当前位置: 仪器信息网 > 行业主题 > >

各部件原理

仪器信息网各部件原理专题为您提供2024年最新各部件原理价格报价、厂家品牌的相关信息, 包括各部件原理参数、型号等,不管是国产,还是进口品牌的各部件原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合各部件原理相关的耗材配件、试剂标物,还有各部件原理相关的最新资讯、资料,以及各部件原理相关的解决方案。

各部件原理相关的资讯

  • 热分析仪核心部件原理简介
    p   常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。 /p p   热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 电子天平 /strong /span /p p   电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。 /p p   电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示: /p p style=" text-align: center " F=KBLI /p p   其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。 /p p   无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热电偶传感器 /strong /span /p p   热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。 /p p   热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。 /p p   热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。 /p p   热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 位移传感器 /strong /span /p p   位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。 /p p   LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。 /p
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • 【德泉资讯】流式原理及科研领域应用技术交流会在林大成功举办
    10月15日,我公司在东北林业大学举办了流式原理及科研领域应用的技术交流会。会议特别邀请了Beckman高级应用专家于兰以及流式细胞仪东北区域销售经理陈清彬,为大家讲解了流式细胞术的原理及应用,并介绍了Beckman流式细胞仪系列产品。同时,也走进实验室为大家演示仪器的操作,老师对产品的检测结果十分满意。1于兰讲解流式原理及应用 讲解的主要内容包括流式细胞术的基本原理,流式细胞仪的基本构造,解释了在使用流式细胞仪时涉及的基本概念,以及流式细胞仪在科研领域的应用。会后于兰对于老师和同学们提出的问题一一进行了解答,解决了大家在实验研究中的很多困惑。2陈清彬介绍Beckman流式细胞仪系列产品 向大家介绍了Beckman流式细胞仪系列产品,重点介绍了CytoFLEX性能强大,简单易用,配置灵活等优势,并说明了这些优势具体体现在哪些方面。对用户以后的实验提供了很大的助推作用。3仪器的操作演示 首先向大家介绍流式细胞仪CytoFLEX的各部分组成和软件中各个图标按钮的作用,然后通过人血细胞的三色实验对具体的操作步骤进行演示,包括如何建立补偿库,如何调补偿等都做了详细讲解。对于做出的实验结果老师也十分满意。会议现场 本次会议让用户对流式的原理及科研应用有了更深入的了解,对Beckman的CytoFLEX产品也有了新的认识。通过操作演示,用户切身的感受到了CytoFLEX产品的优势以及功能的强大。我公司今后会将更专业的技术和可靠的产品带给用户,为科研事业助力。 哈尔滨德泉致力于为客户提供高质量、高品质的技术与服务,打造全面实验室解决方案,至臻技术,无忧服务,只为让您无忧、无虑。
  • 国产光刻机及关键核心零部件研发进展
    p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 光刻机被业界誉为集成电路产业皇冠上的明珠,研发的技术门槛和资金门槛非常高。也正是因此,能生产高端光刻机的厂商非常少,到最先进的EUV光刻机就只剩下ASML。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 据ASML之前公布资料显示,ASML 是全世界唯一一家使用极紫外EUV光源的光刻机制造商。EUV光源波长只有13.5 nm(接近X射线水平),远大于DUV光刻机的193nm,目前用于台积电最先进的5 nm生产线。相比之下,国内光刻机厂商则显得非常寒酸,处于技术领先的上海微电子装备有限公司已量产的最先进的SSA600/20型号前道光刻机采用了ArF准分子光源,即深紫外DUV光刻机,光刻分辨率只有90 nm。有消息称上海微电子即将于2021年,也就是几个月之后会交付首台国产的分辨率达28 nm的光刻机,目前国内晶圆厂所需的高端光刻机完全依赖进口。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 随着贸易战的愈演愈烈,美国对华为的打压也蔓延到了半导体领域,国内先进光刻机采购遭遇重大阻力。同时由于《瓦森纳协定》的限制,即使突破了技术,能够制造先进光刻机,其核心零部件的进口也可能会受到限制。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 任正非最近也表示,“我们设计的先进芯片,国内的基础工业还造不出来,我们不可能又做产品,又去制造芯片”。面对先进光刻机受制于人的局面国产光刻机的研发牵动着国人的心,启动国产光刻机的研发已刻不容缓。于此同时,国内也不断传来关于光刻机研发的各种消息& #8230 & #8230 /span /p p style=" text-align:center text-indent:29px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-size: 15px line-height: 150% font-family: 宋体 " 网传华为自研光刻机 /span /strong strong /strong /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 今年以来,网上各路自媒体传出华为启动自研光刻机的消息,不过这些消息大都是捕风捉影,真实性存疑。其来源主要基于以下几个消息: /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 1、& nbsp 华为申请光刻机专利。据了解,该专利名称是《一种光刻设备和光刻系统》,申请于2016年。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 2、华为大批挖角上海微电子等企业的员工。不过后续相关消息称,华为只是少量挖掘,人员数量并不足以支撑研发。但这也让上海微电子(SMEE)未离职的前道部门工资奖金翻了一倍。根据相关消息,为激励员工,SMEE薪资大调整,前道各部门计划从今年9月开始实行12(基本工资)+2(个人绩效)+6-12(前道产品绩效)薪资结构了。相比于过去年薪12+2能拿到20多万,如果按时完成任务的话,现在加上奖金能拿到40多万。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 3、华为招聘光刻工艺工程师。但从职位描述看,招聘的是研究2.5d tsv方面封装技术的工艺工程师,该技术会使用到光刻设备。华为芯片的封装测试是外包给封测厂进行的,该岗位可能是进行试验室封装技术的研发和经验积累,协助推动在封测厂的量产。目前我国缺少和亟待突破的是先进制程的前道光刻机。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 业内人士表示,华为虽然技术研发能力,公司氛围都很强大,但光刻机技术门槛高,单打独斗很难成功。目前关于华为自研光刻机的消息虽然大都是捕风捉影,但是华为的研发实力也不容小觑,毕竟华为有强烈的需求,而余承东也表示华为将入局半导体设备。 /span /p p style=" text-align:center text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " strong 02 /strong strong span style=" font-family: 宋体 " 专项核心零部件研发进展 /span /strong /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 9月16日,中科院院长白春礼在接受媒体采访时明确表示,中科院已成立光刻机攻关小组,争取在短时间内研制出国产高端光刻机。除此之外,中科院也针对“卡脖子”问题,列入了技术清单,并且均已成立研发小组。实际上中科院以及相关科研机构很早就介入了光刻机研发领域。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 最早国产的先进前道光刻机由国企上海微电子(SMEE)开启研制,2007年上海微电子大量采用外国关键元器件集成了90 nm干式投影光刻机。后因《瓦森纳协定》的限制,关键部件被国外“卡脖子”而失败。上海微电子只能另辟蹊径,转入技术含量较低的后道封装光刻机和平板显示光刻机领域,占领了国内封装光刻机80%的市场。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 面对国外封锁,国内科研机构开始发力,针对光刻机的核心零部件进行攻关。在“十二五”期间,著名的“02专项”即《极大规模集成电路制造技术及成套工艺》要求重点进行45-22纳米关键制造装备攻关,部分光刻机核心零部件也已实现了验收。国家02专项光刻机项目有多个部门参与,分别负责不同的子项。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-family: 宋体 " 双工件台系统完成验收 /span /strong /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 双工件台,即在一台光刻机内有两个承载晶圆的工件台。两个工件台相互独立,但同时运行,一个工件台上的晶圆做曝光时,另一个工件台对晶圆做测量等曝光前的准备工作。当曝光完成之后,两个工件台交换位置和职能,如此循环往复实现光刻机的高产能。该项目由清华大学和北京华卓精科负责 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 2019年4月28日,清华成功研发光刻机双工件台掩模台系统α样机,并召开光刻机双工件台系统样机研发”项目验收会。研究团队历经5年完成了全部研究内容,突破了平面电机、微动台、超精密测量、超精密运动控制、系统动力学分析、先进工程材料制备及应用等若干关键技术,攻克了光刻机工件台系统设计和集成技术,通过多轮样机的迭代研发,最终研制出2套光刻机双工件台掩模台系统α样机,达到了预定的全部技术指标,关键技术指标已达到国际同类光刻机双工件台的技术水平。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 该项目是02专项核心任务光刻机项目群中第一个通过正式验收的项目。项目完成使得我国成为世界少数可以研制光刻机双工件台这一超精密机械与测控技术领域尖端系统的国家之一。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-family: 宋体 " “极紫外光刻关键技术研究”通过验收 /span /strong /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 极紫外光刻是一种以13.5nm的EUV光为工作波长的投影光刻技术,目前最先进的芯片就是使用ASML的EUV光刻机制造。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 2016年11月15日,由长春光机所牵头承担的国家科技重大专项02专项——“极紫外光刻关键技术研究”项目顺利完成验收前现场测试。在长春光机所、成都光电所、上海光机所、中科院微电子所、北京理工大学、哈尔滨工业大学、华中科技大学等参研单位的共同努力下,历经八年的戮力攻坚,圆满地完成了预定的研究内容与攻关任务,突破了现阶段制约我国极紫外光刻发展的核心光学技术,初步建立了适应于极紫外光刻曝光光学系统研制的加工、检测、镀膜和系统集成平台,为我国光刻技术的可持续发展奠定了坚实的基础。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 2017年6月21日,中国科学院长春光学精密机械与物理研究所(现北京国望光学)牵头研发的“极紫外光刻关键技术”通过验收。突破了制约我国极紫外光刻发展的超高精度非球面加工与检测、极紫外多层膜、投影物镜系统集成测试等核心单元技术,成功研制了波像差优于0.75 nm RMS 的两镜EUV 光刻物镜系统,构建了EUV 光刻曝光装置,国内首次获得EUV 投影光刻32 nm 线宽的光刻胶曝光图形。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-family: 宋体 " “超分辨光刻装备研制”通过验收 /span /strong /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 2018年11月29日,国家重大科研装备研制项目“超分辨光刻装备研制”29日通过验收。该光刻机由中国科学院光电技术研究所研制,光刻分辨力达到22纳米,结合双重曝光技术后,未来还可用于制造10纳米级别的芯片。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 该光刻机在365纳米光源波长下,单次曝光最高线宽分辨力达到22纳米。项目在原理上突破分辨力衍射极限,建立了一条高分辨、大面积的纳米光刻装备研发新路线,绕过国外相关知识产权壁垒。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 利用研制成功的超分辨光刻装备已制备出一系列纳米功能器件,包括大口径薄膜镜、超导纳米线单光子探测器、切伦科夫辐射器件、生化传感芯片、超表面成像器件等,验证了该装备纳米功能器件加工能力,已达到实用化水平。不过需要注意的是,该设备为超材料/超表面、第三代光学器件、广义芯片等变革性战略领域的跨越式发展提供了制造工具。简单来说,该设备主要应用于器件进行周期性的光刻,但无法应用于集成电路光刻。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-family: 宋体 " 其他项目紧锣密鼓进行中 /span /strong /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 除了以上已经完成的02专项子项目,其他的项目也在紧锣密鼓进行中: /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 浙江大学流体动力与机电系统国家重点实验室和浙江启尔机电负责沉浸式光刻机的浸液系统,目前水平排名世界第三,前两名分别为阿斯麦、尼康; /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 中科院光电研究院负责准分子激光光源系统,由北京科益虹源负责产业转化,研究成果国产40W 4kHz ArF光源已经交付,是继美国Cymer公司(已于2013年被阿斯麦收购)、日本Gigaphoton 公司之后的全球第三; /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 物镜曝光系统方面,长春光机所应用光学国家重点实验室和国防科技大学光学精密工程创新团队负责;激光光源照明系统方面,中国科学院上海光学精密机械研究所负责。 /span /p p style=" text-align:center line-height:150%" span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-family: 宋体 " 其他团队光刻机研究进展 /span /strong /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 据悉,武汉光电院甘棕松团队采用二束激光在自研的光刻胶上突破了光束衍射极限的限制,采用远场光学的办法,光刻出最小9纳米线宽的线段,实现了从超分辨成像到超衍射极限光刻制造的重大创新,研发出了双光束高分辨率激光直写光刻机。目前甘棕松团队正在做双光束超分辨率投影式光刻机大型工程机的研发。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 需要注意的是一般投影式光刻机才可以进行有效率的芯片制造,而甘棕松团队的光刻机是直写式光刻机,无法实现大规模量产。一般来说,直写式光刻设备主要用于掩模版制作,如电子束刻蚀设备,其优点是分辨率高,缺点是速度慢,无法用于大规模量产。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " 据业内媒体消息披露,上海微电子将于2021年-2022年交付第一台28nm工艺的国产沉浸式光刻机。这意味着我国的先进光刻机已经实现了技术突破,但可以实现更高制程的EUV光刻机仍然任重而道远。 /span /p p style=" text-indent:28px line-height:150%" span style=" font-family: arial, helvetica, sans-serif " “我们从古以来,就有埋头苦干的人,有拼命硬干的人,有为民请命的人,有舍身求法的人,& #8230 & #8230 虽是等于为帝王将相作家谱的所谓& quot 正史& quot ,也往往掩不住他们的光耀,这就是中国的脊梁& #8230 & #8230 ”伴随着国家队入场和科研人员的“负重前行”,相信不久的将来必能不断传出好消息。 /span /p p br/ /p
  • 超声波细胞破碎机的工作原理【莱恩德新品】
    超声波细胞破碎机,也称为超声细胞破碎仪,其工作原理主要基于超声波在液体中的空化效应。以下是其工作原理的详细解释:    1.电能转换:首先,超声波细胞破碎机将电能通过换能器转换为声能。换能器作为核心部件,能够将电能高效地转换为超声波能量。    2.空化效应:当超声波在液体中传播时,它会在液体中产生空化作用。这种空化作用表现为液体中的微小气泡迅速形成并随后炸裂。这些炸裂的气泡会产生类似小炸弹的能量,形成高强度的剪切力和高频交变水压。    3.细胞破碎:这些高强度的剪切力和高频交变水压作用于细胞壁,使细胞壁受到压力变化而破碎。同时,由于超声波在液体中的剧烈扰动,粒子会产生大的加速度,使它们相互碰撞或与装置壁碰撞而破碎。    4.主要应用:超声波细胞破碎机广泛应用于中药提取、细胞、细菌、病毒组织的破碎等领域。其高效的破碎能力使得这些生物样本的处理更加快速和有效。    此外,超声波细胞破碎仪还有一些其他的特性和功能,例如:   结构特点:超声探头通常采用进口钛合金材质,具有高能效换能器和振幅自动调节功能。这些特性保证了设备的高效性和稳定性。    技术参数:工作频率范围通常为20~25KHz,具有频率自动跟踪功能。设备可储存多套常规程序数据和一套组合程序,工作方式有定时和计数两种。这些参数和功能使得设备更加灵活和易用。    综上所述,超声波细胞破碎机的工作原理主要基于超声波在液体中的空化效应,通过电能转换、空化效应和细胞破碎等步骤实现对生物样本的高效处理。点击此处可了解更多产品详情:超声波细胞破碎机
  • ST120G不规则颗粒硬度计的原理及技术特点
    ST120G全自动硬度计是按研究所特殊要求研制生产的,不规则的颗粒自动硬度的检测原理为:根据自动成像软件及单片机软件相结合,自动测量出不规则颗粒的面积及硬度。面积的测定采用自动成像原理,成像传感器自动感应上压板向下加压的接触面积,并自动计算接触面积,单片机软件通过判定自动计算出颗粒的硬度值,硬度的单位可以选择Mpa或者Kg/cm3.。试验方法规定研究开发采用现代机械设计理念和微机处理技术进行精心合理设计的一种新型高精度智能型试验仪,采用先进的元器件、配套部件、单片微机,进行合理的构造和多功能设计,配置液晶中文显示,具有标准中包含的各种参数测试、转换、调节、显示、记忆、打印等功能。产品特点1.机电一体化现代设计理念,结构紧凑,外观美观大方,维修方便;2.仪器采用上压板固定式,高精度称重传感器,保证仪器力值数据采集的快速性和准确性;测量精度高。3.采用高速ARM处理器,自动化程度高,数据采集快,全自动测量,智能判断功能,安全可靠具有强大的数据处理功能,可直接得出各项数据的统计结果,并且能自动复位,操作方便,容易调节,性能稳定。4.可显示压力和变形量,实时显示抗压力,变形量等信息;5.采用模块式一体型热敏打印机,打印速度快,换纸方便;6.中英文双语操作菜单(中文-English),并可随时切换;7.可连接计算机软件,具有实时显示抗压曲线功能及数据分析管理、保存、打印等功能
  • 直播预告|扫描电镜的原理及参数选择
    直播预告|扫描电镜的原理及参数选择【8月13日下午14:00直播】“扫描电镜的技术及原理”网络研讨会莱雷科技与善时仪器联合举办【会议分享内容】主要围绕“扫描电镜的技术和原理”,结合实际案例跟大家分享扫描电镜的原理,参数选择,制样方法等内容。导师:曾凌飞—善时仪器市场部总监【1】扫描电镜技术的发展历程【2】扫描电镜的特点、工作原理及优势【3】扫描电镜的参数选择、制样方法和主要应用方向微信扫描下方二维码,8月13日下午14点线上与您不见不散!
