当前位置: 仪器信息网 > 行业主题 > >

原电池原理

仪器信息网原电池原理专题为您提供2024年最新原电池原理价格报价、厂家品牌的相关信息, 包括原电池原理参数、型号等,不管是国产,还是进口品牌的原电池原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原电池原理相关的耗材配件、试剂标物,还有原电池原理相关的最新资讯、资料,以及原电池原理相关的解决方案。

原电池原理相关的论坛

  • 电化学中的原电池

    [em54] 不同电极电位的金属在电解质溶液中构成原电池,使低电极电位的阳极被腐蚀,高电极电位的阴极被保护。金属中不同组织、成分、应力区域之间都可构成原电池。

  • 【原创】结集标准 原电池 GB/T8897系列

    GBT 8897.1-2003 原电池 I 总则http://www.instrument.com.cn/download/shtml/059281.shtmlGBT 8897.2-2005 原电池 第二部分 外观尺寸和技术要求 http://www.instrument.com.cn/download/shtml/048752.shtmlGBT 8897.3-2006 原电池 手表电池 http://www.instrument.com.cn/download/shtml/059280.shtmlGBT 8897.4-2002 原电池第4部分:锂电池的安全要求 http://www.instrument.com.cn/download/shtml/056760.shtml

  • 求助一个原电池反应方程式

    求助:以饱和甘汞电极测量铜电极的电极电势的原电池方程式?不知道我表述的清楚不?大致就是那个意思。。。你懂的

  • 【资料】(锂离子)锂电池的认识

    锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生,使用以下反应:Li+MnO2=LiMnO2该反应为氧化还原反应,放电。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。现在锂电池已经成为了主流。目录锂电池原理简介 概述 锂电池发展进程 锂电池材料锂电池的特点 锂离子电池主要优点 锂原电池简介:锂电池的研究 锂离子电池的作用 锂离子电池发展史 锂离子电池发展前景 电池的基本性能 锂离子电池的特征 锂电池的保护电路 简易充电电路 单节锂电池的应用举例 锂电池的保存 如何为新电池充电 正常使用中应该何时开始充电 对锂电池充电的正确做法 使用锂电池注意防火“超级”锂电池 锂电池型号 锂锰电池常规型号 圆柱锂离子电池常见型号 方型锂离子电池关于乘飞机携带锂电池的规定 相关规定的条文 禁止托运的原因锂电池原理简介 概述 锂电池发展进程 锂电池材料锂电池的特点 锂离子电池主要优点 锂原电池简介:锂电池的研究锂离子电池的作用锂离子电池发展史锂离子电池发展前景电池的基本性能锂离子电池的特征锂电池的保护电路简易充电电路单节锂电池的应用举例锂电池的保存 如何为新电池充电 正常使用中应该何时开始充电 对锂电池充电的正确做法 使用锂电池注意防火“超级”锂电池锂电池原理简介[/size

