当前位置: 仪器信息网 > 行业主题 > >

回收率标准

仪器信息网回收率标准专题为您提供2024年最新回收率标准价格报价、厂家品牌的相关信息, 包括回收率标准参数、型号等,不管是国产,还是进口品牌的回收率标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合回收率标准相关的耗材配件、试剂标物,还有回收率标准相关的最新资讯、资料,以及回收率标准相关的解决方案。

回收率标准相关的资讯

  • 影响元素测定回收率?您也许不了解的一些秘诀!
    微波消解前处理样品后,您在测试元素回收率时是否存在以下疑问:为什么样品双样测试结果不平行?为什么元素测定回收率不稳定?整个样品前处理及元素测试的流程比较繁琐,这其中的每个步骤都有可能影响您分析检测的结果。 样品测试流程 称量作为整个流程的第 一步,它的准确性直接影响分析检测的结果,特别对于需要稀释分析的样品来说更是如此。这需要我们配备一个经常进行校准的五位读数分析天平以及塑料制的称量勺,且天平在无外部干扰的情况下读数稳定。我们需要确保取样的样品具有代表性与均匀性,以避免取平行样时导致的测试结果双样不平行。 常用的酸有硝酸、盐酸、氢氟酸、过氧化氢等,加酸时我们需要将管壁上的样品冲刷到底部。一般情况下的消解只需加浓硝酸即可完全消解,而一些成分复杂的样品则需要添加不同的酸:例如当样品中含有硅时,我们在加入硝酸的基础上还需加入氢氟酸。 消解的温度对消解的结果至关重要,若温度不够会导致消解不完全,达不到回收率。安东帕HVT/SVT系列高压消解转子能够到达更高的消解温度,实现完全消解并满足回收率。 安东帕HVT/SVT系列高压消解转子 赶酸主要是为了让酸浓度与标准溶液酸度接近,在上机分析时能达到一个理想的环境。赶酸还有一个目的是降低酸度的同时能起到对分析仪器保护的作用,酸度太高会直接或者间接的影响仪器的使用寿命。需要注意的是,我们在赶酸时要谨防目标元素挥发。例如测试汞、砷元素的时候赶酸温度不可过高,对易挥发性元素的赶酸温度建议设置为120~130℃。常规电热赶酸板的赶酸时间较长,元素可能挥发或损失。使用安东帕24Evap自动微波赶酸转子可自动确定赶酸终点,酸液自动中和回收的同时能够防止元素的挥发或损失,可实现15分钟快速赶酸。 确保标准曲线R²0.999,空白值 如在以上流程中都未出现问题,可回收率仍不理想,我们还可从测试方法空白值上找原因。有客户反映测试方法空白值偏高,质控样品不减空白回收率在范围内,减去空白则回收率结果偏低。若出现以上情况则需考虑如下两点:是否引入了污染?在消解之前需将反应管清洗干净,建议直接使用安东帕仪器的内置的清洗程序及方法,清洗干净后再做质控样品。酸的纯度是否不够?需使用优级纯及以上的酸(质保期内)。
  • 清洁验证:微生物总有机碳回收率和线性
    简介在生产消费品时,有效地清洁生产设备对质量控制来说至关重要。清洁工艺的目标是降低产品污染的风险,有效的清洁工艺可以将风险降低到可接受的水平,以确保产品质量。如果无法衡量和验证清洁工艺的有效性,就无法了解产品质量和消费者安全的风险。根据美国食品和药品管理局(FDA)提供的数据,2017年食品和饮料行业产品召回的主要原因是微生物对产品的污染。对于减少和消除微生物污染来说,强有力的清洁工艺至关重要,因此监控清洁工艺有效性的方法同样至关重要。总有机碳(TOC)分析是消费品生产商广泛采用的非专属方法,用于检测产品、清洁剂、以及微生物等污染物的残留量。为了证明TOC分析法适用于预期用途,我们对设备清洁之后可能尚存的残留物进行了回收和线性研究。工厂通常会测试化学污染物和化合物,但很少用TOC分析法来测试微生物的回收率。本文旨在探讨对于清洁验证和确认,TOC分析法能否证明可接受的微生物污染回收率和线性。实验设计和设置我们同科罗拉多大学博尔德分校合作,用一整夜时间在胰酶大豆肉汤中培养100毫升枯草芽孢杆菌(Bacillus subtilis)。以4500转/分钟的速度将最终培养物的十毫升等分试样离心分离10分钟,形成细胞沉淀。在每次离心之间,倒出上面的液体,用涡旋混合方法用10毫升超纯水使沉淀细胞重新悬浮。重复此过程7次。设计淋洗循环以除去细胞培养基带来的TOC污染。在第7次淋洗循环后,根据已有的4,6-二氨基-2-苯基吲哚(4,6-diaminidino-2-phenylindole,DAPI)染色任务来对细胞进行重新悬浮、稀释、计数(见图1)。图 1:枯草芽孢杆菌在细胞计数的荧光显微镜成像确定细胞密度之后,用Sievers® M9 TOC分析仪测量1 ppm确认标样组,然后进行三次细胞浓度稀释。在测量TOC之后,用0.45 μm灭菌过滤器过滤剩余样品,彻底除去细菌(见图2)。然后再次测量TOC以确定每个样品的非细胞背景TOC(见图2)。 图2:枯草芽孢杆菌的过滤过程结果表 1:微生物细胞密度与TOC的相关性结果图 3:微生物细胞密度与TOC的线性关系表1和图3是微生物TOC相关性研究的结果。线性趋势线的R2值为0.9981,表明实测细胞密度有良好的线性趋势。根据图3所示的线性拟合趋势线方程,定义为3倍噪声的检测水平(LOD,Level of Detection)为2.74E+06细胞/mL。此外,根据线性拟合趋势线和M9仪器规格,50 ppm的最大仪器定量限为2.49E+08细胞/mL。在进行微生物TOC定量之后,分别将1毫升的每种细胞密度溶液放在不锈钢试样板上进行试样污染,然后使试样干燥。此试样污染的目的是确定微生TOC相关结果的目视检测限。图4是微生物试样污染图。图 4:微生物试样板污染(A) 5.8E+07细胞/mL(B) 5.8E+06细胞/mL(C) 5.8E+05细胞/mL讨论与结论微生物TOC相关结果和试样污染图都说明了连续监测已有的清洁工艺有效性的重要性。在理想光线下,很容易在试样板上看到最高细胞密度(5.8E+07细胞/mL)的污染斑。而对于较低细胞密度,即使光线很好,也很难在试样板上看到污染斑。这表明除了强有力的清洁工艺之外,还需要用非目测的方法来测试清洁工艺的有效性。根据收集的数据,可以想象用于生产消费品的设备上仍有显着微生物污染,却仅凭目视检查就被投放到生产中,导致严重后果。因此必须连续监测已有的清洁工艺的有效性,才能降低产品质量风险和消费者安全风险。最后,由于微生物分子组成的不确定性,很难确定微生物溶液的回收率。本研究根据先前在确定活性微生物细胞中的碳含量时的发现,旨在确定微生物溶液的理论回收率。图5是理论微生物TOC产出量的计算过程。基于每个细胞的碳原子参考数,5.8E+07细胞/mL的理论TOC浓度为11.6 ppm。图 5:理论微生物 TOC 产出量的维度分析在本文的实验中,测量到5.8E+07细胞/mL的TO实际回收值为9.13 ppm,对挑战性的化合物的回收率为78.7%,从而证明实验方法是成功的。总之,本研究用Sievers M9 TOC分析仪演示了在清洁验证和确认时的细胞密度同目视检测限的关系,成功地证实了微生物TOC回收率。实验数据支持使用Sievers TOC分析仪来确认设备清洁度,同时表明除了目视检查之外还须考虑使用监测微生物污染的定量方法。TOC分析法是测量残留物、监测清洁工艺、降低总体风险的有效方法。Sievers分析仪为您提供能解决您一切清洁验证和确认需求的TOC解决方案、服务、支持。参考文献1. Recall Index and Spotlight. Expert Solutions https://www.stericycleexpertsolutions.com/recall-index/2. DAPI Protocol For Fluorescence Imaging Thermo-Fisher Scientific – US https://www.thermofisher.com/us/en/home/references/protocols/cell-and-tissue-analysis/protocols/dapi-imaging-protocol.html3. Phillips, Rob, and Ron Milo. “A Feeling for the Numbers in Biology.” Proceedings of the National Academy of Sciences 106, no. 51 (December 22, 2009): 21465. https://doi.org/10.1073/pnas.0907732106.◆ ◆ ◆联系我们,了解更多!
  • 低水溶性化合物TOC分析:清洁验证中棉签回收率的评估
    本研究旨在通过总有机碳(TOC)分析评测具有低水溶性的化合物能否进行回收。在默克索引中,这些化合物的可溶性说明被描述为“基本不溶”或“实际不溶”。我们的任务是在实验中测定这些化合物的溶解度,并调查研究擦拭技术的百分比回收率。鉴于保密协议,不能公开这些化合物的特性。化合物A-F(参见表1)为小分子(300-600 g/mol)。材料12x12cm不锈钢板,具有10x10cm加标区域,使用CIP-100清洗,使用低TOC水漂洗,放置干燥无粉手套容量瓶,按照Sievers® ️步骤914-80015进行清洗棉签(Texwipe Alpha棉签)预清洁的40 mL样品瓶移液管,30 mLHamilton气密注射器,使用CIP-100和低TOC水清洗使用膜电导检测技术的Sievers® ️ TOC分析仪带自动进样器步骤为最大限度地降低有机污染,在整个实验过程中须佩戴无粉手套。各化合物的溶解度通过将化合物加入低TOC水中进行经验测定。对混合物进行摇动、搅拌和超声处理以帮助化合物的溶解。目测检查后,按以下公式计算储备液的碳浓度。百分比(%碳)从化合物的经验式推导得出。如,化合物C20H22N4O10S的%碳是:用TOC分析确定各储备液的碳浓度。对化合物A和B的储备液直接分析,而化合物C到F的储备液进行10倍稀释。进行TOC分析之前,使用磷酸将少量(2 mL)的各储备液酸化到pHTOC结果与计算的碳浓度吻合,各种化合物的溶解度列在下表1中。进行棉签回收研究时,配制了以下溶液:2个样品瓶的试剂水2个样品瓶的背景棉签溶液2个样品瓶的标准添加溶液(共12个)2个样品瓶的棉签回收溶液(共12个)试剂水:30 mL的移液管用于在28个预清洁样品瓶(40 mL)中注入30 mL的低TOC水。流入后,马上盖上各样品瓶,直到以后使用。2个试剂水样品瓶进行标注并放到一边,以备随后的TOC分析。剩余的26个充注好的样品瓶用于制备背景棉签溶液、标准添加溶液和棉签回收溶液。背景棉签溶液:通过切除三个棉签尖端到30 mL低TOC水中制备两个样品瓶的背景棉签溶液。小心避免污染切入水中的棉签柄部分。标准添加溶液:在低TOC水(30 mL)中加入少量储备液(试剂量范围为0.1-1.0 mL)制备标准添加溶液(每种化合物2个样品瓶)。每种化合物所选的试剂量使最终的标准添加溶液浓度约为1 ppm C。棉签回收溶液:制备棉签回收溶液时,在不锈钢板上放置用于制备标准添加溶液的同样试剂量的储备液。溶液在10x10cm钢板表面区域均匀分布,以便干燥(大约1个小时)。然后使用三根由低TOC水预湿润的棉签擦拭钢板的表面。然后将三根棉签的尖端切入低TOC水的样品瓶(30 mL)中。分析前剧烈摇动所有的样品瓶。使用配备自动取样器的Sievers TOC分析仪(采用膜电导检测技术)对所有样品瓶(28个)进行分析。分析条件为:氧化剂流速为0.2 mL/min,酸流速为0.75 mL/min。每个样品瓶重复分析四次。舍弃各样品瓶的第一次测定数值,将后面的三次进行平均。然后将重复样品瓶的结果进行平均,显示于表1中。这些数据用于计算图1所示的百分比回收率。结论虽然化合物A至F在默克索引中描述为在水中“基本不溶”或“实际不溶”,我们通过实验测定其室温下的溶解度,其范围为百万分之几(ppm)。使用擦拭技术和TOC分析从不锈钢板上成功回收了这些化合物。本研究论证了使用TOC分析进行清洁验证应用的可行性。通过TOC分析,诸如A至F通常被认为在水中“不溶”的有机化合物实际上对于回收而言充分可溶。◆ ◆ ◆联系我们,了解更多!
