当前位置: 仪器信息网 > 行业主题 > >

流通池原理

仪器信息网流通池原理专题为您提供2024年最新流通池原理价格报价、厂家品牌的相关信息, 包括流通池原理参数、型号等,不管是国产,还是进口品牌的流通池原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合流通池原理相关的耗材配件、试剂标物,还有流通池原理相关的最新资讯、资料,以及流通池原理相关的解决方案。

流通池原理相关的资讯

  • 浅谈紫外检测器中不同光程流通池在应用上的区别
    一枚合格的流通池,必须经得住长期压力,任劳任怨,经历成百上千次测试,一块面板上不止一颗螺丝钉,一台检测器却只有一枚流通池。一枚合格的流通池,需要满足以下要求:1获得理想的检测限;2获得理想的噪音、漂移和信号;3还在于成百上千次的检测后,质量如一,稳定可靠。流通池示意图我们先来看看紫外检测器的工作原理,紫外检测器的检测原理基于朗伯—比尔定律,吸光物质的吸光度与流通池的光程长度和浓度成正比。比尔—朗伯定律数学表达式:A=lg(1/T)=KbcA为吸光度,T为透射比(透光度),是出射光强度比入射光强度。K为摩尔吸光系数。它与吸收物质的性质及入射光的波长λ有关。c为吸光物质的浓度,单位为mol/L。b为吸收层厚度(流通池的长度),单位为cm。当一束平行单色光垂直通过某一均匀非散射的吸光物质时,其吸光度A与吸光物质的浓度c及吸收层厚度(流通池的长度)b成正比,而与透光度T成反相关。检测器流通池的长度越长,光程越长,响应越高,检测限越低。定量分析的准确度很大程度上取决于浓度检测线性范围。分析液相的流通池光程通常比制备液相的流通池光程大,以获得低浓度下更好的响应。紫外检测器的光路示意图下面我们用一个实验来验证一下0.5mm, 1.25mm和3mm等三种不同光程的流通池,在同一色谱条件下,对同一个样品进行分析后,形成的色谱图的差异。由上图我们可以知道,使用较长光程的流通池检测同一个样品,生成的信号越强,获得更高的峰高,更好的响应。尽管通常增加光程会使噪声提高,但噪音提高幅度很小,信噪比还是会增大,一般适用于分析型液相色谱应用。使用小光程的流通池,峰高降低,但对某些峰有一定的分辨率,噪音较小,在应用上,一般适用于制备型液相色谱。
  • 锐拓溶出系统应用研究案例——往复筒法和流通池法研究缓释制剂的体外释放度
    往复筒法和流池法都是药物体外释放度研究中常用的方法,它们都能在实验过程中通过改变各种不同溶出介质来模拟人体胃肠道内变化生理环境,所以有些文献会称之为“生物相关方法”(Biorelevant Methods)。但是,这两种方法的结构和设计差异决定了其测试样品会面对两种不同的流体状态,并最终影响实验数据。本文将通过对比往复筒法和流池法在某缓释制剂体外释放度研究的测试结果,来分析两种方法之间的差异。实验方法为了控制测试过程中的变量,两种方法的实验参数将尽可能保持一致。例如,往复筒法和流池法均使用相同的取样时间点和溶出介质。另外,用于往复筒法的250mL溶出介质体积能够满足漏槽条件。由于技术保密协议,本文将省略实验方法的关键参数。往复筒法(USP Apparatus 3)溶出系统:锐拓RT3-AT 往复筒法自动取样溶出系统溶出介质体积:250 mL温度:37.0 ± 0.5 ℃流池法(USP Apparatus 4)溶出系统:锐拓RT7流池法溶出系统流通池:22.6mm内径 药典标准流通池温度:37.0 ± 0.5 ℃流通池底部放置一颗5mm直径的红宝石球,并填充1mm直径的玻璃珠。体外释放度结果往复筒法测试结果由于往复筒法拥有更大的流体剪切力,参比制剂和自研样品在10小时已经基本释放完全。参比制剂最终溶出率的RSD为1.6%,自研样品最终溶出率的RSD为2.3%,测试结果的重复性良好。自研样品的最终溶出率略低于参比制剂。 流池法测试结果流通池法测试样品在接近20小时才完全释放完全,更加符合这款药物24小时缓释的设计预期。参比制剂最终溶出率的RSD为1.4%,自研样品最终溶出率的RSD为2.8%,测试结果的重复性良好。同样可以观察到,自研样品的最终溶出率低于参比制剂。 结果讨论虽然两种测试方法均能够呈现自研样品的最终溶出率低于参比制剂的结果,但是就方法区分力而言,流池法还是明显优于往复筒法。流池法的测试结果能够更明显地呈现在整个药物释放过程中,自研样品与参比制剂之间的差异。 得益于流通池内平缓的恒速层流状态,药物能够在更加接近胃肠道的流体环境下进行体外释放,这更容易体现生产工艺和处方的变化对药物释放的影响。往复筒法则能够提供更大的流体剪切力,让药物释放速率明显加快,在缩短实验时间的同时,会在一定程度上牺牲了方法的区分力。降低往复速率可以减少流体剪切力,但实验数据证实,即使在很低往复速率的情况下(例如5 DPM),其产生的流体剪切力依然高于流池法高流速下的流体剪切力。针对高剪切力这个特点,往复筒法更加适用于长时间体外释放度测定的加速实验,例如植入剂。通过比桨篮法和流池法更大的流体剪切力,加速药物释放进程,缩短实验时间。另外,往复筒法也适用于咀嚼片的释放度研究:在往复筒内填充玻璃珠配合上下往复运动来模拟药片在口腔内被咀嚼的状态。流通池法和往复筒法各有特点,我们应该根据实验目的来选择合适的测定方法,让测试结果能够满足我们的预期。
  • 普洛帝药典0903不溶性微粒分析仪光阻法检测原理解读
    不溶性微粒分析仪阻法检测原理药典规定检测原理—光阻法满足《美国药典》、《中国药典》、《药包材标准》及输液器具 GB8368-2018 等要求。待测液体流过流通池,流通池两侧装有光学玻璃,激光器的光束通过透镜组准直 穿过流通池,照射在光陷阱上。若待测液体中没有微粒,则光电探测器接收不到光信号;若液体中有微粒,与液体流向垂直的入射光,由于被微粒阻挡而减弱,因此由传感器输出的信号降低,这种信号变化与微粒的截面积成正比。根据信号的幅度和个数可以对液体中的微小微粒进行计数检测。图.光阻法检测原理示意图PULUODY 的创新型双激光窄光微粒检测技术不仅对微粒的探测范围宽广更具有精度高、重复性好的特点,让任何微粒无处遁形。
  • 深大学子使用色谱原理研发出食品安全检测仪
    p   最近在广州举行的第十三届“挑战杯”广东大学生课外学术科技作品竞赛终审决赛上,由深圳大学推荐的“食品安全检测仪”项目获得特等奖,团中央书记处书记傅振邦会见了该项目的研发团队,给予了亲切鼓励。 /p p   食品安全检测仪是由深圳大学的20多名大学生研发出来的,该仪器获得了4项国家专利和1项软件著作权,并已顺利投产。项目领头人张小虎是深圳大学2011级信息工程学院毕业生,目前就读于北京大学深圳研究生院。这个年仅23岁、对新技术有着特殊敏感的大男孩,凭借食品安全检测仪技术创业开办了自己的公司,实现了从技术到应用的转化。 /p p strong 历时两年研发成功 /strong /p p   食品安全检测仪于2011年开始研发,那时张小虎在深圳大学读本科一年级。 /p p   “三鹿奶粉事件,把中国的食品安全问题再一次推向了风口浪尖。短短几年的时间,致病的瘦肉精、毒米、毒面、毒油,为什么问题一再出现?中国的食品安全问题该如何解决?”张小虎说,由于食品中的有毒物质具有多样性和微量性,传统的检测设备不能满足要求,他因此萌发了自主研发一款针对中国食品安全问题的绿色食品安全检测仪器的心思。 /p p   在学校的支持与老师的指导下,张小虎带领深大信息工程学院的20多名大学生开始研发这款化学分析仪器,并一直坚持了两年多的时间。“有一次,有一个不合格的氘灯电源损坏了氘灯,氘灯光源不稳定导致输出的基线数据不稳定。开始我们不知道问题在哪里,因为影响基线稳定的因素很多,我们费了九牛二虎之力才最终定位问题。中途,我们几乎都想放弃了,在老师的鼓励和帮助下,我们还是挺过来了。”张小虎说。 /p p   2013年底,绿色食品安全检测仪研发成功。这个仪器有两个30寸传统电视机叠加起来大小,检测时,食物样品由自动进样器进入设备,被高压泵打入色谱柱,在色谱柱中进行分离,再到达检测器的流通池,经过光电管,用24位高精度AD采集数据,电脑计算出图谱并进行比较分析,实现了一键式全程操作。 /p p   2014年该仪器通过了广东省计量院的测试,并获得了广东省技术监督局颁发的生产许可证,正式投产。 /p p strong 技术上实现多项创新 /strong /p p   这款食品安全检测仪在技术上实现了多项创新,其中用液相色谱原理设计制作更属于国际国内首创。 /p p   张小虎介绍,液相色谱技术由于具有高分辨率、高灵敏度、速度快、色谱柱可反复利用以及流出组分易收集等优点,比传统的基于分光光度法原理的食品安全检测仪灵敏度更高,定性定量分析更准确。“在检测食品中的有毒物质时,我们往往不知道有毒物质是什么,这时我们就要利用大数据的图谱分析方法,通过工作量的图谱在几千张,人工读图要花费很多时间。而我们利用自己编写的MapReduce来处理图谱数据,使用计算机代替人工大量读图。” /p p   食品安全检测仪目前已获得了4项国家专利和1项软件著作权。其中一项专利技术“双流通池系统”,在不降低性能的同时可大幅度降低系统成本。“这种双系统特别适用于那些要检测大量的,相同类型的样品,比如食品的原料检测等。” /p p   项目的开发成功让张小虎有了创业的冲动,他迫切希望能将技术予以应用,从而将技术的价值最大化。在父母的支持下,他与伙伴于2012年12月6日成立了“通用深圳仪器公司”,同时他还被聘请为深圳市分析测试协会委员。 /p p   而这款针对中国食品安全问题的绿色食品安全检测仪器投放市场后也颇受青睐,目前已拥有广州饲料添加剂厂、佛山富维生物饲料有限公司、广州格拉姆生物科技有限公司等几十家饲料和生物制品企业“客户”。 /p p strong 用高科技创业成功概率大 /strong /p p   2014年10月,张小虎被北京大学深圳研究生院录取为研究生,继续着他的学业,他的导师亦非常支持他的项目。而他的企业,从原来的3个人发展到现在的16个人,几乎都是青春勃发的大学生,其中还有一个麻省理工学院的博士。 /p p   “从小到大,我都希望能成为一个通过自己努力实现个人梦想、掌控自己生活的人。小到成功拆装一个玩具、读完一本喜欢的书籍,大到选择自己热爱的专业、做出几项发明专利、创办自己的公司,很幸运的是,我正按照自己的人生规划,如愿地逐步实现自己的人生目标。每当实现一个目标,我都有深深的满足感和成就感。”张小虎说,尤其当自己创办的公司做出了对人们生活质量有所促进的产品的时候,“我感觉自己的成就感不仅来自于实现个人梦想、掌控自己的生活,而更大的来自于自己对于社会的价值和意义。” /p p   对于未来,张小虎充满了信心:“食品安全检测设备的市场很大,全国有大小近百家生产企业,但他们用的技术大都是分光光度法原理或比色试纸原理。这两种方法的检测精度都很低,不能有效检出食品中的微量有毒物质。市场急需新的高灵敏的检测设备,我们基于液相色谱原理的食品安全检测仪会有广阔的市场空间。” 他打算以“直销”和“代理”的模式,继续推广食品安全检测仪。 /p p   作为一个大学生创业成功的“典型”,时常有学弟学妹追问张小虎“成功的秘诀”。他的切身体会是:“大学生创业应该具有非常强的专业知识,用高科技创业成功的概率会大得多。同时,项目开发最重要的是团队开发管理的能力和设计模式。”而创业更让他感受到了责任,也让他有了更高的目标:争取创立食品安全的行业标准,最终为解决中国现有的食品安全问题贡献自己的一分力量。 /p p /p
  • 锐拓RT7流池法溶出系统应用案例——软胶囊的溶出研究
    在软胶囊的研发和质量控制过程中,其溶出方法的开发一直是让人困扰的难点。这是因为:软胶囊在溶出时会在溶出介质上方形成油层,而溶出过程中产生的油滴也可能会悬浮在溶出介质中,导致传统溶出方法很难有效地测定其溶出度。所以在本次应用案例中,我们将分享为某客户开展的某软胶囊产品的溶出研究,希望能为各位带来启发和帮助。流通池的选择锐拓RT7流池法溶出系统除了在各国药典中均有收载的两款内径分别为22.6mm和12mm的流通池外,欧洲药典中还有一种适合做软胶囊溶出测试的流通池(如下图)。 使用时,先将样品放到流通池的A室(Chamber A)中,然后在流通池顶部安装在线过滤组件。测试时,溶出介质会从A室底部进入并充满A室;然后,溶出介质从A室流入B室并将其充满;最后,溶出介质经由B室底部的管路向上流经线过滤组件,并通过自动取样系统完成样品溶液的收集。方法优化软胶囊的脂质相会阻碍其主药进入溶出介质。另外,某些水溶性差的药物可能无法达到漏槽条件。这可能导致溶出缓慢或无法完全溶出。在溶出介质中添加表面活性剂是解决上述问题的有效手段。本次研究有综合考察了主药成分在不同表面活性剂的不同浓度下的溶解度,在保证样品能够完全溶出的前提下,让测试方法拥有足够的区分力。选择溶出介质的温度时,应该考量软胶囊外壳的熔融温度。更加准确的控温和流通池间更小的温度差异可以确保测试结果更加稳定可靠。研究结果本次研究分别对参比制剂和三种不同生产工艺的自研样品进行溶出测试。测试结果如下图所示: 其中,1号样品 (Sample 1) 和3号样品 (Sample 3) 与参比制剂 (Reference)的溶出相似因子(f2)分别为28和52。对于2号样品 (Sample 2) ,由于其胶囊外壳在溶出过程中一直没有崩解,其内容物直到实验结束也没有从胶囊壳中释放出来,从而呈现出极低的溶出结果。结论从上述结果我们可以知道,软胶囊的囊壳工艺是控制其释放行为的关键之一,通过流池法能够有效地测定软胶囊的溶出释放。而进一步地,有区分力的溶出结果能够科学地指导产品生产工艺的优化和改进。
  • 上海佰冠邀请您参加苏州CMC-China
    缓释制剂指口服后在规定释放介质中,按要求缓慢地非恒速释放药物,与相应的普通制剂比较,给药频率至少减少一半或有所减少,且能显著增加患者的顺应性或疗效的制剂。流通池法是一种新型的溶出方法,一定程度上可以模拟药物在体内的变化过程(比如pH转换、胃肠蠕动以及药物释放的过程),同时也会很好体现缓释制剂在体内溶出释放过程。DNS流通池法溶出系统 DF-7案例详解实验背景:仿制药研发,寻找原研和自研产品的区分。实验目的:用流池法对缓释制剂溶出度进行测试,确定流通池法是否能很好的区分原研与自研产品。测试样品:两批自制样品(各3片)、一批原研(1片)测试方法:采用Closed Loop模式,无脉流,在pH5.0介质溶液 900ml,设置流速 8ml/min,分别在1、2、4、6、8、10、12、16、20、24h时取样,进液相测定。实验结果:实验过程中,发现实验现象跟结果是一致的,原研很好的溶解了,但是自制仍然保持骨架现象。结论:通过在DF 7上初步测试,结果区分了原研和自研的不同溶出释放曲线,并且仪器稳定的送液流速,合适的脉流以及精确地取样保证了两个自制批结果平行性。DF 7 产品特点:1.独特3+4模式,可同时开闭环,试验不同条件(节约时间,提高效率)2.开闭环自动切换(方便、快捷)3.7通道独立温度监控(7个独立温度传感器,保证温度一致性)4.双注射送液泵:a.高精度送液;b.低流速准确送液;c.中途可改变流速;d.三种送液波形(无脉流和2种正弦波)5.环形过滤器(增大过滤面积,防堵塞)6.独特的连续取样模式(防突释)7.其他:浸入式加热(保证各池子内温度稳定一致);LED灯设计(便于实验现象观察);泄压阀(独立泄压排障);双O型环设计(防漏)等上海佰冠科学仪器专注于为分析实验室提供各类专业解决方案,提供实验室各种专业设备,包括含量均一度仪、全自动多批次溶出仪、流通池法溶出仪、溶媒制备机、前处理设备、实验室常用色谱耗材维修配件以及二手色谱、质谱等分析仪器。本公司还提供如下产品: ● 溶出仪:流池法溶出仪,半自动溶出仪,全自动多批次溶出仪(含自动投样,清洗,过滤等) ● 前处理设备:含量均一度仪,实验室自动化产品(可定制),HST的快速微波蛋白酶解仪● 分析实验室耗材配件:含主流品牌如Waters、Agilent、Thermo、Shiamadzu、ACE、艾杰尔等● 代理分析仪器:Waters全系列产品,含液相,纯化(制备)色谱仪、质谱等● 二手分析仪器:主流品牌的二手液相、气相、质谱等● 实验室服务:设备维修,维保、验证、搬迁等服务
