当前位置: 仪器信息网 > 行业主题 > >

四极杆原理

仪器信息网四极杆原理专题为您提供2024年最新四极杆原理价格报价、厂家品牌的相关信息, 包括四极杆原理参数、型号等,不管是国产,还是进口品牌的四极杆原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四极杆原理相关的耗材配件、试剂标物,还有四极杆原理相关的最新资讯、资料,以及四极杆原理相关的解决方案。

四极杆原理相关的资讯

  • 实验型冻干机的工作原理和应用
    实验型冻干机的工作原理和应用 随着科学技术的不断进步,各种新型实验仪器也层出不穷,其中实验型冻干机就是一种近年来应用越来越广泛的一种实验室设备。该产品可以将溶液、材料等在低温下冷冻成固体,然后在真空环境下将其中的水分蒸发掉,从而得到干燥的样品。下面我们来详细了解一下该产品的工作原理和应用。  一、工作原理  实验型冻干机的工作原理是利用制冷技术和真空技术相结合,将待处理物质在低温下冷冻成固体,然后在真空环境下对其进行加热升温,使其从固体状态变为液体状态,最后通过蒸发除去其中的水分,从而得到干燥的样品。具体步骤如下:  1. 预冻:将待处理物质放入该产品的容器中,然后在低温环境下进行预冻,使其变成固体状态。  2. 冻干:将预冻后的物质放入该产品的干燥室中,然后在真空环境下进行加热升温,使其从固体状态变为液体状态。此时,被冻结的水分会逐渐蒸发掉。  3. 重复以上步骤直至完成干燥过程。  二、应用  该产品广泛应用于生物医药、化学化工、食品等领域。以下是几个具体的应用案例:  1. 生物药品生产:该产品可以用于生物药品的生产过程中,如生产血浆、疫苗等。通过冻干处理,可以保证生物药品的质量和稳定性。  2. 化学试剂制备:该产品可以用于化学试剂的制备过程中,如制备氨基酸、维生素等。通过冻干处理,可以使化学试剂长期保存并且方便使用。  3. 食品加工:该产品可以用于食品加工过程中,如制作汤圆、饼干等。通过冻干处理,可以使食品保持原有的口感和营养成分。 冻干机冷冻干燥机LGJ-18N普通型亚星仪科主要特点:1、本机采用进口压缩机制冷,制冷迅速,冷阱温度低。2、冷阱开口大,无内盘管,带样品预冻功能,无需低温冰箱;3、采用7寸真彩触摸液晶屏控制系统,操作简单方便,且功能强大,作为人机界面,中文(英文)可转换界面,以曲线和数字形式显示工作时间、冷凝器温度、样品温度、真空度,并记录干燥曲线;。4、工业嵌入式操作系统,ARM9核心控制电路设计,32M内存128M FLASH,操作响应速度快,存储数据量大。本机可存储多次冻干数据,FAT32文件系统,EXCEL文件存储,可存储一个月以上测量数据128M FLASH,并配置USB通讯接口,实验数据U盘一键提取。 5、控制系统自动保存冻干数据,并能以实时曲线和历史曲线的形式查看,整个冻干过程清晰明了。6、干燥室采用无色透明一次注塑成型聚碳干燥室,耐腐蚀、不易碎、无粘接、透明度高、密闭性强、样品清楚直观,可观察冻干的全过程。7、真空泵与主机连接采用国际标准KF快速接头,简洁可靠。 总之,实验型冻干机作为一种新型的实验室设备,其应用领域越来越广泛,为企业提高产品质量和降低成本提供了有力的支持。
  • 透射电镜原位样品杆加热芯片设计原理解析
    透射电镜原位样品杆加热芯片设计原理解析 引言在上一篇文章《透射电镜原位样品杆加热功能 4 大特性解析》里,我们以 Wildfire 原位加热杆为例,为大家详细介绍了 DENS 样品杆加热功能在控温精准、图像稳定、高温能谱、加热均匀四个方面的具体表现。通过这篇文章,相信大家对 MEMS 芯片的优良性能有更进一步的了解。 本文将以透射电镜原位样品杆加热芯片的改变为例,与大家深入探讨芯片加热设计具体的变化细节。 01. 加热线圈的变化 1.1 线圈尺寸缩小,“鼓胀”现象得到明显抑制 图 1:新款芯片 图 2:旧款芯片 仔细观察上图中两款芯片的加热区,可以发现新款芯片的加热线圈要明显比旧款小很多。再观察下面的特写视频我们可以看到,加热线圈的形状也有明显变化。新款的是圆形螺旋,旧款的是方形螺旋。 线圈尺寸缩小后,加热功率减小,由加热所导致的“鼓胀”现象也会得到抑制。所谓“鼓胀”是指芯片受热时,支撑膜在 Z 轴方向上的突起。在透射电镜中原位观察样品时,支撑膜的突起会使得样品脱离电子束焦点,导致图像模糊,不得不重新调焦;甚至有时会漂出视野,再也找不到样品。这样一来,就会错失原位变温过程中那些瞬息即逝的实验现象。 1.2 加热时红外辐射减少 尺寸缩小、加热功率减小,所带来的另一个好处就是加热时红外辐射减少,从而对能谱分析的干扰就会降低。这意味着即便在更高温度下,依然能够进行稳定可靠的能谱分析。 图 3:使用新款芯片时,铂/钯纳米颗粒在高温下的能谱结果。 1.3 温度均匀性提升 此外,形状从方形变为圆形,优化了加热区域的温度分布情况,温度均匀性更好,可以达到 99.5% 的温度均匀度。图 4:新款芯片加热时的温度分布情况 02. 电子透明窗口的变化 2.1 电子透明窗口种类多样化 除了线圈尺寸、形状不同之外,新旧两款芯片所用来承载样品的电子透明窗口也明显不同。旧款设计中,窗口都是形状相同的长条,分布在方形螺旋之间。而在新款设计中,窗口种类则更加多样化,根据形状和位置不同可分为三类窗口,适用于不同的制样需求。 图 5:新款芯片中透明窗口分三类,可以适用于不同的样品需求。 红色窗口:圆形窗口,周围宽敞,没有遮挡,适合以各种角度放置 FIB 薄片。蓝色窗口:位于线圈最中心,加热均匀性最好,周围的金属也可以抑制荷电,适合对温度均匀性要求很高的原位实验,也适合放置易荷电的样品。绿色窗口:长条形窗口,和 α 轴垂直,在高倾角时照样可以观察样品,适合 3D 重构。 总结通过以上图文,我们为大家介绍了采用创新设计之后新款芯片的四大优势,全文小结如下:1. “鼓胀”更小,原位加热时图像更稳定,便于追踪瞬间变化过程。 2. 红外辐射更少,在 1000 ℃ 时,依旧可以进行可靠的能谱分析。 3. 优化线圈形状,抵消了温度梯度,提升了加热区域的温度均匀性。 4. 加热区有三种观察孔,分别适用于 FIB 薄片、超高均匀性受热、大倾角 3D 重构等不同需求。此外,优化后的窗口几何不仅便于薄膜沉积,还可消除滴涂时的毛细效应。这些针对不同需求的细节设计都使得制样更加便捷、高效。
  • 离子阱还是四极杆?便携质谱究竟如何选
    十年一届的“全国生态环境监测专业技术人员大比武”正在如火如荼的进行,其现场操作部分中,各家的便携式气相色谱-质谱联用仪各显神通,帮助环境监测者检测空气中的挥发性有机物。目前市场中的便携式气质联用仪五花八门,原理也不尽相同。本文将对质谱进行简单介绍,并对不同家便携式气质联用仪在原理、和使用上的区别简要分析。 一、质谱的简介与分类质谱,是根据质量的差异对物质进行分析的设备。其具体的分析过程包括1分子的离子化、2离子质量分析、3离子检测三个过程。据此,质谱的分类也就可以根据不同的“离子化的方法”和“离子质量分析方式”两种思路来分类。 目前市售的便携气质均采用相同的离子化方式。按照质量分析器的不同可以分为以下两大类:四极杆质谱、离子阱质谱,如图1。对于不同种类的质谱,我们一般通过对比1质量范围、2检出限、3分辨率、4扫描速度、5最大工作真空度五个维度[1]对其进行评价。 图1 市场中主流便携式气相色谱-质谱联用仪 二、不同类型质谱的原理 不论是四极杆质谱,还是离子阱质谱,其分析原理是相似的,其差别在于具体的分离过程。在离子化的过程中,待测的物质被一定能量的电子束撞击,解离成离子,并碎裂成一系列能反映其物质性质信息的碎片离子。接下来,这些碎片离子被离子阱或四极杆分离并检测,按照质荷比m/z的大小绘制成一张可以体现物质定性信息的质谱图,如图2。图2 有机氯农药DDT的质谱图 四极杆分析不同离子的过程类似于原始的筛选稻谷的过程,如图3。不符合条件的稻谷(如空壳稻谷)会在筛选的过程中被风吹走,所以不会落入最终收集优质稻谷的篮子里。同理,在四极杆质谱仪中,离子化后的离子沿图3中z轴通过四极杆,在离子的飞行过程中,我们通过射频电压RF和直流电压DC产生的四极电场对离子进行操控,使得只有符合一定质荷比条件(如m/z=a)的离子才能到达四极杆另一端的检测器,给出在该质荷比下离子的数量的检测结果。此时如果我们按一定规则持续改变该筛选离子的条件,使得符合其他的质荷比(如m/z=b、m/z = c… … )的离子可以通过,那么我们就就可以根据每一个质荷比离子数量的多少,绘制出该待测物质的特征质谱图。 图3 四极杆的结构和其分离的过程 离子阱质谱分离的过程类似于喝鸡尾酒的过程,如图4。喝鸡尾酒时,如果我们正常的将鸡尾酒从酒杯中倒出,则不同颜色的酒会依次的流出。与此类似,在离子阱质谱的分析过程中,先操控离子阱的电极电压,将离子储存在离子阱中心的区域中,之后改变该四极场,使离子按照一定的顺序依次从离子阱中弹出。弹出的离子依次到达检测器后被检测器记录,根据不同时刻不同离子弹出数量的多少,我们也就可以绘制一张代表物质定性信息的质谱图。 图4 离子阱的结构和分离过程 以上两种不同的原理,使得两种质谱各自有其各自的特点和适用的领域,如表1。虽然以上的方式筛选离子制作质谱图的原理不同,但是同种物在这两种质谱中离子化后所产生的碎片是相同的,故其质谱图也是相似的。在得到质谱图后,电脑会自动将得到的质谱图与电脑中存储的标准质谱图谱库进行比对,给出物质的定性信息。以上两种质谱均配备了NIST库(美国国家标准与技术研究院National Institute of Standards and Technology) 、NIOSH库(美国国家职业安全卫生研究所National Institute for Occupational Safety and Health)并配备AMDIS解卷积软件(Automated Mass Spectral Deconvolution and Identification System),均可以可靠的给出物质鉴定的结果。表1 台式四极杆质谱与台式离子阱质谱各自的优势 三、两种质谱小型化后的区别 使用不同的技术路线,两种质谱在使用过程中的多个方面有所不同。 除了上文提到过的5个质谱核心参数的差异之外(见表2),不同的便携式质谱在使用过程中还有一些其他的区别。表2 两种便携式质谱仪在核心参数上的对比 两种质谱对真空的不同需求,会带来使用成本的差异。不同类型的质谱有其不同的适宜工作的真空度,使得使用成本上有近百倍的区别。一般而言,四极杆质谱一般需要10^(-6)的高真空,若真空度没有达到该值,会使得设备无法做到单位质量分辨。而离子阱质谱仅需要10^(-3)的真空[2],在该条件下其分辨率就可以超过单位质量分辨的需求。由于对真空度需求存在巨大的差异,不同质谱采用了不同的真空泵系统。目前四极杆质谱采用非蒸发吸气剂泵(NEG)和小型溅射离子泵,分别对设备内的活性气体、和非活性气体进行吸附。由于吸附存在饱和,故吸附泵寿命远低于机械泵:NEG泵仅有150小时的使用寿命,到达150小时使用时间后需更换,更换成本接近10万元。与此同时,目前市售的离子阱质谱一般采用涡轮分子泵、隔膜泵的组合。得益于技术的进步,以上两种真空泵不但使用寿命是NEG泵的100倍以上,也不会因现场的震动、跌落而损坏。如果将更换真空泵的成本均摊至每次检测中,便携四极杆质谱的样品检测成本,仅在更换新泵方面就需要200元/每个样品。 离子阱强大的定性能力,在现场分析中仍待进一步挖掘。由于离子阱质谱具备储存离子的能力,故其可以将目标离子存储,碰撞,并再次检测,这就使得了单一的离子阱具有等同于三重四级杆的定性能力。由于目前还没有便携式的三重四级杆气质联用仪,故离子阱在定性方面的优势可谓是一枝独秀。如果能将离子阱质谱的这一优势充分利用,可以帮助应急监测工作者在现场处理更为复杂、棘手的检测难题。 台式四极杆较宽的动态范围,在便携四极杆质谱上并未实现。对便携式气质联用仪而言,线性范围的大小主要依赖于检测方法的多样性。受制于色谱柱容量、真空泵抽速等多个条件制约,目前便携式四极杆质谱、以及离子阱质谱的检测的线性范围都在三个数量级左右,故谁的进样方式更丰富,谁就能能将检测浓度范围进一步扩大。得益于丰富的进样方式(直接进样/定量环进样、吸附-热脱附进样),Mars-400系列的便携式气质联用仪可以在不更换仪器组件的情况下于0.1-1000mL的数量级范围内调整进样量,使得仪器动态范围达到7个数量级。想要达到类似的动态范围,四极杆质谱需手动更换吸附管或定量环。综合使用不同的进样方式后,两种便携式质谱在动态范围上并没有显著差异。图5 Mars-400 Plus线性范围可达7个数量级 参考文献[1] Fitzgerald, Robert L., et al. "Comparison of an ion-trap and a quadrupole mass spectrometer using diazepam as a model compound." Journal of analytical toxicology 21.6 (1997): 445-450.[2] Encyclopedia of Spectroscopy and Spectrometry (Third Edition)
  • 布鲁克三重四极杆液质EVOQ亮相Analytica China
    仪器信息网讯 在2012年10月16-18日举行的“2012年慕尼黑上海分析生化展(Analytica China)”期间,布鲁克公司在上海浦东嘉里大酒店举行了媒体午宴,并隆重推出了EVOQ系列三重四极杆液质产品。布鲁克化学与应用市场部(CAM)GC-MS、LC-MS全球产品经理王克非介绍了新产品EVOQ的技术特点。 EVOQ   EVOQ——如何得到高灵敏度?   VIP加热电喷雾技术——实现了针对性准确加热   正在申请专利的VIP技术能有效电离热敏感样品分子,高效率的陶瓷加热技术向探头顶部提供最高热量,固型的真空隔离通道使得液相洗脱液在雾化之前不致沸腾。而流体通道在雾化之前能保持冷却,尤其能够保护那些热敏感的化合物。   内嵌四极杆双离子漏斗——最大限度地提高灵敏度   内嵌四极杆双离子漏斗具有两大关键优势:在RF-only模式下,离子被聚焦成一条连贯的离子流,非常明显的延长了仪器的正常工作时间,减少了维护频次 利用空间几何学原理设计的内嵌四极杆透镜相比传统的透镜,提高了背景气体的流动性,减少了表面堆积。   PACER软件——效率至上   随着EVOQ的诞生,同时也诞生了新的PACER软件。该软件能迅速标出不符合当前方法标准的波峰,使用户能够马上关注可疑区域,因此减少了在数据检查上浪费的时间。   EVOQ两个系统配有布鲁克的新nano-Advance UHPLC系统。 布鲁克化学与应用市场部(CAM)GC-MS、LC-MS全球产品经理 王克非   王克非在回答媒体提问时介绍到,布鲁克在2012年9月初的日本分析科学仪器展(JASIS)上全球首发了EVOQ系列三重四极杆液质产品。这次在慕尼黑上海分析生化展上,该产品是首次与中国用户见面。EVOQ的宗旨是以最短的时间、最快的速度、最可靠的定量分析最多的样品。其重大革新表现在稳定性、方法开发的易用性等方面。   布鲁克的三重四级杆质谱技术的优势在于:开发了大量的应用方法,例如农残检测等;仪器具有高灵敏度,使得即使分析较脏的样品,也能获得高灵敏度。
  • 近年来四极杆型ICP-MS技术进展