  • 提升硫回收率,降低SO2排放
    原油或煤中的硫化物在加工过程中转化为H2S,而H2S是剧毒物质,对人体和环境有极大的毒害作用,必须进行无害化处理,相应采用的性价比较高的工艺就是Claus硫磺回收工艺。Claus硫磺回收装置是石油化工、天然气、煤化、焦化等行业必不可少的环保型关键装置,我国大部分采用的是成熟的Claus工艺。Claus硫磺回收装置示意图  在Claus工艺中,决定硫回收效率最重要的因素就是硫比值。H2S和SO2在130℃~150℃下反应生成单质硫和水。要想提高硫磺产量,使硫磺尽可能完全回收,排放废气中的二氧化硫含量,需要控制炉内的n(H2S)/n(SO2)=2,这样转化率可达90%~98%。OMA-3510硫磺比值仪  OMA-3510是聚光科技(杭州)股份有限公司(以下简称“聚光科技”)开发的新一代硫磺比值仪,它采用模块化、全固化紫外过程分光光谱测量等多项新技术,可有效解决硫回收测量中遇到的测量难点。产品图片  特点一 原位取样测量,响应时间短  系统采用探头原位测量方式,无取样管线,响应速度快  特点二 同时测量多个组分,消除Sv及其它硫化物对测量的干扰  系统采用紫外分光光谱测量技术,采集气体在(190~450)nm之间的吸收光谱,再用化学计算学算法同时计算H2S、SO2、COS、C2S、Sv等气体浓度,从而有效避免交叉干扰。  特点三 全固化光谱仪,无运动部件,可靠性高  系统采用全固化紫外全光谱分析仪,无运动部件;光谱仪、光源及电路等工作在常温区,可靠性高;光谱仪采用闪烁疝灯作为紫外光源,寿命长。  特点四 安装方式灵活,环境适应性强,维护量小  系统可直接安装在过程管道上,环境适应期强,可用于各级Claus装置检测点,且无需分析小屋,系统采用免维护设计。产品现场图产品现场图产品现场图
  • 总有机碳TOC分析仪对挥发性化合物的回收率
    1、挑战总有机碳(TOC,Total Organic Carbon)分析技术能够有效测量样品中的杂质,提供有机污染物的简明、非专属、全面的测量结果,为用户提供宝贵的工艺监测数据。准确地检测和量化低TOC浓度,对工艺控制、产品质量、资产保护来说至关重要。有机物的污染会影响生产工艺、污染制成品,导致整个产品批次不合格,甚至损坏生产设备。有机污染物的来源之一是挥发性化合物。挥发性和半挥发性化合物常来源于清洁剂或冷却剂。挥发性污染物也可能来自源水和化学分解产物。能够有效检测挥发性和半挥发性化合物,对于城市用水和工业用水处理工艺的全面检漏来说非常关键,我们可以用TOC分析技术来完成这项检测任务。先将有机物氧化成CO2,然后检测CO2的含量,从而完成TOC分析。有些常用的TOC分析方法会在过程中添加酸剂并进行气体吹扫。向液体样品中添加酸剂降低其pH值,可以确保将所有以碳酸根或碳酸氢根形式存在的碳转化为溶解CO2。气体吹扫就是使气泡通过液体样品,去除样品中的其它溶解气体或挥发性液体的过程。有些分析方法很难有效检测挥发性化合物,这是因为挥发性化合物会消失在气体吹扫过程中,或者需要用特殊方法才能检测到。这些局限性会造成监测数据不准确,从而导致应对决策延误甚至错误。本文比较了以下三种TOC氧化法对挥发性化合物的回收效率:高温催化燃烧法两级先进氧化法紫外-过硫酸盐氧化和膜检测法(此技术用于 Sievers® M系列TOC分析仪)2、实验在实验中,我们用上述几种TOC氧化方法对不同的挥发性化合物进行测试,以了解这些氧化方法的分析性能。我们测量了TOC浓度分别为0.25 ppm、1.0 ppm、5.0 ppm的标准品的TOC值。本次研究根据以下化合物特性,选用4种化合物【丙酮、甲醇、甲乙酮(MEK)、异丙醇(IPA)/2-丙醇】进行测试:具有挥发性或半挥发性是水系统中常见的污染物可能影响制成品质量,或长期损坏生产设备催化燃烧(CC,Catalytic Combustion)式分析仪在本次研究中使用的催化燃烧式分析仪用铂催化剂和高温燃烧法进行TOC氧化,然后进行非色散红外(NDIR,Non-Dispersive Infrared)检测。在TOC或POC(Purgeable Organic Carbon,可吹除有机碳)模式下运行分析仪来分析挥发性化合物,工作流程见图1和图2。POC模式是分析仪的可选配置,不在本次研究中讨论。图1:催化燃烧式分析仪的NPOC(Non-Purgeable Organic Carbon,不可吹除有机碳)模式图2:催化燃烧式分析仪的TOC模式图1和图2是催化燃烧式分析仪的两种常见操作模式。图1显示,在NPOC模式的吹扫过程中,IC(Inorganic Carbon,无机碳)和POC被去除,因而不包含在测量结果中。图2显示了TOC分析的两步过程。在TC测量中,由于未吹扫就进行氧化,TC(Total Carbon,总碳)测量结果中包括了POC。在IC测量中,样品和酸剂经过吹扫,产生的CO2被载气送到NDIR部分进行测量。两级先进氧化(TSAO,Two-Staged Advanced Oxidation)式分析仪在本次研究中使用的两级先进氧化式分析仪用氢氧化钠和臭氧(能够产生羟基自由基)进行TOC氧化,然后进行NDIR检测 。在TC或VOC(Volatile Organic Carbon,挥发性有机碳)模式下操作分析仪来分析挥发性化合物,TC模式和VOC模式均为分析仪的可选配置。本次研究不评估TC模式。两级先进氧化式分析仪的VOC模式类似于催化燃烧式分析仪的POC模式,这两个术语可以互换使用。图3是两级先进氧化式分析仪的标准操作模式【TIC(Total Inorganic Carbon,总无机碳)+TOC模式】。在这两步操作模式下,在NDIR测量之前先进行IC和POC吹扫。由于未进行氧化,POC不包含在测量结果中。此模式的两个步骤使用同一样品,TOC代表样品中的NPOC。*注意:在 IC 测量步骤中,已通过吹扫去除了样品中的 POC 和 IC。图3:两级先进氧化式分析仪的TIC+TOC模式图4是两级先进氧化式分析仪的附加TC模式。在此模式下,用氢氧化钠和臭氧来预氧化样品,以便在吹扫之前氧化全部POC。分析仪的VOC模式是TC分析和TIC+TOC分析的结合。计算实测的“TC”与实测的“TIC和NPOC之和”之间的差值,即可得到VOC。VOC=TC–(TIC+NPOC)。图4:两级先进氧化式分析仪的TC模式Sievers M系列分析仪Sievers M系列TOC分析仪用紫外-过硫酸盐进行TOC氧化,然后进行膜电导(MC,Membrane Conductimetric)检测。分析仪可以在普通操作模式下检测挥发性有机物。图5是M系列分析仪所采用的TOC分析方法的流程。图5:M系列分析仪的标准操作图5显示了Sievers M系列TOC分析仪的普通分析模式。样品在被加入酸剂后,分流到分析仪中相互独立的TC通道和IC通道中。TC通道中的样品被加入氧化剂,然后在紫外线照射下,样品中的有机物被氧化。IC通道中的样品则跳过上述过程。各通道中的样品通过CO3、结果
  • “百亿级”动力电池回收市场现状与前景
    p    /p p   新能源汽车的高速发展让全球电动汽车的保有量达到了一个新的里程碑,据相关数据显示,到2017年为止,全球电动汽车保有量(包括纯电动汽车和插电式混合动力汽车)超过300万辆,相比2016年增长了57%。 /p p   作为新能源汽车“心脏”的动力电池配套量自然也逐年增加,而目前市场上流通的新能源汽车的质保期多以5年或8万公里为标准。若照此标准计算,2009年至2012年推广的新能源汽车或行驶里程接近8万公里车辆的动力电池已经到了需要更换的标准。对此,业内人士估计,2018年累计废旧动力电池报废量将超17万吨,从中回收的镍、钴、锰等金属将为电池原材料市场创造超53亿元的价值。同时,动力电池退役数量每年将以几何级的数量增长,在巨大商机的背后也隐藏着一场新的环保隐患。 /p p   在今年3月,工信部等七部委联合发布了《新能源汽车动力蓄电池回收利用管理暂行办法》,办法中提到目前需探索形成动力电池回收利用创新的商业模式,并且支持国内企业结合各地区试点工作开展动力电池梯次利用示范工程。目前国内动力电池回收产业尚未成熟,电池回收量少、回收网络不健全、环保风险大等因素也成为了动力电池回收行业发展路上最大的阻碍。 /p p   眼下,废旧动力电池回收利用一般分为两种形式:梯次利用和拆解利用。梯次利用主要针对电池容量降低使得电池无法使电动车正常运行,但是电池本身没有报废,仍可以在别的途径继续使用的电池。 /p p   拆解利用则是将电池进行资源化处理,回收有利用价值的再生资源,如钴、锂等有价金属。通过对废弃动力电池进行拆解利用,将镍、钴、锂等有价金属进行提取进行循环再利用,能够在一定程度规避上游原材料稀缺和价格波动风险,降低电池生产成本。业内相关人士告诉笔者,动力电池电浆中的镍、钴、锂纯度相比起矿石和矿物盐中提取的原料纯度会高出许多,这也是动力电池拆解利用市场的获利根本原因。 /p p   目前,国内新能源汽车多数搭载三元锂电池和磷酸铁锂电池,对于磷酸铁锂电池,由于不含有钴等贵重金属,回收拆解经济效益不高,但其循环性能较优,因此磷酸铁锂电池倾向适用于梯次利用。对于三元电池,因其含有钴贵金属元素,循环性能欠佳,因此三元电池倾向于拆解利用。相关数据显示,根据现有技术水准,金属钴回收率为95%,碳酸锂回收率85%,同时参考当前金属钴及碳酸锂价格走势,预计至2020年电池回收市场空间可达107亿元,至2024年可提升至245亿元。 /p p   除了巨额利润之外,国家出台的一系列制度也正在逐渐引导动力电池回收行业形成其商业模式,第三方机构、材料企业和电池企业也不断将目光转向这杯“羹”。 /p p   目前,第三方回收企业以格林美、湖南邦普、赣州豪鹏等企业为代表,依靠着其专业的回收技术、设备、资质和渠道等优势迈入了动力电池回收领域 锂电材料企业方面则以华友钴业、赣锋锂业和寒锐钴业等矿业巨头为代表,在近年先后斥巨资设立了各自的锂电池循环回收利用项目 动力电池企业方面由于动力电池回收责任制的设立,动力电池企业也渐渐成为电池回收商业模式的“主角”,如CATL巨资打造“电池生产-销售-回收”产业环、比亚迪与格林美合作构建“电池再造”的循环体系、国轩高科自建“动力电池回收利用试用流水线”等。 /p p   可见,随着国家政策、产业链下游需求、上游原材料价格激增、动力电池回收市场高利润等因素的推动,国内未来几年必将形成一个多元化、激烈极其竞争的动力电池回收市场,各大企业或只有及时开发和制定出各自独有的商业模式,才能尝到这“百亿级市场”的甜头。 /p p    /p p br/ /p
  • 神器上阵检测油气回收 去加油不用再闻汽油味
    2月26日,我所工作人员携&ldquo 崂应7003型 油气回收多参数检测仪&rdquo 配合青岛环保部门首次对青岛加油站的油气回收进行了检测,并且青岛多家媒体对此项新工作的展开进行了实地采访报道。 以后去加油站加油,再也不用闻呛人的汽油味了。2月26日,青岛市环保部门首次对加油站的油气回收进行了检测,用于油气回收监测的&ldquo 油气回收多参数检测仪&rdquo 更是首次亮相。预计今年年底前 ,监测仪器全部上线,对全市所有加油站实施监测。根据环保专家预测,油气回收在全市布开之后,平均一个加油站一年可以收回10吨挥发到空气中的汽油,折合人民币10万元。 神器上阵检测油气回收 26日上午10时许,记者跟随环保四方分局的执法人员来到位于山东路上的中石化第 68加油站,全市油气回收的&ldquo 首测&rdquo 随机选在该加油站进行。记者看到,一台橘黄色、一米高的&ldquo 神秘仪器&rdquo 摆在加油机前面,这就是青岛环保部门刚刚上线的油气检测仪器 ,全名叫&ldquo 油气回收多参数检测仪&rdquo 。 &ldquo 现在加油站的加油机已经进行了油气回收改造,油气回收率到底怎么样,是不是&lsquo 滴油不漏&rsquo ,用这个仪器一测就知道了。&rdquo 环保四方分局执法人员称。细细打量眼前的仪器 ,共有两部分组成,一部分是个银色的油罐,另一部分是橘黄色的计算仪,两部分中间透明软管连接,还有一条放静电线。 &ldquo 油气回收就是不让汽油在加油的过程中挥发到空气当中,所以加到汽车油箱里多少升油,就应该排出来多少升气体,这个仪器的检测原理,就是看加到油罐里的汽油与排出油气体积比。&rdquo 环保执法人员一边介绍仪器使用原理,一边开始操作检测。 加油员使用加油枪向银色油罐加入了19升93号汽油,加油枪停止工作后几秒钟,检测仪器的液晶显示屏上自动显示出所排出的油气体积为19.41升,排出气体与加入汽油的比例为1.02:1。根据国家最新颁布的《加油站大气污染物排放标准》,仪器检测结论为&ldquo 达标&rdquo ,加油枪的油气回收性能良好,未发生挥发性有机物的泄漏,对周围大气环境没有造成污染。 一个站一年省10吨汽油 检测过程当中记者发现,油枪往油罐里加油时,几乎闻不到油气味。环保执法人员随身携带的便携式有机物浓度检测仪也未发出超标报警。环保专家介绍,加油站以往浓重的汽油味,就是汽油挥发到了空气当中,而开展油气回收之后,节油的经济效益非常可观。环保专家算了这样一笔账:以中石化第 68加油站为例,去年销售汽油5000吨 ,按经验数据千分之二的回收率测算,开展油气回收治理后,一年可以减少油气挥发10吨;按照 93 号汽油的现价是每吨10330元,折合成人民币就是10多万元。 记者随后随即走访发现,目前青岛市区大多数加油站都建在交通要道,甚至还紧邻居民楼,环保部门称,汽油有机物在空气中挥发的高度是1.1米~1.3米,恰好在人的呼吸范围内,长期吸入油气对人体的危害显而易见,油气回收之后,加油站附近的居民也能呼吸到新鲜空气了。 年底全市全部实施监测 据市环保部门介绍,截至目前 ,全市已完成了11座储油库、440座加油站和237辆油罐车的油气回收治理,26日是首次对油气回收状况进行检测。今年年底前 ,环保部门将对全市储油库、加油站和油罐车油气污染防治设施运行管理情况进行全面执法检查,对加油站挥发性有机物实施全面监测,依法查处油气污染防治设施不正常运行或闲置不用等违法行为。监测的主要项目,是检查加油站储油罐卸油口和油气回收接口和管路是否有跑冒滴漏现象、加油枪封气罩是否密封良好、油气回收是否充分等,强化污染物排放的监督管理。 ■链接油气挥发形成PM2.5 据了解,汽油油气的主要成分有苯、二甲苯、乙基苯及其他碳氢化合物,多属致癌物质 ,排放到大气后,在空气中会转化成臭氧(O 3)和细颗粒物(PM2.5),是造成光化学烟雾、灰霾等大气污染问题的重要原因。同时,油气污染物属于易燃易爆气体,遇火极易发生爆炸或火灾事故。机动车的每一次加油、从储油库到油罐车的每一次转移,都会有大量油气挥发到空气中。 作为空气污染治理的一项重要的环保举措,青岛市政府规定,2012年9月30日以前,所有加油站、汽油运输车辆必须建设(或增加)油气回收设施,对于新、改、扩建的加油站、储油库,必须同步设计、建设、运行油气回收装置。 文/图 记者 王媛 (来源:半岛网-半岛都市报) [编辑: 李敏娜] 崂应官网: www.hbyq.net PM2.5采样,烟尘采样,烟气分析,大气采样,粉尘采样,紫外烟气分析,二恶英采样,油气回收检测,烟尘测试仪、真空箱采样、酸尘降采样、24小时恒温气体采样
  • 金属回收和废物处理中手持合金光谱仪的优势
    近些年金属回收和废物处理行业迅速发展,对于合金材料的检测需求日益增加,手持合金光谱分析仪作为一款便携的检测工具,成为该行业重要的检测利器。  手持合金光谱分析仪具有以下特点:  1. 手持合金光谱分析仪可以准确分析出样品中的各种元素成分。其高精度的检测能力,使得合金材料的检测更为准确可靠。  2. 手持合金光谱分析仪操作简单,无需复杂的样品处理。并且其设计精巧,可以随时随地进行检测,大大提高检测效率。  3. 手持合金分析仪可以对各种金属材料进行检测,手持合金光谱仪通常支持多种元素和多种合金的测试与分析,可用于分析金属材料、废旧金属回收、废物处理等多个领域。  在金属回收领域中,手持合金光谱分析仪可以帮助回收企业快速鉴别金属材料的种类和成分,其次,通过检测回收材料中的有害元素含量,可以有效保护环境和人体健康。此外,手持金属光谱仪还能够辅助回收企业对金属材料进行分类和分级,提高资源利用率。  在废物处理过程中,手持金属光谱仪可以对废物中的金属材料进行准确检测,以便进行有效的回收再利用。通过增加合金材料回收率,减少环境污染,实现资源循环利用,废物处理行业将得到更好的发展。  在金属回收和废物处理中使用手持合金光谱仪,可以提高对废旧金属成分和质量的快速鉴别和分析,从而为品质控制、价值评估、资源回收等方面提供更准确、更及时的数据支持。  赢州科技作为仪景通一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢州科技为您提供原装零部件替换、维修。
  • 《GB 5009.35-2023 食品安全国家标准食品中合成着色剂的测定》标准解读!
