当前位置: 仪器信息网 > 行业主题 > >

氧弹仪原理

仪器信息网氧弹仪原理专题为您提供2024年最新氧弹仪原理价格报价、厂家品牌的相关信息, 包括氧弹仪原理参数、型号等,不管是国产,还是进口品牌的氧弹仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氧弹仪原理相关的耗材配件、试剂标物,还有氧弹仪原理相关的最新资讯、资料,以及氧弹仪原理相关的解决方案。

氧弹仪原理相关的论坛

  • 【分享】氧弹量热法的基本原理是什么?怎样实现?

    氧弹量热法的基本原理是:将一定量的试样放在充有过量氧气的氧弹内燃烧,放出的热量被一定量的水吸收,根据水温的升高来计算试样的发热量。    要想按照这一原理准确地测得试样的发热量,必须解决两个问题,一个是要预先知道仪器的热容量,也即该仪器的量热系统温度每升高1℃需要吸收的热量,这可通过用已知热值的基准物如苯甲酸标定仪器来解决。第二个是量热系统与外界的热交换问题,这可通过在量热系统周围加一双壁水套,通过控制水套的温度消除或校正量热系统与外界的热交换来解决。解决了这两个问题,就可较准确地测定试样的发热量了。

  • 【原创大赛】一氧化二氮成品分析系统原理简介

    【原创大赛】一氧化二氮成品分析系统原理简介

    [color=black]一氧化二氮成品分析系统原理简介[/color][align=center][color=black]概述[/color][/align][color=black]采用具有热导检测器(TCD)和两个氢火焰离子化检测器(FID)的多维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]方法,一次进样过程中,在10min内可以完成高纯度一氧化二氮(N2O)气体中微量氢气、氧气、氮气、甲烷、一氧化碳、一氧化氮、二氧化碳和总烃的分析。该分析系统分为三个通道,分别为热导检测器通道(TCD1)——测定样品中微量氢气、氧气、氮气;氢火焰离子化检测器通道(FID1)——测定样品中微量甲烷、一氧化碳和二氧化碳;氢火焰离子化检测器通道(FID2)——测定样品中的总烃类物质。[/color][color=black]系统采用外标法进行定量。[/color][align=center][color=black]一 背景介绍[/color][/align][color=black]一氧化二氮(氧化亚氮或者称为笑气)是一种常见的氮氧化物,常温下为无色略有甜味的气体。在航天、特种发动机等行业中可以作用助燃剂;在医疗行业中可以用作麻醉剂;[/color][font=helvetica][color=black]在半导体产业中可用作[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积氮化硅的氮源;此外还可以用作制冷剂、防腐剂、烟雾喷射剂等;还可用作[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析的氧化气体。此外一氧化二氮还是重要的一种温室气体,[/color][/font][color=black]是《[/color][url=https://baike.baidu.com/item/%E4%BA%AC%E9%83%BD%E8%AE%AE%E5%AE%9A%E4%B9%A6%22 \t %22https://baike.baidu.com/item/%E4%B8%80%E6%B0%A7%E5%8C%96%E4%BA%8C%E6%B0%AE/_blank][color=black]京都议定书[/color][/url][color=black]》规定的6种温室气体之一[/color][font=helvetica][color=black]。[/color][/font][align=center][color=black]二 系统结构原理[/color][/align][color=#333333]一[/color][color=black]氧化二氮通常采用硝酸铵热分解法或氨的[/color][url=https://baike.baidu.com/item/%E6%8E%A5%E8%A7%A6%E6%B0%A7%E5%8C%96%E6%B3%95/10809204%22 \t %22https://baike.baidu.com/item/%E4%B8%80%E6%B0%A7%E5%8C%96%E4%BA%8C%E6%B0%AE/_blank][color=black]接触氧化法[/color][/url][color=black]予以制备,不同的工艺过程产生的尾气中通常情况下会含有二氧化碳、一氧化碳、烃类、氢气、氮气等多种杂质。[/color][color=black]使用Shimadzu公司的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]GC-2010设计一氧化二氮气体纯品的分析系统,其结构原理如图1所示。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191902124403_9648_1604036_3.png[/img][/align][align=center][color=black]图1 分析系统原理图[/color][/align][color=black]系统的工作原理如下:[/color][color=black]1. 通道1 ——热导检测器(TCD1)[/color][color=black]气体样品,经由十通阀进样和PC1色谱柱的预切和反吹掉二氧化碳等较重组分,将样品中的微量氢气、氮气、氧气等杂质引入C1(13X分子筛)色谱柱并被分离,送入TCD检测器进行测定。 该通道的出峰顺序为氢气、氧气、氮气。[/color][color=black]通道2 ——氢火焰离子化检测器(FID1)[/color][color=black]气体样品,经由十通阀进样和PC2色谱柱的预切和反吹掉一氧化二氮组分后,将样品中的微量氢气、氧气、氮气、甲烷、一氧化碳等杂质注入C2(13X分子筛)色谱柱柱中并被滞留在其中。[/color][color=black]其后在适当的时间,V3阀旋转进行色谱柱选择,使微量二氧化碳首先流出经由阻尼柱和镍触媒转化后在FID1检测器上进行测定。二氧化碳出峰完毕后,V3阀复位,一氧化碳从C2柱中流出,被镍触媒转化后在FID1检测器上进行测定。该通道的出峰顺序为二氧化碳、甲烷、一氧化碳。[/color][color=black]通道3 ——氢火焰离子化检测器(FID2)[/color][color=black]气体样品,经由六通阀直接进样,烃类杂质通过惰性化空柱,在FID2检测器上进行测定。该通道中大量的一氧化二氮气体在FID检测器响应较小,对分析结果干扰较弱。样品中的烃类物质表现为单一色谱峰。[/color][align=center][color=black]小结[/color][/align][color=black]该分析系统长期运行后,需要对阀程序和定量操作进行定期校准。分析系统使用到的载[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量要求较高,需要进行严格脱水脱硫。[/color]

