进展.1、热分析技术和分析方法的发展自1780年英国人Higgins首次使用天平测量石灰加热过程中的重量变化后,1786年英国人Wedgnood绘制出第一条热重曲线,至1915年日本人本多光太郎提出了“热天平”概念并制作了首台热天平,即热重法(Thermogravimetric Analysis),热重分析仪逐渐迈入商业化阶段。1887年法国人Le Chatelier首次使用热电偶测温的方法研究了粘土矿物在升温过程中热性质的变化,随后1899年英国人Rober和Austen采用了差示热电偶和参比物的方法,使测定的灵敏度得到大幅提高,自此差热分析技术(Differential Thermal Analysis)开始得到商业化发展;1964年在美国人Watson和O’Neill提出“差示扫描量热”(Differential Scanning Calorimetry)概念基础上,美国PE公司首先研制出差示扫描量热仪。20世纪中后期,热分析联用技术、以及电子技术、传感器技术、计算机技术的迅速发展,使热分析应用领域不断扩大,在检测精度、灵敏度等方面也得到大幅度提高,应用前景更加广泛。现在热分析仪器以及和热分析相关的技术等已广泛应用于物理化学、能源、化工、冶金、医药、生物、航天、军工、材料等领域,形成了一门独立的学科。图1 热分析发展过程与热分析仪器相对应的热分析方法也得到逐步发展。热重仪检测的固(液)相全部质量随温度(或时间)的变化为总包信息,以“失重台阶法”、“高斯分峰法”或“极值法”等纯数学手段处理为主,适宜于简单反应或单一物质变化过程检测,如碳酸钙热分解反应。然而对于稍加复杂的混合体系,数据解析和辨识反应就存在困难,如“碳酸钙+碳粉”混合物的氧化热解过程。差热分析仪或差示扫描量热仪检测给出总包能量随温度(或时间)的关系,除上述纯数学处理手段外,1992年美国TA公司发明的调制控温技术将总热流信号分解为可逆和不可逆热流成分;2009年瑞士梅特勒托利多发明了随机多频调制量热技术(TOPEM® )进一步区分了潜热流和显热流,适用于相变储热材料的研发改进。热分析方法由低维信息向高维发展,最直接的手段就是通过联用技术,如TG-DTA/DSC、TG-MS联用等,以满足更加复杂的物质变化或反应过程(如多相态、多物质组分和多反应共存的反应体系)的检测分析。中国科学院工程热物理所夏红德和北京科技大学李荣斌等研究人员提出了基于质谱的等效特征图谱法(ECSA® ),彻底解决了质谱多输入多输出信息非线性映射和反应-电离重排同步耦合(这一难题并不能简单依靠高分辨力质谱解决)两大难题,实现了气相物质实时流率的解析,在国内外同行中应得了十分良好的声誉(DOI: 10.1016/j.tca.2014.12.019 10.1016/j.aca.2021.339412 10.14077/j.issn.1007-7812.202209008)。实际上,这一技术为TG-MS等联用技术向高维数据解析和全信息矢量化解析鉴定了坚实的根基。矢志不渝、守正创新。北京科技大学李荣斌和中国科学院工程热物理所夏红德深入探索热反应过程的物理本质,近期构建了一套面向复杂反应过程的“矢量热分析方法”,创新地以矢量化思维、基于摩尔计量开展反应过程热分析,建立多参数高维检测信号与(复杂)反应本征信息之间全数据链封闭的矢量化方程,并形成高度自洽的解析算法和完整的高维动态分析理论框架;突破了传统热分析在面向复杂反应过程分析中的固有局限,打破技术壁垒,推动反应热分析的革命性发展。2、矢量热分析理论和方法体系从理论层面分析,反应是严格遵循化学计量关系下的物质结构变化过程,在反应和物质空间形成了两组矢量发展轨迹;而面向反应过程的热分析(及联用)技术的表观检测信息正好从物质与能量不同侧面映射了反应空间与物质空间的动态变化。矢量热分析则主要构建表观检测信号、物质实时变化速率和反应执行速率本征信息三组矢量之间的映射关系,建立高度自洽的解析算法,实现反应过程的准确辨识和精准定量。正如矢量热分析理论给出的物质与能量层面的关系式,其中物质组分层面的各类关系式为线性关系,而能量层面的矢量热力学方程则为典型的非线性关系组合,关系式中既包含物质(空间)的焓与反应(空间)热,也包含反应执行速率与执行量。普遍适用的热重技术中DTG(t)曲线映射了反应体系内固液相总包质量的变化速率,属于物质空间与反应空间的一维线性矢量映射关系,其数学表达式为公式1,而TG(t)为其积分形式。