当前位置: 仪器信息网 > 行业主题 > >

碘化钠伽玛谱仪

仪器信息网碘化钠伽玛谱仪专题为您提供2024年最新碘化钠伽玛谱仪价格报价、厂家品牌的相关信息, 包括碘化钠伽玛谱仪参数、型号等,不管是国产,还是进口品牌的碘化钠伽玛谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碘化钠伽玛谱仪相关的耗材配件、试剂标物,还有碘化钠伽玛谱仪相关的最新资讯、资料,以及碘化钠伽玛谱仪相关的解决方案。

碘化钠伽玛谱仪相关的资讯

  • 捷克Georadis公司与北京泰坤建立RT-50碘化钠NaI(TI)放射性伽马γ 能谱仪的中国市场的合作
    2018年10月18日北京泰坤工业设备有限公司和捷克Georadis公司建立合作关系,在中国市场独家销售RT-50实验室碘化钠NaI(TI)放射性伽马γ能谱仪。 该仪器高集成一体化设计,性能稳定,检测时间迅速,使用方便,成为国际市场上公认的标准化仪器,该仪器在放射性核素的检测和分析行业中处于国际领导地位。 Georadis RT-50在钢铁,地矿,食品,医药,卫生检疫,建材,环保,科研等领域有广泛的应用。
  • 监测核辐射危害!生态环境部发布关于公开征求国家生态环境标准《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》意见的通知
    近日,生态环境部办公厅发布关于公开征求国家生态环境标准《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》意见的通知。为贯彻落实《中华人民共和国环境保护法》《中华人民共和国放射性污染防治法》《中华人民共和国核安全法》,规范辐射环境监测工作,我部组织编制了国家生态环境标准《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》,现公开征求意见。标准相关资料可登录我部网站(http://www.mee.gov.cn/)“意见征集”栏目检索查阅。本标准分为 11 个部分,包括前言、适用范围、规范性引用文件、术语和定义、测量系统、空气吸收剂量率测量、放射性核素测量、测量要求、数据报送、质量控制、附录和参考文献。前言部分明确了编制目的,阐述了内容;第 1 章规定了标准适用的范围;第 2 章列出了本标准所引用的标准或文献资料;第 3 章阐述了相关术语和定义;第 4 章描述了碘化钠γ谱仪测量系统的组成和功能,提出了技术指标要求;第 5 章 提出了用于空气吸收剂量率测量时的要求;第 6 章提出了用于放射性核素测量时 的要求;第 7 章规定了其他测量要求;第 8 章提出了数据报送要求;第 9 章提出 了仪器校准、期间核查等质量控制要求;附录部分给出了常用γ放射性核素数据 表、剥谱法参考资料、数据报送格式(详情见附件)。附件征求意见单位名单.pdf《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》编制说明.pdf固定式碘化钠γ谱仪连续监测技术规范(征求意见稿).pdf
  • 生态环境部公开征求国家生态环境标准《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》意见
    为贯彻落实《中华人民共和国环境保护法》《中华人民共和国放射性污染防治法》《中华人民共和国核安全法》,规范辐射环境监测工作,我部组织编制了国家生态环境标准《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》,现公开征求意见。标准相关资料可登录我部网站(http://www.mee.gov.cn/)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2023年11月10日前将书面意见反馈我部,意见电子版请发送至联系人邮箱。  联系人:生态环境部核设施安全监管司李飒、马磊  电话:(010)65646036、65646035  传真:(010)65646904  邮箱:lisa@chinansc.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)  3.《固定式碘化钠γ谱仪连续监测技术规范(征求意见稿)》编制说明  生态环境部办公厅  2023年9月28日  (此件社会公开)  抄送:生态环境部辐射环境监测技术中心。
  • 食品添加剂标准变身“国家药典”
    据国家卫生部公告,胆钙化醇、氰钴胺等14种食品添加剂的产品标准,均按照《中华人民共和国药典》(2010年版)的质量要求进行生产和检验。这意味着,国家对食品添加剂的管理,将与新出台的国家药典相对接,使之更符合中国的具体国情、药品生产和传统用药习惯!   根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现指定胆钙化醇等14种食品添加剂的产品标准按照《中华人民共和国药典》(2010年版)相关质量要求和检验方法执行。   对此,国家标准频道认为:药品各生产、销售企业,应及时关注标准类的变动信息。做到信息最大程度的了如指掌,才能更好的避免不必药的麻烦。此外,作为消费者,应尽可能多的去了解所谓的食品添加剂,在药店里对应产品。所以,请大家在超市、认清楚食品标签的标注,切勿换了个名字,就不知道是啥了!   附:食品添加剂与《中华人民共和国药典》的相应品种   胆钙化醇等14种食品添加剂 食品添加剂 《中华人民共和国药典》中的相应品种 1 胆钙化醇 维生素D3 2 d-α醋酸生育酚 维生素E 3 植物甲萘醌 维生素K1 4 氰钴胺 维生素B12 5 烟酰胺 烟酰胺 6 泛酸钙 泛酸钙 7 硫酸镁 硫酸镁 8 氧化镁 氧化镁 9 硫酸亚铁 硫酸亚铁 10 富马酸亚铁 富马酸亚铁 11 氧化锌 氧化锌 12 柠檬酸锌 枸橼酸锌 13 碘化钠 碘化钠 14 碘化钾 碘化钾
  • 环保部2334万元预算进行国控辐射环境自动监测站建设
    7月20日,中国政府采访网发布《环境保护部辐射环境监测技术中心2016年中央财政国控辐射环境自动监测站建设项目招标公告》,包括甘肃、四川、北京等地的“国控21点”系统升级招标公告,以及边境自动站建设、全国辐射环境监测系统升级招标公告,预算金额共计2334万元。开标时间:2016年08月10日。  详细内容如下:  第一包:甘肃省“国控21点”系统升级招标公告  甘肃省“国控21点”系统升级。本项目完成5个站点碘化钠谱仪、采样设备的改造安装等,并将监测数据传输至省级数据汇总中心及国家数据汇总中心。  预算金额:340.0 万元(人民币)  第二包:四川省“国控21点”系统升级公开招标公告  四川省“国控21点”系统升级。本项目完成8个站点碘化钠谱仪、采样设备的改造安装等,采用性能指标先进、具有成功市场经验、性能稳定的成熟产品,并将监测数据传输至省级数据汇总中心及国家数据汇总中心。  预算金额:460.0 万元(人民币)  第三包:北京市“国控21点”系统升级招标公告  本项目完成8个站点高压电离室、碘化钠谱仪、采样设备、气象设备等的改造安装等,并完成部分站点的一体化站房建设及配套基础设施建设,将监测数据传输至省级数据汇总中心及国家数据汇总中心。  预算金额:535.0 万元(人民币)  第四包:边境自动站建设公开招标公告  在西藏、云南和内蒙古边境地区建设4个标准型大气辐射环境自动监测站,2个基本型大气辐射环境自动监测站。完成各站点高压电离室、碘化钠谱仪、采样设备、气象设备等设备的集成,采用性能指标先进、具有成功市场经验、性能稳定的成熟产品,并完成各站点的一体化站房建设及配套基础设施建设,并将监测数据传输至省级数据汇总中心、国家数据汇总中心和云平台。  预算金额:814.0 万元(人民币)  第五包:全国辐射环境监测系统升级招标公告  全国辐射环境监测系统升级。1)对国家数据汇总中心硬件进行更新 2)对国控21点进行升级,在各子站增加必要的设备,需完成国家数据汇总中心数据接入服务 3)同时新建西藏、云南、内蒙6个自动站,完成数据接入国家数据汇总中心 4)开展云服务平台建设。  预算金额:185.0 万元(人民币)
  • 多家仪器企业承担开发项目通过鉴定
    2013年4月24日, 北京市科委发布“关于公示2013年第一批北京市企业研究开发项目鉴定结果的通知”,其中有关仪器的项目如下: 72 北京爱万提斯科技有限公司 地物光谱仪 300 北京滨松光子技术股份有限公司 ATP荧光检测仪 301                                         PET探测器模块 302 SPECT改进(单探头、固定角双探头) 303 半导体探测器 304 测光探测器 305 低噪声快速光电倍增管 306 碘化钠(NaI)闪烁体 307 碘化铯(CsI)闪烁体 308 端窗高量子效率光电倍增管 309 多碱端窗光电倍增管 310 高温光电倍增管 311 光源引进 312 三探头SPECT 313 闪烁探测器及其附件 314 双碱光电倍增管 315 水质毒性检测系统 316 塑料闪烁体 317 随钻测井探测器 318 特种玻璃制备及加工技术 319 钨酸镉(CdWO4)闪烁体 320 溴化铊(TlBr)晶体1210 北京检测仪器有限公司     高精度易维护热球式风速计 1211 通风速度检定仪 1212 智能微生物采样器 2012 北京普立泰科仪器有限公司   全自动样品净化系统 2013 无机消解系统功能改进与应用范围扩展的研究 2038 北京勤邦生物技术有限公司           呋喃西林代谢物快速检测试纸条 2039 T-2毒素ELISA检测试剂盒 2040 孔雀石绿ELISA检测试剂盒 2041 邻苯二甲酸二丁酯(DBP)ELISA检测试剂盒 2042 邻苯二甲酸二丁酯(DBP)化学发光检测试剂盒2043 玉米赤霉烯酮ELISA检测试剂盒 2399 北京市六一仪器厂       IEF等电聚焦电泳仪电源研发 2400 SDS-PAGE电泳仪电源研发 2401 六板胶垂直电泳仪研发 2402 双板垂直测序电泳仪研发 原文通知:关于公示2013年第一批北京市企业研究开发项目鉴定结果的通知
  • ORTEC发布ORTEC Detective 便携式高纯锗新品
    综述: 随着非动力核技术广泛的应用在各行各业。对于人们来说,放射性核素再也不是遥不可及的神秘物质。近年来,核与辐射事故频发,核反恐形势不断加剧,高性能手持式核素识别仪器成了各领域的需求热点。 在应用需求的推动下,手持式核素识别仪器技术领域有了突飞猛进的发展。尤其高纯锗核素识别仪器(HPGe)的小型化,彻底改变了放射性核数识别长期依赖碘化钠(NaI)探测器的局面。使得基于高纯锗的核素识别成为该类型设备的黄金标准“Golden standard”。 作为放射性物质扩散及国土安全防护的重要职能部门——出入境检验检疫,国家辐射管理部门等。对设备也提出了更高的要求。基于HPGe的手持式核素识别仪,在小型化,电制冷化方便的不断发展,完全克服了传统HPGe谱仪使用上的限制。真真正正的成为了一种巡查利器,使得过去的不可能变成了现在的可能。核素识别的基本原理: 不同的放射性核素衰变时,产生具有“指纹”特征的Gamma射线。核数识别仪通过对发射出的Gamma射线进行测量,数据获取。最终形成能谱,通过对能谱的分析,根据能谱中所展示的特征能量与核素库(核素指纹库)中的能量进行对比,从而准确识别出对应的放射性核素。面临的问题:环境水平下的低活度有害放射性物质筛查带有伪装的特殊核材料走私“脏弹”威胁重大集会的核反恐 核材料扩散等 放射性核辐射因为其看不见,摸不着的特性。手持式核素识别仪成了唯一能够发现威胁的核心设备。但在面对这些不确定的,复杂的威胁的时候。传统的基于闪烁体探测器(NaI,Labr)的手持式核素识别仪,因为较差的核素识别能力,通过一些简单的手段就能够被有效欺骗。所以传统的基于闪烁体探测器的手持式核素识别仪已经远远的不能应付我们需要面对的威胁。核心性能—核素识别能力: 作为该类仪器最重要的性能指标——能量分辨率(FWHM:全能峰半高宽),它表征了 探测器对于不同能量射线的分辨能力,也代表了核素识别的准确性。是基于能谱分析核素识别仪器最重要的性能指标。对于目前广泛采用的探测器类型来讲:LaBr(溴化镧)闪烁体探测器分辨率好于NaI(碘化钠)探测器,提升分辨率一倍。HPGe(高纯锗)探测器分辨率好于LaBr探测器,提升20倍以上。因为HPGe探测器无与伦比的分辨率性能,使其成为手持式核素识别仪器的黄金标准“GoldenStandard“。性能的提升: 以Ba133为例,Ba133是一种较为常见的工业用放射性核素。如果我们用NaI谱仪和HPGe谱仪去测量Ba133核素发射的射线,我们可以得到如右图所示的两个能谱,采用NaI谱仪时,只能看到两个峰,而HPGe可以将所有能峰清晰展示。使我们可以准确的分辨目标核素为Ba133. 做为特殊核材料走私的惯用手段之一,对特殊核材料进行伪装,已达到欺骗识别设备的目的。我们在Ba133放射性核素中混入需要携带会运输的特殊核材料Pu。用同样的设备进行测量时,我们会得到下图的两个能谱。 从图中所探测器到的能谱来判断的话,基于NaI的手持式设备只能给出Ba133的识别结果。 而基于HPGe的核素识别仪可以精确 的识别高风险材料Pu。真真正正的做到让任何威胁都无处遁形。设备应该具备的特性:精准的核素识别能力(超高的能量分辨率)高灵敏度体积小巧,重量轻可独立工作,无需任何外部辅助优秀先进的自动分析能力,对操作人员无要求能够适应各种环境及应用的要求Detective 100——手持式放射性核素识别仪: 大晶体: 直径65mm,厚度50mm晶体类型:P型同轴高纯锗晶体强大的通讯能力 — 支持802.11 a/b/g无线网络,USBHe3中子探测器选项支持大容量存储卡可完全脱离计算机工作工作温度范围:-10度 到 40度开机自动运行运行模式:搜寻模式特殊核材料识别模式核素识别模式谱测量模式创新点:1、创新的使用了最新型号的高效斯特林制冷机 2、在最小的空间内高度集成了整套谱仪系统所需的全部部件 3、采用了独有的光纤式探测器进行中子测量 ORTEC Detective 便携式高纯锗
  • 美国家实验室测试用无人机追踪放射性微粒
    挂载相关吊舱的MQ-9无人机   据中国国防科技信息网报道,美国空军正与桑迪亚国家实验室的工程师结成工作组,测试携带辐射探测器的无人机(UAS)机载放射性颗粒采集分析能力。   “收获者”(Harvester)是桑迪亚实验室的机载放射性颗粒收集系统,去年9月已于Grand Forks空军基地的一架MQ-9“死神”(Reaper)UAS上验证了于试飞期间、覆盖广泛范围高度的穿越辐射区的能力。该系统采用两个颗粒采样吊舱探测大气,第三个吊舱用于定向制导。   该系统包含4个碘化钠探测器和制导系统中定向伽玛辐射探测器(DGRS)朝向放射性云团的复杂处理算法。随后地面指挥员下令地面站驾驶员飞向该云团的“热点”地区。   据桑迪亚实验室称:“指挥员将看到一个指示最高云团辐射强度上升的矢量,这相当于一句指导语:“你走的方向正确。”   桑迪亚实验室预期未来几年内,其三吊舱系统及其附带的软件和地面控制设备将被应用于空军的研究型飞机上。该公司称,如果某个核设施在地球任意一个地方意料不到地爆炸,空军会使用其一架MQ-9“收割机”上的吊舱追踪该设施的发源地和鉴别设计该设施的公司。   据桑迪亚实验室称:“空军很有可能于2014年将“收获者”投入使用,增强其目前有人飞机的收集能力。我们将继续与空军保持合作,致力于满足整个该项目的技术和作战需求。”
  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
  • 标准|《生物样品中放射性核素的γ 能谱分析方法》国家标准发布