  • 【我们不一YOUNG】水中氨氮指标的检测原理

    [font=&][color=#333333]水中氨氮指标的检测原理可以归纳为以下几种方法,每种方法都有其特定的检测原理和应用场景:[/color][/font][font=&][color=#333333]纳氏比色法:[/color][/font][font=&][color=#333333]原理:以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比。[/color][/font][font=&][color=#333333]操作:在波长420nm处测量吸光度,通过比较标准曲线来确定氨氮含量。[/color][/font][font=&][color=#333333]苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法:[/color][/font][font=&][color=#333333]原理:在碱性介质中,氨与水杨酸及次氯酸发生化学反应产生蓝色化合物,该化合物的吸光度与氨氮含量成正比。[/color][/font][font=&][color=#333333]操作:在波长697nm处测量吸光度,通过比色法来测定氨氮含量。[/color][/font][font=&][color=#333333]电极法:[/color][/font][font=&][color=#333333]原理:利用pH电极获取水体氨氮数据。通过调节pH值使氨氮以游离氨形式存在,游离氨穿过半透膜时会带动氯化铵电解溶液中铵离子移动,影响pH电极数据。[/color][/font][font=&][color=#333333]优点:适用于水环境的氨氮含量测定。[/color][/font][font=&][color=#333333][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收法:[/color][/font][font=&][color=#333333]原理:水样在酸性介质中,加入无水乙醇煮沸除去亚硝酸盐等干扰,用次溴酸盐氧化剂将氨及铵盐氧化成等量亚硝酸盐,以亚硝酸盐氮的形式采用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分子吸收光谱法测定氨氮的含量。[/color][/font][font=&][color=#333333]适用范围:适用于地表水、地下水、海水、饮用水、生活污水及工业污水中氨氮的测定。[/color][/font][font=&][color=#333333]中和滴定法:[/color][/font][font=&][color=#333333]原理:利用溶液的酸碱度分析液体中某种物质的含量。通常使用全自动凯氏定氮仪,以酸碱反应为核心。[/color][/font][font=&][color=#333333]特点:测定准确率高、操作简便,且不会产生二次污染物和毒副作用。[/color][/font][font=&][color=#333333][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法:[/color][/font][font=&][color=#333333]原理:借助阳离子分析水体中氨氮含量。[/color][/font][font=&][color=#333333]特点:与分光光度法有所区别,是另一种化学分析方法。[/color][/font][font=&][color=#333333]恒电流法:[/color][/font][font=&][color=#333333]原理:利用氨氮在酸性溶液中被氧化为亚硝酸盐的特点,将所测样品与硫酸亚铁和碘化钾混合后采用标准电极电位差法测定电流大小,进而计算出氨氮浓度。[/color][/font][font=&][color=#333333]适用范围:适用于小样量和低浓度的检测。[/color][/font][font=&][color=#333333]红外法:[/color][/font][font=&][color=#333333]原理:将含氨氮的水样和带有NH基团的化合物接触,分子之间发生物理化学反应,使得一定波长的红外线被吸收、反射或散射。通过测量减弱的红外线强度来计算氨氮浓度。[/color][/font][font=&][color=#333333]特点:需要使用高精度、高灵敏度的红外分析仪器。[/color][/font][font=&][color=#333333]以上各种方法都有其特定的检测原理、优点和适用范围,在实际应用中需要根据具体情况和需求来选择合适的方法。[/color][/font]

  • 蛋白质测定仪的测定原理

    蛋白质测定仪是根据蛋白质中氮的含量恒定的原理,通过测定样品中氮的含量从而计算蛋白质含量的仪器但是实际中怎么操作呢?