    p   四极杆式 a href=" http://www.instrument.com.cn/zc/293.html" target=" _self" title=" " strong 电感耦合等离子体质谱 /strong /a (Quadrupole - Inductively Coupled Plasma - Mass Spectrometry,Q-ICP-MS),是20世纪80年代发展起来的无机元素分析技术。它以独特的接口技术将ICP的高温电离特性与四极杆质谱计的灵敏快速扫描的优点相结合,形成一种新型的元素和同位素分析技术,可分析超过七十种元素及质量数范围5~285amu范围的同位素。与传统无机分析技术相比,ICP-MS技术提供了检出限低、动态线性范围宽、干扰少、精密度高、速度快以及可提供精确的同位素信息等分析特性,从性能上比传统的无机分析技术如电感耦合等离子体光谱(ICP-AES)、原子吸收(AAS)和原子荧光(AFS)等有较大的提升,ICP-MS还可以与其他技术如高效液相色谱(HPLC)、气相色谱(GC)和激光烧蚀进样系统(LA)联用,进行元素的形态、分布特性等分析。与磁场电场双聚焦式电感耦合等离子体质谱(如MC-ICP-MS和HR-ICP-MS)、飞行时间式电感耦合等离子体质谱(FT-ICP-MS)相比,Q-ICP-MS价格低廉,操作简单,且性能能够满足大多数使用需求,是普及率最高的ICP-MS,目前随着这项技术的迅速发展,Q-ICP-MS全球装机量已在8000台以上,仅中国目前每年的新增装机数就超过500台。 /p p   近三年来,国际上ICP-MS的主要生产商推出了若干型号的四极杆式ICP-MS,如Agilent在2012年推出的8800型号、2014年推出的7900型号,PerkinElmer于2014年推出的Nexion 350系列型号、Thermo Fisher于2012年推出的iCap-Q系列型号,2014年德国耶拿完成对布鲁克ICP-MS生产线的收购,并于今年2月推出的PlasmaQuant系列型号,而我国江苏天瑞仪器股份有限公司于2012年推出了ICP-MS 2000型号四极杆式ICP-MS,并于2014年升级为带有碰撞反应池的ICP-MS 2000E型号。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/2015788524.jpg" style=" width: 600px height: 410px " / /p p   四极杆ICP-MS的基本结构由进样系统、离子源、锥及离子透镜、四极杆分析器、真空系统和检测器等硬件部分组成(部分型号还包括用以消除干扰的反应池部分),此外还包括用于冷却系统、气体管路、仪器控制和数据分析系统等支撑辅助部分。下面我们就庖丁解牛,按照ICP-MS的每一个结构部分,细数近年来的技术进展。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/20157885527.jpg" style=" width: 600px height: 255px " / /p p    strong 进样系统 /strong /p p   样品引入系统可分为液体、气体或固体进样,通常标配是液体进样系统,主要由样品提升和雾化两个部分组成,优秀的进样系统应当是雾化器雾化效率高,稳定性高,记忆效应小,耐腐蚀 常用的雾化器有同心雾化器、交叉型雾化器等 常见的雾化室有双通路型、旋流型和撞击球型雾化室。 /p p   目前进样系统的主要发展趋势是高样品通量和高基体耐受,在这方面,Agilent公司的集成样品引入系统(ISIS 3)和超耐高盐进样系统 (UHMI)有较强的技术提升:UHMI 使用干净、干燥的氩气“稀释”样品气溶胶,使等离子体能耐受总溶解固体含量高达 25% 的样品,分析前无需对高基质样品进行液体稀释,并将氧化物干扰降低至极低水平 (0.5% CeO/Ce)。结合ISIS 3系统的快速提升泵和紧凑的7 通阀,可大大缩短样品提升及清洗时间,为高通量实验室的高基质样品分析提供无与伦比的分析效率。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/2015788572.jpg" style=" width: 600px height: 365px " / /p p    strong 离子源 /strong /p p   离子源部分是ICP-MS的心脏,包括炬管、感应圈、高频发生器,在这一部分,样品气溶胶在6,000K~10,000K的高温下,发生去溶剂、蒸发、解离、原子化、电离等过程,转化成带正电荷的正离子。离子源的发展趋势是更好的功率稳定性、更高的耦合效率,更强的匹配补偿能力,更小的功耗和更少的氩气消耗量。 /p p   在离子源部分,Thermo Fisher公司采用超快速频率阻抗匹配,取消了匹配箱,采用虚拟接地技术,取消了屏蔽圈,并且其等离子电视技术可以供操作人员远程观看等离子体状态,并进行诊断和优化。PerkinElmer公司的射频发生器频率较高-40.68 MHz,号称纳秒级时间内快速适应样品成分的改变,其全彩色等离子体视窗无需打开仪器即可观察锥、炬管和线圈的状况,使等离子体采样深度优化更容易,有机样品分析更简单,其感应线圈用氩气冷却,避免用循环水冷却时水中杂质堵住线圈,便于维修,也是其特点。耶拿公司的EcoPlasma技术,有效的降低了等离子气消耗量,仅需7L/min左右的氩气对炬管进行冷却,整机氩气消耗为 8-11 L/min,是同类仪器消耗量的一半,同时其电能消耗(& lt 2.0kW)和排风要求(3.5 m3/min)也低于同类型仪器,符合国家节能减排的要求,能够节省实验室的相关支出。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/2015789040.jpg" style=" width: 600px height: 408px " / /p p    strong 接口 /strong /p p   接口部分是ICP-MS的关键部分,它能将等离子体中的离子有效传输到质谱仪,需要保障最大限度的离子通过率和完整性,减少氧化物和二次离子等干扰,同时还要不易堵塞和易于拆卸维护。 /p p   接口一般是由采样锥和截取锥组成的,而PerkinElmer公司在Nexion 350上创新性的使用了三锥接口:在传统的两个采样锥的基础上增加了一个超截取锥(Hyper-skimmer cone)用以过滤未电离物质和中性物质,三锥的直径分别为,采样锥1.11mm、 截取0.9mm、超锥1.0mm,大锥孔设计,提高了离子利用效率和分析的稳定性,阻止了大量基体进入质谱,同时减少了离子光学系统的维护次数,使真空压力差下降更平缓,减小离子束扩散和对仪器内部的污染,同时提高了元素分析的灵敏度。Thermo Fisher公司截取锥具有独特的、用户可更换的嵌片,位于锥尖后方,用以控制记忆效应,同时,其采样锥,截取锥和提取透镜均安装在一个稳固的接口开门上,直接旋转即可打开该门,对接口部分进行维护。耶拿公司的PQ MS也具有方便用户维护的双向开卷式接口打开方式,可简单地拉下手柄,打开等离子体室,对ICP-MS的接口部分进行维护操作,所有的ICP部分,包括雾化室、炬管、RF线圈等均保持原来安装的位置不动,维护时不破坏原来的真空系统,维护后也不需要重新对炬管进行准直。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/2015789356.jpg" style=" width: 600px height: 419px " / /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/201578951.jpg" style=" width: 600px height: 361px " / /p p    strong 离子透镜 /strong /p p   离子透镜的作用是将来自截取锥的离子聚焦到质量过滤器,并阻止中性原子进入和减少来自ICP的光子通过量。离子透镜需要兼顾低、中、高质量的离子都具有高灵敏度,并有效降低仪器的背景噪声水平。 /p p   过去的离子透镜为达到阻止中性离子或光子进入质谱的目的,一般使用挡板或离轴设计,但这种设计会导致仪器灵敏度下降,高动能离子和低动能离子的聚焦点有可能不一致,光子挡板或离轴透镜经常需要拆卸下来清洗。目前的离子透镜发展趋势是离子束90& amp #176 偏转。瓦里安公司的ICP-MS产品线(现由耶拿公司收购)最早设计和实现了的90& amp #176 反射离子透镜,该透镜可以形成一个抛物面的静电场, 离子在静电场的作用下, 直角反射并聚焦进入质量分析器, 光子和中性粒子由于不受静电场的影响,直接从后端的真空泵抽走。该透镜能最有效率的调整离子透镜聚焦,将全质量范围内的离子导入质量分析器。后来,Thermo Fisher公司的直角正离子偏转透镜(RAPID透镜)技术和PerkinElmer的四极杆离子偏转器(QID)也都能够实现分析离子的90度的偏转和聚焦功能,这种90& amp #176 偏转的离子透镜系统,不论其原理是静电场反射、负电压作用还是四极杆偏转,作用都是将光子和中性粒子噪音降到最小,并且大幅提高了分析的稳定性,无需日常清洁维护,离子聚焦的效果也更好,从而大大改善了ICP-MS的信噪比。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/2015789825.jpg" style=" width: 600px height: 362px " / /p p    strong 反应池 /strong /p p   碰撞反应池是ICP-MS上的一个重要技术,用于消除多原子离子团的干扰,受专利的影响,各家的碰撞反应技术各有不同。PerkinElmer的通用池技术(UCT),实现了在同一台ICP-MS中把两种最有效的多原子离子干扰消除技术相结合,即基于动能歧视效应(KED)的碰撞池与反应池(DRC)结合,并能够通过一个具有质量扫描过滤功能的四级杆来消除干扰物和反应的副产物。Thermo Fisher的QCell技术,结合了Flatapole低质量数剔除功能和KED(动能歧视效应)抗干扰技术,只需较小的池体积,因此缩短了加气时间和排气时间,相应增加了样品测试通量。耶拿的集成式碰撞反应池(iCRC)比较有特色,它是将碰撞反应气喷入到ICPMS接口部分,在离子透镜前进行碰撞反应,从而避免中性粒子或副产物进入检测系统,优点是加气和不加气切换较快,在完成消除干扰的同时不影响其他元素的灵敏度 但消耗反应气的流量较大,在50~100mL/min。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/20157891017.jpg" style=" width: 600px height: 378px " / /p p    strong 四极杆质量分析器 /strong /p p   四极杆分析器是基于在四根电极之间的空间产生一随时间变化的特殊电场,只有给定m/z的离子才能获得稳定的路径而通过,其他离子则被过分偏转,与极棒碰撞被中和而丢失,从而实现质量选择。四极杆的特性直接影响到ICP-MS的检测范围、分辨率、灵敏度和分析速度,可谓是ICP-MS的核心,而近两年ICP-MS最激动人心的创新也是在该部分,即串联四极杆技术。 /p p   串联四极杆技术具有强大的的干扰消除能力以及灵活分析能力,可以使用MRM功能精确控制进入碰撞/反应池内的离子,并在碰撞/反应池中进行精确的反应过程控制,从而能够有效地解决了传统ICPMS在使用反应性气体时因共存基体或元素易形成新的干扰离子或共存离子的问题,尤其适用于对复杂基质中易受多原子离子、双电荷离子、同质异位素干扰以及受相邻基体元素同位素拖尾影响的超痕量元素进行分析。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/20157891230.jpg" style=" width: 600px height: 263px " / /p p   以Agilent公司8800 ICP-MS/MS举例说明,其质量分析器主要由两个四极杆和位于它们之间的碰撞反应池(ORS3)组成,其中四极杆(Q1)可以通过精确质量分离,选择控制进入反应池的离子,离子在反应池中可以进行可预见的反应,再由Q2精确质量分离,以mass-shift法获得准确的痕量定量结果。 /p p   举一个有机溶液中硫元素同位素丰度和元素含量测试的例子来说明:当有机溶液进入ICP-MS后,当中主量元素C和O会在ICP中形成16O18O、17O17O和38Ar12C等多原子离子团,直接影响34S和34S16O的测定,传统的配有碰撞反应池和单一四级杆的ICP-MS是很难消除其影响的,并且有可能在碰撞反应的过程中产生新的干扰离子。而如果采用Q1精确选择34质量数,反应池加入氧气反应气,Q2精确选择50质量数,则可以由mass-shift法获得准确可靠的硫元素同位素比值信息和元素含量定量结果。 /p p    strong 检测器 /strong /p p   当离子按质荷比经过四极杆系统的分离后,即被引入检测器,检测器将离子转换成电子脉冲,由积分线路计数,其计数值与样品中该质荷比的离子浓度应该正相关。检测器的重要指标包括死时间、最佳灵敏度、动态线性范围和脉冲与模拟信号的交叉校正等。 /p p   尽管目前主流ICP-MS厂商所采用的离子检测器几乎都是澳大利亚ETP公司生产的电子倍增器,基本原理相同,但在有些细节方面还是有所区别的。比如Agilent公司的7900型ICP-MS,配备了全新设计的正交检测器(四级杆到检测器发生90度偏转,补上了其离子透镜没有90度偏转的短板),具有更好的信噪比,和高达11个数量级的动态范围,从亚ppt级到百分级浓度,用户可在同时测量痕量与常量元素。PerkinElmer公司的检测器具有极快的分析速度,结合其前端的超快速四极杆质量分析器,能够获取100,000 pts/s的数据采集频率,适用于纳米颗粒分析等前沿应用。耶拿公司的ADD10全数字脉冲计数检测器,其控制部分经过特殊设计,脉冲计数率可以达到普通双模式计数器的脉冲段计数率的10000倍,从而避免了脉冲和模拟信号的双模式交叉校准。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/20157891511.jpg" style=" width: 600px height: 388px " / /p p    strong 控制软件 /strong /p p   目前ICP-MS的软件发展趋势可总结为“四化”,即“平台化”、“中文化”、“模块化”和“远程化”。平台化是指仪器公司采用统一平台来控制不同分析设备上的软件,不同设备培训变得更简单,用户能够更快适应新仪器,从而提高了实验室的灵活性,此外在技术开发和软件升级方面,公司也可以节省成本。如热电公司使用的是Qtegra仪器控制软件平台,Agilent公司使用的是MassHunter平台。中文化是指Agilent、Thermo Fisher、PerkinElmer和耶拿这几家主流的ICP-MS厂商,其最新版的仪器控制和数据处理软件,均已有中文版本,这也体现了中国市场的重视。模块化是指控制软件提供了灵活的框架,将仪器和附件“插件”整合成单一的工作流程。比如Thermo Fisher的Qtegra软件除了iCAP& amp #8482 Q控制插件之外,还为自动进样器、自动稀释器,主要的色谱仪和激光烧蚀系统提供了集成插件 PerkinElmer公司的ICP-MS软件带有一个可选的纳米应用模块,这一模块将实时单颗粒采集与快速数据处理相结合,无需费力的后续数据处理过程,1分钟内的单次运行即可获得从颗粒组成和浓度到尺寸和尺寸分布等各种信息,实现了对单粒子分析的自动化。远程化是指可以使用远程监控应用程序随时随地监测与控制您的ICP-MS仪器,增强了灵活性。比如Agilent公司的最新ICP-MS软件可使用IOS和安卓设备浏览并简易控制多台仪器 PE公司的软件也可以远程运行于iPad和iPhone,对仪器进行更便捷的监控和控制。 /p p   总体而言,这几年国际主流的ICP-MS生产厂商在技术上又有了长足的进步,尤其是串联四极杆技术为无机元素、同位素分析提供了一个崭新的角度和思路。近年来国家支持国产科学仪器的自主创新研究,在市场需求和政策激励下,除了江苏天瑞仪器股份有限公司已经推出了商品化的ICP-MS以外,聚光科技股份有限公司和北京普析通用仪器有限责任公司也投入研发ICP-MS,有待进入市场。虽然当前国内的ICP-MS与国外最先进的型号从技术上来说有一定的差距,短时间内不一定能够跨越,但是只要中国仪器厂商沿着正确的方向坚定的走下去,一定会破解国外产品垄断中国市场的局面,为我国分析检测市场创建出更加繁荣的篇章。 /p p style=" text-align: right "    strong 作者:中国计量科学研究院 韦超 /strong /p
  • 天美公司第一届SCION SQ单四极杆气质用户培训班成功举办
    5月17日至20日,天美(中国)科学仪器有限公司在其北京总部举办了SCION SQ单四极杆气质联用仪应用技术培训班。来自各地高校、政府研究单位、企业等不同行业的22名用户报名参加了此次培训。天美(中国)市场部经理姜振喜先生做了开幕致辞,由市场部工程师李丕担任培训讲师。  培训内容包括气相、气质基础知识、工作站讲解、如何优化方法、上机操作、仪器日常维护以及培训结业考试,并向用户介绍了三重四级杆气质联用仪。在4天的培训中,除了讲师答疑解惑,用户之间还相互交流讨论,加深了用户对仪器和方法的理解。培训获得一致好评。  根据结业考试成绩选出第一、二、三名用户,颁发奖品。从结业考试成绩来看,理论知识基础薄弱的用户有很大进步,还需要多学多用,在使用中多思考,获得更大的进步;有一定使用经验的用户在此次培训中主要收获是仪器维护及基础原理,工作站使用答疑解惑,丰富了他们对气质联用的理解。培训结业后,大家拍照合影留念,此次用户培训完满结束。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 临床诊断的“利器”——国产三重四极杆液质联用仪在IVD的应用
    EXPEC 5210 型 超高效液相色谱-三重四级杆串联质谱联用仪(以下简称 EXPEC 5210)是谱育科技在“国家重大科学仪器设备开发专项”支持下,采用一系列创新的质谱技术,研制出的拥有自主知识产权的国产三重四极杆串联质谱。凭借卓越的灵敏度、优异的稳定性、突出的可扩展性和简单易学的全中文操作软件,成为临床质谱检测快速发展的新引擎,并可推动临床质谱检测技术真正成为普惠大众的精准诊断技术。目前,EXPEC 5210 在临床诊断领域得到了广泛的应用测试,包括新生儿遗传代谢病筛查、治疗药物浓度监测、维生素含量检测等。新生儿遗传代谢病筛查遗传代谢病是有先天性代谢缺陷的一类遗传病,会对新生儿的健康产生严重威胁。现在普遍通过质谱检测手段对遗传代谢病进行筛查,做到早发现早干预治疗,可以大大降低患儿的致残致死率。利用EXPEC 5210 做遗传代谢病筛查项目,可以一针进样分析新生儿干血斑中的80余项氨基酸和酰基肉碱检测指标,仅需2分钟即可筛查40余种遗传代谢疾病信息,快速高效。治疗药物浓度监测治疗药物浓度监测(therapeutic drug monitoring,TDM)是以药代动力学和药效动力学原理为指导,分析测定药物在血液中的浓度,用以评价疗效或确定给药方案,使给药方案个体化,以提高药物治疗水平,达到临床安全、有效、合理的用药。TDM包括精神类药物、免疫抑制剂、抗生素等浓度监测。EXPEC 5210 可通过质谱离子源正负离子切换,实现一针进样,6分钟内完成27种精神类药物浓度监测,结果稳定、准确,满足临床高通量检测需求。免疫抑制剂因其治疗窗窄,在临床应用中需进行治疗药物监测,所测值作为临床评价疗效及毒副反应的指标。传统免疫学方法进行血药浓度监测时特异性较差,不能完全区分免疫抑制剂与其代谢物;再者,其较大的分子量也加大了监测难度。EXPEC 5210可实现3min内完成3种免疫抑制剂——他克莫司、西罗莫司、依维莫司的浓度监测,线性、重复性良好。血清中脂溶性维生素检测维生素又名维他命,是维持人体正常功能的重要活性物质,参与人体正常的新陈代谢和细胞调节过程,为人体生长和发育所必需。维生素摄入不足或过量对人体的健康都会产生较大影响。因此,如何维持合适的维生素水平成为了营养学家和临床医生的研究热点,通过质谱法对维生素水平进行精准定量,可以为临床诊断和治疗提供更加可靠的依据。EXPEC 5210 针对维生素ADE的检测采用梯度洗脱条件,在缩短分析时间的同时获得了较好的去介质及分离效果,一针进样可得到VA、25-OH-VD2、25-OH-VD3、VE检测结果,满足临床的高通量需求。同时在前处理过程中添加同位素内标后,消除了不同基质样本中内源性物质对检测物的影响,大大提高了检测结果的准确性。