    p & nbsp 近日,国家标准化管理委员会在2020年第8号中国国家标准公告中发布了《生物样品中放射性核素的γ能谱分析方法》(GB/T 16145—2020)。该标准将代替GB/T 16145—1995。新标准将在 span style=" color: rgb(255, 0, 0) " strong 2020年11月1日 /strong /span 实施。归口国家卫生健康委员会。 /p p & nbsp 该标准规定了用锗[HPGe,Ge(Li)]或碘化钠[NaI(Tl)] γ能谱仪分析生物样品中放射性γ核素的方法。标准中规定了 strong 生物样品& nbsp /strong ( strong B /strong strong iological Sample /strong ) 的概念以及样品处理的一般方法。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 356px height: 243px " src=" https://img1.17img.cn/17img/images/202005/uepic/2fbb8aed-e222-432e-8d7c-c5fc528c8527.jpg" title=" GEORADiS RT-30.jpg" alt=" GEORADiS RT-30.jpg" width=" 356" vspace=" 0" height=" 243" border=" 0" / /p p style=" text-align: center " span style=" font-size: 14px color: rgb(0, 112, 192) " strong 图为GEORADiS RT-30 手持放射性伽马能谱仪 /strong /span /p p & nbsp γ能谱仪设计用于监测和检测各种金属制品、建筑材料、地质样品、环境采样样品及食品中可能存在的放射性辐射。例如:钢铁厂内钢、尘、渣的快速辐射分析;建筑材料、岩石中钾、铀和钍的浓度检测以及食品、动物饲料和环境样品中可能存在的放射性辐射。 /p p & nbsp 仪器有台式机型和手持机型。手持版本便携、体积小、操作方便,在实验室外也可以轻松完成检测。 br/ /p p & nbsp span style=" color: rgb(255, 0, 0) " strong 标准原文 /strong /span span style=" color: rgb(165, 165, 165) " 待国家标准化委员会正式发布后上传。 /span /p p -------------#会议预报#------------------- /p p style=" text-align: center " strong style=" color: rgb(255, 0, 0) text-align: center " span style=" background-color: rgb(255, 255, 0) font-family: 楷体, 楷体_GB2312, SimKai font-size: 24px " 欢迎报名“药品微生物检测技术” /span /strong strong style=" color: rgb(255, 0, 0) text-align: center " span style=" background-color: rgb(255, 255, 0) font-family: 楷体, 楷体_GB2312, SimKai font-size: 24px " 专题网络研讨会 /span /strong /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/Drug2020/" target=" _blank" title=" 微生物大会链接" img style=" max-width: 100% max-height: 100% width: 400px height: 300px " src=" https://img1.17img.cn/17img/images/202005/uepic/dfdb8120-0b79-41bd-b6f2-f2fc9417648b.jpg" title=" 微生物检测技术大会.jpg" alt=" 微生物检测技术大会.jpg" width=" 400" vspace=" 0" height=" 300" border=" 0" / /a /p p strong 报名链接 /strong : a href=" https://www.instrument.com.cn/webinar/meetings/Drug2020/" target=" _blank" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong https://www.instrument.com.cn/webinar/meetings/Drug2020/ /strong /span /a /p
  • 文献解读丨可见光促进Katritzky盐通过脱氨烷基化反应合成β ,γ -不饱和酯类
    本文由中国科学院大学协同创新实验室所作,文章发表于Oganic Letters (Org. Lett.2021, 23, 5, 1577–1581)。 可见光促进的脱氨烷基化反应已经成为一个化学合成的重要研究方向,从廉价易得的原料出发合成羰基化合物是现代合成科学的重要目标,而β,γ-不饱和羰基化合物因其独特的活性特征,日益成为有价值的合成砌块。传统方法合成β,γ-不饱和羰基多建立在过渡金属催化的交叉偶联反应,如钯、镍或铜催化下的烯醇和烯基卤代物、烯基磺酸化合物等反应(图1A)。近年来,可见光促进的脱氨烷基化反应已经成为多样化烯烃制备的重要手段(图1B), 而利用弱相互作用EDA形成的策略,该课题组发现仅仅通过碱金属盐(例如,NaI, NaOAc, K2CO3等)便可以与N-羟基邻苯二甲酰亚胺酯(NHPI esters)以及系列吡啶盐等形成EDA复合物(图1C)。据此,作者推测仅仅通过碘化钠和Katritzky盐就可以直接形成EDA复合物,产生的烷基自由基与双键偶联,再生成相应的产物(图1D)。通过可见光促进EDA复合物引发的Katritzky盐与烯烃的脱氨基烷基化反应,成功实现了β,γ-不饱和酯类化合物的构建,该方法原料简单、条件温和,无需过渡金属催化和额外的添加剂,具有通用性。图1 首先进行反应条件的优化,分别以1a和2a为原料,在45℃的LED光照条件,DMA为溶剂,加入NaI(20% mol%)反应过夜后得到的偶联产物3a,获得了最优收率95%(图3)。由于这种弱相互作用形成的复合物是很难直接分离表征的,UV-vis光谱表征技术的发展为我们研究这种弱相互作用的形成提供了有利的检测手段。利用岛津UV-2550对反应中的各底物之间,底物与催化剂之间以及底物自身的紫外可见光谱进行表征测试,明确了碘化钠和Katritzky盐直接形成EDA复合物的猜想,为实验的机理研究提供了有力的证据(图2)。进一步对1a和NaI的EDA复合物进行了DFT计算,发现其溶剂化的络合自由能为9.6 kcal/mol。 除此之外,在实验条件优化过程中,作者还使用了GC-2010 plus,GCMS-TQ8040用于制作反应产率的标准曲线。对反应产物不易分离或者分离后难以提纯而又对产率有严格要求的反应体系,利用绘制的标准曲线,不仅能够得到准确快速的每次优化条件的产率值,而且大大减轻实验操作者工作量,能够提高实验效率,减少实验耗材的使用(图3)。 图2图3 随后,作者对于底物的适用性进行了扩展,对于系列苯丙氨酸衍生的含吸电子基或者供电子基的吡啶盐(3a-g)均可以顺利反应。此外,该方法可耐受多种官能团(3h-n)(图4)。同时,二苯乙烯上取代基的影响(3o-s)也被一并考虑,亦具有较好的结果;苯乙烯(3t)的反应也得到了相应的β,γ-不饱和产物,尽管产率有所降低,其具有很好的E/Z比率,取代的苯乙烯(3u-x)也得到相应的产物,但是E/Z比率出现降低。该方法也适用于肉桂酸(3t)为原料和吡啶盐的反应,各种取代肉桂酸(3y-b’)也容易发生反应,可以得到高E/Z比例的β,γ-不饱和酯(图5)。 图4图5 同时,对于反应机理,作者进行了详细的DFT计算并进行了阐释(图6)。 图6 本研究开发了一种更为简单的合成β,γ-不饱和羰基化合物的方法,只需要NaI和Katritzky盐即可实现。DFT计算研究表明二者间的弱相互作用力加速催化EDA的产生,并揭示了自由基反应的机理。该反应从廉价易得的原料出发,不使用过渡金属催化剂和任何添加剂,操作性强,通用性良好。 关联仪器 文献题目《Photoinduced α‑Alkenylation of Katritzky Salts: Synthesis of β,γ-Unsaturated Esters》 使用仪器岛津UV、GC、GCMS 作者Chao-Shen Zhang,† Lei Bao,† Kun-Quan Chen, Zhi-Xiang Wang,* and Xiang-Yu Chen*Corresponding Authors:Zhi-Xiang Wang − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Xiang-Yu Chen − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China Authors:Chao-Shen Zhang − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaLei Bao − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaKun-Quan Chen − School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China †C.-S.Z. and L.B. contributed equally. 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3. 文中涉及最优,最佳类描述,限于实验组别对比结果。4. 本文内容非商业广告,仅供专业人士参考。
  • 3064万!兰州大学射线式分析仪器类设备采购项目(第2批)
    项目编号:LZU-2022-434-HW-GK项目名称:兰州大学射线式分析仪器类设备采购项目(第2批)预算金额:3064.0000000 万元(人民币)采购需求:标段号标的名称计量单位数量预算金额(万元)是否进口第一标段飞行时间二次离子质谱仪套1650是第二标段电子探针显微分析仪套1500是第三标段多功能电子能谱仪套1450是第四标段X射线单晶衍射仪套1380是第五标段X射线光电子能谱仪套1500是第六标段超低本底液闪计数器套1145是第七标段低本底高纯锗γ谱仪套1110是第八标段阿尔法谱仪套1139是第九标段全谱直读型ICP-OES套190是第十标段碘化钠γ谱仪套5100是详见采购文件第三章项目采购需求合同履行期限:一标段:合同生效后12个月内供货二标段:合同生效后9个月内供货三标段:合同生效后180个日历日内供货四标段:合同生效后120个日历日内供货五标段:合同生效后120个日历日内供货六标段:合同生效后90个日历日内供货七标段:合同生效后90个日历日内供货八标段:合同生效后90个日历日内供货九标段:合同生效后60个日历日内供货十标段:合同生效后120个日历日内供货本项目( 不接受 )联合体投标。
  • 专家:已找到700吨氰化钠下落 尚未大范围泄露
    p br/ /p p   专业人员正在对氰化钠以及可能含有氰化钠的土壤进行回收处理 从目前检测的数据看尚未发生氰化钠的大范围泄漏 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201508/uepic/a421c8ff-2310-4635-92df-eb0fc8e42d8d.jpg" title=" 123745434.jpg" width=" 300" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 333px " / /p p   科技日报-中国科技网8月15日快讯(记者 冯国梧)记者今天从天津滨海新区爆炸现场消防专家处了解到,昨日上午8时左右,河北一家生产氰化钠的货主(生产厂家)主动来到爆炸现场,并派出专业人士全力排查氰化钠的分布情况,组织实施对氰化钠的清理回收。 /p p   据介绍,昨日上午8时左右现场的消防专家在爆炸现场发现一处白色固体,并及时将氰化物货主找来辨识,确认后迅速组织相关人员查找氰化钠可能分布的区域。考虑这里曾经发生过大规模的爆炸,有些氰化钠可能散落,专业人士从爆炸现场开始展开大范围的搜索,查找氰化钠的下落,目前已找到氰化钠的分布范围,许多氰化钠的包装被炸开。然后以发现氰化钠的相距最远的两点划定重点排查区,只允许专业人士在现场作业,在此基础上再扩大1.5倍距离为缓冲区,组织专业人员进行全面排查和处理。 /p p   如何处理已找到的氰化钠?那些已爆炸散落的氰化钠又该如何处理?据介绍,氰化钠生产厂家已派出专业人员将氰化钠以及可能含有氰化钠的土壤进行回收处理。从目前检测的数据看尚未发生氰化钠的大范围泄漏。此外,天津市安监部门已准备了数百吨双氧水用于分解可能残留的氰化钠。 /p p   据氰化钠生产厂家介绍,这批货物是用于出口的,总量约700吨。 /p p br/ /p
  • 产品应用 | 高纯锗γ能谱仪在矿产矿物检测中的典型应用
    引言 近年来,关于放射性物质超标的检测案例屡见不鲜,其中以矿产矿物中锆英砂的放射性检测尤为关注。 一、2016年,厦门口岸,一批锆英砂因放射性超标370倍而被退运。这批货物装载于20个集装箱内,总重量达到528吨,这是厦门口岸退运的最大批量放射性超标锆英砂。经过对该批锆英砂放射性检测,结果显示其γ射线剂量当量率为75.17-82.39 μSv/h,远远超过本地环境辐射本底值370余倍,钍、铀、镭、钾的比活度合计也高达99.8Bq/g 二、2021年,茂名海关截获了一批放射性超标的进口锆英砂,共37个集装箱标箱,合计1006吨。该货物伽马射线γ在3.18Sv/h—7.38Sv/h之间,最高值比中国《电离辐射防护与辐射源安全基本标准》判定的最低放射性标准超近7倍。 图:锆英砂放射性超标的检测(海关查获) 这些事件表明,为了保护我国生态环境和人体健康不受损害,对矿产矿物中的放射性物质是否超标执行严格的检测是非常有必要的。 图:锆英砂 矿产矿物的放射性检测概述:&zwnj 以锆英砂的放射性检测为例:锆英砂中含有天然伴生的放射性元素,如钍、铀、镭及钾等,其深加工产品锆石(氧化锆)中也可能含有微量的放射性元素,如铀(U)和钍(Th)等。这些放射性元素在衰变过程中会释放出特征γ射线。 高纯锗γ能谱仪能够精确测量这些特征γ射线的能量和强度,从而分析出锆英砂中放射性核素的种类和含量。这对于评估锆英砂的放射性污染程度、保障矿产资源的开发利用安全具有重要意义。 矿产勘查: 在矿产勘查过程中,利用高纯锗γ谱仪测量地层中放射性元素的含量,可以帮助地质学家确定矿产资源的分布情况。对于锆英砂等含有放射性元素的矿产来说,这种方法尤为有效。 通过分析地层中放射性元素的分布特征,可以推断出锆英砂矿体的位置、规模和形态,为后续的矿产开发和利用提供科学依据。 环境监测:在矿产开采过程中,可能会对环境造成一定的放射性污染。利用高纯锗γ谱仪对开采区域及其周边环境进行放射性监测,可以评估放射性污染的程度和范围,为环境保护和治理提供数据支持。 传统矿石分析方法在样品采集、处理和分析过程中费时费力,并且在实时监测和大规模应用方面存在限制,而高纯锗γ能谱仪具有快速、准确、非破坏性的特点,能够为矿石质量评估提供新的解决方案。锆英砂作为一种重要的矿物原料,其分析和研究对于理解其资源状况、优化开采和加工工艺、提高产品质量和市场竞争力具有重要意义,同时也为相关行业的发展提供了重要的物质基础和技术支持。 高纯锗γ能谱仪检测锆英砂放射性的典型应用: 图:工艺陶瓷 锆英砂在陶瓷行业中的应用非常广泛,主要用于各种建筑陶瓷、卫生陶瓷、日用陶瓷、工艺品陶瓷等的生产中。 工艺陶瓷中的放射性主要来源是陶瓷工业中的矿物原材料,特别是锆英粉类釉料、尾矿石、工业废渣等材料。这些原料大多来自天然矿物,主要是含钾矿物,如长石、云母、石英等,存在着许多原生天然放射性核素,就剂量而言主要是40K、232Th、238U,以232Th和238U起始的两个衰变链是最重要的辐射来源。这些放射性物质在经粉碎、高温、烧结等物理化学过程后仍有放射性。 FYHPGe系列 高纯锗γ能谱仪(自动进样)海关应用 方圆科技研发生产的高纯锗γ能谱仪可用于高探测效率测量,并可适应多种样品几何形状。国内有学者曾研究比较碘化钠(NaI)闪烁体探测器和高纯锗(HPGe)半导体探测器γ能谱仪的性能,发现HPGe探测器的能量分辨率比Nal好数十倍,在测量含多种未知核素、γ谱线复杂的样品时应选用HPGe探测器。 图:高纯锗γ能谱仪——无源效率刻度软件 方圆科技研发生产的高纯锗γ能谱仪,搭载了无源效率刻度软件(含探测器表征)。无源效率刻度是基于点源刻度技术,利用蒙特卡罗模拟或数值积分等数学算法计算探测器周围空间γ光子的输运过程得到探测效率的刻度方法。无源效率刻度技术对比有源效率刻度主要有以下优点: (1)无需制作使用标准源,可避免样品和标准源之间的代表性问题增加的不确定度;(2)无需采购、保存放射源以及办理放射源的使用证,编制应急方案等安全管理的措施,可以降低管理成本;(3)更加安全,降低对实验室以及工作人员的污染风险;(4)能够实现现场检测形状类型各异的样品,可以不破坏样品进行检测;(5)节约实验经费,测量速度快。 无源效率刻度方法出现以来,得到了国内外专业人士的认可。 国内有实验室连续3年用γ谱无源效率刻度法测量IAEA组织的环境样品中γ核素国际比对样品,总体接受率为100%,因此认为γ谱无源效率刻度方法的可靠、实用。
  • 氰化钠究竟有多危险?