  • 【原创大赛】机械式UJ25仪器与数字式SDC-Ⅱ在原电池电动势测定实验中的对比研究

    【原创大赛】机械式UJ25仪器与数字式SDC-Ⅱ在原电池电动势测定实验中的对比研究

    [align=center][size=18px][font='黑体']机械式UJ[/font][font='黑体']25仪器[/font][font='黑体']与数字式SDC-Ⅱ[/font][font='黑体']在原电池[/font][font='黑体']电动势[/font][font='黑体']测定实验中的[/font][font='黑体']对比研究[/font][/size][/align][align=center][size=18px][font='楷体']范[/font][font='楷体']亨利[/font][font='楷体']1[/font][font='楷体'],叶姝琴[/font][font='楷体']1[/font][font='楷体'],崔猛[/font][font='楷体']2,[/font][font='楷体']*[/font][font='楷体'] [/font][/size][/align][align=center][size=18px][font='楷体'](1[/font][font='楷体'].[/font][font='楷体']北京化工大学,生命科学与技术学院,北京,1[/font][font='楷体']00029[/font][font='楷体'];2.北京化工大学,化学学院,北京,1[/font][font='楷体']00029[/font][font='楷体'])[/font][/size][/align][align=left][font='楷体'][size=18px]作者简介:[/size][/font][/align][align=left][size=18px][font='楷体']崔猛([/font][font='楷体']1980[/font][font='楷体']年4月[/font][font='楷体'])[/font][font='楷体'],男,实验师,理学博士,cuimeng[/font][font='楷体']@mail.[/font][font='楷体']buct.edu.cn,[/font][font='楷体']通讯联系人。[/font][/size][/align][align=left][size=18px][font='楷体']范[/font][font='楷体']亨利([/font][font='楷体']2001[/font][font='楷体']年[/font][font='楷体']1[/font][font='楷体']月),男,生物工程专业本科在读。[/font][/size][/align][align=left][size=18px][font='楷体']叶姝琴([/font][font='楷体']2002[/font][font='楷体']年[/font][font='楷体']1[/font][font='楷体']月),女,生物[/font][font='楷体']医学[/font][font='楷体']工程专业本科在读。[/font][/size][/align][size=18px][font='等线 light']摘要[/font][font='华文仿宋']原电池电动势的测定实验是经典的物理化学实验,学生通过进行本实验能够理解和学会对消法的基本原理,了解原电池电动势的测定和应用。UJ25型直流高电势电位差计是使用于该实验的传统测量仪器,但在测量过程中操作繁琐。同时,指针式检流计的使用,也会带来一定的不利影响。本文为探究该实验的改进方案,进一步提高实验的准确度及精确度,提升学生的实验体验,引入新型数字化仪器进行对比,分别通过传统机械式仪器和新型数字化仪器进行了原电池电动势测定。实验发现与传统机械式仪器相比,新型数字化仪器的操作更简单而且智能化,测量值的准确性和灵敏度较高,可以较好地替代传统机械式仪器。[/font][font='等线 light']关键[/font][font='等线 light']词:[/font][font='等线 light']原电池、实验教学改进[/font][/size][align=center][size=18px][font='cambria math']The Comparison [/font][font='cambria math']Re[/font][font='cambria math']search of UJ25 Mechanical Instrument And SDC-[/font][font='cambria math']Ⅱ[/font][font='cambria math']D[/font][font='cambria math']igital Instrument U[/font][font='cambria math']se[/font][font='cambria math']d in [/font][font='cambria math']Galvanic Cell Electromotive Force Measurement Experiment[/font][/size][/align][size=18px][font='等线 light']Abstract[/font][font='cambria math']Galvanic cell electromotive force measurement experiment is a classic physical chemistry experiment, students can understand and learn the basic principle of [/font][font='cambria math']elimination method[/font][font='cambria math'] through this experiment, as well as understand galvanic cell electromotive force measurement and application. [/font][font='cambria math']UJ25 DC High Potential Potentiometer [/font][font='cambria math']is a traditional measuring instrument used in this experiment, but the operation is cumbersome in the measurement process. At the [/font][font='cambria math']same time, the use of pointer galvanometer will also bring some adverse effects. In this paper, in order to explore the improvement scheme of the experiment, further improve the accuracy and precision of the experiment, and enhance students’ experimental experience, a new digital instrument is introduced for this experiment and comparison,[/font] [font='cambria math']respectively through the traditional mechanical instrument and the new digital instrument for galvanic cell electromotive force measurement. Experimental results show that compared with the traditional mechanical instrument, the new digital instrument is [/font][font='cambria math']more simple[/font][font='cambria math'] to operate and intelligent, the accuracy and sensitivity of the measurement value is higher, and it can better replace the traditional mechanical instrument.[/font][font='等线 light']Keyword: [/font][font='等线 light']galvanic cell, improvement in experimental teaching[/font][font='等线 light']0[/font][font='等线 light']引言[/font][font='华文仿宋']物理化学是一门培养高素质化学化工专业人才的学科基础课,生活中它无处不在,学好这门课程是每一个工科学子所必备的素质。而物理化学实验由物理化学延伸出来,旨在培养学生动手能力,提升学生自主思考、用于创新的科研水平。电化学在现实中应用广泛,电池、酸度计的使用等都运用到电化学知识,生活中随处可见原电池,了解其电动势大小和放电充电原理有助于我们更高效地利用和保存它们。原电池电动势的测定是经典的物理化学实验,目前在大学实验教学中是将UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计和检流计组合使用,采用对消法测量待测电池电动势,这种方法不用测量电流大小,具有较高的准确性,但在使用时连接线路较麻烦,学生易出错。此外,该仪器在调节阻值大小时需要判断检流计指针变化,容易造成误差。同时,锌棒、铜棒以及惰性电极的选择和处理也会对原电池电动势的测定造成一定的影响。[/font][font='华文仿宋']目前,人们针对该实验的改进已经进行了较多的探索,使实验更加符合绿色化学的要求。锌[/font][font='华文仿宋']棒作为[/font][font='华文仿宋']电极其上发生电极反应会产生表面极化现象[/font][font='华文仿宋'],[/font][font='华文仿宋']李[/font][font='华文仿宋']苞[/font][font='华文仿宋'][[/font][font='华文仿宋']1][/font][font='华文仿宋']等人利用微米压印技术制备[/font][font='华文仿宋']锌[/font][font='华文仿宋']电极,采用[/font][font='华文仿宋']150[/font][font='华文仿宋']和[/font][font='华文仿宋']280[/font][font='华文仿宋']微米压印电极能使测定结果的绝对误差相对小。饱和甘汞电极由于底部较细容易损坏,赵会玲[/font][font='华文仿宋'][[/font][font='华文仿宋']2][/font][font='华文仿宋']等人在保持饱和甘汞电极电极面积不变的情况下将底部较细部分改造为较粗的形状[/font][font='华文仿宋'],[/font][font='华文仿宋']大大增强了其抗损坏能力。为了加强恒温效果,胡俊平[/font][font='华文仿宋'][[/font][font='华文仿宋']3][/font][font='华文仿宋']等人设计了一种同时测定三电极体系的电池电动势的装置[/font][font='华文仿宋'],[/font][font='华文仿宋']在循环水恒温的密闭装置内可以保持整个装置的恒温环境[/font][font='华文仿宋'],[/font][font='华文仿宋']从而有效提高测量数据的重复性[/font][font='华文仿宋']。[/font][font='华文仿宋']此外,为克服对消法本身测量程序复杂[/font][font='华文仿宋']、[/font][font='华文仿宋']实验时间长的缺陷[/font][font='华文仿宋'],[/font][font='华文仿宋']宋江闯[/font][font='华文仿宋'][[/font][font='华文仿宋']4][/font][font='华文仿宋']等人使用高阻抗法测定原电池电动势及其温度系数[/font][font='华文仿宋'],[/font][font='华文仿宋']测量结果准确且大大降低了实验操作的复杂程度节省了实验时间。而范国康[/font][font='华文仿宋'][[/font][font='华文仿宋']5][/font][font='华文仿宋']等人利用离心管架作为支架[/font][font='华文仿宋']、[/font][font='华文仿宋']离心管作为容器[/font][font='华文仿宋'],[/font][font='华文仿宋']铜丝[/font][font='华文仿宋']、[/font][font='华文仿宋']锌[/font][font='华文仿宋']、[/font][font='华文仿宋']改造的银[/font][font='华文仿宋']-[/font][font='华文仿宋']氯化银电极来测量各原电池电动势[/font][font='华文仿宋'],[/font][font='华文仿宋']使得本实验成本大大降低[/font][font='华文仿宋'],[/font][font='华文仿宋']浪费减少[/font][font='华文仿宋']。[/font][font='华文仿宋']针对测量仪器本身,人们已经使用过较多种类的仪器,但未曾明确阐述过仪器的优势和缺陷。本文采用更加智能化数字化的测量仪器来替换传统机械式仪器,并进行了一系列的对比实验,旨在简化实验流程,加深学生对该实验原理的理解,探索该实验的应用层面。[/font][font='等线 light']1[/font][font='等线 light']实验原理[/font][font='华文仿宋']1.1[/font][font='华文仿宋']可逆电池电动势的测量[/font][font='华文仿宋']可逆电池[/font][font='华文仿宋'][[/font][font='华文仿宋']6][/font][font='华文仿宋']要求化学反应可逆、能量转换和传递可逆,即电池的充电反应是放电反应的逆反应,且电池中不存在液体接界电势等因素引起的实际不可逆性,可逆电动势即平衡电动势。本实验其中一个待测电池丹聂耳电池[/font][font='华文仿宋']是双液电池[/font][font='华文仿宋'],液体接界处存在不可逆的离子扩散过程,但测量过程中通过电池的电流[/font][font='华文仿宋'],可忽略此微小差异,因此该电池可近似看成可逆电池,测量其电池电势。[/font][font='华文仿宋']可逆电池电动势可与热力学函数联系起来,恒温恒压过程,可逆放电过程中所做的非体积功等于系统吉布斯自由能的变化[/font][font='华文仿宋'],由法拉第定律得通过电池的电荷量为[/font][font='华文仿宋'],则可逆电功为[/font][font='华文仿宋'],可得到[/font][font='华文仿宋']。又[/font][font='华文仿宋'],且由热力学定律可知,[/font][/size][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']其中[/font][font='华文仿宋']称为电动势的温度系数。[/font][font='华文仿宋']1.2[/font][font='华文仿宋']波根多夫([/font][font='华文仿宋']Poggendorff)[/font][font='华文仿宋']对消法[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820167996_390_5439527_3.png[/img][font='华文仿宋']波根多夫([/font][font='华文仿宋']Poggendorff)[/font][font='华文仿宋']对消法[/font][font='华文仿宋'][[/font][font='华文仿宋']6][/font][font='华文仿宋']是人们常采用的测量电池电动势的方法,其原理是利用一个与待测电动势大小相等、方向相反的外加电压对抗待测电池所产生的电动势,使被测量回路不再有电流通过,此时的外加电压即等于待测电池电动势。[/font][font='华文仿宋']本实验电路图如下所示[/font][/size][align=center][size=18px][font='华文仿宋']图1[/font][font='华文仿宋'].[/font][font='华文仿宋']波根多夫对消法实验电路图[/font][/size][/align][align=center][size=18px][font='times new roman']P[/font][font='times new roman']icture 1. Poggendorff elimination method experimental circuit diagram[/font][/size][/align][align=left][size=18px][font='华文仿宋']E[/font][font='华文仿宋']N[/font][font='华文仿宋']为标准电池,R[/font][font='华文仿宋']N[/font][font='华文仿宋']为可调节电阻,E[/font][font='华文仿宋']X[/font][font='华文仿宋']为待测电池,K为换向开关。[/font][/size][/align][align=left][size=18px][font='华文仿宋']本实验[/font][font='华文仿宋'][[/font][font='华文仿宋']6[/font][font='华文仿宋']、7[/font][font='华文仿宋']][/font][font='华文仿宋']中工作回路的工作电流I保持恒定。首先,调节电阻R[/font][font='华文仿宋']N[/font][font='华文仿宋']使标准电池电动势[/font][/size][/align][align=left][size=18px][font='华文仿宋'], 随后将测量电路中的开关K拨向E[/font][font='华文仿宋']N[/font][font='华文仿宋']端,调节内阻r使工作电路的电流为I[/font][font='华文仿宋'],[/font][font='华文仿宋']即使滑动电阻R[/font][font='华文仿宋']N[/font][font='华文仿宋']两端电势差与标准电池电动势对消,此时测量电路中电流趋近于零。将开关K拨向待测电池E[/font][font='华文仿宋']X[/font][font='华文仿宋'],保证R[/font][font='华文仿宋']N[/font][font='华文仿宋']不变,调节AB间的电阻值,使检流计G的指针指向0。此时有[/font][/size][/align][align=center][size=18px][/size][/align][align=left][font='华文仿宋'][size=18px]则有[/size][/font][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']可得到[/font][/size][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']本实验不需要测定电流值,E[/font][font='华文仿宋']N[/font][font='华文仿宋']已知,因此只需要知道R[/font][font='华文仿宋']X[/font][font='华文仿宋']与R[/font][font='华文仿宋']N[/font][font='华文仿宋']的比值即可计算得到待测电池电动势的数值。