中国科技网讯 据英国《每日邮报》9月10日报道,在今年夏天发现疑似希格斯玻色子的粒子后,欧洲核子研究中心(CERN)正考虑扩大规模,构建全新的对撞机。研究人员表示,新对撞机的周长约达80千米,为目前大型强子对撞机(LHC)大小的3倍左右。这一对撞机有望解决一系列的宇宙谜题,例如重力如何在分子水平上进行相互作用等。 科学家表示,重力可能是全新对撞机的关键研究领域之一。目前学界仍不清楚重力为何能在粒子水平和行星、恒星以及太阳系水平上同时成功运行。虽然任何新的对撞机都不可能在2025年之前开始建造,但CERN担心其如同首个对撞机一样,需要等待太久才能建造完工,因此希望抢占先机。目前,由18位科学家组成的研究团队正在考虑一系列选择,使能够基于当前造价高达46亿美元的粒子对撞机实现新的预设目标。另一种选择则是拆除现有LHC长达27千米的环形隧道,并在原地构建更加灵敏的设备。而无论选择上述哪种计划,都将耗资数十亿美元,这笔巨款将由CERN的20个成员国共同承担。 研究团队称,他们担心科学发现会因LHC的改造或新建而搁置,直到新的对撞机顺利落成。就像彼得·希格斯一般,需要等待58年,才能看到自己早先提出的希格斯玻色理论得到验证。事实上,首个对撞机的建造计划早于1983年就已提出,却到1998年才开始正式建造,并直至2008年才最终完工,前后历时长达25年。 有关对撞机改造或新建的提议将于本周提交至位于波兰克拉科夫的欧洲战略筹备组讨论。英国伦敦大学学院物理系教授乔恩·巴特沃斯表示:“这意味着我们进入了一个疯狂探索的物理学新境界。我们需要更多地了解它,对于LHC的升级虽可能部分实现这点,但最终我们仍需要一个更加强大的新机器。”(张巍巍) 《科技日报》(2012-9-12 二版)
世界最大对撞机10日开撞 民众担忧吞噬地球(图)2008年09月09日04:18 来源:大洋网-广州日报 欧洲核子研究中心决定,大型强子对撞机于10日启动。 欧洲大型强子对撞机(LHC)定于10日启动,加速第一批质子,测试超导电磁体控制性能,为高速粒子对撞实验做准备。与此同时,很多民众担忧这会吞噬地球,使得科学家哭笑不得,甚至不断收到死亡威胁的电话和电子邮件。 一些科学家预言,10日因此将成为物理学研究的重要里程碑。 据新华社电9月10日,威力强大的大型强子对撞机(LHC)将被启用。大型强子对撞机是世界最大的粒子加速器,建于瑞士和法国边境地区地下100米深处的环形隧道中,隧道全长26.659公里。 对撞机“开足马力”后,能把数以百万计的粒子加速至将近每秒钟30万公里,相当于光速的99.99%。粒子流每秒可在隧道内狂飙11245圈,单束粒子流能量可达7万亿电子伏特。 10万倍于太阳温度 欧洲核子研究中心定于10日将第一批质子注入对撞机,开始加速测试。科学家将检验对撞机各组成部分电路,检测对撞机整体运行状况。 如测试成功,欧洲核子研究中心下一步将着手反方向的粒子加速测试,为粒子高速对撞做准备。 运行方向相反的两束高速粒子流一旦对撞,碰撞点将产生极端高温,最高相当于太阳中心温度的10万倍。 大型强子对撞机探测器“ATLAS”项目发言人彼得热尼8日告诉法新社记者:“我们将(由此)进入一片物理学新领域。周三将是非常重要的里程碑。” 80个国家参与 大型强子对撞机2003年开始修建,将近80个国家和地区的2000多名科学家参与这一研究项目。科学家希望,能够在对撞机前所未有的对撞能量帮助下,探秘“希格斯玻色子”和其他未解之谜。 希格斯玻色子44年前由英国物理学家彼得希格斯预言,视之为物质的质量之源以及电子和夸克等形成质量的基础。希格斯提出,其他粒子在希格斯玻色子构成的“海洋”中游弋,受它的作用产生惯性,最终有了质量。 在粒子物理学标准模型所预言的62种基本粒子中,只有希格斯玻色子迄今仍未“显形”。 希格斯即将迎来80岁生日,今年参观大型强子对撞机后感慨道:这一机器让他找到信心,“几乎可以确定,不久就可以发现希格斯玻色子”。 另外,科学家期望借力对撞机研究“超对称理论”和宇宙大爆炸等内容。欧洲核子研究中心主管罗伯特艾马说,他相信科学家将借助于这一机器获得重大突破性发现。 不可能吞噬地球 一些人担心,高速粒子流对撞产生的巨大能量会产生“黑洞”,瞬间吞噬地球。 为此,欧洲核子研究中心不得不委派一个专家小组,借助于计算向人们证实,这种情况不可能发生。法国方面也作了类似安全评估。 艾马说,一次试运行足以产生一大堆数据,科学家需要大量时间分析,“要想着手发现新东西,需要数周或数月时间”。 大型强子对撞机定于今年年底前全部建成,开始投入正式运行。英国《新科学家》杂志评论说:“大型强子对撞机不只是一台机器,还代表了我们这代人对知识的渴求。” 对撞机启动在即科学家频收威胁电话 本报讯9月10日,威力强大的大型强子对撞机(LHC)将被启用。然而,就在此世界最大机器启动之际,为此日夜工作的科学家却不断收到死亡威胁的电话和电子邮件。 届时,高速粒子将在瑞士日内瓦附近的大型强子对撞机内开始围绕着其27公里长的圆形管道循环前进,当粒子以近光速的速度彼此撞击时,将会产生从来没有看到过的巨大能量。民众为此引发深度担忧,其中主要是担忧它会释放强大能量,制造出无法控制的黑洞,吞噬地球。 为避免灾难到来,这些人纷纷给相关科学家发出了死亡警告,令科学界非常恼火。英国曼彻斯特大学的布赖恩柯克斯表示,美国诺贝尔奖获得者、麻省理工学院(MIT)的物理学家弗兰克威尔泽克甚至已经收到死亡威胁警告。柯克斯气愤地说:“任何认为大型强子对撞机会毁灭世界的人都是傻瓜。” 此外,大型强子对撞机公关部部长吉利斯表示他接到了声泪俱下的请求电话,恳求他让此耗资45亿英镑的机器能停止作业。 更可气的是,他们已经向法庭起诉此事,要求中止大型强子对撞机的启动。这是历来由科学实验引发的最显著的担忧。但最新发表的新报告作出结论,称此实验对人类没有威胁。 (责任编辑:王永超)[img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809090833_107965_1627719_3.jpg[/img]
[color=#00008B][img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809100658_108187_1754182_3.jpg[/img] [提要] 9月10日,威力强大的大型强子对撞机(LHC)将被启用。大型强子对撞机是世界最大的粒子加速器,建于瑞士和法国边境地区地下100米深处的环形隧道中,隧道全长26.659公里。一些科学家预言,10日因此将成为物理学研究的重要里程碑。与此同时,很多民众担忧这会吞噬地球,使得科学家哭笑不得。 欧洲大型强子对撞机(LHC)定于10日启动,加速第一批质子,测试超导电磁体控制性能,为高速粒子对撞实验做准备。与此同时,很多民众担忧这会吞噬地球,使得科学家哭笑不得,甚至不断收到死亡威胁的电话和电子邮件。 一些科学家预言,10日因此将成为物理学研究的重要里程碑。 据新华社电 9月10日,威力强大的大型强子对撞机(LHC)将被启用。大型强子对撞机是世界最大的粒子加速器,建于瑞士和法国边境地区地下100米深处的环形隧道中,隧道全长26.659公里。 对撞机“开足马力”后,能把数以百万计的粒子加速至将近每秒钟30万公里,相当于光速的99.99%。粒子流每秒可在隧道内狂飙11245圈,单束粒子流能量可达7万亿电子伏特。 10万倍于太阳温度 欧洲核子研究中心定于10日将第一批质子注入对撞机,开始加速测试。科学家将检验对撞机各组成部分电路,检测对撞机整体运行状况。 如测试成功,欧洲核子研究中心下一步将着手反方向的粒子加速测试,为粒子高速对撞做准备。 运行方向相反的两束高速粒子流一旦对撞,碰撞点将产生极端高温,最高相当于太阳中心温度的10万倍。 大型强子对撞机探测器“ATLAS”项目发言人彼得热尼8日告诉法新社记者:“我们将(由此)进入一片物理学新领域。周三将是非常重要的里程碑。” 80个国家参与 大型强子对撞机2003年开始修建,将近80个国家和地区的2000多名科学家参与这一研究项目。科学家希望,能够在对撞机前所未有的对撞能量帮助下,探秘“希格斯玻色子”和其他未解之谜。 希格斯玻色子44年前由英国物理学家彼得希格斯预言,视之为物质的质量之源以及电子和夸克等形成质量的基础。希格斯提出,其他粒子在希格斯玻色子构成的“海洋”中游弋,受它的作用产生惯性,最终有了质量。 在粒子物理学标准模型所预言的62种基本粒子中,只有希格斯玻色子迄今仍未“显形”。 希格斯即将迎来80岁生日,今年参观大型强子对撞机后感慨道:这一机器让他找到信心,“几乎可以确定,不久就可以发现希格斯玻色子”。 另外,科学家期望借力对撞机研究“超对称理论”和宇宙大爆炸等内容。欧洲核子研究中心主管罗伯特艾马说,他相信科学家将借助于这一机器获得重大突破性发现。 不可能吞噬地球 一些人担心,高速粒子流对撞产生的巨大能量会产生“黑洞”,瞬间吞噬地球。 为此,欧洲核子研究中心不得不委派一个专家小组,借助于计算向人们证实,这种情况不可能发生。法国方面也作了类似安全评估。 