  • 创造首台商业化四极杆质谱的大师Robert Finnigan逝世,享年95岁
    笔者于社交媒体获悉,首台商业化四极杆质谱仪的发明者Robert Emmet Finnigan(罗伯特“鲍勃”芬尼根)近日逝世(1927 .5.27 - 2022. 8.14),谨此讣告。  Robert Emmet Finnigan  罗伯特“鲍勃”芬尼根于 2022 年 8 月 14 日在他位于洛斯阿尔托斯的家中平静地去世,享年 95 岁。鲍勃于 1927 年 5 月 27 日出生于纽约州布法罗。他于 1949 年毕业于美国海军学院在其中度过了接下来十年,曾在美国空军担任军官,获得上尉军衔。在美国空军任职期间,他在伊利诺伊大学获得了硕士学位和博士学位。他曾在俄亥俄州代顿的空军理工学院教授电气工程研究生课程,并于加利福尼亚州利弗莫尔的加州大学劳伦斯辐射实验室 (LRL) 担任高级科学家。他于 1959 年离开空军,在 LRL 呆了两年,为先进的核反应堆设计和建造控制和仪表系统。鲍勃随后在斯坦福研究所担任高级研究工程师,在那里他认识并学习当时新发明的分析仪器——四极杆质谱仪。 1967 年,鲍勃与他人共同创立了 Finnigan 公司,将四极杆质谱技术的的潜力发挥到最大,以因此将他的职业生涯推向了一个新的方向。Finnigan 公司将四极质谱仪与气相色谱仪结合使用 (GC/MS) ,并由专用计算机控制。这种复杂的设备能够快速分离和明确识别复杂混合物的成分。很大程度上由于 Finnigan Corporation 的工作,GC/MS 成为了全世界环境污染物分析的标准方法,以及许多其他重要应用的分析金标准,包括毒理学、生物医学研究、生物制药研究和药物分析。  除了在 Finnigan 公司的工作外,鲍勃还是环境方面的主要发言人。他共同创立并领导了美国电子协会 (AEA) 的环境与职业健康工作数年,该协会在美国工业公司中开创了环境责任运动。鲍勃因其成就而获得了许多荣。1994 年,他被匹兹堡分析化学会议和匹兹堡分析化学学会选为分析仪器开发的先驱人物。1999 年,他是被美国化学学会选为仪器仪表名人堂特许成员的 16 位行业先驱之一。 2009年,他被匹兹堡会议和美国化学学会评选为“环境化学传奇人物”。他还获得了伊利诺伊大学的多个校友奖。  对分析仪器行业的从业者来说,GC-MS技术大家再熟悉不过了,使用四极杆技术的电子信息化的GC-MS已经成为化学研究和有机物分析中必不可少的仪器。GC-MS被广泛地用在水、空气、土壤等的环境检测中,同时也用于农业调控、食品安全、以及医药产品的发现和生产中。  Finnigan与GC-MS的故事:  20世纪50年代期间,Roland Gohlke和Fred McLafferty首先开发出气相色谱-质谱联用仪。然而当时所使用的质谱仪体积庞大、易损坏,只能作为固定的实验室装置使用,不适用于商业推广。  1964年Robert E.Finnigan领导的团队制作了首个商业化四极质谱仪(the model 1015)。  1964-1966年期间,在强劲的市场需求下,Finnigan和他的团队合作售出500多台基于四极杆原理的残留气体分析仪。  model 1015 GC-MS  1966年,Syntex公司试图收购美国电子联营公司(EAI)的加利福尼亚子公司,其中Robert Finnigan为董事。虽然此次收购失败,但它促使Finnigan向Mike Story建议,他们应该成立自己的公司,开发新的四极杆气相色谱-质谱(GC-MS)技术。  1967年,Finnigan仪器公司(Finnigan Instrument Corporation,简称FIC)组建就绪。以Robert Finnigan为总裁, Mike Story负责质谱仪设计。不久之后,瓦里安公司的气相色谱部门的总经理T. Z. Chu加入了该集团。  1968年初,FIC给斯坦福大学和普渡大学送去了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续GC-MS系统研发、生产。Finnigan坚定地相信,组合的GC-MS系统的色谱应用将为新的企业仪器提供相当大的市场。  1981年初,Finnigan生产的第一台商品化三重四极杆质谱仪以300k美金的价格卖给了壳牌公司(壳牌开发公司埃默里维尔研究中心),开创了商业化三重四极杆的先河。  1990年,热电公司收购了Finnigan公司,成功打入质谱仪市场。后者于2006年合并飞世尔科技公司,新公司命名为赛默飞世尔科技公司(Thermo Fisher Scientific)。
  • 质谱仪器研制专辑分享一——四极杆离子光学和串联振荡电子学系统
    p dir=" ltr" style=" text-indent: 2em line-height: 1.5em " 近日,《质谱学报》出版了由复旦大学杨芃原教授组织,全国多家质谱研制相关课题组参与撰写的“质谱仪器研制专辑”,专辑主要包含四极杆的离子光学和串联振荡技术 四极杆的导向装置、四极杆质量分辨自动调节技术、三重四极杆仪器开发平台以及三重四极杆质谱分析软件等硬软件技术 双线形离子阱间离子传输技术和静电轨道离子阱离子切向引入技术 小型飞行时间质谱和离子束诊断飞行时间质谱 复合离子源技术和激光后电离技术 以及集成了质谱技术的超宽波段光解离光谱系统和调控纳微尺度分子组装装置的研制等内容。 /p p style=" line-height: 1.5em "   仪器信息网授权对本专辑内容进行转载,以下为系列分享第一期, strong 题为“四极杆离子光学和串联振荡电子学系统”的文章,作者杨芃原、朱晨鑫。 /strong /p p style=" line-height: 1.5em "   作者杨芃原教授,博士生导师,现任复旦大学化学系教授和生物医学研究院教授。现为中国科学-化学、质谱学报、分析化学、J Proteome Res、Proteomics等刊物编委。曾被选为中国质谱学会理事,中国化学会理事,现为中国蛋白质组组织理事长,国家蛋白质重大科学研究计划专家组成员。两次担任国家重点基础研究计划(973计划)首席科学家:“重大疾病的蛋白质组学”,“微流控学在化学和生物医学中的应用基础研究”。曾是上海市创新团队项目“肝脏疾病的系统生物学”的负责人之一,主持了上海市创新团队、市科委重大、重点项目4项,国家自然科学基金委重大、重点项目3项,面上项目7项。 /p p style=" line-height: 1.5em "   在蛋白质质谱分析新方法和质谱仪器技术、糖修饰蛋白质组和疾病蛋白质组等方面取得了重要的成果。目前主要的研究方向包括:蛋白质组学 生物质谱仪器开发与应用 分析化学 生物信息学 系统生物医学。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/dca30aa1-eb98-40b9-9a4c-150cecf88264.jpg" title=" 杨芃原1.png" alt=" 杨芃原1.png" / /p p style=" line-height: 1.5em "   四极杆和飞行时间质谱是液相色谱-质谱(LC/MS)三重四极杆质谱(QQQ)和四极杆-飞行时间质谱(Q-TOF)等质谱仪器中必备的核心部件,也是我国亟待研发的国产化仪器。目前,国内对质谱仪器的研制热情日益高涨,得到了国家相关部门的高度认可和广大研发人员的积极响应。本综述基于作者课题组多年的研制经验,从质谱仪器研发的角度介绍实现离子光学系统和电子学系统的技术原理。首先回顾四极杆的基本原理;然后着重讨论加工和装配精度对提高四极杆分辨率的重要性,以及四极杆尺寸选择对射频电压控制的影响;最后重点介绍四极杆串联振荡电子学系统以及在系统中起关键作用的阻抗匹配,希望能为质谱仪器研制提供参考。以下为论文内容: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/25e32a0c-939c-4de2-a1e8-88e10db86c32.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/f2fe79ce-9623-4e87-bbb8-a19dc798b16c.jpg" title=" 2.png" / /p p br/ /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/f0266945-7bec-40f3-947c-6c98cd0bdf54.jpg" title=" 4.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/7ad0466a-3bb7-43c9-8426-39d990bdccc2.jpg" title=" 5.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/054a561a-b208-468d-8860-81fe0de07e97.jpg" title=" 6.png" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/c3753f24-0846-43d0-acab-cb50d808339a.jpg" title=" 7.png" / /p p style=" text-align: center" br/ /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202003/uepic/84b376c7-e4f7-4f6f-9c92-544e4111ffee.jpg" title=" 8.png" / /p p style=" text-align: right " span style=" font-size: 18px " strong 来源:《质谱学报》 /strong /span /p p br/ /p
  • 普析通用M6单四极杆气质联用仪发布会举办
    2009年10月26日,北京普析通用仪器有限责任公司“M6单四极杆气质联用仪”新产品发布会在普析平谷制造基地隆重举行。科技部条财司、北京市科委、平谷区政府的领导及来自大学、研究所、质检等单位的专家学者共计50余人共同见证新产品的发布。仪器信息网作为特邀媒体也应邀参加。  M6单四极杆气质联用仪发布会现场普析通用仪器有限公司王薇女士  发布会由普析通用仪器有限公司王薇女士主持,在简要介绍到场的嘉宾与媒体之后,研发单位、测试单位的代表及专家、领导等分别发言,恭祝M6单四极杆气质联用仪的成功发布。  研发单位:科技部大力支持 产业化过程艰辛普析通用仪器公司总经理田禾先生   普析通用仪器公司田禾总经理首先发言,其表示:此项目是在国家十五科技攻关“质谱联用仪器开发”课题成果之上,普析与中国计量院化学所合作产业化的科技成果之一。普析综合各项因素,给产品定位在:(1)常规气质联用仪,以反映国际流行水平的指标作为目标,使产品的竞争力达到或接近国际先进水平;(2)可车载,作为野外移动实验室的核心装备。对于普析来说,通过M6单四极杆气质仪的开发,普析成功搭建了一个功能强大、技术成熟、开放式的质谱开发平台,并且在中国计量院原有技术队伍的基础上,培养了一批普析自己的质谱产品研发及生产的队伍。中国计量院化学所所长李红梅女士  作为合作方,中国计量院化学所所长李红梅女士在致辞中表示:很高兴看到计量院化学所的实验室研发成果在普析通用实现了产业化,希望普析能不断推出质谱的新产品,满足市场需求,提高中国分析仪器行业国际竞争力。项目代表张小华先生  项目代表张小华先生从“技术背景和研发过程、产品工艺设计、生产过程中产品质量控制及产品特点与主要性能指标”等四方面全面展示M6单四极杆气质联用仪诞生过程及面貌。此项目历经5年时间,辗转天通苑、计量院、普析平谷基地,经历了05年初原理样机、05年10月科研样机、06年12月工艺样机、07年10月产品样机,今日终于得以推出商品化产品。普析通用公司在产品产业化过程中,对结构、外观重新设计,采用了当前世界上比较先进的模块化设计,整机由6个主件构成,每个部件可单独检测,并且搭建了测试平台,对关键部件进行检测。M6单四极杆气质联用仪配备安捷伦7890A气相色谱仪、7683自动液体进样器、EI源, 质量范围 1.5-1050amu 。 产品主要特点:(1)优秀的线性控制技术,在质量范围内,所有质量数校正,只需2个质量点就可进行校正;(2)可拆卸的预四极杆,消除了场边缘效应,方便维护;(3)模块化设计,可实现远程化控制,实现了最小程度的维护成本。至此,除了涡轮分子泵和电子倍增器外,产品的核心部件全部实现了国产化,从各项数据表明产品达到了国际的先进水平。最后,张小华先生落泪感谢所有在此项目中共同奋斗的同志们。 普析通用公司质谱研发人员介绍M6单四级杆气质联用仪  测试单位:重要指标与国际一流产品接近北京市计量检测科学研究院理化室沈正生主任  北京市计量检测科学研究院理化室沈正生主任宣讲检测报告,“受普析通用仪器有限公司的委托,我们对M6单四极杆气质联用仪环境适应性、质量范围、质量准确性、分辨率、信噪比、质量稳定性、最大扫描速度等全线指标进行了测定,结果证明各项指标均符合普析通用仪器公司的企业标准,其中重要指标如质量范围、分辨率等与国际一流产品接近,体现了较高的技术水平。”  专家:兴奋 期待中国农业大学国家兽药安全评价中心、国家兽药残留基准实验室沈建忠主任沈阳产品质量监督检验院苏锡辉院长中科院科学仪器研究中心于科歧研究员  中国农业大学国家兽药安全评价中心、国家兽药残留基准实验室沈建忠主任,沈阳产品质量监督检验院苏锡辉院长、中科院科学仪器研究中心于科歧研究员作为专家代表致辞,在致辞中,他们均表示非常兴奋,在进口仪器占据中国高端分析仪器市场的今天,普析能推出具有国际水平的质谱产品实在振奋人心,他们对此仪器抱有很多的期待。而苏锡辉院长在发布会当场即表示,“我们要试用,要购买。”  领导:产业化模式值得推广科技部条财司吴学梯副司长  科技部条财司吴学梯副司长、中国分析测试协会吴波尔副理事长、平谷区科委陈占国主任、中国标准化管理委员会方向副主任代表领导致辞。吴学梯副司长表示,很高兴看到科技部支持的质谱仪研发项目今天实现了产业化,这标志我国质谱仪的研发和创新又上了一个新的台阶。但是我们也看到国产仪器创新水平与国际相差较远,科技部将加大对科学仪器创新的支持力度,力求“产、学、研、用”更好地结合,产生合力。 中国分析测试协会吴波尔副理事长 吴波尔副理事长对普析质谱产业化所作的工作表示赞赏,其号召中国的仪器用户支持国产仪器,更多地选择国产仪器。 平谷区科委陈占国主任 中国标准化管理委员会方向副主任 方向副主任作为这个项目课题研究的负责人,其表示心情很复杂,在此只想感谢所有对质谱研发付出辛劳和支持的人。此次推出的M6单四极杆气质联用仪只是质谱产业化产品的第一步,随之而来的是更多的拥有自主知识产权的质谱产品的推出。  会后在市场部人员的带领下,参会媒体参观了普析通用分析仪器公司分析中心,在质谱实验室,研发人员再次向我们详细介绍了M6质谱仪的性能、特点,并且在那看到了经济型和车载型气质联用仪。此外,还参观了原子荧光光谱、紫外光谱、液相色谱等分析实验室。M6单四极杆气质联用仪经济型(左)、车载型(右)普析通用分析中心图片  后记:发布会结束后,笔者恰遇清华大学的张新荣教授,谈及刚刚发布M6单四极杆气质联用仪,张教授表示,从指标上来说相当好,而且模块化的设计,可以保证每一款产品的质量稳定性。而仪器能否推广开来,关键在于中国仪器用户是否选择中国自己的仪器。  发布会最令笔者感动和印象深刻的是项目研发代表的张小华先生的当场落泪,都说“男儿有泪不轻弹”,由此可知,在质谱仪研发和产业化中研发团队及普析所经历的困难与艰辛。普析通用质谱的产业化成功也为更多的国内分析仪器厂家的“科研成果的产业化”积累了经验。  仪器国产化一直是仪器用户的期待,相信有着如普析通用仪器公司这样专注于“自主创新”企业的存在,质谱等高端仪器国产化会离我们越来越近,同时也希望我们的仪器用户给予国产仪器更多的支持与宽容,在满足需求的前提下,尽量选购国产仪器。 讨论:普析出质谱了,你会购买吗?  附录:普析通用仪器有限公司
  • 润达医疗:今年疫情影响三重四极杆质谱产品装机销售推广