  • 【资料】生物脱氮和除磷的原理

    (一)生物脱氮机理概述污水生物脱氮的基本原理是在好氧条件下通过硝化反应先将氨氮氧化为硝酸盐,再通过缺氧条件下(溶解氧不存在或浓度很低)的反硝化反应将硝酸盐异化还原成气态氮从水中除去。因此所有的生物脱氮工艺都包含缺氧段(池)和好氧段(池)。 生物脱氮的反应过程是: 1、氨化与硝化 在未经处理的新鲜废水中,含氮化合物存在的主要形式有: ①有机氮:如蛋白质、氨基酸、尿素、胺类化合物、硝基化合物等; ②氨态氮(NH3、NH4+),一般以前者为主。 含氮化合物在微生物作用下,相继产生下列反应: (1)氨化反应 有机氮化合物,在氨化菌的作用下,分解、转化为氨态氮,这一过程称之为“氨化反应”。 (2)硝化反应 在硝化菌的作用下,氨态氮进一步分解氧化,就此分两个阶段进行,首先在硝化菌的作用下,使氨(NH4)转化为亚硝酸氨,反应式为 NH4++3/2O2 NO2-+H2O——2H+-ΔF (ΔF=278.42KJ) 继之,亚硝酸氨在硝酸菌的作用下,进一步转化为硝酸氨,其反应式为: NO2-+1/2O2 NO3--ΔF (ΔF=72.27KJ) 硝化反应的总反应式为: NH4++2O2 NO3-+H2O+2H+-ΔF (ΔF=351KJ) 2、反硝化反应 反硝化反应是指硝酸氮(NO3-N)和亚硝酸氮(NO2-N)在反硝化菌的作用下,被还原为气态氮(N2)的过程。 反硝化菌是属于异养型兼性厌氧菌的细菌。在厌氧菌(缺氧)条件下,以硝酸氮(NO3-N)为电子受体,以有机物(有机碳)为电子供体。在反硝化过程中,硝酸氮通过反硝化菌的代谢活动,可能有两种转化途径,一种途径是同化反硝化(合成),最终形成有机氮化合物,成为菌体的组成部分,另一种途径是异化反硝化(分解),最终产物是气态氮。

  • 碳硫仪和氧氮仪冷却水的问题

    两台仪器都是ELTAR的,原理也差不多, 都是对二氧化碳的红外吸收进行检测,为什么氧氮仪有循环冷却水而碳硫仪没有呢?氧氮仪的冷却水是接在高频线圈上的吗?请各位大侠指教,谢谢啦...

  • 凯氮and杜氮,你知道两种定氮仪的原理吗?