艾马说,一次试运行足以产生一大堆数据,科学家需要大量时间分析,“要想着手发现新东西,需要数周或数月时间”。 大型强子对撞机定于今年年底前全部建成,开始投入正式运行。英国《新科学家》杂志评论说:“大型强子对撞机不只是一台机器,还代表了我们这代人对知识的渴求。” 对撞机启动在即科学家频收威胁电话 本报讯 9月10日,威力强大的大型强子对撞机(LHC)将被启用。然而,就在此世界最大机器启动之际,为此日夜工作的科学家却不断收到死亡威胁的电话和电子邮件。 届时,高速粒子将在瑞士日内瓦附近的大型强子对撞机内开始围绕着其27公里长的圆形管道循环前进,当粒子以近光速的速度彼此撞击时,将会产生从来没有看到过的巨大能量。民众为此引发深度担忧,其中主要是担忧它会释放强大能量,制造出无法控制的黑洞,吞噬地球。 为避免灾难到来,这些人纷纷给相关科学家发出了死亡警告,令科学界非常恼火。英国曼彻斯特大学的布赖恩柯克斯表示,美国诺贝尔奖获得者、麻省理工学院(MIT)的物理学家弗兰克威尔泽克甚至已经收到死亡威胁警告。柯克斯气愤地说:“任何认为大型强子对撞机会毁灭世界的人都是傻瓜。” 此外,大型强子对撞机公关部部长吉利斯表示他接到了声泪俱下的请求电话,恳求他让此耗资45亿英镑的机器能停止作业。 更可气的是,他们已经向法庭起诉此事,要求中止大型强子对撞机的启动。这是历来由科学实验引发的最显著的担忧。但最新发表的新报告作出结论,称此实验对人类没有威胁。[/color]
北京时间2月4日消息,据国外媒体报道,欧洲核子研究中心(CERN)发言人詹姆斯吉利斯2月3日表示,在最新一轮实验中,大型强子对撞机(LHC)项目科学家可能会揭开物质质量之源的谜团。大型强子对撞机此次将不间断运行近两年时间,直至2011年底。 大型强子对撞机是世界上最大、最昂贵的科学设施,将于本月晚些时候再度启动。吉利斯在接受媒体采访时表示,科学家或能在这次实验期间揭开希格斯玻色子的庐山真面目。希格斯玻色子的特性难以捉摸,被称为“上帝粒子”,科学家认为它是物质的质量之源。苏格兰物理学家彼得希格斯在30年前曾表示,希格斯玻色子或许能解释物质如何聚在一起,创造宇宙及宇宙万物。 吉利斯在谈到希格斯玻色子时说:“只要它确实存在,我们发现它的几率将相当大。”据吉利斯介绍,大型强子对撞机这次将运行18至24个月,在此期间它将给科学家带来丰富的信息和数据。大型强子对撞机是一座位于瑞士与法国边界、日内瓦近郊的粒子加速器与对撞机,作为国际高能物理学研究之用,由欧洲核子研究中心负责管理。 即便大型强子对撞机不能揭开希格斯玻色子神秘面纱,这并不意味着它不存在。经过第一次的长期运行和历时一年的停工准备,大型强子对撞机可能会再次在最高能级启动。吉利斯说:“要想捕获希格斯玻色子,这或许是我们所需要的能量强度。”大型强子对撞机于2008年9月首次启动,但在长达27公里的地下环形隧道发生爆炸后被迫关闭。 这台对撞机旨在推动以相反方向高能运转的粒子撞击。数十亿次撞击将产生大量数据,以供欧洲核子研究中心和全球各地一万名科学家研究和分析,每一次撞击都会产生类似于137亿年前宇宙大爆炸发生瞬间的状态,有助人类进一步探索宇宙起源之谜。宇宙大爆炸喷射的物质最终形成了恒星、行星和地球生命,但希格斯理论认为,只有在希格斯玻色子这样的粒子将物质聚集在一起,赋予其质量,上述一幕才有可能发生。 大型强子对撞机2009年底大约运行了两个月,令粒子束在地下隧道撞击产生了2.36万亿电子伏特(TeV)的能量,这也是质子流对撞能级的最高纪录。上周,在法国小城夏蒙尼召开的会议上,欧洲核子研究中心的物理学家、工程师和项目经理决定长期运行大型强子对撞机,冬天也不关停。 吉利斯表示,如果一切按计划顺利进行,对撞产生的能量最终将达到7万亿电子伏特。到明年年底,大型强子对撞机将再次关闭12个月之久,以便工程师可以对环形隧道进行维护,安装大量新设备,为接下来的新一轮对撞实验做准备。下一轮对撞实验可能在2013年开始,目标是产生14万亿电子伏特的能量。作者:孝文 来源:新浪科技 发布时间:2010-2-4 10:43:44
[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806251408_95005_1622715_3.jpg[/img]空中俯瞰欧洲核子研究中心 [img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806251409_95006_1622715_3.jpg[/img]欧洲强子对撞机是目前世界上最大的粒子对撞机
2013年01月04日 来源: 腾讯科学 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130104/00241d8fef0e1250634023.jpg 大型强子对撞机将进行全面检修,以准备在2015年对暗物质、额外纬度和其它宇宙进行探索。 腾讯科学讯(过客/编译) 当谈到关闭有史以来最强大的核粒子加速器时,并不仅仅是按下关闭按钮的问题。欧洲粒子物理研究所的工作人员正一步步的停下大型强子对撞机。下个月当最新一次试验结束之后,位于大型强子对撞机隧道内的巨大超导磁体必须进行升温,缓慢的从零下271摄氏度回升到室温。只有到那时,工程师们才能进入隧道开始他们的工作。 这台设备去年帮助科学家们捕捉到难以捉摸的希格斯玻色子,现在需要关闭两年时间让工程师进行检修,以此来让对撞机在2015年达到它的最大能量。2008年9月大型强子对撞机首次启动几天后就发生了故障,从那以后,对撞机就被迫以一半的设计能量运行以避免再一次发生灾难。粒子加速器通过内部原子以接近光速的速度碰撞来揭示新的物理现象,这一切都是在一个8英里长的环形地下隧道里进行的。但是大型强子对撞机并不单是一台寻找希格斯玻色子的机器,它或许会揭开宇宙的其它秘密。比如说什么是隐藏在星系周围的暗物质,为什么我们是由物质组成而不是反物质。一位物理学家皮帕-威尔斯说道:“我们只进行了小部分的对撞机项目,仍然有很长一段路要走。新闻头条报道的发现只是开始,我们需要进行更多的精准测量来完善微粒的质量问题,并且更好的理解希格斯玻色子是如何产生的,以及它衰变成为其它粒子的方式。” 就其本身而言,即使大型强子对撞机恢复更高能量,暗物质是难以发现的。“暗”这个词语指的就是这种物质既不会发出光线也不会反射光线,目前为止暗物质呈现的唯一方式就是把它运用在星系上。在地球上搜寻暗物质未能揭开它的组成,但是大型强子对撞机或许能够实现这一目标。一个称作超对称性的理论提出,组成宇宙的微粒数量是我们现在所了解的两倍。威尔斯认为增强大型强子对撞机的能量应该能提高科学家创造暗物质的机会,“相比现在来说那将是一个巨大的进步,我们将把对宇宙4%的了解提高到大约25%。”大型强子对撞机可以帮助我们揭开的另外一个神秘是为什么我们是由物质组成而不是反物质。大爆炸应当将等量的物质和反物质送入到早期宇宙中,但是现在我们看到的几乎全部是由物质组成的。大型强子对撞机内部的撞击产生了大量被称作底夸克的微粒和它们的反物质相对物,两者都是大爆炸的共同结果。通过研究它们的行为,科学家们希望了解为什么自然似乎更喜欢物质而不是反物质。 工作于大型强子对撞机夸克探测装置的物理学家塔拉-希尔斯说道:“与超对称性或者希格斯玻色子不同,反物质没有理论让我们进行测试。我们不清楚为什么反物质表现的与普通物质有一点差异,但是或许那种差异能够使用更深层次的粒子物理学理论进行解答,但是我们尚未发现这一理论所包含的新物理现象。”增强大型强子对撞机的能量或许只是让科学家找到为什么重力如此微弱的原因。一个解释就是我们只承受了一小部分力,其余的以微观方式作用于额外的空间维度。剑桥大学高能物理学教授安迪-帕克说道:“我们所看到的重力场只是我们三维空间中的一部分,但事实上有许多重力场存在于第四、第五维度,或者你能幻想的任何纬度。” 量子力学定义粒子表现的像波,而且当大型强子对撞机提升到更高的能量时,碰撞微粒的波长就会变得更短。当微粒的波长小到能够与额外纬度相匹配时,这些微粒就会突然感觉到更加强烈的引力。帕克说道:“你所期待的是当你获得足够的能量时,你能够突然发现额外纬度,而且引力变得更加强大而不是微弱无力。突然增加的额外引力将导致机器内部的微粒更加分散,这就会给科学家一个明显的信号,额外纬度是真实存在的。”