通常,电阻值的测量精度较高,利用对消法测定原电池电动势具有较高的精度[/font][font='华文仿宋'][[/font][font='华文仿宋']8][/font][font='华文仿宋']。[/font][font='等线 light']2[/font][font='等线 light']实验部分[/font][font='华文仿宋']2.1[/font][font='华文仿宋']仪器与试剂[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计;[/font][font='华文仿宋']SDC-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试仪[/font][font='华文仿宋'];S[/font][font='华文仿宋']YC-158[/font][font='华文仿宋']超级恒温水浴;BC[/font][font='华文仿宋']9[/font][font='华文仿宋']a便携式饱和标准电池;AZ[/font][font='华文仿宋']19[/font][font='华文仿宋']直流检流计;电源([/font][font='华文仿宋']2.9-3.3[/font][font='华文仿宋']V[/font][font='华文仿宋'])[/font][font='华文仿宋'][color=#ff0000];[/color][/font][font='华文仿宋']硫酸锌;硫酸铜;邻苯二甲酸氢钾;醌氢醌;铜棒;锌棒;甘汞电极;[/font][font='华文仿宋']铂[/font][font='华文仿宋']电极;盐桥[/font][font='华文仿宋'][color=#ff0000]。[/color][/font][font='华文仿宋']2.2[/font][font='华文仿宋']实验步骤[/font][font='华文仿宋']恒温水浴中,分别使用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计和SDC-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试[/font][font='华文仿宋']仪按照[/font][font='华文仿宋']标准实验步骤[/font][font='华文仿宋'][[/font][font='华文仿宋']7][/font][font='华文仿宋']步骤测量以下电池电势,其中铜棒和锌棒在经过充分的打磨使其表面光滑铮亮后使用,待测醌氢醌溶液由[/font][font='华文仿宋']邻苯[/font][font='华文仿宋']二甲氢钾[/font][font='华文仿宋']溶液加少量醌氢醌粉末配置而成。[/font][font='华文仿宋']电池([/font][font='华文仿宋']1)[/font][font='华文仿宋']:[/font][font='华文仿宋'](饱和水溶液[/font][font='华文仿宋'])[/font][font='华文仿宋'](待测[/font][font='华文仿宋'])[/font][/size][align=left][size=18px][font='华文仿宋']电池(2[/font][font='华文仿宋'])[/font][font='华文仿宋']:[/font][font='华文仿宋'](饱和水溶液[/font][font='华文仿宋'])[/font][font='华文仿宋']([/font][font='华文仿宋'])[/font][/size][/align][align=left][size=18px][font='华文仿宋']电池(3[/font][font='华文仿宋'])[/font][font='华文仿宋']:[/font][font='华文仿宋']([/font][font='华文仿宋'])[/font][font='华文仿宋'](饱和水溶液[/font][font='华文仿宋'])[/font][/size][/align][align=left][size=18px][font='华文仿宋']电池(4[/font][font='华文仿宋']):[/font][font='华文仿宋']([/font][font='华文仿宋'])[/font][font='华文仿宋']([/font][font='华文仿宋'])[/font][/size][/align][align=left][size=18px][font='华文仿宋']使用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计时,首先需要调节温度补偿旋钮是其示数等于标准电池电势,而标准电池电势与温度的关系如下,[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']其中,T为环境温度,单位为[/font][font='华文仿宋']。然后接入电源、待测电池、检流计等进行调零和测量。[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820170731_6190_5439527_3.png[/img][/size][align=center][size=18px][font='华文仿宋']图2[/font][font='华文仿宋'].[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计示意图[/font][/size][/align][align=center][size=18px][font='times new roman']P[/font][font='times new roman']icture 2. UJ25 DC High Potential Potentiometer diagram[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820171699_3268_5439527_3.png[/img][font='华文仿宋']而SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试仪与UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型电位差计使用方法略有不同。该仪器在使用前应先进行1[/font][font='华文仿宋']5min[/font][font='华文仿宋']的预热。本文在采用内标法测量电池电动势时,只需用导线将待测电池连接入电路中即可,不需要使用标准电池。测量时,首先旋至内标状态,接入[/font][font='华文仿宋']测试线[/font][font='华文仿宋']并调节五个数值旋钮使电位指示显示为“1[/font][font='华文仿宋'].000000[/font][font='华文仿宋']”V,补偿旋钮逆时针[/font][font='华文仿宋']旋[/font][font='华文仿宋']到底,随后将两测量线短接,待检零指示[/font][font='华文仿宋']示[/font][font='华文仿宋']数稳定后按下“归零”使指示为“0[/font][font='华文仿宋']000”[/font][font='华文仿宋']。然后接入待测电池,在仪器测量状态下由大到小调节测量旋钮,尽可能[/font][font='华文仿宋']使检零[/font][font='华文仿宋']指示接近于零,最后调节至补偿旋钮[/font][font='华文仿宋']时检零[/font][font='华文仿宋']指示[/font][font='华文仿宋']示[/font][font='华文仿宋']数基本不变或者变化很缓慢时即可记录下电位示数,此时示数就是待测电池电动势。外标法测量时除了不用外接检流计外,使用步骤与UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型电位差计相同,本文并未使用。[/font][/size][align=center][size=18px][font='华文仿宋']图3[/font][font='华文仿宋'].[/font][font='华文仿宋'] [/font][font='华文仿宋']SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ[/font][font='华文仿宋']数字[/font][font='华文仿宋']电位差综合测试仪示意图[/font][/size][/align][align=center][size=18px][font='times new roman']P[/font][font='times new roman']icture 3. [/font][font='times new roman']SDC[/font][font='times new roman']-[/font][font='times new roman']Ⅱ[/font][font='times new roman']D[/font][font='times new roman']igital Potential Difference Comprehensive Test Instrument diagram[/font][/size][/align][size=18px][font='等线 light']3[/font][font='等线 light']实验结果和讨论[/font][font='华文仿宋']3.1[/font][font='华文仿宋']溶液p[/font][font='华文仿宋']H[/font][font='华文仿宋']的测定[/font][/size][align=left][size=18px][font='华文仿宋']醌氢醌电池测量溶液pH的原理同酸度计([/font][font='华文仿宋']pH[/font][font='华文仿宋']计[/font][font='华文仿宋'])[/font][font='华文仿宋']一样,都是由电极反应包含氢离子的指示电极和参比电极组成,其中参比电极的电极电势是确定已知的[/font][font='华文仿宋'][[/font][font='华文仿宋']9][/font][font='华文仿宋']。本实验中,参比电极为甘汞电极,指示电极为铂电极,铂电极上发生的电极反应为,[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']稀溶液状态下,[/font][font='华文仿宋']醌[/font][font='华文仿宋']和氢醌浓度相等且活度近似为[/font][font='华文仿宋']1[/font][font='华文仿宋'],可得,[/font][/size][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']而在甘汞电极同样有电极反应发生,产生一定电极电势,由此可计算得到醌氢醌电极和甘汞电极构成的原电池的电动势为,[/font][font='华文仿宋']将式[/font][font='华文仿宋'](1[/font][font='华文仿宋'])和([/font][font='华文仿宋']2)[/font][font='华文仿宋']联立可得溶液[/font][font='华文仿宋']pH[/font][font='华文仿宋']的计算公式。[/font][font='华文仿宋']将恒温水浴调节至[/font][font='华文仿宋']时,测得醌氢醌电池电动势如下,利用公式[/font][font='华文仿宋']计算得到溶液[/font][font='华文仿宋']pH[/font][font='华文仿宋'],其中,[/font][/size][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']将计算结果与文献值([/font][font='华文仿宋'])[/font][font='华文仿宋']相比较,得到下列数据。[/font][/size][align=center][size=18px][font='华文仿宋']表1[/font][font='华文仿宋'].[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820175057_6309_5439527_3.png[/img][font='times new roman']Figure 1. UJ25 Instrument measure data[/font][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][font='华文仿宋']表2[/font][font='华文仿宋'].[/font][font='华文仿宋'] [/font][font='华文仿宋']SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ[/font][font='华文仿宋']型仪器测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820175771_6426_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 2. [/font][font='times new roman']SDC[/font][font='times new roman']-[/font][font='times new roman']Ⅱ[/font][font='times new roman']I[/font][font='times new roman']nstrument measure data[/font][/size][/align][size=18px][font='华文仿宋']分别计算使用两种仪器测量时[/font][font='华文仿宋']pH[/font][font='华文仿宋']计算结果的平均值,并采用如下方法计算出本实验测量结果同文献值的偏离程度S,[/font][/size][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']可得到以下结果,[/font][font='华文仿宋']此外,根据以上计算结果可以计算得到平均值的相对误差,分别为[/font][font='华文仿宋'],[/font][font='华文仿宋']。从计算结果来看,[/font][font='华文仿宋'],[/font][font='华文仿宋'],很明显针对测量溶液pH这一实验步骤,使用SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试仪的计算结果更加准确和稳定。除此之外,利用p[/font][font='华文仿宋']H[/font][font='华文仿宋']计测定所配制醌氢醌溶液的pH时,其示数稳定在4[/font][font='华文仿宋'].0[/font][font='华文仿宋']左右。将9组pH计算结果绘制成如下图表,可以看到,相比于UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型电位差计,使用SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ数字式仪器的计算结果更多地稳定在相对误差1[/font][font='华文仿宋'].0%[/font][font='华文仿宋']之内,而前者则部分稳定在0[/font][font='华文仿宋'].5%[/font][font='华文仿宋']之内,但相对来说[/font][font='华文仿宋']SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ型仪器[/font][font='华文仿宋']稳定性较高一点,这与两种仪器测量过程中的使用方式有关。UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器使用时需要不断按压按键有关,[/font][font='华文仿宋']有时会因对检流计指针偏转观察不到位,而导致按压时间过长,使待测电池通过较大电流,破坏了电池的平衡条件,使测量结果产生误差。同时,使用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器时,误差同样会出现在对检流计指针是否指向零和指针偏向的判断上,这难以避免,但系统误差出现于每一次测量中,不过在本实验中这样的误差影响很小,可以忽略。SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ型仪器使用时不用判断指针偏转,而是[/font][font='华文仿宋']通过检流指示[/font][font='华文仿宋']的数值来确定被测电动势的值,大大简化了调节和测量过程。理想状态下,调节补偿旋钮[/font][font='华文仿宋']至检流[/font][font='华文仿宋']指示为“0[/font][font='华文仿宋']000[/font][font='华文仿宋']”时可记录下被测电动势的值,但在实际情况中,示数会不断变动,使得测量时不易判断测量电路电流为零的时刻,这对仪器测量结果的稳定性有一定影响。[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820177860_9891_5439527_3.png[/img][/size][align=center][size=18px][font='华文仿宋']图4[/font][font='华文仿宋']. [/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型与SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ型仪器计算结果距离图[/font][/size][/align][align=center][size=18px][font='times new roman']P[/font][font='times new roman']icture 4. UJ25 and [/font][font='times new roman']SDC[/font][font='times new roman']-[/font][font='times new roman']Ⅱ[/font][font='times new roman']I[/font][font='times new roman']nstrument result distance diagram[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']一定温度下,醌氢醌电池电动势仅与溶液中氢离子活度有关,温度改变时溶液氢离子活度会发生变化,这种变化则会反应在电池电势上,因此可以利用电化学方法测定溶液酸碱度,本实验所搭建的醌氢醌电池是测定溶液p[/font][font='华文仿宋']H[/font][font='华文仿宋']比较准确的方法。