    [font=&][color=#333333]目前,对食品中的蛋白质进行定性和定量的测定方法有很多,凯氏定氮法、分光光度法、燃烧法、双缩脲法(Biuret法)等等。[/color][/font][font=&]凯氏定氮法与杜马斯定氮法是目前比较常用的两种方法,两者的原理。[/font][align=center][font=&][color=#656466]凯式定氮法[/color][/font][/align][color=#fcfdff][color=#656466]原理:[/color][color=#656466]蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,蛋白质含量。含氮量×6.25=蛋白含量。有机物中的胺根在强热和[font=Helvetica, sans-serif]CuSO[sub]4[/sub][/font]、浓[font=Helvetica, sans-serif]H[sub]2[/sub]SO[sub]4[/sub][/font]作用下,硝化生成[font=微软雅黑, sans-serif]([/font][font=Helvetica, sans-serif]NH[sub]4[/sub][/font][font=微软雅黑, sans-serif])[/font][sub][font=Helvetica, sans-serif]2[/font][/sub][/color][/color][size=16px][color=#656466][font=Helvetica, sans-serif]SO[sub]4[/sub][/font]。[/color][/size][font=PingFangSC-Semibold, &][size=16px][color=#fcfdff][/color][/size][/font][b][font=&][size=14px][color=#656466]1、凯氏定氮法反应式为:[/color][/size][/font][/b][font=&][size=14px][color=#656466][/color][/size][/font][font=&][size=14px][color=#656466]2NH[sub]2[/sub]+H[sub]2[/sub]SO[sub]4[/sub]+2H=(NH[sub]4[/sub])[sub]2[/sub][/color][/size][color=#656466][font=Helvetica, sans-serif]SO[sub]4[/sub][/font] (其中[font=Helvetica, sans-serif]CuSO[/font][sub]4[/sub]做催化剂)[/color][/font][b][font=&][size=14px][color=#656466]2、在凯氏定氮器中与碱作用,通过蒸馏释放出[b]NH[sub]3[/sub][/b] ,收集于[b]H[sub]3[/sub]BO[sub]3[/sub][/b]溶液中反应式为:[/color][/size][/font][/b][font=&][size=14px][color=#656466][/color][/size][/font][font=&][size=14px][color=#656466](NH[sub]4[/sub])[sub]2[/sub][/color][/size][color=#656466][font=Helvetica, sans-serif]SO[sub]4[/sub][/font]+2NaOH=2[font=Helvetica, sans-serif]NH[sub]3[/sub][/font]+2[font=Helvetica, sans-serif]H[sub]2[/sub]O[/font]+[font=Helvetica, sans-serif]Na[sub]2[/sub]SO[sub]4[/sub][/font][/color][/font][font=&][size=14px][color=#656466]2NH[sub]3[/sub]+4H[sub]3[/sub]BO[sub]3[/sub]=(NH[sub]4[/sub])[sub]2[/sub]B[sub]4[/sub]O[sub]7[/sub]+5H[sub]2[/sub]O[/color][/size][/font][font=&][size=14px][color=#656466][/color][/size][/font][b][font=&][size=14px][color=#656466]3、用已知浓度的H2SO4(或HCI)标准溶液滴定,根据HCI消耗的量计算出氮的含量,然后乘以相应的换算因子,既得蛋白质的含量反应式为:[/color][/size][/font][/b][font=&][size=14px][color=#656466][/color][/size][/font][font=&][size=14px][color=#656466](NH[sub]4[/sub])[sub]2[/sub]B[sub]4[/sub]O[sub]7[/sub]+H[sub]2[/sub]SO[sub]4[/sub]+5H[sub]2[/sub]O=(NH[sub]4[/sub])[sub]2[/sub][/color][/size][color=#656466][font=Helvetica, sans-serif]SO[sub]4[/sub][/font] +4[font=Helvetica, sans-serif]H[/font][sub]3[/sub][font=Helvetica, sans-serif]BO[/font][sub]3[/sub][/color][/font][font=&][size=14px][color=#656466](NH[sub]4[/sub])[sub]2[/sub]B[sub]4[/sub]O[sub]7[/sub]+2HCl+5H[sub]2[/sub]O=2NH[sub]4[/sub]Cl+4H[sub]3[/sub]BO[sub]3[/sub][/color][/size][/font][align=center][font=&][size=14px][color=#656466][sub]杜马斯定氮法[/sub][/color][/size][/font][/align][size=14px][color=#656466][sub][font=&]原理:[/font][font=&]杜马斯燃烧的方法是将一定量的样品封装在铝舟中,然后在高温炉中进行燃烧;在催化剂和氧气的环境中,样品燃烧后生成的气体为:CO[sub]2[/sub]、H[sub]2[/sub]O、NOx;这些气体再经过还原炉后,NOx被还原为N[sub]2[/sub],而CO[sub]2[/sub]和H[sub]2[/sub]O分离开;最后氮元素被热传导检测器(TCD)来测量出含量。全部测量过程在3分钟内完成。[/font][/sub][/color][/size][font=&][size=14px][color=#656466][sub][/sub][/color][/size][/font]

  • 【求助】关于溶氧仪的温度补偿原理问题

    单位买了华科仪的HK-258溶解氧分析仪,但是我一直搞不明白到底什么是溶解氧的温度补偿,它的基本原理是什么,现在连用法我还没搞清楚。。。跪求各位大师关于溶氧仪的原理。。

  • 核酸蛋白检测仪应用和原理

    核酸蛋白检测仪是层析分析的主要装置,核酸蛋白检测仪配上层析柱、恒流泵、部分收集器、层析谱分析系统(根据需要选配)和电脑打印设备即构成一套完整的核酸蛋白检测仪分离层析系统。它是当今从事生命科学研究、药物测定、化工、食品科学及医学研究等行业的现代分析实验仪器。核酸蛋白检测仪分析系统广泛用于工业、农业、科研和大专院校的科学研究和教学实验。其原理是根据物质(样品)对紫外光有明显吸收的特征,实现对样品成份含量比对分析,以便进行样品蛋白、核酸物质识别检测和含量测定。在生化分析、环保科学、食品研究、毒理研究、新药开发等领域中对核酸、蛋白检测、纯化和提取提供了一种独特的分析手段。