由两台大型超导直线加速器组成,总长约31公里 新华社日内瓦6月12日电 (记者王昭 吴陈)欧洲核子研究中心12日在日内瓦发布公报称,下一代高能对撞机——国际直线对撞机的最新设计报告问世,这种新一代粒子对撞机一经建成,将与该研究中心现有的大型强子对撞机一起解开很多未解的宇宙科学之谜。 国际直线对撞机项目由全球设计工作组组织实施。该工作组由来自全球20余个国家100余所大学和实验室的1000位科学家组成。 公报说,拟议中的国际直线对撞机是一台超高能量的粒子对撞机,由两台大型超导直线加速器组成,总长约31公里。对撞机加速器的超导腔可以在接近绝对零度条件下使粒子束流获得巨大能量,并在对撞机的探测器中相撞。对撞机内的电子和正电子束流每秒碰撞次数可达7000次,使对撞总能量达到5000亿电子伏特。对撞产生一系列新粒子,可以回答自然界一些最基本的问题,如物质的起源、暗物质、暗能量等。科学家相信,国际直线对撞机将与大型强子对撞机一起,解开很多未解的宇宙科学之谜。 公报称,目前的主要进展包括加速器内超导射频测试装置已建成并成功试运行,加速腔的工序也已大幅改进。此外,为国际直线对撞机生产其所需的16000个超导腔以及探测器的细节等也被列入设计报告。 欧洲核子研究中心认为,这份设计报告凝聚了有关国际直线对撞机的最新、最先进以及最为详尽的设计,也标志着多年来全球各国对国际直线对撞机的协作研发取得成果。在充分考虑国际直线对撞机的性能、风险与成本的情况下,与此相关的技术设计与项目实施计划是现实可行的。 国际直线对撞机研究部门负责人山田作卫表示,2012年欧洲核子研究中心宣布,该中心的大型强子对撞机发现了一种“看起来越来越像”希格斯玻色子的新粒子,这一发现使得国际直线对撞机肩负更为重要的任务,即对大型强子对撞机起到补充作用,对这种粒子的特性进行更为细致的研究分析。 国际直线对撞机的选址尚未确定,候选地点分别是日内瓦附近的欧洲核子研究中心、美国费米国家加速器实验室和日本某地。
据物理学家组织网报道,最近有科学家提出,世界上最强大的粒子加速器——大型强子对撞机能够用来验证超光速推进。超光速推进出现在科幻小说之中,是实现星际航行所必需的。超光速推进或许是未来太空飞船的推进方式,能够使其以接近光速的速度飞行。 超光速推进系统(hyperdrive propulsion)的想法缘起于德国著名数学家大卫-希尔伯特在上世纪20年代的研究成果。当时希尔伯特研究了一个静止物体同相对论性粒子之间的相互作用。他推算出如果粒子以超过1/2光速的速度运动,远处的观察人员会感觉粒子是被静止物体所推动的。 尽管超光速推进的想法提出已经将近百年,但是最近美国科学家富兰克林-菲尔波重又提起希尔伯特的想法,并推翻了其结论。富兰克林认为推力是相互的,相对论性粒子同样也会推动静止物体。菲尔波认为这种超光速推进能够用来推动一个静止物体获得接近光速的速度。 菲尔波将其设想比作两个不同质量物体之间的弹性碰撞。如果较重物体同较轻的静止物体相撞,较轻物体会以较重物体速度的大约两倍弹出。在超光速推进系统中,相对论性粒子能够推动静止物体以比粒子更快的速度运动。 菲尔波还认为他的设想可以通过大型强子对撞机来检验。因为作为世界上最大的粒子加速器,它能够给粒子充分加速,产生足够的推动力。菲尔波希望在大型强子对撞机内放置实验物,测量加速粒子流从物体旁通过时产生的微小力量。该试验物不会和粒子束相互影响,因而也就不会影响大型强子对撞机的正常运转。 欧洲大型强子对撞机是目前世界上最大、能量最强的粒子加速器,它位于日内瓦附近瑞士和法国交界地区地下100米、总长约27公里的环形隧道内。对撞机前后花了12年时间建造,其建造费用高达37.6亿欧元。大型强子对撞机能够将两束质子加速到空前的能量状态而后发生相撞,以验证科学家有关粒子的种种推测。功率达到最大时,数万亿个质子将在大型强子对撞机周围的加速器环内以每秒1.1245万次的频率急速穿行,它们的速度是光速的99.9999991%。 如果大型强子对撞机无法用来检验超光速推进的话,菲尔波建议使用位于美国伊利诺伊州的费米国家实验室的正反质子对撞机来进行检验。在大型强子对撞机(LHC)建成之前,世界上最大的粒子对撞实验室是美国的费米国家实验室,曾经因其第一次直接观测到T中微子而震惊物理学界。费米实验室1983年建成,耗资1.2亿美元,可以实现粒子在约1.98TEV能量下进行碰撞。而LHC远远超过了它,可以使粒子在约7TEV的能量下碰撞。因此,在费米国家实验室产生的推动力也远小于在大型强子对撞机产生的推动力。作者:唐宁 来源:新浪科技 发布时间:2009-10-13 14:27:29
稀里糊涂,做一回“对撞机之父”这项工作是在核物理研究进入关键阶段的历史大背景上完成的,因此意义非凡。1919年,英国科学家厄内斯特•卢瑟福(Ernest Rutherford,1871~1937)用天然放射源中的高速α粒子束作为“炮弹”轰击金属箔,实现了人类科学史上第一次人工核反应,发现了质子,从此之后人们寻求更高能量粒子来作为“炮弹”、求搞清原子核内部复杂结构的决心一发不可收拾。但在1928年之前,实验室中用于加速粒子的主要设备是变压器和整流器、冲击产生器、静电产生器、特斯拉线圈等,全都是高电压环境,对绝缘的要求特别严苛。受绝缘材料所限,粒子产生的速度也非常有限,直到美国加州大学伯克利分校的物理副教授厄内斯特•劳伦斯(Ernest Lawrence,1901~1958)读到维德罗的文章那一刻,这个问题才迎刃而解。劳氏后因发明能够大大提升粒子速度的回旋加速器而获得1939年诺贝尔物理奖,不过这个奖因为二战的缘故,一直推迟到1951年才颁发,在领奖演说中他非常诚实地提到维德罗对自己的启发:“1929年初的一个晚上,当我正在大学图书馆浏览期刊时,无意中发现在一本德文电气工程杂志上有一篇维德罗的论文,讨论正离子的多次加速问题。我读德文不太容易,只能看看插图和仪器照片。从文章中列出的各项数据,我就明确了他处理这个问题的一般方法,即在连成一条线的圆柱形电极上加一适当的无线电频率振荡电压,以使正离子得到多次加速。这一新思想立即使我感到找着了真正的答案,解答了我一直在寻找的加速正离子的技术问题。我没有更进一步阅读这篇文章,马上停下来估算把质子加速到一百万电子伏的直线加速器一般特性该是怎样。简单计算表明,加速器的管路要好几米长,这样的长度在当时作为实验室之用已是过于庞大了。于是我就问自己这样的问题:不用直线上那许多圆柱形电极,可不可以靠适当的磁场装置,只用两个电极,让正离子一次一次地来往于电极之间?再稍加分析,证明均匀磁场恰好有合适的特性,在磁场中转圈的离子,其角速度与能量无关。这样它们就可以以某一频率与一振荡电场共振,在适当的空心电极之间来回转圈。这个频率后来叫做‘回旋频率’。”http://ng1.17img.cn/bbsfiles/images/2011/04/201104141353_288783_2185349_3.jpg厄内斯特•劳伦斯维德罗在1943年申请了一项“对撞存储环”专利,1945年又提交了一个完整的“同步加速器原理”专利,这个生前基本上默默无闻、本分地教书做实验的物理学家和发明家在身后被人誉为“对撞机之父”。他也许不会想到,自己当年已经伸手拉开了一场场轰轰烈烈的粒子对撞大戏之序幕,只可惜,同时代的人们没有注意到他这个动作。
据国外媒体报道,经过冷却后,备受关注的大型强子对撞机(LHC)已成为宇宙中温度最低的地区之一。强子对撞机的所有8个组成部分现已被冷却到1.9开氏温度(零下271摄氏度,零下456华氏度)这一操作温度,低于外太空温度。 大型磁铁能够弯曲强子对撞机周围的粒子束,它们利用液态氦帮助对撞机保持这一绝对低温。强子对撞机位于法国-瑞士边境地下一条27公里长的环形隧道内,磁铁则被从头至尾置于隧道之中。据悉,对撞机将于11月下旬重启,对其进行冷却是重启前的一个重要步骤。 2008年9月19日,由于所谓的磁铁“熄灭”导致一公吨液态氦渗入隧道,大型强子对撞机被迫关闭。液态氦泄露事故发生后,对撞机必须进行加温以达到进行维修需要的温度。大型强子对撞机是有史以来研制的功率最大的物理学设备,能够重建大爆炸之后的宇宙初期形态,由位于日内瓦的欧洲核子研究组织负责操作。 实验过程中,两个质子束将被导入穿过磁铁的管道内。在环形隧道内,质子束将以接近光速的速度以相反方向飞行。在隧道周围指定的点,携带巨大能量的质子束相遇并发生碰撞。科学家希望在撞击产生的碎片中发现新的粒子,以便从根本上加深对宇宙本质的了解。 大型强子对撞机的操作温度接近零下273.15摄氏度这一绝对零度,绝对零度是可能达到的最低温度。相比之下,外太空遥远区域的温度大约在2.7开氏温度(零下270摄氏度 ,零下454华氏度)左右。 在设计上,强子对撞机采用的磁铁具有超导性,能够让电流通过时遭遇的阻力降为零,进而将能量损失降至最低。为了具有超导性,磁铁必须被冷却到相当低的温度。出于这个原因,对撞机采用了一个复杂的低温线路系统并利用液态氦作为制冷剂。迄今为止,还没有如此大规模的粒子物理学研究设备在如此低温条件下运行。 在质子束绕27公里长的隧道运行前,工程师必须测试对撞机的新熄灭保护系统,同时进行磁铁供电测试。目前,质子束已经被送到大型强子对撞机“门前”。据悉,将一个低强度质子束导入对撞机最短需要一周时间。对质子束的测试只涉及对撞机自身组成部分,而不是整个环形隧道。 官员们计划在11月下旬让一个质子束绕对撞机环形隧道运行。在此之后,工程师将进行低强度质子束对撞实验,为科学家提供他们获得的第一手数据。质子束的能量随后将被提高以进行第一次高能对撞。所有这些标志着大型强子对撞机研究计划正式启动。高能对撞预计于12月进行,但据欧洲核子研究组织公关部负责人詹姆斯吉利斯透露,对撞时间很有可能推迟至2010年1月。 吉利斯博士表示,对这个加速器进行操作是一件非常细致的工作。“在对质子束进行加速的同时,你不得不因它们之间的距离而深深感到担忧。而等到希望它们进行碰撞时,你又希望它们尽可能靠得近一些。”他指出:“如果出现错误,你就可能失去质子束。整个过程需要一段时间才能趋于完美,在此之后,你所要做的就是等待碰撞发生。我们可以这样理解对撞机最后控制元件与碰撞点之间的距离,有点像位于大西洋两岸的两根织针进行碰撞。” 官员们计划在圣诞节和新年假期进行短暂休整,届时实验室将关闭。虽然管理人员已就如何在这段时间内完成相关工作进行讨论,但吉利斯表示后勤保障是一项非常复杂的工作。促使作出冬季关闭决定的主要因素是工人合约,合约问题需要重新进行谈判。 官员们表示,早期预警系统(熄灭保护系统)的升级将防止2008年导致对撞机关闭的类似事故发生。这种升级包括在对撞机周围安装数百个新探测器。2008年的事故发生后,欧洲核子研究投入大约4000万瑞士法郎(2400万英镑)对强子对撞机进行修复,其中就包括升级熄灭保护系统。作者:孝文 来源:新浪科技 发布时间:2009-10-20 14:37:26