  • 锐拓RT7流池法溶出系统应用案例——生理条件下的药物溶出研究
    固体制剂口服给药后, 药物的吸收取决于药物从制剂中的溶出或释放、药物在生理条件下的溶解以及在胃肠道的渗透。所以,a如果体外溶出度试验能够模拟人体胃肠道的生理环境,那么该溶出方法将拥有更好的区分力,而且能够更好地预测药物体内行为。在这次应用案例中,我们将分享为某客户开展的某BCS II 类产品在生理条件下的溶出研究,希望能够给您带来启发和帮助。研究方法溶出装置:锐拓RT7流池法溶出系统流通池:22.6mm内径 药典标准流通池溶出介质:模拟人体餐前胃肠道pH环境的多种溶出介质(具体种类和配方:技术保密)流速:技术保密模式:开环过滤系统:锐拓专利流通池在线过滤装置生理条件下的溶出研究分别将客户自研样品和参比制剂置于流通池中,按照拟定的研究方法开始溶出测试,在开环模式下的每个取样时间点收集样品溶液,利用HPLC检测主药浓度,并绘制浓度-时间曲线。浓度-时间曲线根据测试结果,我们可以地发现:(1)自研样品和参比制剂在模拟胃部阶段都基本上没有溶出。(2)进入模拟小肠阶段后,自研样品达到浓度的峰值高于参比制剂,且自研样品达到浓度峰值的时间比参比略有提前。基于实验结果,我们可以有理由推断,自研样品和参比制剂经过胃排空进入小肠后的释放行为是存在差异的。进一步地,计算每个取样时间点的累积溶出率,绘制溶出率-时间曲线。溶出率-时间曲线选取模拟小肠阶段的溶出数据,计算各区间内两者的相似因子(f2)=41.5,表示在当前的实验条件下,自研样品和参比制剂在模拟餐前小肠环境下的体外释放行为不具有相似性。QC溶出方法的开发为了满足QC阶段对产品品质的有效监控,我们根据上述生理条件下的溶出研究结果,对相关流池法的溶出参数和溶出介质配方进行精简和优化,以缩短测试时间,简化溶出介质配制和溶出测试步骤。使用精简优化后的流通池溶出方法对自研样品和参比制剂进行检测,并对比两者的溶出率-时间曲线: 在溶出度度超过85%的时间点不超过1个的前提下,计算两者的相似因子(f2)=37.8。证明该方法依然拥有极好的区分力。另外,同步执行的重复性测试结果显示,自研样品和参比制剂的最终溶出率的相对标准偏差(RSD)均小于2%,且两者各自平行测试的溶出曲线基本重合。证明该方法拥有良好的重复性。上述结果显示,流池法拥有开发为QC溶出方法的潜力,特别在区分力方面,拥有远超传统溶出方法的巨大优势。结论流池法溶出装置能够在溶出试验过程中自由切换不同种类的溶出介质,且流体力学更加接近人体胃肠道环境。得益于这些设计优势,使得流池法溶出装置能够更好地模拟人体胃肠道的生理环境,测试结果拥有更好的区分力,而且能够更好地预测药物体内行为。
  • 锐拓RT7流池法溶出系统应用案例——长效缓释片的体外释放度研究
    口服缓控释给药系统一直是国内药物研发的重点之一,其采用缓控释制备技术延缓和控制药物的释放速度,以提高疗效,降低不良反应,延长给药间隔以及提高患者服药的顺应性。本次进行研究的缓释片是通过骨架材料控制药物的释放速率,从而达到24小时长效缓释的效果。为了获得更有区分力的溶出测试数据,本品将使用流池法进行体外释放度研究。实验方法锐拓RT7流池法溶出系统溶出装置:锐拓RT7流池法溶出系统流通池:22.6mm内径 药典标准流通池过滤系统:锐拓专利流通池在线过滤装置流通池底部放置一颗5mm直径的红宝石球,并填充1mm直径的玻璃珠。药片放置于22.6mm内径流通池专用的药物支架上。体外释放度结果实验样品包括:参比制剂和自研样品。按照拟定的研究方法开始溶出测试,在每个取样时间点收集样品溶液,利用HPLC检测主药浓度。 缓释片在样品支架上的释放现象通过测试结果,绘制平均释放浓度-时间曲线和累计溶出率-时间曲线。参比制剂最终溶出率的相对标准偏差(RSD)为1.38%,自研样品最终溶出率的相对标准偏差(RSD)为2.79%,本测试方法的重复性良好。浓度-时间曲线: 累积溶出率-时间曲线: 结果和讨论从实验结果我们可以发现,参比制剂的在整个溶出实验的过程中,累积溶出率一直高于自研样品。且随着药物的持续释放,参比制剂与自研样品的累积溶出率差异逐渐增大。通过参比制剂和自研样品的浓度-时间曲线我们可以更好地分析这个现象:参比制剂的释放浓度在溶出实验的前-中期都持续高于自研样品,而自研样品的浓度变化更加平缓。两者不同的释放行为可能会导致它们的生物利用度出现差异。
  • 锐拓RT7流池法溶出系统应用案例——速释型制剂体外释放度研究
    锐拓仪器应用技术部接受某客户委托,对其处于研制阶段的某速释型制剂进行体外释放度研究。由于该产品释放速度快,使用传统的溶出方法无法获得具有区分力的数据,故决定采用锐拓RT7流池法溶出系统(2020版中国药典溶出度测定第六法)进行研究。实验参数溶出装置:锐拓RT7流池法溶出系统溶出介质:技术保密温 度:37℃± 0.5℃模 式:开环流 通 池:药典标准流通池(22.6mm内径 )流 速:技术保密取样时间:前5分钟:每15秒取样一次;5分钟~20分钟:每30秒取样一次过滤装置:锐拓专利在线过滤装置研究过程在流通池锥体底部放置一直径为5mm的红宝石球,并在锥体部分填充直径为1mm的玻璃珠,使进入流通池内的溶出介质变为层流状态。将待测样品和参比制剂放置在药物支架上,同时安装锐拓专利流通池在线过滤装置。将流通池安装到位后,开始开环法溶出实验。仪器将自动将溶出介质以恒定的流速持续送入流通池中。自动取样工作站根据预设的取样时间,自动收集样品溶液。得益于锐拓RT7流池法溶出系统的先进设计,取样时间间隔可以压缩至15秒,使得在研究中能够捕捉到样品在快速释放过程中的微小变化。使用高效液相色谱系统,对收集到的样品溶液进行浓度分析,并计算累积溶出率。结果和讨论浓度-时间曲线根据各取样时间点的待测溶液的浓度,绘制浓度-时间曲线。测试结果能够有效地区分参比制剂以及不同制程的样品。 通过统计样品和参比制剂体外释放曲线的浓度峰值(C max)、峰值到达时间(T max)和峰值浓度下降一半的时间(T 1/2),能够有效地比较待测样品与参比制剂之间的差异。(由于技术保密原因,此处略去具体结果)溶出率-时间曲线根据各取样时间点的样品溶液的浓度,计算每个取样时间点的累积溶出率,并绘制溶出率-时间曲线。 在参比制剂溶出率为30%,50%,80%和最终取样时间点时,比较参比制剂和样品的溶出率结果,建议溶出率均应在10%以内。(由于技术保密原因,此处略去具体结果)结论流池法拥有比传统溶出方法更好的区分力和体内外相关性,而且测试方法和取样时间更加灵活,一直以来都是制剂研发的利器。本次研究结果有效地区分了参比制剂以及不同制程的样品之间的差异,为其处方和工艺优化提供了有效的技术和数据支持。
  • 锐拓RT7流池法溶出系统应用案例——阴道软胶囊的体外释放试验
    根据CDE公布的《局部作用常见阴-道制剂仿制药的评价技术要求》(征求意见稿),阴-道制剂的质量研究不但需要执行溶出度(释放度)测试,还建议进行模拟阴-道制剂体内释放行为的体外释放研究。而对于阴-道栓和阴-道软胶囊这类普遍使用脂类基质的制剂,无论是溶出度测试还是体外释放研究,传统溶出方法都很难获得满意的测试结果。所以,在本次应用案例中,我们将分享如何使用流池法进行阴-道软胶囊的体外释放度研究。流通池的选择不同尺寸和构造特点的流通池会影响阴-道软胶囊的体外释放行为。根据本案例样品的尺寸和释放特点,通过对不同类型流通池的对比评估,最终选择使用22.6mm内径的药典标准流通池(如下图所示)。另外,考虑到阴-道软胶囊在释放期间会产生大量的脂类基质,很容易造成在线过滤系统的堵塞。得益于锐拓专利设计的流通池在线过滤装置,使得多级在线过滤可以有效阻挡脂类基质的同时,还保证了在整个24小时溶出实验期间内不会出现过滤系统堵塞和管路系统漏液。溶出介质的优化在进行体外释放度研究时,溶出介质的选择应充分考虑药物在人体内释放部位的生理特点。而对于阴-道制剂,可使用人工模拟阴-道液或模拟阴-道pH的弱酸性介质进行体外释放度研究。由于本案例样品的特殊性,在方法开发阶段,我们对溶出介质的配方进行了充分的优化,在保证满足漏槽条件的同时,让溶出介质更加接近阴-道内的生理特点。研究结果本次研究分别对参比制剂和两种不同生产工艺的自研样品进行体外释放度测试。由于样品中存在两种主药成分,所以使用HPLC对这两种主药成分进行定量测定。测试结果如下:主药成分 A对于主药成分A,1号样品 (Sample 1) 和2号样品 (Sample 2) 与参比制剂 (Reference)的溶出相似因子(f2)分别为 47 和 62。主药成分 B对于主药成分B,1号样品 (Sample 1) 和2号样品 (Sample 2) 与参比制剂 (Reference)的溶出相似因子(f2)分别为43 和 57。根据测试数据我们可以发现:经过工艺改良后的2号样品的释放速率有明显的提升,而且与参比制剂表现出更好的相似性。结论流池法在阴-道制剂溶出度测试和体外释放研究方面具有明显的优势,其能够排除脂类基质干扰的同时,流通池内的流体力学环境也更接近阴-道内的流体环境。流池法能够提供更有区分力和更接近体内条件的溶出数据,助力阴-道制剂仿制药一致性评价的开展。
  • 液相维护小贴士:紫外检测器篇
    小伙伴们大家好,之前我们讨论了泵和进样器的维护之后,今天我们来聊聊检测器。有人说Chemistry代表Chem is try很有意思。化学的美妙在于它的无限可能性。中学化学老师曾经说过“结构决定性质,性质决定用途。”扩展到我们的分析工作中,也决定了分析手段,所有的分析都有规律可循,缘分“结构”注定!在色谱实验室中紫外检测器是必备的,70%以上的物质都可以用紫外检测器来分析,今天我们就扒一扒紫外可见检测器。一、紫外检测器的原理紫外-可见光检测器(UV-Vis Detector, UVD)是应用最广泛的检测器,遵循的原理是朗勃比尔定律。吸光度(A)=摩尔吸光度(ε)×光程(b)×浓度(c)。吸光度定义为透射率的负对数,它是透射光与入射光的强度之比。吸光度(A)= lg(1/透射率(T))。紫外检测器的灵敏度与溶剂的影响、背景吸收、示差折光效应有关,不同种类溶剂有其截止波长,溶剂的质量好坏对其截止波长有影响,溶剂质量与含紫外吸收的杂质、溶解在其中的氧气、缓冲液溶质的紫外吸收等因素有关;背景吸收减少线性范围、许多溶剂会产生背景吸收。常见结构的紫外吸收紫外可见检测器还有个Plus的兄弟——二极管阵列检测器。光电二极管矩阵检测器简称PDA(Photo-Diode Array),有的品牌也称为DAD(Diode Array Detector),一般来说,紫外检测器比DAD的灵敏度高约1倍。但DAD也有它的优势,一是可以对未知物进行波长扫描确定zui佳吸收波长,二是可以同时检测多个波长,三是可以进行峰纯度的检査。 紫外检测器与DAD的区别为:紫外检测器是光源发出的光先分光,让特定波长的光通过狭缝,这样光的强度可以调节,然后通过流通池,光束被流通池里的样品吸收,未吸收的光达到光电二极管,产生电流变化,DAD光源发出的光不分光,让全波段波长的光通过狭缝,然后通过流通池,光束被流通池里的样品吸收,未吸收光被分光,各种波长的光落在不同位置的二极管上,各二极管产生电流变化。因为是后分光,所以DAD不同波长处光强度并不一致,波长分辨率也不及单波长的紫外检测器,需要通过其他手段来提高某些波长的灵敏度。二、紫外检测器的优缺点切勿用裸手触摸石英灯泡,因为在后来打开灯时指纹会不可避免地损坏灯。灯的位置在设备中精确确定,不需要进一步调整。灯更换后的组装步骤与拆卸相同,只是按相反的顺序。打开本机并点亮灯,如果没有发生错误,请关闭灯,然后进行新灯泡的校准。更换钨灯的步骤近似,感兴趣的小伙伴可以单聊。以Wisys5000为例清洗流通池窗片/更换流通池窗片污染的流通池会降低光的传输,增加噪声,很难使信号归零。最简单的清洗方法是用合适的溶剂冲洗拆除的流通池。清洗前必须从仪器取出流通池。根据污染物的特性选择互溶性系列的溶剂。它可以使用有机和无机溶剂和稀释酸溶液(如用1:10 到 1:20的稀硫酸或硝酸溶液)。此操作完成后用纯溶剂冲洗流通池。连接流通池到系统,当有液体流过时,观察是否泄漏。如果有必要更换有裂纹或受污染的窗片,或改变制备流通池的光学路径,拧下螺钉,拆下流通池盖并取出窗片和密封件。使用干燥的注射器往里推空气可以更好的移除密封的流通池窗片,不要用手触摸窗片。指纹会阻挡紫外线辐射的通道,并有可能损坏的窗片表面。将干净的窗片插入到流通池中,以便在流通池中调整所需的光路。检查垫片的完好情况 和密封件的密封面是否有窗片碎片或任何其他杂质。损坏的密封件须更换。今天的话题就扒到这里了,下期见。
  • 锐拓RT7流池法溶出系统应用案例——眼用凝胶的体外释放度研究
    滴眼液是目前临床上治疗眼部疾病最常用的剂型,但会很快从眼表面流失,其药物生物利用度通常小于5%。而使用原位凝胶作为眼用载药系统,则可以延长药物在眼部的滞留时间、降低给药频率、提高生物利用度,达到缓释长效的目的。原位凝胶在体外环境下为液体状态,给药后由于受到温度、pH 值、离子强度等影响,在用药部位发生相转变,由液态转化形成非化学交联半固体凝胶,可分为温度敏感型、pH 敏感型和离子敏感型。近年来,眼用凝胶在眼部给药系统中的应用受到国内外药物研究者的高度重视。但是由于本身剂型的特殊性,如何有效地进行眼用凝胶的体外释放度研究一直是个技术难题。本文将分享使用锐拓RT7流池法溶出系统研究眼用凝胶的体外释放度的案例,希望能给您带来帮助和启发。实验方法流池法(USP Apparatus 4)溶出系统:锐拓RT7流池法溶出系统流通池:22.6mm 内径 药典标准流通池测试参数:技术保密取样时间点:5,10,20,30,60,90,120,180,240分钟实验结果下图为某眼用凝胶两个不同生产工艺批次(Sample 1 和 Sample 2)的体外释放度曲线,测试结果取多组平行测试数据的平均值。 测试结果重复性良好,Sample 1 和 Sample 2 最终溶出率的相对标准偏差分别为:0.66%和0.88%。另外,测试结果显示,本流通池测试方法和条件能够区分不同生产工艺批次之间的释放度差异。我们可以明显地观察到,Sample 2 的释放速度比Sample 1 快。结果讨论眼用原位凝胶制剂在室温条件下是呈液体状态,用药后在眼部发生相转变成非化学交联半固体凝胶,并持续缓慢释放主药成分。所以,在进行体外释放度测定时如何对液体进行上样,如何确保液体状态的样品能够完整地转变成半固体凝胶,如何让半固体凝胶状的样品在更加平缓更加近似人体的环境中释放,如何真实地反映样品的缓慢释放过程,这些都是眼用凝胶体外释放度测定方法开发时需要考虑的。随着流池法的研究深入和逐步成熟,我们可以利用流池法来研究越来越多类似眼用凝胶这些特殊剂型的体外释放度。而得益于流池法的优势,我们可以摆脱传统溶出方法的束缚,让体外释放度测定更加满足药物研发者的对测试结果
  • 锐拓RT7流池法溶出系统应用案例——混悬滴眼液的体外释放试验