  • “等效原理实验用喷泉式高精度原子干涉仪”通过验收
    12月21日至22日,中国科学院武汉物理与数学研究所承担的中国科学院重大科研装备研制项目——“等效原理实验用喷泉式高精度原子干涉仪”通过了由中科院计划财务局组织的现场测试和验收。来自中科院的管理专家和来自中科院上海光机所、中国计量院、华中科技大学、武汉大学、华中师范大学的专家参加了验收会。与会领导和专家在认真听取了项目负责人王谨研究员所作的仪器研制工作报告、财务报告以及测试专家组所作的测试报告后,对取得的成果表示了充分的肯定,并就下一步如何充分利用该科研装备开展研究工作提出了很好的建议。   “等效原理实验用喷泉式高精度原子干涉仪”研制项目综合运用了超高真空、磁屏蔽、激光、磁光阱、原子喷泉等多项复杂技术,实施方案具有创新性。经过三年多的不懈努力,课题组逐项攻克各单项技术难题,完成了方案设计、部件加工、单元测试、安装调试等一系列任务。整套仪器自2010年4月28日起在原子频标实验大楼安装调试,2010年12月8日完成全部安装调试任务。经过现场测试,原子喷泉上抛高度为6米,原子干涉条纹对比度为76%,主要技术指标达到项目任务书的要求,标志着喷泉式高精度原子干涉仪在武汉物理与数学所研制成功。该仪器的整体高度为12.6米,设计的原子最大上抛高度为10米,是目前国际上最高的喷泉式原子干涉仪。   验收专家组认为,喷泉式高精度原子干涉仪的研制成功,为基于自由下落微观原子的重力加速度精确测量和等效原理检验实验提供了平台,也为利用原子干涉仪开展精密测量物理实验研究创造了条件。   据悉,在武汉建设大型喷泉式高精度原子干涉仪研究平台的最初设想,是2007年5月在中科院武汉物理与数学所学科发展战略研讨会上由冷原子物理研究组提出的,该设想于2007年10月正式付诸实施,先后得到了中科院科研装备研制项目、中科院武汉物理与数学所前沿部署项目和国家自然科学基金委仪器研制重点项目的资助。   验收会议现场   现场测试   等效原理实验用喷泉式高精度原子干涉
  • NACHT纳赫特讲解高速离心机工作原理
    订购优质的德国NACHT(纳赫特)离心机,德国Fevik(菲维科)冻干机等产品,请致电杰懋万得福(中山)生物科技有限公司.质量上乘,价格公道,为广大用户提供专业的实验室仪器设备解决方案.离心机是什么?高速离心机的工作原理什么?今天小编就来给大家科普一下离心机的小知识。离心机是一种能把液体与固体颗粒或者是液体与液体中的混合物分组分离的机械。高速离心机则属于常规实验室用的离心机,其广泛应用于生物,化学,医药等科研教育领域和生产部门 ,非常适用于微量样品的快速分离合成。离心机主要用于将悬浮液中的固体颗粒和液体分离开;或者是将乳浊液中两种依据密度不同,又互不融合的液体划分开,(比如说可以从牛奶中分离出奶油);它也可以用来排除潮湿物中的液体水分,例如用洗衣机甩干湿的衣服;其中具有特殊的超速管式分离机还能够分离不同密度空气中的气体混合物;利用不同密度分子或粒度大小的固体颗粒在液体中下沉和降落速度不同的特点性能,有的沉降离心机甚至可以对固体的颗粒按密度或粒度进行等级划分。其实离心机就是利用了转子高速旋转而产生的一股强大的离心力,从而加速液体中颗粒的下沉和降落速度,再把样品中拥有各自不同属性沉降系数和浮力密度的物质分离开,这就是离心机的工作原理。高速离心机的型号大小、种类也比较多,价格较贵,选购时应根据工作使用需求进行多方衡量确定。离心机的型号确定后,就是选购什么样的离心转头和内胆。最需要考虑的就是根据就是原有的样品容量及离心的首要条件。离心脱水设备的最主要部件是内胆,电动机通过皮带带动内胆高速旋转产生很大的离心力,水分因此通过内胆上的小孔被甩出去,被收集后统一排出。所以关于内胆材质的选择上也要进行多方的筛选。对于转头的选择上,并不是追求越全越好的,且转头转速的价格相差也大,种类很多,因为一个离心机有两个转头又互相配合,所以应有离心机允许的高转速的转头。有两台离心机的单位可考虑转头型号互补以节省一定资金。离心机的管理也是非常的重要。高、超速离心机要求按期进行检查维修,使用者也应实验状态及维修仔细详尽的记录使用情况,从而保证离心机的后续安全使用。高、低速离心机由于操作过程相对简单,可以通过自主阅读说明书,大量练习离心机操作规程后能独自使用。而超速离心机因为内部的结构复杂,工作程序也较繁多,一旦出现不当的行为容易发生事故,特别是对离心转头更应该小心认真的保养、使用。 免责声明:所载内容来源互联网等公开渠道,我们对文中观点保持中立,仅供参考,交流之目的。转载的稿件版权归原作者和机构所有,如有侵权,请告知我们删除。
  • 解读核辐射检测仪原理,是否“智商税”?
    8月24日,日本政府不顾国内外反对,福岛第一核电站启动核污染水排海,并计划排放30年。该消息发布后,引起我国出现盲目“抢盐”的恐慌现象,并导致核辐射检测仪在线上平台火爆销售,甚至被抢购一空。许多专家表示,我们无需过度恐慌,理性关注即可,也有人支持购置核辐射检测仪来保证身体安全,那么作为大众居民,我们是否必要购置核辐射检测仪?其原理是什么?核辐射检测仪到底是不是“智商税”?且听本网来揭秘。核辐射检测仪的原理核辐射检测仪是通过探测放射性物质的衰变过程来进行工作的。放射性物质会不断地释放出α粒子、β粒子、γ射线等辐射,这些辐射会与检测器中的物质相互作用,产生电离效应。在这个过程中,检测器中的物质会失去一部分电荷,导致检测器中的电荷量发生变化,从而产生电信号。核辐射检测仪通常采用闪烁晶体作为探测器,闪烁晶体是一种能够吸收射线并转化为可见光的物质。当放射性物质释放出的射线进入闪烁晶体时,晶体中的原子或分子会吸收这些射线,并把它们转化为可见光。这个过程被称为光致发光。然后,光被收集到光电倍增管中,并转化为电信号。这些电信号会被放大和整形,以便后续的信号处理和测量。除了闪烁晶体,核辐射检测仪还可以使用其他类型的探测器,如半导体探测器、液体闪烁计数器等。半导体探测器的工作原理与闪烁晶体类似,都是基于放射性物质的衰变过程,通过探测器中的物质与辐射相互作用产生电离效应,从而检测辐射的强度和类型。而液体闪烁计数器则是一种将闪烁剂和光电倍增管结合在一起的探测器,它能够测量β粒子和γ射线。总之,核辐射检测仪是基于放射性物质的衰变过程进行工作的,通过探测器中的物质与辐射相互作用产生电离效应,从而检测辐射的强度和类型。闪烁晶体和光电倍增管是核辐射检测仪中非常重要的部件,其性能直接影响核辐射检测的准确性和稳定性。随着科学技术的发展,核辐射检测仪的材料和性能将不断得到改进和完善,为保障人类安全和环境健康做出更加重要的贡献。核辐射检测仪的应用场景辐射检测仪的应用场景广泛,主要包括以下场景:1.核物理实验室、科研单位放射性实验室等会产生放射性物质的单位,主要用于日常放射性物质剂量检测,以便及时处理。2.用于海关和边境巡逻等,防止犯罪分子取放射性材料及放射性物质袭击的应急响应。3.环保部门、钢铁石材检测、矿山或金属检测公司等,用于监测放射源。4.医疗、工业等领域的X射线仪器的X射线辐射强度。5.其他检测放射性物质需要。综上所述,辐射检测仪的应用场景非常广泛,应用于各大领域。我们需要购买核辐射检测仪吗?最近的央视报道中,华南理工大学环境与能源学院教授张永清表示:“普通百姓购买放射性检测仪必要性不强。因为放射性测量过程中,只有一个仪器还是不够的,还要有相应适合的方法,不同的核素有不同的方法来进行测量,而且不同的样品有不同的前处理方法。如果说一般普通老百姓只是买一个仪器来测,他们还不具备专业的方法。”市面上价格较低的核辐射检测仪往往精度低,难以真正检测出放射性物质,而较为专业的核辐射检测仪价格昂贵,且需要专业知识和技能才能正确使用和维护才能合理使用。其次,普通人在日常生活中接触到的辐射量通常是非常低的,不需要过于担心辐射对健康的影响。而且,即使周围存在一些放射性物质,核辐射检测仪也并不能保证绝对的安全。因此,建议普通人不要盲目购买核辐射检测仪,更不需要过度恐慌,如果确实需要检测辐射水平,可以寻求专业的检测机构或者政府部门进行检测。
  • 高效液相色谱(HPLC)的基本原理和系统组成
    高效液相色谱(HPLC)是色谱法的一个重要分支,其应用范围广泛,对样品的适用性广,且不受分析对象的挥发性和热稳定性的限制。 几乎所有的化合物,包括高沸点、极性、离子化合物和大分子物质都可以用高效液相色谱法进行分析测定,从而弥补了气相色谱法的缺点。 目前已知的有机化合物中,约20%可以通过气相色谱法进行分析,而80%需要通过高效液相色谱法进行分析。 高效液相色谱法具有分离效率高、分析速度快、检测灵敏度好等特点,可以分析分离高沸点且不能汽化的热不稳定生理活性物质。 分离与分析技术在该领域的重要应用。基本原理色谱法的分离原理是:溶于流动相中的各组分经过固定相时,由于与固定相(stationphase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。高效液相色谱法以经典的液相色谱为基础,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有颗粒极细的高效固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。系统组成HPLC 系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。此外,还可根据需要配置梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC 仪还备有自动馏分收集装置。
  • 多功能数字万用表核心部件
    仪器名称 6 ½ 位多功能数字万用表核心部件 单位名称 北京布莱迪测控仪表有限公司 成果成熟度 已有样机 合作方式 ■合作开发 ■其他 成果简介: 北京布莱迪测控仪表有限公司基于自主技术,在已有5 ½ 位数字压力表核心部件基础上,完成6 ½ 位多功能数字万用表核心部件,包括:6 ½ 位A/D转换模块,高精度前端前段放大器,中央处理模块。并建立部件测试评价方法。本产品主要是为了解决国内产品稳定性差,可靠性低的问题,核心部件MTBF大于10000小时,长期稳定运行大于5000小时。 主要技术难点为: 1) 6 ½ 位分辨率AD转换模块设计、制造; 2) 6 ½ 位高精度可变字长A/D转换模块稳定性; 3) 高精度前端放大模块制造; 关键技术及创新点: 6 ½ 位多功能数字万用表核心部件研发主要存在的关键技术问题及创新点如下: 1) 高精度前端放大器模块设计 2) 6 ½ 位高精度可变字长A/D转换模块电路设计 3) 6 ½ 位高精度可变字长A/D转换模块脉冲时序单元设计 4) 6 ½ 位多功能数字万用表核心部件集成 5) 6 ½ 位多功能数字万用表核心部件测评方法 应用前景: 本产品成果经专家鉴定为国内领先水平,其各项技术指标均超过国内同行业产品。成果填补了国内空白。6 ½ 位数字万用表核心部件可单独作为测量产品使用,亦可作为其他设备的核心A/D转换部件使用。具有测量精度高,灵敏度高,测量速度快,读数客观,抗干扰能力强,而且还具有其自身的优越性,用它做主体,配上各种变换器插件或单元就构成了一系列的数字多用表(DMM),从而可以测量其他电量和非电量。在6½ 位多功能数字万用表标准校准系统中能够完全替代国外部件,可大幅度降低整套系统造价,能广泛应用于国防、科研、工厂、学校、计量测试等技术领域。。 知识产权及项目获奖情况: 本产品核心技术拥有自主知识产权,申请了一项实用新型专利和两项软件著作权专利。 成果名称 6 ½ 位多功能数字万用表核心部件 单位名称 北京布莱迪测控仪表有限公司 联系人 汪声 联系邮箱 wangshengjackie@163.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 &radic 其他 成果简介: 北京布莱迪测控仪表有限公司基于自主技术,在已有5 ½ 位数字压力表核心部件基础上,完成6 ½ 位多功能数字万用表核心部件,包括:6 ½ 位A/D转换模块,高精度前端前段放大器,中央处理模块。并建立部件测试评价方法。本产品主要是为了解决国内产品稳定性差,可靠性低的问题,核心部件MTBF大于10000小时,长期稳定运行大于5000小时。 主要技术难点为: 1) 6 ½ 位分辨率AD转换模块设计、制造; 2) 6 ½ 位高精度可变字长A/D转换模块稳定性; 3) 高精度前端放大模块制造; 关键技术及创新点: 6 ½ 位多功能数字万用表核心部件研发主要存在的关键技术问题及创新点如下: 1) 高精度前端放大器模块设计 2) 6 ½ 位高精度可变字长A/D转换模块电路设计 3) 6 ½ 位高精度可变字长A/D转换模块脉冲时序单元设计 4) 6 ½ 位多功能数字万用表核心部件集成 5) 6 ½ 位多功能数字万用表核心部件测评方法 应用前景: 本产品成果经专家鉴定为国内领先水平,其各项技术指标均超过国内同行业产品。成果填补了国内空白。6 ½ 位数字万用表核心部件可单独作为测量产品使用,亦可作为其他设备的核心A/D转换部件使用。具有测量精度高,灵敏度高,测量速度快,读数客观,抗干扰能力强,而且还具有其自身的优越性,用它做主体,配上各种变换器插件或单元就构成了一系列的数字多用表(DMM),从而可以测量其他电量和非电量。在6½ 位多功能数字万用表标准校准系统中能够完全替代国外部件,可大幅度降低整套系统造价,能广泛应用于国防、科研、工厂、学校、计量测试等技术领域。。 知识产权及项目获奖情况: 本产品核心技术拥有自主知识产权,申请了一项实用新型专利和两项软件著作权专利。