    “食品5009”标准作为中国的一套食品卫生检验方法标准,是保障食品安全的重要手段之一。该标准涵盖了多种食品卫生检验方法,包括食品中各种成分的测定方法,以及食品接触材料的环保测试等。5009系列标准与其他食品安全国家标准相互配套使用,形成了一个完整的食品安全检测体系。值得一提的是,仅今年实施的5009系列标准就已超过30项。在这样的背景下,仪器信息网特别策划了“2024年食品检测标准全面解读——GB 5009系列”主题约稿,以增强业界专家和技术人员、疾控中心相关机构工作者之间的信息交流,同时向仪器用户提供食品检测领域更丰富的产品、技术解决方案。本文邀请到广州莱奥实验室科技有限公司分享食品中合成着色剂测定新国标GB 5009.35-2023相关的技术及解决方案。食品着色剂在我们生活中无处不在,丰富的色彩感官能刺激我们的味蕾、增加我们的食欲;正因如此,商家经常会在食品中添加各种各样的食品着色剂,但着色剂问题不容忽视,今年4月3日,上海市场监管局公布万豪酒店分公司有5批次青团添加了禁用着色剂,有柠檬黄、亮蓝等着色剂;今年4月25日,四川凯佳瑞食品有限公司生产的麻辣牛肉片(2023/11/17、1.0kg/袋),胭脂红检测值为0.0097g/kg,国家标准规定不得使用。今年国家颁布了GB 5009.35-20236《食品安全国家标准 食品中合成着色剂的测定》代替了以下三大标准:1、GB 5009.1412016《食品安全国家标准 食品中诱惑红的测定》2、GB/T 9695.6-2008《肉制品 胭脂红着色剂测定》3、GB/T 21916-2008《水果罐头中合成着色剂的测定 高效液相色谱法》把不同基质的规整到新标,原理统一为固相萃取法,说明固相萃取针对不同基质,具有广泛的适配性;固相萃取技术中,正压固相萃取是较为先进技术,压力高达100psi,不合格事件中青团粘稠基质,需要用到正压固相萃取,才能充分的提取,保证结果准确性。本文对于新标着色剂实验中需要注意的地方进行方法解读,以及提供该方法的配套解决方案。一、 GB 5009.35-2016 与GB 5009.35-2023 对比需要注意的地方项目旧标准(5009.35-2016)新标准(5009.35-2023)原理变化聚酰胺粉吸附法/液-液分配法乙醇氨水提取-固相萃取净化仪器条件柱温:35℃,检测波长254nm柱温:30℃,检测波长:415 nm(柠檬黄、喹啉黄),520 nm(新红、苋菜红、胭脂红、日落黄、诱惑红、酸性红和赤藓红),610 nm(靛蓝、亮蓝)。分析时间21min42min检出限和定量限方法检出限:柠檬黄、新红、苋菜红、胭脂红、日落黄均为0.5mg/kg,亮蓝、赤藓红均为0.2 mg/kg(检测波长254 nm时亮蓝检出限为1.0 mg/kg, 赤藓红检出限为0.5mg/kg)。样品取样量为2g,定容体积为2mL时,柠檬黄、新红、胭脂红、日落黄、喹啉黄、赤藓红的检出限均为0.5 mg/kg,定量限均为1.5 mg/kg,苋菜红、诱惑红、亮蓝、酸性红、靛蓝的检出限均为(0.3mg/kg,定量限为1.0 mg/kg。二、实验过程注意事项:1、称取样品称取样品时,需要注意均匀取样,以果酱为例,如果是盒装的,需要上中下层均匀取样,保证样品颜色均匀;硬质糖果,可加5ml水,40℃恒温震荡溶解后,再进行提取步骤。2、样品提取1) 乙醇氨水属于易挥发溶剂,需要现用现配;2) 乳制品提取液遇到混浊,可采取高速冷冻离心或冰箱冷冻一段时间,再离心。3) 固体样品,如粉丝,样品干硬,若水浴后,溶胀效果不佳,可以适当延长水浴时间,让样品充分溶解。4) 准确移取(乙醇氨水)提取液10ml,50℃氮吹浓缩至3ml左右,目的是为了保证过柱之前,充分去除氨水,保证上样pH=6左右,满足WAX混合型弱阴离子对上样也要求,保证小柱对合成着色剂有很好的吸附作用。(WAX混合型弱阴离子小柱对强酸性化合物具有很好的选择性)3、过柱1) WAX阴离子固相萃取小柱,不同批次之间有误差,同一批次需要进行验收测试,合格后才进行实验,确保实验结果准确性。2) 淋洗过程,如茶叶为例,天然色素较多,可适当加多点甲酸水和甲醇的量,去除水溶性和脂溶性天然色素杂质。3) 洗脱,若基质着色剂含量较多,可适当增加洗脱溶剂含量,直至洗脱至溶液无色为止;洗脱液氨化甲醇现配现用。4) 氮吹过程,氮吹至近干,不要完全吹干,对于粘稠基质,吹干,不易复溶。复溶液需要pH=9的乙酸铵缓冲溶液复溶,确保赤藓红的回收率。5) 若洗脱后,填料上还有残留颜色,并且回收率偏低,则考虑含氨水的提取液和洗脱液是否现配现用,氨水含量不足,导致ph值偏低,洗脱不完全。4、实验结果1) 靛蓝合成着色剂性质不稳定,实验结果回收率偏低的话,很大原因是降解了,所以,建议靛蓝标准品现配现用。2) 实验结果11中合成着色剂回收率,除了赤藓红偏低,其余的回收率都满足90%-110%。最后一步的复溶液可试试pH=9的乙酸铵:甲醇=9:1,提高回收率。3) 过膜时候需要选择亲水的PTFE滤膜,才不会吸附色素。合成着色剂是食品安全中尤为重要的检测项目,针对蜜饯等等粘稠基质过柱,莱奥公司推出了正压固相萃取仪、氮吹浓缩仪和氮气发生器整套解决方案,粘稠基质轻松过柱,过柱后直接氮吹,无需转移样品;48位正压固相萃取仪48位氮吹浓缩仪氮吹用氮气发生器广州莱奥实验室科技有限公司:广州莱奥实验室科技有限公司总部位于广州,是一家专注于色谱质谱前处理仪器及氮气发生器开发制造的高科技企业,团队人员拥有十几年的质谱仪、前处理仪器、氮气发生器从业经历。公司自主开发生产氮气发生器、固相萃取仪、氮吹仪等,并代理国内知名品牌的色谱质谱仪器,服务于全国食品、制药、临床检验、环境、司法鉴定、科研院所等行业。莱奥将继续潜心研发,推出更多行业需要的产品和方案,努力成为您身边的质谱方案专家!
  • 2项国家生态环境标准意见发出,涉及挥发性有机物、非甲烷总烃检测方法
    为规范生态环境监测工作,生态环境部组织编制了《固定污染源废气 挥发性有机物的采样 气袋法》等2项国家生态环境标准征求意见稿,现公开征求意见,截止时间至9月26日。(一)固定污染源废气 挥发性有机物的采样 气袋法本标准规定了固定污染源废气中挥发性有机物的气袋采样法。 本标准适用于固定污染源废气中非甲烷总烃和挥发性有机物组分的现场采样。适用于本方法的挥发性有机物应满足在方法规定的分析时效内气袋保存回收率不低于70%的要求。非甲烷总烃和部分挥发性有机物组分的气袋保存回收率参见附录 A。本标准是对《固定污染源废气 挥发性有机物的采样 气袋法》(HJ 732-2014)的修订。原标准《固定污染源废气 挥发性有机物的采样 气袋法》(HJ 732-2014)首次发布于2014年,起草单位为上海市环境监测中心、同济大学、中国环境监测总站。本次为第一次修订,主要修订内容如下: ——修订适用范围,删除废气温度须低于 150 ℃的限制; ——修改完善“方法原理”; ——增加“试剂和材料”章节,完善气袋质量要求,增加辅助气体要求;——在“仪器和设备”中,增加稀释采样法采样系统,在直接采样法采样系统中增加冷凝(除湿)装置的可选项; ——在“采样”中增加采样前准备,以及空白样品制备等要求;——在“质量保证和质量控制”中增加采样系统检查和清洁保养、气袋质量检查要求和方法、气袋保存回收率试验要求,以及采样系统稀释比核查要求等内容;——增加“注意事项”章节; ——修改完善附录 A; ——增加附录 B 和附录 C。本标准自实施之日起,《固定污染源废气 挥发性有机物的采样 气袋法》(HJ 732-2014)废止。 本标准主要起草单位:上海市环境监测中心、中国环境监测总站、江苏省南京环境监测中心。编制组主要成员:王向明、裴冰、宋钊、周守毅、吴迓名、敬红、秦承华、刘通浩、谢馨、许磊(二)环境空气非甲烷总烃连续自动监测系统技术要求及检测方法本标准规定了环境空气非甲烷总烃连续自动监测系统的原理和组成、技术要求、性能指标和检测方法。 本标准为首次发布。本标准主要起草单位:中国环境监测总站、北京市生态环境监测中心和上海市环境监测中心。本标准规定了环境空气非甲烷总烃连续自动监测系统的原理和组成、技术要求、性能指标和检测方法。 本标准适用于环境空气非甲烷总烃连续自动监测系统的设计、生产和检测。 针对应用于不同目的、场合的监测,本标准规定了相应的测量范围和性能指标要求。用于环境空气的监测系统称为Ⅰ型监测系统,用于无组织排放监控点空气的监测系统称为Ⅱ型监测系统。编制组主要成员:张杨、钟琪、薛瑞、王强、赵瑞峰附:固定污染源废气 挥发性有机物的采样 气袋法(征求意见稿).pdf《固定污染源废气 挥发性有机物的采样 气袋法(征求意见稿)》编制说明.pdf环境空气非甲烷总烃连续自动监测系统技术要求及检测方法(征求意见稿).pdf《环境空气非甲烷总烃连续自动监测系统技术要求及检测方法(征求意见稿)》编制说明.pdf
  • 真空精馏法在锂电池电解液回收中的应用
    为什么要进行锂电池电解液回收处理?众所周知,锂离子电池是由正极(锂钴氧化物、锂镍氧化物等)、负极(一般为炭素材料)、电解液、隔膜(聚乙烯、聚丙烯等)、粘结剂(聚偏氟乙烯、聚乙烯醇、聚四氟乙烯)等组成。目前有关废旧锂离子电池处理工艺的研究大多集中在贵重金属方面,例如镍、钴、锰、锂等金属材质因其自身的经济价值被先行深入研究。而电解液成分复杂,尤其是LiPF6 的存在,使得电解液接触高温环境就易发生分解,产生有毒有害物质,因此电解液处置不当会带来严重的安全和环境问题。同时,电解液本身的高附加值也决定需合理回收电解液。电解液组成及性质是什么?在各种商用锂离子电池系统中,液态电解液占主流地位。液态电解液一般由锂盐、有机溶剂、添加剂三部分组成。电解质盐,主要为六氟磷酸锂(LiPF6),其暴露在空气中易反应生成 HF、 LiF、PF5 等对人体有害的物质;有机溶剂主要有碳酸酯类、醚类和羧酸酯类;添加剂作为电解液中非必要成分,主要有碳酸亚乙烯酯、乙酸乙酯等,含量较少。表1:常见电解液的溶剂、溶质及添加剂种类[1]真空精馏方法在电解液回收处理的优势真空精馏法是在高真空环境下利用电解质和溶剂的沸点不同,经过多次冷凝和汽化后将电解质分离出来。在高真空下,精馏主要是为了防止电解液挥发损失。案例分享中海油天津化工研究设计院,周立山等[2]在惰性气体的氛围下拆解电池得到电解液,然后经过精馏装置减压真空精馏,将电解液分为有机溶剂和六氟磷酸锂初级产品,再对这两部分分别进行纯化,使之成为高纯度的产品,其中纯化后的六氟磷酸锂回收率可达 82.7%。天津卡特化工技术有限公司,毛国柱等[3]则另辟蹊径,通过真空精馏的方法,先将有机液体从电解液中分离出来,剩余的电解液通过添加比其多7 倍的硫酸氢钾,在高温下持续煅烧 5 h,然后与饱和 KF 溶液反应得到可以作为产品的 LiF。例如,下图1所示,为乙醇和水的连续分离过程,上升汽流和下降的液流在塔内直接接触,易挥发组分将更多的由液相转移到汽相,而难挥发组分将更多的由汽相转移到液相。这样,塔内上升的汽流中乙醇的浓度将越来越高,而下降的液流中水的浓度会越来越高,只要塔足够高,就能够使塔顶引出的蒸汽中只有乙醇,加热釜引出的溶液只有水。