    文章来自果壳网;北京方程佰金转发(文/三畝)提起氰化钠,很多人都会闻之色变。甚至有媒体以“核生化部队爆炸现场测出钠元素,钠遇水易爆燃”为题进行了报道。不过实际上氰化钠中的“钠离子”不危险,危险的是这次爆炸现场可能存在的“氰化钠”这个物质中的另外一半——“氰离子”,而更危险的是不做任何调查直接把听到的东西变成新闻的不求甚解的态度。“氰”是不是彻头彻尾的坏?我们先别着急下结论。首先“氰”有一个挺美好的名字。这种离子和青色的东西有点儿关系,所以西方人管她叫做Cyanide“青色”在英文中是“Cyan”),非常有名的染料普鲁士蓝(Prussian blue)就是一种含有“氰”的物质。实际上,普鲁士蓝是一种救命的药物:对于铊中毒有很好的治疗作用。普鲁士蓝。图片来源:dailytech.com普鲁士蓝里面的“氰”之所以能够安安分分地做不产生毒性,是因为在普鲁士蓝里面还含有一些居委会大妈——“铁离子”。“铁离子”能够牢牢地把“氰”抓在自己身边不让他们出去捣乱。可是如果是“氰化钠”就不行了。这个组合里面的“钠离子”搞不定“氰”。如果这个“氰化钠”没有溶解到水里面,那么这个“氰”还算是老实,能守在“钠离子”旁边不跑。但是只要空气里面有一点点湿气,“氰”就会见缝插针地随着这点儿湿气跑出去,同时形成一个叫做“氰化氢”的剧毒气体。这种“氰化氢”略微带着一点儿苦杏仁味,所以你看动画片中的柯南经常会闻闻死者的嘴巴,然后只见一道闪电从脑海中劈过:真相只有一个,死者氰化物毒死的。《名侦探柯南》中,受害者死于氰化物中毒的情节。图片来源:b.bbi.com.tw当然要是遇到更多的水(比如南方梅雨季节里面能拧出水来的空气或者干脆就是一杯水),“氰化钠”里面的那些“氰”就会更加撒欢儿往外跑。“氰”跑出来会干嘛呢?如果在动物(包括人)体内,这些“氰”就会牢牢地抓住身体里面的“铁离子”大妈:“我可算找着您了,‘钠离子’太不给力了,还是您带着我吧,您带着我吧。”这要是在别处也就算了,“铁”大妈带着就带着。可是动物体内的“铁离子”太重要了,人家要运送比“氰”重要一千倍的东西——氧;运送氧还是次要的,还有更多的铁离子在细胞内运输重要一万倍的东西——呼吸作用所需的电子流。这是维持细胞运作最根本的动力。一旦“铁”大妈被“氰”给缠住了分不开身,它作为电子传递链的正常任务就无法执行了,细胞呼吸由此断绝,能量的供应也都断掉了;而一旦能量缺失,控制身体所有机能的中枢神经系统就会极快停止工作。接下来,呼吸和心跳就会停止,各大重要脏器(比如肝和肾)就会衰竭。很短时间内生命停摆。普鲁士蓝毒性很小,因为在普鲁士蓝里面人家“氰”已经找着组织“铁离子”了)。“氰化钠”、“氰化钾”和“氰化氢”剧毒(根据法医学经验,氰化钾的致死量在50毫克到250毫克,也就是0.05克到0.25克之间)是因为这些物质里面的“氰”都还是活动能力很强的,没被看住。到底有多毒呢?用我们经常用的LD50(lethal dose 50%,在指定时间内杀死测试动物中一半数量所需要的剂量)指标对比,砒霜是(大鼠口服)14.6毫克/千克(体重),而氰化钠是(大鼠口服)6.44毫克/千克(体重),氰化钾是(大鼠口服)5毫克-10毫克/千克(体重)。也就是说,这东西比砒霜还要厉害三分。更可怕的是这些剧毒的氰化物很容易在水里溶解的,所以起效非常快(我们的黑话叫做“动力学速度很快”),除非剂量非常小,15分钟到1个小时之内就可以置人于死地,给医生留下的抢救时间非常有限。相比较而言,砒霜可以算是慢性子了,服毒1小时后开始看到症状,几个小时甚至一天之后才会致死。见血封喉是啥意思,大概就是这个意思。顺便说一下,这两天有个谣言说小心不要淋雨,因为雨里面可能有这个东西。嗯,这么说吧,如果您要是淋到的雨里面的这东西浓度高到能够透过皮肤造成伤害的话,您也就没有机会站着淋雨了:空气里面的氰化氢的含量已经把您给撂倒了。氰化钠的工业用途既然这个“氰化钠”这么厉害,而且这东西遇到水就会变成别的东西,那么一定是有坏蛋把这匹猛虎给放出来了!这是个阴谋吗?是有人制造出大量氰化钠来害人的吗?还真不是这样。氰化物最主要的用途是在金和银的开采上。由于“氰”这个傍大款的脾气,他见到“铁”大妈的时候就牢牢地抓住“铁”大妈,见到“金”大妈和“银”大妈的时候当然就更加揪住不放了。在冶金行业中,就是利用“氰”的这个见钱眼开的脾气来把矿石中稀稀落落存在那点儿“金”和“银”给抠出来。开采金矿使用的氰化钠。图片来源:globalchemmade.com除了这个,氰化物还用来做橡胶,还在制药行业中有用处。所以不能冤枉别人,这东西只要管理好了还是挺有用处的。那到底该怎么管理呢?要想让这些家伙始终做个“安静的美男子”,就一定要把他们放在密封容器之中,搁在阴凉并且通风良好的地方。不要让他们有机会和水见面,尤其不能见到一丁点儿酸(醋都不行,不要说盐酸硫酸硝酸这样的东西)。以前我们读大学的时候,氰化钠是放在一个密封的小瓶子里面,小瓶子外面就是专门中和氰化钠毒性的“硫代硫酸钠”(另外一个居委会大妈,大概相当于朝阳群众,专灭“氰”这种捣蛋脾气)。这样就算遇到什么不可控制的情况(比如地震),氰化钠这小子跑出来了也立刻被干掉。当然,无论采取什么措施,都需要人的观念上的改变。再良好的规范,如果大家都不能够按照规范操作的话,就都白搭了。(编辑:球藻怪)本文首发自微信公众号“言安堂”,经作者授权转载。言安堂微信号:Yan_Huang_TH。
  • 如何预防、缓解化学试剂变质?
    为了保证化学教学、科研和化工生产的正常开展,降低试剂损耗,缓解试剂的变质,通常可采取以下方法与措施: a. 密封这是最普遍通用的方法。试剂瓶的材料和密封程度应根据试剂性质而定。如:强腐蚀的“三酸”和液溴,可用带磨口玻璃的试剂瓶,或是有塑料衬垫的螺旋盖的玻璃瓶,氢氟酸则应密封贮藏在银制或塑料制容器内,等等。 密封适用于易挥发、升华、潮解、稀释、风化、水解和氧化还原、霉变的所有化学试剂对于极易 分解产生气体的试剂,一般不完全密封,要适当留有余地,否则可能使容器破裂。除了一般密封外,可再加蜡封,或用自制硝罗酊封口,如:三氯化铝、五氧化二磷等。b.隔离能和空气、水作用的试剂,如:很活泼的金属和非金属应隔离存放在对试剂相对而言稳定的液体或惰气之中,钾、钠、钙浸没在机油中,黄磷则浸没在水中贮放。这种隔离方法也称液封法,前者叫油封,后者叫水封。水封存也可使某些容易挥发的试剂减少损耗。如:在装有液态溴、二硫化碳的试剂中加一薄层水,就能大大减少挥发损失和空气污染。实验室中无机、有机试剂种类繁多,性质各异,应注意合理分类存放。有机物、无机物分开,普通药品和危险的分开,氧化剂和易燃物、还原剂分解、易挥发性酸和碱分开。做到这几个分开,一可避免药品间的不良影响,二则即使有意外事故发生,也能免除药品的相互作用,而产生更大的隐患。c. 避光通常采用遮光性能较好的深棕色试剂瓶。将试剂放在暗处或遮光的专用试剂柜中。也可用照相纸的黑色厚纸包裹试剂瓶,如:浓硝酸、碘化钾、碘化钠、氯化汞的贮存就是如此d. 低温普通挥发性试剂常放置在阴冷处,如:浓硝酸、浓盐酸、氨水等。某些特殊的生化试剂则要贮放在水箱或冰箱之中,如:酶试剂等。 e. 通风尽管装化学试剂的容器一般都处于密封状态,但也难免有跑、冒、漏、泄发生,在夏季高温天气,更易形成爆炸性混合气体,因此,贮藏室必须通风良好,应安装专用排风扇,并经常开启,使空气流通。f. 适时这是根据某些试剂的特性,特别是一些极易变质失效的试剂应采取适当措施,应做到适时配制、适时使用和及时处理。如:极易氧化的氢硫酸溶液、氯水、溴水、碘水最好适时制备及时使用;做银镜反应的 !"硝酸银溶液、氨水、乙醛溶液配好后,应及时使用才不致影响效果;硫酸亚铁溶液配好后应加些还原铁粉才能使其不被氧化;淀粉、蔗糖、蛋白质的溶液在使用后应及时清洗试剂瓶,以防霉变。上述诸种试剂在配制时除应注意适时外,配制数量也应根据需要而定,以免过剩造成浪费。
  • 河流微塑料|从采集到分析,轻松“一网打尽”
    导读 微塑料是一种新兴的污染物,具有与其它污染物相似的普遍性和生态毒性,微塑料的尺寸范围大、分布广、环境干扰影响大,所以快速采集、处理、分析微塑料组分,对于环境污染治理有很重要的意义。微塑料的危害 《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》对“重视新污染物治理”提出了有关要求。新污染物虽然在环境中浓度较低,但具有器官毒性、神经毒性、生殖和发育毒性、免疫毒性、内分泌干扰效应、致癌性、致畸性等多种生物毒性,同时具有较强的生物持久性、明显的生物富集性、难以监测等特性,对人体健康和生态环境构成危害。 现阶段国际上主要关注的新污染物包括:微塑料、环境内分泌干扰物(EDCs)、全氟化合物等持久性有机污染物、抗生素等四大类。作为四大类新型污染物之一的微塑料等细颗粒物,可以吸附重金属和有机污染物的载体,其危害性更为复杂。 下面小编为您介绍河流中微塑料从采集到样品前处理方法以及使用岛津傅立叶变换红外光谱仪(IRSpirit)快速进行分析的过程。 微塑料的采集 目前海水和淡水中微塑料采集一般采用具有不同孔径网目的拖网,使用拖网需要船只,对流域面积也有一定要求。采用一种新型微塑料采集装置Albatross(株式会社Pirika),解决了昂贵的租船费用以及狭窄地点和流速慢的河流难以取样的限制问题,可以在任何地点轻松使用的采集装置,仅需3分钟即可完成收集微塑料样品,成本低、使用方便。 图1 微塑料采集装置Albatross图2(a) 河流A中的采集过程图图2(b) 河流B中的采集过程图3 采集的微塑料样品 微塑料的前处理 首先将采集到的样品过2mm和0.1mm目筛,在通过0.1mm目筛捕集的样品中加入30%的双氧水(H2O2),溶解杂质,然后用纯水清洗样品,去除H2O2,加入5.3mol/L的碘化钠水溶液(NaI),进行比重分离。 图4 前处理流程 微塑料的分析 在收集的微塑料中,随机选了一颗微塑料使用岛津小巧型IRSpirit进行红外分析,光学显微镜观察图像和红外测定结果如下: 图5 收集的部分微塑料图6 光学显微镜下微塑料图像图7 FTIR的测定结果 岛津塑料分析系统包括了多种类型塑料的红外谱图,这些塑料经过了0小时(未照射)到使用Iwasaki Electric Co., Ltd.生产的超加速老化仪最长550小时(相当于紫外线照射约10年)照射。以上测定结果和紫外线照射550小时老化的PE匹配。检测到图中⻩框所示的3400cm-1附近的O-H伸缩振动、1750 cm-1附近的C=O伸缩振动引起的吸收,因此,可以推测出该微塑料暴露在环境中由于紫外线照射引起的氧化老化。另外,根据图中蓝框所示的1050cm-1附近的吸收峰,判断可能存在硅酸盐等。 结语 采用新型微塑料采集装置Albatross(株式会社Pirika),仅需3分钟即可完成收集微塑料样品,成本低、使用方便。针对采集的微塑料样品进行前处理,使用岛津傅立叶变换红外光谱仪(IRSpirit)可实现快速分析。 本文来源于:藤里砂(岛津制作所全球应用技术开发中心),河流中采集的微塑料的前处理方法和FTIR的分析方法。本文内容非商业广告,仅供专业人士参考。
  • 借一双“慧眼”,将黑洞看得真切