    混悬滴眼液被广泛用于治疗各种眼部疾病,而且混悬液这种剂型设计能够改善API在角膜前的停留时间和整体眼部的生物利用度。混悬滴眼液中分散着细微的、相对不溶的原料药,而且每次用药剂量很少,这给体外释放度测试的方法开发带来很大的难度。不过,得益于流池法的发展和应用,使得这个技术难题得以有效解决。本次应用案例中,我们将分享为某客户开发的混悬滴眼液的体外释放度试验,希望能够给各位带来帮助和启发。测试方法在流通池底部放置一颗5mm直径的红宝石球,然后填充1mm直径的玻璃珠。用力摇匀样品溶液,精密移取100μL,均匀滴加在玻璃珠上面。在流通池顶部安装在线过滤装置。启动恒流泵,开始流池法溶出测试。溶出介质在进行体外释放度研究时,溶出介质的选择应充分考虑药物在人体释放部位的生理特点。混悬滴眼液主要在眼部释放,我们在开发溶出介质的时候,参考了泪液的pH值及其他生理特点。同时,添加了适量的表面活性剂以确保满足漏槽条件。测试结果本次研究分别对两个不同的混悬滴眼液自研样品平行执行三次体外释放度测试,测试结果如下:混悬滴眼液自研样品1:混悬滴眼液自研样品2:根据测试数据我们可以发现:本方法的重现性良好,三次平行测试的溶出曲线之间的差异都很小,两种样品在120min时溶出率的RSD都分别小于1%。同时,本方法具有良好的区分力,能够区分不同样品之间的溶出行为差异。结论流池法在执行混悬滴眼液的体外释放度试验方面,具有其他溶出方法无法比拟的优势。流池法能够提供更有区分力和更接近体内条件的溶出数据,很好地助力混悬滴眼液的研究开发及其释放度评价。
  • FlowCam发布全自动法医硅藻检测系统新品
    本产品的技术原理为:对经微波消解、真空抽滤处理后得到的滤膜进行洗脱,洗脱液作为样品被注入分析系统,当样品流经微型流通池(样品检测区)时,高速显微相机对其自动聚焦并以高至120帧/秒的速度拍照,智能化的数据分析软件实时截取所拍照片中的微粒显微图像,并进行硅藻自动识别与分类,当样品分析完成后,自动输出硅藻定性定量分析报告。基于该原理的硅藻检验方法已申请国家发明专利。 一、与采用常规光学显微镜或扫描电镜检测硅藻的方法相比,突出的优点为:1、全自动化。无需人工识别硅藻,大大降低工作强度,减少人为误差;简单易学,检验人员经半日培训后即可独立操作。2、高效。单个样品分析只需数分钟至20分钟,而采用光镜或扫描电镜检测,通常需2-3小时。3、数据处理功能强大。可得到硅藻40多种形态学信息和各形态、尺寸硅藻分布情况,是研究水中尸体脏器组织中硅藻的分布规律以及进行其他相关研究的有力工具。4、系统图库可拓展。可将新采集的硅藻图像加入所属种类的图库,增加图库容量,提高硅藻自动识别和分类的准确度,用户可根据需要自建新的图库。 配有自动进样器的全自动法医硅藻检测系统 二、产品技术参数1、采用专利光学系统捕获流动样品中的硅藻,自动分析硅藻种类与含量,实现硅藻定性定量分析的自动化。2、提供所拍摄硅藻的有效直径、长度、宽度、纵横比等40多种形态学信息及各形态、尺寸硅藻的分布情况。3、采用高分辨CMOS相机,1920×1200像素。4、图像类型/格式: 彩色,JPG。5、拍摄速度:高达120 帧/秒。6、放大倍数/流通池/相机拍摄范围为:A、20X物镜 (总放大倍数≈200X);流通池 (厚度):50μm;相机拍摄范围:675 μm (高)×422 μm (宽);B、10X物镜 (总放大倍数≈100X);流通池 (厚度):100μm;相机拍摄范围:1,351 μm (高)×844 μm (宽)。7、可选配自动进样器,实现多样品分析自动完成。自动进样器:96 孔板,2 个板位,具有自动振荡、加热及冷却功能,单孔样品量5μl-1000μl,配有自动进样管理软件8、自动清洗管路,避免污染。9、含常见硅藻图库,图库可扩展,并可根据需要自建图库;软件具有智能学习能力,随着图库容量的增大,硅藻自动识别和分类的准确度不断提高。10、台式,携带方便。主机尺寸:38cm(高)×36cm(宽)×44cm(深)。 三、实际案例展示一溺死者脏器组织中检出的硅藻2g肺组织中检出的部分硅藻10g肝组织中检出的全部硅藻 10g肾组织中检出的全部硅藻创新点:本产品是全球第一款全自动法医硅藻检测系统,基于FlowCAM流式影像仪针对法医硅藻检测进行深度开发。目前该系统可全自动识别硅藻,得到硅藻的40多种形态学信息和各形态、尺寸硅藻分布情况,从而提高检验效率。同时用户可以自行拓展图库,提高硅藻自动识别和分类的准确度。 全自动法医硅藻检测系统
  • 广州竞赢科学仪器有限公司隆重推出突破性产品- 全自动法医硅藻检测系统
    本公司与美国Fluid Imaging公司、北京欧仕科技有限公司联合开发出突破性产品-全自动法医硅藻检测系统。本产品的技术原理为:对经微波消解、真空抽滤处理后得到的滤膜进行洗脱,洗脱液作为样品被注入分析系统,当样品流经微型流通池(样品检测区)时,高速显微相机对其自动聚焦并以高至120帧/秒的速度拍照,智能化的数据分析软件实时截取所拍照片中的微粒显微图像,并进行硅藻自动识别与分类,当样品分析完成后,自动输出硅藻定性定量分析报告。基于该原理的硅藻检验方法已申请国家发明专利。 一、与采用常规光学显微镜或扫描电镜检测硅藻的方法相比,突出的优点为:1、全自动化。无需人工识别硅藻,大大降低工作强度,减少人为误差;简单易学,检验人员经半日培训后即可独立操作。2、高效。单个样品分析只需数分钟至20分钟,而采用光镜或扫描电镜检测,通常需2-3小时。3、数据处理功能强大。可得到硅藻40多种形态学信息和各形态、尺寸硅藻分布情况,是研究水中尸体脏器组织中硅藻的分布规律以及进行其他相关研究的有力工具。4、系统图库可拓展。可将新采集的硅藻图像加入所属种类的图库,增加图库容量,提高硅藻自动识别和分类的准确度,用户可根据需要自建新的图库。 配有自动进样器的全自动法医硅藻检测系统 二、产品技术参数1、采用专利光学系统捕获流动样品中的硅藻,自动分析硅藻种类与含量,实现硅藻定性定量分析的自动化。2、提供所拍摄硅藻的有效直径、长度、宽度、纵横比等40多种形态学信息及各形态、尺寸硅藻的分布情况。3、采用高分辨CMOS相机,1920×1200像素。4、图像类型/格式: 彩色,JPG。5、拍摄速度:高达120 帧/秒。6、放大倍数/流通池/相机拍摄范围为:A、20X物镜 (总放大倍数?200X);流通池 (厚度):50μm;相机拍摄范围:675 μm (高)×422 μm (宽);B、10X物镜 (总放大倍数?100X);流通池 (厚度):100μm;相机拍摄范围:1,351 μm (高)×844 μm (宽)。7、可选配自动进样器,实现多样品分析自动完成。自动进样器:96 孔板,2 个板位,具有自动振荡、加热及冷却功能,单孔样品量5μl-1000μl,配有自动进样管理软件8、自动清洗管路,避免污染。9、含常见硅藻图库,图库可扩展,并可根据需要自建图库;软件具有智能学习能力,随着图库容量的增大,硅藻自动识别和分类的准确度不断提高。10、台式,携带方便。主机尺寸:38cm(高)×36cm(宽)×44cm(深)。 三、实际案例展示一溺死者脏器组织中检出的硅藻2g肺组织中检出的部分硅藻10g肝组织中检出的全部硅藻 10g肾组织中检出的全部硅藻
  • 全国生命分析化学研讨会:仪器装置论坛
    仪器信息网讯 2010年8月20日,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”在北京大学召开。研讨会同期召开了“食品分析、前沿论坛、仪器装置”等多场专题论坛,其中,“仪器装置”专题论坛共吸引了300余位业内人士的参加。 会议现场   会议由湖南大学王玉枝教授、天津大学万谦宏教授联合主持,华东师范大学何品刚教授、厦门大学杭纬教授、浙江大学方群教授等不同领域的仪器研制专家为与会者作了精彩的报告。 王玉枝教授 万谦宏教授   报告人:浙江大学方群教授   题目:微型化和自动化微流控分析仪器的研制   经过近二十年的发展,微流控分析技术已日趋成熟,它凭借分析速度快、试样消耗少、流体操控自动化、部件微型化等突出优点,在分析仪器微型化研究中显示出巨大的潜力,已被众多学者认为是分析仪器微型化最为重要的推进技术。   最近,方群教授所在的研究组研制了一种用于纳升级试样吸光度测定的全集成微型化手持式光度计。光度计所有部件包括发光二极管(LED)光源、光电二极管检测器、液芯波导流通池、微量试样驱动装置、控制电路、液晶显示器和电池均集成于12cm*4.5cm*2.1cm的仪器内。工作中用一根Teflon AF 2400毛细管构建了长光程液芯波导流通池,实现了试样的引入、检测光的耦合、吸光度的长光程检测等功能,显著提高了检测灵敏度和可靠性,简化了仪器结构,克服了同类微系统存在的灵敏度低、结构复杂和可靠性差等问题。采用两只波长为260nm和280nm的紫外LED为光源,实现了双波长的光度检测。该仪器成功应用于微量DNA试样的纯度和含量测定,以350nL的试样消耗获得了约15mm的有效光程。对比商品化的微消耗光度计,手持式光度计以其1/3的试样消耗量获得了其15倍的检测光程,且价格低廉,具有很好应用前景。   此外,该课题组还将该光度计与缺口管阵列结合,成功用于血清中总胆固醇含量的快速自动分析。不同样品和试剂装载在缺口管阵列上,通过光度计上的取样探针顺序引入流通池,在流通池内实现在线混合、反应及顺序检测。每个样品分析只需10s,试样和试剂的引入和分析过程由计算机控制自动完成,无需人工介入。   最后,方群教授给大家介绍了他们研制的一种基于光多次反射毛细管流通池的手持光度计。该光度计由一次性使用光反射式流通池和重复使用的光电检测器构成。反射式流通池由涂覆了反光涂层的毛细管构成,以不到400nL的检测体积获得了近8mm的有效光程。该光度计成本低廉,用一次性毛细管流通池克服了流通池重复使用带来的试样交叉污染问题,用光电检测器实现了高精度的测量,在床边检验领域具有很好的应用前景。   报告人:厦门大学杭纬教授   题目:自制高功率密度激光电离飞行时间质谱仪用于单细胞元素分析   杭纬教授在实验中将激光电离垂直引入飞行时间质谱技术(LI-O-TOFMS)用于单细胞(卵细胞)元素检测。利用高功率密度激光产生20000-50000K高温,将溅射部分的样品彻底原子化和离子化。创新性地将惰性气体充入离子源内,使高价离子产生碰撞复合,有效减少多价离子地干扰 同时辅助气体分子与高能离子发生弹性碰撞,大幅度降低离子动能,从而得到高分辨率谱图。目前每个细胞的检测时间大约位15秒钟,检测限可达10-12g/cell级别。对于ICPMS难以检测的非金属元素如P和S等也能被LI-O-TOFMS定性定量检测。逐个细胞的整体信号变化范围可控制在25%,表明LI-O-TOFMS可以很好的用于单细胞的元素分析。   报告人:中科院合肥智能机械研究所张忠平教授   题目:分子印迹复合纳米结构的化学传感器   张忠平教授表示,化学传感器稳定性高、成本低、可人工设计、可重复使用等技术优势。但也面临着很多挑战:印迹效率低,对目标目融合量小,分子识别动力慢 信号输出难,其本身没有信号输出,与其他功能纳米结构及光电器件融合困难。   张忠平教授从“分子印迹的制备原理及其应用、分子印迹纳米结构的合成原理与方法、分子印迹复合纳米结构对环境污染的检测”等几方面对分子印迹技术进行了详细的介绍。   其研究结果表明,制备的分子印迹传感器具有高的选择性、亲和力和快速结合动力学,可直接用于实际样品分析。   报告人:华东师范大学何品刚教授   题目:基于主客体识别技术的DNA均相杂交电化学传感技术   DNA电化学传感技术发展包括电化学检测技术的实时PCR,高通量DNA电化学芯片,利用DNA探针构型改变的DNA电化学传感器等。与往常规电化学DNA传感技术相似,都预先在电极表面DNA固定探针,使其与溶液相中目标DNA序列杂交。此传统模式耗时费力,难控制探针固定量,并且杂交发生在固-液两相之间,效率低于均相杂交模式。   针对上述技术难题,何品刚课题组发展了一种“基于主客体识别技术的DNA均相杂交及电化学传感模式”。主客体识别技术是指主体分子和客体分子间的超分子非共价键作用,包括主体和客体分子间的结构互补和分子识别关系。基于主客体识别、DNA分子灯塔结构变化、纳米颗粒标记技术,何品刚课题组巧妙设计了一系列的DNA分子探针,实现了在均相水溶液中的DNA杂交过程和电化学检测。   报告人:四川大学吕弋教授   题目:基于V2O3微纳米材料的催化发光气相色谱检测器   吕弋教授在报告中主要介绍了“介质阻挡放电化学发光气象色谱检测器”和“基于材料表面发光的检测器”,并详细介绍了一款便携式原子光谱仪,该仪器由北京北分瑞利与四川大学联合研制,采用了低功率钨丝原子化器与小型化CCD光谱仪相结合的技术,属于国家“十一五”科技支撑计划项目,目前已上市。   此外,南京大学夏兴华教授、华东理工大学龙亿涛教授、中山大学陈缵光教授也分别为大家带来了“微-纳限域空间中酶反应动力学的研究”、“生物纳米通道检测单个ATP核酸适配体及其构型变化”、“毛细管电泳和微流控芯片电磁感应检测器研制及在药物分析中的应用”等非常精彩的报告。
  • 驰诚股份:上市首日大概率喜提30CM+,流通市值仅7411万的智能仪器小巨人
    驰诚股份于今日申购,发行价5.87元/股,若不考虑超额配售本次发行后流通市值仅7411万,这也是公司最大的看点。目前北交所流通市值最小的是佳和科技的9572万,而驰诚将会是北交所流通市值倒数第一股,这给市场炒作留足了空间。若以佳和为最低标准,意味着公司首日涨幅最少也是30CM。驰诚股份主要生产气体环境安全监测智能仪器,是北交所第三家仪器商,另外两家是海能技术和基康仪器。同样是做仪器,海能技术上市后股价一路上涨,截至目前仍有近50%的涨幅,表现超于预期。而基康仪器股价表现则相反,上市即破发,目前仍在发行价下方徘徊。究其原因在于赛道不同,海能的科学仪器的市场规模远大于基康的工程仪器,驰诚所处行业规模及增速虽不如海能,但比基康要好很多,而且还有国产替代概念,属于质地还不错的公司。此次参与公司战略配售的机构有开源证券、赛一投资和柯力传感3家,其中柯力传感(603662)为公司原有股东,主要生产物联网领域用应变式传感器,驰诚控股公司驰诚智能主营业务为智能物联网监测设施服务,两者具备一定的业务协同效应。开源证券是一家在北交所相当活跃的券商机构,很多优质公司的战投机构中都可以看到它的身影,此次参与公司战略配售反映其对公司投资价值看好。据Grand View Research 数据,2020年全球气体监测设备市场规模为40.6亿美元,其中亚太地区占比在31%以上,预计2028年市场规模将达到83.8亿美元,年均复合年增速为9.7%。下游应用集中在石油、化工和燃气行业,工业领域2021年新《安全生产法》的实施推动了安全监测产品行业规模增长,民用领域随着居民安全意识的不断增强,对气体安全监测设备的需求也在不断扩大,预计未来几年行业内能够维持稳增长趋势。公司2019-2021年营收年均复合增速为21.46%,2022年三季度实现营收1.36亿,同比增长35.29%,整体保持较快增速。公司近年营收增长一方面受行业政策影响,监管部门加大安全事故处罚力度推动气体安全监测产品整体需求增长;一方面国产探测器进口替代趋势增强,国内产品市场份额不断提升。公司2022年三季度扣非净利同比下滑8.36%,系受当年退税款延迟和中介费用大幅增加影响。此外该行业有一定的季节性,客户通常会在第四季度集中采购,按以往数据四季度营收占全年比例在33%以上测算,预计2022年公司营收将突破2亿元。公司2019-2022年三季度毛利率分别为55.26%、52.39%、52.78%和46.22%,整体呈下降趋势。该行业前期主要由外资把控,产品毛利率较高,随着国内技术的不断成熟,国内生产厂家规模扩大,行业竞争逐步加剧,使得产品价格整体呈现缓慢下降趋势,导致公司毛利率下滑。此次募投项目主要用于新增产能,扩张比例近69%。公司预计项目建成后每年新增营收0.93亿,对应2023-2025年营收年均复合增速为13.57%,募投项目没什么看点。驰诚股份近年营收增长主要受行业政策和国产替代影响,但行业整体增速一般,未来随着市场竞争加剧,毛利率仍存在下滑风险,不具备长期投资价值。估值方面,可比沪深上市公司汉威科技动态市盈率20.22倍,万讯自控动态市盈率33.66倍,北交所上市公司基康仪器动态市盈率20.43倍,海能技术动态市盈率45.04倍,考虑公司2022年三季度利润下滑有一部分是受短期因素影响,且四季度又是销售高峰期,预估公司2022年动态市盈率在13倍左右,与同行相比估值优势明显。公司发行绝对价格偏低,上市后流通市值仅7411万,短期炒作情绪高有“大牛”行情,北研君建议全力申购。但是长期业绩确定性暂时看不到,建议打新后逢高卖出。