图1:乙醇-水溶液连续精馏流程1-精馏塔;2-冷凝器;3-再沸器同样,利用真空精馏法来回收锂电池电解液,主要有以下优势:● 得到的产物可以达到比较高的纯度,能够用于电池再生产,节约生产成本;● 该过程环保清洁,不易造成二次污染;● 和碱液吸收法、热裂解法、超声萃取法等其他工艺相比较,不会破坏主要成分,锂盐和有机溶剂的回收率相对较高。由以上得知,锂电池电解液成分复杂,混合了锂盐和多种有机试剂等,高温易蒸发,且多为热敏性物质。需通过真空精馏的方式,使用较高的理论塔板数的精馏塔才能将这些成分依次分离,从而达到分类回收的目的,实现资源重复利用的可能性。那么,德国Pilodist同心管精馏柱技术可以给锂电池电解液回收带来什么便利呢?德国Pilodist同心管精馏柱技术同心管精密分馏柱由两根经精巧设计和精密校准的同心管玻璃柱融合而成,垂直上升的蒸气与同心环形间隙中的液体薄膜之间高效传质,使得精密分馏柱具有很高的分离效率。同心管的外圆内壁和内圆外壁均设计成为精密设计的螺旋刮痕形式,使得在冷凝器冷凝的液体通过刮痕可以顺流而下,并形成液膜加大热交换接触面积,直至蒸馏釜。同心管技术具有如下的技术优势:&bull 压力降小&bull 滞留量小&bull 适用于热敏性物质&bull 高分离效率&bull 极少量蒸馏(低至1mL)&bull 极少工作流量而且,Pilodist精馏线产品主要有精密分馏装置PD104/PD105、微型精馏系统HRS500C和溶剂回收装置PD107等,都可以配备同心管精馏柱,特别适合热敏性物质在真空条件下的柔性蒸馏分离提纯。Pilodist HRS 500C实验室微型精馏系统其中,HRS500理论塔板数高达 60 块理论塔板。Pilodist PD 104精密分馏系统Pilodist PD 105精密分馏系统PD104和PD105的理论塔板数高达90块理论塔板数。Pilodist PD 107溶剂回收系统PD107溶剂回收系统,60块理论塔板数。可针对客户不同处理量、不同实验需求等选择不同的仪器配置方案。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696。参考文献:[1] 陆剑伟,潘曜灵,郑灵霞,等. 锂离子电池电解液的清洁回收利用及废气治理方法[J].浙江化工. 1006-4184(2021)10-0040-06.[2] 周立山,刘红光,叶学海,等. 一种回收废旧锂离子电池电解液的方法: 201110427431.2[P]. 2012-06-13.[3] 毛国柱,侯长胜,霍爱群,等. 一种回收处理废旧锂电池电解液及电解液废水的处理方 法 : 201310562566.9 [P].PILODIST德国PILODIST是德祥集团资深合作伙伴之一。德国PILODIST公司源自于蒸馏及精馏设备供应商。公司传承原Fischer公司专业的蒸馏及精馏设备制造技术,为全球石油化工、精细化工行业及科研院所客户提供高品质的原油蒸馏系统、精馏系统、溶剂回收系统、汽液相平衡和分子蒸馏等。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 用总有机碳TOC分析仪回收谷蛋白(麸质)
    简介总有机碳(TOC)分析广泛用于测量水的纯净度。水中的有机碳越多,污染物的含量就越高。生产企业必须满足行业法规所要求的成品中的水或生产用水的纯净度。越来越多的食品和饮料企业采用TOC分析来确认生产设备在更换不同批次产品时的清洁度,以确保设备上没有上一个批次残留的过敏原。虽然TOC分析并非专门用于检测过敏原,但它可以测量总碳含量。也就是说,TOC结果可以为企业提供有关生产设备在清洁之后可能仍然存在的污染物的准确信息,其中包括谷蛋白(gluten)等过敏原的信息。Sievers® M系列分析仪可以同步测量TOC和电导率,两者的检测结果都能准确反映污染情况。背景谷蛋白包括两种蛋白质,即不溶于水的麦醇溶蛋白和溶解度较高的麦谷蛋白。用于检测过敏原的ELISA检测法(Enzyme-linked Immunosorbent Assay Testing,酶联免疫吸附检测)可以检测麦醇溶蛋白的含量,其检测限通常在1-5 ppm范围内。谷蛋白中引起人体过敏反应的是麦醇溶蛋白1,因此没必要检测所有种类的谷蛋白。ELISA检测法根据抗体的增加,检测特定种类的有机污染物。而TOC检测法和抗原无关,用于检测样品中所有种类的有机污染物。当您直接比较TOC检测法和ELISA检测法时请注意以下几个重要区别传统的ELISA检测法检测水溶性麦醇溶蛋白的含量,其检测限(LOD)为1-5 ppm麦醇溶蛋白。TOC检测法检测总有机碳的含量,以ppm为单位。Sievers M9分析仪的检测限为30 ppt(或0.00003 ppm)。麦醇溶蛋白的单体含有约55%的碳2,3,因此ELISA检测法的检测限约为0.55-2.75 ppm碳(麦醇溶蛋白)。ELISA检测法根据抗原来检测特定的过敏原蛋白质,而TOC检测法是非专属性方法,用于检测所有种类的有机碳。TOC检测法用单个样品瓶来收集和检测有机污染物,而ELISA检测法则需要进行多个步骤来准备要转移到96孔板的样品。Sievers M系列分析仪同步检测TOC和电导率。这两种检测结果可以相互印证,从而更有效地帮助生产企业来确认生产设备在清洁之后可能仍然存在的污染物残留量。我们可以通过电导率的增量来确认有机污染物的含量。挑战随着越来越多的消费者要求或选用不含谷蛋白的饮食,那些既生产含谷蛋白产品又生产不含谷蛋白产品的食品和饮料企业开始面临各种前所未见的挑战。如果企业没有专用的生产车间来加工不含过敏原的食品或饮料,那就必须在完成一批产品后彻底清除生产设备上的产品残留物,以确保上一批产品不会污染下一批产品。行业法规要求企业在清洁生产设备之后进行过敏原检测,以确认设备上没有法规禁止的产品残留物。这种检测要求先收集样品,然后由受过专门训练的技术人员亲手进行检测,耗时耗力。解决方案Sievers M系列TOC分析仪采用紫外-过硫酸盐氧化和膜电导检测技术,以行业领先的准确度和精确度来测量水中的有机物含量。分析仪的检测限为万亿分之30(0.03 ppb),上限为50 ppm。分析仪可以同步测量TOC和电导率,并提供数据并列比较。我们在研究中所使用的样品,仿照被谷蛋白污染的实际样品中的有机碳浓度。表1是水中谷蛋白的回收率检测结果。样品中的电导率的增加与有机碳浓度成正比,如图1和图2所示,因此我们可以用电导率结果来进一步确认污染物含量。由于谷蛋白的水溶性较低,我们制备了悬浮液,然后测量0.01%的稀释液来确定平均TOC。我们用测量结果来计算储备溶液的总TOC浓度,然后为测量回收率制备稀释液。我们同步收集所有样品的TOC和电导率结果。结论TOC检测法帮助生产企业量化生产线上可能存在的污染物的总体含量,也可以用来检测食品和饮料生产设备上可能残留的谷蛋白等污染物。研究结果表明,Sievers M系列分析仪可以成功回收浓度为0.5-20 ppm碳的谷蛋白。在此浓度范围内,TOC结果和电导率结果成正比。与传统的ELISA检测法相比,Sievers分析仪能够提供有机污染物的全面测量结果,具有更高的检测灵敏度和更低的检测限。与ELISA检测法不同,TOC检测法允许用户用单个样品瓶来取样,从而大大节省了制备样品所需的时间和工作量。参考文献1.C. HISCHENHUBER, R. B.-V.–,. (2006). Review article: safe amounts of glutenfor patients with wheatallergy or coeliac disease. Alimentary Pharmacology & Therapeutics, 559-575.2.Information, N. C. (2022, April 04). PubChem Compound Summary for CID 17787981, Gliadins. Retrieved from PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/Gliadins.3.Wieser, H. (2007). Chemistry of gluten proteins. Food Microbiology, 115-119.◆ ◆ ◆联系我们,了解更多!
  • 澳维发布真空溶媒回收仪——真空浓缩设备配套产品新品
    产品简介:溶媒回收仪是一款用于有机溶剂蒸汽冷凝收集的创新性产品。主要与实验室平行蒸发/浓缩仪、旋转蒸发仪、真空干燥箱、真空离心浓缩仪、真空抽滤、固相萃取等样品前处理设备联用,将溶媒蒸汽进行冷凝回收,也可以与真空泵联用,净化真空泵排出的废气,减少有机废气对环境的污染,呵护实验人员的健康。产品特点:n 绿色环保内置三级冷凝器,溶媒蒸汽几乎全部被冷凝回收,乙醇回收率优于99%,二氯甲烷回收率优于98%,相比较传统冷却循环水机、冷阱,具有更高的溶媒回收效率,更绿色环保。n 干净整洁溶媒回收仪不需要添加冷却循环液、不需要外接玻璃冷凝器,使用者不再担心玻璃器件易碎问题,也避免了复杂管路的连接,更有利于实验室的干净整洁。n 防腐耐用溶媒回收仪与气体、液体接触的材质由PEEK、PTFE、高硼硅玻璃组成,能够耐受盐酸及强腐蚀性溶剂,防腐耐用。n 简单方便溶媒回收仪设有进气口及排气口,与设备简单连接,开机即可使用。外置3L螺口溶剂回收瓶,方便大体积溶剂蒸发工作。5英寸彩色液晶触摸屏实时显示工作状态,使用者可随时观察设备的冷凝能力。产品典型应用:u 与旋转蒸发仪联用溶媒回收仪与旋转蒸发仪联用,不需要添加冷却循环液,也不需要外接玻璃冷凝器,使用者不再担心玻璃器件易碎问题,也避免了复杂管路的连接,更有利于实验室的干净整洁。溶媒回收仪具有强大的冷凝能力,每次工作可以回收3000ml有机溶剂,使用者可以根据需要进行多台联用,节约实验室空间,提高工作效率。u 与平行浓缩蒸发仪联用溶媒回收仪与平行浓缩蒸发仪联用,不需要添加冷却循环液,也不需要外接玻璃冷凝器,可以满足3000mL大体积溶剂蒸发冷凝回收需求,溶剂回收仪进气接口高度为25cm,低于平行浓缩蒸发仪输出接口,保证连接管路中的冷凝液全部被收集,防止释放真空时液体回流污染样品。u 真空泵尾气净化应用溶媒回收仪与真空泵的排气口连接,可高效冷凝回收真空泵排除的有机溶剂蒸汽,极微量有机溶剂蒸汽被活性碳柱完全吸收,在实验室通风条件较差的情况下,充分保护使用者的安全与健康。创新点:1.采用直接冷凝技术,不需要添加冷却循环液,不需要外接玻璃冷凝器,方便使用; 2.内部三级冷凝器,有机溶剂蒸汽冷凝回收效率高,乙醇蒸汽冷凝回收效率优于99%,二氯甲烷蒸汽冷凝回收效率优于98%; 3.所有与有机溶剂液体、气体接触的材质,全部采用聚四氟、peek、高硼硅玻璃以及特殊材质,能够耐受氯离子侵蚀; 4.一次性可以收集3L的有机溶剂,适合大通量样品真空浓缩;
  • VOCs无组织排放标准全面执行,你准备好了吗?