    黑洞,这个词对于大部分人来讲并不陌生。许多以时空、宇宙为题材的电影作品,都出现过它的名号。30名研究人员耗时一年,用数千台计算机联网进行精确模拟,终于在《星际穿越》中大胆勾勒了黑洞的样子图源:sina.com 虽然是荧幕中的常客,事实上,我们对黑洞还知之甚微。它难以言喻的神秘、强大而诡异的美感,不光只是艺术创作的灵感源泉,更是人类智慧进步的驱动力。一点一点掀开它的面纱,或许会使我们对宇宙、生命产生完全不同的认知。 引力的神秘孩子:黑洞和中子星 一颗苹果的落地为人类带来了“引力”的概念,而也正是它,在极端宇宙中孕育了各种神奇的天体。 当一颗大质量恒星以绚烂的超新星爆炸结束自己的生命后,残留质量如超过了太阳的1.4倍,就难以抵抗自身引力的拉扯,坍缩成了体积小、质量大、密度高的中子星。如果超过了太阳的3-4倍呢?那就厉害了!引力将狂暴地席卷一切,彻底坍缩为“黑洞”。中子星和黑洞。一颗中子星可能只有一个小城市那么大(典型直径20km),但质量却可能是地球的几十万倍以上。图源:《活捉黑洞:中国慧眼看到极端宇宙》 1783年,英国剑桥大学的学监约翰米歇尔开了个清奇的脑洞,利牛顿公式他计算了逃离地球和太阳引力的速度,并推论如果一个质量足够大且足够紧致的恒星,其强大的引力场会使星体上的光都无法逃脱,也无法观测。十余年后,法国数学家拉普拉斯也得出了类似的推论,并将其命名为“暗星”(Black Star)。这就是200多年前,我们对“黑洞”最初的认识。 这个概念直到爱因斯坦发表广义相对论,有了引力对光的协调影响的理论,才开始被世界接受。从此,它在科学家们的演算纸中,以数学模型的形式成长了起来,逐渐具有了更丰富的物理内涵。 上世纪60年代脉冲星(以均匀时间间隔辐射脉冲的中子星)的发现,证实了中子星的存在。原来一颗恒星真的可以坍缩至如此小!那拥有更大质量的恒星更剧烈的坍缩也不是不可能的了。这也大为振奋了深信“黑洞”(Black Hole,脉冲星发现后不久,就被一位美国科学家正式命名了)存在的科学家们。 第一颗脉冲星的发现者乔斯林贝尔脉冲星的发现被誉为20世纪60年代天文学“四大发现”之一图源:iflscience.com被称为“宇宙灯塔”的脉冲星示意图图源:ech.qq.com 很快,世界第一颗X射线天文卫星乌呼鲁(Uhuru,原意是“自由”)在1971年为人类带来了“黑洞”存在的证据。它捕捉到的一个强X射线源,是一个不可见的、质量是太阳约10倍的致密天体——天鹅座X-1。如此庞大的质量,让科学家们认定它为黑洞无疑。 世界第一颗X射线天文卫星“乌呼鲁(Uhuru)”图源:baike.baidu.com 经过几百年的努力,我们已经将极端宇宙大门推开了一丝缝隙,感受到了门后世界的浩大和无尽神奇。理解“黑洞”,可能将左右人类对宇宙未来的认识和预测;而中子星作为天然的高能加速器,也可帮助我们进行无法在地球上的加速器开展的研究。不过,所有对于它们这样那样的推论和猜想,都需要用“看”到的实际证据来验证。 迢迢黑洞,一“线”牵 黑洞在宇宙中设下了“引力陷阱”,连光都会闷不吭声地掉进去,这样决心低调到骨子里的天体,叫人怎么能“看”清楚呢? 引导我们走近它的关键,就是X射线。 用一个比较简单易懂的说法:长期在宇宙中“岁月静好”的黑洞却有一个天生的习惯,那就“贪吃”。当它旁边有物质存在时,霸道的引力会将这些物质统统“吃掉”。大快朵颐期间,由于它“嚼”得实在是太激烈了(毕竟引力技能满点!),带电粒子会在这样的高温、高密度、强磁场、强引力场等极端物理条件下产生高能辐射,这个时候黑洞就“亮”了! 不过发出的光并不是可见的光,而是比其高能成千上万倍的X射线,甚至是γ射线。一般意义上,辐射出的X射线能量越高就意味着越靠近黑洞。贪吃的黑洞图源:《活捉黑洞:中国慧眼看到极端宇宙》 不同物理条件的天体,发出的电磁辐射的性质不尽相同。正因如此,通过研究宇宙X射线可帮助我们反推黑洞的物理状态。鉴于地球大气会将这些高能X射线吸收,所以卫星成为了最重要的观测工具。 1962年,美籍意大利裔天文学家里卡尔多贾科尼利用探空火箭,意外发现了除太阳以外的第一个宇宙X射线源——天蝎座X-1,从此开启了X射线天文学。在“乌呼鲁”正式树立起里程碑后,从20世纪七十年代始,包括英国、美国、荷兰、日本等多个国家,都相继发射了一系列的X射线天文卫星,迈向了深空。 第一个探测宇宙X射线的实验Giacconi et al., Phys. Rev. Lett., 9, 439 (1962)图源:ihep.cas.cn 《仰望星空—探索黑洞的历程》 而之前被送往宇宙的诸多卫星,大多都“专情”于波长较长、能量相对较低(0.1 keV-10keV)的软X射线波段。虽拥有很高的灵敏度,却容易饱和,较擅长观测“安静”的黑洞。而那些迸射出波长较短、能量相对较高(10 keV -1000 keV)硬X射线的“暴躁”黑洞,容易被它们所错过。 和软X射线观测相比,硬X射线观测可以摆脱热辐射的影响;和γ射线观测相比,由于光子的流强足够高,更易于被观测,可用于黑洞附近区域的物理性质及变化的详细研究,这也让其也成为了X射线天文观测发展的一个重要方向。而最新的一颗同时拥有高灵敏度和分辨率的硬X射线望远镜卫星HXMT,就是在中国诞生的。 (本图为仅为示意) 终得“慧眼”,开启一场伟大的宇宙探索 20世纪80年代,李惕碚、顾逸东、吴枚等第一批推动我国空间天文和其他空间科学探测的科学家出现了。通过不懈努力,并在著名核物理学家何泽慧先生的大力支持下,中国第一个用于空间高能天文观测的硬X射线望远镜,由高空气球“HAPI-1”送入了33千米的高空,飞行了8小时,实现了平流层高度上的天体X射线观测。 何泽慧先生在香河气球发放场图源:ihep.ac.cn 不过X射线,特别是硬X射线,波长极短、能量极高,如是普通的光学天文望远镜,射线会直接撞击或者穿透镜面,无法发生反射和折射,进而无法成像。虽然编码孔径成像技术和掠射式镜面技术解决了这个问题,但运用这两种方法制造的望远镜都十分复杂和昂贵,对于当时中国的工业和科技水平来讲都非常困难。 困局在1992年被打破了。李惕碚院士和吴枚研究员创新性的提出了直接调制成像方法,这种新的算法即使无法实现聚焦,仍可有效地将调制后的信号还原成图像。结合扫描探测技术,基于直接解调制成像法的硬X射线调制望远镜(Hard X-ray Modulation Telescope,HXMT)的建议于1993正式提出。但由于太过“神奇”,经过了长达18年艰辛的理论、实验和数据分析工作,终于于2011年迎来了立项。遗憾的是,同年何泽慧先生与世长辞,为纪念先生,HXMT升空后被赋予了另一个名字——“慧眼”。左:球载硬X射线望远镜HAPI-4,对直接调制成像方法进行了验证右:1994年9月HXMT的项目建议书 HXMT卫星首席科学家张双南研究员曾介绍到,十八年间,科学前沿以及X射线探测技术都有了较大的变化。所以,对这颗卫星的研究目标和手段也进行了调整,能区范围已经扩大到了1~250keV。不同能段的观测任务被分别分配到了高、中、低能望远上,其中最为受到关注的,则是高能望远镜上的18个主探测器。 “慧眼”的18个主要探测器 这18个主探测器每个直径19cm,总面积高达5000cm2,是目前世界上面积最大的空间X射线探测器阵列。它担任着高能能区,也就是硬X射线波段的探测任务,为我们捕捉光子的能量和时间等信息。之所以它可以敏锐的“看到”硬X射线,其核心部件——碘化钠和碘化铯的复合晶体可谓是功不可没。 碘化钠和碘化铯是两种对X射线非常敏感的晶体,它可以将“高深”的X射线“语言”转化为探测器可以读懂的“语言”(荧光信号)。然而,想将这样大面积且将多种厚度不同的晶体光导材料进行高质量的耦合,并实现在良好的抗震性能和密封性的基础上,达到世界一流的分辨率,是十分困难的。可以说,探测器是否优越和稳定,最终取决于封装工艺。 满足机械抗震指标是基础,实现高分辨率是核心,这需要拥有雄厚的技术功底。虽面临着国外技术和产品的“封杀”。但最终在负责HXMT高能望远镜的中科院高能物理研究所研制团队和北京滨松光子技术股份有限公司的共同努力下,经历了一系列艰辛的过程后(29轮试制,制作了30多个样品),终于解决了同时满足整体性能及抗震指标的大面积复合晶体封装问题,达到了国际同类产品先进水平。滨松5英寸光电倍增管HXMT高能望远镜的主探测器(右下:复合晶体)。探测器读出端采用的是滨松公司的5英寸端窗式光电倍增管,除了良好的工作稳定性,抗震性能也是核心指标。为了保证产品整体性能达标,滨松公司也专门成立了抗震性能研发小组,在有限时间内,保质保量完成了供货,并额外提供了样品,保障了项目的顺利进行。同时滨松公司生产的硅光电倍增管(MPPC)也被使用在了慧眼卫星的轨标定探测器中。这是硅光电倍增管在世界范围内首次被用于卫星项目中,也验证了其在空间使用的可靠性。滨松MPPC产品(部分)当然,历经艰难的不止只有高能团队,中能、低能望远镜及地面等团队都经受了巨大的考验,每一步的进展都伴随着起起伏伏,一条长征路走得艰辛,却也是单单一个“艰辛”所无法去涵盖和形容的。终于,伴随着HXMT的正式诞生,几代中国空间天文学研究者的梦想开出了珍贵的花朵。硬X射线调制望远镜(Hard X-ray Modulation Telescope,HXMT)——“慧眼” 2017年6月15日,HXMT卫星在酒泉火箭发射中心顺利升空,在轨测试期间,通过多天区的扫描成像观测和特定天区的定点观测,以及伽马射线暴监测等测试,各项功能和性能都得到了验证,并取得了银道面扫描监测、黑洞及中子星双星观测、伽马射线暴、引力波电磁对应体探测、太阳耀发、特殊空间环境事件等初步科学成果。 其中,最为引人注目的,则是2017年8月对引力波GW170817事件电磁对应体的成功监测,这也让人类在引力波观测中终于变得“耳聪目明”,慧眼卫星对其高能段的辐射给出了严格的限制,为全面理解该引力波事件和引力波闪的物理机制做出了重要贡献。慧眼卫星团队反应迅速,在全球70多个团队中,中国慧眼望远镜是第七个报告成果的,在本次引力波事件最重要的发现论文的正文部分有‘慧眼’的观测结果。此外,“慧眼”的详细分析结果以独立论文的形式于2017年10月16日同步发表在《中国科学:物理学力学天文学》杂志英文版的网页版。 HXMT卫星成为了中国空间X射线天文的开端,实现了宽波段、高灵敏度、高空间分辨率X射线巡天、定点和小天区观测,在世界现有X射线天文卫星中,具有先进的暗弱变源巡天能力、独特的多波段快速光变观测能力等优势,也将中国正式推上了世界空间天文的大舞台。2018年1月30日,HXMT卫星正式完成了在轨交付,如今它也正翱翔于宇宙,以一双“慧眼”,以期为人类探寻黑洞,以及更多的深空奥秘做出贡献。载梦翱翔于宇宙的“慧眼”卫星 参考文献:硬X射线调制望远镜卫星:巡天监测,刷新人类认知极限,倪伟波,《科学新闻》空间科学先导专项特刊;仰望星空——探索黑洞的历程,李惕碚,中国科学院高能物理研究所官网;透视宇宙的眼睛——“硬X射线调制望远镜”,卢方军,中国科学院高能物理研究所,《国际太空》2009年第12期;“黑洞,我来啦!”:“慧眼”空间X射线天文卫星自述,熊少林,中国科学院高能物理研究所,科学大院公众号荔枝网转载;“慧眼”硬X射线调制望远镜到底能做什么?,杭添仁,知乎;【人民日报海外版】人类首次“看到”引力波事件 中国“慧眼”做出重要贡献,吴月辉,中国科学院高能物理研究所;《中国科学报》 (2017-11-06 第5版 创新周刊) 探测引力波事件的“中国身影”,高雅丽。
  • 天津爆炸现场下水沟检出氰化钠 说明已经泄露
    p & nbsp & nbsp & nbsp 今天下午5点,发生爆炸的瑞海国际物流有限公司相关负责人表示,昨晚他在睡觉时听到爆炸声,平时都住在货场的他,立即让人报警。正在现场协助救援的他强调,事故发生时先爆炸后起火。 /p p & nbsp & nbsp & nbsp 据现场消防指挥部消息,当时发生爆炸的地点存放着硝酸钾、硝酸钠等硝酸盐物质。这些固体氧化剂遇热、碰撞都容易爆炸。目前此处已被炸成一个大坑。 /p p & nbsp & nbsp & nbsp 记者现场了解到,目前已检出液碱、碘化氢、硫氢化钠、硫化钠等4种物质。另据厂家前来反映,出事货场目前还存放至少700多吨氰化钠,这些剧毒化学物分别装在木箱和铁桶中。50公斤一桶存放在集装箱里。 /p p & nbsp & nbsp & nbsp 目前消防救援正全力处置氰化钠,已准备15%的双氧水,准备将它们拉走,但据现场检测,下水沟里已检出氰化钠,说明已经泄露。 /p p & nbsp & nbsp 据了解,出事货场“瑞海国际”是天津港口三个可存放化学物品的货场之一,另外两个分属中化集团。 /p
  • 日本食品辐射检测催生新商机
    据《日本经济新闻》报道,从今年4月起,日本对食品放射检测实施新标准,福岛县从今年秋季开始对上市大米实施100%辐射检查,导致食品农产品行业对辐射检测仪的需求大幅上升,各大仪器生产企业加快开发能够在短时间内高精度地检测放射性物质的仪器。   目前正在使用的辐射检测仪需要事先将鲜鱼粉碎,检测时间大约需要30分钟,精度为100贝克勒尔。古河机械金属与东京大学联合研制出了非破坏性鱼类辐射检测仪,可以使装鱼的塑料泡沫盒直接通过检测仪,7至8秒内完成检测,精度为10贝克勒尔。研究小组将于6月在茨城县北部大津渔港进行实地试验后,明年春季正式上市,售价为500万日元,比传统的仪器便宜一半,预计仅茨城县需求量在100台以上。   传统的食品辐射检测仪大致有“碘化钠电离检测仪”和“锗金属半导体检测仪”2种,前者价格低(250-450万日元)、体积小、便于携带,但不能分辨辐射物质,且分辨率低 后者分辨率高,但价格较为昂贵(1500-2500万日元)。富士电机从2011年8月开始出售食品辐射检测仪,为了应对从10月起大米实施100%辐射检测的要求,该公司正改进仪器检测装置,在检测探头上增加铅量,使30公斤袋装的大米检测时间从过去的28秒减少至14秒。日立阿洛卡公司今年4月开发出新的软件和检测容器,以适应新的辐射检测标准,扩大检测范围,并对已购设备的客户实行免费更新。岛津制作所利用阳离子放射线检测癌症的技术,开发出大米整袋检测仪,使检测时间缩短至5秒,预计仪器售价为2000万日元。
  • 2020版《中国药典》│遗传毒性杂质检测,您准备好了吗?