http://photocdn.sohu.com/20120504/Img342377026.jpg大型强子对撞机的紧凑渺子线圈探测器发现了Xi(b)*存在的证据 【搜狐科学消息】据国外媒体报道,大型强子对撞机(LHC)最近在进行原子粉碎实验时检测到了一个新的亚原子粒子,这是一个美丽的粒子。新发现的粒子早已被理论所预言,但从未被发现。 新的粒子被称为Xi(b)* ,是一个重子。据悉,重子是由三个更小的被称为夸克的物质组成。组成原子核的质子和中子也是重子。Xi(b)* 粒子属于所谓的美重子,其包含一个底夸克,亦称美夸克。虽然发现Xi(b)*未必见得是一个惊喜,但这一发现应有助于科学家解决“物质是如何形成的”这一更大的难题。进行大型强子对撞机实验的美国康奈尔大学的物理学家詹姆斯•亚历山大(James Alexander)说:“这是墙上的另一块砖。” 不同于质子和中子,美重子的寿命极其短暂,Xi(b)*存在不到一秒钟就衰变成其它21个短命粒子。美重子需要极高的能量才能创造出来,所以它在地球上除了原子加速器的中心,如坐落于日内瓦欧洲核子研究中心(CERN)的大型强子对撞机,其它地方都找不到。 大型强子对撞机的科学家不是直接发现这个新的粒子,而是他们看到了它衰变的证据,大型强子对撞机的紧凑渺子线圈(Compact Muon Solenoid,CMS)探测器捕捉到新粒子在质子和质子碰撞后的凌乱余波中衰变的过程。CMS的物理学家文森佐•奇欧奇阿(Vincenzo Chiochia)说:“寻找这个粒子真的很辛苦,在这样一个混乱的状况下寻找这种复杂的衰变,使我们对自己的能力充满信心,未来我们也可以找到其它新粒子。” CMS的科学家表示,这个新粒子的存在已被证实,研究人员有99.99%的信心认为这一结果不是因为偶然。没有参与这项研究的费米实验室的科学家帕特里克•卢肯斯(Patrick Lukens)说:“这一发现进一步证实物理学家对夸克如何结合在一起的理解在本质上是正确的。” 这个粒子曾被物理学中非常成功的理论模型预言,被称为量子色动力学(quantum chromodynamics),该模型演示了夸克如何结合,以及如何创造更重的粒子。然而,卢肯斯说,发现Xi(b)*对寻找希格斯玻色子没有影响。希格斯玻色子可以解释为什么质量存在于宇宙中,它也是由量子色动力学模型所预言的粒子。(尚力)
http://i0.sinaimg.cn/IT/d/2011-02-14/U4007P2T1D5175036F13DT20110214170013.jpg 英国伯明翰大学的物理学家埃文斯在近距离观看ALICE探测器中“小爆炸”的发生情景 http://i1.sinaimg.cn/IT/d/2011-02-14/U4007P2T1D5175036F9DT20110214170013.jpg 在LHC铅离子对撞实验中,出现了新的物质状态,即夸克-胶子等离子体 大型强子对撞机(LHC)的第一年运行非常平稳,虽然因为时间和亮度的关系,还没有发现希格斯粒子与新物理,但很好地验证了标准模型以及实现了“小爆炸”,这对研究早期宇宙很有帮助。 大型强子对撞机,英文简写为LHC,是最吸引人眼球的科学装置和实验。该装置位于日内瓦附近的瑞士和法国交界处,主要部分安置在一个周长为27公里的隧道中,该隧道最深达175米。 这个隧道并不很新,建造于1983年到1988年之间,曾经安置过大型正负电子对撞机(LEP)。这台同步加速器为了给LHC让路在2000年就关闭了,但成果斐然。在运行的11年间,精确确定了粒子标准模型中迄今发现的重量排名第二和第三的两个粒子的质量,即所谓中间玻色子的质量,同时也精确确定了标准模型中的很多其他参数。可惜,这台加速器并没有发现标准模型的最后一个粒子,希格斯粒子。 大型强子对撞机的主要目的是完成大型正负电子对撞机的未竟事业,找到希格斯粒子。当然很多物理学家还期待大型强子对撞机带给我们更多的惊喜,即超出标准模型之外的新粒子和新物理。 加速器 在谈LHC运行一年多中的各种发现之前,我们先简单说说加速器是什么,我们为什么要建造这些庞然大物。 我们知道,我们用肉眼看东西有尺寸上的限制,原因是我们只能看到可见光,而可见光的波长最短是0.39微米即390纳米。光学以及量子力学告诉我们,为了要看到更小的东西,我们需要更短的波长。例如,X光的波长最短达0.01纳米。短波的X射线由于波长极短,可以穿透固体,可以探测固体内部以及可以为固体结构成像。同理,更短波长的伽玛射线可以探测更小的尺度。 物理学家为了探测亚原子结构,还需要其他高能粒子,如正负电子和质子以及反质子。粒子的能量越高,波长也越短(物质波的波长),这样就可以探测到更小的尺度。最早的粒子加速器是Cockcroft-Walton倍压器,利用电压来加速电子。现在的粒子加速器五花八门,从直线加速器到回旋加速器。 大型强子对撞机是同步加速器,最高单个粒子能量设计是7T电子伏。这里T是10的12次方,即一万亿。我们也可以用速度来想象质子达到的能量,我们知道,相对论告诉我们任何物体最高的速度是光速,一个能量为7T电子伏的质子的速度与光速只差了不到一亿分之一。 质子在加速器的四个交叉点碰撞,科学家在这些交叉设置了六个探测器,这些探测器是用来记录和测量粒子碰撞后的结果的。物理发现将在这些探测器上做出。其中比较显著的是四个探测器,名称分别为ATLAS(虽然是一些英文词的缩写,却与希腊神话中的大力神巨人同名,他用双肩将天扛起),CMS,ALICE,LHCb。 期待什么 LHC的主要目标是发现希格斯粒子,这是标准模型中最后一个还没有被发现的粒子,却是最重要的一个。这是因为,标准模型中的所有粒子开始时都没有质量,希格斯粒子就像上帝的使者,它的存在改变真空,而其他粒子通过与希格斯的关联获得质量。所以,为了最后验证标准模型,希格斯粒子是否存在至关重要。 另外,希格斯粒子也是最有可能与我们还没有发现的新物理规律相关联的。例如,也许存在超对称,超对称的存在预言至少有两个希格斯粒子。很多理论家还期待LHC将发现三维空间之外的额外维、超弦理论的迹象以及暗物质的迹象。四个探测器的主要科学目的不同。ATLAS用来寻找新物理规律以及希格斯粒子和粒子的质量起源;CMS也是用来寻找希格斯粒子的,同时寻找暗物质的迹象;ALICE主要的科学标目是研究夸克-胶子等离子体(后面我们要侧重谈到);LHCb的主要目标是研究为什么我们宇宙中存在物质与反物质的不对称。 期待LHC将给我们带来意想不到的收获,而不是像理论家们期待的那样看到超对称甚至超弦理论的迹象。我对LHC是否会发现额外维以及小黑洞持有极大的怀疑态度。我觉得额外维和小黑洞的宣传主要是欧洲核子中心的公关策略。据说,LHC的科学宣传策划已经被写进媒体教科书。 有些理论家,成天制造不同的理论,希望制定出一份周详的菜单,不论LHC发现什么,都在他的菜单上。这些菜单的制造,基本建立在一个或两个假想的问题上,而不是实验的启示。我觉得爱因斯坦的话值得铭记:“上帝是微妙的,但他不怀恶意。”什么意思呢?就是上帝大概不会被你无缘无故地猜中,但最终他还是愿意告诉你他自己的计划。 第一年 从2008年到今天,全球关心所谓宇宙秘密的人,总是被LHC的新闻所吸引。2008年9月10日,LHC第一次启动,经过一段时间的运转,9月 19日因为冷却系统的故障 53个磁铁损坏了,LHC被迫关闭。修复是一个漫长的过程,因为还涉及到整个系统的检查、清理和调试。经过一年多的辛苦工作,终于在2009年11月21 日重新启动。11月24日,LHC的四个探测器都检测到相反运动的两个粒子束的碰撞,这些粒子束含的是质子,每个质子的能量达到450京电子伏(1 京=10亿)。这个能量当然还远远低于设计的七千京电子伏。到了11月30日,一个纪录产生了,被加速后的每个质子的能量达到1180京电子伏,超过了过去的纪录 980京电子伏(美国国立费米实验室的纪录)。 按照最乐观的期望,LHC运行的第一年,也就是2010年,不要指望LHC能带给我们任何激动人心的消息。现在,2010年过去了,虽然LHC一直平稳而有效地工作着,的确没有给我们带来新物理发现。但有一些正常与有些出乎意料的发现还是值得书写的。 首先,LHC还没有达到预计的最大能量。