为探究温度对电池电势及溶液p[/font][font='华文仿宋']H[/font][font='华文仿宋']的影响,本文分别利用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器和SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ型仪器测定了不同温度下电池[/font][font='华文仿宋'](1)[/font][font='华文仿宋']的电池电势,结果如下,[/font][/size][align=center][size=18px][font='华文仿宋']表3[/font][font='华文仿宋']. [/font][font='华文仿宋']两种仪器醌氢醌电池电势测量数据表[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820178506_4759_5439527_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820180106_1033_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 3. The Q/HQ battery potential measure data of two instrument [/font][/size][/align][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820180926_4920_5439527_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820182088_5502_5439527_3.png[/img][font='楷体'] [/font][font='楷体'] [/font][font='华文仿宋'] [/font][font='华文仿宋'] [/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='楷体'] [/font][font='楷体'] [/font][font='华文仿宋'] [/font][font='华文仿宋']SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ[/font][/size][align=center][size=18px][font='华文仿宋']图5[/font][font='华文仿宋'].[/font][font='华文仿宋']两种仪器醌氢醌电池电势随温度的变化趋势图[/font][/size][/align][align=center][size=18px][font='times new roman']P[/font][font='times new roman']icture 5. The variation [/font][font='times new roman']t[/font][font='times new roman']rend diagram on battery potential with temperature of two instrument[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']观察到电池电势随温度的升高而下降,并且[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计和SDC-[/font][font='华文仿宋']Ⅱ[/font][font='华文仿宋']数字[/font][font='华文仿宋']电位差综合测试仪所测得的电动势随温度变化的拟合效果都比较好,均可以应用于该实验当中。以SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试仪为例,以温度为横坐标,电池电势为纵坐标作图可得到一条电势随温度变化曲线,其斜率为该电池的温度系数,即[/font][font='华文仿宋'],利用温度系数即可计算得到不同温度下电池反应的[/font][font='华文仿宋']、[/font][font='华文仿宋']、[/font][font='华文仿宋'],计算结果如下[/font][font='华文仿宋'],[/font][font='华文仿宋']时,[/font][/size][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']3.2[/font][font='华文仿宋']铜、[/font][font='华文仿宋']锌标准[/font][font='华文仿宋']电极电势及丹聂耳电池电势的测定[/font][font='华文仿宋']查阅文献可知,[/font][font='华文仿宋']溶液的离子活度系数分别为0[/font][font='华文仿宋'].016[/font][font='华文仿宋']和0[/font][font='华文仿宋'].015[/font][font='华文仿宋'][6][/font][font='华文仿宋']。可利用下列公式计算得到铜、[/font][font='华文仿宋']锌标准[/font][font='华文仿宋']电极电势及丹聂耳电池电势的数值,[/font][font='华文仿宋']已知文献值([/font][font='华文仿宋']),可计算得到相对误差如下表所示,[/font][/size][align=center][size=18px][font='华文仿宋']表4[/font][font='华文仿宋'].[/font][font='华文仿宋']甘汞-铜电池电势测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820182685_4381_5439527_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820183789_1957_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 4. Calomel-Copper Cell potential measure data[/font][/size][/align][align=center][size=18px] [/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][font='华文仿宋']表5[/font][font='华文仿宋']. [/font][font='华文仿宋']锌-甘汞电池电势测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820184600_8826_5439527_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820185635_5928_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 5. Zinc-Calomel Cell potential measure data[/font][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][font='华文仿宋']表6[/font][font='华文仿宋'].[/font][font='华文仿宋']锌-铜电池电势测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820187225_2491_5439527_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820187510_1403_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 6. Zn-Cu Cell potential measure data[/font][/size][/align][size=18px][font='华文仿宋']由这些图表我们观察到,使用SDC-Ⅱ型仪器测量时相对误差要小于使用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器时的相对误差,整体来看其测量结果准确性略高,可以用于代替传统仪器进行原电池实验的测定。此外,我们发现配制浓度为[/font][font='华文仿宋']溶液同样可以计算得到铜电极和锌电极的标准电极电势,且相对误差均较小,在一定程度上可以节省金属盐类试剂用量,减轻实验废液回收的压力。[/font][/size][align=center][size=18px][font='华文仿宋']表7[/font][font='华文仿宋'].[/font][font='华文仿宋']低浓度溶液电池电势测量数据[/font][/size][/align][align=center][size=18px][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820188359_6793_5439527_3.png[/img][font='times new roman']F[/font][font='times new roman']igure 7. low-concentration solution cell potential measure data[/font][/size][/align][align=center][size=18px][/size][/align][size=18px][font='华文仿宋']此外,本次实验记录了完成四个电池电势测量所需要的完整时长,如下表所示。[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']仪器配合检流计使用,检流计指针[/font][font='华文仿宋']转动对实验有一定影响,而[/font][font='华文仿宋']SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ[/font][font='华文仿宋']仪器的[/font][font='华文仿宋']“检零示数”[/font][font='华文仿宋']常出现数值左右摆动的情况,做实验时[/font][font='华文仿宋']无法快速记录数据[/font][font='华文仿宋'],[/font][font='华文仿宋']会[/font][font='华文仿宋']在一定程度上延长实验操作时间,[/font][font='华文仿宋']所以总体来说[/font][font='华文仿宋']使用两种仪器进行实验的耗时相差不大,但是使用SDC[/font][font='华文仿宋']-[/font][font='华文仿宋']Ⅱ型[/font][font='华文仿宋']仪器[/font][font='华文仿宋']相对于UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型电位差计在操作上会[/font][font='华文仿宋']更加简便和智能化[/font][font='华文仿宋']。[/font][/size][align=center][size=18px][font='华文仿宋']表8[/font][font='华文仿宋']. [/font][font='华文仿宋']原电池电动势测定实验时间统计数据[/font][/size][/align][align=center][size=18px][font='times new roman']F[/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301820189764_6869_5439527_3.png[/img][font='times new roman']igure 8. Galvanic Cell Electromotive Force Measurement Experiment time data[/font][/size][/align][align=center][size=18px][/size][/align][align=center][size=18px][/size][/align][size=18px][font='等线 light']4[/font][font='等线 light']结论与展望[/font][font='华文仿宋']UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型直流高电势电位差计使用时需要与检流计连接,通过观察检流计指针变化来调节测量旋钮测定待测电池电动势。在测量过程中,UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器需要不断按压使测量电路中通过电流,使检流计指针偏转从而调节阻值旋钮,而这容易出现按压时间过长的情况,使通过原电池的电流不趋于零,产生较大的极化电势,影响实验结果。此外,对检流计指针是否[/font][font='华文仿宋']指零易产生[/font][font='华文仿宋']误判,从而记录下不准确的测量结果。标准电池精确与否也容易给实验带来大的误差。使用UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器开始测量前,需要用导线将检流计、标准电池、电源、待测电池连接进电路中,这一过程比较繁琐,导线数量的增多可能会对仪器内部阻值分布造成影响。长久以来,该仪器一直被使用于原电池电动势的测定实验中,具有一定的准确性,且经过验证其测量结果的相对误差较小,符合实验规范。[/font][font='华文仿宋']SDC-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试[/font][font='华文仿宋']仪相对[/font][font='华文仿宋']于传统仪器使用更加方便,不需要连接繁琐的电路,其配备有专门的导线,使导线对实验的影响降到最低。该仪器采用数字化的表盘,避免了判断指针偏向的失误,其相对于UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器更加智能化,更加灵敏,能够检测到由于微小扰动所造成的电池电动势变化。但在判断测量电路中电流为零的时间点的把握上,[/font][font='华文仿宋']即检流示[/font][font='华文仿宋']数何时算是趋近于零,SDC-Ⅱ型仪器主观性更大。实验过程中,[/font][font='华文仿宋']检流示[/font][font='华文仿宋']数时常晃动,干扰结果判定,无法准确确定测量结果,在无形中会延长实验时间。此外,相较于UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器,SDC-[/font][font='华文仿宋']Ⅱ数字[/font][font='华文仿宋']电位差综合测试仪采用内标法测量时,不用接入标准电池,不会受到标准电池老化、受潮等因素的影响,测量结果准确,相对误差小。[/font][font='华文仿宋']总体来看,SDC-Ⅱ型仪器操作更加简单方便,准确性较高,可以在原电池电动势的测定实验中代替UJ[/font][font='华文仿宋']25[/font][font='华文仿宋']型仪器作为测量仪器使用。[/font][font='华文仿宋']对于物理化学实验来说,掌握测量过程和实验步骤是次要的,理解每一个实验的物理化学原理才是主要的。只有真正理解实验原理,运用原理于实践中才能得心应手。现代社会中,智能化是大趋势,然而在许多智能化仪器的帮助下,学生们只知道如何使用,却往往不会去了解实验背后的化学原理,因此,如何权衡数字化仪器带来简便快捷的同时又不利于加深学生对实验原理理解的矛盾,是需要进一步深入思考的问题。[/font][font='等线 light']5[/font][font='等线 light']参考文献[/font][font='宋体'][[/font][font='宋体']1][/font][font='宋体']李[/font][font='宋体']苞[/font][font='宋体'],张虎成,张树霞,等.对消法测定原电池电动势实验中电极制备的改进[[/font][font='宋体']J].[/font][font='宋体']大学化学,2[/font][font='宋体']014,29([/font][font='宋体']2[/font][font='宋体']):59-63.[/font][font='宋体'][[/font][font='宋体']2][/font][font='宋体']赵会玲,宋江闯,[/font][font='宋体']熊焰[/font][font='宋体'].“原电池电动势的测定”实验的几点改进[[/font][font='宋体']J][/font][font='宋体'].广州化工,2[/font][font='宋体']015,(9):196-197.[/font][/size][align=left][size=18px][font='宋体'][[/font][font='宋体']3[/font][font='宋体']]胡俊平,刘妍,毕慧敏,等.物理化学实验项目改进创新——以“原电池电动势的测定及在热力学上的应用”为例[J].化学教育,2016,37(10):32-34. [/font][/size][/align][size=18px][font='宋体'][[/font][font='宋体']4[/font][font='宋体']]宋江闯,赵会玲,马淑然,等.高阻抗法测定原电池电动势及其温度系数[J][/font][font='宋体'].[/font][font='宋体']电源技术,2013,37(12):2182-2184,2264. [/font][font='宋体'][[/font][font='宋体']5[/font][font='宋体']]范国康,方卉慧.原电池电动势测定实验的微量化改进[J].科教导刊-电子版(中旬),2020(6):175.[/font][font='宋体'][[/font][font='宋体']6][/font][font='宋体']天津大学物理化学教研室编.物理化学第六版(下)[/font][font='宋体'][M].[/font][font='宋体']北京:高等教育出版社,[/font][font='宋体'] [/font][font='宋体']2[/font][font='宋体']017[/font][font='宋体'].[/font][font='宋体'][[/font][font='宋体']7][/font][font='宋体']柯以侃,王桂花.大学化学实验第二版[[/font][font='宋体']M].[/font][font='宋体']北京:化学工业出版社,[/font][font='宋体'] 2010.[/font][font='宋体'][[/font][font='宋体']8]杨小勇,蔡飞宇,高康康,等.《原电池电动势测定》教学方法思考[J].课程教育研究[/font][font='宋体']([/font][font='宋体']新教师教学[/font][font='宋体'])[/font][font='宋体'],2013(34):314-314.[/font][font='宋体'][[/font][font='宋体']9]刘金峰.pH计的原理、使用方法和维护[J].口腔护理用品工业,2019,29(2):35-36.[/font][/size]