  • 2012年溶出度技术国际研讨会将举办
    溶出度技术在药物研发及质量控制阶段都发挥着至关重要的作用,因而备受研究单位、制药企业以及检验检测单位的重视。 力扬企业有限公司的合作伙伴 —— 瑞士 SOTAX 公司,30 余年来一直致力于为药物研究和生产企业,提供高品质的溶出仪以及其它设备,其产品在世界各地倍受赞誉。SOTAX 作为世界首家推出商用流通池法溶出仪的厂家,特邀法国 SPS 公司的代表 Samir Haddouchi 出席这次由中检所举办的「2012 年溶出度技术国际研讨会」,届时将会带来“流通池法在药物行业的原理及应用” 以及 “利用溶出工具表征 API” 两场精彩的演讲。 了解相关产品资料:www.nikyang.com/product.php?autono=35www.instrument.com.cn/netshow/SH100245/C11483.htm活动信息:日期:2012 年11 月 15 – 16 日地点:广西大厦 北京朝阳区潘家园华威里 26 号活动及产品查询:event@nikyang.com
  • 毛细管电泳新型高灵敏度折射率检测技术面世
    毛细管电泳(CE)常用的检测技术只能检测具有特定特性的分析物。例如,荧光检测器只能检测发出荧光的分析物,紫外线检测器只能检测吸收紫外线的分析物,而安培检测器只能检测在电极上可被氧化或还原的分析物。即使是通常被认为是通用检测技术的质谱仪,也只能检测可以通过电喷雾电离有效地转化为离子的分析物。  回音圆廊的折射原理  可以与毛细管电泳一起使用并且真正通用的一种检测技术是折射率(RI)检测。在这种检测技术中,当光穿过毛细管电泳缓冲区中的分析物时会产生折射,通过对所引起的弯曲或折射程度的变化来检测分析物。问题在于,折射率检测并不是特别敏感,尤其是在小规模的毛细管电泳中。伦敦圣保罗大教堂的圆顶天坛回音壁  但是,有一种方法可以利用所谓的“回音圆廊”效果来增强折射率检测的灵敏度。就像声波可以在圆形空间中反弹一样,例如伦敦圣保罗大教堂的圆顶以及北京天坛的回音壁,由于声音的折射,可以在空间的一侧清晰地听到另一侧的对话。特定波长的光可以围绕圆形结构反弹,最终被俘获。被俘获的特定波长取决于周围介质的折射率。  散射光的监测  通过将激光照射在与毛细管电泳缓冲液接触的圆形结构上,可以通过监测散射光来检测由分析物引起的缓冲液折射率的任何变化。为此,散射光将丢失在圆形结构中被俘获的波长的光,该波长的光将随着折射率的变化而变化。几个研究小组表明,这种方法行之有效,他们已经使用了专门定制的设备(例如用于俘获光线的小玻璃球)来实现了这一目的。  现在,来自美国安阿伯市密歇根大学的John Orlet和Ryan Bailey使用市售设备进行了同样的操作,从而提供了一种更简单,更方便的方法来进行毛细管电泳敏感的折射率检测。该设备是美国一家名为Genalyte的公司生产的硅光子微环谐振器阵列。它由两个由四个圆形硅环的16个簇组成的通道组成,每个环可以俘获入射的激光。  Genalyte将这些阵列用于医学诊断,因为当诸如生物标记的分子结合到环上时,被环俘获的光的波长也会改变。但是Orlet和Bailey意识到,这种阵列有可能成为与毛细管电泳一起使用的理想折射率检测器。为了将阵列变成这样的检测器,两名研究人员将其容纳在连接到两个毛细管的流通池中。被毛细管电泳分离的分析物通过第一个毛细管迁移到流通池中,然后离开毛细管并通过阵列的两个通道进行检测,然后再通过第二个毛细管流出流通池。  糖和咖啡因的成分检测  Orlet和Bailey首先在山梨糖上测试了这种设置,发现该阵列可以检测到浓度低至15毫摩尔的分析物,并且阵列响应的大小随浓度而变化。接下来,他们尝试了两种简单的混合物,一种包含甘露糖、乳糖和果糖,另一种包含小分子乙酰胆碱、咖啡因和荧光素。在这两种情况下,混合物均通过毛细管电泳分离,并通过阵列检测其单个成分。但是,因为每个簇都可以检测到分析物,所以该阵列还可以监控它们沿通道的通过,从而记录其迁移速度,从而提供有关分析物的其他信息。  最终,Orlet和Bailey表明,该阵列可以检测通过毛细管电泳分离的三种蛋白质——肌红蛋白、血红蛋白和β-乳球蛋白,证明它也可以与生物分子一起使用。他们现在正在研究各种方法来进一步提高其新型折射率检测器的灵敏度,包括通过改善毛细管装配到流通池中的方式以及将特定生物分子的俘获剂附着到阵列中的环上。符斌供稿
  • 盘点那些年我们用过的检测器(二) ——细说示差检测器
    液相色谱检测器种类较多,如何选择合适的检测器?以及为什么这样选择?之前的推文中我们陆续盘点了UV、DAD、ELSD等检测器,今天再跟大家聊一聊示差检测器。盘点那些年我们用过的液相检测器(一)一、RI 示差折光检测器原理简介关注我们RID是一种偏转式或者斯涅尔式折射率检测器。斯涅尔定律指出,平行光束沿着一个大于零的入射角通过一个将两种具有不同折射率的介质分开的电介质界面时,其折射率将与两种介质的折射率差幅成函数关系。二、示差检测器结构关注我们示差折光检测器结构示意图1、钨灯 2、聚光透镜 3、狭缝 4、准直镜 5、狭缝 6、检测池 7、反光镜 8、零位玻璃 9、光敏接收元件低功率、长寿命的钨灯发射出的光线经过准直透镜和狭缝后,通过参比池(参照池)和样品池(样本池),经平面镜反射回来后,再次通过光学单元,最后通过透镜聚焦到一对光传感二极管上(光传感器)。在测试期间,参比池和样品池中充满流动相。参比池随后与流路隔开,流动相仅流过样品池。如果两个池中介质的折射率没有差异,光线在通过它们时将不会发生折射。1 光束2 样本池3 参照池4 光轴(NsNr)5 光轴(Ns=Nr)6(4)和(5)在光传感器处的间距7 光传感器Ns:样本池中流动相的折射率Nr:参照池中流动相的折射率光线照射到一对光电二极管上,其中每个光电二极管都将给出一个电信号。随后这些信号会被放大,从而测得两个信号之间的差异。如果是零折射,这些信号之间的差异应该为零伏。借助一个电控机械联动装置,用户可以通过光路中的折射透镜来优化光电二极管的零偏转输出。还可以通过额外电路轻松地将信号输出校正为电子零点。1 光传感器A2 光传感器B3 光束当流动相的折射率发生变化时,通过样品池和参比池之间界面的光将被折射,从而使一个光电二极管上的光强增大,另一个电二极管上的光强减小。这种差异产生具有振幅和极性的信号,此信号被放大后,可以驱动图表记录仪。三、应用举例关注我们示差折光检测器是一种通用型检测器,只要被测组分与洗脱液的折光指数有差别就可使用。生命科学中常遇到各类糖类化合物,没有紫外吸收,一般常用示差折光检测器,她的通用性比UVD广,但灵敏度要低,对温度变化敏感,并与梯度洗脱不相容,因而限制了它的使用。应用一:麦芽糖、果糖、葡萄糖、异麦芽糖、麦芽三糖色谱条件色谱柱:月旭Xtimate® NH2(4.6×300,5μm)。流动相:乙腈:水=75:25;检测器:RID;柱温:30℃;流速:1.0mL/min;进样量:50μL。色谱图应用二:磷酸果糖二钠、蔗糖、葡萄糖、果糖色谱条件色谱柱:月旭Xtimate® sugar-Ca(7.8×300mm,8μm)。流动相:纯水;检测器:RID;温度:柱温75℃,检测器40℃;流速:0.2mL/min;进样量:10μL。色谱图四、示差检测器维护关注我们要想获得良好的实验结果,使用RID的三大法宝:第一、脱气;第二、平衡好流动相;第三、保持恒温恒压。在实际工作中我们会遇到很多典型的问题,接下来我们一起来分析一下这些问题如何破。五、使用注意事项关注我们1、正确放置溶剂瓶和废液瓶。要把溶剂瓶放在比示差监测器和溶剂泵还要高的位置,检测器出口留足够长的废液管通到下方的废液瓶,这样可以使样品池有一定背压,有利于检测信号的稳定。2、循环使用流动相。建议循环使用流动相。在没有进行分析时,打开循环阀,让流动相进行循环,这样泵就可以连续运行不必停止,一直到进行下一个分析。这样操作不仅可以节省流动相,而且检测器可以连续稳定的运行,随时进行样品分析。3、示差折光检测器不能用做梯度洗脱。由于介质的改变和压力的波动都会影响基线的稳定性,所以使用示差折光检测器时不能进行梯度洗脱。4、保证检测器的温度恒定。光学系统和流动相的温度对基线的稳定性影响很大。示差折光检测器可在比室温高5℃到55℃的范围内控温。建议将温度设为比室温高5℃,并确保柱温箱的温度与检测器保持一致。温度不宜过高,因为介质的折光指数随温度升高而降低,温度过高会使灵敏度降低。5、不可让流通池承受过大的压力。示差折光检测器流通池的反压约为1000psi,如果还要在系统里连接其他检测器。即示差折光检测器在流路系统里必须放在最后,以防压力增大时损坏流通池。6、某些溶剂随长时间存放而改变会造成基线的漂移。例如乙腈/水的混合物中乙腈的含量会降低,四氢呋喃会变成过氧化物,在吸湿性有机溶剂中的水量会增加,而保存在参比流通池中的溶剂如四氢呋喃会产生气体。因此,流动相最好做到临用现配或在有效期内使用。对于含有有机溶剂的流动相一般有效期3天,对于不含有机溶剂的流动相如纯盐或者纯水则根据室温情况,可临用现配或是配置好4℃冷藏,取用前先放置至室温。7、避免流动相和特定的色谱柱反应。某些流动相和特定的色谱柱反应,会产生长时间的噪声,例如乙腈/水流动相和氨丙基键合固定相在一起会出现这一现象。要判断长时间的噪声是否是由流动相/色谱柱的反应而产生,应该使用限流毛细管代替色谱柱,考查示差折光检测器的性能。
  • 流动分析技术在《生活饮用水标准检验方法》中的应用
    流动分析技术是20世纪50年代开发的一种湿化学分析技术,该技术自动化程度高,可批量检测样品,解放了劳动力,提高了工作效率,且具有检出限低、重现性好、分析速度快等特点,已广泛应用于环保、水质、烟草、质检及医学检验等行业,测试项目包括总氰化物、氰化物、挥发酚、阴离子表面活性剂、磷酸盐、总磷、总氮、氨氮、硫化物、六价铬、硝酸盐、亚硝酸盐、COD(Mn)、尿素等。目前主流的流动分析技术有两种,即连续流动分析技术(CFA)和流动注射分析技术(FIA)。2023年10月即将实施的生活饮用水标准检验方法GB/T 5750.4-2023中把感官性状和物理指标中的挥发酚类、阴离子合成洗涤剂指标规定了连续流动分析法和流动注射分析法;GB/T 5750.5-2023中无机非金属指标中的氰化物和氨(以N计)规定了连续流动和流动注射分析法。下面小编整理了生活饮用水标准检验方法中涉及到流动分析技术的标准,供大家参考。GB/T 5750.4-2023挥发酚-流动注射法原理:样品通过流动注射分析仪被带入连续流动的载液流中,与磷酸混合后进行在线蒸馏;含有挥发酚类的蒸馏液与连续流动的4-氨基安替比林及铁氰化钾混合,挥发酚类被铁氰化物氧化生成醌物质,在与4-氨基安替比林反应生成红色物质,于波长500nm处进行比色实验。仪器设备:流动注射分析仪:挥发酚反应单元和模块、500nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统。仪器参考条件:自动进样器蠕动泵加热蒸馏装置流路系统数据处理系统初始化正常转速设为35r/min,转动平稳加热温度稳定于150℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。 仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023阴离子洗涤剂-流动注射法原理:通过注人阀将样品注人到一个连续流动载流、无空气间隔的封闭反应模块中,载流携带样品中的阴离子合成洗涤剂与碱性亚甲基蓝溶液混合反应成离子络合物,该离子络合物可被三氯甲烷萃取,通过萃取模块分离有机相和水相。包含离子络合物的三氯甲烷再与酸性亚甲基蓝溶液混合,反萃取洗涤三氯甲烷,再次通过萃取模块分离有机相和水相。于波长 650 m 处对包含离子络合物的三氯甲烷进行比色分析,有机相的蓝色强度与阴离子合成洗涤剂的质量浓度成正比。仪器设备:流动注射分析仪:阴离子合成洗涤剂反应单元和模块、10mm比色池、650nm滤光片、自动进样器、多通道蠕动泵、数据处理系统。仪器参考测试参数:周期时间洗针时间注射时间进样时间出峰时间进载时间到阀时间峰宽200s50s50s80s100s80s80s180s注:不同品牌或型号仪器的测试参数有所不同,可根据实际情况进行调整。GB/T 5750.4-2023阴离子洗涤剂-连续流动法原理:在水溶液中,阴离子合成洗涤剂和亚甲基蓝反应生成蓝色络合物,统称为亚甲基蓝活性物质,该化合物被取到三氯甲烷中并由相分离器分离,三氯甲烷相被酸性亚甲基蓝洗涤以除去干扰物质并在第二个相分离器中被再次分离。其色度与浓度成正比,在650/660 nm处用 10 mm比色池测量其信号值。仪器设备:连续流动分析仪:自动进样器、阴离子合成洗涤剂分析单元(即化学反应模块,由相分离器、多道蠕动泵、歧管、泵管、混合反应圈等组成)、检测单元(检测单元可配备 10 mm 比色池、阴离子合成涤剂检测配备 650/660 nm 滤光片)数据处单元及相应附件。GB/T 5750.5-2023氰化物-流动注射法原理: 在pH为4左右的弱酸条件下,水中氰化物经流动注射分析仪进行在线蒸馏,通过膜分离器分离,然后用连续流动的氢氧化钠溶液吸收;含有乙酸锌的酒石酸作为蒸馏试剂,使氰化铁沉淀,去除铁氰化物或亚铁氰化物的干扰,非化合态的氰在pH数据处理系统初始化正常转速设为35r/min,转动平稳蒸馏部分稳定于120℃±1℃显色部分稳定于60℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.5-2023氰化物-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸性条件下,样品通过在线蒸馏,释放出的氰化氢被碱性缓冲液吸收变成氰离子,然后与氯胺-T反应转化成氯化氰,再与异烟酸-吡唑啉酮反应生成蓝色络合物,最后进入比色池于630 nm波长下比色测定。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、氰化物反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于125℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.5-2023氨(以N计)-流动注射法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在50℃~60℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:流动注射分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。GB/T 5750.5-2023氨(以N计)-连续流动法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在37℃~40℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:连续流动分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。
  • 测序仪笔记分享(万字长文,建议收藏)