  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 瓶口边厚仪是如何测量瓶口边缘厚度的?基于何种技术或原理
    在现代工业生产中,瓶口边厚仪作为一种关键的质量控制设备,广泛应用于医药、化工、食品等多个领域,尤其在玻璃瓶、塑料瓶等包装容器的生产中发挥着至关重要的作用。本文将深入探讨瓶口边厚仪的工作原理、所采用的技术或原理。一、瓶口边厚仪的工作原理概述瓶口边厚仪是一种高精度测试设备,主要用于测量玻璃瓶或塑料瓶瓶口边缘的厚度。其工作原理基于机械接触式测量技术,通过精确的传感器和数据处理系统,实现对瓶口边缘厚度的准确测量。该设备不仅具有高度的测试准确性和重复性,还能在不对被测物体造成损伤的情况下完成测量,确保测试结果的可靠性。二、机械接触式测量技术详解1. 探头组件与传感器的作用瓶口边厚仪的核心部件包括探头组件和传感器。探头组件通常采用碳纤维等轻质高强度材料制成,确保在测量过程中既能稳定接触瓶口边缘,又不会对瓶子造成损伤。传感器则负责将探头接触到的物理信号(如位移、压力等)转换为电信号,供后续数据处理系统分析。2. 信号处理与显示转换后的电信号经过信号放大器放大后,进入数据处理系统。该系统利用先进的数字信号处理技术,对信号进行滤波、去噪、线性化等处理,最终得出瓶口边缘的厚度值。测量结果通过数字显示屏实时显示,便于操作人员读取和记录。三、高精度测量的实现1. 精密的机械结构设计为了实现高精度的测量,瓶口边厚仪的机械结构设计十分精密。探头组件与瓶口边缘的接触点需保持恒定且均匀的压力,以确保测量结果的准确性。同时,设备的整体结构需具备较高的刚性和稳定性,以抵抗外界干扰和振动对测量结果的影响。2. 先进的测量算法除了精密的机械结构外,瓶口边厚仪还采用先进的测量算法对信号进行处理。这些算法能够自动校正测量过程中的系统误差和随机误差,提高测量结果的精度和稳定性。同时,算法还能实现数据的实时处理和统计分析,为质量控制提供有力支持。四、非接触式测量技术的探索虽然机械接触式测量技术在瓶口边厚测量中占据主导地位,但非接触式测量技术也在不断发展和探索中。例如,基于激光或超声波的非接触式测量技术具有不损伤被测物体、测量速度快等优点,但其在瓶口边厚测量中的应用还需进一步研究和验证。五、应用实例与市场需求1. 医药行业的应用在医药行业中,瓶口边厚仪被广泛应用于药品包装容器的质量检测中。通过测量瓶口边缘的厚度,可以评估包装容器的密封性、耐压性等关键性能指标,确保药品在储存和运输过程中的安全性和有效性。2. 化工行业的需求化工行业对包装容器的要求同样严格。瓶口边厚仪在化工瓶罐的生产过程中发挥着重要作用,通过测量瓶口边缘的厚度,可以及时发现并纠正生产过程中的偏差和缺陷,提高产品的整体质量和市场竞争力。3. 市场需求与未来展望随着工业生产的不断发展和消费者对产品质量要求的不断提高,瓶口边厚仪的市场需求将持续增长。未来,随着技术的不断进步和创新,瓶口边厚仪将更加智能化、自动化和便携化,为各行各业提供更加高效、准确的质量控制手段。六、结语瓶口边厚仪作为现代工业生产中的重要质量控制设备,其工作原理和技术特点决定了其在多个领域中的广泛应用和重要地位。通过不断的技术创新和产品优化,瓶口边厚仪将不断提高测量精度和稳定性,为企业的质量控制和市场竞争提供有力支持。同时,我们也期待非接触式测量技术在瓶口边厚测量中的进一步发展和应用,为工业生产的智能化和自动化注入新的活力。
  • 光照度传感器的工作原理是什么?使用时应注意什么呢?
    光照度传感器是一种常用的检测装置,在多个行业中都有一定的应用。在很多地方我们都会看到光控开关这种设备,比如大街上的路灯、各个自动化气象站以及农业大棚里面,但当我们看到这种有个小球的盒子的时候,虽然知道这是光照度传感器,但是对于它还是不太了解,今天我们来了解一下光照度传感器。光照度传感器的工作原理光照度传感器采用热点效应原理,最主要是使用了对弱光性有较高反应的探测部件,这些感应原件其实就像相机的感光矩阵一样,内部有绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层,热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐射度成正比。透过滤光片的可见光照射到进口光敏二极管,光敏二极管根据可见光照度大小转换成电信号,然后电信号会进入传感器的处理器系统,从而输出需要得到的二进制信号。当然,光照度传感器还有很多种分类,有的分类甚至对上面介绍的结构进行了优化,尤其是为了减小温度的影响,光照度传感器还应用了温度补偿线路,这样很大程度上提高了光照度传感器的灵敏度和探测能力。光照度传感器的使用方法光照度传感器应安装在四周空旷,感应面以上没有任何障碍物的地方。将传感器调整好水平位置,然后将其牢牢固定,将传感器牢固地固定在安装架上,以减少断裂或在有风天发生间歇中断现象。壁挂型光照度传感器安装方式:首先在墙面钻孔,然后将膨胀塞放入孔中,将自攻螺丝旋进膨胀塞中。百叶盒型光照度传感器安装方式:百叶盒型光照度传感器一般应用在室外气象站中,可通过托片或折弯板直接安装在气象站横梁上。宽电压电源输入,10-30V均可。485信号接线时注意A/B条线不能接反,总线上多台设备间地址不能冲突。光照度传感器使用注意事项1.一定要先检查下包装是不是完好无损的,然后去核对变送器的型号和规格是不是跟所购买的的产品一样;如果有问题一定要尽快与卖家联系。2.使用光照度传感器的时候一定不能有外压力冲压光检测传感器,避免压力冲压下测量元件受损影响光照度传感器的使用或导致光照度传感器发生异常或压坏遮光膜产生漏水现象。一定要避免在高温高压环境下使用光照度传感器。3.用户在使用光照度传感器的时候禁止自己拆卸传感器,更加不能触碰传感器膜片,以免造成光照度传感器的损坏。4.使用光照度传感器之前一定要确认电源输出电压是不是正确;电源的正、负以及产品的正、负接线方式,保证被测范围在光照度传感器相应量程内并详细阅读产品说明书或咨询卖方。5.安装光照度传感器的时候,一定要保证受光面的清洁并置于被测面。6.严禁光照度传感器的壳体被刀或其他锋利的金属连接线及物体划伤,磕伤,砰伤,造成变送器进水损坏。
  • PM2.5的测试方法及PM2.5传感器的工作原理
    细颗粒物又称细粒、细颗粒、PM2.5。细颗粒物指环境空气中空气动力学当量直径小于等于2.5微米的颗粒物。它能较长时间悬浮于空气中,其在空气中含量浓度越高,就代表空气污染越严重。虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响。与较粗的大气颗粒物相比,PM2.5粒径小,面积大,活性强,易附带有毒、有害物质(例如,重金属、微生物等),且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。目前测量PM2.5的方法主要有以下5种:一种:红外法和浊度法红外由于光线强度不够,只能用浊度法测量。所谓浊度法,就是一边发射光线,另一边接收,空气越浑浊光线损失掉的能量就越大,由此来判定目前的空气浊度。实际上这种方法是不能够准确测量PM2.5的,甚至光线的发射、接收部分一旦被静电吸附的粉尘覆盖,就会直接导致测量不准确。这种方法做出来的传感器只能定性测量(可以测出相对多少),不能定量测量(因为数值会飘)。更何况这种方法也区分不出颗粒物的粒径来,所以凡是用这种传感器的性能都相对要差一些。第二种:激光法和粒子计数法就是激光散射,而不是直接测量浊度,这一类的传感器共同的特点就是离不开风扇(或者用泵吸),因为这种方法空气如果不流动是测量不到空气中的悬浮颗粒物的,而且通过数学模型可以大致推算出经过传感器气体的粒子大小,空气流量等,经过复杂的数学算法,最终得到比较真实的PM2.5数值,这一类传感器是激光散射,对静电吸附的灰尘免疫,当然如果用灰尘把传感器堵死了,自然也不可能测到。第三种:Beta射线法Beta射线仪是利用Beta射线衰减的原理,环境空气由采样泵吸入采样管,经过滤膜后排出,颗粒物沉淀在滤膜上,当β射线通过沉积着颗粒物的滤膜时,Beta射线的能量衰减,通过对衰减量的测定便可计算出颗粒物的浓度。Beta射线法颗粒物监测仪由PM10采样头、PM2.5切割器、样品动态加热系统、采样泵和仪器主机组成。流量为1m3/h的环境空气样品经过PM10采样头和PM2.5切割器后成为符合技术要求的颗粒物样品气体。在样品动态加热系统中,样品气体的相对湿度被调整到35%以下,样品进入仪器主机后颗粒物被收集在可以自动更换的滤膜上。在仪器中滤膜的两侧分别设置了Beta射线源和Beta射线检测器。随着样品采集的进行,在滤膜上收集的颗粒物越来越多,颗粒物质量也随之增加,此时Beta射线检测器检测到的Beta射线强度会相应地减弱。由于Beta射线检测器的输出信号能直接反应颗粒物的质量变化,仪器通过分析Beta射线检测器的颗粒物质量数值,结合相同时段内采集的样品体积,最终得出采样时段的颗粒物浓度。配置有膜动态测量系统后,仪器能准确测量在这个过程中挥发掉的颗粒物,使最终报告数据得到有效补偿,接近于真实值。第四种:微量振荡天平法微量振荡天平法是在质量传感器内使用一个振荡空心锥形管,在其振荡端安装可更换的滤膜,振荡频率取决于锥形管特征和其质量。当采样气流通过滤膜,其中的颗粒物沉积在滤膜上,滤膜的质量变化导致振荡频率的变化,通过振荡频率变化计算出沉积在滤膜上颗粒物的质量,再根据流量、现场环境温度和气压计算出该时段颗粒物标志的质量浓度。微量振荡天平法颗粒物监测仪由PM10采样头、PM2.5切割器、滤膜动态测量系统、采样泵和仪器主机组成。流量为1m3/h,环境空气样品经过PM10采样头和PM2.5切割器后,成为符合技术要求的颗粒物样品气体。样品随后进入配置有滤膜动态测量系统(FDMS)的微量振荡天平法监测仪主机,在主机中测量样品质量的微量振荡天平传感器主要部件是一支一端固定,另一端装有滤膜的空心锥形管,样品气流通过滤膜,颗粒物被收集在滤膜上。在工作时空心锥形管是处于往复振荡的状态,它的振荡频率会随着滤膜上收集的颗粒物的质量变化发生变化,仪器通过准确测量频率的变化得到采集到的颗粒物质量,然后根据收集这些颗粒物时采集的样品体积计算得出样品的浓度。5、重量法我国目前对大气颗粒物的测定主要采用重量法。其原理是分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PM10被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PM10的浓度。必须注意的是,计量颗粒物的单位ug/m3中分母的体积应该是标准状况下(0℃、101.3kPa)的体积,对实测温度、压力下的体积均应换算成标准状况下的体积。由于红外法测量PM2.5的传感器性能较差,且Beta射线法、微量振荡天平法、重量法三种方法的原理应用比较困难且价格较高,所以市面上比较多的是采用激光散射原理来测量PM2.5浓度的PM2.5传感器。 建大仁科空气质量变送器RS-PM-*-2是一款工业级通用颗粒物浓度变送器,采用激光散射测量原理,通过独有的数据双频采集技术进行筛分,得出单位体积内等效粒径的颗粒物粒子个数,并以科学独特的算法计算出单位体积内等效粒径的颗粒物质量浓度,以485 接口通过 ModBus-RTU 协议进行数据输出。可用于室外气象站、扬尘监测、图书馆、档案馆、工业厂房等需要PM2.5或 PM10浓度监测的场所。