  • 【资料】《电池手册(原著第三版)》

    《电池手册(原著第三版)》看到有人要這本書,就發給大家分享。本书是全面介绍电池的一本专著,不仅包含了从电池原理、电池设计到电池应用和选择的相关基础理论和实用知识,而且对市场上广泛得到实际应用的各种电池体系进行了详细和深入的介绍。特别是书中非常详细地介绍了20世纪末发展起来的新型电池体系,包括称为绿色电池体系的锂离子蓄电池和金属氢化物/镍蓄电池等。同时对有应用前景的小型便携式燃料电池和各国都在致力发展的电动车动力电池也进行了介绍。此外,本书还对那些用于航天与航空、水中兵器、导弹武器的各种全密封蓄电池、贮备电池(热电池和液体激活电池)和高比能量锂原电池等进行了详细介绍。本书全面地反映了各种新型电池的最新发展水平,对电池行业进一步研究、开发与应用具有指导意义。本书可供从事电池与相关领域研究、生产、销售和使用人员参考,也可供大专院校和中专院校相关专业师生作为教学参考书使用。第1部分 工作原理 第1章 基本概念 第2章 电化学原理和反应 第3章 影响电池性能的因素 第4章 电池标准 第5章 电池组设计 第6章 电池选择与应用第2部分 原电池 第7章 原电池概述 第8章 锌/二氧化锰干电池(氯化铵和氯化锌体系) 第9章 镁电池和铝电池 第10章 碱性锌/二氧化锰电池 第11章 氧化汞电池 第12章 氧化银电池 第13章 锌/空气电池——扣式结构 第14章 锂电池 第15章 固体电解质电池第3部分 贮备电池 第16章 贮备电池概述 第17章 水激活镁电池 第18章 锌/氧化银贮备电池 第19章 旋转贮备电池 第20章 常温锂负极贮备电池 第21章 热电池第4部分 蓄电池 第22章 蓄电池简介 第23章 铅酸电池 第24章 阀控铅酸电池 第25章 铁电极电池 第26章 工业和空间用镉/镍电池 第27章 开口烧结式镉/镍电池 第28章 便携式密封镉/镍电池 第29章 便携式密封金属氢化物/镍电池 第30章 动力和工业用金属氢化物/镍电池 第31章 锌/镍电池 第32章 氢/镍电池 第33章 氧化银电池 第34章 室温锂蓄电池 第35章 锂离子电池 第36章 可充电碱性锌/二氧化锰电池第5部分 电动车辆和新用途的新型电池 第37章 电动车辆和新用途的新型电池概述 第38章 金属/空气电池 第39章 锌/溴电池 第40章 β-a12o3钠电池 第41章 锂/硫化铁电池第6部分 便携式燃料电池 第42章 便携式燃料电池 第43章 小型燃料电池(小于1000w)第7部分 附录 附录a 术语定义(英汉对照) 附录b 标准还原电位 附录c 电池的电化当量 附录d 标准符号和常数 附录e 换算系数 附录f 文献[~78705~][~78706~]

  • 【资料】积分下载-IEC 60086 一组电池标准

    IEC 60086-1-2006 原电池.第1部分:总则 http://www.instrument.com.cn/download/shtml/063266.shtmlIEC 60086-2-2007 原电池组.第2部分:物理和电气规范http://www.instrument.com.cn/download/shtml/063268.shtml IEC 60086-3-2004 原电池组.第3部分:钮扣电池 http://www.instrument.com.cn/download/shtml/063271.shtmlIEC 60086-4-2007 原电池.第4部分:锂电池的安全性http://www.instrument.com.cn/download/shtml/063277.shtml IEC 60086-5-2005 原电池组.第5部分:电解质为水溶液的电池组的安全http://www.instrument.com.cn/download/shtml/063281.shtml

  • 【资料】在线分析仪…电化学篇…燃料电池式分析仪(收集)

    虽然无人说好,我想我还是将我的培训资料发全了,我发的这些内容,基本上就是我的分析室人员培训基本理论,作为一个基本合格分析工,这些东西还是要掌握的。希望这些书上的东西,对我们这行的朋友有用!第三节:燃料电池式氧分析仪燃料电池是指原电池中的一种类型。原电池式氧分析仪中的电化学反应可以自发地进行,不需要外部供电,其综合反应是气样中的氧和阳极发生氧化反应,反应的结果生成阳极氧化物,这种反应类似于氧的燃料反应,所以这类原电池也称为“燃料电池”,以便与其他类型的原电池相区别,安装有这类原电池的分析仪,我们称之为燃料电池分析仪。由于阳极在反应中不断消耗,因而电池需要定期更换。燃料电池式氧分析仪,既可以测量微量氧,也可以测量常量氧。若需要测量常量氧,其测量测量精度和长期使用的稳定性肯定不如顺磁氧效果好,且电池的寿命因与氧浓度有关,所以测量常量氧,其寿命也较短。因此,它测量常量只适合一般要求不高的场合。而测量微量氧,则是这类仪器的优势所在,它测量微量氧的下限为PPM级,而顺磁氧为:0.1%(1000PPM)O2,精度高的顺磁氧也只能达到0.01%(100PPM)O2。过去为,燃料电池的电解质均采用电解液,近20年来,由于固体(糊状)电解质应用于燃料电池,为了便于区分,我们将者称之为液体燃料电池,后者称之为固体燃料电池。两者相比,固体燃料电池比液体燃料电池有一定的优越性,但固体能否取代液体,尚难预料!在液体燃料电池中,我们根据燃料电池的性质,又将液体燃料电池分为碱性燃料电池和酸性燃料电池。

  • 可充电池充电原理

    我们知道,在可充电池中,存在着 AB+C=A+BC 的可逆反应。而其中的A、B、C则是金属镍、储氢合金和其它的元素,而电池内电池的正负极之间用电解质来填充。同时,我们也知道,每种物质都有自己的电势,如果二种不同的物质在一起的话就有电位差,用通俗的话说就是电压。当我们对电池进行充电的时候,化学反应就由左向右进行,电能就转化为化学能储存起来,而这时A和BC的电位差(电压)为1.25-1.3V,这也就是可充电电池的最高电压只有1.25-1.3V的,如果你看到有1.5V的可充电电池的话,肯定是假的。而当放电(我们使用电池)的时候,化学反应由右向左进行,化学能又重新转化为电能,A和BC又重新生成AB和C,而这时AB和C的电压为1.0V左右,所以说,可充电电池用完后也会用1.0V 以上的电压,不象一次性电压用完后只有大约0.5V的电压。  讲完原理后,先来说一下充电的过程,我们知道,当可充电电池没有电的时候,也是说电池中只有AB和C时,这时的化学反应是全部向右进行了,并且反应的速度很快,所以这时从原理上讲就可以用很大的电流来进行充电,这时的电能基本上全部转化为化学能储存。而当可充电池充了一半的时候,电池中的反应进行了一半,也就是说电池中四种物质的量各是四分之一,而这时的电能一方面转化为化学能储存,因为没有许多的AB和C在反应,所以有部分的电能转化为热能了,就产生了发热的现象。而当电池充电到90%时,因为充电也基本达到饱和,AB和C很少了,所以这时除了小部分的电能转化为化学能储存起来后,大部分的电能都转化为热能,而当电池全部充满后,反应已经不再进行的,这时的电能全部转化为热能。这也就是为什么刚开始充电时电池没有产生高温,而充到结束后电池的温度较高的原因。从上可以得知,最好的充电就是在刚开始的时候用大电流来充,而到了结束时用小电流(也叫做涓流)来充电。