    ? 导 读2020版《中国药典》已于今年6月正式发布,并将于12月30日起开始实施。2020版与此前版本的药典相比,有多处重要的增删与修改,四部新增《9306 遗传毒性杂质控制指导原则》为其中之一。该指导原则的出现,为遗传毒性杂质的控制提供了理论依据。据此,药典二部又在十种药物项下规定了对磺酸烷基酯类和N-亚硝胺类遗传毒性杂质的监控要求。如何建立遗传毒性杂质的监控能力成为一些制药企业与检测机构必须完成的挑战,需尽早做好相应准备。 什么是遗传毒性杂质,新版药典为什么要加入这些内容,具体都有哪些规定呢?让小编为你一一解读。 新版药典遗传毒性杂质内容的解读 根据新版药典的定义,遗传毒性杂质(genotoxic impurities)是指能引起遗传毒性的杂质,包括致突变性杂质和其他类型的无致突变性杂质。其主要来源于原料药或制剂的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。 新版药典之所以要增加遗传毒性杂质的内容是为了加强国际标准协调,参考了人用药品注册技术要求国际协调会(ICH)相关指导原则。 药典四部新增《9306 遗传毒性杂质控制指导原则》,用于指导药物遗传毒性杂质的危害评估、分类和限制规定,以控制药物中遗传毒性杂质潜在的致癌风险,为药品标准制修订,上市药品安全性再评估提供参考。 药典二部有10种药物明确指出在必要时,应采用适宜的分析方法对产品进行分析,以确认相关遗传毒性杂质的含量符合我国药品监管部门相关指导原则或ICH M7指导原则的要求。这10种药物关于遗传毒性杂质的规定列表如下: 为了更好的推进磺酸烷基酯及N-亚硝胺的检测方法,岛津根据相关标准开发了多种检测方案。 岛津解决方案之磺酸烷基酯篇 磺酸烷基酯磺酸烷基酯一般是在磺酸盐类药物生产过程中产生的,2007年6月国际制药巨头罗氏制药公司在欧盟国家销售的一种抗HIV药物甲磺酸奈非那韦某些批次检出了甲磺酸乙酯,该事件导致此种药物在欧盟市场一度停售,直到罗氏修正了工艺并增加对甲磺酸乙酯的控制,此后多个国家及国际组织均加强了对磺酸烷基酯的监控。 磺酸烷基酯结构,R1为甲基、苯基或甲苯基,R2为烷基 磺酸烷基酯的分类不同的磺酸盐药物中需要检测的磺酸烷基酯的种类是不同的,下表罗列了各种磺酸盐原料药需要检测的磺酸烷基酯的种类。方案1 顶空+色相色谱质谱岛津HS-20+ GC-MS分析系统 岛津顶空自动进样器特点主要有:• 均一稳定的恒温控制技术,卓越的重现性• 加热炉可以位重叠加热,提高分析效率• 混合振荡功能,可使样品快速达到平衡,缩短分析时间 各磺酸烷基酯衍生物SIM色谱图 方法原理:在顶空条件下使用碘化钠将磺酸烷基酯衍生为的碘代烷烃,然后使用气质检测。方法特点:前处理简单,对仪器污染小,但不能同时检测不同类的磺酸烷基酯。 方案2 气相色谱质谱岛津GC-MS分析系统 岛津气质特点主要有:• 高灵敏度抗污染型离子源,良好的稳定性• 强劲大容量真空系统,大幅度缩短质谱开机后的稳定(抽真空)时间• OD Lens双偏转透镜,聚焦目标离子,减低噪音 八种磺酸酯标准品TIC色谱图 方法原理:药品溶于乙酸乙酯后有机滤膜过滤,直接采用气质检测。方法特点:可以同时检测不同类的磺酸烷基酯,基质复杂样品检测效果可能欠佳。 方案3 三重四极杆气相色谱质谱岛津GCMSMS分析系统 GCMSMS NX系列气质还具有以下特点:• ClickTek技术仪器维护更方便• 新一代AFC全惰性流路,提供更高的检测精度• 智能钟、Smart EI/CI 复合源提高实验效率 八种磺酸酯标准品MRM色谱图 方法原理:药品溶于乙酸乙酯,,有机滤膜过滤后使用三重四极杆气质检测。方法特点:可以同时检测不同类的磺酸烷基酯,三重四极杆气相色谱质谱抗干扰能力强可用于复杂基质样品的检测 岛津解决方案之N-亚硝胺篇 N-亚硝胺N-亚硝胺类化合物是一类强致癌有机化合物,它由前体物质硝酸盐、亚硝酸盐和胺类通过化学或生物学途径合成。典型代表化合物有N,N-二甲基亚硝胺(NDMA)、N,N-二乙基亚硝胺(NDEA)。2018年被爆出沙坦类药物中含有遗传毒性杂质NDMA,尤其是缬沙坦和氯沙坦尤为严重。 N-亚硝胺化合物结构 方案1 液相色谱最高130Mpa的高耐压,完美应对各种分析• 高通量自动进样器,实现样品的连续分析• 可配备流动相精灵,诊断精灵以及修复精灵• 最新设计的三维中文色谱软件,符合GMP标准 NDMA和NDEA 均在10min以内出峰,分离度良好,5 ng/mL标准品溶液灵敏度轻松满足ANSM French OMSL法规要求。 方案2 三重四极杆气相色谱质谱下图为6种N-亚硝胺定量限MRM图,峰型完美。应对欧洲药典质量控制要求so easy。 方案3 液相色谱质谱 • UF-Swiching技术:真正意义上实现了正、负离子同时采集;• UF-Scaning技术:扫描速度可达30000u/sec;• UF- Sweeper Ⅲ技术:离子碰撞过程的超低串扰;• UF- Senstivity技术:三重脱溶剂系统,实现超高灵敏度 轻松再现FDA和EDQM法规中规定的NDMA和NDEA检测方法,并使用LabSolutions软件实现了内标法和外标法同时定量。 5.0 ng/mL标准样品MRM色谱图 岛津自1875年创业以来,始终秉承创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不仅视自己为仪器供应商,而且努力向各个行业的用户分享岛津丰富的专业资源和强大的应用支持。为应对制药行业相关用户对遗传毒性杂质的检测需求,岛津公司开发了基于LC、GCMS、HS-GCMS、GC-MS/MS以及LC-MS/MS等平台的相关药物中遗传毒性杂质的检测方法。岛津分析中心也精心推出《沙坦类药物中遗传毒性杂质检测方案》和《药品中遗传毒性杂质检测整体解决方案》,希望我们的工作对您有所帮助。
  • 《高盐食品中氯化钠的测定 电感耦合 等离子体发射光谱法》等2项团体标准征求意见
    相关单位:按照宁夏化学分析测试协会团体标准工作程序,标准起草组已完成《高盐食品中氯化钠的测定 电感耦合等离子体发射光谱法》和《枸杞中多元素的测定 电感耦合等离子体质谱法》2项团体标准征求意见稿的编制工作。现按照我协会《团体标准制修订程序》要求,公开征求意见。请有关单位及专家提出宝贵意见,并将征求意见表(附件)于2023年4月20日前反馈给秘书处。联系人:张小飞 电 话:13995098931邮箱:1904691657@qq.com宁夏化学分析测试协会2022年3月20日关于团标征求意见函 -2023.3.20.pdf团标表格7-专家意见表.doc枸杞中多元素的测定.pdf氯化钠测定ICP-征求意见稿.pdf
  • 根据GB/T-5750.5-2023使用NexION 1100 ICP-MS法测定饮用水中的碘
    碘化物和碘酸盐是存在于水中的两种碘。碘是人类健康必需的微量元素,但摄入过量或不足都会引起甲状腺疾病。碘也可以作为消毒剂或消毒副产物引入水中。因此,碘分析对于监测饮用水的质量和安全至关重要。 GB/T-5750《生活饮用水标准检验方法》是中国环境与健康相关产品安全所和中国疾病预防控制中心发布的系列标准。这套全面的标准包括水质检验的一般原则和要求,以及物理指标、化学指标、有机物指标、微生物指标和放射性指标等各种指标的具体检验方法。它以GB5749《生活饮用水卫生标准》为依据,并会定期更新以反映最新的科技发展。在最新版本GB 5749-20221中,碘化合物被列为目标分析物,元素碘的触发量规定为0.1 mg/L。其最新版本为GB/T-5750-20232,于2023年3月17日批准,并于2023年10月1日开始实施。 GB/T-5750.5《生活饮用水标准检验方法第5部分:无机阴离子和无机非金属》规定了饮用水中以下无机阴离子和无机非金属的浓度测定方法,如氟化物、氯化物、亚硝酸盐、硝酸盐、硫酸盐、磷酸盐、溴酸盐、碘酸盐、亚氯酸盐、氯酸盐、溴化物、碘化物、氰化物、硫化物和硅酸盐。第13.4节概述了使用电感耦合等离子体质谱(ICP-MS)技术测定饮用水中碘的分析方法。 与其他分析技术相比,ICP-MS具有灵敏度高、多元素检测、检出限低、动态范围宽、分析速度快、易于自动化等优点。在本文中,我们报告了一种使用珀金埃尔默NexION® 1100 ICP-MS仪器分析各种饮用水样品中碘的方法。根据GB/T-5750.5评价数据质量。 Part.Ⅰ 实验 1.试剂和样品 碘是一种挥发性元素,在酸性介质中很容易转化为元素形式,并可产生显著的记忆效应。根据GB/T-5750.5-2023第13.4节,使用0.25%(w/w)的四甲基氢氧化胺(TMAH)基础溶液制备校准空白、校准标准品、内标、高通量系统(HTS)载体溶液和清洗液。TMAH基础溶液通过在超纯水(UPW,电阻率18.2MΩ)中100倍稀释(v/v)浓缩的高纯度TMAH(25 wt.%,Tama Chemicals,Moses Lake,Washington,USA)来制备。 水样包括自来水、咖啡机供水管道中的水、当地井水(地下水)、两瓶纯水和三瓶泉水,涵盖了各种硬度。将水样碱化至0.25% TMAH并直接测定,无需预先稀释。 2.校准标准品 通过在碘浓度为0.1、1.0、10、50、100、250和500μg/L的0.25% TMAH溶液中稀释1000 ppm碘化钠溶液(珀金埃尔默 TruQ MS定制标准品)来制备校准标准品。浓度为10 μg/L和 50μg/L的标准品也用作持续校准验证(CCV)样品。 3.内标(ISTD) 内标由400 μg/L的Te组成,通过在0.25% TMAH中稀释珀金埃尔默的单元素标准品(参见表格“所用耗材”)来制备。将内标溶液连续引入高通量系统(HTS)切换阀的指定端口,并与载体溶液/样品在线混合。 4.QC样品 QC样品包括两种加标水样(自来水和井水)以及CCV。 5.仪器 使用配备S20系列自动进样器和高通量系统(HTS)的NexION 1100 ICP-MS(珀金埃尔默,Shelton,Connecticut,USA)进行所有测定。使用氦碰撞(KED)模式测定碘-127。仪器组件、工作条件和数据采集参数如表1所示。 表1. NexION 1100 ICP-MS仪器参数和工作条件 Part.Ⅱ 结果和讨论 1.线性度和检出限 在内标校正和空白扣除后绘制校准曲线。如图1所示,在校准范围内获得的相关系数(R2)为0.9998。 图1.0.25% TMAH中127I的校准曲线 方法检出限(MDL)的确定方法为:校准空白的10次重复测定的标准偏差乘以10。在本文中,测得的MDL为0.007 μg/L,远低于GB/T-5750.5-2023规定的检出限0.6ug/L。 2.清洗效率 在本文中,碱性条件的利用显著增强了碘(I)的稳定性,从而减轻了记忆效应。此外,通过实施高通量系统(HTS),甚至实现了更高的清洗效率。HTS包括一个高流量真空泵、一个7端口切换阀和一个样品定量环。真空泵迅速将样品输送到样品定量环中,有效地冲洗基于PFA的无金属流路3。如表2所示,在500 μg/L校准标准品后测定的空白的剩余碘浓度仅为0.12 μg/L,这与1/4000的极高清洗效率相符合。 表2.检查清洗效率 3.准确度 在缺乏饮用水中碘的有证标准物质(CRM)的情况下,通过检查加碘饮用水的回收率来评估该方法的准确度。该评估使用了两种饮用水样品:一种是从当地商店购买的瓶装泉水,另一种是从居民水井中获取的井水。将每个样品分别加标至10、50和100 μg/L三个浓度,并进行三次测定。对未加标的水进行六次重复测定,并将平均值用作计算的减数。加标回收率计算为加标和未加标样品浓度之间的差值除以加标浓度。如表3所示,两种水源的所有加标浓度的回收率均在±10%以内,符合GB/T-5750.5-2023规定的80%-120%的范围。 表3.加碘试验结果 4.精密度 通过重复测定的相对标准偏差(RSD)来评估精密度。使用各种饮用水进行精密度试验,包括自来水、咖啡机供水管道中的水、井水和瓶装泉水。每个样品重复测定5次,以计算RSD。如表4所示,该方法的RSD为1.9%~3.2%,符合GB/T-5750.5-2023规定的 5.稳定性 为了评估长期稳定性,在10小时的较长时间内重复分析了各种饮用水样品,包括自来水、当地井水、两瓶纯水和三瓶泉水。在整个分析过程中,监测浓度为10 μg/L和50 μg/L的两个持续校准验证(CCV)样品和内标的回收率。 CCV回收率:如图2所示,两种浓度的回收率均在原始读数的±10%范围内。在运行过程中没有观察到明显的趋势,这验证了在10小时的样品运行中校准的有效性。这对于提升高通量实验室的整体效率和生产率非常重要,因为它能避免校准标准品的频繁重新运行。 图2.在各种饮用水样品的10小时分析过程中 获得的CCV回收率 内标回收率:将内标(IS)归一化为校准空白,时间分辨图如图3所示。总的IS回收率在80%-120%范围内,证明该方法和系统具有出色的稳定性和稳健性,并且适用于较长时间的样品运行。 图3.在各种饮用水样品的10小时分析过程中 获得的内标回收率(归一化为校准空白) 结论 /Summary 根据GB/T-5750.5-2023中概述的指南,使用NexION 1100 ICP-MS测定各种饮用水样品中的碘。评价该方法的线性度、检出限、清洗效率、准确度、精密度和稳定性。 相关系数(R2)为0.9998,表明在高达500 μg/L的校准范围内具有良好的线性度。方法检出限(MDL)为0.007 μg/L,远低于0.6 μg/L的标准。通过两种水样的加标试验验证了该方法的准确度。两种样品的回收率均在±10%以内,完全在±15%的标准范围内。各种饮用水样品的相对标准偏差(RSD)为1.9%~3.2%,均低于要求的5%,证明了本文所述的精密度。通过在各种饮用水样品的10小时分析过程中获得的CCV和内标的一致回收率验证了稳定性。 本文表明,NexION 1100 ICP-MS能够满足和/或超过GB/T-5750.5-2023推荐的关于饮用水中碘测定的要求。本应用文献介绍的方法具有可靠性和一致性,并且适合其预期目的。 所用耗材 (点击查看大图) 参考文献 1.GB 5749-2022:《生活饮用水卫生标准》 中国国家卫生健康委员会。 2.GB/T 5750-2023:《生活饮用水标准检验方法第5部分:无机非金属指标》 中国国家标准化管理委员会。 3.用于ICP-MS/OES的高通量系统,技术说明,铂金埃尔默,2020年。 关注我们