热分析中的逸出气体检测若采用质谱联用技术,并结合等效特征图谱法解析全气相组分摩尔产率,则可构建物质空间摩尔绝对参数与反应空间的高维线性矢量映射关系,其矢量表达式为公式2。式中为化学计量关系矩阵、为不同反应在t时刻的摩尔执行速率、为物质的分子量对角矩阵,为物质相态矩阵、为全1的求和列向量。 (1) (2)差示扫描量热与差热的表观信息体现了反应体系能量层面的一维总包信息,其不仅包含与反应空间中反应执行速率的反应热,还包含物质空间中物质变化产生的焓差,更为重要的是反应执行速率本身及其积分项同时影响了物质焓差(即基尔霍夫热流),由此造成DSC(t)与DTA(t)信息与反应空间的非线性映射,其中DSC(t)非线性映射关系如式3a所示,DTA(t)则如式3b所示。式中为不同物质比热容组成列向量、不同反应的单位放热量列向量、为标定后的换热系数(DOI: 10.1016/j.ctta.2022.100040)。 (3a) (3b)上述1-3式从反应空间的不同投影角度给出了反应执行速率矢量与表观信息的映射关系,这也是以反应为研究对象的矢量热分析理论正问题。反之,同样由上述公式反演分析反应执行速率,并辨识反应身份与确认化学计量关系度量矩阵,则为矢量热分析理论反问题。此类正反问题的核心都是基于上述反应本征信息与表观信息的矢量化映射关系。矢量热分析理论反问题的直接求解不仅需要依赖于摩尔计量,特别是2式中气相组分摩尔产率的绝对参数检测,而非传统EGA手段的相对参数检测,如气相组分浓度;还需要利用线性关系与非线性关系中的内在属性。面向反应过程的矢量热分析技术主要原理和逻辑内涵框架如图2所示。图2 反应过程热分析的矢量化逻辑内涵(DOI: 10.1016/j.fuel.2024.132785)3、矢量热分析的成功应用&bull 应用实例1:锅炉飞灰可燃碳高精度检测矢量热分析方法适用于未知复杂混合物的检测分析。例如,针对锅炉飞灰中可燃碳含量的检测,如图3所示,由于飞灰中成分复杂,包含可燃碳、各类碳酸盐以及不燃物质。基于C+O2→CO2反应矢量关系执行量的确定,则可给出可燃碳的高精度、高可靠性的检测方法,与传统的烧蚀法、元素分析法以及间接光谱法等相比,准确度提高了2-3个数量级,并适应各类复杂成分、宽范围含量的可燃碳成分分析,且检测方法的可靠性极高。(DOI: 10.1016/j.fuel.2019.116849)图3 锅炉飞灰可燃碳的高精度检测&bull 应用实例2:CaS氧化反应过程实时辨识和定量分析基于矢量热分析求解获得物质实时流率比值确定化学计量关系,实现反应过程的辨识和确定反应执行速率。如图4所示,对于CaS和CO2反应过程,利用矢量热分析方法可解析获得CO2、SO2、CO的实时摩尔变化率;将CO2与SO2、CO的每一时刻摩尔变化率彼此相除,可知在反应期间气体组分实时摩尔比值呈现出非常好一致性,分别稳定于整数1和3附近,此结果说明反应全过程化学计量关系明确,为CaS+CO2→CaO+SO2+3CO,且无其它二次反应,也验证了化学计量关系与反应执行进程无关。(DOI: 10.1016/j.aca.2021.339412)(a)反应质量变化率堆积图(b)气体组分实时摩尔比图4 CaS与CO2反应的物质摩尔流率计算与反应身份辨识&bull 应用实例3:工业固废铝灰热处理中复杂反应拆解及多重质量守恒定量“氯盐”挥发矢量热分析方法原理内涵质量守恒约束,并且质量守恒不仅存在于固液气等不同相态物料间,还存在于物质组分层面和不同元素层面。应用矢量热分析解析复杂反应过程机理后,还能够根据上述质量守恒定量给出反应过程中存在难以检测的腐蚀性挥发物。如图5所示,工业固废铝灰中含有Al2O3、AlN、Al、NaCl和KCl等,基于矢量热分析方法获得了铝灰热处理过程中6类反应的过程机理及其反应速率;准确辨识了反应物-生成物之间的多组连续反应机制、AlN与O2之间的平行反应机制等。更重要的是,能够准确解析获得难以直接检测的“氯盐”的析出量。(DOI:10.1016/j.tca.2014.12.019 10.1016/j.jmrt.2024.02.053)(a)反应质量变化率堆积图(b)气体组分实时摩尔比图5 工业固废铝灰热处理反应机理及腐蚀性挥发物定量4、矢量热分析的未来矢量热分析技术是开展反应过程分析的一种全新的研究范式,研究人员构建了完整的基础理论体系,还构建了热分析表观检测信号与反应本征信息之间的多参数、高维度、矢量化的映射关系式,给出了高度自洽的解析算法和原理框架。