  • 2021“制造基础技术与关键部件”重点专项预评审专家名单公布
    根据“制造基础技术与关键部件”重点专项评审工作安排,中心于2021年6月4-10日组织开展了“制造基础技术与关键部件”重点专项2021年度项目预评审。此次评审采用网络评审方式,涉及5个指南方向,评审专家共3组22人,统一从国家科技专家库中抽取产生。根据《国家重点研发计划管理暂行办法》(国科发资〔2017〕152号)的文件精神,现将评审专家名单予以公布。评审分组A:指南方向 1.5齿轮传动系统多维信息感知及智能运维 (青年科学家项目)序号专家姓名所在单位1刘春时沈阳机床(集团)有限责任公司2宋轶民天津大学3程永亮中国铁建重工集团股份有限公司4王禹林南京理工大学5陈信琦中国电子科技集团公司第四十九研究所6王晓力北京理工大学评审分组B:指南方向 1.6基于二维材料的柔性应变传感器阵列 (青年科学家项目)序号专家姓名所在单位1陈寿面上海集成电路研发中心有限公司2李青中国计量大学3查钢强西北工业大学4王惟彪中国科学院长春光学精密机械与物理研究所5许高斌合肥工业大学6伞海生厦门大学7董文飞中国科学院苏州生物医学工程技术研究所 评审分组C:指南方向 1.7 高灵敏磁电阻传感器(青年科学家项目)1.11工业测控高精度硅基压力传感器关键技术2.2 动力电池组控制安全传感器开发及示范应用序号专家姓名所在单位1李斌中国科学院上海技术物理研究所2苏岩南京理工大学3桑胜波太原理工大学4叶树亮中国计量大学5李加东中国科学院苏州纳米技术与纳米仿生研究所6费峻涛河海大学7徐大诚苏州大学8孟凡利东北大学9褚金奎大连理工大学专业机构:工业和信息化部产业发展促进中心中心申诉电话:010-68207746工业和信息化部产业发展促进中心2021-06-15
  • 薄膜摩擦系数仪新标准与旧标准在测试原理上的改进与新增测试方法
    在材料科学与工程领域,薄膜摩擦系数仪作为评估薄膜材料表面摩擦性能的关键设备,其测试标准的更新对于提高产品质量、优化工艺流程以及推动科技创新具有重要意义。近年来,随着科技的进步和测试需求的多样化,薄膜摩擦系数仪的测试标准也经历了从旧到新的演变。本文将从测试原理的角度,详细探讨新标准相比旧标准在测试原理上的改进及新增的测试方法。一、测试原理的基础变革1.1 传统测试原理的局限性旧标准下的薄膜摩擦系数仪主要基于库仑摩擦定律,即摩擦力与正压力成正比,与接触面积无关。这种传统的测试方法通过测量试样在摩擦过程中的摩擦力与正压力之比来计算摩擦系数,方法简单直接,但存在诸多局限性。例如,它难以全面反映薄膜材料在不同条件下的摩擦行为,特别是动态和复杂工况下的性能表现。1.2 新标准引入的先进测试原理新标准则引入了更为先进的测试原理,如动态摩擦测试、静态摩擦测试、滑动摩擦测试以及旋转摩擦测试等。这些新方法不仅丰富了测试手段,还提高了测试的全面性和准确性。动态摩擦测试能够模拟材料在实际使用过程中的动态摩擦行为,静态摩擦测试则关注材料在静止状态下的摩擦特性,而滑动摩擦测试和旋转摩擦测试则分别适用于不同类型的摩擦场景,为薄膜材料的摩擦性能评估提供了更多维度的数据支持。二、新增测试方法的详细解析2.1 动态摩擦测试动态摩擦测试是新标准中新增的重要测试方法之一。它通过模拟材料在实际使用中的动态摩擦过程,如包装膜在包装机械中的运动状态,来评估材料的动态摩擦性能。这种方法能够更真实地反映材料在实际工况下的摩擦行为,为产品的设计和优化提供更为可靠的依据。2.2 静态摩擦测试静态摩擦测试则关注材料在静止状态下的摩擦特性。它通过在试样与对磨副之间施加一定的正压力并保持相对静止,然后逐渐增加水平力直至试样开始滑动,来测量静态摩擦系数。这种方法对于评估材料的启动阻力和稳定性具有重要意义,特别是在需要精确控制摩擦力的场合,如精密机械和电子设备中。2.3 滑动摩擦测试与旋转摩擦测试滑动摩擦测试和旋转摩擦测试是两种常见的摩擦测试方法,它们在旧标准中已有应用,但在新标准中得到了进一步的优化和完善。滑动摩擦测试通过使试样在水平面上做直线运动来测量滑动摩擦系数,适用于评估材料的滑动性能和耐磨性。而旋转摩擦测试则通过使试样与旋转的摩擦轮接触并相对运动来测量旋转摩擦系数,这种方法更适用于评估材料在旋转部件中的摩擦性能。三、测试原理改进带来的优势3.1 提高测试的全面性和准确性新标准引入的先进测试原理和新增的测试方法使得薄膜摩擦系数仪的测试能力得到了显著提升。它不仅能够更全面地评估材料的摩擦性能,还能够提供更准确、更可靠的测试数据。这对于材料科学的研究和工程应用具有重要意义。3.2 促进技术创新和产业升级随着测试原理的改进和测试方法的丰富,薄膜摩擦系数仪在材料研发、产品设计、工艺优化等方面将发挥更加重要的作用。它不仅能够为科研人员提供更为精准的测试数据支持,还能够促进技术创新和产业升级,推动相关行业向更高质量、更高效率的方向发展。3.3 提升产品质量和市场竞争力通过采用新标准进行测试,企业可以更加准确地评估其产品的摩擦性能,从而在生产过程中采取相应的改进措施以提升产品质量。高质量的产品不仅能够满足用户的实际需求,还能够提升企业的市场竞争力,为企业带来更大的经济效益和社会效益。四、结论与展望综上所述,薄膜摩擦系数仪新标准相比旧标准在测试原理上进行了显著的改进和新增了多种测试方法。这些改进不仅提高了测试的全面性和准确性,还促进了技术创新和产业升级。未来,随着科技的不断进步和测试需求的不断变化,薄膜摩擦系数仪的测试标准还将继续发展和完善。我们期待在不久的将来能够看到更多先进的测试原理和方法被引入到这一领域中来,为材料科学的研究和工程应用提供更加全面、准确和高效的测试支持。
  • 谱标科技维护保养:分析仪器零部件精修服务
    涡轮分子泵是利用高速旋转的动叶轮将动量传给气体分子,使气体产生定向流动而抽气的真空泵。涡轮分子泵的优点是启动快,能抗各种射线的照射,耐大气冲击,无气体存储和解吸效应,无油蒸气污染或污染很少,能获得清洁的超高真空。涡轮分子泵广泛用于高能加速器、可控热核反应装置、重粒子加速器以及真空镀膜等需要获得高真空度制造工艺中。 涡轮分子泵的工作原理,结构型式及其优缺点。为了利用涡轮分子泵,获得清洁真空,国外多利用干式机械泵作其前级泵,构成无油的真空系统。然而,目前国内涡轮分子泵多以油封机械泵为其前级泵,构成了有油真空系统,如果操作不当,很难避免油蒸汽返流,对真空系统的污染。利用有油系统获得清洁真空,国内外都有一些有效防止返流的措施和成功的操作经验。应用:当今,现代化的半导体行业中,越来越多地应用涡轮分子泵。如溅射、刻蚀、蒸发、注入、分子束外延、离子加工等设备都需要在真空环境下运行。又如电子显微镜,表面分析仪器,残余气体分析仪及氦质谱检漏仪等也经常使用涡轮分子泵来抽真空。此外,在宇宙模拟设备、核聚变装置、太阳能集热管镀膜生产线上也都改用大型涡轮分子泵或低温泵来代替油扩散泵系统,以防止油蒸汽的污染。因此,最近十几年来,涡轮分子泵,在国内、外都得到了显着的改进和发展。在涡轮分子泵的应用日益增加干式的前级泵还没有大量普及和应用的情况下,有时还不得不用油封机械泵来作涡轮分子泵的前级泵。因此,针对这种现状,对涡轮分子泵的合理选用和正确操作是很重要的。分子泵常见的故障问题:1、分子泵为何会发生半边热,半边冷的现象?2、分子泵使用中发现油发黑,请问油为什么发黑?或者多长时间油才会变黑?3、分子泵在运转过程中,出现频率从正常下降至一定频率后又恢复到正常,之后又下降至一定频率,再恢复到正常,反反复复,更换电源后现象仍如此,请问该现象如何解释?4、分子泵轴承为什么会烧毁5、有防护网保护,为什么还会有大块碎玻璃掉入泵内?6、真空度很好的情况下,分子泵油为何会返到前级管道?7、正常使用下,为什么分子泵油池会出现裂纹或者变形?8、分子泵中经常掉出顶丝、镙钉等物体,如M5的顶丝等,请问是否对分子泵的使用有影响?应如何解决?9、胶圈口分子泵要用多少卡钳,使用才安全?10、变频器电源在什么情况下会造成程序丢失或者错乱?11、分子泵噪音大如何界定?是否有合格标准,是多少?12、分子泵是否对冷却有明确要求?如风冷需要外界温度是多少?如水冷则对水有何具体要求?如未达到要求会出现何后果?13、分子泵电源存在接地、屏蔽等问题,应如何做才是最佳方式?14、变频器电源,转速上升过程中就自动关机,即显示“Poff”?15、分子泵叶片破碎的原因?谱标科技始终重视客户服务,以过硬的专业技术为立身根本。谱标科技专注实验室常用色谱、质谱、光谱等分析设备,组建和培养了一批有能力覆盖市场主流品牌厂家产品的专业维护维保队伍,其中不乏来自主流进口品牌的多年资深工程师,对硬件、软件、应用方法等非常熟悉,具备远程研判情况、常规预防性维护、常见故障判断排除、疑难问题梳理解决等能力,是您值得信赖和托付的实验室合作伙伴。维护保养:零部件精修服务谱标零部件精修服务为您提供:1)关键零部件精修,如泵,电路板等关键部件的维修,均含有质保,节省成本;2)关键零部件平价替代,均含有质保。短、中、长期综合维保服务1、不限次数上门服务 2、故障诊断 3、技术支持 4、仪器备件优先享用 5、保修服务可以季度、年度、2-5年度灵活服务 6、三个等级:全包、半包、经济型(免工时费仅预防性维保) 具体价格需由您提供实验室需要保修的仪器设备清单综合估价。请详询谱标区域分公司或办事处。
  • 总投资2600万元,苏州苏勃将新建汽车零部件检测项目
    近日,苏州苏勃检测检测技术有限公司公示了苏州苏勃检测技术服务有限公司新建汽车零部件检测项目的建设项目环境影响报告表。信息显示,本项目从事汽车零部件检测,属于检测服务项目,主要为新能源汽车零部件提供技术支持,项目总投资 2600 万元,其中环保投资 60 万元,环保投资占 比 2.3%,建成后年检测1370件。据了解,苏州苏勃检测技术服务有限公司成立于2009年8月,注册地点为苏州工业园区港田路 99 号港田工业坊18号厂房,是集塑料、金属、橡胶等原材料测试,环境力学耐久等可靠性测试,电学EMC测试,技术服务等为一体的综合性第三方检测机构,服务领域涉及汽车部件,电子电器,轨道交通以及军工等。苏州苏勃(STS)是中国合格评定认可委员会CNAS认可的第三方实验室,认可领域广泛涵盖了塑料、 金属、橡胶、油漆、电镀等原材料测试,环境力学耐久等可靠性测试,电学EMC测试以及各大主机厂测试标准。根据企业发展需求,苏州苏勃拟租赁苏州工业园区港田路99号港田工业坊17、18号厂房进行汽车零部件检测。而本次新建项目涉及大量仪器设备,主要设备如下,该项目还披露了各实验室所涉及的工艺流程,如下:1、耐久实验室(耐久试验检测)根据检测任务单中的检测项目,选择合适的试验设备,开展相应的性能测试。测试玻璃升降器、雨刮、遮阳板、座椅、扶手箱、手套箱、安全带、安全带锁扣等常用汽车零部件的使用寿命。测试项目包括玻璃升降器耐久试验、雨刮耐久试验、遮阳板耐久试验、座椅综合耐久试验、扶手箱耐久试验、 屏幕按压耐久试验、手套箱耐久试验、出风口耐久试验、摔门耐久试验、按 压耐久试验、疲劳耐久试验、安全带耐久试验、安全带锁扣耐久试验台、颠簸蠕动试验台等。2、噪声实验室(噪声试验检测)由于车辆噪声问题涉及因素众多,排查解决最有效的手段便是借助试验。汽车零部件噪声试验台能够实现在噪声试验室内对零部件进行振动冲击,通过对试验台输入路谱曲线或设置路谱振动参数,对试验件进行道路模拟振动并激发异响,从而在试验室内进行噪声问题诊断。3、电学实验室(电学试验检测)检测分析:电路原理图是用来表明设备电路工作原理及各电器元件相互关系以及作用的一种表示方式,运用电气原理图的方法和技巧,对于分析电路,排除电路故障是十分重要的;运用汽车设备电源故障模拟器测试样品性能;运用台式数字万用表测试样品上元器件(电阻等),检查有无明显异常的元器件;电容 C,电感 L,电阻 R 是最常用的电子元器件,作为常见的小小的被动器件,影响着电路的参数,也直接牵扯的产品的性能,运用 LCR 数字电桥测定电容 C、电感 L、电阻 R 参数;根据绘制的电路原理图,在板卡输入端通电,使用数字示波器测试输出信号,检测模块各主要功能区域的状态。4、盐雾实验室(盐雾试验检测、环境耐受度试验检测)(1)盐雾试验检测预处理:根据标准规定选取相应尺寸的试样或样块。检测分析:将样品放入调整好温度和喷雾量的盐雾箱内,盐雾箱内为 0.9%的氯化钠溶液,通过喷嘴将雾化的氯化钠溶液均匀喷至样品表面,循环往复,待达到试验时间后取出。