  • 关于电池短路试验机的技术要求

    电池短路试验机用于锂原电池和其它原电池、以及锂离子电池(用于移动电话、笔记本电脑、摄像机等数码电子产品)、镍氢、镍镉以及铅酸电池(用于电动工具、玩具、电动自行车等产品)的外部短路试验,大家在采购本电池短路试验机时,要先了解产品,我司生产的电池短路试验机在技术、功能方面都满足以下要求。 技术规格要求: 1 适用范围 1.1 适用标准 电池短路试验机适用于锂原电池和其它原电池、以及锂离子电池(用于移动电话、笔记本电脑、摄像机等数码电子产品)、镍氢、镍镉以及铅酸电池(用于电动工具、玩具、电动自行车等产品),按照标准GB8897.4-2002、GB/T18287-2000、IEC60086-4: 2000、IEC62133: 2002、UL1642: 2006、SN/T1413-2004、SN/T1414.3-2004中的有关要求,进行外部短路试验。 1.2 试验要求 上述标准中,对于外部短路试验的规定要求略有不同,电池短路试验机满足以下全部的试验要求: 1)电池在(55±2)℃的环境下达到温度平衡后,在相同温度下经受外电路总阻值0.1Ω的短路,短路继续至电池外壳温度回落至(55±2)℃后,再持续1小时以上。 2)满充的电池或电池组在(20±5)℃或(55±5)℃的环境条件下,电池或电池组的正负极之间经受外电路总阻值0.1Ω的短路,短路试验持续24小时,或电池外壳温度下降到比峰值低20%时结束(采用热电偶监控),取时间较短的试验情况。 2 主要技术参数与功能 2.1 主要技术参数 1)温度范围:RT+20℃~100℃ 2)温度均匀度:±2℃ 3)温度波动度:±0.5℃ 4)短路工位:5路 5)测温工位:5路 6)每路短路电阻:<0.1Ω或<0.05Ω可选 7)短路工作腔底面积:600mm×600mm 8)适用样品最大尺寸:500mm 2.2 主要功能 1)电池短路试验机采用全封闭的箱体结构,短路工作腔与设备本体的电气线路部分隔离。 2)短路工作腔具有隔爆和排气功能,能够瞬间释放试样爆炸产生的压力,并排出爆炸产生的烟尘。 3)电池短路试验机的工作腔具有适度的耐腐蚀和便于清洁的功能,能够经受电池爆炸产生的腐蚀性液体的侵蚀,便于清洗。 4)电池短路试验机采用远程和现场两种控制方式,短路过程通过自动控制完成。 5)短路工作腔安装具有防弹功能的观察窗,以便对短路过程进行监控; 6)短路工作腔具有烟雾监控和声光报警功能,以对爆炸发生与否进行判断和报警。 3 安装要求 需求方要提供排气烟道或根据具体要求,供求方另行单独设计、制造、安装废气处理机组及排烟管路。

  • 《化学电源-电池原理及制造技术》2003新书

    《化学电源-电池原理及制造技术》2003新书

    网上有pdf版,哪位有请分享一下,谢谢![em25] 《化学电源-电池原理及制造技术》 【基本信息】 出版时间:2003年1月第1版 编(译)著: 郭炳琨、李新海等 ISBN/RC:7-81061-102-X/TM001字数:398千字开本:32开页数:476 价格: 40.00 元 --------------------------------------------------------------------【内容介绍】 本书是几位教授、博导在多年从事教学和新型化学电源研究开发的基础上编著而成。作者参考总结了国内外有关专著及近10年的文献和电池生产厂家的技术资料。 该书在阐明化学电源基本理论和基本概念的基础上全面系统地论述了众多电池的原理和制造技术,全面叙述了各类新型化学电源的结构、性能和制造工艺,是一本理论性较强,又密切结合电池生产实践的专著。全书共分12章,内容包括概论、化学电源的理论基础、一次电池、铅酸蓄电池、镉-镍电池、氢-镍电池、锂电池、锂离子电池、激活电池、固体电解质电池、燃料电池、电池性能检测技术和电池设计。 该书已多次重印,第二版正在修改,不久将与读者见面,本书既适合高等学校本科生,研究生的教材,又可作为从事电池研究开发和生产的工程技术人员使用的参考用书。 [em61] [em25] [img]http://ng1.17img.cn/bbsfiles/images/2005/11/200511121246_10063_1604910_3.jpg[/img]

  • 【分享】铅酸电池,镍铬电池和锂离子电池有什么区别

    电池的分类有不同的方法其分类方法大体上可分为三大类 第一类:按电解液种类划分包括:碱性电池,电解质主要以氢氧化钾水溶液为主的电池,如:碱性锌锰电池(俗称碱锰电池或碱性电池)、镉镍电池、氢镍电池等;酸性电池,主要以硫酸水溶液为介质,如铅酸蓄电池;中性电池,以盐溶液为介质,如锌锰干电池(有的消费者也称之为酸性电池)、海水激活电池等;有机电解液电池,主要以有机溶液为介质的电池,如锂电池、锂离子电池待。 第二类:按工作性质和贮存方式划分包括:一次电池,又称原电池,即不能再充电的电池,如锌锰干电池、锂原电池等;二次电池,即可充电电池,如氢镍电池、锂离子电池、镉镍电池等;蓄电池习惯上指铅酸蓄电池,也是二次电池;燃料电池,即活性材料在电池工作时才连续不断地 从外部加入电池,如氢氧燃料电池等;贮备电池,即电池贮存时不直接接触电解液,直到电池使用时,才加入电解液,如镁-氯化银电池又称海水激活电池等。 第三类:按电池所用正、负有为材料划分包括:锌系列电池,如锌锰电池、锌银电池等;镍系列电池,如镉镍电池、氢镍电池等;铅系列电池,如铅酸电池等;锂系列电池、锂镁电池;二氧化锰系列电池,如锌锰电池、碱锰电池等;空气(氧气)系列电池,如锌空电池等 充电电池定义 充电电池又称:蓄电池、二次电池,是可以反复充电使用的电池。常见的有:铅酸电池(用于汽车时,俗称“电瓶”)、镉镍电池、氢镍电池、锂离子电池。 电池的额定容量 电池的额定容量指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20±5℃环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量。单位有Ah, mAh (1Ah=1000mAh) 电池的清洁 为了避免电量流失的问题发生,您要保持电池两端的接触点和电池盖子的内部干净。如果表面很脏的话要使用柔软、清洁的干布轻轻地拂拭,绝不能使用清洁性或是化学性等具有溶解性的清洁剂,例如稀释剂或是含有酒精成分的溶剂清洁您的数码摄像机、电池或是充电器。 电池的充电 对于充电时间,则取决于所用充电器和电池,以及使用电压是否稳定等因素。通常情况下给第一次使用的电池(或好几个月没有用过的电池)充电,锂电池的一定要超过6小时,镍氢电池则一定要超过14小时,否则日后电池寿命会较短。而且电池还有残余电量时,尽量不要重复充电,以确保电池寿命。 电池的使用 使用过程中要避免出现过放电情况。过放电就是一次消耗电能超过限度。否则即使再充电,其容量也不能完全恢复,对于电池是一种损伤。由于过放电会导致电池充电效率变坏,容量降低,为此摄录机均设有电池报警功能。所以在出现此类情况时应及时更换电池,尽量不要让电池耗尽而使摄录机自动关机。 电池的保存 如果您打算长时间不使用数码摄像机时,必须要将电池从数码摄像机中或是充电器内取出,并将其完全放电,然后存放在干燥、阴凉的环境,而且尽量避免将电池与一般的金属物品存放在一起。为了避免电池发生短路问题,在电池不用时,应以保护盖将其保存

  • 选择新能源电池试验箱原理的关键是什么?

    选择新能源电池试验箱原理的关键是什么?

    [b] 新能源电池试验箱原理[/b]主要用于锂电池单元、锂电池模块、锂电池组等相关产品的研发验证和质量检验,已成为锂电池安全型式试验、BMS管理系统研发等必不可少的气候环境模拟安全设备。[align=center][img=,680,680]https://ng1.17img.cn/bbsfiles/images/2021/09/202109031626355787_15_1037_3.jpg!w680x680.jpg[/img][/align]  在新片开发或产品检测过程中,锂电池会出现许多不合格因素,当然,许多都是安全因素。导致锂电池起火爆炸。这也是测试的目的。  新能源电池试验箱原理起火的原因大概有几个:  1、内部短路:由于电池的滥用,如过充过放引起的支晶、电池生产过程中的杂质和灰尘等。,会恶化产生穿透隔膜,产生微短路。电能的释放会导致温升,温升引起的材料化学反应会扩大短路路径,形成更大的短路电流。这种相互积累的相互增强的破坏会导致热失控。  2、外部短路:以电动汽车为例。实际车辆运行中危险的概率很低。电池能承受短时间大电流冲击。有一些情况是短路点超过整车熔断器,BMS失效。长期外部短路通常会导致电路中连接的弱点烧毁,很少导致电池热失控。如今的企业采用在回路中加入熔断丝的方法,可以更有效地避免外部短路的危害。  3、由于外部高温:由于锂电池结构的特点,SEI膜、电解液、EC等。在高温下会发生分解反应,电解液的分解物也会与正极和负极发生反应,电池隔膜会融化分解,各种反应会导致大量热量。隔膜融化导致内部短路,电能释放增加热量生产。  为避免出厂成品新能源电池试验箱原理出现问题,锂电池出厂前必须进行低温、高温、热冲击、过冲过放、针刺挤压、锂电池包热泛滥、火烧等多项标准的安全试验。