    伴随国家与民众对于环境监测的重视,去年生态环境部发布了《挥发性有机物无组织排放控制标准》(GB37822—2019)。要求新建企业于2019年7月1日起执行,现有企业于2020年7月1日起执行此标准。监控范围  标准规定了VOCs物料储存无组织排放控制要求、VOCs物料转移和输送无组织排放控制要求、工艺过程 VOCs无组织排放控制要求、设备与管线组件 VOCs泄漏控制要求、敞开液面 VOCs无组织排放控制要求,以及 VOCs无组织排放废气收集处理系统要求、企业厂区内及周边污染监控要求。 测定标准其中针对厂区污染物VOCs无组织排放监测要求的相关条例如下:1、对于挥发性有机液体储罐、挥发性有机液体装载设施以及废气收集处理系统的VOCs排放,监测采样和测定方法按GB/T16157、H/T397、HJ732以及HJ38、H1012、HJ1013的规定执行。2、对于循环冷却水中总有机碳(TOC),测定方法按HJ501的规定执行。 岛津方案01 HJ 38-2017固定污染源废气 总烃,甲烷和非甲烷总烃的测定 气相色谱法  岛津根据不同的用户提供适合的配置,提高仪器的利用率,在售各种气相机型都能满足该分析,同时随仪器附带一瓶除烃空气,减少了用户自制除烃空气的工作量。 单检测器谱图双检测器谱图 02 HJ 501-2009水质总有机碳的测定 燃烧氧化-非分散红外吸收法 ★680°C燃烧催化氧化法保证高氧化能力的同时延长催化剂和燃烧管的使用寿命★4ug/L到30000mg/L的超宽测定范围★可靠的进样系统具备自动进样、加酸、流路清洗、IC在线去除、样品自动稀释功能★高盐分废水也可轻松测定 分析某厂的废水样品,原样10ml样品经过逐级稀释100倍,得到稀释后样品1# ,内标法加标样品2#(含10 mg/L内标),分析得到数据如下: 表3 回收率数据  两种方法的差异浓度体现的是可吹除有机碳(POC)的含量,本试验中POC约为3.9 mg/L。以差减法为准,经过两次测量;回收率=(24.57-14.52)/10×100%= 100.5%。符合国标方法要求,回收率在91—109%。
  • GB 5749-2022 生活饮用水卫生标准解读
    GB 5749-2022 生活饮用水卫生标准将于2023年4月1日正式实行,代替GB 5749-2006生活饮用水卫生标准。标准规定了生活饮用水水质要求、生活饮用水水源水质要求、集中式供水单位卫生要求、二次供水卫生要求、涉及饮用水卫生安全的产品卫生要求、水质检验方法。本标准适用于各类生活饮用水。GB5749-2022版相比2006版的变化新标准的水质指标由原来的106项调整为97项,包括常规指标43项和扩展指标54项,将高氯酸盐、乙草胺、2-二甲基异茨醇、土臭素正式作为扩展指标加入到新标准中。另外参考指标由之前的28项调整为55项,其中主要增加项目为有机磷农药及全氟化合物(全氟辛酸、全氟辛烷磺酸)、臭味化合物如二甲基二硫醚、二甲基三硫醚、硫化物等。相应的2022版《生活饮用水标准检验方法》GB/T 5750意见稿变动很大,其中有机污染物的部分尤为明显。其中的第八部分主要规定了饮用水中常见的有机污染物,如微囊藻毒素,烷基酚,环烷酸,PPCPs等的检测方法,第九部分则明确了饮用水中痕量农残的检测项目,方法及指标,此外意见稿的第十及第五部分则为主要针对饮用水中消毒副产物残留,如氯酸盐,高氯酸盐等的检测方法。 GERSTEL饮用水检测解决方案GERSTEL饮用水检测解决方案可实现的方法和技术包括:在线SPE-LC/MS/MS直接液体进样搅拌棒吸附萃取SBSE-GC/MS(/MS)在线固相微萃取SPME-GC/MS(/MS)气相色谱-嗅闻技术 GC-O-MS可以实现对以下污染物和臭味物质超痕量的监测,一网打尽GB5749-2022标准中的目标分析物:臭味化合物:2-二甲基异茨醇、土臭素、二甲基二硫醚、二甲基三硫醚、硫化物全氟化合物:如全氟辛酸、全氟辛烷磺酸消毒副产物残留:氯酸盐、高氯酸盐邻苯二甲酸盐农药残留激素、药物残留有机污染物:如微囊藻毒素、烷基酚、丙烯酰胺等应用案列01水中痕量土臭素和2-甲基异崁醇的测定GB 5749《生活饮用水卫生标准》征求意见稿和GB/T 5750《生活饮用水标准检验方法》征求意见稿均规定采用固相微萃取技术(SPME)对水体中痕量土臭素和2-甲基异崁醇进行测定,该方法具有无需有机溶剂、灵敏度高等特点,集采样、萃取、浓缩、进样于一体,能直接应用于气相色谱、气质联用、液相色谱等仪器。能够分析40mL/60mL的水质样品,标配24位样品盘,无需减少取样量,符合GB/T 5750《生活饮用水标准检验方法》标准要求(40mL水样),检出限更低、灵敏度更高。对2种目标物5ng/L,10ng/L,20ng/L,50ng/L,100ng/L进行线性研究,2-甲基异莰醇R2为0.998,土臭素R2为0.997,线性良好。2-甲基异莰醇、土臭素两种目标物具有更低的方法检出限,分别达到2.7ng/L、0.47ng/L,符合标准要求,并且结果稳定RSD 4% (n=6)。 02水中全氟化合物,草甘膦的检测GB5750.8 有机物指标增加检测项目:全氟辛酸&全氟辛烷磺酸原理:水样经混合型弱阴离子交换反相吸附剂(WAX)固相萃取小柱富集浓缩后氮吹至近干,复溶后上机测定;以超高效液相色谱串联质谱的多反应监测(MRM)模式检测,根据保留时间以及特征峰离子定性,采用同位素内标法定量分析。GERSTEL推出在线SPE-LC-MS/MS的自动化方法测定全氟碳酸和全氟磺酸。此方法在0.2– 2.0 ng/L的线性范围内最低检测质量浓度LOD远低于1 ng/L,完全符合标准中3 ng/L 和 5ng/L的要求 。通过对不同来源的加标水样进行分析,证明了该方法的准确性。相对标准偏差RSD10%,正确度在80% -110% 之间。 分析前无需过滤水样或用甲醇稀释。对不同来源的水样验证了方法的加标回收率和精密度。目标待测物英文缩写LOD (ng/L)全氟丁酸PFBA0.14全氟戊酸PFPA0.27全氟己酸PFHxA0.13全氟庚酸PFHpA0.19全氟辛酸PFOA0.22全氟壬酸PFNA0.13全氟癸酸PFDA0.20全氟丁烷磺酸PFBS0.20全氟己烷磺酸PFHxS0.18全氟庚烷磺酸PFHpS0.24全氟辛烷磺酸PFOS0.23对不同来源的水样饮用水,河水,山泉水,矿泉水验证了方法的加标回收率和精密度,以下是生活饮用水进行加标回收率测定举例,分别添加低(5 ng/L)、高(50 ng/L)2个浓度水平,按照所建立的方法进行样品处理及测定,每个浓度重复5份平行样品,计算平均加标回收率和精密度。 组分低浓度高浓度回收率%RSD%回收率%RSD%PFBA1137952PFPA748767PFHxA941923PFHpA953921PFOA1173972PFNA954932PFDA921923PFBS925814PFHxS919922PFHpS799913PFOS886973标准溶液 (50 ng/L) 水溶液的示例色谱图在线SPE-GC-MS/MS应用详情请见:根据欧盟饮用水指令和DIN38407标准使用在线SPE-LC-MS/MS测定饮用水中的PFAS同样的配置被成功应用于草甘膦及其主要代谢物氨基甲基膦酸(AMPA)的检测,对于水中草甘膦和AMPA的测定,结果达到了10 ng/L的最佳定量限(LOQ)并达到0.999的显著线性系数。使用FMOC-Cl衍生化,随后进行自动固相萃取SPE步骤。自动样品制备过程在25分钟内完成。LC-MS/MS循环时间小于20分钟。使用GERSTEL的重叠样品制备功能PrepAhead,使样品制备和分析完全同步,以最大限度地提高生产率和通量。0.1、0.5、1.0 和5.0 ng/ml草甘膦标准品色谱图031水中消毒副产物检测GB5750征求意见稿第10部分消毒副产物指标中,要求适用液液萃取衍生气相色谱法, 要求使用MTBE进行液-液萃取,然后衍生化(甲基化),然后带有电子捕获检测器的气相色谱分析测定水中的一氯乙酸 MCAA,二氯乙酸DCAA,三氯乙酸TCAA。若取水样25 mL水样测定,本方法最低检测质量浓度分别为:5.0 μg/L、2.0 μg/L、1.0 μg/L。使用离子色谱-电导检测法最低检测质量浓度分别为:一氯乙酸(MCAA)1.9 μg/L、二氯乙酸(DCAA)3.7 μg/L、三氯乙酸(TCAA)4.4 μg/L、一溴乙酸(MBAA)3.0 μg/L、二溴乙酸(DBAA)8.3 μg/L。GERSTEL解决方案自动化液液萃取和在线衍生,完全自动化标准中的手动制样过程:如调整PH值至5,使用甲基叔丁醚萃取,加入硫酸甲溶液在50 ℃加热块上衍生2小时,加入碳酸氢钠溶液中和,取上清液注入GC。使复杂繁琐的液液萃取和衍生步骤变得简单。节省人力和物力。 该系统每天可以分析32个样品,技术人员仅需1小时的时间来进行样品加载、制备和进一步处理。小型化的方案需要消耗的溶剂少得多,从而节省了成本并改善了实验室的整体工作环境。方法的测定限为1 ppb;对所有测定的卤代酸进行了验证,在0.5 -50 μg/L的线性很好R² 0.999。1μg/L 和 40 μg/L的重复性高 (RSD 4.8%)(n=3)卤代酸HAAsR² (0.5 - 50 ppb)LODμg/LRSD % (n=3)1 μg/L40 μg/L一氯乙酸0.9990.14.10.8二氯乙酸1.0000.11.51.8三氯乙酸1.0000.23.70.8一溴乙酸1.0000.14.81.4二溴乙酸0.9990.051.40.6法国威立雅环境在巴黎用于自动测定水中卤代酸(HAAs)的系统同时这套解决方案还可以实现对三氯甲烷,三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷的检测,使用顶空气相色谱法。对2,4,6-三氯酚(TCP)的检测可以使用自动化顶空固相微萃取HS-SPME标准方法来实现,或者对更低浓度的痕量化合物,使用搅拌棒吸附萃取SBSE来实现。04感官气相色谱对臭味物质的测定通过化学分析与感官评价方法结合,可对水中未知嗅味物质进行鉴定。主要采用气相色谱-嗅闻技术(gas chromatography-olfactometry,GC-O) 的方法,通过GC分离混合物中的组分,部分样品分流至闻测杯后,测试人员对不同时间流出的气体样品进行嗅闻,协助从大量色谱峰中寻找相应物质。此技术也可以帮助改善饮用水处理工艺。成功案例:中国科学院生态环境研究中心:感官气相色谱对水中不同化合物嗅味特征的同步测定感官闻测耦合仪器分析: 水务部门给臭气”定罪”的黑科技去除土臭素和 2-MIB的整体饮用水处理工艺研究05水中多环芳烃和多氯联苯的检测GB5750 检测多环芳烃使用固相萃取SPE-高效液相色谱HPLC:水中多环芳烃经苯乙烯二苯乙烯聚合物柱富集后,甲醇水溶液淋洗杂质,二氯甲烷洗脱,浓缩后用乙腈水溶液复溶,经高效液相色谱分离,紫外串联荧光检测器检测,保留时间定性,峰面积外标法定量。GERSTEL提供绿色高效的检测方法,使用搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的16种多环芳烃化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD在1%到15%之间,平均RSD为6.9%。大多数分析物的加标回收率在90到110%之间。16种多环芳烃化合物组分GERSTELSBSE-GC-MS/MS LOD(ng/L)GB5750SPE-HPLCLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样500 mL水样 n=6萘5.020.01022.5苊烯0.108.01134.5苊1.08.09615芴0.4516.0926.5菲2.520.0935.2蒽0.06112.0816.2荧蒽0.4516.0 9211芘0.4512.0855.8苯并(a)蒽0.0764.61055.2䓛 0.0278.01163.6苯并(b)荧蒽 0.0788.0873.8苯并(k)荧蒽0.0818.0922.3 苯并(a)芘0.0334.610212二苯并(a,h)蒽0.0738.01163.6苯并(g,h,i)苝0.0497.71067.3茚并(1,2,3-cd)芘0.0445.81044.6GB5750 检测多氯联苯使用固相萃取SPE-气相色谱质谱法GC-MS:水样中多氯联苯被C18固相萃取柱吸附,用二氯甲烷和乙酸乙酯洗脱,洗脱液经浓缩,用气相色谱毛细管柱分离各组分后,以质谱作为检测器,进行测定。GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,使用共一个方法检测多氯联苯化合物。样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的12种多氯联苯化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样而非1L,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD 5 %。分析物的加标回收率在96到109%之间。12种多氯联苯化合物组分GERSTELSBSE-GC-MS/MSLOD (ng/L)GB5750SPE-GC-MSLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样1000 mL水样n=6PCB810.0397 983.2PCB770.0416 994.2PCB1230.03710 983.6PCB1180.012101014.3PCB1140.03612 1084.7PCB1050.043111094.1PCB1260.05014982.8PCB1670.04412 1002.5PCB1560.04691021.6PCB1570.04712 1032.7PCB1690.05481021.2PCB1890.05417 961.5GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS被成功应用于欧盟水框架指令,能够在一次分析运行中从仅仅100mL的地表水样品中测定约100种相关污染物,如塑化剂(DEHP),各种农残,包括颗粒吸附化合物,绝大多数分析物的检测限在ng/L甚至到pg/L范围内。详情请见:欧盟水框架指令使用SBSE技术轻松搞定食品中400多种农残分析
  • 参考环境标准HJ 603-2011和HJ 602-2011测定环境水中的钡