现在每个质子的最高能量是3.5T电子伏,是设计能量的一半,这个能量是2010年3月份达到的,在接下来的时间中,加速器主要是增加质子束的亮度——即每束粒子含有的粒子个数,个数越多,碰撞的机会才越大,才越有可能看到新物理。ATLAS的科学家们很快就看到了标准模型中的中间玻色子,但并没有看到任何不同寻常的新物理现象。 重要新闻 到了去年9月份,第一个重要新闻发布了。在经过大约半年的粒子碰撞后,CMS探测器收集到足够的数据看到了一些非常有趣的现象。他们似乎看到了夸克 -胶子等离子体。这是位于美国的布鲁克海文实验室叫做RHIC加速器在比较低的能量上已经看到的。由于LHC的能量更高,如果夸克-胶子等离子体在高能量段还具备完美的液体性质,在实验和理论上都是令人兴奋的进展。 那么,什么是夸克-胶子等离子体?科学家们为什么因为看到这种等离子体而兴奋?他们甚至说,他们实现了可与宇宙大爆炸相比的“小爆炸”,这种小爆炸又是什么意思? 我们知道,通常我们看到的物质的主要成分是原子核,原子核由质子和中子构成。再下一层结构是夸克,质子和中子都是由夸克构成的,每个质子或中子含有三个夸克。当然,三个夸克的说法是在寻常的能量上。如果我们试图看到更多的细节,我们会看到胶子,这些胶子是将夸克强力地约束在一起的粒子,起了类似“不干胶”的作用,当然其力度比起不干胶可要强多了。 色浆·小爆炸 其实,当我们用能量轰击质子或原子核时,由于能量多的原因,在通常的夸克和胶子外,我们还会看到夸克和反夸克成对地产生。如果原子核的能量足够大,在轰击的过程中,将会有很多夸克和胶子出现。 这个时候,仅仅看单个粒子就不合适了,我们需要用气体或液体的概念来描述这些存在极为短暂的新物态。由于新物态是夸克与胶子构成的,所以叫夸克-胶子等离子体。夸克和胶子之间的相互作用是由色荷决定的(就像电子与电子之间的相互作用由电荷决定的类似),我过去曾开玩笑地建议将新物态命名为色浆——因为在台湾,普通等离子体叫做电浆。 夸克-胶子之间的相互作用非常强,即使在极高能,也不能忽略它们之间的力。但理论家们分为
http://ng1.17img.cn/bbsfiles/images/2010/12/201012122341_266578_2193245_3.jpg宇宙大爆炸刚结束不久,宇宙就像是一团浓度非常高的,非常热的液体北京时间12月4日消息,根据尚未完成的强子对撞实验测试出的数据来看,在宇宙大爆炸刚结束不久,宇宙就像是一团浓度非常高的,非常热的液体。最近物理学家在瑞士日内瓦附近用大型强子对撞机重新模拟了宇宙大爆炸的创建条件。科学家以接近光速的速度把铅原子从他们周围的电子中剥离,以这样的方式得到了铅离子。这个实验成功地创造出了一个精巧的“亚原子体积”,这是一种夸克胶子等离子体状态的原始物质。科学家们认为这种奇特的物质存在于宇宙形成的早期当中。作为亚原子粒子的夸克和胶子组成了等离子体,夸克是带正电的质子和中性的中子,也是组成原子的核心基础部分。夸克周围的胶子粒子相互紧紧"粘合"在一起,这种粘合的力量非常强。在普通物质中,夸克和胶子就是以这样紧紧粘合的形式存在的。有实验表明,在极高温的条件下,由于强作用力减弱,夸克和胶子便不会如此紧密的结合。因此一些理论推测,宇宙极早期的极端热量使得夸克和胶子像气体一样广泛存在,而不是结合在一起。然而根据最新LHC(大型强子对撞机)的实验数据,英国物理学家大卫埃文斯说:“那似乎并不正确。”埃文斯是伯明翰大学的科学家,用LHC(大型强子对撞机)做ALICE实验的研究小组的领导者。整个AILCE实验产生了超过18万亿华氏度夸克胶子的等离子体(10万亿摄氏度)。这些物质在冷却前只会存在一个极小的部分,然后转化为正常的物质。等离子转化的过程时间足够长,埃文斯和他的同事可以充分地目睹它的表现。“即使这些强大的力量(夸克与胶子之间)有所减弱,但它还是非常强劲,粒子相互作用相当多,所以这个系统更像是液体而不是气体。”埃文斯说。等离子体冷却成颗粒太多?在纽约的布鲁克海文国家实验室中,夸克胶子等离子体前已经被科学家制造出来了,但是它的热量只有在LHC(大型强子对撞机)中的一半。科研小组希望通过创建在不同温度下的夸克胶子等离子体,这也许能够展示出等离子体从气化物形成颗粒的过程。这些数据也将让物理学家更好地了解这种强大的力量(夸克与胶子之间)是如何作用的。"在LHC(大型强子对撞机)的夸克胶子等离子体表明,或许我们所了解的要比我们曾经认为的少得多”,埃文斯说。另一个难以解释的问题是,LHC(大型强子对撞机)的实验结果表明:冷却的夸克胶子等离子体明显比理论上预测的要拥有更多的微粒。例如,有一种理论说,胶子在一定体积的空间内有最大的空间饱和度。当达到饱和度时,就不会有更多的粒子。然而,在LHC(大型强子对撞机)实验中产生的粒子的数目超过了理论饱和度的百分之二十左右。俄亥俄州立大学的理论物理学家,乌尔里希-亨兹说,有关胶子等离子体的冷却时间数据和有关夸克粒子数目的制造期间非常有价值,因为它可以更好的理解夸克胶子之间的强作用力是如何相互影响的。这项实验有可能在未来产生实际效应。例如,理解在亚原子尺度上的电磁学可以使科学家利用超导特性,在温度足够低的情况下,某些材料的电阻将变为0。超导特性拥有非常广泛的应用价值,比如用于在MRI(磁共振显影成像)机器。"对夸克胶子之间强作用力了解的越多,就越有可能将其用在实际应用上,"亨兹说:"我不是说一定能够找到满足超导状态的条件,但我们或许会发现更有益处的东西。"
与夸克—胶子等离子体的原生状态非常相似2013年05月22日 来源: 科技日报 作者: 刘霞 科技日报讯 据英国《每日邮报》5月20日报道,欧洲核子研究中心的物理学家们使用大型强子对撞机(LHC)进行质子—铅离子对撞实验,制造出了有史以来最小的人造液滴。他们认为,这种液滴与紧随宇宙大爆炸之后出现的物质——夸克—胶子等离子体的原生状态非常相似,因此有助于揭示宇宙形成的奥秘。 科学家们通过点燃质子“子弹”以接近光速的速度进入铅离子,制造出了这种类似血溅效应的亚原子结构。这种“短命”液滴仅为3个到5个质子大小,是氢原子大小的十万分之一,病毒大小的亿分之一。 科学家们说,这些“迷你”液滴的“流动”方式同夸克—胶子等离子体的行为非常类似,夸克—胶子等离子体是一种物质状态,是组成质子和中子的亚原子粒子的混合,仅仅存在于温度和密度极高的条件下。据信,在大约138.2亿年前,整个宇宙大爆炸之后的一瞬间,这种等离子体可能曾“昙花一现”,那时宇宙的温度和密度比现在要高很多。 由于在过去数十亿年间,宇宙一直在膨胀和冷却,因此,科学家们唯有通过用巨大的能量将原子核撞击在一起的方式来制造这种原生等离子体。 2010年,大型强子对撞机已进行了铅离子—铅离子碰撞,揭晓了宇宙大爆炸瞬间产生的特殊状况。当时,科学家们也将质子—铅离子碰撞测试提上了日程,但因为质子的重量仅为铅离子的208分之一,科学家们普遍认为,质子—铅离子对撞释放出的能量不足以产生这种罕见的物质状态。正如该研究的领导者、美国范德堡大学物理教授朱莉娅·维尔科斯卡所说:“无论我们使用何种物质,在我们开始观察集合的类似流动的行为之前,碰撞必须足够猛烈以产生大约50个亚原子粒子。” 所以,科学家们此前并没有想到可以发现任何等离子体出现的证据。不过,在对数十亿次对撞进行分析后,他们发现其中有几百次对撞产生了超过300个流动的粒子。(刘霞) 《科技日报》 2013-05-22 (二版)
http://ng1.17img.cn/bbsfiles/images/2010/12/201012211456_268766_2193245_3.jpg欧洲大型强子对撞机的紧凑型μ子螺旋型磁谱仪(CMS)http://ng1.17img.cn/bbsfiles/images/2010/12/201012211456_268767_2193245_3.jpg对撞事件如标准模型预期的那样进行。这种事件是寻找迷你黑洞的背景 欧洲大型强子对撞机(LHC)首次对撞实验不断带给人惊喜。上周,紧凑型μ子螺旋型磁谱仪(简称CMS)任务团队宣布,他们向《物理快报》杂志提交了一篇论文,描述了对某些形式的弦理论的实验过程。 据任务团队介绍,如果这种形式的弦理论是正确的,大型强子对撞机应该可以生成迷你黑洞,不过这些黑洞会瞬间消失,而不是像某些人担心的那样吞噬地球。然而,对CMS探测器获取数据的分析结果表明,黑洞能量衰减的信号显然并不存在。 何为弦理论 弦理论试图揭开一个物理学谜团,即物理学的两大理论量子力学和相对论为何基本上不相容。弦理论假设四维空间之外还存在额外维度,从而将这两种理论结合起来。弦论的一个基本观点就是,自然界的基本单元不是电子、光子、中微子和夸克之类的粒子。这些看起来像粒子的东西实际上都是很小很小的弦的闭合圈(称为闭弦),闭弦的不同振动和运动就产生出各种不同的基本粒子。 我们肉眼是看不到这些闭弦的,因为它们被紧紧包在正常能量难以接近的微小半径内。在一种弦理论中——CMS探测器任务团队称之为ADD模式,因为是阿卡尼·哈米德、季莫普洛斯、德瓦利等三位科学家提出的——这种统一性具有重力的结果。通常情况下,重力相比其他力非常微弱,原因就在于,只有在能量是大型强子对撞机的几个数量级的情况下,它才能与剩余力达到统一。 但在ADD模式中,重力只是看上去微弱,因为其中一部分被困在剩余维度中,这使得能量降至大型强子对撞机的范围以内。如果一切按照ADD模式预测的过程发展,以高于这种界限的能量相撞的粒子应该处于小于额外温度占据空间的距离内。一旦发生这种情况,它们会感受到全部的重力,立即合并变成迷你黑洞。实际上,由于太小,这个黑洞几乎经由霍金辐射瞬间衰减。