  • 微塑料:一场不知不觉的污染
    p   人类和塑料的关系可能比你想象得还要“亲密”。除了生活中接触到的各种塑料制品,塑料还会降解成直径从0.1到5000微米不等的塑料微粒。这些微粒在陆地上随处可见,也被发现存在于河流、海洋甚至北极。 /p p   本世纪初,人们首次在海洋中发现微塑料的存在,至今已有不少研究聚焦于这些小小颗粒的降解和迁移过程。 /p p   如今人们发现,它们不仅会走水路,还会“借东风”。 /p p   《自然—地球科学》本月发表了一项研究,法国国家科学研究中心的研究团队跑到人迹罕至的偏远山地,收集大气中的沉积物样本,发现其中含有大量塑料微粒。模拟实验表明,这些塑料微粒通过大气旅行,最初动身之地距离落脚处可达100公里。 /p p    strong 微塑料的前世今生 /strong /p p   粒径5毫米以下的塑料颗粒被称为微塑料,通常以碎片、纤维等形式存在。 /p p   中国科学院水生生物研究所助理研究员熊雄告诉《中国科学报》,微塑料的来源主要分为两种。一种是生产时体积就很小的原生微塑料,常见于带有磨砂成分的个人护理品,在人类使用过程中进入水体。另一种是原本体积较大的塑料,经过光照、氧化、机械磨损等作用,逐步降解为微塑料。 /p p   在此过程中,有些微塑料可进一步降解至微米甚至纳米级别,因而有更高风险进入到细胞或生物体内,甚至对整个食物链产生影响。 /p p   先前对微塑料的研究较多集中于水体环境。从马里亚纳海沟到南极圈冰冻层,都已发现微塑料的存在。在中国,一些较为偏远的水体如西藏、青海等地的湖泊,也已检测到不同浓度的微塑料。 /p p   有研究指出,河流是海洋中微塑料的重要输送来源。熊雄等人调查长江中下游水体的微塑料污染情况后发现,内陆水体不仅是微塑料从陆地到海洋的传输渠道,其本身也聚集了数量可观的微塑料。 /p p   研究结果显示,长江中下游的微塑料浓度均值约为每平方千米50万个微塑料颗粒。这一结果在采用相似方法的河流中处于中等偏高水平。 /p p   熊雄告诉《中国科学报》,继这一研究后,其课题组仍在继续进行内陆淡水水体的调查。 /p p   在课题组近期发表的一项研究中,他们对一年四季湖水中微塑料的表面生物膜生长情况进行了调查,发现微塑料在水体内的沉降不仅受生物膜生长影响,也受水中悬浮颗粒物影响。 /p p   虽然没有确凿证据可以追溯这些微塑料从何而来,“但可以推测人们日常生活生产中使用的塑料制品是微塑料污染的主要来源”。熊雄表示。 /p p    strong 乘风而来 /strong /p p   如果说前述研究探讨的是微塑料如何在水体中停留和沉积,那么接下来的研究则发现,一旦微塑料体积足够小,它们的旅程就可以走得足够远。这意味着除了潜入水底,微塑料占据的领土达到了前所未有的广度。 /p p   之前有科学家曾对城市周边的大气微塑料含量进行研究,确认了大气沉降是表层土壤微塑料污染的源头之一,但当时并没有观点认为微塑料会迁移到非常远的地方。 /p p   《自然—地球科学》此次发表的文章指出,微塑料可能会通过大气“长途旅行”。 /p p   为了搞清微塑料可以走多远,Deonie Allen等研究人员在法国西南部的比利牛斯山脉进行了长达5个月的追踪研究。离他们选取的研究点最近的城市在近百公里外。 /p p   科学家从灰尘、雨水和雪中提取沉积物,对从中获得的微塑料类型和大小进行区分,并计算了相应的个数和含量。科学家发现,单位平方米中存在不同比例、不同形态的微塑料,如碎片、薄膜和纤维。测量区域的微塑料日沉积率约为365个颗粒/平方米。 /p p   建立大气模型进行模拟后,科学家推测这些微塑料在到达偏远山区之前,最可能产生于周边的城市。塑料微粒在大气中游荡,最终降落在几十公里外的山区土壤中。 /p p   文章指出,微塑料的体积和重量足够小后便能在大气中漂浮。这也意味着,它们不可能被绝对清理干净。因此Allen等人建议,目前唯一可行的办法就是从源头控制塑料的使用。 /p p   “目前对于微塑料在大气中迁移和沉降的研究很少,特别是在人迹罕至的偏远地区。这项研究会为同领域的研究者带来更多启发。不同区域微塑料在大气中的污染状况及其影响因素、微塑料在大气中的迁移规律及机理、大气中微塑料对人体的健康风险,都是值得继续探讨的问题。”北京市农林科学院副研究员徐笠这样评价道。 /p p   “随大气迁移并沉降到地表是土壤中微塑料的一种来源途径。在一些自然保护区或未开发利用地区,这可能是主要途径。”浙江农林大学环境与资源学院教授章海波告诉《中国科学报》,“但在农田土壤中,微塑料的主要来源还是有机肥、污泥农用、灌溉等。” /p p    strong 研究瓶颈 /strong /p p   从难以察觉的细小微粒到海洋中体量庞大的“怪物”,人们研究塑料垃圾造成的污染由来已久,相对应的研究手段也各不相同。 /p p   熊雄等人在长江中下游进行调查时,将333微米孔径的拖网放置在水体中拖曳,进行样品收集。 /p p   英国海洋生物协会近日发表的一项针对塑料垃圾数量的调查,也采用在水体中拖曳的方式,利用一种名为浮游生物连续记录仪的采集器,拖曳距离累计超过1200万公里。 /p p   徐笠告诉《中国科学报》,采集水体样本后,在实验室中往往还需要经过一系列处理。过滤就是一种常见手段。研究者根据微塑料的体积大小选择有适合孔隙的过滤膜。硝酸纤维、醋酸纤维、尼龙等是常见的滤膜材质。 /p p   徐笠指出,“膜的选择应根据具体实验要求,其孔隙大小和材质是需要重点考虑的问题。样品过滤后,通常含有有机质、藻类等各种干扰杂质,这些干扰因素可以用双氧水等进行消解,再用消解液过滤一遍,留在滤膜上的就是微塑料了。” /p p   如果想测定土壤中的微塑料,在过滤之前还要经历一道浮选的过程。浮选的溶液有氯化钠、碘化钠、氯化锌等。利用不同浮选液密度,可将不同类型的微塑料从土壤中浮选出来。 /p p   “这也是为什么调查土壤中的微塑料更为困难,因为微塑料沉积在土壤中,较难浮选出来。目前通用的解决办法是多次浮选,增加微塑料的回收率。”徐笠说。 /p p   这之后,研究者会在显微镜下观察样品大小、形状、颜色等特征,并用红外光谱或拉曼光谱对所选样本的具体种类进行鉴定。 /p p   章海波表示,受技术条件影响,目前研究主要还是以野外调查与室内模拟相结合,标记示踪也是一种方法。“但技术上目前对土壤中微塑料的分离分析方法还不够完善,受土壤复杂介质的影响较大。” /p p   “目前微塑料相关研究还没有一个统一的标准方法,未来还应制定统一的采样和样品处理方法,让微塑料研究更规范、环境浓度数据可比性更强。”熊雄表示。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/4882a329-5b7b-49ce-accd-ca3aadad5ca8.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span br/ /p
  • 央视:现场氰化钠和有毒气体指标达仪器测量最高值
    p   【财新网】据央视网8月18日“焦点访谈”栏目报道,在天津港“8· 12”火灾爆炸事故现场的核心区,官方检测到氰化钠和有毒气体都达到了仪器测量的最高值。 /p p   央视报道称,北京消防总队的生化侦检队伍,配备了先进的检测设备,负责探测爆炸区域内的有毒有害气体。北京公安消防总队参谋吕峥介绍:“这个是我们北京总队核生化侦检车,这个车功能就是能进入现场边缘地带,能测定有毒有害的范围。”那它都能检测到什么物质呢?吕峥说:“检测到化学有害物或者生物的一些比如说病毒、病菌这些都可以。” /p p   爆炸发生后,事故区域的空气就处于严密的监测中,每天都会有多支小分队对空气进行监测。而8月16日上午,这些侦检队员们的任务是对爆炸核心区域的空气进行采样。为了保证安全,进入核心区域前,所有队员、包括记者在内都必须穿着防护服、佩戴空气呼吸器。由于空气呼吸器的供氧时间只有半个小时,侦检队员们必须迅速完成计划区域的检测工作。 /p p   做好防护工作后,央视记者跟随侦检队员,来到了距离爆炸核心区500米的集结地。由于前方已经没有道路,所有人员必须在这里下车。而就在此时,车载监测系统和手持监测仪同时发出了警报声,提示空气中的有害气体已经超过了仪器能够测量的最高值。 /p p   侦检队伍继续徒步向爆炸核心区方向前进。沿途记者看到,在爆炸核心区的外围,为了防止降雨后污水外溢,已经垒起了一道一米多高的防护堤。前进过程中,侦检队员手持的报警器依然在提示有害气体爆表。 /p p   北京公安消防总队副参谋长李兴华介绍:“今天上午这趟去采集的结果,侦测的结果跟昨天几乎一样,还是氰化钠和神经性毒气这两种有毒的气体。这两项指标都达到最高值。” /p p   央视记者进而采访了北京化工大学国家新危险化学品评估及事故鉴定实验室博士门宝,他表示:“氰化钠固体毒性非常大,只要碰到皮肤破伤处或者吸入或者误食大概有几十毫克可以致死。” /p p   门博士介绍,氰化钠是一种白色粉末状的剧毒物质。由于毒性很大,不方便用来试验,但可以用化学性质与之相似的无毒物质碳酸氢钠来演示它的一些特性。门博士将碳酸氢钠放入蒸馏水中,可以看到它能够很快溶解,并且没有气体产生,而与酸性液体接触后则迅速产生大量气泡。 /p p   门博士告诉记者,氰化钠遇到酸性物质会产生大量剧毒的氢氰酸,但在碱性环境下比较稳定。现场如果有散落的量比较大的氰化钠应进行清理或者掩埋,对于空气中漂浮的和地面散落的氰化钠颗粒,可以通过喷洒低浓度的碱性双氧水来消除毒性。目前,事故现场已经开始了这项工作。如果处理及时,即便降雨,也不会造成太大影响。 /p p   在对爆炸核心区的空气进行监测时,除了氰化钠,还发现了一种物质就是神经性毒气,门博士介绍,爆炸区域的多种危化品都可能产生这类物质。他说:“这些物质遇水或者遇碱能产生气体然后产生神经性毒气,比如氰化钠还有一些硫化碱,另外一些物质在高温爆炸过程中会发生化学反应,产生有毒性气体,比如二甲基二硫。神经性毒气一旦人吸入,可以与神经细胞作用,使酶失活,另外可以导致呼吸系统心脏等骤停进而导致人死亡。” /p p   门博士建议,如果神经性毒气密度较高,应尽快撤离,如果超标不严重,也应做好防护措施,避免与人体接触。事实上,本次爆炸现场的危险远不止这些。现场危化品的种类和数量,超乎想象。 /p p   公安部消防局副局长牛跃光表示:“40多种危化品,目前了解到的情况有硝铵、硝酸钾这些硝类的应该是炸药类的,这个量是非常大的,像硝酸铵目前我们了解到可能在800吨左右,还有硝酸钾500吨,加上氰化钠这类物品,要超过2000吨。” /p p   牛跃光告诉记者,由于瑞海公司办公楼已经被毁,货物记录不清,所以爆炸现场具体的危化品数量有待最终确认,但现在能够确认的危化品数量在3000吨左右。 /p p   瑞海公司仓库示意图显示,凡是能够堆放物品的地方,全部放满了危化品。牛跃光说:“我干消防40多年了,像此类的危险品仓库,这还是历经最复杂的一次灾害事故。” /p p   由于情况复杂,危化品的生产厂家,氰化钠所属的河北诚信有限责任公司相关人员也赶到现场,参与处置。河北诚信有限责任公司总经理智群申介绍,现场核实有700来吨氰化钠:“当地按照应急指挥中心,他们在当地有运输车辆,帮助我们把东西运回去。” /p p   核心区包装完好的氰化钠将运回企业,而爆炸发生时,还有氰化钠颗粒散落到外围。在今天上午的发布会中,天津市副市长何树山介绍说,对外围氰化钠的清理搜寻分成了三个区域,分别为离核心爆炸点一公里半径范围、两公里半径范围、三公里半径范围:“我们从13号开始这几天已经把一公里半径搜寻完了,两公里半径搜寻完了,今天傍晚可以把三公里半径搜集完。” /p
  • 重磅!GE医疗携手安科锐Accuray,侧重肺癌和脑癌的早期发现
    “从去年开始GE医疗就在放疗领域频频布局,尤其是在今年与医科达、RaySearch以及安科锐达成合作。每一步彰显了公司在整个放疗领域深入布局的寓意,目前“GPS”三大厂商都不断在放疗领域布局,可以说三家企业的竞争已蔓延到放疗领域,而GE医疗在该领域已与三大放疗巨头其中的两家达成合作,未来值得期待。近日, GE医疗和安科锐(Accuray)正式宣布,他们已签署一项全球商业合作协议,旨在提供解决方案,使全球更多的医疗团队能够在治疗过程的每个阶段定制患者的护理。双方此次合作,早期将侧重于肺癌和脑癌治疗方面的挑战 ,重点是早期发现(功能诊断),以更好地为治疗规划、决策提供信息 以及有针对性的精确治疗。此外,GE医疗还将和安科锐将寻求推动数字化和互操作性,旨在建立癌症护理途径解决方案并简化放射肿瘤学的工作流程。值得一提的是,在近年来GE医疗在放疗领域开始不断加码,从去年开始就已与多家放疗企业合作,包括今年上半年与全球放疗巨头医科达合作;此次再与安科锐合作,进一步彰显了公司在整个放疗领域深入布局的寓意。除此之外,GE医疗近期还确立了分拆后的业务板块和区域市场。01强强联合,加大布局放疗放疗作为目前癌症的主要治疗方式,是利用放射线杀死癌细胞使肿瘤缩小或消失,用于消灭和根治局部原发肿瘤或孤立的转移性病灶。而在放疗计划制定和诊疗过程中,精准影像是确定肿瘤大小、形状、特征以及区分健康组织的基础;提供更为精确的放疗剂量需要先进的患者摆位、内部器官运动;这对于使临床医生能够自信地诊断和治疗早期癌症同样重要。此次GE医疗与安科锐公司合作,旨在提供解决方案,使全球更多的医疗团队能够在治疗过程的每个阶段定制患者的护理。两家公司将提供全面的产品,将GE Healthcare的精密诊断工具和安科锐公司的创新放射治疗交付能力相结合,以推进放射治疗的临床应用,并帮助癌症患者提供个性化护理。通过将GE医疗的成像解决方案和安科锐放射治疗技术相结合,以改善癌症护理领域的诊断和治疗。该合作早期将侧重于解决肺癌和脑癌治疗方面的挑战 ,重点是早期发现(功能诊断),以更好地为治疗规划、决策提供信息 以及有针对性的精确治疗。此外,GE医疗集团和安科锐将寻求推动数字化和互操作性,因为医疗保健系统希望建立癌症护理途径解决方案并简化放射肿瘤学的工作流程。安科锐RadixactGE医疗集团成像总裁兼首席执行官Jan Makela表示:“个性化医疗需要诊断和交付的精确性,随着我们继续构建我们的肿瘤学产品以帮助实现更精确,更互联和富有同情心的护理,我们致力于通过我们的一套诊断技术来帮助癌症护理提供者占据上风,这些技术有助于提高检测以及临床和运营效率。