    润达医疗(603108)12月2日发布投资者关系活动记录表,公司于2022年11月30日接受19家机构单位调研,机构类型为其他、基金公司、海外机构、证券公司、阳光私募机构。  投资者关系活动主要内容介绍:  (一)子公司润达榕嘉情况介绍上海润达榕嘉生物科技有限公司(以下简称“润达榕嘉”)成立于2014年,获得国家高新技术企业和上海市“专精特新”企业认证。自成立以来,润达榕嘉始终潜心于分子诊断技术、质谱诊断技术、细胞分析技术、脑疾病诊断技术,致力于提供整体精准医学中心建设以及实验室数学化转型的研究与应用。  润达榕嘉近年来注重研发,在营收稳步增长的同时,持续加大研发投入,各类自研产品陆续获注册证,截至目前开发的三重四极杆质谱仪、核酸提取仪、超敏乙肝病毒,HCV病毒等核酸试剂盒已获得注册证。润达榕嘉在研产品包括精神抑郁症诊断产品—烟酸皮肤反应成像仪、脊髓肌萎缩症SMA检测、循环肿瘤细胞检测等。  (二)主要交流问题  问:润达榕嘉目前自研产品管线主要有哪些?  答:自成立以来,润达榕嘉聚焦于分子诊断(肿瘤伴随诊断、各种病毒检测、出生缺陷筛查等)、质谱诊断技术(精准用药、代谢疾病等)、细胞分析技术(循环肿瘤细胞、流式细胞)、脑疾病诊断技术、临床实验室服务以及科研诚信信息系统等创新产品的自主开发。目前润达榕嘉自研产品线包括临床质谱产品线(三重四极杆质谱仪、质谱全自动前处理系统、前处理柱、质谱检测试剂盒)、脑类疾病诊断产品线(抑郁症诊断产品—烟酸皮肤反应成像仪、脊髓肌萎缩症SMA检测)、核酸产品线(呼吸道病原体检测试剂盒、疱疹类病毒检测试剂盒、肿瘤基因检测试剂盒、核酸提取仪、可移动方舱QLAB)、循环肿瘤细胞检测及流式细胞仪及科研诚信产品线(科研试剂耗材采购系统、科研数据管理系统、科研设备共享系统)。  问:请介绍下润达榕嘉质谱仪产品特点,市场前景及未来推广计划?  答:润达榕嘉在去年年底取得了三重四极杆质谱仪的注册证,目前该产品已在华山医院、瑞金医院、上海儿童医学中心、仁济医院等医院装机使用,今年受疫情影响导致产品装机销售推广受到较大影响。润达榕嘉针对临床质谱应用开发了高通量小体积ARP-6465MD质谱仪、独有专利技术“谱易快”液液萃取小柱、“谱方达”全自动处理系统等临床质谱全线解决方案。国内临床质谱市场刚刚起步,获得临床质谱仪注册证国产企业约十余家,据相关资料报告显示目前国内临床质谱检测市场大约数十亿,预计未来国内临床质谱潜在市场可达数百亿。随着质谱产品线不断完善,同时受益于医院LDT试行政策的利好,未来质谱在临床应用可通过IVD检测产品及LDT模式共同推广,国内临床质谱将迎来较好的发展机遇。  问:能否介绍下公司抑郁症诊断产品烟酸皮肤反应成像仪?  答:根据The Lancet杂志发布的研究报告显示,2020年全球抑郁症患者达3.74亿例,国内抑郁症患者近1亿,到2030年,抑郁症将成为全球范围内最大负担疾病之一。目前抑郁症诊断主要通过精神科问诊,心理测量表,询问家族遗传史等传统问诊方式进行,存在主观局限性。临床上缺乏一个可客观、准确、可量化的诊断产品来辅助医生进行诊疗的判断、监测病情进展及用药疗效。  润达榕嘉长期聚焦在脑类疾病诊断产品的开发,基于烟酸皮肤反应原理,已开发出一款操作便捷、体验友好、性能稳定、检测时间短、无创无痛感的烟酸皮肤反应成像仪,检测结果客观真实,通过生物标记物检测,测试者无法人为主观意识控制,可为临床抑郁症诊断提供一个客观、可量化、准确的辅助检测工具。  可应用于学校体检、入职体检、特殊工种体检、精神科问诊、心理咨询门诊、用药后随访等场景,未来潜在检测市场巨大。目前产品处于申报注册阶段,预计明年上半年可获得注册证。  问:介绍下公司LDT业务和医院的合作模式?  答:近期上海市科委、市卫生健康委等八部门联合印发《上海市促进医疗卫生机构科技成果转化操作细则(试行)》,对医疗卫生机构落实科技成果转化政策、高效开展科技成果转化,提出了操作指引;同时,上海市深化医药卫生体制改革领导小组办公室印发《开展上海市公立医院高质量发展试点工作的通知》也指出要鼓励有条件的公立医院开展自行研制体外诊断试剂试点,由上海市卫健委遴选确定20家三级甲等医院作为试点医院开展LDT试点,确定20家公立医院为辅导类试点单位,根据试行方案,可以极大推动类似质谱技术,流式细胞技术,二代测序技术等在临床的大规模使用,可以解决过去由于没有产品注册证而无法在公立医院院内开展的特检项目需求,这一政策的推行,可以加快创新的诊疗技术,诊断产品在临床的推广和使用,可以促进公立医院检测项目的扩容,更好的满足个体化医疗和精准医疗的临床检诊需求。公司也将积极发挥在新技术新产品研发生产能力及检测服务优势,协助公立医院客户在院内建立相关LDT产品研发技术平台及检测服务平台,满足临床检诊需求   上海润达医疗科技股份有限公司的主营业务是商业服务板块(IVD代理经销业务,集约化业务/区域检验中心业务,第三方实验室业务)和工业板块(IVD产品研发生产业务,医疗信息化业务)。其主要产品包括试剂及其他耗材、仪器、软件开发及服务。
  • 2022年质谱新品盘点|三重四极杆串联质谱成主力军
    作为分析仪器中比较“热”的质谱,随着该技术的发展和应用的逐渐成熟,近些年全球范围内质谱仪器销售增速迅猛,进入快速发展期。回顾2022年,疫情常态化背景下,质谱仪常规应用包括的高端科研、生物制药、农业食品、环境等领域的需求回升 疫情涉及的临床诊断、药物开发、病毒病理研究等领域的需求量激增,质谱行业交出了不错的答卷。  据统计,我国质谱仪市场规模将近140亿元,复合增长率超过17%。作为质谱需求增长最大的市场,中国市场的质谱新品发布也迎来活跃一年,不仅低、中、高端产品基本覆盖,大部分主流品牌皆有输出,国产方面也多点开花。  值此岁末年初之际,仪器信息网特别盘点了2022年中国质谱市场发布的重量级新产品新技术,以飨读者。  (以下新产品的盘点,仅限于申报2022年度“科学仪器优秀新品评选”,以及发布在仪器信息网资讯栏目的部分产品,鉴于篇幅的原因不能面面俱到,如有遗漏,欢迎大家留言补充。联系邮箱:wanxin@instrument.com.cn) 2022年中国市场质谱新品速览(各产品名称可点击详细了解)类型品牌产品名称型号发布时间三重四极杆(TQ)赛默飞色谱与质谱TSQ 9610 三重四极杆 GC-MS/MSTSQ 96102022年3月华谱科仪(北京)科技有限公司三重四极杆质谱仪HPMS-TQHPMS-TQ2022年4月沃特世科技(上海)有限公司(Waters)沃特世Xevo TQ Absolute串联四极杆质谱仪Xevo TQ Absolute2022年4月安捷伦科技(中国)有限公司Agilent 7010C 三重四极杆气质联用系统7010C GC/MS2022年6月安捷伦科技(中国)有限公司Agilent 7000E 三重四极杆气质联用系统7000E GC/MS2022年6月杭州谱育科技发展有限公司 谱育科技 SUPEC 5240系列 现场在线LC-MS/MS监测系统LC-MS/MS2022年9月苏州安益谱精密仪器有限公司安益谱(Anyeep)气相色谱-串联四极杆质谱仪Anyeep TQ19782022年10月广州禾信仪器股份有限公司三重四极杆液质联用仪LC-TQ 5200LC-TQ 52002022年12月岛津企业管理(中国)有限公司离子色谱-质谱联用仪IC-MS2022年12月单四极杆(Q)北京吉天仪器有限公司气相色谱质谱联用仪GC-MS 87002022年1月天美仪拓实验室设备(上海)有限公司天美公司SCION 8700-SQ GC-MS单四极杆气质联用仪8700-SQ2022年2月赛默飞色谱与质谱ISQ 7610单四极杆 GC-MSISQ 76102022年3月岛津企业管理(中国)有限公司高效液相色谱质谱联用仪LCMS-20502022年6月苏州安益谱精密仪器有限公司安益谱7800气质联用仪Anyeep 78002022年7月广州禾信仪器股份有限公司气相色谱质谱联用仪 GCMS 1200GCMS 12002022年12月珀金埃尔默企业管理(上海)有限公司气相色谱质谱平台GCMS2400GCMS 24002022年11月Q-tims-TOF布鲁克道尔顿(Bruker Daltonics)布鲁克 timsTOF MALDI PharmaPulsetimsTOF MALDI PharmaPulse2022年2月布鲁克道尔顿(Bruker Daltonics)布鲁克 timsTOF HTtimsTOF HT2022年6月TOF金铠仪器(大连)股份有限公司金铠仪器 高灵敏光电离/质子转移反应飞行时间质谱仪 PI/PTR-TOF MSPI/PTR-TOF MS2022年1月磁质谱天美仪拓实验室设备(上海)有限公司SIRIX 高分辨稳定同位素比质谱仪SIRIX2022年1月QTOF沃特世科技(上海)有限公司(Waters)沃特世Xevo G3 QTof四极杆飞行时间质谱Xevo G3 QTof2022年6月Q-Orbitrap-IT赛默飞色谱与质谱赛默飞三合一高分辨质谱Orbitrap AscendThermo Scientific™ Orbitrap Ascend Tribrid 质谱仪2022年9月制表:仪器信息网据仪器信息网统计,2022年中国市场共有22款质谱仪器新产品推出,主要集中在气相色谱质谱联用仪(GC-MS)、液相色谱质谱联用仪(LC-MS)、磁质谱以及在线/过程质谱等品类。涉及的进口厂商有赛默飞、岛津、安捷伦、沃特世、珀金埃尔默、布鲁克,而国产厂商今年表现活跃,推出新品的厂商有安益谱、禾信仪器、谱育科技、华谱科仪、吉天仪器、天美仪拓、金铠仪器等。  国产TQMS多点开花 直面性能、应用等挑战  从质量分析器方面来看,三重四极杆(TQ)串联质谱新品的占比超过43%,成为2022年度质谱新品的主力军。更加值得一提的是,发布TQ质谱新品的厂商中,50%是国产厂商,包括禾信仪器的LC-TQ 5200、谱育科技SUPEC 5240系列现场在线监测系统、安益谱 TQ1978气相色谱-三重四极杆串联质谱等。  安益谱 TQ1978气相色谱-串联质谱系统采用两个双曲面四极杆作为Q1和Q3。相比于单四极杆质谱,三重四极杆质谱仪具有更高的灵敏度、更好的选择性 对于复杂基质更能发挥其性能优势,简化净化步骤,排除基体干扰,快速准确地进行检测分析。  禾信仪器LC-TQ 5200完成了高效离子化器、三重四极杆、高压射频电源等关键核心部件的国产化,该设备具备高效分离、灵敏度高,分析速度快,未知物质分析能力强、通用性高的特点,主要用于复杂基质低浓度甚至痕量有机化合物的分析。  谱育科技SUPEC 5240系列现场在线监测系统,基于性能出色的三重四极杆质谱技术,集成自动采水、样品过滤、前处理、分析检测、数据传输等模块,实现一键式操作,解决传统检测模式步骤繁琐、时效性差的痛点。通过发挥其兼准确性及便捷性优势,实现水质中有毒物质及其代谢物、环境污染物等物质的在线监测、实时预警,满足多项相关标准检测要求。  质谱仪器市场一直以来竞争激烈,很多品类长期以来被国外品牌垄断,尤其是以串联质谱仪等为代表的品类,其市场一直被进口厂商占据,这既是差距,也是巨大的发展潜力。近年来,科技部和基金委等相关部门持续加大科学仪器研发支持力度,其中,针对高分辨和串联质谱等国产空白领域,更是不断加大投资,推动国产质谱向高端化发展。在此背景下,2022年我们看到中国市场终于涌现出了一批三重四极杆串联质谱的国产厂商,这是一个令中国质谱人振奋的消息,但也由于常年被进口垄断,新产品的推出只是所有国产质谱企业迈向高端质谱领域的第一步,接下来如何夯实仪器稳定性、耐用性以及应用能力才是最关键的。  进口布局GC-MS/MS 看好TQ全面上涨趋势  本年度主流进口企业也推出了多款TQ质谱,且多为GC-MS/MS,该品类的新品数量更是远超往年。据本网观察,2022年环境监测、质检以及高校科研等单位对GC-MS/MS的采购需求呈现增长的趋势。可以认为,随着应用领域对分析技术的要求不断提高,对于串联质谱技术的需求也将随之迎来增长。此外,岛津与沃特世分别推出了LC-MS/MS新品,并在性能及应用方面则各有侧重。  安捷伦推出2款GC-MS/MS气相色谱-三重四极杆串联质谱7010C和7000E,新款GC-MS/MS内置智能功能,能够简化实验室操作,并采用 Hydro 惰性离子源(HydroInert source),可以帮助客户克服氢气载气的关键性能挑战。  赛默飞推出1款GC-MS ISQ 7610,1款GC-MS/MS TSQ 9610。TSQ 9610采用以用户为中心的 Thermo Scientific NeverVent 技术,配置寿命更长的检测器和智能软件工具,消除了不必要停机时间,大幅提高了样品通量和投资回报率。  岛津推出Essentia IC16-8050离子色谱-质谱联用仪,结合离子色谱出色的性能与稳定性,联用8050三重四极杆质谱,有效增强离子分析性能,凸显质谱高灵敏度检测能力,轻松获得纳克级水平,同时提升了分析速度。  沃特世推出Xevo TQ Absolute LC-MS/MS,该质谱仪是沃特世公司目前体积最小、灵敏度最高的串联四极杆质谱仪,这款仪器的电力和气体消耗量减少高达50%,热排量亦降低了50%,不仅能改善环境可持续性,还可降低实验室运营成本。  高分辨质谱持续创新 离子淌度质谱带来新维度和新深度  从质谱技术的发展趋势来看,目前质谱领域中傅里叶变换离子回旋共振质谱(FTICR-MS)依然具有最高的质量分辨率,飞行时间质谱(TOF-MS)依然具有最快的扫描速度等。而质谱领域的革命性工作在于提高分析的精度、维度、广度和通量。近几十年来,离子淌度技术(ion mobility spectrometry,也称“离子迁移谱”)快速发展,离子淌度质谱的联用技术也得到了广泛应用,这使得质谱分析能力从相对简单的质荷比拓展到复杂的三维结构,从简单的异构体区分发展到复杂的构象解析。离子淌度质谱是离子迁移谱与质谱的联用,与单独使用质谱相比,通常安装于质谱仪内部并置于质量分析器前端,可根据所搭配的质谱仪条件而设计。当前离子淌度质谱商业化产品的提供商均是进口企业,包括安捷伦(DTIMS)、赛默飞(FAIMS)、沃特世(TWIMS)、SCIEX(FAIMS)与布鲁克(TIMS),5家的技术原理各有千秋,并在蛋白质组学、代谢组学、脂质组学、生物大分子结构分析等应用领域各有所长。  2022年布鲁克推出新的 timsTOF HT(High Throughput) 系统,直面蛋白成像的难题与挑战,该系统搭载了第四代的TIMS技术,可实现更高灵敏度的分析、更快的扫描速度以及蛋白定性和定量的深度分析,该产品也进一步拓展了革命性的 4D-多组学 timsTOF 平台。该系统在 4D 血浆、组织蛋白质组和表观蛋白质组学中表现出色。  除此之外,在高分辨质谱方面,沃特世推出了Xevo G3 QTof四极杆飞行时间质谱,赛默飞则推出了三合一高分辨质谱Orbitrap Ascend Tribrid系统。  2014年沃特世推出高性能台式四极杆-飞行时间质谱仪Xevo G2-XS,时隔8年的技术创新和迭代,新一代四极杆飞行时间质谱Xevo G3 QTof终于面世。Xevo G3 QTof系统改进了低质量端、不稳定物质的离子传输,确保覆盖尽可能多的分析物,与此同时在传统生物制药工作流程中表现出众,能够充分满足表征新型药物的各种新兴需求。  赛默飞三合一高分辨质谱Orbitrap Ascend Tribrid系统将创新硬件与两个多极离子通道配合使用,可在更低浓度下定量更多样品,同时实现更大的覆盖率。也可对较大的生物制药产品进行表征,可选质量范围高达 m/z 16000。
  • 创新.传承|赛默飞重磅推出iCAP TQ ICP-MS,重新定义三重四极杆
    2017年8月19日,成都——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在2017中国质谱学会无机及同位素质谱学术会议推出全新一代Thermo ScientificTM iCAPTM TQ ICP-MS,全新的系统支持超低检测限和强大的抗干扰能力,完美结合三重四极杆技术的超低检测限和单四极杆易用性,通过增加功率和简化操作重新定义三重四极杆质谱。 图1 中国工程院王海舟院士、中国质谱学会原理事长李金英研究员、北京师范大学分析测试中心谢孟峡教授和赛默飞中国区色谱质谱业务高级商务运营总监李剑峰先生为新品揭幕真正的无机三重四级杆质谱- iCAP TQ ICPMS在硬件中增加了第一重四极杆质量分析器(Q1)同时该质量分析器具有iMS功能设计,可以根据被测元素及其所受到干扰情况的不同,智能设置Q1的分辨率水平,比如1amu或更宽一点的分辨水平,以实现净化进入碰撞反应池(Q2)中样品离子束能力的同时保证分析具有更高的灵敏度水平。 配合软件,让你的分析变得非常简单- iCAP TQ ICP-MS采用了最新的Qtegra2.8版本,其中增加了Reaction Finder功能,可以指导初次使用三重四极杆ICPMS的普通用户快速了解并选择最佳的样品分析模式,诸如:特定元素应该选择哪种气体进行干扰物的消除,以及分析过程如何选择内标物等等。 一台两用- Thermo Fisher Scientific三重四级杆电感耦合等离子质谱仪iCAP TQ :“上得厅堂,下得厨房”,可以在TQ和SQ之间切换。使用TQ,系统支持超低检测限和强大的抗干扰能力,适用于分析有挑战性的基质,除了环境、食品等大众行业外,在合金,稀土,材料,半导体行业应用前景更为广阔。 转成SQ,适用于大通量常规检测,通量和iCAP-Q等同,而精度大为提高!这是由于第一级四级杆聚焦能力提高,而使精度提高,为一系列应用提供可靠和可重复的数据。Thermo Fisher Scientific三重四级杆电感耦合等离子质谱仪iCAP TQ :“上得厅堂,下得厨房”,可以在TQ和SQ之间切换。 使用TQ,系统支持超低检测限和强大的抗干扰能力,适用于分析有挑战性的基质,除了环境、食品等大众行业外,在合金,稀土,材料,半导体行业应用前景更为广阔。转成SQ,适用于大通量常规检测,通量和iCAP-Q等同,而精度大为提高!这是为什么呢?原来是由于第一级四级杆聚焦能力提高,而使精度提高,为一系列应用提供可靠和可重复的数据。图2 赛默飞中国区色谱质谱业务高级商务运营总监李剑峰先生接受媒体采访赛默飞中国区色谱质谱业务高级商务运营总监李剑峰先生接受了仪器信息网采访,在采访中针对三重四极杆ICP-MS/MS的市场,以后的发展以及赛默飞的发展和规划等分享了自己的看法。更多新品精彩内容,请查看赛默飞中国区色谱质谱业务高级商务运营总监李剑峰先生接受媒体采访稿。 图3 赛默飞展台咨询新品的客户
  • 为什么飞行时间质谱(TOFMS)是相对于四级杆质谱(QMS)更理想的检测器?