用清洁布擦拭样品后,观察表面腐蚀情况或称重计算腐蚀速率。读取数据,出具报告:样品检测分析后计算数据,出具检测报告。(2)环境耐受度试验检测(冷凝水试验箱):和综合实验室中涉及的实验 29 流程相同,此处不再赘述。5、阻燃实验室(阻燃试验检测)该试验项目仅作为实验室能力验证项目每年开展约 7 次(金属材料阻燃2、皮革 3、塑料 2)。前处理:根据相关标准规定截取相应尺寸的试样或样块,将样品放入精密鼓风干燥箱进行干燥处理。 检测分析:样品干燥处理后,放入水平燃烧性测试箱,打开液化石油气钢瓶阀门,启动点火器,待火焰稳定后,移动火焰并使试样底边正好处于火焰中点位置上方,点燃试样后将点火器移开并熄灭火焰,同时打开计时器,记录续燃和阴燃时间。打开试验箱,取出试样,测量损毁长度。读取数据,出具报告:样品检测后分析数据,出具检测报告。(2)塑料灰分实验该试验项目仅作为实验室能力验证项目每年开展约 2 次。检测分析:将测试样品放入高温箱式电阻炉内,设置温度参数(900~1200℃)。当温度达到设定值时,开始计时。试验时间结束后,关闭电源,取出样品进行称重计算。6、综合实验室该实验室涉及的试验有环境耐受度试验检测、力学试验、耐久试验检测、 冲击试验检测、物理试验检测。耐久试验检测和耐久实验室的流程相同,本试验室不再赘述。检测分析:(1)环境耐受度试验检测:本试验检测金属、塑料等材料的环境耐受度。所用设备为喷头工装试验箱、高低温湿热试验箱、恒温恒湿试验箱、淋雨试验箱、浸水试验箱、温度冲击试验箱、车入式环境箱等。模拟特定环境下,样品的耐受程度。试验中设备所用循环水为纯水机制备的纯水,冷水机用于维持恒温恒湿试验箱的温度稳定性。 其中,喷头工装试验箱(密闭箱体中通过喷头喷水或粉尘,测试样品的耐受程度)、高低温湿热试验箱、恒温恒湿试验箱、淋雨试验箱、浸水试验箱、温度冲击试验箱、车入式环境箱等为独立的密闭箱体,在密闭的箱体中通过喷头喷水、粉尘,或控制箱体中温度、湿度,来测试样品的环境耐受程度。试验结束静置一段时间后,打开箱门,取出样品。(2)力学试验检测对领取的待检试样进行尺寸测量,并做好相应的测量记录。根据检测任务单中的检测项目,选择合适的试验设备,测试样品的力学性能。涉及设备为微机控制万能试验机、剥离试验机、应力分析仪、微小型拉压力传感器等。(3)冲击试验检测根据检测任务单中的检测项目,选择合适的试验设备,开展相应的性能测试,测试项目包括耐碎石冲击试验、电子简支梁冲击试验、电子悬臂梁冲击试验、落球冲击试验、气动垂直冲击试验、漆膜冲击试验等。(4)物理试验检测对领取的待检试样进行尺寸测量,并做好相应的测量记录。根据检测任务单中的检测项目,选择合适的试验设备,测试样品的物理性能。涉及设备为热变形,维卡软化点温度测定仪、伺服系统全自动插拔力(引张、压缩)试验机、十字划格试验机、漆膜弹性试验器、全智能型光泽度仪等。读取数据,出具报告:分析计算数据,出具检测报告。7、环境实验室 1:该实验室涉及的试验有环境耐受度试验检测,和综合实验室中涉及的实验流程相同,本试验室不再赘述。环境实验室 3:该实验室涉及的试验有环境耐受度试验检测、力学试验检测,和综合实验室中涉及的实验流程相同,本试验室不再赘述。8、环境实验室 2该实验室涉及的试验有环境耐受度试验检测、老化试验检测。其中,环境耐受度试验检测和综合实验室中涉及的实验流程相同,本试验室不再赘述。检测分析:(1)老化试验检测:所用设备为紫外光加速老化试验箱、氙灯老化试验箱、阳光碳弧老化试验机、紫外碳弧老化试验机。通过模拟自然阳光中的光辐射,对材料进行加速耐候性试验,以获得材料耐候性的结果。读取数据,出具报告:从设备上读取测试结果数据,出具检测报告。9、恒温恒湿房该实验室涉及的试验有耐磨试验检测、力学试验检测、冲击试验检测、 物理试验检测。其中,力学试验检测、冲击试验检测、物理试验检测和综合实验室中涉及的实验流程相同,本试验室不再赘述。本实验室样品检测结束后退回给客户。检测分析:(1)耐磨试验检测:在落砂耐磨试验仪、纸带耐磨试验机、Taber 耐磨试验机、耐磨耐刮擦试验机、耐磨试验机、五指刮擦试验机、摩擦色牢度测试仪上测试样品的耐磨性。读取数据,出具报告:从设备上读取测试结果数据,出具检测报告。10、制样室(金相制样检测)切割:采用切割机、钻铣床将金属材质的样品切割成制样需要的形状。切割机为慢速切割机,通过锯条的上下缓慢拉动进行切割,切割速度较低。 镶嵌:由于样品形状不规则,无法采用金相显微镜观察组织结构,故需将样品进行固定。在金相分析样品制备过程中,观测面在被磨抛前的方向调整一般是常温下使用环氧树脂粉和固化剂对样品方向进行固定,同时镶嵌可以使不规则的样品变成方便手持的形状,从而便于控制磨抛过程,这个样品方向固定和形状规范的过程叫做金相样品的镶嵌。该过程在 18 号厂房 2 楼化学试验间的通风橱中进行。磨抛:在金相试样磨抛机上对样品进行磨抛。全程用自来水冲洗样品进行冷却。检测分析:采用金相显微镜观察组织结构。读取数据,出具报告:根据检测视场,在专业软件及相关标准上读取相关数据,出具检测报告。11、气体腐蚀实验室(气体腐蚀试验检测)该试验用于模拟大气中存在的硫化氢、氯气、二氧化硫、二氧化氮等腐蚀性气体对汽车零部件的腐蚀、破坏程度。预处理:根据标准规定选取相应尺寸的试样及标准腐蚀铜片。检测分析:将样品、标准腐蚀铜片放入气体腐蚀实验箱内,控制湿度、温度,通入适量的测试气体,气体为硫化氢、氯气、二氧化硫、二氧化氮(气 瓶中气体的浓度分别为硫化氢 51.2×10 -6、二氧化氮 1.01×10 -3、氯气 50.2×10 -6、 二氧化硫 1.01×10 -3,其余均为氮气),每次试验只通入一种气体进行气体腐蚀试验。试验结束后,排空测试气体引入自带的氢氧化钠(5%)溶液中净化后在室内无组织排放。读取数据,出具报告:观察样品表面腐蚀情况,出具检测报告。12、材料实验室该实验室涉及的试验有耐久试验检测、耐磨试验检测、臭氧老化试验检测、冲击试验检测、物理试验检测、老化试验检测、环境耐受度试验检测、力学试验检测。其中耐久试验检测和耐久实验室的流程相同;耐磨试验检测和恒温恒湿房的流程相同;老化试验检测和环境实验室 2 的流程相同;冲击试验检测、物理试验检测、环境耐受度试验检测、力学试验检测和综合实验室的流程相同,此处不再赘述。(1)臭氧老化试验检测:前处理:根据标准规定截取样品规定尺寸的样块。检测分析:将样块放入臭氧老化试验箱,老化试验箱工作条件设定为标准大气压(101.3kPa)下臭氧浓度(1±0.01)mg/m3、温度(40±2)℃,时间为(8±0.5)h,查看试样在一定浓度的臭氧作用下的老化性能。本项目臭氧由箱体内的臭氧发生器产生,试验完成后,等老化箱内臭氧浓度显示为 0 时取出样品。13、化学试验间:耐化学试验(均在化学试验间的通风橱中进行)检测分析:根据塑料、皮革、金属、织物、树脂、玻璃等样品材料,选择不同试剂配置成不同浓度的溶液,将配制的溶液涂抹于样品表面,自然晾干后,观察样品外观情况,检测样品的耐化学性能。本试验涉及的化学试剂有:硝酸、丁酮、丙酮、浓硫酸、盐酸、磷酸、硝酸钾、硝酸钠、无水乙醇、清洗剂等。读取数据,出具报告:样品检测分析后计算分析数据,出具检测报告。14、环境实验室(17号一号厂房):该实验室涉及的试验有环境耐受度试验检测,和综合实验室中涉及的实验流程相同,本试验室不再赘述。
  • 多款仪器入选2022年山东省首台(套)技术装备及关键核心零部件名单
    近日,2022年度山东省首台(套)技术装备及关键核心零部件生产企业及产品名单公示,多款仪器入选。首台(套)技术装备是指经过原始创新、集成创新或引进技术消化吸收再创新,在国内率先实现原理、结构、性能等方面的重大创新,具有显著节能、节材和环保等特征,并拥有自主知识产权和自主品牌的成套或单机装备产品。关键核心零部件是指列入国家重大专项及重大工程等国家级项目的核心部件产品,及其他可替代进口的关键零部件产品。2022年度山东省首台(套)技术装备及关键核心零部件——仪器设备序号所在地企业名称产品名称产品型号、规格申报类别1济南山东华唐环保科技有限公司基于激光诱导击穿光谱(LIBS)技术的电厂入炉煤煤质在线检测HTLW2109首台(套)技术装备2济南济南和普威视光电技术有限公司智能红外光电探测系统HP-Z50首台(套)技术装备3济南山东博弘基因科技有限公司医用荧光定量PCR仪LEIA-X4首台(套)技术装备4青岛青岛和诚环保科技有限公司微型环境空气质量监测系统H6型首台(套)技术装备5青岛青岛明华电子仪器有限公司烟气烟尘颗粒物浓度测试仪MH3300首台(套)技术装备6青岛海克斯康制造智能技术(青岛)有限公司水平臂坐标测量机BRAVO HP首台(套)技术装备7烟台烟台东方威思顿电气有限公司智能电能表综合检测装置WE0128首台(套)技术装备8潍坊鲁欧智造(山东)高端装备科技有限公司半导体瞬态热测试设备CX-30A10V4P首台(套)技术装备9济宁山东盈动智能科技有限公司Inline式温度特性测试机WH-1000首台(套)技术装备完整名单:2022年度山东省首台(套)技术装备及关键核心零部件生产企业及产品公示名单.xls
  • 蔡司发布全新汽车零部件清洁度检测整体解决方案
    蔡司全自动清洁度分析仪(Particle Analyzer) 详细介绍: ZEISS一百多年的骄人历史从发明世界上首台显微镜开始。一个世纪后的今天,ZEISS仍致力于为用户研发最具创造力的显微镜产品。通过我们不断改进的显微技术,我们正在为全世界的用户开拓一条探索微观世界的道路。今天的显微镜与以往相比,它们的成像质量更好、效率更高、机械性能更加稳定,并且更加环保。 总体描述: 零部件表面的洁净度对于零部件工作的可靠性和持久性有着非常重要的影响。零部件表面的污染物多为切屑、毛刺、铸沙、焊渣、磨料等固体颗粒。这些污染物会加速零件的磨损,会堵塞元件的节流孔使元件失去调节功能,会进入滑阀间隙使阀芯卡死,会拉伤油缸内表面使泄漏增加或使输出力减小,会损坏泵的配油盘使泵烧伤或研死。这些情况的出现最终将系统功能丧失或彻底瘫痪。因此,必须从每个环节的每一个细节入手来防止和减小污染物的产生,才可能保证安装后的系统能够安全可靠的运行。 蔡司最新推出的Particle Analyzer的出现将工业清洁度控制过程提升到了全新的高度。Particle Analyzer清洁度分析仪采用全自动分析方式将过滤膜上的污染颗粒进行快速成像,无需多重图像分析即可实现将颗粒尺寸大小、形貌分析一步完成,在实现快速对污染物等级的快速评定同时还可以对污染物来源进行分析。Particle Analyzer全自动清洁度分析仪已经成为零部件表面清洁度分析和污染物控制的首选。 产品特点: 1、适合精密清洗定量化的清洁度检测,尤其使用于检测微小颗粒和带色杂质颗粒 2、对整个过滤膜上的颗粒进行分析,因此分析的准确性和可靠性更高。 3、采用全自动分析方式,因此分析效率更高,同时软件符合国家、国际标准等多国标准(ISO4406、ISO4407、IOS16232、NAS1638、ASTMD4378-03、VDA19)。标准可自行添加。 产品应用: 对于许多行业,清洁度控制都非常重要。同汽车行业一样,这些行业也常发生很多使产品寿命和可靠性降低的质量问题,其中主要症结都在于零件加工过程中清洗不净,整机装配时又混入不少杂质和尘埃。因此要确保产品的质量和可靠性,它们也必须要求严格清洁的零件。这些行业包括:汽车零部件、轴承、发动机、汽轮机、航空、半导体、数据存储、医疗设备、通讯、精密仪表,大型工矿设备的磨损监测等。 零部件污染物的来源及其危害 产生污染的途径有三,一是系统制作、安装过程中潜伏在元件和总成内部的污染物;二是在设备运行过程中零件磨损产生的污染物;三是在运输或使用过程中通过空气途径进入到系统内部的污染物。显然,系统制作、安装过程中潜伏的污染物所占的比重最大,而且这些污染物多为切屑、毛刺、铸沙、焊渣、磨料等固体颗粒。这些污染物会加速液压件内零件的磨损会堵塞元件的节流孔使元件失去调节功能,会进入滑阀间隙使阀芯卡死,会拉伤油缸内表面使泄漏增加或使输出力减小,会损坏泵的配油盘使泵烧伤或研死&hellip &hellip 。这些情况的出现最终将导致液压系统功能丧失或彻底瘫痪。 因此,必须从每个环节的每一个细节入手来防止和减小污染物的产生,才可能保证安装后的液压系统能够安全可靠的运行。 清洁度测定方法对过程控制、品质保证和失效分析非常重要,是概括用于获得有关测定主体如各种机械设备、电子零件等清洁度数据的详细过程。 清洁度的测定常用方法: 称重法 称重法是工业生产和试验中最常用的清洁度测定方法。其测定原理是将一定数量的试样在一定的条件下进行清洗,然后将清洗的液体通过滤膜充分过滤,污物被收集在经过干燥的滤膜表面,将滤膜再次充分干燥,根据分析天平称出过滤清洗前后干燥的滤膜质量,计算其增加值即为试样品上的固体颗粒污染物的质量。 显微镜法(颗粒尺寸数量法) 这是一种零件清洁度测定的新方法。其基本原理是根据被检测的表面与污染物颗粒具有不同的光吸收或散射率。其测试方法是,将一定数量的零件在一定的条件下清洗,将清洗液通过的滤膜充分过滤,污物被收集在滤膜表面,然后将滤膜干燥,用显微镜(最佳设备是具有拍摄功能的图像识别和分析设备)在光照射下检测,按颗粒尺寸和数量统计污物颗粒,即可得到所测物体零件的固体颗粒污染物结果。这是一种适合精密清洗定量化的清洁度检测方法,尤其使用于检测微小颗粒和带色杂质颗粒。