欧洲核子研究中心的科学家准备让世界最大的粒子加速器大型强子对撞机(LHC)额外多运行一年,持续工作至2012年年底再关闭休整。他们相信,在这段时间里,LHC定能再接再厉,不负众望地找到希格斯粒子(或称希格斯玻色子),也就是传说中赋予其他粒子质量的“上帝粒子”。 按照原定计划,位于瑞士日内瓦边境地底长达27公里遂道内的LHC将于2011年结束本阶段的工作,然后进入长达一年休整期,对各项设备进行重大升级。如果新计划获得通过并实施,LHC的持续运行时间就将超过3年。据英国《自然》杂志网站 12月10日报道,目前围绕延期计划的一系列准备工作正处于最后的完善阶段,欧核中心管理委员会很可能于明年1月表决同意。 科学家们认为,LHC找到希格斯玻色子指日可待,这一重大发现可能“就在拐角处”。负责加速器维修和升级改造工作的史蒂夫·迈尔斯说:“就此停止将是一件令人惋惜的事。” 探寻希格斯玻色子之旅前景乐观 LHC的重要任务之一就是寻找希格斯玻色子。科学家们长期以来有个疑问,为什么有些粒子如质子比较重,而另一些粒子如光子比较轻?上世纪60年代英国物理学家彼得·希格斯大胆预测,存在一个希格斯场和希格斯玻色子。这种从理论上假定的希格斯玻色子是物质的质量之源,是电子和夸克等形成质量的基础。该机制被看作是粒子物理“标准模型”的必要延伸。 起初有人怀疑,就目前的运行能量而言,LHC是否能找到希格斯玻色子。自从2008年发生氦泄漏重大事故后,经过维修再次开机的LHC一直按照其设计能量的一半在工作。欧核中心工作人员原计划从2012年开始让LHC停止运行15个月,其间采集数据,以便让对撞机提升至最高能量状态(14万亿电子伏特)满负荷运转。 但现在,越来越多的科学家达成共识认为,即使不升级,LHC也已经在标准希格斯粒子可能存在的大部分范围内布下了罗网。欧核中心主管研究和计算的塞尔吉奥·贝托鲁奇表示,大多数物理学家的理想猜测是,希格斯粒子的质量介于114吉电子伏特到 600吉电子伏特之间(1吉电子伏特=10亿电子伏特)。质量将决定希格斯粒子如何衰减,也决定了它能否被轻而易举地探测到。 贝托鲁奇说,质量较重的希格斯粒子或许更容易被发现。这是因为较重的希格斯粒子很可能会衰变成两种稀有的重粒子,即所谓的W玻色子和Z玻色子。而在LHC碰撞实验所产生的粒子中,W玻色子对或Z玻色子对相较于其他粒子来说更加“鹤立鸡群”,容易辨别。如果希格斯粒子质量较轻的话,其留下的“签名”就会融入到背景中,使探测难度增大,而物理学家也需要将好几个月的碰撞数据集中到一起并从中过滤出有用信息。 尽管面临挑战,但贝托鲁奇对于LHC的监控面已经能够覆盖希格斯粒子出没之处的大部分区域表示“非常乐观”。2008年事故之后,这台机器的表现格外出色,他认为,对撞机具备在2011年至2012年运转期内提交大批所需数据的能力。此外,他说,LHC管理方认为,他们能够将粒子对撞能量从目前的7万亿电子伏特提升至8万亿电子伏特。
首批BESIII物理成果的完成速度达到了国际先进水平 2月3日,北京谱仪(BESIII)国际合作组发言人王贻芳对外宣布,利用重大改造后的北京正负电子对撞机(BEPCII)上产生的1亿ψ''事例,BESIII合作组获得了首批重要物理成果,三篇文章已分别投稿至本领域一流期刊《中国物理C》(Chinese Physics C)、《物理评论快报》(Physical Review Letters)和《物理评论D》(Physical Review D)。值得注意的是,BESIII国际合作组经过认真讨论,决定将第一篇文章投给国内杂志《中国物理C》。 自BEPCII/BESIII建成并投入运行以来,BESIII成功采集到一亿ψ’和两亿J/ψ事例,是目前世界上最大的数据样本。经过仔细的探测器刻度、复杂的模拟与重建软件的调试和系统的数据分析,首批物理分析主要结果如下:第一,确认了BESII实验发现的J/ψ衰变的质子反质子阈值增强现象。这个现象2003年在BESII实验的J/ψ辐射衰变过程中首次被观测到,但没有在类似的其它过程中被观测到,可能是一个特殊的新粒子:重子-反重子束缚态X(1860)。BESIII实验更清楚地确认了上述阈值增强现象。第二,在ψ(2S)衰变中测量了粲偶素家族最新发现的成员hc(1P1)粒子的产生与衰变性质,特别是在国际上首次测得了hc(1P1)粒子的宽度及其在ψ(2S)衰变中的产率和电磁跃迁几率,对理解粲偶素物理具有重要意义;第三,测量了粲偶素家族的χc0与χc2粒子衰变到膺标介子对的绝对分支比,测量精度达到目前国际最好水平,这将增进对χcJ粒子的衰变机制的进一步理解。 首批BESIII物理成果的完成速度达到了国际先进水平,得益于BEPCII和BESIII很高的建设质量和稳定可靠的运行,大型数据处理系统的有效运转,软件和物理分析工作者的通力合作,和BESIII国际合作组内部的有效管理。BESIII合作组还有一批物理分析工作接近完成,下一批重要结果将会很快发表。BEPCII和BESIII目前正在运行取数,预计其科学寿命将至少长达十年。作者: 来源:中科院高能物理研究所 发布时间:2010-2-4 9:57:00
可能是科学家长期寻找的一种奇特强子2013年03月27日 来源: 中国科技网 作者: 李大庆 最新发现与创新 中国科技网讯 依托北京正负电子对撞机的北京谱仪Ⅲ(BESⅢ)实验国际合作组今天(26日)宣布,在最近采集的数据中发现了一个新的共振结构,暂时命名为Zc(3900)。粲能区的粒子一般都含有粲夸克和反粲夸克,称为粲偶素,都是中性的,不带电荷。新发现的Zc(3900)含有粲夸克和反粲夸克且带有和电子相同或相反的电荷,提示其中至少含有4个夸克,可能是科学家长期寻找的一种奇特强子。 BESⅢ实验国际合作组发言人沈肖雁表示,寻找超出传统夸克模型的新型强子态一直是北京谱仪实验最重要的物理目标之一。带电Zc(3900)的发现很可能为寻找和研究新型强子态开启一扇大门。 来自11个国家的近300名科学家参加了BESⅢ实验。此次发现的Zc(3900)质量比一个氦原子略大,寿命很短,在10-23秒内衰变为一个带电π粒子和一个J/ψ粒子。这一性质与普通介子态完全不同。虽然其自旋和宇称量子数、其他衰变和产生模式等性质仍然未知,但却提供了奇特强子态存在的有力证据,对于定量理解强子是如何由夸克组成的、检验强相互作用理论具有重要意义。 BESⅢ实验将继续收集数据。专家预计到今年夏天,数据量将达到目前的4倍,届时对Zc(3900)的性质会有全面深入的了解。更重要的是,BESⅢ实验对研究粲偶素能区的物理有独特优势,实验结果可以为强相互作用理论提供重要的参考与校正点。实验组希望以Zc(3900)的研究为突破口,全面理解近年来发现的一系列新的粲偶素或类粲偶素粒子,并确认奇特强子的存在。(记者 李大庆) 《科技日报》(2013-3-27 一版)
http://ng1.17img.cn/bbsfiles/images/2010/12/201012192115_268287_2193245_3.jpg反氢原子示意图 欧洲核子研究中心(CERN)是一个庞大的科研机构,除了LHC的相关实验之外,还有上百个实验在同时进行,而大部分的实验,最终的目的都是一个:解开宇宙起源之谜。我们知道建造LHC的最主要目的是为了寻找闻名却未见的希格斯子,但CERN还有很多其他的事情要做。比如说按照现行理论,宇宙大爆炸时同时出现了物质和反物质,但是两者却无法共存,但为什么今天的宇宙只有物质但没有反物质呢?反物质到底是什么东西?随着技术的进步,这也成了物理界越来越引人注意的话题。 11月底,CERN发布的一个突破性消息引起了人们的广泛关注。反氢激光物理设备(ALPHA)坐落于CERN的主楼群,仅有40位科学家为此工作。正是他们首次长时间捕捉到了反物质。尽管这个发现借用了LHC的成果,但其实验和LHC的思想完全相反,不是加速,而是“减速”。 对称定律解释世界 和其它物理界的发现一样,反物质首先也是“思想实验”。早在79年前,英国物理学家狄拉克就试图把量子理论和狭义相对论结合在一起。这是两个互不兼容的基本物理理论。狄拉克发现,反物质必定存在。1932年,人们在实验中寻找到了狄拉克设想的正电子,其质量、带电量与电子完全相同,只不过它带的是正电(电子带负电荷)。 随后,人们逐渐发现了各种基本粒子对应的反物质。“反物质就像是物质在镜子中的像。它和对应基本粒子的质量完全一样,却具有相反的其他量子性质。”ALPHA实验发言人杰弗瑞(Jeffrey Hangst)在接受本报记者采访时说,“质子带正电,反质子带负电;电子带负电,正电子带正电……” 按照目前解释微观世界最好的理论模型,宇宙大爆炸时,同时产生了物质和反物质。