    为什么飞行时间质谱(tofms)是相对于四级杆质谱(qms)更理想的检测器?您是否想了解飞行时间质谱仪(tofms)和四极杆质谱仪(qms)的区别,比较两者的性能以及了解这些参数对您的应用案例可能产生的具体影响?总体而言,飞行时间质谱比四极杆质谱仪具有先天的性能优势。tofms采集瞬时全谱信息,大幅提升了仪器的分析速度和灵敏度,确保任何重要信息不会丢失并允许回溯分析,更容易鉴别未知分析物和解析测量结果。更重要的是,tofms具备的超高质量分辨率和高精确质量更利于复杂基体中未知物种的准确鉴别,详见后文。参数对比飞行时间质谱tofms级杆质谱qms mass analyzer数据采集同时记录所有离子(全谱)离子筛:同一时段只能记录一种离子采集速度1000hz全谱1000hz单个离子质量分辨率r = m/rm10’000可分辨同量异位素峰可精确推导化学式单质量数分辨率不可分辨同量异位素峰相对精确质量rm/m1000质量数时,4 ppm = 4 mth/th精确质量rm0.001 th at 300 th0.5 th质量范围1 th 到 10000 th通常为10 th 到 500 th四极杆和tof质量分析仪的工作原理?四极杆和飞行时间(tof)质量分析仪实现对不同质荷比(m/q)的离子分离的原理截然不同,这从根本上导致了两者检测能力的巨大差异。四级杆质量分析仪四极杆质量分析仪简单来说是一个‘离子筛’:在同一时刻,有且仅有特定m/q值的离子才能通过四极杆被后端检测器检测到。 第二步,通过挑选或者逐个扫描测量质荷比来获得部分或者完整谱图。图1是一个简单的四级杆原理动图:射频rf电场将离子聚焦在四级杆的轴心;叠加的直流dc电场用于破坏离子飞行轨迹的稳定性,并随后将它们从四极杆中弹出。通过调节这两个电场的强度,可使得只有一个较小m/q范围的离子保持稳定的飞行轨迹从而顺利通过四级杆。该质荷比范围外的其他离子将因不稳定而损失掉(被过滤掉)。然后,在整个m/q质荷比范围内扫描特定或者每个离子的质荷比,就可以记录部分或者完整质量谱图。产生射频rf场的电子器件的电压输出是有物理上限的,也就相应限定了四级杆所能测量的质荷比的上限范围。 图1. 四级杆原理动画图。同一时间,只有特定m/q值的离子才能通过;其他离子都会被‘丢’掉。这里的动图中,选择性离子检测(sim)用来测量了三个较小质荷比的离子(蓝色、黄色和灰色),而质荷比最大的离子(红色)则一直不在筛选范围之内,可理解为没有被检测到。飞行时间质量分析器tof分析仪则是根据离子通过特定区域(通常称为飞行管)时不同的飞行速度来达到离子分离的效果。整个过程有点类似于一场跑步比赛:一组离子在起点被加速(比赛开始),然后以匀速通过无场飞行管(赛跑过程)漂移到检测器(终点线)。从飞行管起点到与检测器‘撞线’之间的时间,也就是离子的飞行时间,被高速检测器记录下来。直观的说,重的分子应该比轻的分子‘飞’得慢,也就意味着到达检测器的时间也越长。所以,在离子带电荷数都相等的前提下,通过离子飞行时间可以反推出其质荷比。这里我们有一个更详细的解释和推导。在tof飞行管的起始加速区,所有离子都会同时受到一个脉冲强电场,即不同质荷比的离子都得到同样的起始动能e。更准确来说,离子获得的动能与其带电荷量q成正比。电荷量相同的离子,e/q近似完全一致。动能e跟质量和速度的方程式:e = ½ mv2这也就意味着:e/q = ½ m/q v2 约等于恒定。因此,质荷比m/q较小的离子会以更快的速度地通过tof区域,更快到达检测器。仪器会高速测量每个离子从起始加速区到检测器的飞行时间,然后将其转换为质谱图:质荷比和信号强度。图2. 飞行时间质谱原理动画图。 每种离子都从脉冲电场中获得了相同的动能,以恒定速度通过无场漂移区(飞行管)。静电场反射镜(reflectron)大幅改善了因离子初始动能差异而导致的分辨率损失。检测器则高频率的记录不同时间点检测到的离子数。所有的离子‘飞行行程’都在微秒级别,也就意味上万趟‘飞行行程’累加在一起,最后形成了一秒的全谱图。上图中的动画持续了几秒钟。在仪器中,实际的离子飞行速度要快得多:每秒数万次飞行,每次飞行时间10到100微秒不等。一般情况下,我们无需每秒几万次的超高数据采集频率,因此通常会将数据累加成每0.1(10 hz)秒或者更长时间段的谱图。举例来说:当tof以两万次/秒的采集速率运行时,每2000次提取的数据可以积累到一张谱图当中,也就是10张谱图/秒的仪器响应。现代tof仪器采用了各种精妙的电子和机械设计来提高质量分辨率,包括静电场反射镜等部件。同时,从离子‘撞线’检测器到仪器屏幕上显示质谱之间的很多步骤也需系统设计和考虑。tofms快速‘全景’测量与每次测量中只记录单一质荷比离子的四级杆不同,飞行时间质谱每时每刻都在记录所有质荷比的离子的信号强度。tof同时检测所有离子的特质,相比于qms离子监测(sim)和全谱扫描都具有先天性的优越性。四极杆在扫描每个离子都需要一定的驻留时间(一般为0.1秒以上),这也意味着可能需要较长时间才能完成全谱扫描,继而导致较慢的测量速度,并损失大量有效信息。例如图3(左图)展示了用vocus 2r ptr-tof在4hz采集率下对志愿者单次呼气的测量结果。在这个简单的实验中,一共有241种不同的vocs化合物被定性定量。如果用四极杆质量分析仪来测量同样数量的离子,并假设使用0.25秒的单离子驻留时间,则需要至少一分钟的时间来完成测量。这也意味着,当志愿者的呼气动作完成时,四极杆全谱扫描还在进行中(图3(右图)。图3. 约1.5秒开始的单次呼气中的各物种时间序列。左图:用tofms实测得到的呼气结果。右图:同样的呼气试验,用四级杆质谱的模拟结果。图中标志点代表了每组数据对应的时间点。四级杆扫描的离子数目越多,对仪器灵敏度的影响越大在四级杆质谱的单个离子对应的停留时间中,所有其他离子都被丢弃。这会直接影响仪器整体的灵敏度。想象一下,对一个校准气瓶进行十秒钟的测量,一个四极杆和一个tofms质谱分别测量十个质荷比的离子。四极杆对每个质荷比的信号累积时间不超过1秒,而tofms对每个m/q的信号累积时间则为10秒。很明显,tofms将为每个离子累积更多的信号,因此在10秒的时间内具有相对于四级杆更高的灵敏度。 tof瞬时全谱确保不错过有效信息为了改善测量速率,四级杆可以只测量少量的特定离子(也称为选择离子监测模式sim)。值得注意的是,未被列入特定离子清单的离子可能包含重要信息。例如,图4展示了用tofwerk ei-tof以5谱每秒的采集频率测量的gc逸出物的质谱。为了完整的体现单个色谱峰,四极杆操作者一般选择不超过三个离子进行sim。另一方面,图中最大的色谱峰中包含的ei谱图含有200多个离子。相对于四级杆提供的少数几个离子,使用包含200多个离子的全谱图数据,与nist库的标准谱图匹配来进行峰识别的准确性要高的多。此外,使用sim的操作者必须非常确定他们对除样品目标物外的其他任何vocs不感兴趣。这一点对于非目标分析尤其重要,也是极难做到的,因为在非目标分析中,样品的确切成分是未知的。通过每时每刻测量所有离子,保存全谱数据,测量变得 “面向未来”:如果研究或新的应用表明一个新的分子是值得注意的,分析人员可以重新审视以前收集的tof数据,针对这些‘新’物种进行回溯分析。图4. ei-tof测得的gc气相色谱逸出物和相应的色谱峰。至少有六个色谱峰可以被清楚的识别出来,每个峰的宽度都小于三秒。图中蓝色、红色和黑色的数据点提出了模拟的四级杆在sim模式的测量效果。插图展示了强度最高的色谱峰所对应的包含200多种离子信息的nist ei谱图。不间断连续测量能更好的揭示样品中各离子的对应关系四极杆分析仪的结果是不连续的:这是因为每次只能扫描一个离子,而不是同时扫描所有离子。这种效应被简称为 “质谱偏斜”。如果样品的voc成分变化很快,就无法准确定量vocs之间的相对比例。这对于化学计量‘指纹’分析或大气污染物的溯源分析等应用都非常重要。举个例子,图5显示了一段vocus elf小精灵ptr-tof对环境空气中芳香烃的测量结果。该测量来自欧洲某城市的车载实验,被测空气的成分随时间和空间位置的变化而极快的变化。图5. 车载移动检测中芳香烃物质浓度秒级的变化曲线。右图中模拟的四级杆分析结果给污染物溯源和源谱图数据库建立都增加了很大的不确定性。苯、甲苯、二甲苯和更大的芳烃的相对比例一般可以用来表征污染物来源:在本案例中,汽油车尾气。如果使用相应的只有三个离子的四极杆测量结果,就无法准确确定不同芳烃的相对比例,后续的来源识别就变得更加困难。另一个飞行时间质谱检测器的好搭档是适用于元素及其同位素分析的电感耦合等离子体质谱仪(icp-ms)。在非连续进样时,icp-ms需要在较短时间内测量多种元素和它们对应的各同位素峰,这也是传统的四级杆检测器所不能实现的。上述应用场景包括有单颗粒分析或者快速(高达几百hz)激光剥蚀成像等。图6展示了一组在钢材质纳米颗粒中分析铬,铁,镍和钼等元素信息。单颗颗粒物所产生的信号时长不超过0.5毫秒。tofwerk的icptof (icp-ms搭配飞行时间检测器)能够可靠地表征这些纳米颗粒物的完整谱图信息,而四级杆检测器则受限于其同一时刻只能测量一种元素的劣势,会丢失很大一部分信息,同时对各元素之间的浓度相对比值也不能准确测量。图6. 用icptof r检测到的单个钢材质纳米颗粒中铬,铁,镍和钼随时间变化信号图。上半部分:每90微秒记录的单个钢纳米颗粒物的高时间分辨率信号。下半部分:模拟四级杆检测器记录的上述单颗粒物分析的实验结果。该套模拟结果是在假设四级杆单离子停留时间为90微秒的情形下。因为四级杆是依次扫描这四种元素信息,他们的灵敏度响应的减少了33倍。更重要的是,四级杆数据推导出的元素的相对浓度比值跟真实数字会有76%-270%的偏差!高质量分辨率是准确识别未知离子的必要条件之一四极杆质量分析仪的分辨力受限于四极杆的加工精度和电子器件的性能。四极杆分析仪通常是以单位质量分辨率来操作的。即使是目前市场上非常高端的四极杆,其分辨力也只有r=m/dm(fwhm)=3000-4000th/th,这还是在大幅降低仪器灵敏度的情况下。图7将单位质量分辨率的ptr四极杆谱图与分辨力为r=5000 th/th的vocus s ptr-tof谱图进行了详细对比。在单位质量分辨率下,无法区分同量异位化合物。同量异位化合物具有相同的标称质量,但元素组成不同。同量异位化合物在样品中会有不同的随时间变化曲线,能够对它们分别测量并定量对分析结果的精确性非常重要(图8)。图8. 具有5000分辨率的vocus s ptr-tof的测量数据。在69质荷比的三个同量异位离子信号对应的完全不同的时间序列。底图展示了特定时间点上的节选谱图:高质量分辨率将这三种离子清楚的解析开来。高质量分辨率提供的精确质量信息更重要是用来确定离子峰的元素组成。这对化合物的鉴定至关重要,而这也是单位质量分辨率无法做到的。在图9中,高质量分辨率(5000 th/th)和高相对质量精度(5ppm以内)可以帮助我们把97.045 th处检测到的离子鉴别为氟苯而不是3-糠醛(97.028 th)或2-乙基呋喃(97.065 th)。图9. 高质量分辨率和高质量精度保证了离子定性定量的高准确性。结论综上所述,飞行时间质谱仪相对于四级杆分析仪的优势是显而易见的。单个样品的测量速度更快,而且不会有”质谱偏斜”效应。对于同一个质量范围,tof分析仪相对于四级杆有更好的灵敏度。因为每时每刻都在记录‘全景’谱图,不会错过或者丢失任何可能的重要信息。最后,tof的高质量分辨率可以鉴别同量异位化合物并精确推导出元素组分。 来源:tofwerk
  • 为什么飞行时间质谱(TOFMS)是相对于四级杆质谱(QMS)更理想的检测器?