  • 普洛帝颗粒计数器助力3D金属打印零部件清洁管控
    普洛帝颗粒计数器在3D金属打印零部件清洁管控中发挥着至关重要的作用。随着3D金属打印技术的飞速发展,对打印出的零部件的清洁度要求也日益提高。普洛帝颗粒计数器凭借其卓越的性能和精准度,为这一领域作出了重要贡献。 在3D金属打印过程中,由于粉末材料的不完全融合、打印平台残留以及环境中的微小颗粒物等因素,零部件表面常常附着各种微粒。这些微粒不仅影响打印品的外观质量,还可能对其性能和使用寿命产生负面影响。因此,对3D金属打印零部件的清洁管控至关重要。 普洛帝颗粒计数器采用先进的激光散射原理,能够快速、准确地检测并计数液体中的微小颗粒。其高精度传感器和智能分析软件,使得计数过程既快速又准确。在3D金属打印领域,普洛帝颗粒计数器能够有效地检测出零部件表面的微小颗粒,为清洁管控提供有力支持。 普洛帝颗粒计数器在零部件清洁管控中展现出了显著的优势。这款先进的仪器不仅在颗粒物计数领域具有卓越的性能,更在零部件清洁管控方面表现出色。 在零部件清洁管控中,普洛帝颗粒计数器能够实时监测零部件表面的颗粒物污染情况,为清洁工作提供及时、准确的数据支持。通过与清洁设备的配合使用,它能够实现自动化的清洁过程监控和反馈,确保清洁效果达到最佳状态。这不仅提高了清洁效率,还降低了人工操作的错误率,为企业的生产效率和产品质量提供了有力保障。 此外,普洛帝颗粒计数器还具有强大的数据存储和分析功能。它能够将检测数据实时保存,并生成详细的报告和趋势分析,帮助企业对零部件的清洁情况进行全面的了解和分析。这为企业的质量控制和工艺改进提供了重要的参考依据,有助于企业实现持续的质量提升和成本优化。 综上所述,普洛帝颗粒计数器在零部件清洁管控中展现出了高精度检测、数据存储与分析等多方面的优势。这些优势共同构成了普洛帝颗粒计数器在零部件清洁管控领域的核心竞争力,为企业提供了全面、高效的解决方案。 通过普洛帝颗粒计数器的应用,3D金属打印企业可以实时监控零部件的清洁度,及时发现并处理清洁问题。这不仅可以提高打印品的外观质量,还能确保零部件的性能和使用寿命。同时,普洛帝颗粒计数器的使用还能降低企业的生产成本,提高生产效率,为企业的可持续发展注入新的活力。 总之,普洛帝颗粒计数器在3D金属打印零部件清洁管控中发挥着不可或缺的作用。其卓越的性能和精准度,为3D金属打印技术的广泛应用和持续发展提供了有力保障。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 四极质谱核心部件-高精度四极质量分析器通过验收
    记者近日从中国工程物理研究院机械制造工艺研究所获悉,被列入科技部首批国家重大科学仪器设备开发专项的《高精度四极质量分析器工程化研制与应用》项目,日前通过项目初步验收。   质谱仪是以电子轰击或其他的方式使被测物质离子化,形成各种质荷比(m/e)的离子,再利用电磁学原理使离子按不同的质荷比分离后,测量各种离子强度,确定被测物质的分子量和结构的科学仪器。四极质谱仪具有灵敏度高、样品用量少、分析速度快、分离和鉴定同时进行等优点,广泛应用于化工、环境、能源、医药、生命科学、材料科学等各领域。而四极质量分析器是四极质谱仪的核心部件,此前完全依赖进口,国产高端四极质谱仪一直处于&ldquo 空心化&rdquo 状态。   2011年,中物院机械制造工艺研究所牵头,联合复旦大学、北京普析通用仪器有限责任公司等单位建立研究团队,几年中,团队成功研制出系列四极质量分析器产品,综合性能指标均达到国际先进水平。   &ldquo 四极质量分析器要求在一定频率的射频电压与直流电压作用下,只允许一定质荷比离子通过到达接收器,从而实现不同质荷比离子分离,其设计、制造精度要求极高。&rdquo 中物院机械制造工艺研究所所长王宝瑞说。
  • 助力上游技术开发 “IVD原材料、仪器及零部件开发”主题研讨会即将召开
    8月23日,仪器信息网举办的“第五届先进体外诊断技术网络大会”在云端盛大开幕,超五千人次在线观看。为了更好地促进关键上游原材料的发展,以及下游试剂和仪器企业更好地运用先进原材料、零部件解决方案,8月25日13:30将进行“IVD原材料、仪器及零部件开发”主题研讨会,会议将在线上进行,免费向听众开放报名,欢迎报名参会!点击图片进入报名页面8月25日13:30-17:00,将进行IVD原材料、仪器及零部件开发专场,会议日程如下:分会场六:IVD原材料、仪器及零部件开发报告时间报告方向专家单位13:30-14:00质控品及相关原材料苏少博中国科学院深圳先进技术研究院 教授/高级工程师14:00-14:30诺信EFD生命科学行业应用解决方案吴嵩岳诺信(中国)有限公司高级应用专家14:30-15:00高通量液相悬浮芯片技术剖析与进展刘伟中翰盛泰生物技术股份有限公司 院长/高级工程师15:00-15:30拓展诊断深度和广度:超亮荧光藻胆蛋白原理与应用张浩安捷伦科技(中国)有限公司高级应用工程师15:30-16:00分子诊断自动化移液和核酸自动化提取零部件开发刘俊凯深圳市美德瑞生物科技有限公司 总经理16:00-16:30IVD关键原材料——纳米磁珠彭颖静苏州海狸生物医学工程有限公司16:30-17:00体外诊断用生物活性原料的研发和应用分析刘万建青岛硕景生物科技有限公司总经理/高级工程师嘉宾简介及报告摘要中国科学院深圳先进技术研究院 苏少博教授《质控品及相关原材料》个人简介:瑞亚力创始人、董事长、中国科学技术大学博士,中国科学院深圳先进技术研究院高级工程师,2014年创立瑞亚力,提出以科研成果转化、国际资源导入、金融手段、政府配套服务为一体的平台化公司,致力于打造中国版本的弗朗霍夫成果转化模式,致力于中国自主知识产权的IVD核心原料服务商。承担国家科技部02重大专项2亿元,山西省重点研发计划,专利十余篇。担任中国分析测试协会常务委员、中国医疗器械行业协会体外诊断分会理事、山西省IVD核心原料省级重点实验室主任、山西省创新创业领军人才、山西省“三晋英才”拔尖骨干人才、山西省新型产业领军人才、山西省重点研发计划IVD关键原料创新人才、晋城市IVD核心原料博士工作站主任、晋城市博士协会副会长。报告摘要:质控品临床重点关注; 质控品的应用及相关原材料的使用诺信(中国)有限公司 吴嵩岳《诺信EFD生命科学行业应用解决方案》个人简介:吴嵩岳先生在诺信EFD担任高级应用专家一职,主要负责诺信EFD产品在生命科学行业的应用开发以及推广工作。他从事胶水及流体控制行业十余年,曾为多家行业内厂商提供生产制造工艺中的点胶方案以及医用试剂涂布方案的开发和应用服务,能够为客户提供最适合的流体解决方案。报告摘要:1.创新医疗行业流体应用方案;2.传统医疗行业流体应用方案;3.生物制药行业流体应用方案;4.其他生命科学行业流体应用方案。中翰盛泰生物技术股份有限公司 刘伟《高通量液相悬浮芯片技术剖析与进展》个人简介:博士后,体外诊断试剂研发高级工程师。现任中翰盛泰生物技术股份有限公司液相芯片研究院院长,上海交通大学—中翰盛泰医学诊断技术联合实验室常务副主任,浙江省中翰盛泰体外诊断高新技术企业研发中心主任。上海交通大学生物医学工程博士研究生导师,浙江大学生物工程与仪器科学学院校外研究生导师, 浙江省科技厅生物医药专家组技术专家与管理专家。2010年博士研究生毕业于复旦大学生命科学学院微生物学系,复旦大学附属华山医院感染病学博士后。目前主要从事基于纳米微球技术的液相芯片多指标检测平台技术的产品开发和产业化研究,发表多篇SCI 论文,承担多项国家级和省部级重大科研专项,在医药卫生多个领域有丰富的工作经验。主要学术任职:中国医药生物技术协会生物诊断技术分会委员,中华医学会结核病学分会临床检验专业委员会委员,浙江省免疫学会感染与免疫专委会、免疫技术专委会委员,浙江省结核病诊治质量控制中心专家委员会委员。报告摘要:高通量液相悬浮芯片具有通量大、灵活性好、灵敏度高、动力学范围广等优点,以荧光编码微球为核心,集流式原理、激光分析、高速数字信号处理等多种技术于一体,是多指标生物检测领域的一个重要发展方向。采用具有完全自主知识产权的主客体组装技术进行荧光编码,组合更加灵活可控,增加了编码微球的比表面积,增加了微球表面的抗体偶联量,提高检测项目的线性范围,降低了抗原、抗体结合的空间位阻,同时引入多种编码元素,有效避免不同波长荧光材料之间的荧光共振能量转移。液相反应环境提高了抗原、抗体结合效率,提高了灵敏度。安捷伦科技(中国)有限公司 张浩《拓展诊断深度和广度:超亮荧光藻胆蛋白原理与应用》个人简介:张浩,安捷伦磁珠产品高级应用工程师,致力于磁珠,藻胆蛋白产品应用的开发和技术支持,为客户及时有效的提供解决方案。加入安捷伦之前,曾先后参与化学发光试剂与仪器平台的开发,有着丰富的磁珠应用与系统整合经验。报告摘要:荧光标记已广泛应用于生物医学研究当中,藻胆蛋白是藻类特有的一种天然水溶性荧光蛋白,其独特的结构使其具有良好的生物相容性、超高的量子效率以及大斯托克位移等优异荧光特性,极大的提高了流式细胞术、免疫标记等应用的灵敏度。同时随着技术的进步,结合标记微球的检测技术进一步实现了多样品同时检测。安捷伦(原ProZyme)作为该类产品的全球著名供应商,在本次讲座将从藻胆蛋白的特性、种类及应用等方面来分享荧光藻胆蛋白如何帮助提高检测的深度及广度。深圳市美德瑞生物科技有限公司 刘俊凯《分子诊断自动化移液和核酸自动化提取零部件开发》个人简介:刘俊凯,机械自动化专业,从事医疗器械行业18年,在IVD行业中,是国内最早将自动化工作站国产化的一批人。2005年在深圳进入医疗器械IVD行业开始,从产品的研发管理、生产及供应链管理,以及产品的预研、试产、产品定型等全体系流程深耕沉淀 积淀了自身的技术基础。2014年创立深圳市美德瑞生物科技有限公司,2015年开始研发分子诊断仪器设备等,先后研发出全自动核酸提取仪、全自动酶免分析仪、全自动加样系统、全自动化学发光分析仪等一系列自动化工作站。随着公司改制的成功,注重保持研发实力,拓展市场基础上赢得了各项财务指标的稳步成长,在国内行业中确定领先地位。苏州海狸生物医学工程有限公司 彭颖静《IVD关键原材料——纳米磁珠》个人简介:彭颖静,苏州海狸生物医学工程有限公司市场经理,近10年来,一直专注于纳米磁珠的技术和应用开发工作,对纳米磁珠的合成技术、工作原理及市场应用具有独特的认知。苏州海狸生物是一家专注于纳米磁珠技术和产业化开发的企业。报告摘要:突破技术壁垒的纳米磁珠在分子诊断、免疫诊断和中和抗体检测中的关键应用。青岛硕景生物科技有限公司 刘万建《体外诊断用生物活性原料的研发和应用分析》个人简介:硕士研究生,高级工程师。从2012年开始从事体外诊断试剂盒的研发和质控工作。2015年完成POCT金标层析技术平台建设,完成人绒毛膜促行线激素检测试剂盒、人类免疫缺陷病毒检测试剂盒等13个层析检测试剂盒的研发、注册、临床试验以及体系考核、体系运行等工作。2017年组建蛋白质表达和抗体等生物活性原料的研发平台,重点在TORCH和血筛诊断用原料的研发。打通体外诊断试剂开发从上游核心原材料到产品的产业链闭环,为行业的发展建立了良好的模式。报告摘要:1.体外诊断用生物活性原材料的开发研究;2.生物原料的活性评估分析和应用;3.活性原料稳定性研究。指导单位:中国分析测试协会标记免疫分析专业委员会中国生物物理学会肠道菌群分会天津预防医学会毒理学分会主办单位:仪器信息网参会方式:网络在线报告 免费报名参会报名链接:https://insevent.instrument.com.cn/t/Cua (点击报名)iCIVD2022 交流群(发送备注姓名+单位+职位)