今天,NASA的天文学家们也观察到,在遥远的宇宙区域———也就是我们所能看到的早期的宇宙,似乎存在物质和反物质碰撞后产生的伽玛射线踪迹。不过今天的宇宙却是由物质而非反物质组成的。“自然选择了物质,反物质似乎消失了。没有人知道为什么。” 宏观世界中,很多东西都是对称的。微观世界也是这样。在“标准模型”中,有着一个对称定律,认为量子场论方程所有允许的解,都依据这个对称定律,物质所遵循的物理法则,反物质也同样遵循。这个对称定律由三个字母组成:C、P、T,它们意味着三方面的对称:电荷共轭变换、宇称(左右)、时间反演。在随后的岁月中,不少物理学家们靠研究对称性问题拿下了诺贝尔奖。其中很多人研究的是“对称破坏”,即在一些物理过程中,一些对称性(特别是C和P的对称)被破坏了。 “CP对称破坏”是描述今天宇宙中物质数量超过反物质的重要解释之一。目前,有很多科学实验都在对这个现象进行验证,希望通过反物质研究了解到对称性定律及标准模型的有效性。 最冷的反物质 LHC的四大探测器之一LHCb研究的主要就是反物质和对称性问题。但ALPHA实验却和LHC几乎没关系,和LHCb的实验目的和方法也截然不同。在这里科学家们同样选择了氢,氢原子和反氢原子都只有一个质子和一个电子,结构非常简单。 两个反氢原子的原料分别是这么制作的,将定向质子束射向一小片铱,高能碰撞会生成反质子,再加以分阶段冷却。由放射性钠衰变产生正电子也加以冷却。“我们借用了对撞机中产生的反氢质子,所以我们还是依附于CERN的实验。但设备和实验都是我们自己设计。”杰弗瑞告诉本报记者。 在ALPHA并不大的实验室里,层层的管道连到磁场上方的探测器。在这里工作的科学家设计了一个改变速度的设备。它并不是另一个加速器,而是一个减速器。科学家将已有的反质子和正电子放在一起,令其生成反氢原子,然后让它逐渐减速,以便在一个像浴缸一样的磁场中将其“捕获”。 反物质无法与物质共存,因为两者一旦接触,便会同时消失并转化为能量,转化的能量形式如光子,这个过程用术语叫做“湮灭”。该过程产生的能量十分巨大。 ALPHA的实验结果却跨过了这个门槛。首先,实验必须在真空中进行,科学家设计了一个真空管道,排除了绝大部分的空气物质。反氢原子是中性的,没法通过电荷来捕获,怎么逮住它呢?杰弗瑞介绍,尽管电中性,反氢原子还是带有微弱的磁场,可以对磁场做出反应。 在热力学上,温度体现的是物质粒子的动能。理论上说,如果物质粒子达到绝对零度时,它应该完全静止。所以,温度越低,粒子的速度越慢。科学家们让来自LHC的高能反氢质子减速冷却,最后让-70℃左右的反质子束和更冷的正电子束进行对撞,一些反质子和正电子结合形成了反氢原子。如果说LHC的目的是令粒子更快、更热、更重,那这个实验中,原子则变得更冷更慢,其中速度最慢的反原子,温度仅有-272.5℃。 这些超级冷的反原子,最后“陷”入了一个超导磁铁构成的“磁场缸”里。“磁场越强,抓住的反原子也越多。”杰弗瑞说。他们共运行了335次实验,由1000万个反质子和7亿个正电子结合。产生的反氢原子中,有38个被捕获。 要观察被“囚”的反物质的存在,唯一的方法就是“释放”它。0.17秒后,科学家们关闭了磁场,反氢原子迅即与氢原子碰撞,湮灭无踪。探测装置及时地记录下了这38次能量爆炸。这些爆炸都发生在反氢原子和产生磁场的缸状容器壁上。反物质和物质湮灭后形成了新的粒子。实验中,新产生的粒子是名为π介子的亚原子粒子。 杰弗瑞说,这是科学家第一次长时间“逮住”反物质。LHCb这样的高能粒子实验是没法捕捉反物质的,因为高能量的反粒子会迅速与实验设备相撞而消失,唯一能困住的,是低能、寒冷、运动缓慢的反粒子。
一、特点当今空气微生物污染所造成的严重伤害,已越来越受到重视,因而对各种空气污染采样污染采样监测的需求就更加迫切,空气微生物的数量及其大小分布乃是评价起危害的两个不可缺少的指标。本厂生产的KHW-6型六级筛孔撞击式空气微生物采样器能够测定空气微生物的数量之外,它独有的特性是还能测出这些粒子的大小,而后者是判定空气微生物危害的重要指标之一。它是由六个撞击器组合成一体,每一级实际是一个单级采样器,利用6次反复撞击原理,绝大部分粒子特别是在气管及肺沉降的粒子基本都撞击下来,因而它采集到的粒子大小范围自然比单级的广,这是一些单级撞击采样器所无法比拟的。撞击器的圆形喷口比裂隙式等喷口有更高的采样效率。采样时相对湿度逐级地升高(由第一级的39%增至第六级的88%),这十分有利于脆弱的病原微生物,特别是病毒粒子的存活,自问世以来常用不衰。二、用途KHW-6型六级筛孔撞击式空气微生物采样器可广泛用于疾病预防控制、环境保护、制药、发酵工业、食品工业、生物洁净等环境的空气微生物数量及其大小分布的采样监测,以及有关科研、教学部门作空气微生物的采样研究,为评价环境空气微生物污染的危害及其治理措施提供科学依据。三、工作原理以KHW-6型六级筛孔撞击式空气微生物采样器为例,模拟人体呼吸道的解剖结构及其空气动力学特征,采用惯用撞击原理,将悬浮在空气中的微生物粒子,按大小等级地分别收集在采样介质表面上,然后共培养及做进一步微生物分析,求出空气微生物粒子数量及其大小分布的特征。四、结构整套仪器由六级撞击器、主机(流量计)、定时器、三角架组成。-撞击器是由六级带有微笑喷孔的铝合金圆盘组成的,圆盘下方放盛有采样介质的平皿,用三个弹簧挂钩把六级圆盘紧密地连接在一起。每个圆盘上环形排列400个尺寸精确的喷孔。当含有微生物粒子的空气进入采样口后,气流速度逐级增高,不同大小的微生物粒子按空气动力学特性分别撞击在响应的采样介质表面上。第一、二级类似人体上呼吸道捕获的粒子,第三级-第六级类似下呼吸道捕获的粒子,这就在相当程度上模拟了这些粒子在呼吸道的穿透作用和沉着部位。五、技术参数1.捕获率:>98%2.捕获粒子范围: 第一级 >7.0um 孔径1.18mm 第二级 4.7-7.0um 孔径0.91mm 第三级 3.3-4.7um 孔径0.71mm 第四级 2.1-3.3um 孔径0.53mm 第五级 1.1-2.1um 孔径0.34mm 第六级 0.65-1.1um 孔径0.25mm3.采样流量28.3L/min(可调节)4.电源:AV220V 功率:35W 5.体积:Φ108mm x 192mm 主机:长200mm x宽 150mm x 高125mm 6.重量:撞击器:1kg 主机:3kg六、使用方法(一)采样器的流量校正KHW-6型六级筛孔撞击式空气微生物采样器是28.3L/min,采样前校正好流量。1. 必须保证圆盘上孔眼通畅,然后按顺序将撞击器装配好,一手从上部按住撞击器,另一只手挂在三个弹簧挂钩。2. 用橡胶管连接撞击器出口→主机进气口,取下撞击器进气口的上盖。3. 将主机插上电源(AC220V),按下主机上“电源开关”,调节“流量调节”旋钮,使流量计转子稳定在28.3L/min。 (二)撞击器的清晰与消毒1.用中性洗涤剂温水清洗撞击器,用超声波洗则更好,可除去喷孔的塞物。2.若喷孔发生阻塞,用高压气流或配备的细针清除3.六级撞击器使用70%酒精擦拭消毒。(三)采样平皿的制备1.一般需氧的空气微生物采样用普通琼脂培养基(培养基1.8%-2.0%)若采集特殊微生物(如高营养的病原因,病毒,真菌等)可选用响音的采样介质。2.平民采用国产Φ90 x 18mm玻璃培养皿,用高压蒸汽灭菌后备用。3.在无菌条件下用量杯往 平皿内倒入琼脂24-30ml,琼脂表面与高密圈(8mm)一平,以保证采样时喷孔与琼脂表面之间2-3mm的最佳撞击距离。4.将加入采样介质的平皿,倒置放入37℃恒温培养箱中培养24小时,无杂菌生长方可使用(四)现场采样1.将三角架支开并锁紧,把三角架顶部调至水平,主机放在三角架上,撞击器放在桌上或地上,用橡胶管连接 撞击器出气口→主机进气口。2.顺序放入采样平皿,一手打开平皿盖,另一手迅速盖上撞击盘,然后按住撞击器上部,挂上三个弹簧挂钩。放入和取出采样平皿时,必须戴口罩,以防口鼻排出细菌污染平皿。 3.打开撞击器进气口上盖,离开采样点2米之外,即可启动采样。可用定时器设定采样时间,参照定时器使用说明书 4.采样时间长短视所才空气环境的污染程度而定,但最好不超过30分钟,一面长时间的气流冲击致使采样介质脱水而影响微生物生长。 5.为了保持菌落计数的准确性,每个平皿的均落在250个以下为宜,一般室外空气环境采10分钟,室内空气环境采1-5分钟即可。 6.采样完毕后,取出采样平皿扣上盖子,注意顺序和编号号码,切勿弄错。七、培养计数菌落 1.将采样后的平皿倒置于37℃恒温箱中培养48小时,对有特殊要求的微生物则放相应条件下培养。 2.计数各级平皿上的菌落数,一个菌落既是一个菌落形成单位(cuf)八、结果计算1.空气中微生物数量:是以每立方米空气中所含粒子数量表示之。 空气中微生物数量(cuf)/m³ = 所有平皿菌落数 / 采样时间(min) x 28.3(L/min x 1000 2.空气中微生物大小分布:是以各级的菌落数占六级总菌落数百分比表示之 各级微生物粒子数%=该级菌落数/ 六级总菌落数 x1000