    一. 测序仪对比测序技术代表仪器读长通量准确度成本Sanger法ABI 3730xl DNA Analyzer500-800bp0.096Gbp/天99.99%0.24美分/bpIlluminaHiSeq X Ten System150bp1800Gbp/运行99.9%0.01美分/bp华大智造MGISEQ-2000200bp(单端)或2×150bp(双端) 60Gbp/运行 99.9% 0.015美元/bpRoche 454GS FLX+ System700bp0.7Gbp/运行99.9%0.02美元/bpABI SOLiDSOLiD System 5500xl75bp120Gbp/运行99.94%0.13美分/bpPacBioSequel II System10kb60Gbp/运行99%0.15美元/bpNanoporeMinION Device100kb30Gbp/运行90%0.02美元/bpHelicosHeliScope Single Molecule Sequencer25-50bp28Gbp/运行未知  1. ABI 3730xl DNA Analyzer图源自thermofisher官网  1.1. 相关原理   DNA测序:基于Sanger法的原理,利用DNA聚合酶在体外DNA复制过程中随机掺入带有荧光标记和终止子的双脱氧核苷酸(ddNTPs),从而得到不同长度的DNA片段。这些片段经过电泳分离后,通过激光激发和CCD检测,得到每个碱基发出的荧光信号,从而确定DNA的碱基序列。   片段分析:基于荧光检测的原理,利用不同颜色的荧光染料标记不同长度或类型的DNA片段,如微卫星、SNP、AFLP等。这些片段经过电泳分离后,通过激光激发和CCD检测,得到每个片段发出的荧光信号,从而确定片段的大小或等位基因。  1.2. 主要组成  ABI 3730xl DNA Analyzer仪器是一种高通量的DNA测序和片段分析的平台,它可以同时使用48或96根毛细管进行电泳分离和荧光检测。   测序仪主机:包含电泳系统、自动进样系统、激光系统、光学系统、温控系统、聚合物输送系统等多个模块,用于控制仪器的运行和数据的采集。   计算机工作站:预装用于仪器控制、数据收集和样品文件自动分析的软件,如Data Collection Software、Sequencing Analysis Software、SeqScape Software、GeneMapper Software等。   毛细管阵列:提供预组装的48根或96根毛细管阵列,它们与业界标准的96孔和384孔板配合使用。毛细管为内部无涂层毛细管,可提供300次的运行质保。   DNA测序试剂和耗材:包括BigDye Terminator循环测序试剂盒、GeneScan分子量标准品、片段分析标准品、POP-7聚合物分离胶等。  1.3. 主机模块   电泳系统:负责将DNA片段在毛细管中进行电泳分离,根据不同长度的DNA片段在电场中的迁移速度不同,将它们按照从小到大的顺序排列。电泳系统由高压电源、电泳缓冲液、毛细管阵列等组成。  o 高压电源:提供高达30kV的电压,使DNA片段在电场中迁移。  o 电泳缓冲液:提供电导性和pH稳定性,使DNA片段在毛细管中顺利运行。  o 毛细管阵列:提供预组装的48根或96根毛细管,它们与业界标准的96孔和384孔板配合使用。毛细管为内部无涂层毛细管,可提供300次的运行质保。   自动进样系统:负责将样品从96孔或384孔板中自动吸取,并注入到毛细管阵列中。自动进样系统由进样针、进样泵、进样阀等组成。  o 进样针:用于从样品板中吸取样品,并通过进样阀将样品注入到毛细管中。  o 进样泵:用于控制进样针的吸取和释放动作,以及进样量的大小。  o 进样阀:用于控制进样针与毛细管之间的连接和断开,以及进样时间的长短。   激光系统:负责将激光光束照射到毛细管阵列的出口处,激发荧光信号。激光系统由激光器、光纤、光学开关等组成。  o 激光器:提供单波长、505nm、固态、长寿命的激光光源,用于激发荧光染料。  o 光纤:用于将激光光束从激光器传输到毛细管阵列上。  o 光学开关:用于控制激光光束的开启和关闭,以及激光功率的大小。   光学系统:负责将荧光信号收集并转换为电信号。光学系统由滤光片、透镜、CCD相机等组成。  o 滤光片:用于选择不同颜色的荧光信号,并过滤掉背景噪声。  o 透镜:用于聚焦和放大荧光信号,并将其投射到CCD相机上。  o CCD相机:用于将荧光信号转换为数字化的电信号,并传输给计算机工作站进行数据采集和分析。   温控系统:负责控制仪器的温度,保证测序的稳定性和可靠性。温控系统由温度传感器、风扇、加热器等组成。  o 温度传感器:用于监测仪器内部和外部的温度,并反馈给温控器进行调节。  o 风扇:用于散热和通风,维持仪器的适宜温度。  o 加热器:用于加热和保温,防止仪器的过冷。   聚合物输送系统:负责将聚合物分离胶从储存瓶输送到毛细管阵列中,作为电泳介质。聚合物输送系统由压力罐、气压调节器、流量计等组成。  o 压力罐:用于储存聚合物分离胶,并提供一定的压力,使聚合物分离胶能够流动。  o 气压调节器:用于控制压力罐的气压,以及聚合物分离胶的流速。  o 流量计:用于测量聚合物分离胶的流量,以及毛细管中的胶量。  2. HiSeq X Ten System图源自Illumina官网  HiSeq X Ten System是Illumina公司的产品。Illumina是一家生物技术公司,它的测序仪是基于桥式PCR和荧光检测的技术,也是目前最流行的二代测序平台之一。它的测序仪有多个系列,如NovaSeq、HiSeq、MiSeq、MiniSeq等,它们的核心技术原理是相同的,但在通量、读长、准确度、成本等方面有所不同。  2.1. 相关原理   文库构建:将待测DNA打断成小片段,并在两端加上特殊的接头(Adaptor),这些接头包含与流通池表面探针互补的序列(P5/P7)、用于区分不同文库的索引(Index)、以及用于测序引物结合的序列(Rd1 SP/Rd2 SP)。文库构建后需要进行质量检测和定量。   聚集体生成:将文库DNA片段注入到流通池中,并与表面探针杂交结合。然后进行桥式PCR扩增,使每个DNA片段形成一个聚集体。聚集体生成后需要进行温度变化和化学处理,使其单链化并去除P5端的DNA链,只留下P7端的DNA单链。   边合成边测序:将带有荧光染料和可逆终止子的四种dNTPs逐一加入到流通池中,并利用DNA聚合酶将它们连接到聚集体的DNA链上。每次只能加入一个碱基,然后用激光激发荧光信号,并用CCD相机记录每个聚集体发出的荧光信号,从而确定碱基序列。然后用化学剂去除荧光染料和可逆终止子,使下一个碱基可以继续加入。重复这个过程,直到完成所有的测序循环。   数据分析:将CCD相机收集到的荧光信号转换为原始数据(BCL文件),并进行质量控制和过滤,去除低质量的聚集体和信号。然后根据索引将不同文库的数据分离,并进行碱基识别(Base calling),将荧光信号转换为碱基序列(FASTQ文件)。最后根据不同的测序目的,进行后续的数据分析,如比对、变异检测、表达量计算等。  2.2. 主要组成   流通池(Flow cell):是一个微型的玻璃芯片,它的表面覆盖了数亿个固定在不同位置的寡核苷酸探针,这些探针与文库DNA片段的接头互补,可以通过杂交结合。流通池内部有多个通道,每个通道可以进行不同的测序反应。   聚集体(Cluster):是指通过桥式PCR在流通池表面扩增形成的由相同DNA片段组成的簇,每个聚集体可以发出荧光信号,从而被检测为一个读长(Read)。聚集体的密度和质量会影响测序的效率和准确度。   荧光染料(Fluorescent dye):是指用于标记不同碱基的四种荧光分子,它们分别对应A、T、C、G四种碱基,并发出不同颜色的光。荧光染料还带有可逆终止子,可以控制每次只加入一个碱基。   激光器(Laser):是指用于激发荧光染料发光的光源,它可以提供单波长、固态、长寿命的激光光束。   CCD相机(CCD camera):是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。   计算机系统(Computer system):是指用于控制测序仪运行和处理数据的设备,它预装了用于仪器控制、数据收集和样品文件自动分析的软件,如BaseSpace Sequence Hub、Sequencing Analysis Software等。  3. MGISEQ-2000图源自华大智造官网  MGISEQ-2000测序仪是一种基于荧光检测的第二代测序技术,可以实现高通量、高精度、低成本的基因组测序。  3.1. 相关原理  o DNA测序:基于双端测序的原理,利用DNA聚合酶在体外DNA复制过程中随机掺入带有荧光标记和终止子的双脱氧核苷酸(ddNTPs),从而得到不同长度的DNA片段。这些片段经过桥式扩增后,形成单分子簇,然后通过四色荧光检测,得到每个碱基发出的荧光信号,从而确定DNA的碱基序列。  o 片段分析:基于荧光检测的原理,利用不同颜色的荧光染料标记不同长度或类型的DNA片段,如微卫星、SNP、AFLP等。这些片段经过桥式扩增后,形成单分子簇,然后通过四色荧光检测,得到每个片段发出的荧光信号,从而确定片段的大小或等位基因。  3.2. 主要组成  o 测序仪主机:包含流体控制系统、温控系统、激光系统、光学系统、信号采集系统等多个模块,用于控制仪器的运行和数据的采集。  § 流体控制系统:负责控制样品和试剂的输送,以及测序反应的进行。流体控制系统由进样针、进样泵、进样阀等组成。  § 进样针:用于从样品板中吸取样品,并通过进样阀将样品注入到芯片上。  § 进样泵:用于控制进样针的吸取和释放动作,以及进样量的大小。  § 进样阀:用于控制进样针与芯片之间的连接和断开,以及进样时间的长短。  § 温控系统:负责控制仪器和芯片的温度,保证测序的稳定性和可靠性。温控系统由温度传感器、风扇、加热器等组成。  § 温度传感器:用于监测仪器和芯片内部和外部的温度,并反馈给温控器进行调节。  § 风扇:用于散热和通风,维持仪器和芯片的适宜温度。  § 加热器:用于加热和保温,防止仪器和芯片的过冷。  § 激光系统:负责将激光光束照射到芯片上,激发荧光信号。激光系统由激光器、光纤、光学开关等组成。  § 激光器:提供单波长、532nm、固态、长寿命的激光光源,用于激发荧光染料。  § 光纤:用于将激光光束从激光器传输到芯片上。  § 光学开关:用于控制激光光束的开启和关闭,以及激光功率的大小。  § 光学系统:负责将荧光信号收集并转换为电信号。光学系统由滤光片、透镜、CCD相机等组成。  § 滤光片:用于选择不同颜色的荧光信号,并过滤掉背景噪声。  § 透镜:用于聚焦和放大荧光信号,并将其投射到CCD相机上。  § CCD相机:用于将荧光信号转换为数字化的电信号,并传输给计算机工作站进行数据采集和分析。  § 信号采集系统:负责对数字化的电信号进行滤波、校准、分段、碱基识别等处理,最终生成测序结果。信号采集系统由数据采集卡、数据处理软件等组成。  § 数据采集卡:用于将CCD相机传输的电信号接收并转换为数字信号,以及进行一定的滤波和校准处理。  § 数据处理软件:用于对数字信号进行进一步的分段、碱基识别、质量评估等处理,以及生成测序结果文件。  o 计算机工作站:预装用于仪器控制、数据收集和样品文件自动分析的软件。  o 芯片:芯片是MGISEQ-2000测序仪的核心部件,它是一种微流控芯片,上面有数百万个微孔,每个微孔都可以进行单分子簇测序,实现高通量的数据产出。芯片有不同的规格和类型,如单端测序芯片、双端测序芯片、片段分析芯片等,可以根据不同的需求选择合适的芯片。  4. GS FLX+ System图源自罗氏官网  GS FLX+ System测序仪是一种基于焦磷酸测序(Pyrosequencing)技术的二代测序平台,它可以提供高通量、高准确度和超长读长的DNA测序服务。  4.1. 相关原理   文库构建:将待测DNA打断成小片段,并在两端加上特殊的接头(Adaptor),这些接头包含与DNA捕获珠表面探针互补的序列(A/B)、以及用于测序引物结合的序列(P1/P2)。文库构建后需要进行质量检测和定量。   乳液PCR:将文库DNA片段与DNA捕获珠混合,并加入油相形成乳液滴。每个乳液滴中只包含一个DNA捕获珠和一个文库DNA片段。然后进行PCR扩增,使每个DNA捕获珠上形成一个单分子聚集体。乳液PCR后需要进行破乳液和洗涤处理,去除多余的油相和PCR试剂。   PTP装载:将经过乳液PCR处理后的DNA捕获珠注入到PTP中,并使每个微孔中只有一个DNA捕获珠。然后进行温度变化和化学处理,使聚集体单链化并去除A端的DNA链,只留下B端的DNA单链。   边合成边测序:将带有荧光染料和可逆终止子的四种dNTPs逐一加入到PTP中,并利用DNA聚合酶将它们连接到聚集体的DNA链上。每次只能加入一个碱基,然后用激光激发荧光信号,并用CCD相机记录每个聚集体发出的荧光信号,从而确定碱基序列。然后用化学剂去除荧光染料和可逆终止子,使下一个碱基可以继续加入。重复这个过程,直到完成所有的测序循环。   数据分析:将CCD相机收集到的荧光信号转换为原始数据(SFF文件),并进行质量控制和过滤,去除低质量的聚集体和信号。然后进行碱基识别(Base calling),将荧光信号转换为碱基序列(FASTA/FASTQ文件)。最后根据不同的测序目的,进行后续的数据分析,如比对、变异检测、表达量计算等。  4.2. 主要组成   测序仪主机:包含电泳系统、自动进样系统、激光系统、光学系统、温控系统、聚合物输送系统等多个模块,用于控制仪器的运行和数据的采集。   计算机工作站:预装用于仪器控制、数据收集和样品文件自动分析的软件,如Data Collection Software、Sequencing Analysis Software等。   PicoTiterPlate(PTP):是一个微型的塑料板,它的表面覆盖了数百万个微孔,每个微孔可以容纳一个DNA捕获珠(DNA Capture Bead),并进行单分子测序反应。   DNA捕获珠(DNA Capture Bead):是一种直径约28微米的磁性珠子,它的表面覆盖了数千个固定在不同位置的寡核苷酸探针,这些探针与文库DNA片段的接头互补,可以通过乳液PCR(Emulsion PCR)扩增形成单分子聚集体(Single Molecule Cluster)。   荧光染料(Fluorescent dye):是指用于标记不同碱基的四种荧光分子,它们分别对应A、T、C、G四种碱基,并发出不同颜色的光。荧光染料还带有可逆终止子,可以控制每次只加入一个碱基。   激光器(Laser):是指用于激发荧光染料发光的光源,它可以提供单波长、固态、长寿命的激光光束。   CCD相机(CCD camera):是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。  4.3. 主机组成   电泳系统:是指用于将带有荧光染料和可逆终止子的四种dNTPs逐一加入到PTP中,并利用DNA聚合酶将它们连接到聚集体的DNA链上的系统。每次只能加入一个碱基,然后用激光激发荧光信号,并用CCD相机记录每个聚集体发出的荧光信号,从而确定碱基序列。   自动进样系统:是指用于将经过乳液PCR处理后的DNA捕获珠注入到PTP中,并使每个微孔中只有一个DNA捕获珠的系统。然后进行温度变化和化学处理,使聚集体单链化并去除A端的DNA链,只留下B端的DNA单链。   激光系统:是指用于激发荧光染料发光的光源,它可以提供单波长、固态、长寿命的激光光束。   光学系统:是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。   温控系统:是指用于控制PTP板和反应液的温度,以保证测序反应的稳定性和效率的系统。   聚合物输送系统:是指用于将不同类型和浓度的聚合物溶液输送到PTP板中,以提供不同阶段所需的反应条件和试剂的系统。  5. SOLiD System 5500xl图源自thermofisher官网  SOLiD System 5500xl测序仪是一种基于连接法测序(Sequencing by Ligation)技术的二代测序平台,它可以提供高通量、高准确度和中等读长的DNA测序服务。  5.1. 