  • 立式弹簧扭转试验机工作原理及功能-永科试验仪器

    术语标语 gaugelength 试样上用以测量扭角的两标记间距离的长度。最大扭矩 maximum torque 试样在屈服阶段之后所能抵抗的最大扭矩。抗扭强度 torsional strength 相应最大扭矩的切应力。屈服强度 yield strength 当弹簧扭转材料呈现屈服现象时,在试验期间达到塑性发生 而扭矩不增加的力点,应区分上屈服强度和下屈服强度。原理立式弹簧扭转试验机主体采用立式结构,有上下两块铜板构成,以保证整机的刚性。电气部分有全数字TESTSMART控制系统驱动,由光电编码器采集试样的扭转角度⊙,高精度输出对称性扭距传感器采集试样的扭矩T。功能显示试样的扭矩T、扭转速度⊙、试验速度V,可以设置试样的扭转角度进行多点检测试件的扭矩力及其相应的角度,一般扭至断裂,以便测定材料的一项或多项扭转力学性能,可以打印详细的试验数据报告等。

  • 【我们不一YOUNG】氨氮检测仪曲线标定原理以及关键步骤

    [font=&][color=#333333]氨氮是评估水体污染程度和水质安全的重要指标之一。为了准确测量水体中的氨氮含量,氨氮检测仪的曲线标定是必不可少的步骤。本文将深入探讨氨氮检测仪曲线标定的原理和关键步骤,带你了解如何精确测量水体中的氨氮含量。[/color][/font][font=&][color=#333333]氨氮检测仪曲线标定原理[/color][/font][font=&][color=#333333]氨氮检测仪的曲线标定基于氨氮与试剂之间的化学反应。一般情况下,氨氮检测仪采用纳氏试剂法(Nessler法)进行测量。纳氏试剂能够与氨氮形成复合物,生成具有特定颜色的产物。曲线标定的目的就是建立不同氨氮浓度下的反应产物与光强之间的关系,从而实现测量样品中氨氮含量的精确计量。[/color][/font][font=&][color=#333333]氨氮检测仪曲线标定原理关键步骤[/color][/font][font=&][color=#333333]1、准备标准氨氮溶液:首先,需要准备一系列已知浓度的标准氨氮溶液。这些标准溶液的浓度应覆盖待测样品的预期氨氮范围。标准溶液的浓度可以通过稀释已知浓度的氨氮标准品或通过溶解已知质量的氨氮化合物来制备。[/color][/font][font=&][color=#333333]2、进行反应:将不同浓度的标准氨氮溶液分别与纳氏试剂反应。反应过程中,试剂会与氨氮形成复合物,产生特定颜色的产物。颜色的强度与氨氮浓度成正比。[/color][/font][font=&][color=#333333]3、测量光强:使用氨氮检测仪测量各个标准溶液反应产物的光强。光强的测量可以通过检测器接收产物溶液的光线强度来实现。[/color][/font][font=&][color=#333333]4、绘制标定曲线:将测得的光强值与对应的氨氮标准溶液浓度进行配对,绘制标定曲线。标定曲线是光强与氨氮浓度之间的线性或非线性关系,通常使用回归分析进行拟合。[/color][/font][font=&][color=#333333]5、校准和测量样品:通过标定曲线,可以根据测量样品的光强值确定其对应的氨氮浓度。校准仪器后,即可使用检测仪对待测样品中的氨氮含量进行测量。[/color][/font][font=&][color=#333333]氨氮检测仪曲线标定是确保测量准确性的关键步骤。通过制备标准溶液、进行反应、测量光强和绘制标定曲线,我们可以建立光强与氨氮浓度之间的关系,从而实现对水体中氨氮含量的精确测量。[/color][/font]

  • 【分享】臭氧检测仪原理

    [size=4]1.检测原理 科学家们已经发现臭氧层能吸收紫外线,研究表明臭氧仅对波长253.7nm的紫外线具有最大吸收系数,在此波长下紫外线通过臭氧会产生衰减,符合兰波特一比尔定律:该原理已被美国等国家作为臭氧标准分析方法:该臭氧检测仪就是采用紫外线吸收法的原理,用稳定的紫外灯光源产生紫外线,用光波过滤器过滤掉其它波长紫外光,只允许波长253.7nm通过。经过样品光电传感器,再经过臭氧吸收池后,到达采样光电传感器。通过样品光电传感器和采样光电传感器电信号比较,再经过数学模型的计算,就能得出臭氧浓度大小。 2.臭氧浓度数学计算模型 臭氧浓度数学模型是根据Lambert and Bee:定律推出的。 在公式(1)中,只要知道样品电流、采样电流和臭氧吸收池距离,即可计算出臭氧浓度大小。由于臭氧吸收池距离的限制,最大臭氧浓度只能测到 3.电路原理的实现 基本电路由电源部分、紫外灯控制、紫外光线样品检测、紫外光线采样检测、对数放大器Log100、模拟输出及显示部分等组成。 电路核心部分就是用对数放大器Log100来实现臭氧浓度数学模型,基本接线如图1所示。Log100是集成电路的14引脚,可以对两个电流或电压之比进行对数运算。该放大器输出电流动态范围宽,可以在1nA} 1mA之间变化。输出误差范围不超过0.1%。输出公式: 电源部分主要是产生紫外灯需要的高压电源,同时产生电路板上需要的+15V直流电紫外灯灯控部分控制紫外灯电流在允许范围之内,如果不能自动调节,面板上将有一个红灯变亮,提示更换新的紫外灯。标准紫外光检测和采样紫外光检测部分也是较关键部分,光电传感器把紫外线的光信号转换为电压信号,然后经两次运算放大器进行信号整理放大,送给Log100进行计算处理后,显示输出。模拟输出0~20mA与臭氧浓度大小成线性关系。[/size]