  • 首届“仪器研发及核心部件论坛”召开
    仪器信息网讯 2013年4月19日,中国科学仪器行业最高级别的峰会——“2013中国科学仪器发展年会(ACCSI 2013)”在京召开。该会由中国仪器仪表行业协会、中国仪器仪表学会分析仪器分会、仪器信息网(www.instrument.com.cn)联合主办,我要测(www.woyaoce.cn)协办。   首届“仪器研发及核心部件论坛”,作为ACCSI 2013的重要组成部分,于2013年4月19日13:30-16:40在北京京仪大酒店第六会议室举行。近150位来自仪器生产企业、核心部件供应商、仪器研发专家、仪器应用专家等参加。   在本次论坛上,有从事仪器研发的专家,与大家分享研发中的难点和突破口 也有仪器资深用户,从仪器使用者角度提出对仪器研发的需求 仪器核心部件供应商,介绍其产品架构和应用,与仪器制造商供需双方面对面深入交流 还有协会、学会的领导,分析当前新形势下科学仪器的发展方向。   国内外著名的科学仪器零部件供应商滨松光子学商贸(中国)有限公司、咸阳威思曼高压电源有限公司、上海江众电力科技有限公司、滨海县正红塑料仪器厂赞助了本论坛,并在论坛会场展示了其主要产品,与参会嘉宾进行了面对面的交流。 “仪器研发及核心部件论坛”现场   此次论坛上,北京航空航天大学可靠性与系统工程学院教授孙宇锋、北京大学生物动态光学成像中心研究员黄岩谊、江苏省优联检测技术服务有限公司董事长周剑峰、滨松中国的分析领域销售组负责人范四国、中国仪器仪表行业协会仪表功能材料分会副秘书长唐逾、全国节能减排标准化技术联盟常务副秘书长潘崇超、中国仪器仪表学会副秘书长朱险峰等作精彩报告。 怎样提高科学仪器生产的可靠性 报告人:北京航空航天大学可靠性与系统工程学院教授孙宇锋   孙宇锋在报告中介绍了产品可靠性内涵、可靠性与质量的关系,重点论述了实施可靠性工作的基本原则和方法。孙宇锋指出:必须转变观念,深刻认识质量和可靠性是产品的生命。坚持“预防为主、从源头抓起、全过程管理”的可靠性工作原则 对产品可靠性指标要求是推动企业开展可靠性工作的动力,是设计的依据,应该将可靠性指标与其它性能指标放在同等重要的地位 产品质量工作要以抓好可靠性工作为重点,研制初期应建立可靠性工作系统,明确可靠性人员职责,将可靠性工作同步纳入产品研制计划 产品可靠性首先是设计出来的,在产品研制过程中必须采用一系列可靠性设计分析技术(可靠性设计准则、分配、预计、FMEA、FTA、降额设计等),并采用规范化的途径来完成 做好可靠性试验与验证工作。通过试验,一方面可发现产品缺陷,为改进提供依据,另一方面为验证是否达到规定可靠性要求提供证据 重视元器件质量与可靠性工作,加强制造过程的质量控制,严格质量问题归零管理。 功能材料在科学仪器行业的应用及关键材料的创新 报告人:中国仪器仪表行业协会仪表功能材料分会副秘书长唐逾   材料是世界工业革命的推动力、新材料是高新技术发展的基础与先导、新材料是现代工业的共性关键技术。唐逾在报告中介绍到:“十一五”期间,我国初步完成较完整的新材料研发与产业化体系。材料研发机构上百家;高校设材料类专业占比大于2/3,211工程高校中占比90%。科研论文数全球领先。 新型高通量测序仪的研发 报告人:北京大学生物动态光学成像中心研究员黄岩谊   高通量测序仪是现代生命科学研究的前沿仪器,若按照国家来统计,中国拥有高通量测序仪的数量位居世界第二位,然而,全球测序仪的巨大市场几乎全部被Illumina、Life Tech、罗氏三家占据。   黄岩谊报告中介绍了研发高通量测序仪的重要意义,以及其承担的“十二五”国家科技计划项目“基于荧光产生底物的新型高通量基因组测序仪”课题的研发进展。 滨松光源产品特点及应用 报告人:滨松中国的分析领域销售组负责人范四国   范四国在报告中介绍了滨松电子管事业部、固体事业部、系统事业部、激光小组的概况,以及光源产品特点及应用情况。 从第三方检测角度来看国产仪器现状和发展 报告人:江苏省优联检测技术服务有限公司董事长周剑峰   周剑峰的报告围绕着第三方检测机构的发展现状、第三方检测机构视角中的国产仪器、第三方检测机构视角下的国产设备改善与提升、第三方检测机构在国产设备改良中的作用等方面展开。   随着社会需求的发展,设备配置和需求迅速提升,第三方检测机构的设备配置主要以以下领域为主:分析仪器领域:荧光光谱仪,消解/萃取装置,FTIR,NMR,GC-MS,ICP,LC-MS,LC-MS/MS,GC-MS/MS,ICP-MS等 材料及物理应用领域:SEM-EDX,XRD,DSC,TGA,激光粒度仪,万能试验机等 试验设备领域:环境试验箱,多维大自由度试验机,振动试验机等。 节能减排新形势下监测仪器仪表的新机遇 报告人:全国节能减排标准化技术联盟常务副秘书长潘崇超   潘崇超认为仪器仪表的新机遇在于以下几点:节能减排政策落实对能源计量统计提出了更高要求 各省市加快建立能源管控中心,亟需监测仪器仪表的完善 “十二五”万家企业节能行动方案要求重点企业能源计量器具配备达到标准要求 节能减排在线监控、远程监控对仪器仪表及通讯端口提出了更高的要求 节能改造项目节能量测量和验证需要更多便携式仪器仪表。 仪器仪表创新方法 报告人:中国仪器仪表学会副秘书长朱险峰   朱险峰报告中介绍了发明问题解决理论(TRIZ )的的起源。Genrich Altshuller从200000份专利中筛查出40000份发明专利,并对这40000份发明专利进行分析,发现并最后成为TRIZ理论所依据的重要原理:1)问题及其解在不同的工业部门及不同的科学领域重复出现 2)技术进化模式在不同的工业部门及不同的科学领域重复出现 3)发明经常采用不相关领域中所存在的效应。 撰稿:刘丰秋
  • 盘点光刻设备国产零部件最新进展
    光刻机被业界誉为集成电路产业皇冠上的明珠,研发的技术门槛和资金门槛非常高。也正是因此,能生产高端光刻机的厂商非常少,到最先进的EUV光刻机就只剩下ASML。据ASML之前公布资料显示,ASML 是全世界唯一一家使用极紫外EUV光源的光刻机制造商。EUV光源波长只有13.5 nm(接近X射线水平),远大于DUV光刻机的193nm,目前用于台积电最先进的5 nm生产线。相比之下,国内光刻机厂商则显得非常寒酸,处于技术领先的上海微电子装备有限公司已量产的最先进的SSA600/20型号前道光刻机采用了ArF准分子光源,即深紫外DUV光刻机,光刻分辨率只有90 nm。有消息称上海微电子即将于2021年,也就是几个月之后会交付首台国产的分辨率达28 nm的光刻机,目前国内晶圆厂所需的高端光刻机完全依赖进口。随着贸易战的愈演愈烈,美国对华为的打压也蔓延到了半导体领域,国内先进光刻机采购遭遇重大阻力。同时由于《瓦森纳协定》的限制,即使突破了技术,能够制造先进光刻机,其核心零部件的进口也可能会受到限制。针对于此,去年中科院院长白春礼接受采访时表示:“未来中科院将集结全院之力攻克光刻机、关键材料等重点技术,帮助国内科技企业摆脱被西方国家卡脖子的命运。”实际上此前我国已经对光刻机的零部件进行了大量的技术公关,去年小编也盘点了02专项中光刻机核心零部件研发进展【国产光刻机及关键核心零部件研发进展 】。而最近国内再次取得了新的技术进步,小编特对其进行盘点。中科院物理研究院国内第一台高能同步辐射光源设备问世6 月 28 日上午,由国家发展改革委立项支持、中国科学院高能物理研究所承建的高能同步辐射光源(HEPS)完成了加速器设备电子枪的安装,这是 HEPS 首台安装的科研设备,是加速电子产生的源头。为 HEPS 提供技术研发与测试支撑能力的先进光源技术研发与测试平台(PAPS)同期转入试运行,超导高频及低温、精密磁铁测量、X 射线光学检测等设备开机运转。接近光速运动着的电子或正电子在改变运动方向时放出的电磁波叫做辐射波,因为这一现象是在同步加速器上发现的,所以称为同步辐射。这种电子的自发辐射,强度高、覆盖的频谱范围广,可以任意选择所需要的波长且连续可调,因此成为一种科学研究的新光源。高能同步辐射光源将成为中国首个第四代同步加速器光源,它也将成为世界上仅有的几个此类装置之一。它将使用更先进的,被称为 “多弯消色差透镜” 的磁铁阵列,从而获得亮度更大的光束。同步辐射有可能被用作强X射线源和精细可调谐X射线源,进而用于衍射、光谱、成像以及其他用途,未来也可能用于光刻EUV光源的产生。国内首台光镜镀膜设备投用中科科仪旗下的中科科美也传来佳讯,其研制的直线式劳埃透镜镀膜装置及纳米聚焦镜镀膜装置于2021年6月28日正式投入使用。据了解,中科科仪推出的镜镀膜装置可满足大多数物理镜头对膜层制备的工艺需求。诸如聚焦镜、单色镜、劳埃镜、纳米聚焦镜以及用于EUV光刻机当中的光镜头。与DUV不同,EUV用的是13.5nm的光波长,无法透过目前用的透镜材料,因此EUV系统为全反射。包括EUV的光罩(掩模)也是用反射结构。由于EUV光刻镜头是面向更高制程、更多数量的硅基晶体管芯片,EUV光刻机对镜头镜面光洁度的要求极高,即镜面光洁度不得超过50皮米。中科科仪投用的真空镀膜设备能够将膜厚精度控制在0.1纳米(100皮米)以内,实现高精度纳米量级万层镀膜工艺,适用于光刻机镜头的制备,一定程度上能够降低国产设备厂商在光刻镜头项目中面临的压力,加速国产半导体厂商在光刻镜头项目中的进展。上海微系统所实现片上亚纳米量级的超灵敏位移传感近日,中国科学院上海微系统所信息功能与材料国家重点实验室硅光子课题组研究员武爱民团队、深圳大学教授袁小聪、杜路平团队及英国伦敦国王学院教授Anatoly V. Zayats课题组合作,在硅衬底上提出了基于布洛赫表面光场的非对称传输特性实现超灵敏位移测量的方法,并实现了亚纳米级的位移传感。光学手段为精密位移测量提供了非接触的方案,可实现高灵敏度、高分辨率的位移检测,在纳米尺度位移传感、半导体技术及量子技术等领域具有重要应用。EUV光刻机由于光刻制程先进,其对对准精度的要求也非常高,而该工作利用纳米尺度的狭缝实现了布洛赫表面波的非对称传输,通过连续改变光与狭缝的相对位置,在实验上实现了对于位移的精确测量,灵敏度可达0.12 nm⁻¹,分辨率和量程达到8 nm和300 nm。该研究为纳米测量及超分辨显微提供了新的物理原理,并为超灵敏的位移测量提供了精巧的微型化方案。华卓精科双工件台可用于65nm以下制程此前,由北京华卓精科科技股份有限公司和清华大学联合研发的首台国产干式光刻机双工件台产品完成测试,移机交付整机单位进入光刻机联合调试阶段。工件台是光刻机产品平台的核心主体,搭载不同曝光光学系统和光源可形成全系列光刻机。华卓精科官网显示,其光刻机双工件台打破了ASML公司在工件台上的技术垄断,成为世界上第二家掌握双工件台核心技术的公司。华卓精科作为我国在该领域的杰出代表企业,目前与清华大学的专业团队进行合作,共同研制出的双工件台,其技术水准完全可以与阿斯麦相提并论,实力不相上下,据了解,上海微电子制造的28nm光刻机,其中利用的就是华卓精科的双工件台。该双工件台的精度可以达到1.7nm,主要被应用在65nm以下的芯片制程,它的出现预示着我国在该领域技术的进步、打破西方国家的封锁,实现自主化生产。据业内媒体消息披露,上海微电子将于2022年前交付第一台28nm工艺的国产沉浸式光刻机。这意味着我国的先进光刻机已经实现了技术突破,但可以实现更高制程的EUV光刻机仍然任重而道远。而光刻机零部件的不断突破,为国产替代再填助力。“我们从古以来,就有埋头苦干的人,有拼命硬干的人,有为民请命的人,有舍身求法的人,……虽是等于为帝王将相作家谱的所谓"正史",也往往掩不住他们的光耀,这就是中国的脊梁……”伴随着科研人员的“负重前行”,相信不久的将来必能继续传出好消息,完成半导体设备的拼图。扫描下方二维码,加入半导体行业交流群
  • “制造基础技术与关键部件”重点专项2021年度项目申报指南发布