相关原理   文库构建:将待测DNA打断成小片段,并在两端加上特殊的接头(Adaptor),这些接头包含与DNA捕获珠表面探针互补的序列(P1/P2)、以及用于测序引物结合的序列(Rd1 SP/Rd2 SP)。文库构建后需要进行质量检测和定量。   乳液PCR:将文库DNA片段与DNA捕获珠混合,并加入油相形成乳液滴。每个乳液滴中只包含一个DNA捕获珠和一个文库DNA片段。然后进行PCR扩增,使每个DNA捕获珠上形成一个单分子聚集体。乳液PCR后需要进行破乳液和洗涤处理,去除多余的油相和PCR试剂。   FlowChip装载:将经过乳液PCR处理后的DNA捕获珠注入到FlowChip中,并使每个微孔中只有一个DNA捕获珠。然后进行温度变化和化学处理,使聚集体单链化并去除P1端的DNA链,只留下P2端的DNA单链。   边连接边测序:将带有荧光探针和可逆终止子的四种dNTPs逐一加入到FlowChip中,并利用DNA连接酶将它们连接到聚集体的DNA链上。每次只能加入一个碱基对,然后用激光激发荧光信号,并用CCD相机记录每个聚集体发出的荧光信号,从而确定碱基对序列。然后用化学剂去除荧光探针和可逆终止子,使下一个碱基对可以继续加入。重复这个过程,直到完成所有的测序循环。   数据分析:将CCD相机收集到的荧光信号转换为原始数据(BCL文件),并进行质量控制和过滤,去除低质量的聚集体和信号。然后进行碱基识别(Base calling),将荧光信号转换为碱基对序列(FASTQ文件)。最后根据不同的测序目的,进行后续的数据分析,如比对、变异检测、表达量计算等。  5.2. 主要组成   测序仪主机:包含电泳系统、自动进样系统、激光系统、光学系统、温控系统、聚合物输送系统等多个模块,用于控制仪器的运行和数据的采集。   计算机工作站:预装用于仪器控制、数据收集和样品文件自动分析的软件,如Data Collection Software、Sequencing Analysis Software等。   FlowChip:是一个微型的玻璃芯片,它的表面覆盖了数百万个微孔,每个微孔可以容纳一个DNA捕获珠(DNA Capture Bead),并进行单分子测序反应。   DNA捕获珠(DNA Capture Bead):是一种直径约28微米的磁性珠子,它的表面覆盖了数千个固定在不同位置的寡核苷酸探针,这些探针与文库DNA片段的接头互补,可以通过乳液PCR(Emulsion PCR)扩增形成单分子聚集体(Single Molecule Cluster)。   荧光探针(Fluorescent probe):是指用于标记不同碱基对的四种荧光分子,它们分别对应A/T、T/A、C/G、G/C四种碱基对,并发出不同颜色的光。荧光探针还带有可逆终止子,可以控制每次只加入一个碱基对。   激光器(Laser):是指用于激发荧光探针发光的光源,它可以提供单波长、固态、长寿命的激光光束。   CCD相机(CCD camera):是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。  5.3. 主机组成   电泳系统:是指用于将带有荧光探针和可逆终止子的四种dNTPs逐一加入到FlowChip中,并利用DNA连接酶将它们连接到聚集体的DNA链上的系统。每次只能加入一个碱基对,然后用激光激发荧光信号,并用CCD相机记录每个聚集体发出的荧光信号,从而确定碱基对序列。   自动进样系统:是指用于将经过乳液PCR处理后的DNA捕获珠注入到FlowChip中,并使每个微孔中只有一个DNA捕获珠的系统。然后进行温度变化和化学处理,使聚集体单链化并去除P1端的DNA链,只留下P2端的DNA单链。   激光系统:是指用于激发荧光探针发光的光源,它可以提供单波长、固态、长寿命的激光光束。   光学系统:是指用于捕捉和记录荧光信号的设备,它可以将荧光信号转换为数字化的电信号,并传输给计算机进行数据分析。   温控系统:是指用于控制FlowChip板和反应液的温度,以保证测序反应的稳定性和效率的系统。   聚合物输送系统:是指用于将不同类型和浓度的聚合物溶液输送到F
  • 等离激元“拉满”红外“技能”
    红外光谱技术是一种通过检测分子内部振动/转动能级的跃迁频率来确定物质分子结构从而鉴别化合物的分析方法。其“快速”、“无损”的特点,对研究生物分子的化学键和官能团十分有利,因此受到生物、化学等领域的广泛关注。不过,微米级别的红外光波长和纳米级别的生物分子相互作用微弱,成为红外光谱技术长期难以突破的限制。更重要的是,生物分子原位检测的水环境,是红外光谱最大的“忌讳”。  为此,来自国家纳米科学中心(以下简称纳米中心)纳米光子材料与器件实验室(以下简称光子室)研究团队自主开发出一种石墨烯增强液相红外传感器,“拉满”红外光谱的“技能”。这一传感器不仅实现了在生理环境下原位识别纳米级蛋白质的振动指纹,还创新性地采用电学调控的方法有效消除了液相环境水信号干扰。  5月30日,这项研究成果在《先进材料》(Advanced Materials)上在线发表。石墨烯增强液相红外技术原理示意图及相关实验数据(研究团队供图)  红外光谱难题待解  在生物学研究中,蛋白质作为复杂的纳米级分子机器,其纳米蛋白冠界面、病毒蛋白结构域与受体的结合界面以及纳米药物靶向作用位点也都在纳米尺度。作为论文通讯作者之一、国家纳米科学中心研究员杨晓霞告诉《中国科学报》:“开发具有纳米级分辨率的原位和非侵入性检测技术以了解生理环境中的生物界面和过程非常重要。”  许多研究者心目中,目前已经广泛应用于物质鉴定的红外光谱技术备受期待。一束红外光通过某种物质,当物质分子中基团的振动/转动频率和红外光谱中的特定频率一样时,分子会吸收红外光的能量完成“跃迁”,该处波长的光就被物质吸收,形成具有不同特征的“振动指纹”。这便是红外光谱技术用来鉴别化合物的基本原理。  然而,红外波长普遍在微米尺度,与纳米尺度的生物分子存在超过3个数量级的尺寸失配,导致光与物质相互作用十分微弱。与此同时,水作为一种极性分子,强烈的红外吸收总是掩盖生物分子关键频段的振动指纹。  因此,如何克服信号微弱和水的干扰这两个“短板”成为红外光谱探测研究领域面临的大挑战。  石墨烯+等离激元  多年来,学者们想尽各种办法,希望用“增强”红外光谱的策略实现原位检测生物分子的目标。  作为导电材料上一种独特的物理现象,“等离激元”的应用被视为增强红外光谱的新方法之一。在等离激元现象中,入射光驱动材料中的自由电荷产生光频的集体振荡,形成的电磁模式可以“聚焦”和“放大”入射光的信号。  与此同时,2010年前后,石墨烯作为一种新型低维纳米材料,逐渐走进科研人员视野。石墨烯具有单原子层的厚度、高载流子迁移率、狄拉克电子特性以及电学可调的优势,是实现增强红外光谱的理想介质。  石墨烯+等离激元,会迸发出什么火花?过去已有研究证明,石墨烯等离激元在红外波段表现优异,其可以将90%的电磁场能量“圈定”在表面10纳米范围内,形成“热点”,处在热点区域的待测分子红外信号被有效放大。  但是,实际操作中,研究人员却遭遇新的困难。“石墨烯的特殊结构带来性能突破的同时,也使其等离激元效应容易遭受周围介电环境的强烈干扰。”最新发表论文一作、国家纳米科学中心博士生吴晨晨告诉《中国科学报》。  为解决石墨烯等离激元易受干扰的问题,2015年以来,纳米中心光子室研究团队通过对石墨烯纳米结构设计和等离激元调控规律研究,突破了基底介电环境干扰,已经实现了微量固相有机分子薄膜和有害气体分子的高灵敏检测,相关研究成果陆续在《自然-通讯》《先进材料》等期刊上发表。  想法变成现实  科研团队在攻克固相和气相分子检测之后,又对石墨烯等离激元进行了“新技能”开发,即液相分子检测。  吴晨晨介绍,消除水的干扰是生理环境中分子检测遇到的最大挑战。一方面,通过双电层对石墨烯进行电学调控可将等离激元热点外的背景信号原位扣除;另一方面,石墨烯的疏水表面可以有效吸附溶液中的蛋白质分子到其热点区域,并把水分子排除在热点区域以外,这两者协同作用,可有效放大蛋白质分子的红外信号。  这个想法看起来容易,想要真正做出一个实物却没那么简单。研究团队首先通过设计超薄透射红外液体流通池,保证了红外光在液体环境下的稳定光程和高透过率。然后,构筑了在生理环境中进行有效电学调控的石墨烯纳米结构。经过3年不懈努力,一种可调谐的石墨烯等离激元增强液相红外传感器终于出炉。  从一进入团队开始,吴晨晨几乎每天从早到晚都泡在这个实验上,辗转于微纳加工实验室和红外光谱实验室。“从红外液体流通池到传感器的电路设计,理论上看起来是能走通的,但是在微纳加工实验室制备完传感器,去测试红外光谱之后又发现没有预期的结果。”她说,“就这样反复失败,反复查阅文献、找老师们讨论、总结原因,重新设计、重新制备传感器。”当然,她也获得一个意外的收获,微纳加工技术得到大大精进。  实验证明,这一液相红外传感器在生理环境下,有效激发了可调谐的石墨烯等离激元响应,不仅成功抑制了水环境的信号干扰,还将光谱检测的灵敏度提高到了2纳米水平。在此基础上,进一步实验原位识别了纳米级蛋白质“酰胺I带”和“酰胺II带”的振动指纹,并成功监测了纳米蛋白质的氢氘质子交换过程。  “几乎从零起步,看着这个一步步研究出来的实实在在的技术,有很强烈的成就感。”吴晨晨坦承。  更令人期待的是,这种自主设计的可调谐石墨烯等离激元增强液相红外传感器作为可拆卸附件,可以兼容商用显微红外光谱仪的测量模式。  国家纳米科学中心博士生吴晨晨为本文的第一作者,戴庆研究员和杨晓霞研究员为共同通讯作者。
  • 得利特成功升级了在线PH分析仪
    对于不同类型的在线水质分析仪器,技术要求也是不同的,一般而言,监测型分析仪器对测量数据的准确度要求较高,数据可以作为有关部门进行管理的依据,对检测原理和方法的限制较多,要求是成熟的分析技术;而过程型分析仪器对仪器的可靠性和稳定性要求较高,要求仪器能够及时可靠地反应水质变化的趋势,以便为水处理过程控制提供依据。对仪器的响应时间要求较高,对仪器的检测方法和原理限制少,允许更多创新型的新原理、新方法的在线分析仪器应用。说到创新,北京得利特一直在做,下面是我们新升级的一款产品,得利特为您介绍一下:B2020在线PH分析仪采用全新的设计理念,连续监测水溶液的pH值,适用于一般工业用水、纯水pH的监测,广泛适用于电力、化工、石油、环保、制药等行业中多种水质的pH值测量,是一台高精度、智能化、高性能现场测量仪表。仪器特点1、192×64点阵液晶、多参数显示、内容丰富2、采用嵌入式系统设计、贴片工艺技术提高了产品性能和可靠性、符合EMC设计要求3、中、英文双语可编程切换,满足不同用户需求4、全中、英文引导式操作模式、使用简单、通俗易懂5、防护等级高,达到IP65,可以满足各种复杂环境应用要求6、全新的流通池设计、结构简单、抗干扰能力强。7、具有历史数据、运行、校准记录存储、查询功能,可查询100000条历史数据、1000条运行记录、100条校准记录技术参数显 示:中、英文显示,192×64点阵液晶测量范围:(0.00~14.00)pH分 辨 率:0.01pH仪表示值误差:±0.05pH输入阻抗:不小于1×1012Ω响应时间(T90):90s(25℃)温度传感器:Pt1000温度范围:(0.0~99.9)℃温度误差:±0.5℃温度分辨率:0.1℃温度补偿:(0.0~60.0)℃(手动或自动)样品条件:温度范围:(5~50)℃流量范围:不大于6升/小时环境温度:(5~45)℃环境湿度:不大于90%RH(无冷凝)电流输出:(4~20)mA(二路隔离输出)电流精度:±1%F.S电流负载:2、可编程的自动或手动温度补偿方式、使用灵活、方便3、使用高性能的复合电极,测量准确,响应迅速4、两路完全隔离的电流信号输出,可分别设定输出电流范围5、带有上、下限报警功能,可分别设定报警值
  • 赛普环保发布BOD快速测定仪新品
    新型SPN BOD-220A快速测定仪 ------低浓度地表水BOD检测的创新与突破? 自我公司220系列微生物电极法BOD快速测定仪问世以来,得到广大用户的支持与信任,在此向所有支持过我们的行业专家、提出宝贵意见的产品使用老师表示由衷的感谢!产品发展历程2002年推出半自动BOD快速测定仪2006年推出24位全自动型BOD快速测定2010年推出便携式BOD快速测定仪2012年完成全系列产品的品质提升及性能优化用户意见及反馈我公司对用户反馈的BOD快速测定仪产品本身及使用中遇到的问题进行了总结归纳,集中在以下几方面1、地表水监测数据偏低,特别是冬季低温环境下地表水BOD测定值甚至为零。(自主研发的溶氧补偿电极:能同步测量溶氧绝对值和溶氧变化值,校正了以往测样过程中水样溶解氧过饱和所带来的测量误差,从而消除待测水样中溶解氧绝对值变化的影响。更有效的保证了BOD测量结果的准确性)备注:已向国家知识产权局申请专利保护。申请号或专利号:201910069593.X。发明创造名称:BOD快速测定仪以及精确补偿测定方法。2、微生物膜活化需要更加快捷,同时使用人需要仪器更加快速响应。(专用生物膜弹性支撑装置: 加快了微生物膜的活化效率,缩短生物膜的上机活化时间;独特的结构设计消除了测样时气泡等带来的负面干扰,同时溶氧绝对值更高,从而有效提高了测量精度以及稳定性。)3、电脑控制软件的设置及操作需要更加简便(更美观的外观设计,操作更方便。七寸全彩高清触摸屏,既可电脑软件控制,也可实现脱机操作)4、微生物传感器改用固态导电凝胶替代Kcl电解液,响应速度不变,性能更加稳定,延长电极使用寿命(专利号:ZL 2014 2 0278587.8)5、全新的智能操作软件,可兼容WIN7~WIN10系统,具有故障报警功能,降低意外故障对仪器造成的损失6、定位系统采用光耦和伺服电机闭环系统,保障进样时更稳定的性能及更高的精度,按顺序采样,样品无遗漏7、加装气体质量流量传感器,实时监测气体流量,确保进气量恒定;并实现了气量流量异常报警实时反馈。 处理方案:(根据上述反馈的情况和建议,我公司从检测原理上的完善、微生物筛选及成膜技术、零部件的质量性能提高、软件的人性化及用户体验等诸方面进行了改进。)第一、地表水测定值的原因分析及解决方案 经我公司技术人员分析研究,造成地表水BOD测量数值偏低的最主要的原因在于样品中的溶解氧高于清洗缓冲液中的溶解氧,这是BOD快速测定仪的测量原理不同于传统五日生化法之所在。 五日生化法是计算待测水样中消耗的溶解氧,而微生物电极快速测定法是以清洗缓冲液中的溶氧水平为基准,因此待测水样的溶氧水平会影响微生物传感器的BOD测量精度。原来以前的研究认为,通过气泵曝气可以保证进入微生物传感器的样品中溶解氧可以保持恒定,现经分析发现:当待测水样溶氧偏低时由于仪器有气泵曝气,不影响BOD测量精度;但是当待测水样中溶解氧偏高甚至过饱和时,一般需经过长时间回温才能消除,气泵曝气未能消除过高的溶解氧、而过高的溶解氧会给微生物传感器叠加一个溶氧变化值,给BOD的测量带来负偏差,这就是地表水BOD测定值偏低的根本原因。解决方案: 据此,我们在微生物传感器前增加了一只溶解氧电极,待测水样先进入溶氧电极的流通池再进入微生物传感器的流通池,将待测水样的溶氧绝对值及与清洗缓冲液间的溶氧差值作为函数变量对微生物传感器所测BOD值进行修正,大量实验数据表明,经过修正仪器的BOD测定值与五日生化法数据更为接近,突破了低浓度地表水的BOD测定的瓶颈。建立的修正函数关系表述如下:BOD(修正值)=F(DO) +F(ΔDO)+ BOD 备注:已向国家知识产权局申请专利保护。申请号或专利号:201910069593.X。发明创造名称:BOD快速测定仪以及精确补偿测定方法。 F(DO)-----根据待测水样溶氧绝对值建立的修正函数 F(ΔDO)------根据待测水样中溶氧与清洗缓冲液的溶氧之差值建立的修正函数 BOD------微生物传感器的BOD实测值 原理示意图新型BOD快速测定仪的原理流程如(图一)所示:其中器件8为突破创新点--流通式溶解氧测量装置。