面对复杂的诊断,我们努力进行第一个图像计数,以帮助缩短从诊断到治疗的窗口。我们很高兴有机会与安科锐合作,并扩大对我们先进成像工具的访问,因为我们的目标是提供早期诊断和更好治疗方案的途径。Suzanne Winter安科锐总裁兼首席执行官Suzanne Winter表示:“放射治疗社区正在通过技术进步重新定义个性化医疗,从而改善从诊断到生存的癌症护理连续体。对于安科锐来说,这涉及持续关注治疗计划和临床技术的创新,以帮助确保医疗团队能够在最短的时间内提供最精确的放射治疗。“Suzanne Winter还表示:“预计到2022年,将有超过100万美国癌症患者接受放射治疗。这一统计数据凸显了我们与全球医疗保健领导者GE Healthcare合作的重要性,GE Healthcare致力于创造一流的肿瘤学解决方案,提高我们解决方案的可见性,并最终为更多人提供可能挽救生命的放射治疗。02 三大放疗巨头,合作其二据了解,安科锐成立于1990年,总部位于美国加州桑尼维尔,在世界多地都有分支机构。公司于2007年在特拉华州重新注册成立,是一家设计、开发和销售肿瘤放射系统的医疗器械公司,涵盖放射外科、立体定向身体放射治疗、调强放射治疗、影像引导放射治疗和适应放射治疗等多个方面。主要生产精准放疗领域的射波刀手术系统CyberKnife以及TomoTherapy螺旋断层放疗系统,公司于2007年在纳斯达克上市。与瓦里安、医科达一起被称作全球放疗领域三巨头。此次GE医疗与安科锐合作,双方致力于提供具有标准互操作性和接口设计的解决方案,这些解决方案将允许与任何供应商的系统集成,为客户提供更大的灵活性和选择。该协议允许各方继续与其他技术合作,此次合作将扩大两家公司的覆盖范围,使两家公司能够获得从诊断到治疗的精确,准确和创新的解决方案。与医科达合作而在放疗领域,GE医疗近两年不断深化其在放疗领域的布局,除了与安科锐的合作之外,在这之前公司还与三巨头之一的医科达达成合作。双方在放射肿瘤学领域签署了一份商业合作协议,共同为全球范围的医疗机构提供从诊断到治疗的全方位解决方案,以满足癌症患者的放射治疗需求。收购Zionexa也就是说,GE医疗目前在放疗领域全球三巨头中已与其中两家达成合作。另外公司还通过收购与合作不断布局,比如2021年5月,GE医疗宣布收购总部位于法国的私营企业Zionexa,获得了显像剂Cerianna (氟雌二醇 F-18)。Cerianna是用作活检的辅助手段,用于检测雌激素受体(ER ) 阳性病变有助于为复发性或转移性乳腺癌患者的治疗选择提供信息。与NorthStar合作2021年8月,GE医疗与美国核医学技术公司NorthStar签署协议,GE医疗的制药诊断部门将协助开发和分销用于 NorthStar 医用放射性同位素的碘 123 (I-123),以帮助诊断甲状腺癌。据悉,碘化物 I-123(作为碘化钠 I-123)是碘的放射性同位素,是放射性药物中的主要产品,在核医学中经常用作诊断甲状腺生理异常(包括甲状腺癌)的成熟标准。与放疗软件巨头RaySearch合作2022年5月,GE医疗与放疗软件巨头RaySearch达成协议,合作开发一种新的放射治疗模拟和治疗计划工作流程解决方案。目标是将RaySearch的高级治疗计划系统RayStation与GE医疗的多模态(CT/ MR /分子成像)系统结合起来,让癌症治疗更快,更精确。除此之外,近期GE医疗还推出了其全新的全数字Omni平台下的第一款PET/CT:Omni Legend,搭载全新数字BGO (dBGO) 探测器,旨在提高检查效率、增强患者体验、并增强诊断信心。03 分拆最新进展从2021年11月9日宣布分拆为三家上市公司开始,GE医疗分拆上市逐步有序进行,今年7月18日GE公布三家独立后的公司名称及品牌标识。9月12日GE公布独立后的GE 医疗董事会成员名单,并确认2023年1月第一周的目标分拆时间。美当地时间10月11日,GE又公布了其分拆医疗部门的最新进展,其已向美国证监会提交了一份10号表格的登记声明。文件中详细介绍了有关GE 医疗的业务和战略概述,历史财务信息,竞争优势等详细信息。此次还着重强调了GE医疗的战略方向。四大业务部门公司将分为四个业务部门,与其所服务的行业保持一致:成像:包括CT、MRI、分子成像、X射线、女性健康、图像引导疗法、企业成像软件、服务能力和数字解决方案;超声:包括控制器和探头、掌上超声、术中成像设备和可视化软件;患者护理解决方案:包括患者监护、麻醉和呼吸护理、心脏病学诊断以及母婴护理;医药诊断:包括造影剂和放射性药物。未来战略将推动行业领先的精密创新,为患者和客户提供更好的结果,并通过数字化医疗保健带来重大机遇 将诊断、治疗和监测方面的护理联系起来 并跨护理途径和护理地点提供服务。通过产品领导和商业执行加速增长。在强劲的全球和终端市场动态中,GE医疗计划投资于创新,追求严格的资本配置策略,并加强其商业执行力,以推动可持续增长。通过简化、更加分散的结构优化其运营模式,包括将其业务模式定制为医疗保健领域的独立领导者,利用精益原则,并继续培养其以目标为导向、以行动为导向的文化。另外,GE医疗将在纳斯达克全球精选市场上市,股票代码为GEHC。公司计划将至少80.1%的GE HealthCare的普通股分配给GE的股东,并保留19.9%的股份。Peter ArduiniGE医疗集团首席执行官Peter Arduini表示:“对于GE医疗团队来说,这是一个里程碑式的一天,他们致力于创造一个医疗保健没有限制的世界。我们相信,我们有一条清晰的道路,可以为客户及其患者提供精准创新,同时加速增长并优化我们作为一家独立公司的业务。
  • 宁夏化学分析测试协会批准发布《高盐食品中氯化钠的测定 电感耦合等离子体发射光谱法》等3项团体标准
    各有关单位:根据国家《团体标准管理规定》和《宁夏化学分析测试协会团体标准管理办法》,我协会对《高盐食品中氯化钠的测定 电感耦合等离子体发射光谱法》等3项团体标准进行了评审,已经通过了专家审查,现予以发布,自2023年5月8日起正式实施,特此公告。 序号标准号标准名称发布日期实施日期1T/NAIA 0211-2023高盐食品中氯化钠的测定 电感耦合等离子体发射光谱法2023-05-082023-05-152T/NAIA 0212-2023枸杞中多元素的测定 电感耦合等离子体质谱法2023-05-082023-05-15 3T/NAIA 0213-2023富硒熟制羊肉2023-05-082023-05-15宁夏化学分析测试协会2023年5月8日
  • 微塑料“百问百答”整理回顾,“百家代表”首次公开!
    近年来,微塑料日益受到学术界和社会公众的关注。微塑料的痕迹已遍布世界上的各个角落,国内外的相关研究团队已经在淡水、深海、高山、土壤以及北极海冰,甚至婴儿胎盘内发现了微塑料的存在,并且数量还在不断增加。“微塑料”表面积,吸附污染物的能力强。自然界存在的有毒有害物质,如多环芳烃、双酚A等都有可能吸附在微塑料的表面。因此与不可降解的“白色污染”塑料相比,“微塑料”对环境的危害程度更深、更严重。为探讨微塑料最新研究成果,加深对微塑料的认知,6月30日,仪器信息网举办了“环境中微塑料检测与分析”主题网络研讨会,邀请微塑料领域专家及仪器厂商工程师,分享微塑料最新研究成果及最新仪器。 会议共邀请10位专家,就微塑料的分离分析、检测表征、监测防控等内容展开分享。会议现场共有百余条学术提问,报告专家分别做了现场语音答疑和文字答疑(提问情况与内容与样本人群的相关性、报告顺序等相关)。现对于会议报告人、视频回放、Q&A部分、参会用户部分单位节选等整理如下: 报告1题目:《环境中微纳塑料的分离测定方法研究》【报告人】于素娟,博士,中国科学院生态环境研究中心副研究员,主要研究方向为微纳颗粒物的分析方法与环境行为。主持基金委面上项目、青年基金项目及国家重点研发子课题等,参与多项基金委国家重大科研仪器研制项目、重点国际(地区)合作研究项目等,在本领域著名SCI期刊Environ. Sci. Technol.、Environ. Sci.: Nano、Environ. Pollut.等发表多篇综述及研究论文。【视频回放】因涉及未发表最新成果等内容,与专家沟通后,确定不予回放【问答摘取】Q1:老师,您好我想问一下环境水样中自来水、龙头水、污水处理厂的水样体积是多少? Ins_9764bb9b A1:不同方法用的水体体积是不同的,像浊点萃取一般10-几十毫升,膜过滤可以到几百毫升,而单颗粒ICPMS大概10毫升左右Q2:老师,您好我想问一下对于环境水样微塑料检测的形状、颜色等信息可以获取么?Ins_9764bb9b A2:我们的方法更多针对小粒径的,形状只能用电子显微镜来观察,而但粒径足够小时,颜色信息基本是得不到的Q3:老师您好,土壤中的微纳塑料如何定量?土壤的前处理如何处理m3017712A3:我们目前这些方法主要针对环境水体中微纳塑料的测定,土壤基质复杂,目前这些方法不太实用。我们课题组发表的综述文章综述过其他一些检测方法,可能会用到土壤中的定量,感兴趣可以看一下。土壤和底泥样品一般采用浮选方法,根据塑料跟基质密度的差异进行分离。也有一些方法例如加速溶剂萃取方法,但这种方法是破坏性的,不能追踪塑料的原始状态。Q4:老师您好,请问小颗粒的微塑料在分离过程中是否会出现凝聚结块难以分离的情况 Ins_0b77df4aA4:用浊点萃取的方法,分离过程不会改变形貌,但如果用膜过滤的方法过滤富集微塑料,塑料很难从滤膜上分离,是有可能凝聚的Q5:老师,消解用的是酸消解吗 Insp_5f5d4e20A5:因为有好几个工作,针对不同的干扰物,消解方法不同。环境水体中的有机质我们采用的是芬顿试剂消解,我们发展的单颗粒ICPMS,一些无机颗粒会进行干扰,我们先用酸消解消除无机颗粒物干扰。Q6:于老师,您好,微塑料为什么是带负电荷的?谢谢 189****0785A6:塑料在环境中经老化后,表面往往会带有羧基、羟基等,使其带负电Q7:最小检测的颗粒为0.5um,仅仅只是微塑料吧?不能说包含纳塑料?v3041647A7:纳塑料的分类一般认为小于1um,我们浊点萃取方法可以萃取几十个nm,单颗粒ICPMS考察时候也能用到几十个nmQ8:于老师,您好。您认为电镜+阴极荧光对微塑检测,有更好吗138****6145A8:我们没有用过阴极荧光的方法,因此不好直接推论。Q9:于老师,您好,在提取环境中的微塑料时怎么保证提取的都是微塑料,不是其他物质? Ins_0a4be34aA9:我们萃取的过程,不能保证只萃取到微塑料。但是最重要的是后面的定量识别的过程。用热裂解GCMS定量时,不同塑料有特征的裂解碎片,来识别进而定量Q10:于老师,请问,膜分离那一节,玻璃纤维滤膜碾磨后进PY-GC-MS,能进多少质量的样品? 环境样品浓度低的话能达到检出限吗? Ins_e6420099A10: 滤膜研磨后再转移,体积是很小的,因为量杯很小,也就80微升左右的容量,我们一般分步转移,先转移一部分液体,干燥,再转移。环境样品浓度低的话,我们采用的是加大样品体积,但每种方法都有检出限,膜过滤这个对微塑料和纳塑料的检出限都在ppb量级,再低可能是检测不到的Q11:于老师,请问回收率是如何得到的? Ins_b6dac33eA11: 浊点萃取,膜分离我们条件优化过程会添加标准品,萃取分离后,检测到的样品量与标准添加量对比能得到回收率 同样单颗ICPMS我们添加的塑料有标准粒径,通过质量可以折算出颗粒数,然后经检测以后的颗粒数对比原始颗粒数得到回收率Q12:于老师好,您讲的浊点萃取和膜分离方法提取出来的微纳米塑料可以使用拉曼仪器检测吗? Ins_d1d3bb13A12: 不是,用热裂解GC/MS进行测定Q13:于老师,您好,请问您实验室用的是哪种滤膜(粒径多大),分离实际水体的微米和纳米塑料 Insm_bb36572aA13: 玻璃纤维膜,用的1微米的Q14:于老师,您好!微纳塑料的粒径怎么表征? v3041647A14:我们研究中的粒径一般小一些,一般用透射电子显微镜或扫面电子显微镜来表征Q15:于老师,请问一下膜过滤的塑料如果发生凝聚结块有什么分离的办法吗?Ins_0b77df4aA15:因为膜过滤后,有些颗粒已经是嵌入到膜的结构中,我们尝试过用表面活性剂超声将它们洗脱下来,但回收率有限,只能部分洗脱下来Q16:于老师您好,请问浊点萃取的操作大概需要多长时间呢,谢谢老师Ins_d1d3bb13A16: 取样-加萃取剂、盐等(很快)-水浴(大约15分钟)-离心(大约5分钟)-分离(2分钟左右)Q17:于老师,微塑料能嵌入到0.45微米的滤膜吗?Ins_8b928ff1A17:如果单从滤膜的孔径大小出发,微塑料能够被0.45微米的膜截留,但是否被嵌入其中这个不好下结论。Q18:于老师,请问可以用spICPMS表征纳米塑料的粒径吗? v3041647A18:单颗粒ICPMS是间接通过测定表面生长Au的信号进行检测,只能给出颗粒数的浓度,不能给出纳塑料的粒径信息报告2题目:《安捷伦8700 LDIR激光红外成像在土壤微塑料定性定量测试中的应用》【报告人】2012 年加入安捷伦科技(中国)有限公司,担任分子光谱产品线应用工程师支持的产品包括红外、拉曼、紫外以及分子荧光等产品,主要负责售前/售后应用支持和应用方案开发。【视频回放】https://www.instrument.com.cn/webinar/video_115151.html 【问答摘取】Q19:张老师,用乙醇对样品进行处理,乙醇会不会溶解部分微塑料,有测过回收率吗? Insp_1bb81f77 A19:使用乙醇溶液的目的是将滤膜上的所有颗粒萃取出来,其易挥发且无毒,对聚合物不会有伤害。目前土壤样品的解决方案是与用户合作共同开发的,回收率大概在80%以上Q20:安捷伦张老师好,请问这个方法对生物样品可用吗? Ins_f0b8dbc4A20:关于生物样品前处理,请登陆安捷伦官网,查看 Agilent 8700 LDIR 激光红外成像系统微塑料定性/定量分析解决方案Q21:老师好,请问这个方法对生物样品可用吗? Ins_f0b8dbc4A21: 老师您好,请直接登陆网址下载吧,https://www.agilent.com.cn/cs/library/brochures/5994-2462ZHCN.pdfQ22:张老师,这台仪器主要是用于测微塑料么?