    3月12日,科学技术部发布国家重点研发计划 “制造基础技术与关键部件”重点专项2021年度项目申报指南。“制造基础技术与关键部件”重点专项2021年度项目申报指南中明确提到,本重点专项按照产业链部署创新链的要求,从基础前沿技术、共性关键技术、示范应用三个层面,围绕关键基础件、基础制造工艺、先进传感器、高端仪器仪表和基础技术保障五个方向部署实施。按照共性关键技术类和示范应用类,拟启动18个项目,安排国拨经费总概算约1.8亿元(其中,方向1.1~1.9为青年科学家项目,国拨总经费不超过4500万元)。为充分调动社会资源投入制造基础技术与关键部件的技术创新,在配套经费方面,共性关键技术类项目(非青年科学家项目),配套经费与国拨经费比例不低于1:1;示范应用类项目,配套经费与国拨经费比例不低于2:1。鼓励产学研团队联合申报。拟启动项目研究方向如下:1. 共性关键技术1.1 滚动轴承基础物理参数检测技术(青年科学家项目)研究内容:研究滚动轴承润滑性能检测原理与技术;研究滚动轴承旋转组件温度检测原理与技术;研究滚动轴承内部游隙及受力状态检测原理与技术;开展滚动轴承基础物理参数检测技术验证。考核指标:研制出真实工况条件下轴承的油膜厚度与分布、旋转组件温度、轴承内部游隙及受力状态的检测装置;油膜厚度测量范围0.1~300μm,分辨率优于0.1μm;运转条件下轴承内外套圈、保持架的温度测量范围 RT~180℃,精度优于±0.5℃,测量转速不低于30000r/min;运行状态下力测量范围不小于轴承额定动载荷的30%,精度优于±1%FS;申请发明专利≥3项。1.2 滚动轴承装配基础与智能装配方法(青年科学家项目)研究内容:研究滚动轴承组件装配工艺对服役性能影响机理,滚动轴承装调工艺对转子系统服役性能影响机理;研究滚动轴承组件/转子系统装配工艺参数优化方法与软件系统;研制针对滚动轴承组件/转子系统装调过程,具备精准检测、自动调整、自适应压装的智能装配原理验证系统,提高轴承合套成功率。考核指标:考虑滚动轴承装调工艺参数的轴承服役性能仿真预测准确率70%;装配工艺参数优化软件可实现轴承组件最优选配、装调载荷、装调相位、连接载荷等参数精准计算;滚动轴承智能装配工艺装置装配过程力载荷检测与控制精度优于±0.5%FS; 位移测量与调控分辨率优于0.2μm;申请发明专利≥3项。1.3 高功率密度液压元件摩擦副寿命预测与延寿设计(青年科学家项目) 研究内容:研究液压元件摩擦副的多尺度多自由度动力学特性、固—液—热多场耦合建模理论;研究摩擦副间隙油膜关键参数原位测试原理;研究高速重载摩擦副性能退化规律和典型损伤机理,建立界面累积损伤和元件性能动态劣化评估模型;研究新型摩擦副调控延寿设计方法,并开展相关试验验证。考核指标:2种以上液压元件的摩擦副油膜性能分析与动态演化仿真软件各1套,仿真精度≥90%;液压元件摩擦副油膜参数分布式测试装备1套,具备油膜厚度场、温度场、压力场等至少3种在线测试功能;针对航天航空等领域,液压元件功率密度提高20%以上;申请发明专利≥2项。1.4 高性能液压阀性能在线监测与智能控制(青年科学家项目)研究内容:研究液压阀口的冲蚀磨损及阀芯卡滞机理与演化规律;建立多维融合感知的液压阀性能衰退与预测模型;研究电液控制阀服役过程的实时补偿技术,开发具有性能监测和故障诊断功能的可编程集成控制器;开展相关试验验证。考核指标:高可靠智能型电液控制阀样机2种以上;控制精度0.1%,典型故障检测类型≥5类,识别率≥80%;具备IO-link总线通讯接口的位置轴控精度不低于1%FS;申请发明专利≥3项。1.5 齿轮传动系统多维信息感知及智能运维(青年科学家项目)研究内容:研究传动/感知/控制等深度融合的智能化齿轮传动系统,探索传动系统全生命周期内轮齿损伤(如点蚀、磨损、胶合、断齿)、应力、温度、振动等多维信息监测新方法;研究齿轮传动系统多维信息的故障自诊断及自适应调控等智能运维机制;研究齿轮传动系统服役性能及残余寿命的智能预测方法。考核指标:齿轮传动系统智能感知及智能运维验证系统1台/套;具备传动系统内部应力、温度、振动及轮齿损伤等监测功能,监测精度优于5%;具备智能运维功能,故障自诊断正确率不低于80%;申请发明专利≥3项。1.6 基于二维材料的柔性应变传感器阵列(青年科学家项目)研究内容:研究基于二维材料的柔性应变传感器敏感材料的性能调控方法和微观机理;研究与微纳加工、印刷工艺兼容的应变敏感材料、传感器结构、可靠性及封装技术,以及柔性应变传感器阵列的加工方法;在工业或人体表皮进行长期连续监测验证。考核指标:传感器应变系数≥500,拉伸性≥50%,最低检测限≤0.08%,循环稳定性≥50000次@5%应变,响应时间≤50ms; 阵列性能离散性≤5%;研制应变传感可穿戴集成系统原型,申请发明专利≥3项,制定技术规范或标准≥1项。1.7 高灵敏磁电阻传感器(青年科学家项目) 研究内容:研究高灵敏磁电阻传感器敏感材料、原理和结构;研究低噪声磁性多层膜结构材料;研究磁电阻—微机电和磁电阻—超导一体化调制效应的影响机理;研究高灵敏磁传感器芯片制造工艺;研究传感器的噪声抑制、磁通汇聚、三维集成、封装等关键技术;研究传感器ASIC芯片设计;研制原型器件,并在工业现场试验验证。考核指标:磁传感器灵敏度优于200mV/V/Oe,量程≤±100μT,功耗≤100mW,本底噪声≤1pT/Hz@1Hz;申请发明专利≥3项。1.8 高灵敏MEMS三维电场传感器(青年科学家项目) 研究内容:研究高灵敏MEMS三维电场传感器的敏感机理和结构;研究三分量电场耦合干扰抑制方法及高精度测量方法;研究传感器制备工艺、抗表面电荷积聚封装等关键技术;研究传感器弱信号检测方法,研制出传感器原型,并在工业现场试验验证。考核指标:传感器测量范围0~100kV/m;单分量电场分辨力优于1V/m;轴间耦合度5%;准确度优于5%;传感器敏感结构尺寸≤12mm×12mm;申请发明专利≥3项,制定技术规范或标准≥1项。1.9 硅基厚金属膜制造工艺基础(青年科学家项目)研究内容:研究圆片级硅基MEMS厚金属膜工艺兼容性技术;研究高质量厚金属膜材料力学性能匹配方法、工艺和原位测试技术;研究硅基厚金属膜微结构释放技术,开发基于硅基MEMS厚金属膜工艺能力验证评价技术,开展工艺可用性验证。 考核指标:建立硅基厚金属膜制造基础工艺体系,圆片直径≥150mm,金属膜厚度≥5μm,厚度误差≤±3%;工艺验证器件数量≥2种;申请发明专利≥3项。1.10 分布式独立电液控制系统关键技术研究内容:研究典型非道路移动机器的电液控制系统构型原 理与参数优选方案;研制集成化一体化的电液控制执行机构;开发硬件在环仿真和试验测试系统,研究全局功率匹配和高效能量管理方法;研究分布电液控制系统的高动态泵阀复合控制技术,并开展相关试验验证。考核指标:分布式电液控制执行机构1套,应用至非道路移动 机器整机并较原有机型降低燃油消耗40%;分布式电液控制系统能效分析与优化设计软件1套;总线型数字式综合控制器1套,流量控制误差≤2%;模拟测试系统平台1套;申请发明专利≥2项。1.11 工业测控高精度硅基压力传感器关键技术研究内容:研究差压、表压和绝压高精度压力传感器芯片设计制造关键技术;研究硅基MEMS加工应力控制方法与传感器高可靠封/组装技术;研究宽温区温度补偿校准方法,实现基于自主开发压力敏感芯片的系列化压力传感器在流程工业、装备工业等重点领域应用验证。考核指标:差压传感器量程0.015MPa,非线性误差0.3%FS,迟滞0.05%FS,工作温度-40~85℃;表压传感器量程0.5MPa,非 线性误差0.2%FS,迟滞0.05%FS,工作温度-40~85℃;绝压传感器量程3MPa,准确度 0.02%FS,工作温度-40~85℃;高温压力传感器量程2MPa,准确度0.25%FS,工作温度-55~250℃,响应频率≥400kHz;压力变送器准确度0.05%FS;申请发明专利≥5项。1.12 工业机器人减速器状态监测传感器关键技术研究内容:研究薄膜应变传感器在机器人减速器部件表面上的原位集成工艺、设计制造及可靠性技术;研究适应减速器内部环境的无线应变传感器设计制造及测量技术;研究MEMS薄膜声发射传感器设计制造及可靠性技术;研制的传感器在谐波减速器和RV(旋转矢量)减速器应用验证。考核指标:谐波减速器应变传感器灵敏度因子≥1.5,TCR(电阻温度系数)≤110ppm,线宽≤10μm@曲率半径62.5μm基底;RV减速器无线应变传感器测试范围0~1000με,误差≤±1%;声发射传感器工作频率范围 40~400kHz,灵敏度优于60dB;申请发明专利≥3项。1.13 开放式数控系统安全可信技术研究内容:研究开放式数控系统协议安全、密码资源管理、数据安全等应用技术;研究数控系统密码应用、身份管理及管理平台等关键技术;开发与数控系统融合的可信密码控制模块;构建可信度量、可信验证、信任链传递方法等数控系统安全可信体系结构及标准规范;在航空航天、装备制造等领域开展安全可信数控系统的应用验证。考核指标:可信密码模块符合GMT 0028-2014《密码模块安全技术要求》,加/解密时延1ms;基于可信密码模块的安全数控系统对程序、数据和功能具有不少于8个级别的存取权限;数据传输加解密吞吐率≥100MB/S;可信互操作协议支持数控装备互联互通等协议≥3种;制定标准规范≥3项。1.14 智能网联工业控制安全一体化增强技术研究内容:研究智能网联工业控制安全一体化风险多重耦合机理、失效判定方法及入侵/故障检测技术;研究实时状态分析、动态风险预测和智能决策支持技术;研究设备安全增强的信息模型和数据接入方式;研制工业控制安全一体化增强装置,在重大装置、流程工业等开展应用验证。考核指标:增强装置2套,支持工业协议≥6种,具备关键安全指标在线分析、动态适配和协同性验证功能;知识库和算法库≥5类;具备功能安全完整性SIL3、信息安全SL2的仪表和控制设备≥3种;制定标准规范≥2项。1.15 典型流程工业信息安全防护关键技术研究内容:研究工业互联网架构下典型生产过程和装置的攻击脆弱性机理及响应机制;研究内嵌工业特征的信息安全防护关键技术;开发智能型安全防护原型系统;搭建测试验证平台,并在石油、化工、建材等典型流程工业开展应用验证。考核指标:可配置、可移植的智能型信息安全防护原型系统2套,支持工业协议≥6种;功能安全完整性等级 SIL2,信息安全等级SL2;申请发明专利≥5项,制定标准规范≥2项。2. 示范应用2.1 动力系统关键传感器开发及示范应用研究内容:研究集成式多路电压传感器设计、高低压可靠隔离、高压切换开关及高精度模数转换技术;研究宽量程电流传感器芯片设计及可靠性技术;研究高精度电机位置传感器薄膜材料工艺、设计及制造技术,开发信号调理电路;开发传感器及模块应用技术,在电动汽车等领域示范应用。考核指标:多路电压传感器最高检测电压≥1000V,电压检测精度优于0.5%,采样率≥1MHz,分辨率≥12 Bit;电流传感器直流量程±1000A,精度优于0.1%;电机位置传感器转速范围0~30000r/min,分辨率≥16 Bit(360度角度范围),系统延时≤2μs; 检测高压母线电流,功能安全等级ASIL B;传感器可靠性水平满足不同电动汽车用户单位要求。2.2 动力电池组控制安全传感器开发及示范应用研究内容:研究动力电池组单体电压与温度检测方法,高速高精度模数转换及多芯片扩展技术;研究电池热失控的压力、VOC(挥发性有机化合物)、气溶胶等传感器设计制造技术;开发传感器及模块应用技术,在电动汽车等领域示范应用。考核指标:单体直流电压监测范围±5V,测量精度优于±2.5mV;热失控监测传感器压力测量范围50~250kPa,误差≤±1.5kPa,响应速度≥100ms;VOC传感器检测气体成分包括:CO、CO2、C2H4、CH2O 有机挥发物,测量范围0~5000ppm,误差≤±15%;气溶胶传感器测量范围200~5000μg/m3,误差≤±15%; 整机安全:防止乘客仓起火ASIL D,防止人员触电ASIL D;传感器可靠性水平满足不同用户单位要求。2.3 医疗影像装备关键传感器开发及示范应用研究内容:研究SiPM(硅基光电倍增管)辐射传感器设计制造;研究磁栅位置传感器设计制造及抗辐照技术;研究强磁场背景下高分辨磁场传感器设计制造技术;研究传感器敏感元件与相关抗辐照调理电路设计;研制的传感器在CT(断层扫描仪)、PET(正电子发射断层成像)、RT(影像引导放疗)或MR(磁共 振)等医疗影像装备示范应用。考核指标:辐射传感器光子探测效率≥50%,增益≥2.5×106, 单光子时间分辨率100ps;磁栅位置传感器分辨力≤1μm,抗辐 照能力≥100000cGy;磁场传感器分辨率≤10μT@1.5T,灵敏度优于30nT/Hz1/2;上述传感器至少在2类医疗影像装备上示范应用;传感器可靠性水平满足不同用户单位要求。附件:“制造基础技术与关键部件”重点专项2021年度项目申报指南.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制