第二、微生物菌种的培养及制膜工艺优化根据用户意见,我公司通过长期探索,使用BOD专用菌种,通过与国家级科研院所合作,采用高通量筛选技术,菌种制备中 ,改进了微生物培养的培养基质、乳化剂材料、分离及干燥工艺,通过先进的克隆制备技术和转接种技术,使新的微生物菌种既具备高效的生化降解能力,又具有良好的耐毒性抗干扰适应性, 同时制订相关技术路线和批次检验方法标准,有效保证菌株的有效性和一致性。在微生物膜的制备中采用比浊分光检测技术控制菌量,保证了微生物膜中菌量的一致性。另外通过二次低温冷冻干燥,保证微生物膜可长期保存,微生物的复水活化率达到98%以上, 微生物膜的活化时间也大为缩短,现仅需两天左右 测量稳定性及使用寿命亦有所提高。第三、零部件性能提高 1、液量控制: 所采用蠕动泵具有更高的流量控制精度2、气量控制: 加装气体质量流量传感器,实时监测气体流量,气量可调节且确保恒定,可实现气量流量 异常实时报警功能。3、传感器结构的小改进带来性能的大提高: 专用的生物膜弹性支撑装置,更大增加了微生物膜的活化效率,有效提高了测量精度以及稳定性。同时缩短了上机活化时间4、全自动进样器(24位)的性能提高: 定位系统采用光耦和伺服电机闭环系统,保障进样器具有更稳定的性能及更低的故障率;按顺序采样,样品无遗漏。第四、全新的软件设计1、七寸全彩高清触摸屏,既可电脑软件控制,也可实现脱机操作。嵌入式32位闪存微控制器,操控方便灵活。2、计算机上位机软件设计更加人性化,可人机对话方式设定及调整各项参数,可将检测数据与LIMS系统对接。整机也已申请已向国家知识产权局申请专利保护。申请号或专利号:201920122590.3。发明创造名称:BOD快速测定仪。 创新点:我公司对用户反馈的BOD快速测定仪产品本身及使用中遇到的问题进行了总结归纳,集中在以下几方面 1、地表水监测数据偏低,特别是冬季低温环境下地表水BOD测定值甚至为零。(自主研发的溶氧补偿电极:能同步测量溶氧绝对值和溶氧变化值,校正了以往测样过程中水样溶解氧过饱和所带来的测量误差,从而消除待测水样中溶解氧绝对值变化的影响。更有效的保证了BOD测量结果的准确性)备注:已向国家知识产权局申请专利保护。申请号或专利号:201910069593.X。发明创造名称:BOD快速测定仪以及精确补偿测定方法。 2、微生物膜活化需要更加快捷,同时使用人需要仪器更加快速响应。(专用生物膜弹性支撑装置: 加快了微生物膜的活化效率,缩短生物膜的上机活化时间;独特的结构设计消除了测样时气泡等带来的负面干扰,同时溶氧绝对值更高,从而有效提高了测量精度以及稳定性。) 3、电脑控制软件的设置及操作需要更加简便(更美观的外观设计,操作更方便。七寸全彩高清触摸屏,既可电脑软件控制,也可实现脱机操作) 4、微生物传感器改用固态导电凝胶替代Kcl电解液,响应速度不变,性能更加稳定,延长电极使用寿命(专利号:ZL 2014 2 0278587.8) 5、全新的智能操作软件,可兼容WIN7~WIN10系统,具有故障报警功能,降低意外故障对仪器造成的损失 6、定位系统采用光耦和伺服电机闭环系统,保障进样时更稳定的性能及更高的精度,按顺序采样,样品无遗漏 7、加装气体质量流量传感器,实时监测气体流量,确保进气量恒定;并实现了气量流量异常报警实时反馈。 BOD快速测定仪
  • 新品上市:月旭科技低温型蒸发光散射检测器
    待测样品物质没有生色基团,无法用紫外-可见光检测器检测该怎么办?别担心,这期小编给大家带来了月旭科技的低温型蒸发光散射检测器,无论物质是否具有生色基团都逃不过他的“眼睛”。下面就由小编给大家介绍一下月旭科技新推出的低温型蒸发光散射检测器吧!蒸发光散射检测器检测原理 仪器优点高灵敏度,优化了对非挥发性、热不稳定和半挥发性化合物的敏感性;专用的高效液相色谱雾化器和创新的流通池设计,使谱带展宽最小化;容易拆卸和安装的雾化器,流量范围涵盖200μl /min~2ml/min;通过自动增益调整,检测器可以自动调整增益设置;完全远程控制,气体、加热器、光电二极管、光源均可在分析结束之后自动关闭;可以为符合GLP和验证程序提供了完整的SOP方案;仪器寿命长,具备很高的可靠性和稳定性;低温蒸发,避免温度过高化合物分解导致的检测不准。Welch ELSD-5450可用工作站列表应用案例同步测定银杏中萜烯内酯和类黄酮:采用HPLC/ELSD法对四种萜烯内酯和三种黄酮类化合物进行了色谱分析。1 -银杏内酯,2 -银杏内酯C, 3 -银杏内酯A,4 -银杏内酯B,5 -槲皮素,6 -异鼠李皮素,7 -山奈酚
  • 我国工业在线近红外光谱技术发展的关键问题分析
    p   过程分析技术(PAT)是通过对原材料和处于加工中材料的关键质量品质和性能特征进行及时测量,来设计、分析和控制生产加工过程的一项技术。PAT有助于实时掌握各种物料的状态、含量、性质,深刻理解工业过程各个工序的工作实况和本质,更有利于生产过程的实际控制。因此,PAT对于减少生产时间、提高产品质量、提高自动化程度等具有重要作用。在线监测是PAT的重要内容,近红外光谱(NIR)是目前工业PAT中最重要的在线监测技术之一。 /p p   近红外光谱分析技术操作简单、使用方便、测量快速,而且能提供丰富的分子信息,是非常理想的在线监测技术。同时近红外光谱仪器种类多、测量附件全、性价比高等优点也是选择NIR技术实现在线监测的重要理由,因此近几十年来近红外光谱技术在PAT中的应用越来越广泛和普及,代表性的应用领域包括制药、石油化工、基础有机化工、食品生产和加工、酿酒等。 /p p   整体上看,我国近红外光谱技术的发展和应用,包括仪器研发、算法研究、应用开发等,较欧美及日本等西方国家相比并不落后。虽然某些方面还差强人意,但也有一些研究取得了令人惊喜的成果,也成功地拓展了一些我国特有的应用领域。但与此形成鲜明对比的是,在在线NIR领域我们却明显落后于西方国家,我国在线NIR技术的应用远未到达其应有的程度和水平,尤其是在工业生产领域,与中国目前引领世界经济发展的地位非常不相称。本文将着眼于工业领域,探讨在线NIR技术发展的重点或难点,分析制约我国在线NIR发展的关键问题,以期为中国在线NIR的快速发展奉献微薄之力。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 291px " src=" https://img1.17img.cn/17img/images/201908/uepic/dd48837a-0182-4b6c-81c6-d3a216daed30.jpg" title=" 微信图片_20190823095234.jpg" alt=" 微信图片_20190823095234.jpg" width=" 200" height=" 291" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 华东理工大学 杜一平教授& nbsp /strong /p p strong   span style=" color: rgb(255, 0, 0) "  1、重视开发工业在线专用近红外光谱仪器及其配套设备 /span /strong /p p   在线NIR技术的硬件主要包括近红外光谱仪器和配套的测样装置。虽然工业过程的光谱测量一般具有抗震、耐温、防腐、防爆等要求,但经适当的设计和安装,常用的近红外光谱仪器,包括傅里叶变换、光栅扫描、声光可调滤光器型,以及多种分光原理的小型光纤近红外光谱仪器都可以用于工业在线监测中。大型高性能光谱仪在在线NIR中的应用是比较成熟的,在石油化工、制药、烟草等领域已经有了一些比较成功的应用。值得关注的是,近年来小型光纤光谱仪器的发展为在线NIR展现出美好的前景。除了仪器小巧、价格低廉这些必然的优点以外,光纤光谱仪还具有安装容易、灵活,使用方便等优势。虽然在性能上不如大型光谱仪,但对于某些对分辨率和准确度要求并不是很高的应用对象,小型光纤光谱仪更具有吸引力。整体上看,各类近红外光谱仪器为在线NIR提供了非常广阔而灵活的选择空间,NIR仪器并不是在线NIR技术推广的难点。但毕竟工业在线监测具有特殊的要求,针对这些要求开发专用的在线NIR仪器还是非常必要的。 /p p   在线NIR可用于很多生产工序,如反应、蒸馏、混合、分离、烘干、溶解、结晶等,不同生产工艺对在线监测的要求也是五花八门,而且监测点的环境一般也远较实验室恶劣,比如温度、湿度、腐蚀性、振动等条件都会对光谱仪造成影响。因此,在线NIR监测对检测探头和监测条件有很多具体的要求。通常使用光纤将监测点与光谱仪连接起来,这样可以避免很多环境因素的影响和限制。监测点一般采用光纤探头或流通池实现光谱的采集。对于光纤探头,入射光和返回光路设计在一个探头内,使用时只要将探头插入被监测的物料内即可,因此使用方便、灵活。透射光纤探头用于对液体样品的测量,漫反射光纤探头用来测定固体样品。流通池适用于液体样品的在线测量,将流通池固定在监测点的管路上,连接于流通池上的入射光和返回光通过两路光纤进行光传输,并与光谱仪相连。实际生产过程往往很复杂,对在线监测会产生很多的制约,常见的要求包括检测探头必须耐温、耐压、耐腐蚀、耐磨等,还要考虑解决可能存在的探头堵塞、产生气泡等问题。鉴于工业在线NIR对光纤探头或流通池的特殊要求,比较合理的解决方案是根据具体工业过程的特点,开发系列检测探头用于不同需求的应用。这样做有利于检测探头的标准化、规范化,对于提高在线NIR技术的开发效率,推广在线NIR具有重要意义。 /p p span style=" color: rgb(255, 0, 0) " strong   2、提高应用技术人员近红外光谱分析模型的开发能力 /strong /span /p p   对于从事近红外光谱技术应用的技术人员来说,建模是难点问题之一,因为它需要化学计量学知识作为支撑。 /p p   建立高质量的模型(不妨称为最优模型)确实是一件不容易的事情,但是如果简化建模过程,建立一个比较优的合理的模型就不一定很难了。所建模型是最优还是比较优,一般体现在预测误差是最小还是比较小,而在近红外光谱分析的实践中,不同模型的预测误差常常相差不大(在合理建模的前提之下),或者用户对模型预测能力要求不高,这种情况下,完全可以用比较简单的建模过程和方法建立比较优的模型。另外,在线分析关注的是监测指标值的变化趋势,因此相对于监测结果的绝对准确度,其更注重结果的稳定性。如果采用上述的策略,建模就不太难了。 /p p   本课题组在与企业合作开发近红外光谱模型时,所采取的方法就是:我们为用户开发实用的近红外光谱模型的同时,对用户的技术骨干进行建模培训,使其除了掌握模型使用和简单维护的技能以外,还要具备基本的建模能力。如果有必要,我们还提供简易的建模软件。该软件能够使不甚专业(基本的化学计量学知识还是需要掌握的)的使用者,能够用简单的若干个套路“半自动化地”完成建立模型的任务。这样做不但有利于用户更好地理解和使用模型,还可以自主开发新的模型(虽然不一定是最优的,但能保证是较优的),同时也为社会培养了更多的“化学计量学人”。这种做法效果很显著,我们为某化工厂研发了一套在线近红外光谱监测装置,并建立了模型。后来该企业自主开发了第二套监测装置,而且在我们的帮助下,实现了一台在线NIR仪器顺序监测六个监测点的在线监测。再后来他们又独立开发了第三套监测系统,独立完成了建模工作。 /p p   梁逸曾教授曾经多次指出:只要掌握好的学习方法,化学计量学并不难学。我体会到,要普及技术人员建立近红外光谱分析模型的能力,培训是必需的环节,而培训的手段和方法可能更是至关重要的。仪器信息网和近红外光谱分会每年都举办近红外光谱技术和化学计量学的培训活动,这对于普及近红外,推动近红外的发展意义重大。 /p p   另外,本人认为:智能建模,或自动建模是解决建模难这一瓶颈问题的有效途径,这种建模方法的研发是非常有意义,且有重要需求的研究课题,理应引起化学计量学研究者,或NIR模型开发人员的重点关注。 /p p span style=" color: rgb(255, 0, 0) " strong   3、做好产、学、研、用、政环节切实推动我国工业在线近红外光谱技术的应用和普及 /strong /span /p p   在国产分析仪器的发展过程中,人们逐渐将“产、学、研”的传统提法,又添加了“用”和“政”两个内容。“用”是指用户,意为仪器的研发离不开用户的参与或用户的要求,这层含义用在近红外光谱领域(包括在线近红外)更是贴切。下面我想重点谈谈“政”的作用。 /p p   “政”即政府,更广义地理解就是“领导”。在很多场合,南开大学邵学广教授都提到:发展我国近红外光谱技术,我们不但要培训科技人员,还要培训领导。这句话很深刻地道出了“政”的重要性。 /p p   首先,政府重视是发展我国近红外光谱技术的重要条件,这是毋庸置疑的。 /p p   第二,发展我国在线近红外光谱技术另外一个重要因素就是用户企业领导的重视。在推广在线NIR时,企业领导经常担心的问题是这些技术能否影响其正常的生产,或者说,企业已经具备了正常的生产,有没有必要担一定的风险上在线NIR技术。从商业角度看,领导的担心是有道理的,但这却影响了在线NIR技术的普及和推广,实际上也影响了企业未来的竞争力(安于现状能够保证企业今天的现状,但不一定能满足未来发展的要求)。这种问题最好的解决方案就是“培训领导”,改变其对近红外光谱技术的保守看法。另一个思路就是,在线NIR技术在单一企业应用成功后,在同行业中进行推广,使其具有示范作用。即,“一点红带到一片红”。 /p p   第三,发挥“政”的作用还体现在发展标准方法上。在国民经济生产中,标准方法扮演着重要的角色。在生产企业,原材料检测、生产中间产物检测和质量控制,以及最终产品的质量检测,往往都依赖标准分析方法。可惜的是,在标准方法中很少看到近红外光谱的影子。推广在线NIR技术时,非标准方法往往也是企业拒绝该技术的原因。解决这种问题的根本策略就是积极推动近红外光谱技术进入标准方法的进程。在很多近红外人的不懈努力下,近年来这方面工作取得了很大成就,发展了很多使用近红外光谱的国家标准和行业或地方标准,但其覆盖面还远远不足,在在线NIR领域更是如此。另外,进一步推动将NIR技术引入企业标准也是不容忽视的工作。在推广在线NIR技术时,要充分考虑企业在标准化方面的需求,使近红外光谱技术完全满足要求。我们课题组在为一家中药生产企业开发近红外光谱分析技术时,应企业要求,在软件中增加了账户管理系统、历史操作日志的记录与查看、用户权限分级管理系统等模块,就是为了要达到GMP的要求。 /p p span style=" color: rgb(255, 0, 0) " strong   4、提高在线NIR从业人员的综合技术能力 /strong /span /p p   与实验室NIR技术完全不同,在线NIR技术是一种集机械、光学、电子、自控,以及应用领域的多学科体系。在为用户开发在线NIR技术时必然会遇到与用户现有生产过程分析技术(PAT)和过程控制技术(PCT)的融合问题。为了更好地服务于生产企业,从事NIR开发的技术人员,或者技术团队必须要拓展自己的专业知识,完美的、专业的技术服务才容易为客户接受。 /p p br/ /p p   在经济飞速发展的中国,在线近红外光谱技术具有重大的需求,但其发展却受到了很多因素的限制和制约,导致推广和普及在线近红外光谱技术出现了很多问题。解决这些问题的重担责无旁贷地落在我国近红外人的肩上。在中国近红外光谱分会这杆大旗下,团结着各行各业、各种专业背景的技术人员,让我们怀着开放的胸怀,通力合作、取长补短、积极进取,为推动我国工业在线近红外光谱分析技术的发展做出我们应该做的努力。 /p p style=" text-align: right " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " (杜一平 华东理工大学上海市功能性材料化学重点实验室,化学与分子工程学院,上海,200237 /span /strong ) /p
  • 世界著名药企新成果:抗肿瘤药连续合成、分离和分析!