    您是否想了解飞行时间质谱仪(TOFMS)和四极杆质谱仪(QMS)的区别,比较两者的性能以及了解这些参数对您的应用案例可能产生的具体影响?总体而言,飞行时间质谱比四极杆质谱仪具有先天的性能优势。TOFMS采集瞬时全谱信息,大幅提升了仪器的分析速度和灵敏度,确保任何重要信息不会丢失并允许回溯分析,更容易鉴别未知分析物和解析测量结果。更重要的是,TOFMS具备的超高质量分辨率和高精确质量更利于复杂基体中未知物种的准确鉴别,详见后文。参数对比飞行时间质谱TOFMS级杆质谱QMS Mass Analyzer数据采集同时记录所有离子(全谱)离子筛:同一时段只能记录一种离子采集速度1000Hz全谱1000Hz单个离子质量分辨率R = M/rM10’000可分辨同量异位素峰可精确推导化学式单质量数分辨率不可分辨同量异位素峰相对精确质量rM/M1000质量数时,4 ppm = 4 mTh/Th精确质量rM0.001 Th at 300 Th0.5 Th质量范围1 Th 到 10000 Th通常为10 Th 到 500 Th四极杆和TOF质量分析仪的工作原理?四极杆和飞行时间(TOF)质量分析仪实现对不同质荷比(m/Q)的离子分离的原理截然不同,这从根本上导致了两者检测能力的巨大差异。四级杆质量分析仪四极杆质量分析仪简单来说是一个‘离子筛’:在同一时刻,有且仅有特定m/Q值的离子才能通过四极杆被后端检测器检测到。第二步,通过挑选或者逐个扫描测量质荷比来获得部分或者完整谱图。图1是一个简单的四级杆原理动图:射频RF电场将离子聚焦在四级杆的轴心;叠加的直流DC电场用于破坏离子飞行轨迹的稳定性,并随后将它们从四极杆中弹出。通过调节这两个电场的强度,可使得只有一个较小m/Q范围的离子保持稳定的飞行轨迹从而顺利通过四级杆。该质荷比范围外的其他离子将因不稳定而损失掉(被过滤掉)。然后,在整个m/Q质荷比范围内扫描特定或者每个离子的质荷比,就可以记录部分或者完整质量谱图。产生射频RF场的电子器件的电压输出是有物理上限的,也就相应限定了四级杆所能测量的质荷比的上限范围。图1. 四级杆原理动画图。同一时间,只有特定m/Q值的离子才能通过;其他离子都会被‘丢’掉。这里的动图中,选择性离子检测(SIM)用来测量了三个较小质荷比的离子(蓝色、黄色和灰色),而质荷比最大的离子(红色)则一直不在筛选范围之内,可理解为没有被检测到。飞行时间质量分析器TOF分析仪则是根据离子通过特定区域(通常称为飞行管)时不同的飞行速度来达到离子分离的效果。整个过程有点类似于一场跑步比赛:一组离子在起点被加速(比赛开始),然后以匀速通过无场飞行管(赛跑过程)漂移到检测器(终点线)。从飞行管起点到与检测器‘撞线’之间的时间,也就是离子的飞行时间,被高速检测器记录下来。直观的说,重的分子应该比轻的分子‘飞’得慢,也就意味着到达检测器的时间也越长。所以,在离子带电荷数都相等的前提下,通过离子飞行时间可以反推出其质荷比。这里我们有一个更详细的解释和推导。在TOF飞行管的起始加速区,所有离子都会同时受到一个脉冲强电场,即不同质荷比的离子都得到同样的起始动能E。更准确来说,离子获得的动能与其带电荷量Q成正比。电荷量相同的离子,E/Q近似完全一致。动能E跟质量和速度的方程式:E = &half mv2这也就意味着:E/Q = &half m/Q v2 约等于恒定。因此,质荷比m/Q较小的离子会以更快的速度地通过TOF区域,更快到达检测器。仪器会高速测量每个离子从起始加速区到检测器的飞行时间,然后将其转换为质谱图:质荷比和信号强度。图2. 飞行时间质谱原理动画图。每种离子都从脉冲电场中获得了相同的动能,以恒定速度通过无场漂移区(飞行管)。静电场反射镜(reflectron)大幅改善了因离子初始动能差异而导致的分辨率损失。检测器则高频率的记录不同时间点检测到的离子数。所有的离子‘飞行行程’都在微秒级别,也就意味上万趟‘飞行行程’累加在一起,最后形成了一秒的全谱图。上图中的动画持续了几秒钟。在TOFWERK仪器中,实际的离子飞行速度要快得多:每秒数万次飞行,每次飞行时间10到100微秒不等。一般情况下,我们无需每秒几万次的超高数据采集频率,因此通常会将数据累加成每0.1(10 Hz)秒或者更长时间段的谱图。举例来说:当TOF以两万次/秒的采集速率运行时,每2000次提取的数据可以积累到一张谱图当中,也就是10张谱图/秒的仪器响应。现代TOF仪器采用了各种精妙的电子和机械设计来提高质量分辨率,包括静电场反射镜等部件。同时,从离子‘撞线’检测器到仪器屏幕上显示质谱之间的很多步骤也需系统设计和考虑。TOFMS快速‘全景’测量与每次测量中只记录单一质荷比离子的四级杆不同,飞行时间质谱每时每刻都在记录所有质荷比的离子的信号强度。TOF同时检测所有离子的特质,相比于QMS离子监测(SIM)和全谱扫描都具有先天性的优越性。四极杆在扫描每个离子都需要一定的驻留时间(一般为0.1秒以上),这也意味着可能需要较长时间才能完成全谱扫描,继而导致较慢的测量速度,并损失大量有效信息。例如图3(左图)展示了用Vocus 2R PTR-TOF在4Hz采集率下对志愿者单次呼气的测量结果。在这个简单的实验中,一共有241种不同的VOCs化合物被定性定量。如果用四极杆质量分析仪来测量同样数量的离子,并假设使用0.25秒的单离子驻留时间,则需要至少一分钟的时间来完成测量。这也意味着,当志愿者的呼气动作完成时,四极杆全谱扫描还在进行中(图3(右图))。图3. 约1.5秒开始的单次呼气中的各物种时间序列。左图:用TOFMS实测得到的呼气结果。右图:同样的呼气试验,用四级杆质谱的模拟结果。图中标志点代表了每组数据对应的时间点。四级杆扫描的离子数目越多,对仪器灵敏度的影响越大在四级杆质谱的单个离子对应的停留时间中,所有其他离子都被丢弃。这会直接影响仪器整体的灵敏度。想象一下,对一个校准气瓶进行十秒钟的测量,一个四极杆和一个TOFMS质谱分别测量十个质荷比的离子。四极杆对每个质荷比的信号累积时间不超过1秒,而TOFMS对每个m/Q的信号累积时间则为10秒。很明显,TOFMS将为每个离子累积更多的信号,因此在10秒的时间内具有相对于四级杆更高的灵敏度。TOF瞬时全谱确保不错过有效信息为了改善测量速率,四级杆可以只测量少量的特定离子(也称为选择离子监测模式SIM)。值得注意的是,未被列入特定离子清单的离子可能包含重要信息。例如,图4展示了用Tofwerk EI-TOF以5谱每秒的采集频率测量的GC逸出物的质谱。为了完整的体现单个色谱峰,四极杆操作者一般选择不超过三个离子进行SIM。另一方面,图中最大的色谱峰中包含的EI谱图含有200多个离子。相对于四级杆提供的少数几个离子,使用包含200多个离子的全谱图数据,与NIST库的标准谱图匹配来进行峰识别的准确性要高的多。此外,使用SIM的操作者必须非常确定他们对除样品目标物外的其他任何VOCs不感兴趣。这一点对于非目标分析尤其重要,也是极难做到的,因为在非目标分析中,样品的确切成分是未知的。通过每时每刻测量所有离子,保存全谱数据,测量变得 “面向未来”:如果研究或新的应用表明一个新的分子是值得注意的,分析人员可以重新审视以前收集的TOF数据,针对这些‘新’物种进行回溯分析。图4. EI-TOF测得的GC气相色谱逸出物和相应的色谱峰。至少有六个色谱峰可以被清楚的识别出来,每个峰的宽度都小于三秒。图中蓝色、红色和黑色的数据点提出了模拟的四级杆在SIM模式的测量效果。插图展示了强度最高的色谱峰所对应的包含200多种离子信息的NIST EI谱图。不间断连续测量能更好的揭示样品中各离子的对应关系四极杆分析仪的结果是不连续的:这是因为每次只能扫描一个离子,而不是同时扫描所有离子。这种效应被简称为 “质谱偏斜”。如果样品的VOC成分变化很快,就无法准确定量VOCs之间的相对比例。这对于化学计量‘指纹’分析或大气污染物的溯源分析等应用都非常重要。举个例子,图5显示了一段Vocus Elf小精灵PTR-TOF对环境空气中芳香烃的测量结果。该测量来自欧洲某城市的车载实验,被测空气的成分随时间和空间位置的变化而极快的变化。图5. 车载移动检测中芳香烃物质浓度秒级的变化曲线。右图中模拟的四级杆分析结果给污染物溯源和源谱图数据库建立都增加了很大的不确定性。苯、甲苯、二甲苯和更大的芳烃的相对比例一般可以用来表征污染物来源:在本案例中,汽油车尾气。如果使用相应的只有三个离子的四极杆测量结果,就无法准确确定不同芳烃的相对比例,后续的来源识别就变得更加困难。另一个飞行时间质谱检测器的好搭档是适用于元素及其同位素分析的电感耦合等离子体质谱仪(ICP-MS)。在非连续进样时,ICP-MS需要在较短时间内测量多种元素和它们对应的各同位素峰,这也是传统的四级杆检测器所不能实现的。上述应用场景包括有单颗粒分析或者快速(高达几百Hz)激光剥蚀成像等。图6展示了一组在钢材质纳米颗粒中分析铬,铁,镍和钼等元素信息。单颗颗粒物所产生的信号时长不超过0.5毫秒。TOFWERK的icpTOF(ICP-MS搭配飞行时间检测器)能够可靠地表征这些纳米颗粒物的完整谱图信息,而四级杆检测器则受限于其同一时刻只能测量一种元素的劣势,会丢失很大一部分信息,同时对各元素之间的浓度相对比值也不能准确测量。图6. 用icpTOF R检测到的单个钢材质纳米颗粒中铬,铁,镍和钼随时间变化信号图。上半部分:每90微秒记录的单个钢纳米颗粒物的高时间分辨率信号。下半部分:模拟四级杆检测器记录的上述单颗粒物分析的实验结果。该套模拟结果是在假设四级杆单离子停留时间为90微秒的情形下。因为四级杆是依次扫描这四种元素信息,他们的灵敏度响应的减少了33倍。更重要的是,四级杆数据推导出的元素的相对浓度比值跟真实数字会有76%-270%的偏差!高质量分辨率是准确识别未知离子的必要条件之一四极杆质量分析仪的分辨力受限于四极杆的加工精度和电子器件的性能。四极杆分析仪通常是以单位质量分辨率来操作的。即使是目前市场上非常高端的四极杆,其分辨力也只有R=M/dM(FWHM)=3000-4000Th/Th,这还是在大幅降低仪器灵敏度的情况下。图7将单位质量分辨率的PTR四极杆谱图与分辨力为R=5000 Th/Th的Vocus S PTR-TOF谱图进行了详细对比。图7. 质子转移反应QMS和TOF谱图对比。在单位质量分辨率下,无法区分同量异位化合物。同量异位化合物具有相同的标称质量,但元素组成不同。同量异位化合物在样品中会有不同的随时间变化曲线,能够对它们分别测量并定量对分析结果的精确性非常重要(图8)。图8. 具有5000分辨率的Vocus S PTR-TOF的测量数据。在69质荷比的三个同量异位离子信号对应的完全不同的时间序列。底图展示了特定时间点上的节选谱图:高质量分辨率将这三种离子清楚的解析开来。高质量分辨率提供的精确质量信息更重要是用来确定离子峰的元素组成。这对化合物的鉴定至关重要,而这也是单位质量分辨率无法做到的。在图9中,高质量分辨率(5000 Th/Th)和高相对质量精度(5ppm以内)可以帮助我们把97.045 Th处检测到的离子鉴别为氟苯而不是3-糠醛(97.028 Th)或2-乙基呋喃(97.065 Th)。图9. 高质量分辨率和高质量精度保证了离子定性定量的高准确性。结论综上所述,飞行时间质谱仪相对于四级杆分析仪的优势是显而易见的。单个样品的测量速度更快,而且不会有”质谱偏斜”效应。对于同一个质量范围,TOF分析仪相对于四级杆有更好的灵敏度。因为每时每刻都在记录‘全景’谱图,不会错过或者丢失任何可能的重要信息。最后,TOF的高质量分辨率可以鉴别同量异位化合物并精确推导出元素组分。
  • 布鲁克推出SCION系列超高性能单四极杆和三重四极杆质谱仪
    2011年7月18日,美国佛罗里达农残研讨会上,布鲁克发布了SCION TQTM 三重四极杆和SCION SQTM 单四极杆质谱仪。该系统具有以往气质联用系统所无法企及的超凡性能,将极大地提高常规测试及应用领域的数据准确度和工作效率。SCION气质联用平台性能卓越,简单易用,特别适用于食品安全和环境监测领域,为气质联用技术带来了革命性的飞跃。 SCION系列气质联用系统拥有业界首创的无透镜技术,任何水平的用户都可轻松操作。全新的SCION系列比以往的气质联用系统更灵敏,更稳定,且远比传统的三重四极杆气质联用仪小巧,可为实验室节省更多的空间。 SCION 单四极杆和三重四极杆质谱仪 先进的axial离子源设计和无透镜离子通道显著提升了SCION系统的稳定性。SCION TQ具有180°弯曲碰撞池,这一设计极大地缩小了仪器体积,满足未来市场的重要需求,此外对于需要为GC-MS系统升级的用户也具有重要意义。 布鲁克独有的创新性的基于化合物的筛查技术(CBS)使仪器出色的性能和价值得到进一步提升。CBS技术能够自动优化定量分析方法,带给用户超高灵敏度和定量准确性,同时减少方法开发和仪器调试时间。作为方法开发的一部分,用户只需在化合物库中选定化合物将其加入到方法编辑器中,独特的CBS技术和专业软件即可自动设定优化MRM 反应条件,提高三重四极杆系统采集谱图的速率。 “独有的基于化合物的筛查技术可以使我们在三重四极杆和MRM方法开发中提高效率。”布鲁克GC-MS市场经理Meredith Conoley如是说。“我们相信,SCION三重四极杆气质联用系统以其紧凑的三重四极杆设计,将为气相色谱带来突破性的新技术和高性能,以及更高的工作效率。” SCION SQ的设计满足大量的常规应用,具有多项SCION TQ的创新设计。即插即用离子源使仪器维护更简便,可以轻松实现EI到CI的切换。全新的axial flow source进一步提升了系统性能,即使分析复杂基质的样品,仪器也无需进行频繁维护。 SCION系统拥有自动聚焦的q0离子光学元件,利用He分子提高离子到第一根四极杆的传输效率, 超大抽速的分子涡轮泵可以使用户现场升级到CI。SCION系列的另一个特点是其超快的泄真空时间,使分析效率得到提高,减少仪器停工时间。独特的多轴化学噪音消除设计技术,如加热的90°弯曲q0,180°弯曲碰撞池和90°离轴设计的一体化检测器,使中性粒子噪音完全消除,为仪器带来超低的检测限。 布鲁克化学应用市场部总裁Collin D’Silva评价说:“SCION 气质联用平台代表了创新传统和可靠性的完美结合,将仪器性能由传统的研究级提升到新的境界,使所有的气相色谱的性能都能从这些先进的设计中获得提升。” “SCION TQ是革命性的气相色谱三重四极杆质谱系统,拥有业内最高的灵敏度和选择性,产品设计紧凑,简单易用,且稳定耐用。”布鲁克化学应用市场气质联用部总经理Rohan Thakur博士介绍说。“我们相信,SCION TQ将会引导和加快GC-MS技术向GC-MS/MS技术这一不可避免的转变,以应对环境、法医学、添加剂以及食品安全领域的更具挑战性的的分析。”
  • 安捷伦于ASMS推出3款三重四极杆质谱 1款单四极杆质谱