  • 原电池原理的理解

    原电池原理的理解

    [img=,690,207]http://ng1.17img.cn/bbsfiles/images/2017/04/201704270439_01_1626275_3.png[/img][img=,690,535]http://ng1.17img.cn/bbsfiles/images/2017/04/201704270439_02_1626275_3.png[/img][img=,690,510]http://ng1.17img.cn/bbsfiles/images/2017/04/201704270439_03_1626275_3.png[/img]

  • 【分享】大连理工的物理化学虚拟实验室(原电池电动势\二组分气液平衡相图的测定实验)

    【分享】大连理工的物理化学虚拟实验室(原电池电动势\二组分气液平衡相图的测定实验)

    大连理工的物理化学虚拟实验室(原电池电动势\二组分气液平衡相图的测定实验\Ni在不电解质中阳极极化曲线的测定实验)FLASH[img]http://ng1.17img.cn/bbsfiles/images/2008/05/200805150958_89477_1627719_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/05/200805150958_89478_1627719_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/05/200805150959_89479_1627719_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/05/200805150959_89480_1627719_3.jpg[/img][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=89481]电动势测定实验[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=89482]二组分气液平衡相图的测定实验[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=89484]Ni在不电解质中阳极极化曲线的测定实验[/url]

  • 浅谈锂电池极片水分仪的应用与原理

    浅谈锂电池极片水分仪的应用与原理

    在锂离子电池的制造过程中,有很多东西是必须严格控制的,一是粉尘,二是金属颗粒,三是水分。一、水分对锂离子电池影响巨大  如果水分过高,电解液和水分反应,生成微量有害气体,对注液房环境有不良影响;这也会影响电解液本身的质量,使得电池性能不良,还会使电池柳钉生锈。  水分和电解液中的一种成分反应,生成有害气体,当水分足够多时电池内部的压力就变大,从而引起电池受力变形。如果是手机电池,就表现为鼓壳;当内部压力在高的时候,电池就有危险了,爆裂使得电解液喷溅,电池碎片也很容易伤人。  电池内部水分过高;损耗了电解液的有效成分,也损耗了锂离子,使得锂离子在电池负极片发生不可逆转的化学反应。消耗了锂离子,电池的能量就减少了。  用26650电池给电钻供电,充满电后本来可以使用1小时,因为电池内部有水分,就只能使用50分钟了。  当电池内部的水分多的时候,电池内部的电解液和水反应,其产物将是气体和氢氟酸(氢氟酸是一种腐蚀性很强的酸,它可以使电池内部的金属零件腐蚀,进而使电池最终漏液。如果电池漏液,电池的性能将急速下降,而且电解液还会对使用者的机器进行腐蚀,终而引起更加危险的失效。二、电池中的水分来源哪里?  对于电池中的水分,它的来源就主要来之于材料,当然也涉及环境。  正极片:正极片如果使用的是纳米材料,这种纳米材料具有很强的吸水性,很容易周围的空气中吸收水分。  负极片:负极片比正极片来说,吸水性相对低一点,当然,在没有控制湿度的环境下,其从环境空气中吸水数量也是相当乐观的。  隔膜纸:隔膜纸也是一种多孔性的塑料薄膜,其吸水性也是很大的。  电解液:电解液是一种非常怕水的物质,它也是非常容易吸水,他它会和水进行反应,直至所有的电解液物质反映完成,也就是说,它喝水的能力是永无止境,直到自己死掉。  其他金属零件:  虽然金属零件本身对水分的吸收有限,但是,金属零件对水分却很怕,因为水分的存在会使其生锈或者腐蚀。材料中的水分含量是电池中水分的主要来源,当然,环境湿度越大,电池材料越容易吸收水分。(来源:仪器信息网)三、如何检测电池材料中的含水率对于电池材料含水率的检测,行业内一般使用SFY系列快速水分检测仪来精确测定材料的水分含量。A、冠亚快速水分检测仪技术指标 1、称重范围:0-90g 可调试测试空间为3cm 2、水分测定范围:0.01-100% 3、样品质量:0.100-90g 4、加热温度范围:起始-205℃ 加热方式:可变混合式加热 微调自动补偿温度最高15℃ 5、水分含量可读性:0.01% 6、显示参数:7种    红色数码管独立显示模式 7、外型尺寸:380×205×325(mm) 8、电源:220V±10% 9、频率:50Hz±1Hz 10、净重:3.7Kghttp://ng1.17img.cn/bbsfiles/images/2017/02/201702130944_01_2233_3.jpgB、冠亚快速水分检测仪使用注意事项1.在测定水分过程中,一定要避免震动,加热筒下端缺口不能迎风摆放。2.测定样品在称量盘中堆积一定要平整,堆积面积尽量布满称盘底面,堆积厚度应尽量薄,利于水分完全蒸发。3.在测定水分过程中,不能用手去摸加热筒,严禁敲击或直接振动工作台面。4.由于该仪器称重系统为精密设备,尤其传力部分特别怕重压,冲击,因而在每次取,放称量盘时尽量用托架,若用手进行取,放称量盘应轻取,轻放。5.测定完成后,马上取下称量盘必须用托架,以免烫手.托架在放入仪器中不应碰到称重支架与称量盘。6.测定后须待称量盘完全冷却后,再放入下一个试样。C、冠亚快速水分检测仪工作原理 采用干燥失重法原理,通过加热系统快速加热样品,使样品的水分能够在最短时间之内完全蒸发,从而能在很短的时间内检测出样品的含水率。检测一般样品通常只需3分钟左右。冠亚水分仪采用的原理与国家标准烘箱法相同,检测结果具有可替代性,仪器采用一键式操作,不仅操作简单而且也避免了人为因素对测量结果产生的误差。

  • 锂电池质量检测 汽车电池检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37598.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]中钢国检检测中心为专业从事电池(含锂电池、蓄电池和其它特 种电池)及其原材料质量监督检测、具有第三方公正性的产品质量监督检测机构[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]锂电池质量检测 汽车电池检测检测公司:中钢国检检测资质:CMA、CNAS、ILAC检测依据:IEC、EN、UL、ANSI、GB、GJB、HB、QB等 140 余项标准检测产品:锂离子电池、蓄电池、原电池等检测项目:过充电、过放电、冲击、振动等[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]汽车电池[/td][td]过充电、过放电、冲击、振动[/td][td]GB/T18287[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]中钢国检是专业的第三方检测机构,国企检测公司,实力强大,检测数据准确,检测范围广。

  • 【电池资料标准集】测试方法类

    【电池资料标准集】测试方法类

    [img]http://ng1.17img.cn/bbsfiles/images/2009/09/200909301731_173805_1621362_3.jpg[/img][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=173804]IEC 60086-1-2006 原电池.第1部分总则[/url]

  • 【分享】企业应关注废旧电池回收法令!

    企业应关注废旧电池回收法令 日前,西班牙废旧电池回收法令生效。该法令规定,电池生产厂家、销售商需要承担回收处理废旧电池的责任,免费回收使用过的废旧电池,消费者有义务将废旧电池交到回收点。电池生产厂家通过设立回收点、向公共财政缴纳处理费等,参与废旧电池的回收利用。此外,法令还禁止商家销售汞或镉含量超标的电池,并规定有关部门采用最先进的技术对回收的废旧电池进行环保处理。 宁波一直是我国重要的电池生产基地,共拥有电池制造企业100余家,涌现出“双鹿”、“豹王”、“野马”等一批知名品牌。2007年,宁波口岸共出口原电池5801批,货值18286万美元,分别同比增长18.6%和46.2%,欧盟、美国和我国香港是宁波口岸原电池主要出口市场。近年来,欧盟各国要求制定电池生产销售和回收环保指令的呼声越来越高,并纷纷制定了相关法规。同时,欧盟也于今年5月2日通过了一项指令,要求从2008年开始强制回收废旧电池,回收费用将由生产厂家来负担。从2009年开始,所有在欧盟境内销售的电池都必须标明具体使用寿命。另外,含汞量超过0.0005%、含镉量超过0.002%的电池,在欧盟境内都将被禁止销售。 为此,检验检疫部门建议相关电池生产企业,应及时进行跟踪研究各国相关指令法规,寻求应变措施,降低出口风险,提高生产标准,以积极应对国外技术性贸易措施,保持产业的良性发展。信息来源:中国质量新闻网

  • 电池管理系统与充电机配合充电原理介绍

    电池管理系统和充电机协调配合充电模式的原理为:电池管理系统通过对电池的当前状态(如温度、单体电池电压、电池工作电流、一致性以及温升等)进行监控,并利用这些参数对当前电池的最大允许充电电池进行估算;充电过程中,通过通信线将电池管理系统和充电机联系起来,实现数据的共享。电池管理系统将总电压、最高单体电池电压、最高温度、温升、最大允许充电电压、最高允许单体电池电压以及最大允许充电电流等参数实时地传送到充电机,充电机就能根据电池管理系统提供的信息改变自己的充电策略和输出电流。  当电池管理系统提供的最大允许充电电流比充电机设计的电流容量高时,充电机按照设计的最大输出电流给可充电池充电;当电池的电压、温度超限时,电池管理系统能实时检测到并及时通知充电机改变电流输出;当充电电流大于最大允许充电电流时,充电机开始跟随最大允许充电电流,这样就有效地防止了电池过充电,达到延长电池寿命的目的。充电过程中一旦出现故障,电池管理系统可以将最大允许充电电流设为0,迫使充电机停机,避免发生事故,保障充电的安全。