    背景介绍近期,阿斯利康公司药物研发部门的Eleonora等人对抗肿瘤药AZD4635的合成工艺进行了优化,通过引入连续流氧化以及在线气液分离和在线监控技术,完成了该原料药的合成。连续流技术的引入,将工艺从传统的5步反应缩短为3步,总收率提高了4个百分点。其中亮点多多,请随小编一起了解一下他们的研究细节吧!现有的工艺合成AZD4635需要5步反应,虽然实现了6.5kgAPI的合成,但是该工艺步骤繁琐,且需要使用Pd、Ir等贵金属催化剂。图1. 3步合成新工艺与现有5步合成工艺对比新工艺只需三步即可得到最终产物。且使用价廉物美的氧气作为氧化剂,大大节省了原材料成本。氧气是一类十分清洁的氧化剂,廉价易得,且反应不产生副产物。然而,氧气也是一类助燃剂,在间歇釜条件下,极易因为静电或者局部过温,发生燃烧甚至爆炸等事故。所以化工行业有“宁做十个还原,不做一个氧化”的说法。连续流技术的应用,可以通过技术手段及时消除静电并精确控制温度,从而极大降低反应失控风险。具体研究内容一、反应条件初步探索作者先使用间歇釜对反应的溶剂、催化剂和碱等条件进行了探索。最终DMSO被选作溶剂,Cu(OAc)2被选作催化剂,进行后续研究。表1. 釜式反应条件测试实验二、连续流装置搭建连续流工艺流程图如下图所示,原料(化合物3)溶解在DMSO中,加入5 mol%Cu(OAc)2作催化剂,以3ml/min的流速泵入连续流反应器(长度90mm,内径9.5ml,持液体积3ml)。反应物氧气通过质量流量计后,以约20ml/min的流速进入反应器,在120℃左右的温度下反应,物料经背压阀(压力设定35bar)流出后,经过Zaiput分离器完成气液分离,液体物料流过原位红外流通池后,进入收集罐。表2. 连续流工艺条件优化作者在反应出口设置了Zaiput分离器,将未反应的氧气与原料进行在线分离,并以1L/min的流速的氮气对剩余氧气进行稀释(使尾气中氧气的含量在2%以下),确保尾气的安全。【编者】Zaiput分离器,主要原理为两相不互溶的流体在多孔分离膜的表面张力差不同。本实验中氧气和反应后有机混合溶液形成两相不相容的混合流体,通过Zaiput将氧气分离出来。这样可以减少由于流通池中的氧气气泡而产生的背景噪声,提高在线原位红外测试结果的稳定性和准确性。康宁在大中华区独家代理的MIT 孵化的Zaiput连续分离器,不仅用于气液相的分离,在液液相连续分离中也有着广泛的应用。与康宁微通道反应器相配套,Zaiput分离器产品覆盖实验室小试到千吨级工业化生产。感兴趣的朋友,可拨打下方400电话,联系我们。红外光谱图中,化合物3和4分别在1689cm-1和1675 cm-1,1693 cm-1有不同的吸收峰,所以反应过程中可以用原位红外光谱(Mettle-Toledo React IR 15)进行在线分析,对反应过程进行在线监控。三、连续流工艺优化在连续流装置上,作者对反应温度、物料浓度、催化剂用量以及氧气的摩尔当量等参数进行了快速优化,并通过红外和HPLC等对反应过程进行检测。最后选择20倍体积的DMSO作溶剂, Cu(OAc)2用量5mol%,原料流速3ml/min,氧气流速20ml/min(约3当量),在120℃条件下,连续反应,表观停留时间约52s,获得了85%分离收率。作者用70g化合物3为原料,连续运行约7小时,未发生任何固体堵塞。所收集的反应混合液加入等体积的水析出固体,浆液过滤后干燥后获得黄色固体化合物4(分离收率85%)。化合物4经过缩合反应后,获得原料药AZD4635.研究结果通过使用连续流反应器进行连续氧化,缩短了AZD4635的合成路线,总收率提高4个百分点;使用连续流反应器对反应温度、物料浓度、催化剂用量以及氧气的摩尔当量等参数进行了优化,最终获得了最优的反应条件;三步反应全连续,在线分离和检测,极大地提高了过程效率;连续氧化反应工艺以70g化合物3为原料,连续反应7小时,未发生堵塞,并最终以85%的分离收率获得目标化合物4;解决了传统间歇釜工艺的安全性问题,工艺简单、原子经济性好,绿色环保。参考文献:Org. Process Res. Dev. 2022, 26, 1048−1053编者语该工艺是典型的气液非均相反应,这一类反应在微通道反应器上,尤其是康宁微通道反应器上,具有很高的可行性。由于康宁反应器可以实现从实验室到生产的无缝放大,可以快速实现该类工艺的规模化生产。康宁在氧气氧化反应中,已经有积累了10多年的工业化经验。如果您有空气氧化、氧气氧化或其他氧化反应,欢迎和康宁团队进行交流。康宁代理的Zaiput连续分离器和NMR在线检测设备,可以帮助您实现多步连续反应的全连续。
  • 赛默飞发布Orion 8010cX 氨氮自动监测仪新品
    Thermo Scientific Orion 8010cX 氨氮自动监测仪Thermo Scientific Orion 8010cX氨氮自动监测仪基于国家标准方法水杨酸分光光度法,测量可靠、方法可溯源且无需剧毒试剂。仪器专业的工业设计、界面设计、模块化设计、功能设计、抗干扰的测量流程设计及算法使得仪器可广泛应用于多种应用场合,以满足排放法规及工艺过程氨氮的控制要求。典型应用:市政污水的在线监测:包括污染源在线监测,污水处理设施的入口和出口监测等。地表水在线监测:包括水源地、湖泊、水库等在线监测。饮用水在线监测:消毒过程质量控制和饮用水在线监测。工业过程在线控制:工业过程中需要对氨氮浓度进行控制。氨氮是各种水体中最为常见的污染物之一,其对环境的直接影响及排放到自然水体后因贡献氮元素而带来的间接危害(如水体富营养化)被广泛关注。各国政府对氨氮的排放都有严格的规定,在污水排放标准中是主要的监控指标之一。中国甚至早在15年前就将氨氮列入两个总量控制指标的其中之一。为了达到排放标准,除了对排放口进行排放指标控制性监测,各排污企业必须在污水处理过程中对各工艺段的氨氮浓度进行严格控制,已调整处理的相关工艺参数,否则很难达到最终的排放要求。在线检测技术可以帮助排污企业准确快速的获取氨氮监测数据,为氨氮排放监管提供依据。然而,准确可靠、低维护、低故障的自动监测仪器需要考虑诸多因素。当应对情况较为复杂的污水,仪器需要耐受污水对仪器的污染的同时,还需要可以排除这些干扰因素提供准确数据。仪器应该具备自动量程切换、自动校准和自动清洗等功能以保障仪器长期稳定无人值守运行。新型Orion 8010cX 氨氮自动监测仪正是为了在复杂应用环境下提供准确、稳定的氨氮在线检测方案而设计开发。仪器基于标准方法、功能丰富、操作界面友好、维护量少、维护成本低,适用于多种应用场合。产品优势:旨在提供准确可靠的测量,满足排放的法规和工艺过程控制的要求。自动量程切换功能,保障数据有效性及准确性。丰富的软件功能,直观的图形化操作界面,方便易懂易操作。特殊的测试流程设计和算法使得仪器具备更好的抗干扰(颜色和浊度等)能力。结构紧凑,占用空间小。模块化设计、IP65防护等级机箱及长寿命关键组件保障长期稳定运行。低运营成本,低维护要求——全自动校准功能、自清洗功能。低的试剂消耗量和化学废液产生量。Orion 8010cX 在线氨氮分析仪规格测量性能测量范围量程1:(0.02-2)mg/L 量程2:(0.1-15)mg/L 量程3:(0.5-30)mg/L 量程4:(2-100)mg/L 量程5:(30-500)mg/L 准确度量程1:(0.02-2)mg/L: 读数的3%±0.04 mg/L量程2:(0.1-15)mg/L: 读数的3%±0.1 mg/L量程3:(0.5-30)mg/L: 读数的4%±0.1 mg/L量程4:(2-100)mg/L: 读数的5%±0.1 mg/L量程5:(30-500)mg/L: 读数的10%重复性量程1:(0.02-2)mg/L: 3%或±0.02 mg/L, 取大者量程2:(0.1-15)mg/L: 3%或±0.05 mg/L, 取大者量程3:(0.5-30)mg/L: 3%或±0.1 mg/L, 取大者量程4:(2-100)mg/L: 3%或±0.3 mg/L, 取大者量程5:(30-500)mg/L: 3%或± 0.6 mg/L,, 取大者最低检出限(LOD)量程1:(0.02-2)mg/L: 0.02 mg/L量程2:(0.1-15)mg/L: 0.1 mg/L量程3:(0.5-30)mg/L: 0.5 mg/L量程4:(2-100)mg/L: 1 mg/L量程5:(30-500)mg/L: 5 mg/L分辨率读数连续、周期测量(可设置启动时间)分析原理水杨酸分光光度法测量性能环境温度范围5-40℃*最大湿度95% RH 无凝露采样条件水样流量50-1000mL/min水样压力1-5 bar水样温度范围5-50℃水样连接口流通池入口G1/2母螺纹流通池G1/2母螺纹水样要求总溶解固体量(TDS)色度(铂钴比色法)数据与控制电流输出两路 4-20 mA,最大负载900Ω干触点输出2个干触点,2A@250VAC数字通讯RS485法规符合性电气安全cTUVus, CB, CE-LVD, RCM电磁兼容FCC, CE-EMC, RCM环境安全CE-RoHS, REACH, China RoHS*可能需要附加过滤预处理。创新点:Thermo Scientific™ Orion™ 8010cX 氨氮自动监测仪基于国家标准方法水杨酸分光光度法,检测可靠、方法可塑源且无需剧毒试剂。仪器专业的工业设计、界面设计、模块设计、功能设计、抗干扰的测量流程设计及算法使得仪器可广泛应用于多种应用场合,以满足排放法规及工艺过程氨氮的控制要求。 Orion 8010cX 氨氮自动监测仪
  • 德国美嘉特电子顺磁共振波谱仪EPR样机培训—同济大学站
    德国美嘉特电子顺磁共振波谱仪EPR样机培训—同济大学站精彩回顾2018年6月29 日,德国美嘉特电子顺磁共振波谱仪MS5000 EPR样机培训在同济大学环境学院举办。上午,德国美嘉特中国独家代理-锘海生物科学仪器的工程师,就MS5000 EPR的原理、配件、耗材、软件操作及前沿应用案列等内容进行详细讲解。下午,工程师成海丽进行样机的实际操作培训,以此让每一位老师和同学都能够学会使用MS5000 EPR。 德国美嘉特电子顺磁共振波谱仪介绍电子顺磁(自旋)共振波谱仪(EPR/ESR)是唯一可以直接检测自由基的设备,其灵敏度远高于NMR(核磁共振)或光学化学分析技术,应用范围包括环境、化学、材料、生命科学、地质、辐照剂量学、食品及石油化工等领域,可用于研究自由基、过渡金属离子氧化态、配位化合物结构、化学反应动力学、催化反应机理、大气颗粒物(PM2.5)、污水处理中自由基、固体废弃物中持久性自由基EPFRs、材料缺陷、掺杂、酶活性、酶和蛋白质结构、辐射剂量、地质测年等。德国美嘉特电子顺磁共振波谱仪在实验过程中无需对样品进行复杂处理,即可进行快速准确测试。通过对EPR谱图的分析,从而得到物质的分子结构和状态等信息,可用于自由基的定性及定量分析。德国美嘉特电子顺磁共振波谱仪产品特点锘海生物代理的德国美嘉特电子自旋(顺磁)共振波谱仪EPR/ESR,型号有MS5000、MS5000X,是性价比最高的便携式台式波谱仪。来自德国美嘉特的桌上型波谱仪,具备新一代波谱仪简便易用的特点,无需特殊的知识背景即可熟练操作。该仪器外形小巧,性能可媲美大型ESR,在专业性和易用性上做了最完美的权衡。 EPR在环境领域的应用污水处理流通在线检测系统电子顺磁共振波谱仪EPR搭载流通池,可进行原位自由基检测,实时监控污水处理过程中自由基的产生及猝灭情况。EPR在环境领域的应用案例自由基反应机理;高级氧化还原反应的机理研究;TiO2光催化产生的电子空穴检测;放电等离子体处理污水过程中产生的自由基检测;芬顿反应;化学反应动力学监控;大气颗粒物(PM2.5)反应机制;环境中持久性自由基(EPFRs)等。 EPR应用于光催化机理研究 EPR应用于电化学高级氧化工艺 Photocatalytic water-splitting using TiO2 Electrochemical advanced oxidation processes (EAOPs) EPR应用于环境中持久性自由基EPFRs 检测 EPR应用于芬顿反应中产生的羟基自由基检测Environmentally persistent free radicals (EPFRs) Hydroxyl radicals (OH) in Fenton reaction
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制