  • 总氮测试是什么原理的?

    请教一下各位专业人士,测总氮是什么原理啊?那个牌子的仪器测试准确一点,性价比高,麻烦各位推荐一下,谢谢了!

  • 臭氧老化试验箱对橡胶的作用以及试验原理

    臭氧老化试验箱对橡胶的作用以及试验原理

    一实仪器(yishi17)可能很多用户都知道臭氧老化试验箱是对橡胶类制品进行检测的试验设备,因为能够快速判断出橡胶类产品在臭氧环境下的使用状态,所以是非常受用户欢迎的一款试验箱。不过可能很多用户知道这款设备的作用,但是肯定有很大一部分用户不知道这款设备的试验原理。可能还有很多用户决定知道操作原理和使用试验设备进行试验并没有多大的关系,但其实这种想法是非常错误的,因为知道了试验箱的试验原理能够让用户试验更加轻松。臭氧老化试验箱试验原理:[align=center][img=,400,400]http://ng1.17img.cn/bbsfiles/images/2018/06/201806201537311781_1657_3222217_3.jpg!w400x400.jpg[/img][/align]臭氧老化试验箱的试验分成两种,一种是静态拉伸试验,这种试验方法也比较简单就是按照标准将样品夹在专用的夹具上,然后选择拉伸率,通常情况下选择的都是20%。在设定好之后设备就会根据设定好的臭氧浓度、拉伸率、试验时间等进行试验,最后等到试验结束之后只要检查样品上的龟裂情况,就能够判断是否满足标准规定。而动态拉伸试验相对更加复杂,因为需要按照规定设定样品的拉伸和复位,大部分拉伸频率都是0.5±0.025Hz,然后样品在夹具上就会按照设定要求不断拉伸、转动。最后依然还是在试验结束之后根据样品的龟裂情况判断被检测样品的抗臭氧老化性能。虽然臭氧老化试验箱的静态拉伸和动态拉伸试验有不同之处,但是都是用来检测橡胶类制品质量、性能的,不过为了最后的试验结果更加准确,最好还是根据实际的需求进项购买。不然购买到不合适的试验设备的话就是浪费时间、资金、精力,还会耽误企业正常的生产、研究工作的进行。

  • 【求助】纳氏测氨氮的反应原理

    纳氏测氨氮的反应方程是怎样的,检测标准上只说氨氮和纳氏试剂反应生成黄色络合物,具体原理都没说清楚,还有,纳氏试剂放久了之后会生成一定的或色沉淀,是什么物质?为什么会有沉淀生成?

  • 天研|牛奶蛋白质分析仪的原理是什么

    牛奶蛋白质分析仪的原理主要基于光学测量技术,特别是光谱分析法。具体地说,它采用红外光谱法来测量牛奶中乳清蛋白和酪蛋白的含量。首先,将牛奶样品制成透明薄片,然后使用近红外光电传感器和光源对其进行扫描。牛奶中的蛋白质对特定波长的红外光有特定的吸收特性,通过测量这些吸收特性,可以分析出牛奶中蛋白质的种类和含量。此外,仪器会将牛奶光谱与事先建立的标准光谱进行比较,通过复杂的算法处理,从而得出各种蛋白质形态的含量。这种比较和计算过程确保了测量结果的准确性和可靠性。总的来说,牛奶蛋白质分析仪通过光学测量和光谱分析技术,能够快速、准确地测定牛奶中蛋白质的含量和种类,为乳制品生产、质量控制和科学研究提供了有力的支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404291701212298_2595_6238082_3.jpg!w690x690.jpg[/img]