还可以应用于其他什么样品?Insm_0fb1c2e8 A22: 老师您好,这台仪器可以应用的领域有很多,如制药行业内组分分布测试,材料行业多层膜分析等。它是一台红外成像设备。针对微塑料方向,我们是在仪器和软件的基础上,开发了专门的微塑料测试方法,测试微塑料样品时直接调用方法即可。Q23:请问工程师,最多可同时检测几种微塑料?种类间光谱重叠干扰情况如何?p3336596A23: 老师您好,目前安捷伦的微塑料谱库涵盖了最常见的聚合物,且谱库是对用户开放的,用户可以根据自己需求,不断的往谱库里面添加不同组成的聚合物进去。样品转移到乙醇溶液后,在转移至窗片前,会进行超声震荡,尽可能的让颗粒在溶液内分散开。转移至标准反射测试窗片前,我们会对样品进行一个评估,确认一下样品内颗粒含量的高低。如果浓度很高,会添加乙醇溶液进行稀释,然后转移至窗片后,随着乙醇溶液扩散,所有颗粒会比较混匀的分散在整个窗片上,尽可能的避免颗粒叠加。Q24:老师您好,想问问这个能不能应用于生物样本? Ins_a592db20A24: 老师您好,请您见问题21,登录安捷伦官网下载白皮书,里面有关于生物样品的前处理流程Q25:老师您好,想问问这个能不能应用于生物样本?因为生物样本通常含有油脂,会凝固包裹样品 Ins_a592db20A25: 老师,请登陆该网址直接下载吧Q26:接着上面,请问这个需要怎么进行处理呢 Ins_a592db20A26: https://www.agilent.com.cn/cs/library/brochures/5994-2462ZHCN.pdfQ27:张老师,请问红外成像与拉曼成像相比有哪些优势? p3081015A27:很多微塑料颗粒因为是带颜色的,所以是含有荧光的。拉曼光谱在测试荧光样品时会受到荧光干扰,谱图信号较差或仅有荧光信号,进而导致识别不出聚合物颗粒。Q28:张老师您好,请问前期的浮选的时候与浮选液密度相近的微塑料如何筛出?油分离是否可以作为另一种处理方法 Ins_0b77df4a A28:老师您好,目前浮选试剂使用最多的是氯化锌、氯化钠和碘化钠。氯化钠的优点是无毒,但是密度较低。氯化锌密度会大一些,但是低毒。所以用户可根据自己样品的实际情况来选择合适的浮选试剂。油分离的方法目前我们这边没有接触过,但油本身是有机材料,即使能成功浮选,后面进行油去除的工作,可能也是您需要考虑的问题。Q29:想问一下这个波束范围,能测到1000-4000左右的微塑料吗?Ins_abd8311eA29: 老师您好,激光红外成像技术目前使用的光源是量子级联激光光源,它的波长范围覆盖到整个指纹区间,而此区间对于区分不同的塑料样品是能够完全满足的。Q30:张老师,安捷伦能检测微塑料样品的颜色吗? 188****1870A30:老师您好,我们刚才报告中的数据来源就是真实的土壤样品的测试结果。红外对于测试带颜色的样品是没有任何问题的。Q31:张老师,请推送一下白皮书吧,谢谢 Ins_f0b8dbc4A31: https://www.agilent.com.cn/cs/library/brochures/5994-2462ZHCN.pdf 报告3题目:《雷尼绍拉曼光谱系统在微塑料领域的应用》【报告人】李兆芬,2007年毕业于东华大学,并获得硕士学位。现任雷尼绍拉曼事业部应用工程师,主要负责拉曼技术在各个领域的应用开发及使用。【视频回放】https://www.instrument.com.cn/webinar/video_115147.html 【问答摘取】Q32:李兆芬老师,您好,如果先用荧光染料定位塑料位置,然后再用拉曼进行点扫描,会影响定性识别么?如果影响,如何消除荧光影响 Ins_9764bb9bA32: 已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q33:李老师您好,咱们这是有拉曼光谱的标准图谱库么?玩吗可以获取么Ins_80aa760eA33: 老师您好,雷尼绍拉曼光谱仪根据咱们测试的需求配备不同的数据库,常见的微塑料的谱图在聚合物数据库里面,您如果有需要,可以和我联系,181****7526李兆芬(后期已隐藏)Q34:李兆芬老师方便留下联系方式,想跟老师直接沟通一下Ins_80aa760eA34:181****7526李兆芬(后期已隐藏)Q35:请问 李老师,微塑料主要的材料类别是哪几种 高分子材料?谢谢!p3154711A35:微塑料目前的有聚乙烯,聚丙烯,聚对苯二甲酸乙二醇酯,聚氯乙烯,聚氨酯,聚苯乙烯等等Q36:李老师你好,我想问一下滤膜的干扰通常如何解决,除了用银膜,有其他滤膜的推荐吗?Insm_1c1f0b88 A36:对于拉曼光谱来说,目前咱们检测的时候,用的银膜比较多,但是也有用铝膜的,避免背底的干扰Q37:李老师,咱们的微塑料富集在膜上,咱们的拉曼光谱能够做到自动识别膜上微塑料么 Ins_80aa760eA37:正如咱们刚刚沟通的,如果颗粒直径可是,滤膜上的颗粒在白光图像上能够区分出来,这个时候可以借助颗粒分析软件自动定位颗粒,然后进行测试Q38:李老师好,请问拉曼检测时用聚碳酸酯膜会有很大影响吗 Ins_0b77df4aA38:您好,一般咱们不建议用聚合物膜,会有微塑料采集有一些影响,因为微塑料本身就是聚合物的碎片报告4题目:《Perkinelmer红外显微成像和多联机技术对微塑料的测试方案》【报告人】珀金埃尔默材料表征产品线技术工程师;主要负责分子光谱类仪器及其联机技术的应用方法开发及技术支持工作。【视频回放】https://www.instrument.com.cn/webinar/video_115149.html 【问答摘取】Q39:查老师您好,10um以下的 使用ATR模式进行测试,是挑选出来检测还是自动识别膜上的小于10um的微塑料 Ins_80aa760eA39:您好,不需要挑出来的,直接在滤膜上 通过自动聚焦到微塑料分布的区域,原位测试。Q40:请问查老师,ATR成像模式下如何解决ATR测试两个颗粒间的互相干扰?以及怎么识别哪些颗粒已经测了,哪些颗粒还没有测? m3303707A40:您好,如果两个颗粒成分不一样 的话,红外谱图就是不一样的,如果成分一样的话,主要是显微下的微观形状和分分的区域来区分。ATR成像压制完的区域和没压制过的区域是可以区分开的。Q41:查老师您好,请问红外成像是如何进行定位的,谢谢老师 Ins_d1d3bb13A41:您好,红外成像有显微镜的可见光放大聚焦定位功能,这套系统有可见光和红外光两种光的同轴光路,可见光定位后,红外光检测,都是软件实现的,无需手动切换光路。Q42:请问查老师,10um的分辨率下,滤膜面积2cm*2cm,透射模式和反射模式需要多长时间?m3303707A42: 您好,透射和反射膜模式下,需要大约5小时。Q43:査老师咱们在北有测试点嘛 Ins_80aa760eA43:您好,北京有用户体验实验室的,在酒仙桥兆维工业园,感兴趣欢迎来看看。Q44:查老师好,请问这些滤膜是在网上购买还是在您所在的公司购买?Ins_d1d3bb13A44:您好,可以从生产滤膜的公司购买,我们公司可以给您提供我们购买的滤膜的规格信息和购买途径。Q45:查老师好!请问ATR成像一次能测多少颗粒,或者是多大面积?谢谢songzhangA45:您好,一次性能测试 1.1厘米*1.1厘米的面积,颗粒的多少是根据选择的空间分辨了有关。这种测量模式对于10微米以下尺寸微塑料比较合适。Q46:查老师好,请问这些滤膜是在网上购买还是在您所在的公司购买?Ins_d1d3bb13A46:您好,可以从生产滤膜的公司购买,我们公司可以给您提供我们购买的滤膜的规格信息和购买途径。Q47:查老师,请问如何联系您呢?是在公司官网吗 Ins_d1d3bb13A47:您好,您可以通过仪器信息网的助教联系到我,谢谢报告5题目:《海岸带微塑料污染监测与防控》【报告人】目前就职于中国科学院烟台海岸带研究所,研究员,主要从事海洋生态与环境科学研究,关注近海微塑料污染及其生态风险。作为负责人先后主持国家重点研发计划课题,国家自然科学基金面上项目、青年项目,中国科学院装备研制项目、先导专项子课题等10余项。发表SCI论文60余篇,其中第一作者和通讯作者SCI论文30篇,论文总引用次数1500余次。入选中国科学院青年创新促进会,获得中国科学院“沈阳分院第五届优秀青年科技人才奖”,2017年度获得中国科学院科技促进发展奖(排名第3)。【视频回放】因涉及未发表最新成果等内容,与专家沟通后,确定不予回放【问答摘取】Q48:王老师您好,关于水体中加入聚合物使得微塑料加速沉积,这个方法有没有成熟应用的案例呢? Ins_78b98181A48:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q49:王老师,您好,您的报告很精彩,问问内陆河的微塑料的污染状况如何,国内分布如何?Ins_0a4be34aA49:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q50:王老师,您好,现在海洋微塑料的检测采用的方法是什么呢?现在是检测颗粒大小在多少的范围 185****5895A50:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q51:王老师好,海参等生物肠道中微塑料如何定性和定量的?谢谢!Insp_b3bb0338A51:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q52:王老师好,请问如果检测20微米以下的话,还可以用显微拉曼直接检测吗,谢谢老师 Ins_d1d3bb13A52:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q53:王老师,你们选择疑似颗粒的时候,有什么规则吗?一张膜上Insm_5b221eccA53:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q54:好的,谢谢王老师,看了一些文献,感觉没有一个标准去定义这个微塑料污染的状况,什么样算正常,什么样算严重,目前世界上有一些定义嘛?Ins_0a4be34aA54:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q55:王老师您好,国内主要微塑料检出鉴定机构有哪些?可以面向社会接受样本的 Ins_78b98181A55:已在会议现场做语音答疑,该部分仅限参与直播的听众共享Q56:老师好,请问图像分析和拉曼分析的过程中,微塑料是如何转移的呢,20微米以下的太小了,挑选不太现实,可以直接转移滤膜进行检测吗,谢谢老师Ins_d1d3bb13A56:已在会议现场做语音答疑,该部分仅限参与直播的听众共享
  • 天津副市长:已清理近200吨氰化钠 污水3060吨
    天津港“8-12”瑞海公司危险品特别重大火灾爆炸事故第12次新闻发布会21日下午举行,天津市副市长王宏江表示,将继续开展好污水处理的工作,主要就是对爆炸区及其周边,按照前堵后封中处理的原则,控制住核心区及周边污水不发生外溢和渗漏。王宏江介绍,对爆炸事故现场和周边散落的危化物品进行收集清理,包括对爆炸现场的集装箱,是空箱还是重箱,要进行检查。重箱是不是危化品,这项工作我们正在抓紧进行。截止到目前,现场的这些散落的氰化钠,我们清理收集近200吨,已经把它安全地运出去了。这几天正在对金属钠、金属镁正在进行积极地清理。同时,对区域内的危化品、能够看到的废车和集装箱进行清理。他表示,继续开展好污水处理的工作,主要就是对爆炸区及其周边,环保部门是作为警戒区,按照前堵后封中处理的原则,控制住核心区及周边与污水不发生外溢和渗漏。爆炸主要散落在这个地区,这个地区的污染也是相对最重的,要把这个地区的污水控制住,不能让它外溢。同时,加快该区域的污水处理,就是对这些封堵的区域的污水进行收集、运出进行处理。现在到目前我们已经外运处理污水3060吨。来源:中国新闻网
  • 赫施曼助力石灰石及白云石中氧化钾和氧化钠含量的测定
    石灰石及白云石的质量指标对冶金工艺的质量有显著影响,如氧化钾、氧化钠对高炉中球团矿的膨胀裂化和焦炭的加速催化作用,因此其含量需要准确测定和控制。根据GB/T 3286.12-2023,测定灰石及白云石中氧化钾和氧化钠含量的方法是火焰原子吸收光谱法。其原理是:试样用盐酸、氢氟酸和高氯酸分解,蒸发至近干,用盐酸溶解盐类,稀释定容。在原子吸收光谱仪上,采用空气-乙炔火焰,分别在波长766.5nm和589.0nm处测量钾、钠的吸光度,采用校准曲线法分别计算钾、钠的质量分数。实验涉及试料的分解、标准曲线的配置:试料的分解:将试料(称取 0.50g试样,精确至 0.0001g)置于250mL聚四氟乙烯烧杯(容量250mL)中,用少量水润湿,用赫施曼瓶口分液器加入10 mL盐酸(1+1)。2 mL高氯酸(ρ=1.67g/mL),5mL氢氟酸(ρ=1.15g/mL),低温加热至冒高氯酸白烟,继续加热蒸发至近干,取下,稍冷。再用瓶口分液器加入5mL盐酸(1+1),20mL水,低温加热至盐类溶解,取下,冷却。移入100mL塑料容量瓶中,用水稀释至刻度,混匀。标准曲线的配置:采用20mL规格的opus电子瓶口分配器,stepper模式,设置2组分液体积,第一组1.00、2.00、4.00、6.00mL,第二组8.00、10.00mL,然后按分液键,将6个体积的钾标准溶液(30μg/mL)和钠标准溶液(30μg/mL)分别加入100mL塑料容量瓶中,另设一个不加的做空白对照;再向每个容量瓶中加入10mL底液(20mg/mL,以Ca计),用瓶口分液器加入5mL盐酸(1+1)用水稀释至刻度,混匀。此校准溶液钾、钠的含量范围为0~3.0μg/mL。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。赫施曼瓶口分配器可代替量筒、刻度移液管,便捷、安全地进行0.2-60mL的酸(包括氢氟酸等强酸)、碱、有机试剂等的移取。赫施曼的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加和分液,大体积的型号可代替烧杯、玻璃棒、洗瓶,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制