  • 【分享】电池基础知识

    1、电池的定义:    按照学者们的命名“电池”即是“化学电源”,它是一个由化学能直接转换成电能的装置。称“化学电源”显得更科学一些,称“电池”则更贴近百姓一些。 2、何为“一次电池”和“二次电池”?    “一次电池”也被称为“原电池”,它是不可以充电的,当设计的容量用完后要更换新电池,它的优点是使用方便,它的缺点是大量的废弃电池对环境造成一定影响。“二次电池”也称“蓄电池”,是可充电电池,当电池的电量用到一定程度时可以用规定的充电器充电以恢复电量。还有一种介于二者之间的“可充电一次电池”,它是一次电池的原理,经改良后也可充电,但充放电深度和循环寿命都不能和“二次电池”同日而语。  3、“公称电压”是怎样确定的?规定它有什么作用?    “公称电压”顾名思义是大家公认的电压体系,就像220V是我们国家规定的家用交流电的“公称电压”一样,电池的“公称电压”其值规定在:当电池较小电流放电时的电压平台附近。所以它低于电池的开路电压,又高于较大电流工作时的负载电压。它的作用是为用电器的设计提供参考,也为电池使用者更换电池时提供依据。有关标准规定“每个电池必须标明公称电压和正负极性”。使用者也应注意:“大小形状即使相同,如公称电压不同的电池不能互换。”    目前市场流行的电池体系及公称电压是:    “锌锰”/“碱锰”1.5V    “镍镉”/“镍氢”1.2V    “铅酸”2.0V    “锂锰”3.0V    “锂硫”2.7V    “锂氯”3.6V    “锂钴”3.8V    (从资料上看,也有标注3.6V和3.7V的,那是因为随着电池材料的改进,充电电压有所提高,电压平台也有所提高。规定3.8V是比较合理的。)   4、何为“额定容量”?    “额定容量”是电池的设计电容量,有关标准规定:电池的实际容量应大于或等于额定容量,因此只要是负责任的厂家出品的电池,绝大多数电池个体容量均不低于额定容量。但容量的测定条件在标准中规定得非常严格,一般用户不一定具备,所以通常只是在室温下对电池进行定电流(或定电阻)放电,计算其容量基本附合就可以了。   5、何为“自放电率”?    电池在存放期间,其正、负极反应物质会有一定的消耗,结果是使电池的实际容量有所下降。这种现象称为自放电,自放电率即是对这种现象的描述,以单位时段额定容量减少的百分数来表示。如3%/年。或是3%/月   6、何为“记忆效应”?    到目前为止,只是“镍镉”电池有此现象。当蓄电池在放电(使用时的状态)时如果没有将容量用完即行充电,那么电池以后的充放电容量只能达到那次放电的水平,任何方法也不可能恢复其额定容量了。如1000mAh的电池,如果有一次只放电100mAh就进行了充电,那么这只电池今后只能作为100mAh电池来使用。这就是所谓的“记忆效应”。“记忆效应”给用户带来很大的困难,所以后来研发的二次电池往往特意加注“无记忆效应”。铅酸电池就不注,因为铅酸流行的时候人们还不知道有“记忆效应”这会事儿。   7、“锂电池”是什么概念?    “锂电池”是以金属锂为负极材料的一次电池的总称,依据其正极材料的不同,构成许多电池体系。如“锂锰”;“锂硫”;“锂氯”;“锂碘”;“锂铜”等等。   8、“锂离子电池”是什么概念?    “锂离子电池”是负极材料为锂元素的二次电池的总称,依据正极材料的不同,构成许多体系。如“锂钴”;“锂镍”;“锂锰”········等。不过锂离子电池是当今最新的电池体系,还有很多新体系正在研制和开发中。   9、放电率“nC”是什么概念?    电池的放电电流也是用户选配电池所关心的数据,有些样本直接给出允许持续电流及脉冲电流,但有些样本或文章则以“nC”来表述放电电流。其中“C”是额定容量,n是有单位的系数,其单位是“1/小时”,“nC”即是放电率。(n=1也不能省略)。例如:额定容量为“1000mAh”的电池,以“0.1C”放电,就是0.1/h×1000mAh=100mA。放电电流是100mA。   10、锂/锰电池有那些特点?    锂/锰电池的显著特点是“比能量高”及“贮存期长”。它的比能量是碱锰电池的4倍,也就是说相同规格的电池。其容量和电压都是碱锰电池的2倍。其贮存性能就更显优越,电化学体系几乎不存在锂的自溶,贮存容降几乎为零,所以敢于承诺贮存期8年。

  • 电池中的有害物质检测

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-7968.html[/url](1)欧盟议会和欧盟理事会于2006年9月26日发布指令2006/66/EC,关于电池和蓄电池及废电池和废蓄电池指令,该指令取代了原电池指令91/157/EEC,并于2008年9月26日开始执行。2013年12月10日,欧盟官方公报正式公布电池指令2006/66/EC的修订指令2013/56/EU,根据修订指令,纽扣电池的汞豁免已经于2015年10月1日取消,无绳电动工具的镉豁免于2016年12月31日取消。修订指令2013/56/EU于2013年12月30日开始生效。(2)电池指令有害物质要求:a.禁止汞含量超过0.0005%(按重量计算,即5 ppm)的电池或蓄电池投放市场;b.禁止镉含量超过重量0.002%的便携电池或蓄电池投放市场。(豁免用途:紧急和报警系统,包括紧急照明;医疗设备。) (3)标识要求:a. 自2009年9月26日起,凡是投放到欧盟成员国市场的所有类型的电池、蓄电池和电池组应带有划叉的带轮垃圾箱标志。b. 如果电池、蓄电池和钮扣电池中汞(Hg)含量超过0.0005%(5ppm),或者镉(Cd)含量超过0.002%(20ppm),或者铅(Pb)含量超过0.004%(40ppm),则划叉的带轮垃圾箱标志下应附加超过限量的金属的化学符号。

  • 【投票】环保电池——你会选择购买吗?(投票进行中....)

    【投票】环保电池——你会选择购买吗?(投票进行中....)

    电池,实验室里不可缺少的东西,很多便携式的仪器都需要电池(如声级计、 便携式pH计、照度计等)。选择环保电池可以防止汞镉污染,但环保电池价格相对较高。 日常使用的电池有大量的重金属污染物——镉、汞、锰等。废弃在自然界时,这些有毒物质便慢慢从电池中溢出,进入土壤或水源,再通过农作物进入人的食物链进入人的食物链。这些有毒物质在人体内会长期积蓄难以排除,损害神经系统、造血功能、肾脏和骨骼,有的还能致癌。 环保电池,是指近年来已投入使用或正在研制、开发的一类高性能、无污染电池。目前已经大量使用的金属氢化物镍蓄电池、锂离子蓄电池和正在推广使用的无汞碱性锌锰原电池和可充电电池以及正在研制、开发的锂或锂离子塑料蓄电池和燃料电池等都属于这一范畴。此外,目前已广泛应用并利用太阳能进行光电转换的太阳电池(又称光伏发电),也可列入这一范畴。 环保电池通常价格昂贵,作为采购人员的你,会优先选择采购环保电池么?http://ng1.17img.cn/bbsfiles/images/2010/10/201010191604_252231_1617423_3.jpg

  • 【讨论】铁酸锂电池的原理是什么?

    【讨论】铁酸锂电池的原理是什么?

    本帖来自物理知识版面关于电动自行车的讨论:http://bbs.instrument.com.cn/shtml/20110207/3115580/http://ng1.17img.cn/bbsfiles/images/2011/02/201102111549_277209_2197752_3.jpg请问铁酸锂电池的电化学反应原理是什么?有哪些类型?具体应用实例有哪些?

  • 有没有用原子吸收测定原电池中的铅和镉?

    尤其是比较大的电池,用酸也比较多,消解过滤后整个溶液都是发绿的,不知道有多少杂质在里面,测试起来比较麻烦,有没有采用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]来测试这种溶液中的铅和镉?如果测试的话,应该要注意一些什么问题?

  • 酸度计工作原理

    酸度计工作原理是测定溶液pH值的仪器。酸度计有台式、便携式、表型式等多种,读数指示器有数字式和指针式两种(目前找不到指针式的)。用酸度计进行电位测量是测量pH最精密的方法.  pH计由三个部件构成:  (1)一个参比电极;  (2)一个玻璃电极,其电位取决于周围溶液的pH;  (3)一个电流计,该电流计能在电阻极大的电路中测量出微小的电位差。参比电极的基本功能是维持一个恒定的电位,作为测量各种偏离电位的对照。银-氧化银电极是目前pH中最常用的参比电极。玻璃电极的功能是建立一个对所测量溶液的氢离子活度发生变化作出反应的电位差。把对pH敏感的电极和参比电极放在同一溶液中,就组成一个原电池,该电池的电位是玻璃电极和参比电极电位的代数和。E电池=E参比+E玻璃,如果温度恒定,这个电池的电位随待测溶液的pH变化而变化,而测量酸度计中的电池产生的电位是困难的,因其电动势非常小,且电路的阻抗又非常大(1-100MΩ);因此,必须把信号放大,使其足以推动标准毫伏表或毫安表。电流计的功能就是将原电池的电位放大若干倍,放大了的信号通过电表显示出,电表指针偏转的程度表示其推动的信号的强度,为了使用上的需要,pH电流表的表盘刻有相应的pH数值;而数字式pH计则直接以数字显出pH值。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制