这一技术能够为热分析仪发展、特别是国产仪器打破国外技术壁垒提供重要支撑。然而作为国内自主原创的技术方法,为了持续保持既有国际领先地位,目前仍需持续努力从理论、关键技术和应用等方面做好更多扎实的基础性工作。(1)发展基于AI算法支持的矢量热分析解析计算实际反应过程往往更加复杂,多相态、毒性/腐蚀性、未知中间/二次反应等普遍存在,基础标定数据的获取是方程解析的重中之重;而严格遵循物理守恒约束的矢量化方程为适用人工智能技术(AI)支持的算法解析奠定了数学物理方面的理论基础,进一步实现基于物理内涵的智能化标定、解析、校验。(2)反应身份与物质结构辨识及“摩尔”量子计量化学反应过程实质是物质结构和能量发生转变的过程。建立明确计量物质动态拓扑结构的检测分析方法,形成从标定、测试、分析的高精度、高可靠性的摩尔量子计量分析体系。论文链接:https://doi.org/10.1016/j.fuel.2024.132785作者简介李荣斌,北京科技大学,副教授。2013年于西安交通大学获得博士学位,先后在中科院工程热物理研究所、清华大学从事科学研究工作。研究方向为涉及能源、冶金等领域内的反应过程热分析及动力学、非线性数据解析及智能算法、新技术开发应用等,并在Anal Chim Acta,Fuel,Fuel Process Technol, Ecotox Environ Safe等期刊上发表了相关研究成果&zwnj 。
  • 2011年林赛斯(Linseis)热分析用户会暨热分析技术研讨会
    2011 年林赛斯(Linseis)热分析用户会暨热分析技术研讨会 邀请函(第一轮通知) 尊敬的先生/女士: 德国林赛斯仪器公司作为全球热分析技术的领导者,在不断技术创新的同时,一贯注重应用的普及和推广,在秉承专业和精益求精的精神专注热分析技术长达60年之久,从全球第一台热膨胀系统的发明和商业化,到最新的原位高温分析系统,以及全球第一台高温高压综合热分析的问世,一贯为客户提供品质一流、技术领先、工艺精湛的热分析仪器,在全球赢得了高端客户的认可和推崇!2011年,德国林赛斯仪器公司将举办第二届热分析领域的应用技术交流会。交流会由资深技术专家和Linseis工程师进行深入全面的讲解,相信一定会为您的工作提供有效的帮助。在此,我们热诚的邀请科研人员进行交流。会议将就国内外化学与材料科学的国际前沿问题和发展动态进行研讨。热忱欢迎海内外学者踊跃参加本次学术研讨会。 研讨会时间:2011 年11月17日至18日,为期两天 会议主题如下: 11月17日 1、热膨胀测量技术研究进展 2、如何选择合适的热膨胀测量仪器 3、热膨胀应用实例 4、热膨胀应用讨论 11月18日 1、热分析新产品介绍 2、林赛斯Ta win 软件应用详解 3、热分析仪器安装和使用以及日常维护 4、仪器参观 地点:上海 培训费: 500 元/人。 * 含培训费,讲义资料及工作餐; * 住宿和往返旅费自理 * 每个单位不限名额 如有兴趣参加,请填妥报名表,尽快通过Email 和传真报名,以便做好更完善的安排。 上海 地址:上海市沪南路2653号开格科技园区2号楼1楼 电话:021-50550642 50550643 传真:021-68063576 手机:13761236895 邮箱:xue@chanceint.com 联系人:薛海洋 致:林赛斯(中国)技术服务中心 薛海洋 电话:021-50550642 50550643 传真:021-68063576 邮箱:xue@chanceint.com 2011 年林赛斯热分析用户会暨技术研讨会报名表 我单位将参加贵公司举办的2011年林赛斯热分析技术培训,请预留位置: 联系人 人数 单位 单位地址 邮编 Email 传真 联系电话 手机 发票单位全称 参加人员名单 1. 女士&radic 先生&radic 需要安排住宿&radic 2. 女士&radic 先生&radic 需要安排住宿&radic 特殊要求:可以两人一间&radic 一人一间&radic 其它要求: 除邀请函列明的培训内容外,我单位建议增加的培训内容
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制