    钡(Ba)常被用到颜料等工业用途,硫酸钡也被用到X射线造影剂中。但是,可溶性钡化合物有毒,会危害到身体健康。通过原子吸收分光光度计可以准确测定Ba元素。然而环境水中仅含有微量的Ba,水中的其他物质如碱金属、碱土金属会产生背景吸收,影响测定数据的准确性。偏振塞曼校正法可不受共存物质的背景吸收影响,高精度分析样品。中国地表水环境标准(GB3838-2002)规定钡的标准浓度应在0.7mg/L,地下水环境标准(GB/T-14848-2017)规定钡浓度应低于0.01mg/L。 下面使用日立偏振塞曼原子吸收分光光度计ZA3000,测定河水和海水中的钡。参考方法:中国国家环境保护标准HJ 603-2011 水质钡的测定,火焰原子吸收分光光度法中国国家环境保护标准HJ 602-2011 水质钡的测定,石墨炉原子吸收分光光度法 环境水中钡前处理步骤示例按照HJ 602-2011的前处理方法对样品进行处理。 环境水中的钡分析(火焰法)■ 实验条件 ■ 实验结果 HJ 603-2011规定Ba的检出限为1.7mg/L,此次实验数据的检出限为0.9 mg/L。加标回收率:3号样品河水(水溶性钡)102 %,5号样品海水(水溶性钡)101 %,8号样品河水(全钡)99 %,10号样品海水(全钡)100 %,加标回收率在HJ 603-2011规定的85%~115 %的范围内,测定数据准确。 环境水中的钡分析(石墨炉法)■ 实验条件 ■ 实验结果 可准确测定地下水环境标准(GB/T-14848-2017)规定的钡标准值 0.01mg/L。加标回收率:3号样品河水(水溶性钡)102 %,5号样品海水(水溶性钡)103 %,8号样品河水(全钡)98 %,10号样品海水(全钡)99 %,加标回收率在HJ 602-2011规定的80 %~120 %的范围内,测定数据准确。 综上所述:日立原子吸收分光光度计ZA3000测定环境水中的钡,符合中国国家环境保护标准HJ 603-2011和HJ 602-2011要求,测定灵敏度高,结果准确可靠。
  • 新标准实施后食品接触材料检测方法盘点
    2024年9月6日起,5个新的国家食品安全材质标准(塑料、金属、橡胶、复合材料、油墨)和2个测试方法类标准开始正式实施。材质标准:1、 塑料 GB 4806.7-2023 2、 金属 GB 4806.9-20233、 橡胶 GB 4806.11-20234、 复合材料 GB 4806.13-20235、 油墨 GB 4806.14-2023测试方法标准:1、 GB 31604.1-2023 材料及制品迁移试验通则2、 GB 31604.59-2023 食品接触材料及制品 化学分析方法验证通则标准修订内容详见 https://www.instrument.com.cn/news/20240227/706293.shtml为了适应新的相关食品安全标准,小编特意挑选了3个食品接触材料检测的优质解决方案,以供大家参考。方案分别来源莱伯泰科、岛津和谱育科技。优质方案一:食品接触材料中全氟化合物检测方案 (点击可跳转至详细方案)方案来源:莱伯泰科摘要:对食品接触材料中的全氟辛烷磺酸和全氟辛酸进行萃取和净化,并用液相色谱分离,电喷雾离子源电离,多反应监测模式检测。方法中测试的PFOS和PFOA的标准曲线线性相关系数R分别为0.9998和0.9995,加标回收率分别为86.3%和90.7%,RSD分别为6.5%和4.2%,满足标准要求。关键词:食品接触材料 全氟化合物 液相色谱完整方案链接:https://www.instrument.com.cn/application/Solution-933997.html 优质方案二:HS-GCMS法测定食品接触材料及制品中25种溶剂残留 (点击可跳转至详细方案)方案来源:岛津摘要:利用气相色谱-质谱联用仪建立了食品接触材料及制品中25种溶剂残留量的测定方法。25种溶剂混合标准品中芳烃类组分在0.1 ~ 2.5 μg、非芳烃类组分在1 ~ 25 μg质量范围内建立标准曲线,各组分线性关系良好,各组分相关系数均达到0.999以上。最低浓度点混合标准溶液连续进样6次,各组分峰面积RSD均小于7.52%。在添加水平为芳烃类组分浓度0.01 mg/m2、非芳烃类组分浓度0.1 mg/m2的条件下,平均加标回收率分布在80.44%-119.15%之间。关键词:气相色谱—质谱联用 食品接触材料 溶剂残留完整方案链接:https://www.instrument.com.cn/application/Solution-956539.html 优质方案三:等离子体原子发射光谱法测定食品接触材料中9种金属元素含量 (点击可跳转至详细方案)方案来源:谱育科技摘要:采用等离子体原子发射光谱法(ICP-OES)测定某牛奶包装盒材料样品中As、Cd、Cr、Cu、Mo、Ni、Pb、Se、Zn的含量,通过计算方法检出限、回收率和方法精密度,考察EXPEC 6000在食品接触材料样品中的实际分析性能。结果表明,方法精密度均小于5%,加标回收率均在90.72%~105.9%之间,EXPEC 6000可用于食品接触材料样品中多种金属元素的同时分析检测。关键词:ICP-OES 食品接触材料 金属元素技术特点:检测速度快;准确度高;检出限低;抗干扰能力强完整方案链接:https://www.instrument.com.cn/application/Solution-926977.html 更多食品接触材料相关国家标准和检测方法欢迎浏览行业应用栏目:http://www.instrument.com.cn/application/══════════▼▼▼══════════【行业应用】是仪器信息网专业的行业技术解析和应用拓展平台,聚焦食品农产品、传统制药、生命科学、环境保护、医疗卫生、化工生产、新能源等不同行业,以相关国家标准为依据,依托国内外主流厂商的仪器设备和优质解决方案,为用户进行全方位的检测方法和具体应用方案解读,旨在解决每一位用户的科学实验需求。
  • 水质硝基酚类标准正式实施,LC-MS/MS方法助您从容应对
    硝基酚类化合物(Nitrophenols)硝基酚类化合物是一类重要且常用的化工原料,作为原材料或中间体被广泛应用于炸药、医药、杀虫剂、染料、木材防腐剂和橡胶等生产中。伴随工业生产过程,含有该类化合物的废水随之排放至环境中。硝基酚类化合物容易在水体及土壤中残留累积,难以降解,污染环境,危害人类及动植物健康。今年4月24日起,中国环境保护标准《HJ1049-2019水质 硝基酚类化合物的测定 液相色谱-三重四极杆质谱法》正式实施,标志着对硝基酚类污染物更严格的监测与控制。下面,请看岛津为您带来水中硝基酚测定的解决方案。 岛津解决方案 参照标准进行前处理,地表水采用直接进样法,工业废水采用酸碱分配净化法。上机分析使用岛津超高效液相色谱仪LC-30A与三重四极杆质谱仪LCMS-8050联用系统,建立了水中硝基酚类化合物的分析方法,5 min内即可完成三种硝基酚类化合物的分析。 岛津三重四极杆质谱仪LCMS-8050 01 仪器条件表1. MRM参数*代表定量离子对。 02 标准溶液配制及样品前处理取三种硝基酚类化合物混合标准贮备液逐级稀释成系列标准溶液,并加入内标,混匀待测。对地表水样品,使用醋酸纤维滤膜(0.22 μm)过滤,取1.0 mL 滤液于棕色进样瓶中,加入10 μL内标使用液,涡旋混匀,上机分析。对工业废水,用氨水或甲酸调节样品pH值至7~9,取5 mL样品置于具塞离心管中,加入1 mL二氯甲烷-正己烷混合溶液,振荡5min,以4000 r/min的转速离心5 min。吸取3 mL上层水相溶液(有机相在下层),用醋酸纤维滤膜(0.22 μm)过滤,然后取1.0 mL滤液于棕色进样瓶中,加入10.0 μL内标使用液,混匀待测。 结果与讨论 线性与检出限 三种硝基酚在表2所示浓度范围内线性良好,方法检出限0.022-0.034 ng/mL,优于标准要求的0.4-0.6 ng/mL。 表2. 三种硝基酚线性范围、方法检出限和测定下限 精密度对低、中、高三个浓度的标准溶液连续进样6针,保留时间和峰面积的相对标准偏差分别在0.10~0.20%和0.85~3.30%之间,仪器精密度良好。 表3. 精密度结果 (n=6)实际水样测试与加标回收率 使用本方法分析了地表水和工业废水样品,结果见图1和表4。地表水样品三个不同浓度加标回收率在86.7%~94.5%之间,工业废水样品三个不同浓度加标回收率在87.0%~96.7%之间,满足标准要求,方法可靠。地表水加标回收样品色谱图见图2。地表水和工业废水加标回收结果见图3。 表4. 实际水样分析结果图1. 地表水样品insight色谱图图2. 地表水样品加标insight色谱图 (1.0 ng/ml) 图3. 地表水和工业废水三浓度水平加标回收率柱状图 结 论 使用岛津LCMS-8050建立了5 min内分析水中3种硝基酚类物质的方法,灵敏度比标准要求高一个数量级以上。无论是地表水还是基质复杂的工业废水,皆能轻松应对。客户的需求就是我们的使命,岛津的工程师们永远致力于为客户开发最新、最好的应用方法。 撰稿人:邝江濛 唐雪
  • 【百家论坛】直播回顾:新发布36项兽药残留检测标准解读系列(二)
    喹诺酮类药物是一类高效抗生素,zui大的特点是抗菌活性强,广泛用于畜禽疾病的预防和治疗;在动物内脏产品中经常检出,也是国抽中必测的兽残项目。3月3日秦宇老师带大家回顾了喹诺酮类药物检测的一系列标准的特点:1. 喹诺酮类标准(36项发布前);2. GB 31656.3-2021&GB 31658.17-2021;3. 应知应会;同时,秦老师还重点对这些标准和新实施的GB 31656.3和GB 31658.17-2021 的样品前处理,提取溶剂和净化方式、定量方式和检出限做了对比分析。直播间里小伙伴们纷纷提出自己检测过程中遇到的问题:Q1:样品制备时粉样细一点,粉碎时间会长,发热严重的话会对残留量有影响吗?A:会有影响(如四环素类的金霉素),不建议大家粉碎的时间太长,具体参照GB/T 30891-2014 中附录B 的要求制样。Q2:在按照农业部1077号公告-1-2008检测时,喹诺酮的重复性和线性比较差,在操作中有什么特别需要注意的事项吗?A:关注实验过程中pH值的变化。Q3: GB 31658.17 中液质方法的柠檬酸缓冲液的pH要求为5.0±0.2,磷酸盐缓冲液无pH要求,洗脱液为甲醇:乙酸乙酯:氨水=1:1:0.04。实验过程中氮吹时间非常长,50-60min,结果四环素类回收偏低且金霉素回收只有20%-40%。请问有什么解决方法么?A:氮吹时间过长,造成四环素类回收率偏低;注意控制氮吹时间、温度和流速!Q4: GB 31658.17-2021进行样品前处理的提取步骤时,对离心机有什么要求?A:需要配备高速冷冻离心机(-2℃,14000 r/min),以达到高速冷冻离心,除杂的目的。zui后,坛墨质检研发经理张金龙携36项兽药残留配套标准品来到直播间,并给出了直播间特别的优惠折扣,做兽残分析的小伙伴们抓紧下单哦。如果还有疑问的同学可以在本条公众号下留言。感谢大家的参与,持续关注我们,下期再见哟~
  • 安谱公司独家代理CNW 9mm高回收螺纹口样品瓶倾情促销
    高回收样品瓶,容量1.5mL,带30uL的槽,适用于无需转移到微量内插管的样品浓缩和进样 均一的内表面,非常光滑,不会滞留样品 无需使用内插管即可进行较小体积进样,残留体积小 与使用内插管相比,增加了样品的容量 加固的底座设计可用于离心,与混匀器配合使用可安全的进行样品浓缩 棕色样品瓶适用于对光敏感的样品进样 CNW同时提供相应的高质量瓶盖垫可供选择,可完全兼容Agilent产品 同时,Bond的拧盖可保证在运输期间及将瓶盖装到样品瓶上时隔垫与瓶盖始终在一起,防止隔垫在使用过程中脱落易位 并可避免过度的蒸发,使样品瓶保持适当的密封 隔垫流失极低,且每个批次都有检测报告,让使用者对产品使用过程中可能带来的干扰了如指掌 货号 名称 包装 报价 VAAP-31509-1232-100 透明高回收率螺纹口瓶、带槽 100/盒 710.00/盒 VAAP-31509-1232A-100 棕色高回收率螺纹口瓶、带槽 100/盒 810.00/盒 VEAP-5394-09FRB-100 蓝色开孔拧盖、含白色PTFE/红色硅橡胶隔垫,Bond 100/袋 165.00/袋 VEAP-5395-09FRB-100 蓝色开孔拧盖、含红色PTFE/白色硅胶隔垫,Bond 100/袋 225.00/袋 下载: 安谱公司独家代理CNW 9mm高回收螺纹口样品瓶倾情促销.pdf
  • 环境LCMSMS新标准来袭,水质中有机磷农药检测无忧应对
    导读有机磷农药是一类高效广谱的杀虫剂,也是目前农业生产活动中使用最多的农药种类之一,其大量使用已对环境水体造成污染。水体中残留的有机磷农药,通过食物链富集后,可对人畜健康构成潜在危害。在检测低含量环境污染物方面,液质联用系统凭借其高灵敏度、高准确度、高通量等特点,在环境监测领域得到越来越广泛的应用。近期,生态环境部发布了《HJ 1183-2021 水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四极杆质谱法》,并将于2021年12月15日起正式实施。 有机磷杀虫剂类化合物的危害有机磷杀虫剂是一类常用的含磷有机合成杀虫剂,品种繁多,药效高,使用浓度低,广泛用于防治植物病、虫害,但容易造成人、畜急性中毒,毒性主要来自抑制乙酰胆碱酯酶引起的神经毒性。大多数品种对光、热不稳定,在碱性条件下会迅速分解而失效。目前,广泛使用的有机磷杀虫剂品种主要有氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷、对硫磷、甲基对硫磷、敌敌畏、马拉硫磷、敌百虫等。图1 4种常见有机磷杀虫剂类化合物 由于农药会随地表径流进入地表水,通过不断积累和浓缩,必然影响生态系统本身的种类组成和群体数量,破坏生态平衡。另一方面,地下水生物量少,无光解作用,一旦污染,难以治理,对人体生命健康造成极大威胁。因此,水质中有机磷农残污染也随之成为水环境研究的热点问题。 新标准来袭,岛津方案助您从容应对参考HJ1183-2021标准,使用岛津液相色谱仪 LC-40 与三重四极杆质谱仪 LCMS-8040,建立了一种LC-MS/MS法快速准确测定水质中4种有机磷杀虫剂含量的方法,同位素内标定量,助您及时应对新标准! 图2 岛津液相色谱质谱联用仪(LCMS-8040) • 分析条件 表1 MRM优化参数注:*表示定量离子 • 标准曲线与检出限氧化乐果、乙酰甲胺磷在2~100 µg/L浓度范围内,甲胺磷、辛硫磷在2~200 µg/L浓度范围内,均具有较好的线性关系,线性相关系数均≥0.997,各校准点准确度在85.4~116.8%之间。 表2 校准曲线参数图3 4种化合物的校准曲线 • 样品测试结果及加标回收率对某地表水样品进行分析,未检测出上述4种有机磷杀虫剂类化合物。2 µg/L样品加标平均回收率分布在88.17~116.62%之间,满足标准要求,方法可靠。 图4 地表水样品色谱图图5 加标样品回收色谱图(2 µg/L) 表3 回收率结果(n=3) 结语水质安全是环境安全的重要一环,也关系到千家万户的用水安全与身体健康。HJ1183-2021新标准即将实施,岛津提供“交钥匙”全流程培训指导,经验丰富的工程师将在您的实验室提供全流程解决方案的现场培训服务,助您轻松掌握从样品前处理到分析报告生成的整个流程。
  • 新增方法!全面解读维生素D新标准!