    安捷伦科技公司今日正式发布液质联用(LC/MS)和气质联用(GC/MS)四极杆质谱仪新品,并在第 70 届 ASMS 质谱与相关专题会议(ASMS 2022)上展出这些新品。ASMS 2022于当地时间6月5日至9日在美国明尼苏达州明尼阿波利斯市召开。安捷伦是 ASMS 的会员,也是年会的协办单位。安捷伦在质谱分析领域拥有超过50 年的创新史。今日推出的新品——Agilent 6475 三重四极杆液质联用系统(LC/MS)、5977C GC/MSD 以及 7000E GC/TQ 和 7010C GC/TQ ,都是安捷伦深耕该领域多年推出的最新成果。新款 LC/TQ和GC/TQ内置智能功能,能够简化实验室操作,而采用 Hydro 惰性离子源(HydroInert source)的新款 GC/SQ 和 GC/TQ 产品,将帮助客户克服氢气载气的关键性能挑战。 安捷伦副总裁兼质谱事业部总经理Sudharshana Seshadri表示:“安捷伦今日推出的智能液质联用和气质联用新品,初衷就是为我们的客户减轻工作负担。我们提升了内置仪器智能功能和仪器诊断功能,不仅能最大限度地增加系统正常运行时间,支持客户自主安排日常维护,而且还能够让操作人员专注于分析工作本身而非仪器设备,从而最大限度地提升实验室分析效率。” Agilent 6475 三重四极杆液质联用系统是新一代高灵敏度、坚固耐用、稳定可靠的质谱仪,尤其适合常规定量分析工作。6475 拥有创新的iReflex功能,能够智能地针对特定的分析条件“作出反应“,即时验证结果,以此进一步提升分析速度,减少操作人员的工作量。MassHunter Acquisition 12.0 最新版与 6475 相结合,可确保数据完整性符合21 CFR Part 11和附录11中的法规要求。对于制药和生物制药客户来说,该功能可满足他们针对分析工作的合规要求。Agilent 6475 三重四极杆液质联用系统外观Agilent 5977C GC/MSD是值得信赖的最新单四极杆气质联用仪器。在 Agilent 5977C 中引入 Hydro 惰性离子源后,客户就可以探索用氢气代替氦气来作为 GC/MS 分析的载气。这种方案对仪器性能的影响最小,同时也最大程度减少实验室对氦气这种不可再生资源的依赖。 Agilent 5977C与Agilent 8890 GC联用外观 此外,安捷伦还推出了 Agilent 7000E 和 7010C 三重四极杆气质联用系统。在众多细分市场上广受欢迎的气质联用系列产品,在这两款新品身上完成最新迭代。7000E GC/TQ 是一款坚固、可靠的仪器,可帮助高通量实验室达到最佳运行效率。7010C GC/TQ 旨在应对最具挑战性的分析,可提供阿克级(attogram level)的最低检测限。Agilent 7000E与Agilent 8890 GC联用外观Agilent 7010C与Agilent 8890 GC联用外观 安捷伦今日推出的新品均通过My Green Lab 组织的独立稽查,获得了该组织颁发的归责性、一致性和透明度(ACT)标签,为持续改善安捷伦产品对环境的影响提供了基准和框架。ACT 让客户能够更轻松地为自己的实验室选择更具可持续特性的产品。
  • 岛津三重四极杆液质联用仪LCMS-8030:速度无可比拟
    仪器信息网讯 岛津新品三重四极杆液质联用仪LCMS-8030专家推介会在上海、广州、北京三地分别举行(岛津首次推出三重四极LCMS 定位中端市场)。2010年11月8日,LCMS-8030北京专家推介会在岛津北京办事处所在地——中国人寿大厦举行。推介会结束后,仪器信息网(以下称“Instrument”)就LCMS-8030的技术特点、应用领域、市场定位等情况独家采访了岛津LCMS产品全球市场经理、资深质谱产品专家平野一郎先生(Mr. Ichiro Hirano)。   推介会现场   岛津LCMS产品全球市场经理、资深质谱产品专家平野一郎先生   岛津三重四极杆液质联用仪LCMS-8030   Instrument:质谱仪的测定速度已成为限制三重四极杆液质联用仪技术发展的瓶颈,请问贵公司在LCMS-8030质谱部分进行了哪些独特设计,使其能与前置的UHPLC相得益彰?   平野一郎先生:目前,液质联用仪中的液相色谱部分已逐渐从HPLC(高效液相色谱)发展到UHPLC(超高效液相色谱),由于UHPLC的出峰速度很快,所以液质联用仪质谱部分的分析速度必须很快,否则无法让UHPLC快速分析的优势发挥出来。   针对这一问题,岛津公司在LCMS-8030三重四极杆的Q2碰撞室部分中采用了UFsweeper® 碰撞室技术(专利申请中),快速去除产物离子。除此之外,在进行MRM检测时,我们还采用了岛津独有RF电压切换技术,缩短测定通道之间电压设定所需的延迟时间,实现500通道/秒的超高速MRM测定。LCMS-8030采用最快15000u/sec 的UFscanning超快速扫描和15msec的UFswitching超快速正负极性切换的专利技术,使LCMS-8030在不牺牲信号强度的情况下真正实现高通量分析。   Instrument:能否详细谈谈岛津独有的UFsweeper® 技术?该技术使得LCMS-8030具备了哪些独特性能?   平野一郎先生:UFsweeper® 技术的原理是采用赝势(pseudo potential)加速技术,使碰撞室里的产物离子再加速。一般而言,进入碰撞室的离子在碰撞室会因为与反应气碰撞而失速,在MRM测定时容易产生串扰。赝势电位的形成与碰撞室的设计有关,简单来说,LCMS-8030碰撞室的入口内切圆比出口内切圆小,而赝势的大小是与内切圆面积成反比的,这样碰撞室入口处的赝势比出口处的赝势高,这就形成了赝势电位差。利用这个电势差,UFsweeper® 实现了给离子加速。   给碰撞室里失速的离子加速,这是UFsweeper® 技术的最主要功能。同时,该技术将碰撞室所需长度减至最小限度,实现高效碰撞诱导解离和离子快速输送。UFsweeper® 技术使进入碰撞室的离子被连续快速地去除,即使在快速测定中也可以防止信号强度下降或发生串扰。   Instrument:贵公司在提高LCMS-8030扫描速度的同时是如何保证仪器检测的准确度的?   平野一郎先生:质谱检测准确度主要依赖于两个因素,一是四极杆的加工精度,二是四极杆供电装置性能。岛津开发四极杆质谱仪器已30多年,在长期的实践中累积了丰富的四极杆制作经验,我们有信心能提供制作精良的四极杆装置。至于四极杆的供电装置,岛津公司在LCMS-8030中采用了快速RF电压供电装置, RF电压切换后离子强度迅速稳定化,能够在快速切换同时能够保证仪器的准确度和精度。此外,对于四极杆RF增益电压和偏置电压分别独立控制,根据扫描速度和扫描质量数范围,自动设置适用于四极杆的RF电压,这也是岛津公司的一项专利技术。   Instrument:请问与其它公司同类产品相比,LCMS-8030的核心竞争优势是什么?将重点应用于哪些领域?   平野一郎先生:LCMS-8030的最大竞争优势是——速度快,这主要体现在以下几个方面:一是扫描速度快,最高扫描速度可达1,5000u/sec;二是正负极性切换速度快,岛津采用UFswitching超快速正负极性切换技术,实现了15msec的正负极性切换。另外,超快速RF电压供电装置,离子强度稳定时间不超过1msec,大幅缩短延迟时间。   三重四极杆液质联用仪是比较通用的仪器,在许多研究领域均能使用,但是更多应用在食品安全、环境监测、药物分析等领域。对于那些既想做定量检测又想做定性检测的用户而言,这款仪器是不错的选择。LCMS-8030于2010年9月1日在日本分析展上面向全球发布,至今已有日本、美国的用户订购了该仪器。   Instrument:原来用单四极杆测定的样品现在用三重四极杆液质联用仪也能测定,那么单四极杆液质联用仪的市场是否会受到冲击而逐渐萎缩?请谈谈您对此问题的看法。   平野一郎先生:单四极杆液质联用仪已越来越多的作为液相色谱的一种检测器来使用。但是,三重四极杆液质联用仪具有更高的灵敏度,并且可以获得更为丰富的化合物结构信息。所以随着三重四极杆液质联用仪的逐渐普及,单四极杆液质联用仪的市场可能会受到一定冲击。   但是,用户的需求是多样的,其最终决定购买哪种仪器也与其购买仪器的预算有关。目前,三重四极杆液质联用仪的价格比单四极杆液质联用仪的价格高出一倍以上。对于样品基质不太复杂,灵敏度要求不太高的情况下,单四极杆液质联用仪也可以满足用户的检测要求。但是如果用户资金充裕的话,可能会更倾向于购买三重四极杆液质联用仪。   Instrument:请谈谈贵公司质谱产品线的发展规划?   平野一郎先生:岛津公司这次推出的LCMS-8030在扫描速度上已经做得很好,未来我们不仅要提高仪器的检测速度,更要提高检测灵敏度。速度更快,灵敏度更高,这是我们未来产品的研发方向。   岛津公司现已经掌握了四极杆质谱、离子阱质谱、飞行时间质谱以及这次介绍UFsweeper® 碰撞室等技术,在未来我们可能会利用现有技术,开发出目前岛津公司还没有的仪器。   平野一郎先生(右二)接受仪器信息网采访   附录1:岛津国际贸易(上海)有限公司   http://www.shimadzu.com.cn/   http://www.instrument.com.cn/netshow/SH100277/   附录2:岛津资深质谱产品专家平野一郎先生(Mr. Ichiro Hirano)简介   Mr. Ichiro Hirano(平野一郎先生),1994年毕业于日本广岛大学理学院,同年加入岛津公司,担任质谱产品经理负责岛津质谱产品市场开发及推广 自2004年起,担任LCMS产品全球市场经理 作为岛津资深质谱产品专家,平野一郎先生先后参与了LCMS-IT-TOF、LCMS-2020、LCMS-8030的研发工作,对于LCMS-IT-TOF、LCMS、LCMS/MS的硬件、软件及应用具有较深的造诣。
  • 一文了解原子层沉积(ALD)技术的原理与特点
    什么是原子层沉积技术原子层沉积技术(ALD)是一种一层一层原子级生长的薄膜制备技术。理想的 ALD 生长过程,通过选择性交替,把不同的前驱体暴露于基片的表面,在表面化学吸附并反应形成沉积薄膜。 20 世纪 60 年代,前苏联的科学家对多层 ALD 涂层工艺之前的技术(与单原子层或双原子层的气相生长和分析相关)进行了研究。后来,芬兰科学家独立开发出一种多循环涂层技术(1974年,由 Tuomo Suntola 教授申请专利)。在俄罗斯,它过去和现在都被称为分子层沉积,而在芬兰,它被称为原子层外延。后来更名为更通用的术语“原子层沉积”,而术语“原子层外延”现在保留用于(高温)外延 ALD。 Part 01.原子层沉积技术基本原理 一个完整的 ALD 生长循环可以分为四个步骤: 1.脉冲第一种前驱体暴露于基片表面,同时在基片表面对第一种前驱体进行化学吸附2.惰性载气吹走剩余的没有反应的前驱体3.脉冲第二种前驱体在表面进行化学反应,得到需要的薄膜材料4.惰性载气吹走剩余的前驱体与反应副产物 原子层沉积( ALD )原理图示 涂层的层数(厚度)可以简单地通过设置连续脉冲的数量来确定。蒸气不会在表面上凝结,因为多余的蒸气在前驱体脉冲之间使用氮气吹扫被排出。这意味着每次脉冲后的涂层会自我限制为一个单层,并且允许其以原子精度涂覆复杂的形状。如果是多孔材料,内部的涂层厚度将与其表面相同!因此,ALD 有着越来越广泛的应用。 Part 02. 原子层沉积技术案例展示 原子层沉积通常涉及 4 个步骤的循环,根据需要重复多次以达到所需的涂层厚度。在生长过程中,表面交替暴露于两种互补的化学前驱体。在这种情况下,将每种前驱体单独送入反应器中。 下文以包覆 Al2O3 为例,使用第一前驱体 Al(CH3)3(三甲基铝,TMA)和第二前驱体 H2O 或氧等离子体进行原子层沉积,详细过程如下:反应过程图示 在每个周期中,执行以下步骤: 01 第一前驱体 TMA 的流动,其吸附在表面上的 OH 基团上并与其反应。通过正确选择前驱体和参数,该反应是自限性的。 Al(CH3)3 + OH = O-Al-(CH3)2 + CH4 02使用 N2 吹扫去除剩余的 Al(CH3)3 和 CH4 03第二前驱体(水或氧气)的流动。H2O(热 ALD)或氧等离子体自由基(等离子体 ALD)的反应会氧化表面并去除表面配体。这种反应也是自限性的。 O-Al-(CH3)2 + H2O = O-Al-OH(2) + (O)2-Al-CH3 + CH4 04使用 N2 吹扫去除剩余的 H2O 和 CH4,继续步骤 1。 由于每个曝光步骤,表面位点饱和为一个单层。一旦表面饱和,由于前驱体化学和工艺条件,就不会发生进一步的反应。 为了防止前驱体在表面以外的任何地方发生反应,从而导致化学气相沉积(CVD),必须通过氮气吹扫将各个步骤分开。 Part 03. 原子层沉积技术的优点 由于原子层沉积技术,与表面形成共价键,有时甚至渗透(聚合物),因此具有出色的附着力,具有低缺陷密度,增强了安全性,易于操作且可扩展,无需超高真空等特点,具有以下优点: 厚度可控且均匀通过控制沉积循环次数,可以实现亚纳米级精度的薄膜厚度控制,具有优异的重复性。大面积厚度均匀,甚至超过米尺寸。 涂层表面光滑完美的 3D共形性和 100% 阶梯覆盖:在平坦、内部多孔和颗粒周围样品上形成均匀光滑的涂层,涂层的粗糙度非常低,并且完全遵循基材的曲率。该涂层甚至可以生长在基材上的灰尘颗粒下方,从而防止出现针孔。 ALD 涂层的完美台阶覆盖性 适用多类型材料所有类型的物体都可以进行涂层:晶圆、3D 零件、薄膜卷、多孔材料,甚至是从纳米到米尺寸的粉末。且适用于敏感基材的温和沉积工艺,通常不需要等离子体。 可定制材料特性适用于氧化物、氮化物、金属、半导体等的标准且易于复制的配方,可以通过三明治、异质结构、纳米层压材料、混合氧化物、梯度层和掺杂的数字控制来定制材料特性。 宽工艺窗口,且可批量生产对温度或前驱体剂量变化不敏感,易于批量扩展,可以一次性堆叠和涂覆许多基材,并具有完美的涂层厚度均匀性。
  • 美国Advion公司即将发布三款单四级杆质谱仪相关产品
    p   第100届加拿大化学会议(简称CSC)将于当地时间2017年5月28日-6月1日在多伦多召开,Advion公司将携最新产品参会(展台号:603)。 /p p   据悉,此次大会Advion将会发布三款单四级杆质谱仪相关产品: /p p   1.新型iASAP惰性气体大气压固体分析探针 /p p   2.新型ASAP大气压固体分析探针 /p p   3.新型vAPCI源。 /p p   由此可见, Advion即将发布的三款新品均是对原有产品的升级优化,至于到底是产品性能的提升还是有新功能的加入,让我们拭目以待! /p p    strong Advion公司 /strong /p p   Advion公司早期业务为医药研发CRO,为医药企业提供液质检测服务,同时自主研发产品,比如业界知名的TriVersa NanoMate& reg (基于纳米芯片技术的全自动纳升电喷雾离子源),和液相萃取表面分析(LESA)技术 后来成立了Advion BioSystems部门 2010~2011年,Advion公司卖掉CRO部门,专注于做质谱、离子源产品 2011年,Advion公司推出第一款商品化机型Expression质谱仪,获得了“IBO 2012年工业设计”银奖。与传统四极杆LC-MS相比,Expression质谱仪另辟蹊径,具有体积小、价格低的优点,开拓出了小型化LC-MS的全新市场。由此可见,Advion是一家以技术创新为核心驱动力的企业。 /p p    strong iASAP惰性气体大气压固体分析探针 /strong /p p style=" text-align: center " img width=" 450" height=" 326" title=" QQ截图201705191903101.png" style=" width: 450px height: 326px " src=" http://img1.17img.cn/17img/images/201705/insimg/8baf450a-6ac2-4011-a9d7-b5a291ac81f2.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   用传统质谱仪检测空气敏感化合物(如金属催化剂、有机金属化合物等)时,为防止其氧化分解,需在真空手套箱中处理。使用iASAP检测对空气敏感的固体或液体样品时,则可在惰性气体保护下直接从反应容器中取样,无需在真空手套箱中处理。Advion公司于2016年3月在第251届美国化学会全国会议暨博览会上推出iASAP,该产品由ASAP改进而来。 /p p    strong ASAP大气压固体分析探针 /strong /p p style=" text-align: center " img width=" 450" height=" 278" title=" QQ截图201705191904082.png" style=" width: 450px height: 278px " src=" http://img1.17img.cn/17img/images/201705/insimg/c2353439-2bab-4871-ba32-4334e46c771d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 450" height=" 243" title=" QQ截图2017051919044622.png" style=" width: 450px height: 243px " src=" http://img1.17img.cn/17img/images/201705/insimg/7720ca8c-9407-489c-a0d4-c56569c1c2cd.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   ASAP大气压固体分析探针的最大优点是不需使用溶剂溶解样品,可直接检测液体或固体样本(如混合物、食物、天然产物、药物片剂等),适用于挥发性和半挥发性的样品分析。实验者只需用探针管蘸取待测样品,然后插入CMS进样口检测即可。样品被热的氮气加热干燥,达到样品沸点后气化,同时电晕针放电,气相分子被离子化,进入检测器,30秒内即得到相关数据。 /p p    strong vAPCI源 /strong /p p style=" text-align: center " img width=" 450" height=" 308" title=" QQ截图201705191905503.png" style=" width: 450px height: 308px " src=" http://img1.17img.cn/17img/images/201705/insimg/2c3c512c-1871-4369-852d-884581a1c28d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   传统APCI源几乎不能用于分析气态样品,而vAPCI源与expression CMS联合使用,利用顶空分析技术,能不经过样品前处理快速准确地检测空气、呼吸及其他气体样品,能比APCI源检测更多类型的气体样本。 /p p    strong 顶空分析 /strong /p p   顶空分析是通过样品基质上方的气体成分来测定不同组分在原样品中的含量,其基本原理是在一定条件下气相和凝聚相(液相或固相)之间存在着分配平衡。所以,气相的组成能反映凝聚相的组成。与顶空分析相比,传统的液液萃取都是将样品溶在液体中,不可避免地会有一些共萃取物对分析造成干扰,而且如果做痕量分析,对溶剂纯度的要求也极高。而顶空分析只取气相部分进行分析,极大降低了样品基质对分析的干扰。 /p p & nbsp /p