  • 【原创大赛】氧氮氢分析仪,碳硫分析仪简介

    [font=宋体] [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计,原子荧光分光光度计,[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url]已经可检测自然界中绝大部分的金属元素,应用十分广泛。非金属元素的检测设备也不能被忽视,下面简单介绍氧氮氢分析仪,碳硫分析仪的原理、应用及核查规程,表一表其在相关行业的检测的重要性。[/font][b][font=宋体] 氧氮氢分析仪[/font][/b][font=宋体]的原理,简单讲可概括为“惰性气体的熔融作用”,具体地说,将称量后的试样放在石墨坩埚中,在氦气(单测氧可用氩气)气流中通过高温加热熔融,试样中的[b]氧与石墨坩埚中的碳反应生成一氧化碳[/b],试样中的氮以氮气的形式逸出,这些混合气由氦气送到[b]转化炉[/b]中,[b]一氧化碳转化为二氧化碳[/b],氮气不反应,然后混合气体被送到[b]红外检测池[/b](IR)中,其中二氧化碳在这里被检测。之后混合气体中的二氧化碳和水被吸附,[b]剩余的氮气,氢气和氦气[/b]混合气体通过[b]热导检测池[/b](TCD)被检测。氧氮氢分析仪用于测定各种钢铁、有色金属、稀土和各种新型无机材料中氧、氮、氢的元素含量。期间核查规程推荐:选用氮分析专用标准物质,按仪器操作规程进行测定,重复2次,平均值应在标准物质允许范围内。[/font][b][font=宋体] 碳硫分析仪[/font][/b][font=宋体]配备管式红外及高温管式炉,载气(氧气)经过净化后,导入燃烧炉(电阻炉或高频炉),样品在燃烧炉高温下通过氧气氧化,使得样品中的[b]碳和硫氧化为CO[sub]2[/sub],CO和SO[sub]2[/sub],[/b]所生成的氧化物通过除尘和除水净化装置后[b]被氧气载入到硫检测池测定硫[/b]。此后,含有CO[sub]2[/sub]、CO、SO[sub]2[/sub]和O[sub]2[/sub]的混合气体一并进入到加热的催化剂炉中,在催化剂炉中经过[b]催化转换CO→CO[sub]2[/sub],SO[sub]2[/sub]→SO[sub]3[/sub][/b]。这种混合气体进入到除硫试剂管后,导入[b]碳检测池测定碳[/b]。残余气体由分析器排放到室外。碳硫分析仪能快速、准确地测定各种合金、合金钢、有色金属、稀土金属、水泥、矿石、炉渣、陶瓷、无机物及有机物材料中碳、硫两元素的质量分数。期间核查规程推荐:选用碳硫分析专用标准物质,按仪器操作规程进行测定,重复3次,平均值应在标准物质允许范围内。[/font]

  • 化学发光定氮仪原理

    化学发光定氮仪采用化学发光检测原理,待测样品(或标样)被引入到高温裂解炉后,在1050 ℃左右的高温下,样品被完全气化并发生氧化裂解,其中的氮化物定量地转化为一氧化氮(NO)。样品气经过膜式干燥器脱去其中的水份。亚稳态的一氧化氮在反应室内与来自臭氧发生器的O3气体发生反应,转化为激发态的NO2*。当激发态的NO2*跃迁到基态时发射出光子,光信号由光电倍增管按特定波长检测接收。再经微电流放大器放大、计算机数据处理,即可转换为与光强度成正比的电信号。在一定的条件下,反应中的化学发光强度与一氧化氮的生成量成正比,而一氧化氮的量又与样品中的总氮含量成正比,故可以通过测定化学发光的强度来测定样品中的总氮含量

  • 【求助】请教溶解氧测定仪测量原理问题

    溶解氧测定仪测定的是氧浓度还是氧分压? 有仪器生产商告诉我,溶氧仪直接测定的是水溶液中氧气的分压,而溶解氧溶度是通过C=H*P换算得到的(H为Henry系数,受溶液性质影响很大)。 又因为“平衡时,氧气在空气和在水中的分压相等,即脱离和进入溶液的氧气分子数相同”,藉此可以理解溶氧仪利用饱和水蒸气法标定时,输入的标准值却是对应温度下水溶液的饱和溶氧值(如20度)。实际上,此时空气中氧气溶度和溶液中氧气溶度差30倍左右。 也就是说,在某一温度下达到平衡时,水中和空气中氧气分压都是相同的,即使是含盐水或污水也一样。而不同条件下产生溶解氧浓度不同的取决于H系数。对于已知盐浓度的,可以进行盐度补偿,通过H的修正准确测量溶解氧溶度。但是对于污水等成分特别复杂的水溶液,H很难修正得到,那么此时是不是就无法准确测量污水的溶解氧值?如果是这样的话,溶氧仪在环保局大量使用的意义又是什么呢?如果知道H值了,自己就能理论计算出溶解氧浓度了,还需要溶氧仪干什么呢? 所以从这点上,我更偏信溶氧仪直接测量的是水中溶解氧的浓度,可是这个观点却一直无法解释溶氧仪的校准方法。被溶氧仪的原理给绕晕了,百思不得其解,只能请各位大侠帮忙了:)