    近日,国家卫生健康委员会、国家市场监管总局联合发布了2023年第6号文件,关于85项食品安全国家标准和3项修改单的公告,其中包括了GB 5009. 296-2023《食品安全国家标准 食品中维生素D的测定》(以下称新标准)。本标准代替GB 5009.82-2016《食品安全国家标准食品中维生素A、D、E的测定》中第三法“食品中维生素D的测定液相色谱串联质谱法”和第四法“食品中维生素D的测定高效液相色谱法”。一、主要变化本标准与GB 5009.82-2016相比,主要变化如下:标准名称修改为《食品安全国家标准食品中维生素D的测定》 增加了在线柱切换反相液相色谱法;增加了样品预制备方法 修改了液相色谱串联质谱法的线性范围和仪器参考条件;修改了附录中标准校正溶液的配制方法。二、标准的主要技术内容第一法为正相纯化制备-反相液相色谱法。当固体试样取样量为10.00 g,定容2mL时,维生素D3的检出限为0.7 μg/100 g,定量限为2 μg/100 g。当液体试样取样量为50.00 g时,维生素D3的检出限为0.15 μg/100g,定量限为0.5 μg/100 g。当维生素D2、维生素D3的浓度在50 μg/L-1 000 μg/L范围内,线性关系良好。三水平加标平均回收率为89.0%-102.8%,典型基质样品实验室验证重复性相对标准偏差为1.99%-6.72%。第二法为在线柱切换-反相液相色谱法。当固体试样取样量为0.500g,定容5 mL时,维生素D2、维生素D3的检出限为0.6 µg/100 g,定量限为2.0 µg/100 g。当液体试样取样量为5.00 g,定容5 mL时,维生素D2、维生素D3的检出限为0.06 μg/100 g,定量限为0.2 μg/100 g。当维生素D2、维生素D3的浓度在2.5 μg/L-100μg/L范围内,线性关系良好。三水平加标平均回收率为90.7%-102.4%,典型基质样品实验室验证重复性相对标准偏差为2.99%-6.24%。第三法为液相色谱-串联质谱法。当固体样品取样量为2.00 g,定容1mL时,维生素D2的检出限为0.3μg/100 g,定量限为1.00 μg/100 g;维生素D3的检出限为0.15 μg/100 g;定量限为0.50 μg/100g。当液体样品取样量为10.00 g,定容1mL时,维生素D2的检出限为0.05 μg/100 g,定量限为0.20 μg/100 g;维生素D3的检出限为0.03 μg/100 g;定量限为0.10 μg/100g。当维生素D2、维生素D3的浓度在2.5 μg/L-100 μg/L范围内,线性关系良好。三水平加标平均回收率为88.7%-99.7%,典型基质样品实验室验证重复性相对标准偏差为2.51%-8.69%。 三、国内外相关法规标准情况 我国食品安全国家标准食品中营养强化剂使用标准(GB 14880-2012)对维生素D使用范围要求在0.2 μg/100 g-15.6 μg/100 g。下列食品安全国家标准:婴儿配方食品(GB 10765-2010)、较大婴儿和幼儿配方食品(GB 10767-2010)、 婴幼儿谷类辅助食品(GB 10769-2010)、特殊医学用途婴儿配方食品通则(GB 25596-2010)、特殊医学用途配方食品通则(GB 29922-2013)和婴儿配方食品(GB 10765-2021)、食品安全国家标准较大婴儿配方食品(GB 10766-2021)和幼儿配方食品(GB 10767-2021)中规定的维生素D的标准范围在0.25 μg/100KJ-1.20 μg/100KJ。本方法标准能与上述标准相配套。国内外涉及到的主要检测标准情况如表 1 所示。在此次新标准中,最大的变化便是增加了在线柱切换反相液相色谱法作为维生素D检测的第二法。在线柱切换二维液相法是将不同选择性分离柱组合,加强分离能力的联用技术。柱切换液相色谱系统通常由第一维分离柱和第二维分离柱串联组成,两柱之间以切换阀作为接口,通过流动相流路的改变,将部分或全部第一维柱流出的组分,导入第二维柱进行二次分离,从而起到净化目标化合物,提高系统分离能力的作用。四、更多解决方案通过二维柱切换的液相色谱技术不仅可以提升系统分离能力,改善结构相似化合物的分离分析;同时可以通过第一维的粗分去除样品中大量基质成分干扰,实现样品净化等。小编也整理了各大公司针对维生素D检测推出的相关解决方案,以飨读者。乳制品中维生素A、维生素D和四种维生素E检测方(液相色谱仪)在线二维柱切换-高效液相色谱法同时测定婴幼儿强化奶粉中维生素A、D3、E的含量岛津柱切换二维液相,助您轻松应对“0722维生素D测定法”采用二维液相色谱法测定维生素 AD 制剂中维生素 D 的含量复杂样品自动化分析中的在线前处理技术① | 二维柱切换系统更多食品检测解决方案请点击查看:食品领域解决方案》》》
  • 两项畜禽药物残留的液相色谱高分辨质谱方法行业标准意见征求
    按照《全国畜牧业标准化技术委员会标准终审管理办法(试行)》的有关要求,《畜禽养殖污水中四环素类、磺胺类和喹诺酮类药物残留量的测定液相色谱-串联质谱法》《畜禽粪便中139种药物残留量的测定液相色谱-高分辨质谱方法》2项农业行业标准已完成公开征求意见稿,现公开征求意见。请于2022年5月18日前以电子邮件方式反馈全国畜牧业标准化技术委员会秘书处。《畜禽养殖污水中四环素类、磺胺类和喹诺酮类药物残留量的测定液相色谱-串联质谱法》:标准编制原则本标准的编写制定过程中以提高测试方法的选择性、准确度、精密度、检测限和分析效率为总原则,反映科学技术的先进成果和先进经验。使用性能的普遍性包括方法精密度、准确度、检测限等方面能满足要求,确保标准既能保持技术上的先进性,又具有经济上合理性。同时遵循了标准制定过程中的先进性、经济性和适用性原则。在标准的制定过程中严格遵循国家有关方针、政策、法规和规章,标准的编写规则及表述按照GB/T 1.1-2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》、GB/T 20001.4-2015《标准编写规则第4部分:试验方法标准》的要求编写。在标准制定过程中力求做到:技术内容的叙述正确无误;文字表达准确、简明、易懂;标准的构成严谨合理;内容编排、层次划分等符合逻辑与规定。主要技术内容确定的依据本标准的适用范围:畜禽养殖场污水。本标准使用液相色谱-串联质谱进行检测方法开发。使用仪器型号为waters公司的Waters Acquity UPLC超高液相色谱和AB Sciex公司的 Triple Quad™ 4500质谱联用仪(HPLC-MS/MS)。本标准方法学考察包括检测限(LOD)和定量限(LOQ)。其中LOD拟设定为信噪比为3时的样品添加浓度,LOQ拟设定为信噪比为10时且回收率结果和相对标准偏差符合要求的样品添加浓度。本标准设低、中、高3个添加浓度进行回收率测定,按照LOQ、2LOQ、10 LOQ进行添加,因此三个添加浓度定为5 ng/mL、10 ng/mL及50 ng/mL。定量限以上添加浓度的回收率范围应该在60% ~ 120%之间,根据NY/T 1896-2010兽药残留实验室质量控制规范规定的筛选分析方法精密度的性能要求,结果的批内变异系数不超过25%,批间变异系数不超过30%。标准曲线则使用标准品稀释的系列工作溶液经测定后标准曲线,设置至少5个点进行测定。《畜禽粪便中139种药物残留量的测定液相色谱-高分辨质谱方法》编制原则本标准的编写制定过程中以提高测试方法的选择性、准确度、精密度、检测限和分析效率为总原则,反映科学技术的先进成果和先进经验。使用性能的普遍性包括方法精密度、准确度、检测限等方面能满足要求,确保标准既能保持技术上的先进性,又具有经济上合理性。同时遵循了标准制定过程中的先进性、经济性和适用性原则。在标准的制定过程中严格遵循国家有关方针、政策、法规和规章,标准的编写规则及表述按照GB/T 1.1-2009《标准化工作导则第1部分:标准的结构和编写规则的要求》、GB/T 5009.1-2003 《食品卫生检验方法理化部分总则》和GB/T 20001.4-2015《标准编写规则第4部分:化学分析方法》的要求编写。在标准制定过程中力求做到:技术内容的叙述正确无误;文字表达准确、简明、易懂;标准的构成严谨合理;内容编排、层次划分等符合逻辑与规定。 主要技术内容确定的依据本标准的适用范围:畜禽粪便样本。本标准使用液相色谱-高分辨率串联质谱进行检测方法开发。使用仪器型号为美国安捷伦公司的超高效液相色谱(型号1290)串联(型号6545)飞行时间质谱(UHPLC-QTOF)。本标准方法学考察检测限(LOD)和定量限(LOQ)。其中LOD拟设定为信噪比为3时的样品添加浓度,LOQ拟设定为信噪比为10时且回收率结果和相对标准偏差符合要求的样品添加浓度。本标准设低、中、高3个添加浓度进行回收率测定,由于药品种类较多,无法兼顾各类药品的检出限,因此三个添加浓度定为5 μg/kg、10 μg/kg及50 μg/kg。定量限以上添加浓度的回收率范围应该在50%-120%之间,结果的变异系数应在20%以内。标准曲线则使用标准储备液稀释后的系列工作溶液,设置5个点进行测定。养殖场污水中四环素类、磺胺类和喹诺酮类药物的测定-正文-公开征求意见稿-陈刚-0411.docx1 TOF-兽残-标准文本-公开征求意见稿-粪便-2022.4.18.docx
  • “水泥窑协同处置固废”新标准今日实施,岛津ICP助您从容应对!