  • 新污染物监测现状:液相色谱-三重四极杆质谱仪普遍配置不足
    自《新污染物治理行动方案》发布以来,各地方省级行政区相继发布《新污染物治理工作方案》以推进新污染物治理工作。截至2023年5月,我国31个省级行政区以及新疆生产建设兵团全部出台《工作方案》,涉及医药制造业、化学原料和化学制品制造业等19大类行业。同时,相关地市的方案也在不断的发布中。根据生态环境部已印发的《2023年新污染物环境监测试点工作方案》(环办监测函〔2023〕219号),目前第二阶段的试点监测工作正在开展中,天津、河北、江苏、浙江、山东、湖北、广东、广西、重庆、陕西等10个省(区、市)开展试点监测,每个省份不少于2个地级市(或直辖市区县)开展试点监测。新污染物已然成为大家关注的焦点,在刚刚结束的第十二届全国环境化学大会中,多位专家在报告中指出,化学品的快速增长和使用是新污染物问题产生的根本原因,不断涌现的新污染物已经对生态环境和人群健康构成了风险,而高风险化学品的绿色替代是源头治理新污染物的重大需求。会议中,各位专家特别就新污染物研究的现状、面临的挑战、需求及未来的展望等多个问题展开探讨。其中,中国环境监测总站生态环境监测分析技术室袁懋主任分享了《新污染物环境监测技术体系构建设想及试点监测应用》。基于全国生态环境监测系统新污染物监测能力调研数据,袁懋介绍了当前新污染物监测能力的现状。据介绍,各监测站对各个环介质的分析能力依次为水、废水、土壤、沉积物、环境空气、固体废物、海水、废气和生物;大部分省份均有监测站具备挥发性有机污染物和监管时间较长的典型持久性有机污染的分析能力;地域分布上,江苏、广东、山东、湖北等东部和中部省区具有较强的新污染物监测和分析能力,新疆、内蒙古、青海等西北省区基本没有新污染物的监测和分析能力;而从仪器配备情况上来说,目前生态环境监测系统液相色谱-三重四极杆质谱仪普遍配置不足,且多为2012年左右配置,设备老旧。对于下一步的监测需求,袁懋说,要开展新污染物环境监测技术方法研究,系统开展不同环境要素、不同技术原理、不同应用场景的新污染物监测方法研究,开发快捷、简便、绿色、高效的前处理技术,高灵敏、高选择性或高通量的分析技术;同时,要开展新污染物环境监测技术装备研发与应用示范研究,突破新污染物初筛、定量分析所需高分辨质谱等大型仪器关键技术,探索相关仪器设备的国产化,开发高效、快捷的新污染物在线、便携、快检监测技术和仪器设备。袁懋表示,要联合社会化力量和监测系统队伍合力推进检测技术体系建设,鼓励科研机构、仪器公司等社会力量利用自身科研技术优势,积极开展监测技术研究,推动监测技术发展与落地。其呼吁,希望加强与科研单位和仪器公司等社会力量的广泛合作,进行新污染环境监测技术装备国产化突破。
  • 实验室全自动洗瓶机的清洗原理和流程,你知道吗?
    实验室全自动洗瓶机是一种专为清洗实验室玻璃瓶皿和其他容器而设计的设备。通过一系列的清洗程序和先进的技术,它能够有效地去除瓶子内部的残留物、污垢,确保瓶子的清洁度和安全性。下面将详细介绍实验室全自动洗瓶机的清洗原理与流程。一、清洗原理1. 高温高压喷水技术:全自动洗瓶机采用高压喷水技术,将水流以极高的压力从喷头喷出,冲击瓶子内部表面。这种高压水流能够剥离并冲刷掉残留物和污垢,确保瓶子内部的洁净。2. 化学清洗:根据需要,全自动洗瓶机还可以添加特定的酸碱清洗液,与瓶子内部的残留物发生乳化剥离作用,使其更容易被清除。二、清洗流程预处理:在开始清洗之前,首先对瓶子进行预处理,包括倒空瓶子、检查瓶身有无破损等。装载:将待清洗的瓶子放入全自动洗瓶机的指定位置,确保瓶子摆放整齐、稳定。启动程序:选择相应的清洗程序或预设的清洗模式,启动洗瓶机。喷水清洗:高压喷水技术开始工作,水流冲击瓶子内部表面,剥离并冲刷掉残留物和污垢。漂洗:使用纯水进行进一步漂洗。 烘干:最后,洗瓶机进行烘干程序,去除瓶子表面的水分,确保瓶子干燥。取出:完成清洗和烘干后,瓶子可以从洗瓶机中取出,备用。实验室全自动洗瓶机的清洗原理和流程是实现高效、自动化清洗的关键。可以清除瓶子内部的残留物、污垢,确保瓶子的清洁度和安全性。这大大提高了实验室的工作效率,降低了操作风险,并节省了人力资源和水资源。转载自:www.hzxpz.com
  • 【有奖直播课】无机碳如何影响有机碳检测?Sievers ICR(无机碳去除器)的原理、结构及维护
    小碳小碳又和大家见面啦!我们的#小碳微课堂#第六期将于9月25日开课。本期直播课,我们还将从报名观众中随机抽取10名幸运儿,送出一份小礼品,快来报名吧!(报名时,请准确填写您的邮寄地址。获奖名单将于10月初在微信公众号中公布,敬请留意。)Sievers® ICR(无机碳去除器)的原理、结构及维护时间:2020年9月25日周五,14:00形式:网络直播课,注册报名后可随时回看费用:免费分析仪在测量总有机碳 (Total Organic Carbon,TOC)时,都必须处理无机碳(Inorganic Carbon,IC)。IC是指CO2、HCO3-、CO32-里的碳。IC的来源包括溶解的石灰石和从空气中吸收的二氧化碳。几乎所有样品水中都含有有机碳和无机碳,它们统称为总碳(Total Carbon,TC)。有机碳 (TOC) = 总碳 (TC) - 无机碳 (IC)当水样中的IC小于TOC时,分析仪可以直接测量IC,然后用TC减去IC,即得到TOC。但当IC较高且TOC较低时(例如,IC=10倍的TOC),如果不去除或降低IC,TOC的测量结果就会变得不稳定。此时就需要去除或降低IC以提高仪器的分析性能。Sievers分析仪采用无需气体的ICR(无机碳去除器)来降低IC含量。该方法已获得专利,并获USEPA批准用于合规监测。常见应用包括监测原始地表水和地下水。有时,降低或去除IC也有利于监测成品饮用水。对于在线连续监测的应用,应对所有样品启用ICR,并保持ICR的运行。ICR安装在Sievers M系列实验室、便携式、在线型TOC分析仪的机箱内部,环保效果最佳,使用方便,占据空间小。此次直播课程中,我们将与您分享ICR相关的以下议题,欢迎收看:- 为何要使用ICR?- Sievers® ICR的工作原理- Sievers® ICR的使用方法- Sievers® ICR的维护与验证- Sievers® ICR的常见报警与处理讲师介绍娄海彦售后服务经理Sievers分析仪娄海彦经理是苏伊士水务技术与方案-Sievers分析仪的售后服务经理。具有多年仪器行业从业经历,熟悉TOC分析仪的软硬件、日常操作、维护及故障排除。报名方式扫下列二维码,进行会议注册,注册成功后,我们将于直播当天通过微信公众号给您发送课程直播提醒,直播时登录直播链接,验证注册时的手机号,即可收看课程。若您未收到微信提醒,直播时可通过苏伊士Sievers分析仪的微信公众号菜单:最新资讯-小碳微课堂进入课程直播。如您当天无法收看直播,课程结束后您也可以登录直播链接,验证注册时的手机号,收看课程回放。
  • 483万!苏州岛津中标武夷学院气质联用仪(三重四级杆)及液质联用仪(三重四级杆)采购项目
    一、项目编号:[350700]FJJX[GK]2022015二、项目名称:武夷学院气质联用仪(三重四级杆)及液质联用仪(三重四级杆)采购项目三、采购结果 [350700]FJJX[GK]2022015-1 包1供应商名称供应商地址中标(成交)金额(单位:元)福建南榕福科技有限公司福建省福州市鼓楼区东街街道东街121号新亚大厦15层01室4839000.0000元四、主要标的信息合同包[350700]FJJX[GK]2022015-1 包1福建南榕福科技有限公司:货物类品目号品目编号及品目名称采购标的品牌规格型号数量单位单价(元)金额(元)1-1A02100408色谱仪气质联用仪(三重四级杆)苏州岛津GCMS-TQ8050NX1台13450001345000.00001-2A02100408色谱仪液质联用仪(三重四级杆)苏州岛津LCMS-80501台34940003494000.0000
  • 安益谱全新7800双曲面四极杆GCMS震撼上市
    安益谱(Anyeep)7800高性能双曲面四极杆GCMS是继7700双腔双泵GCMS后推出的全新型号。仪器采用自主加工的共轭双曲面四极杆质量分析器,与普通圆杆相比,进一步提升了灵敏度和全质量范围的分辨率。 特点:①质量分析器:四极杆质量分析器常见的有圆柱形四极杆、双曲面四极杆。一直以来,双曲面四极杆由于对加工工艺要求非常高,所以通常使用圆柱形四极杆代替。圆柱形四极杆产生的电场与理论电场存在一定的偏差,而双曲面四极杆可以产生理想的四极场,采用双曲面四极杆能够进一步提升仪器性能。 安益谱双曲面四极杆②分辨率:相比圆杆的半峰宽0.4,提升至半峰宽0.25,同位素比例更准确。 全氟三丁胺特征离子半峰宽 同位素比例m/z70、m/z220、m/z503全氟三丁胺特征离子m/z69、m/z219、m/z502及其同位素③全新升级的射频电源:保证全质量范围内质量准确性,氦、水、氮、氧等低质量离子的质量更准确。氦、水、氮、氧离子④控制电路:升级的控制系统配合双曲面四极杆使7800扫描速度提升至22000amu/s。⑤检测器:质谱检测浓度动态范围大于7个数量级。⑥灵敏度:1pg八氟萘全扫描信噪比2000:1RMS,IDL:7fg。
  • 四极杆质谱等入选首台(套)重大装备推广目录
    日前,工信部组织行业专家研究起草了《首台(套)重大技术装备推广应用指导目录》(征求意见稿),并公开征求社会各界意见。   其中与科学仪器相关的包括四极杆质谱仪、PM2.5便携式监测仪、超导磁共振医学成像系统、全自动生化分析系统、全自动血液分析系统、多声道超声波气体流量计等。具体如下:   重大技术装备是指对国家经济安全和国防建设有重要影响,对促进国民经济可持续发展有显著效果,对结构调整、产业升级和节能减排有积极带动作用的装备产品。首台(套)重大技术装备是指集机、电、自动控制技术为一体的,运用原始创新、集成创新或引进技术消化吸收再创新的,拥有自主知识产权的核心技术和自主品牌,具有显著的节能和低(零)排放的特征,尚未取得市场业绩的成套装备或单机设备。 编辑:刘玉兰
  • 安捷伦科技原价升级单四极杆LC/MS系列产品
    安捷伦科技原价升级单四极杆LC/MS系列产品 2011 年6 月6 日,安捷伦科技公司(纽约证交所:A)宣布对其6100B 系列单四极杆液相色谱/质谱(LC/MS)平台进行全面升级,而价格保持不变。 作为安捷伦单四极杆LC/MS 系列的入门级产品,如今6120B 的正/负切换速度比上一代仪器提高了10 倍。高达30 微秒的切换速度能够为每次进样提供更多信息,即使对于窄LC 峰亦是如此。扫描速度也显著提高,由原来的2500 u/sec 增至5250 u/sec,从而实现更可靠的分子鉴定和确认。 中端产品Agilent6130B 现在可以兼容安捷伦喷射流技术。这一独特的进样口设计采用超热鞘气使离子流集中后再进入质谱仪。这种设计能够在检测限水平产生具有较低相对标准偏差的较强信号,从而有效提高灵敏度。该仪器已经能够提供高达3000 amu 的质量范围,而提升的灵敏度又进一步增强了其多用性。 同时,安捷伦还发布了新版MassHunter Translator 软件,包括高性能6150B 在内的所有安捷伦单四极杆LC/MS 系统用户均可受益。Translator 软件能够自动将SQ 数据文件转换为MassHunter 格式。MassHunter 具备强大的定性和定量数据分析及报告功能。而旧版的Translator 软件仅仅支持手动过程,所需的用户干预要多得多。 安捷伦LC/MS 市场总监Ken Miller 说道:&ldquo 我们的单四极杆客户一直赞赏6100 系列的耐用性及强大性能,如今我们提供了更强大的产品,以答谢他们一直以来的大力支持。&rdquo 了解更多信息,请访问:www.agilent.com/chem/singlequad 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的18500 名员工为100 多个国家的客户提供服务。在2010 财政年度,安捷伦的业务净收入为54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 北分瑞利成功研制便携式四极杆质谱仪
    近日,由北京北分瑞分析仪器(集团)有限责任公司承担的北京市科技计划项目&ldquo 便携式四极杆质谱仪&rdquo 顺利通过验收。项目申请专利3项,其中发明专利1项、实用新型专利2项。   该项目紧密围绕环境安全、食品安全、公共安全等领域现场应急监测需求,成功研制出国内首台&ldquo 便携式四极杆质谱仪&rdquo 。突破了双曲面四极杆质量分析器的加工和制造瓶颈,并在微型防震真空系统及真空保持、小型化整机集成等关键技术上取得重大突破,实现了现场快速采样、热解析、色谱分离、膜法进样和四极质谱的高度集成。
  • 405万!四极杆飞行时间液质联用仪采购招标项目
    项目编号:2205004015项目名称:四极杆飞行时间液质联用仪采购招标项目预算金额:405.0000000 万元(人民币)最高限价(如有):405.0000000 万元(人民币)采购需求:名称:四极杆飞行时间液质联用仪。工作内容包括所有硬件设备和软件系统的供货、安装、集成、调试、验收、交付使用和质保期内维修保养。数量:一套简要技术需求:离子源和进样系统须具有独立ESI离子源设计,离子传输部件必须采用毛细管离子传输,确保仪器较好的真空梯度和抗污染能力等。详细情况请参见本公告附件。合同履行期限:合同开始至合同结束本项目( 接受 )联合体投标。招标文件-四极杆飞行时间液质联用仪采购招标项目.pdf
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制