新浪上看了几段介绍,真是激动人心啊号称这个网址有直播,可是我连不上,郁闷http://webcast.cern.ch/index.html
壮丽星系撞击图集半人马座天体似宇宙之帆http://www.people.com.cn/mediafile/pic/20120813/99/3358215735029612675.jpg据英国《连线》杂志网站报道,星系间的相撞是宇宙中最为暴烈,最让人惊奇的景观之一。这张壮丽的星系撞击图像上看上去就像是一艘航行在宇宙之海中的小小帆船,上面有一个洁白的船帆。这个天体名为ESO 593-8,位于半人马座,距离地球约6.5亿光年。
NASA首次拍到彗星撞击太阳消亡的画面http://www.people.com.cn/mediafile/pic/20110714/22/7708036806841513238.jpg撞击画面。 据美国媒体7月13日的消息,美国航空航天局(NASA)日前首次拍到彗星撞击太阳而消亡的画面。 NASA官员表示,撞击发生在7月6日。这颗彗星撞击太阳时逐渐融化,由于炽热的温度和辐射最终完全被蒸发掉。整个过程持续了约15分钟,全程被NASA的太阳动力学观测卫星记录下来。 这是NASA历史上首次拍到彗星撞击太阳而消失的全过程。NASA科学家伯恩哈德·弗莱克还表示:“这颗消亡的彗星同1996年发现的圣诞节彗星一样,是观测卫星观测到最亮的彗星之一。” 天文学家往往将这种运行轨道与太阳极为接近、最终会撞向太阳“自杀”的彗星称为掠日彗星。掠日彗星也称克鲁兹彗星,天文学家认为这种彗星是许多世纪前一个大彗星分裂而形成的。
请问有没有颠覆传统撞击球原理的雾化器,用于原子吸收。
据人民网报道,俄罗斯天文学家今日宣称,一颗代号“阿波菲斯”的小行星即将在2036年4月13日与地球相撞。针对如此恐怖的预言,美国研究者指出,该小行星届时撞击地球的可能性极其微小。
各位有使用笑气-乙炔火焰的吗?是否使用撞击球?PE说明书上说若使用笑气-乙炔火焰的话不适合使用撞击球
目前世界最大的强子对撞机于北京时间9月10日15时30分开始了首次大型测试。科学家们认为,这次测试具有里程碑意义。 然而,这次实验也引起了激烈的争论,有的科学家担心,对撞实验可能对时空结构引发灾难性的连锁反应,甚至预言圣经中的“世界末日”将会因此而到来。大型强子对撞机会给普通人带来什么好处?冒着毁灭的危险进行探索知识是否值得?……[详细]全球最大型的强子对撞机实验启动世界最大对撞机启动模拟宇宙大爆炸 欧洲核子研究中心的世界最大型强子对撞机,已于北京时间2008年10月10日下午3时34分左右正式启动,将第一束质子束流注入对撞机。专家指出,该对撞机正式启动具有里程碑意义。科学家希望借这次实验,解开宇宙间部分谜团…[详细] 多国联手中国参与 对撞机未来数年将会继续运作 在大型强子对撞机上的4个大实验中,来自80多个国家和地区的7000多名科学家和工程师共同参与制造、维护和运行4个大探测器并进行数据分析。整项计划前期已花了近20年,耗用了数十亿美元。未来数年,这台对撞机将会继续运作…[详细][img]http://ng1.17img.cn/bbsfiles/images/2008/09/200809110832_108326_1627719_3.jpg[/img]详细新闻,请见以上链接:http://news.sohu.com/s2008/dianji60/
2、撞击力 将待测纽扣固定在尺寸合适的夹钳上,面朝摆锤。四孔纽扣漏出两孔,两孔纽扣露出一孔。将纽扣固定好后合上夹钳,用随附的螺丝刀将所有部件在碰撞仪台面上安装好。测试小于15mm的纽扣时将摆锤升到位置2的地方,大纽扣需要到位置1的地方。松开把手,释放摆锤,撞击纽扣。记录下纽扣是否出现折断,破裂或变形。重复测试,直到纽扣样品全部测试完成。测试高度:32mm、44mm、67mm、83mm、95mm、117mm、200mm 位置1、位置2是从上面数的吗? 位置1是117mm吗??http://www.lalianniukou.com/upLoad/product/month_1501/201501221427585575.png
子弹撞击玻璃震撼瞬间效果:场景似星系爆炸http://www.people.com.cn/mediafile/pic/20120421/65/8776554916886994645.jpg图为.357空尖弹射击玻璃时产生的效果。 摄影师黛博拉-贝伊在一场展销会观看了有机玻璃防弹性能的现场演示后突发灵感,决定利用相机去捕捉“子弹撞击玻璃”瞬间那种碎片纷飞的震撼、美丽的爆炸效果。
http://i2.sinaimg.cn/IT/2011/1014/U5385P2DT20111014082253.jpg科学家称,大约发生于39亿年前的大撞击时期可能为后来产生地球上的生命创造了理想的条件 新浪科技讯 北京时间10月14日消息,科学家们的研究显示,人们一直将陨星视为摧毁地球万物的“终结者”可能是不恰当的,事实上,似乎正是早期地球和这些小天体之间发生的灾难性撞击事件奠定了后来生命在这颗星球上出现和发展的基础。 尽管现在几乎人人都知道在大约6500万年前,有一颗小天体撞击了地球,那场浩劫导致了恐龙的灭绝。但是科学家们现在指出,早在这一事件发生前数十亿年,地球早期历史上,正是这些陨星的撞击事件才为后来生命的生生不息打下了根基。 葛尔丹·奥新斯基(Gordon Osinski)是加拿大西安大略大学的一位行星地质学教授,他在本周召开的美国地质学会会议上就近期的陨石坑以及撞击影响研究方面的问题发表了看法,其中他就说:“当人们想起陨星撞击和生命之间的关系时,99%的人都会立刻想到恐龙的灭绝事件。”他说:“确实,陨星撞击当然是极具破坏力的,但是在那之后,尤其是如果你是一个微生物的话,你就会发现这其实是有利于生命发展的。” 陨星雨 在地球诞生初期,有过一段特殊的时期,天文学家和地质学家们将其称为“大撞击时代”。这是名副其实的:当时地球诞生不过5亿年左右,大量陨星体疯狂地轰击着这颗年轻的星球,这些撞击体融化后为地球带来了后来形成水热系统的关键物质,就有点像是今天海洋地质学家们在海底观察到的海底烟囱的作用差不多。围绕这些海底烟囱,在海底的生命禁区形成了地球上唯一一片不依赖阳光而存在的完整生态链。 奥新斯基说:“要发生水热活动的条件是什么?热源,和水而已。”而撞击正好可以提供这样的条件:巨大的陨星撞击将融化地表深达数百公里的岩层,提供巨量的热量;陨星还带来了大量的水,它们逐渐开始形成地球上最早的地表水体系和降雨天气。 奥新斯基说:“随着时间推移,地球上的温度将逐渐降低,但是不同撞击坑之间在冷却时间上存在着巨大的差异。一般来说,撞击坑越大,它所蕴藏的热量越大,冷却地就越慢。但是具体究竟需要多少时间完成冷却过程却仍然是一个大大的谜团,但是对于那些较小的撞击坑而言,它们的冷却过程只要数十万年就足够了。”而地球上的深海水热系统正是科学家们认为是地球上生命最早出现的可能地点之一。 奥新斯基说:“学界认为热泉附近是生命最初诞生之处是有道理的,因为当你回溯进化链条,你会发现那些最古老的低等生命形式都是嗜热微生物。”这些微生物在60~80摄氏度的温度环境下才能生存,这样的热泉环境在深海海底,以及美国黄石国家公园的火山温泉地区都存在。他说:“基本上,我们并不清楚生命起源于何处。这是地球上的一道开放性问题,不过热泉系统确实是一个选项。在这里你可以得到能量,食物和水,这是所有生命体所需要的全部。” 生命摇篮 在最近一次大洋海底钻探获取的洋底火山岩样本中找到了玻璃质成分,这是早期地球撞击期的高热产物。分析显示这种玻璃可能是饥饿的微生物们喜欢食用的营养物。科学家们在这些多孔的岩石样本中发现了化石痕迹,这可能正是因为那些饥饿的微生物吃光了岩石样本中含有的玻璃质成分导致的千疮百孔。 除此之外,剧烈的撞击可以让岩石变得更加多孔,也因此更加适合微小生命体的居住,为它们提供了无数可以在里面繁衍生息的“小窝”。 不过对于这些致力于回溯地球历史的科学家们来说,不幸的是地球上最古老的陨石坑的年龄也仅有大约20亿年。地球是一个活跃的体系,剧烈的板块运动,风沙河水,生物风化,这一切内力外力的联合作用早就已经让更古老的陨石坑从地表消失殆尽。 然而科学家们还是有一些办法:当年的撞击产生的岩石和碎屑物质,有一些保存到了今天。这也正是科学家们借以了解到早期大撞击时期情形的第一手材料。 奥新斯基表示,地球上的这种侵蚀作用困扰着科学家们,这也是他们希望重返月球的原因之一,那里同样有着相似的撞击历史,但是不同的是,由于月球上没有侵蚀作用,当年的这一切现在还斗完好无损的保存着。他说:“月球还保有它最初的面貌。” 而假如这些撞击真的打开了地球这个动荡行星上的生命之门,那么在月球这颗有着同样经历,然而死寂的星球上,科学家们又会有怎样的发现呢? 奥新斯基说:“关键的一点在于,大撞击时代的撞击事件是普遍的,这是宇宙中最重要的地质事件之一,因为这是唯一一件到处、普遍发生的同一地质事件。如果你考察我们的太阳系,你可以找到从未有过火山活动的星球,可以找到没有任何板块活动的星球,但是撞击产生的陨石坑却存在于每一颗拥有固体表面的星球之上,它是普遍发生的。”