    导读近年来,随着工业的高速发展和人民生活水平的不断提高,越来越多的固体废物,如一般污泥、餐厨垃圾、生活垃圾、建筑垃圾、工业固体垃圾等等,常堆积如山,如何处理并利用这些固废 — 将废料华丽转身,通过有效渠道,将固废投入新的利用,做到物尽其用?当前,国家相继出台了一系列政策支持水泥窑协同处置固废的发展,明确提出利用现有新型干法水泥窑协同处置生活垃圾、城市污泥、污染土壤及危废。水泥窑协同处置固废是指将满足或经过预处理后满足入窑要求的固体废物投入水泥窑,在进行水泥熟料生产的同时实现对固体废物的无害化处置过程。随着水泥窑协同处置技术的逐步推广,为了控制水泥窑协同处置固废过程中重金属的量,保证水泥产品质量,由中国建材检验认证集团股份有限公司、国家水泥质量监督检验中心负责起草的GB/T 41058-2021《水泥窑协同处置污泥及污染土中重金属的检测方法》标准于2022年7月1日正式实施。岛津公司作为该标准的验证单位之一,使用ICPE-9820型电感耦合等离子体发射光谱仪顺利开展了一系列验证工作。 标准解读水泥行业标准GB 30760-2014《水泥窑协同处置固体废物技术规范》中规定了入窑生料重金属含量限值,水泥熟料重金属含量限值和水泥可浸出重金属含量限值及检测方法等,缺乏固体废弃物掺入入窑生料中的重金属含量的测定方法。为了达到准确测定水泥协同处置污泥及污染土中重金属的含量,避免含量超标的重金属引入到水泥产品中,造成二次环境污染,危害人类健康,《水泥窑协同处置污泥及污染土中重金属的检测方法》标准中规定了水泥窑协同处置污泥及污染土中14种重金属元素的测定方法,涉及2种样品消解方法和3类仪器测定方法。 表1 标准规定及检测方法岛津方案助您从容应对 岛津分析中心作为该标准的验证单位之一,使用岛津ICPE-9820型电感耦合等离子体发射光谱仪进行了GB/T 41058-2021《水泥窑协同处置污泥及污染土中重金属的检测方法》的标准验证。 l 方法检出限使用样品空白溶液测定10次, 软件自动计算仪器检出限,各元素方法检出限在0.08-6.00mg/kg之间,满足标准要求。 表2 方法检出限 l 样品加标回收率和精密度对样品进行加标实验,加标回收率在92.0-100%之间,准确度高。样品6次重复性测试,RSD值小于2.50%,精密度好。 表3 样品结果及加标回收率注:N.D.表示未检出 结语 岛津电感耦合等离子体发射光谱仪(ICPE-9820)可轻松测定水泥窑协同处置污泥及污染土中重金属含量。ICPE-9820采用Mini炬管和全谱直读CCD检测器,实现高通量低成本的多元素同时分析,灵敏度高,分析速度快,从容应对GB/T 41058-2021《水泥窑协同处置污泥及污染土中重金属的检测方法》新标准要求。 本文内容非商业广告,仅供专业人士参考。
  • 重磅| 36项兽残检测新标准即将实施
    由农业农村部、国家卫生健康委员会、国家市场监督管理总局联合发布的36项兽药残留检测标准(详细列表见文末表5),将于2022年2月1日正式实施,其中32项标准为全新发布。 标准归纳 从基质类型上看,水产品标准13个,动物性食品标准17个,其他类6个从药物类型上看,包括抗虫药、β-内酰胺、性激素等13大类(图1)从前处理手段上看,涉及SPE固相萃取法、QuChERS法、液-液萃取法。 图1 36项兽残新标准目标物类型 标准亮点 多残留标准。GB 31658.17-2021《动物性食品中四环素类、磺胺类和喹诺酮类药物多残留的测定》可同时检测三大类型兽残,共计36种。新型净化方式。GB 31653.2-2021《猪、鸡可食性组织中泰万菌素和3-乙酰泰乐菌素残留量的测定》前处理采用QuChERS法;GB 31656.12-2021《水产品中青霉素类药物多残留的测定》净化步骤采用通过式SPE柱。对标准溶液的保存条件、有效期有了明确规定。 岛津应对方案 针对36项兽药残留新标准,岛津兽药数据库已全覆盖相关目标物。同时,岛津分析中心也提前开发了相关应用,以下是部分应用展示。 GB 31653.2-2021《猪、鸡可食性组织中泰万菌素和3-乙酰泰乐菌素残留量的测定》[1] 使用仪器:岛津LCMS-8045表1 梯度洗脱程序图2 泰万菌素和3-乙酰泰乐菌素(2ng/mL)的MRM图谱、校准曲线 表2 泰万菌素和3-乙酰泰乐菌素的加标回收率结果(n=3)GB 31658.7-2021《动物性食品中17β-雌二醇、雌三醇、雌醇和雌酮残留量测定》[2] 使用仪器:岛津GCMS-QP2020 NX表3 激素目标物化合物信息及其衍生物特征离子图3 目标物标准品衍生物谱图(500ng/mL) 表4 样品加标回收率结果此外,针对兽残前处理,岛津可提供满足不同场景需求的多种前处理产品——SHIMSEN Styra SPE小柱、SHIMSEN QuEChERS提取/净化包,以及SHIMSEN Q系列通过式净化产品,欢迎咨询。图4 岛津通过式SPE柱(分为多兽残、β-受体激动剂、高极性(青霉素类、四环素类)兽残3款) 表5 36项标准名称及检测仪器 参考文献[1] 岛津分析中心应用文章:超高效液相色谱-串联质谱法测定鸡肉中泰万菌素及3-乙酰泰乐菌素残留量[2] 岛津分析中心应用文章:GCMS法测定动物性食品中17β-雌二醇、雌三醇、雌醇和雌酮的残留量 本文内容非商业广告,仅供专业人士参考。
  • 关爱儿童,共同抗疫|“硬核”液相护航儿童口罩检测新标准
    关爱儿童,共同抗疫|“硬核”液相护航儿童口罩检测新标准 关注我们,更多干货和惊喜好礼 COVID-19新型冠状病毒(COVID-19)肺炎疫情来势汹汹,牵动着每一个人的心,截至目前全球共有143个国家报告有确诊新冠肺炎病例,累计已突破1835万。作为科学服务行业的领导者,赛默飞公司竭尽所能,为病毒检测、疫苗研发等各个领域的每一位客户提供设备和技术支持,并与大家风雨同舟,为全球抗疫工作贡献自己的一份力量。 在这没有硝烟的抗疫战场中,口罩作为重要的防护用品,在未来相当长的时间内将持续受到全球的重视,需求和生产量都会大幅增长。作为世界最大的口罩生产和出口国,我国承担着全球约60%的产量。这一数字在未来也将继续增长,口罩等防护用品的品控需求也将随之增长。目前我国对医用防护类、劳动防护类及日常防护类口罩均有对应的质量标准,对规范口罩质量、保障消费者权益起到积极的作用。然而,这些标准都不适用于儿童用口罩,疫情期间儿童口罩质量参差不齐,缺乏专门的标准规范等问题引发社会关注。2020年5月7日,国家市场监管总局(标准委)网站正式发布GB/T 38880-2020《儿童口罩技术规范》推荐性国家标准,自此儿童口罩无标可依的问题得到解决。相比于其他标准,该标准对儿童口罩的基本要求和外观质量要求做出规定之外,还在内在质量指标中重点提出:不得检出可迁移性荧光增白物质。 赛默飞时刻关注行业内相关标准的实施,并利用产品的优势制定相应的解决方案,为检测领域的客户保驾护航。2020年3月,赛默飞推出的Vanquish™ Core HPLC 系统,匠心传承,实力硬核,俗称“硬核”液相,专为常规分析实验室设计而成,拥有出色的分析精密度、检测器灵敏度和操作简便性,可靠且耐用。此次,赛默飞采用结合多种智能新技术的Vanquish Core HPLC,成功重现《儿童口罩技术规范》中规定的FZ/T 01137-2016标准方法,完成了9种不同荧光增白剂标准品和儿童口罩中可迁移性荧光增白物质的分离检测。可迁移性荧光增白剂是一种荧光染料,具有亮白增艳的作用,广泛用于造纸、纺织、洗涤剂等多个领域中,其对人体可能会造成一定危害,甚至有致癌作用。本次实验依据FZ/T 01137-2016标准方法,实现9种荧光增白剂的分离检测。通过Hypersil GOLD Phenyl苯基柱,9种荧光增白剂均达到基线分离,且响应高,峰型好。 图1 9种荧光增白剂标准品分离检测图谱(黑:标准品溶液,红:溶剂空白)色谱柱:Hypersil GOLD Phenyl(4.6*250mm,5μm)配制不同浓度的标准品溶液,建立标准曲线,在一定浓度范围内(标准中各荧光增白剂浓度均不同,以C.I.220浓度范围0.7~70μg/mL为代表,其他组分浓度范围均按照标准要求配制,此处略)标准溶液线性良好,各荧光增白剂的线性相关系数均大于0.999,满足标准要求。 图2不同浓度标准品溶液图谱 图3 各荧光增白剂线性结果将C.I.220浓度35μg/mL标准品溶液连续进样6针,结果显示Vanquish Core HPLC的仪器精密度非常优异,9种荧光增白剂的保留时间及峰面积RSD分别为0.01%~0.17%和0.18%~0.39%。图4 标准品溶液连续进样6针图谱结果按照标准要求,考察各荧光增白剂在3种不同加标浓度下的回收情况,结果各荧光增白剂回收率在82%~95%之间,满足标准对回收率80%~110%的要求。表1 不同加标浓度下回收率结果 按照标准规定步骤,对某品牌两种批次的儿童口罩实际样品进行前处理并检测,结果表明无明显可迁移性荧光增白物质检出。 图5 两种批次儿童口罩检测结果结语Vanquish Core HPLC完美重现儿童口罩新标准,性能可靠、表现优异,不仅助力国家抗疫、关爱儿童成长,还可以降低仪器故障率、提升工作效率,为检测领域的客户保驾护航。在这场抗疫战争中,赛默飞与您一起,互相帮助,患难与共!液相新品速递Vanquish Core HPLC 继承了Vanquish 平台的优势, 700 bar耐压的HPLC,二元/四元/等度/双三元泵可选。特色双三元泵,结合各种阀切换技术,可以实现在二维液相、(多)中心切割、反梯度补偿、串并联等多种高级应用。• Vanquish溶剂监控系统,让溶剂跑空成为历史• 交互式Vanquish触摸屏,持续了解系统状态• 系统健康检查,诊断向导,降低维护成本• 升级版自定义进样功能,方法编辑更简单• 连续可调梯度延迟体积功能,让方法转换更轻松 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 广州市实施首个珠宝首饰加工企业联盟标准
    近日,由区质量技术监督检测所及广州威乐珠宝产业园有限公司、广州六福首饰有限公司等4家企业组成的标准联盟共同起草的《首饰生产贵金属固体废料回收技术规范》,由广州市质监局发布实施。标准规定了在首饰生产过程中产生的四种主要固体废料(含金、含银、含钯、含铂固体废料)的回收处理方法和设备,还对贵金属的回收率以及回收处理的注意事项作了明确规定。   珠宝业是我区九大支柱产业之一,珠宝业具有明显的技术优势和集群效应。作为亚太地区最具规模、最集中的珠宝首饰加工基地,众多企业在生产加工过程不可避免产生大量的贵金属废料,若处理不当甚至不经过任何处理直接排放,必将严重污染当地环境,影响周边居民的生活质量和安全。   该联盟标准的实施,将促进贵金属废料回收技术在产业中的推广应用,提高资源的利用率,减少环境污染,促进珠宝行业走清洁生产的可持续性发展道路,有效提升整个行业的发展水平以及对区域经济的推动力。
  • 欧盟或推废纸新标准 引发造纸企业恐慌
    从《欧洲时报》日前的报道中获悉,9月11日,6个巨大的废纸垛在欧盟委员会大楼前一字排开,这不是哪位艺术家的展品,而是欧洲造纸行业在抗议欧委会正在制定的废纸定义标准,因为这可能导致他们未来“无米下锅”。     由旧报纸、破纸板等堆积而成的纸垛到底是废纸还是经过回收后的商品?这个定义很快可能改变。在欧洲,一张纸的循环旅程包括:使用、丢弃、收集、再造、加工。依照目前的标准,用过的纸制品在送入造纸厂再造前都是“废纸”,必须遵守欧盟废弃物指令,只有经过严格分拣的纸品才能转运、买卖。但欧委会打算改变这个定义标准:一旦进入“收集”环节,经过简单的分拣打包,这些旧报纸、破纸盒就不再是废纸,而变成了可买卖的商品。     欧盟如今是废纸回收界的世界冠军,去年,约5800万吨的废纸被回收利用,回收率达71.7%。其中大多数回炉再造成为新的纸制品,对于欧盟的造纸业来说,废纸是其主要原料之一,不少工厂甚至完全依赖于废纸进行生产。欧洲造纸工业联合会担心,标准出台后会降低分拣废纸的严格度,进一步分拣回收的压力将落在造纸企业身上,这意味着更多设备和人员的投入。此外,大批废纸可能被欧盟以外的国家进口,让欧盟造纸行业“无米下锅”。“在过去几年,欧洲的造纸厂数量锐减”,欧洲造纸工业联合会回收与环境部主管雷蒙在抗议现场对记者说,“这是在出口污染的同时,进口失业率。”
  • 《国家标准协调情况现状调研》项目顺利通过验收
    由山东省标准馆承担的国家级科研项目《国家标准协调情况现状调研》于2009年月12月25日召开了项目验收会议,该项目顺利通过验收。   该项目于2009年3月份开始,主要对国家标准协调情况的现状开展调查、研究。由标准馆与国家标准技术审查部联合开展。标准馆主要负责调查问卷的设计,并对国家标准协调情况进行调研,获得能够反映国家标准整体协调性情况的原始数据,最终形成调研分析报告。最终发放调查问卷1317份,问卷回收率达到71.5%。   会议有中国标准化研究院、山东大学等单位的7位专家参加,最终专家一致认为项目按计划完成了“国家标准协调情况现状调研”项目的各项工作,调研工作选择调研样本科学全面,调研分析报告真实深刻,充分反映了国家标准协调情况现状。一致同意通过验收。
  • 参考最新环境保护标准(HJ957 -2018,HJ 958-2018)测定环境水中钴
    钴(Co)在电池材料、超硬合金、磁性材料、镀金等领域有着广泛的应用。它是维生素B12的组成成分,也是人体所必需的微量元素之一,但过量摄取会对身体产生危害。通过原子吸收分光光度计可以测量Co元素含量,但环境水中仅含有微量的Co,水中的其他物质如碱金属、碱土金属会产生背景吸收,影响测定数据的准确性。偏振塞曼校正法可不受共存物质的背景吸收干涉影响,高精度分析样品。目前,中国地表水环境标准(GB3838-2002)规定钴的标准浓度应在1.0mg/L,地下水环境标准(GB/T-14848-93)规定钴浓度应不高于0.005mg/L。 中国环境保护标准在19年初实施了新的水质钴的测定方法:水质钴的测定 火焰原子吸收分光光度法(HJ957 -2018)水质钴的测定 石墨炉原子吸收分光光度法(HJ 958-2018)下面让我们根据此方法进行环境水中钴分析 ■ 以下为HJ 958-2018记载的前处理方法。■ 环境水中钴分析(火焰法)向50mL样品添加0.6mL的硝酸锶(Sr 20 g/L)基体改进剂,作为待测样品备用。参考文献:中国国家环境保护标准HJ 957-2018. 水质钴的测定. 火焰原子吸收分光光度法. Water quality Determination of cobalt. Flame atomic absorption spectrometry.?HJ 957-2018(火焰法):使用日立偏振塞曼原子吸收分光光度计ZA3000可准确测定HJ 957-2018中规定的钴的测定下限值0.2 mg/L;加标回收率在HJ 957-2018规定的85%~115%的范围内,测定数据准确。 ■ 环境水中钴分析(石墨炉法)加入1000 mg/L的硝酸镁作为基体改进剂。参考文献:HJ 958-2018 . 水质钴的测定.石墨炉原子吸收分光光度法. Water quality Determination of cobalt. Graphite furnace atomic absorption spectrometry.HJ 958-2018(石墨炉法):使用日立偏振塞曼原子吸收分光光度计ZA3000可准确测定地下水环境标准(GB/T-14848-93)规定的钴标准值5μg/L;加标回收率在HJ 958-2018规定的80%~120%的范围内,测定数据准确。 日立偏振塞曼原子吸收分光光度计ZA3000,可完全满足中国国家环境保护标准规定的钴测定方法,能够快速准确的测出环境水中钴含量。 关于日立偏振塞曼原子吸收分光光度计ZA3000系列热分析仪详情,请见: https://www.instrument.com.cn/netshow/SH102446/C170248.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制