  • 【原创大赛】二氧化碳还原分析系统方案一 原理介绍

    【原创大赛】二氧化碳还原分析系统方案一 原理介绍

    二氧化碳还原分析系统方案一 原理介绍[align=center]概述[/align]采用自动六通阀一次切换的方法,实现对二氧化碳样品中微量氢气氧气氮气甲烷一氧化碳乙烷乙烯的定量的分析系统原理介绍。[align=center]背景介绍[/align][color=black]化石燃料属于不可再生资源,其燃烧所产生的二氧化碳(CO2)是温室效应的主要原因,众多科研机构均已开展利用光催化、电催化等方法将二氧化碳还原为CO和CH4物质的研究。其反应的产物中含有的氢气、一氧化碳、甲烷等组分需要连接[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]予以在线或者离线监测。[/color][color=black]本文介绍利用自动六通阀,单次切换的方法实现该样品的分析的一种分析方案。[/color][align=center][color=black]方案介绍[/color][/align][color=black]本系统使Shimadzu公司的GC-2014型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],配置有三个检测器——两个FID检测器和一个TCD检测器——和三根色谱柱。通过六通阀V的切换,实现三根色谱柱的不同组合,实现分离,如图1所示[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191905479296_1919_1604036_3.jpg[/img][/align][align=center]图1 系统原理图[/align][color=black]待测样品利用气密性注射器或者在线微反应装置进样,首先经由六通阀进入预分离柱C1,样品中的微量氢气、氧气、氮气和甲烷在C1柱上不能分离,作为合峰进入C3色谱柱,C3色谱柱可以将上述组分完全分离。[/color][color=black]样品中的微量氢气、氧气、氮气在TCD检测器被检测到,微量的甲烷、一氧化碳经由镍转化器(一氧化碳通过镍转化器之后生成可以被FID检测到的甲烷),在FID2检测器出峰。[/color][color=black]当合峰组分全部进入C3色谱柱后,六通阀进行切换,系统流路变为图2所示的状态。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191905481614_9206_1604036_3.jpg[/img][/align][align=center]图2 系统切换之后的状态[/align][color=black]此时C1中的载气流量发生倒转,二氧化碳、乙烷、乙烯作为合峰进入色谱柱C2,在C2中三个组分发生分离,进入FID1检测器,乙烯、乙烷出峰。[/color][align=center]小结[/align]二氧化碳光催化分析系统原理简介。

  • 【第一届原创大赛】三阀(六通阀)四柱进样分离原理(串联)

    【第一届原创大赛】三阀(六通阀)四柱进样分离原理(串联)

    看了上次甲由田申版主发的绕人的阀流程图,触发了一些感想,若是能将所有仪器的阀进样程序和配置都归纳一下,总结成一本资料,以后分析人员就不会对自己仪器的进样原理这么陌生啦。可仔细一搜集,才发现这个工程太浩大啦。自己毕竟不是专职搞这个,且理论和实践水平有限,搞出来未免吃力不讨好,而且出错的可能性较大。就此放弃,又有点不甘心,就借这次手上的一个小东西,编个小图解,以博大家一乐。对啦,在此,对专业外语的红版主、若军老师和环保巡视大人表示感谢,没有你们的帮助,这小玩艺就只能给我自己把玩啦。谢谢!这是一组在线色谱上的三阀四柱进样原理图。色谱采用了单检测器,串联结构,膜片六通阀。分析石化产品的碳1~碳8.因为每个阀后都可以另接阀和检测器,所以想进一步深入了解的同仁,大可以引伸下去。从单四通阀,到四个十通阀,甚至更多。检测器也可以由一个到七个,八个。总结好后,再发上来,大家互补,工作也就轻松而有趣味啦!好了下面言归正传。第一步:样品吹扫和取样:样品吹扫系统维持样品在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]状态并通过吹扫管路将样品送入样品取样阀(阀1);接着样品流经定量管至排放出口。然后氦气将定量管样品载入样品分析系统。[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902071535_131690_1605035_3.jpg[/img]初始位为V1~关,V2和V3开 单路载气供气。若是并联结构,就需要两路载气啦。V1为取样阀,图片上显示的是定量管取样,而英文说明则说是定量环,是膜片刻槽定量。这点咱就不深究了,原理上是相通的。我们取样品定量环吧。经调节好的样品进入阀1

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制