当前位置: 仪器信息网 > 行业主题 > >

低频电压放大器

仪器信息网低频电压放大器专题为您提供2024年最新低频电压放大器价格报价、厂家品牌的相关信息, 包括低频电压放大器参数、型号等,不管是国产,还是进口品牌的低频电压放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合低频电压放大器相关的耗材配件、试剂标物,还有低频电压放大器相关的最新资讯、资料,以及低频电压放大器相关的解决方案。

低频电压放大器相关的资讯

  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • “精密大带宽锁相放大器的研发及应用”获得立项
    近日,由赛恩科仪团队首席技术顾问中山大学王自鑫副教授作为项目负责人申报的国家重点研发计划“精密大带宽锁相放大器的研发及应用”获批立项;项目将实现超过100M带宽的精密锁相放大器,将研究复杂电磁环境下的微弱信号解耦合技术,实现高带宽高精度的锁相放大器检测技术。赛恩科仪拥有多位在集成电路设计、电磁兼容性分析、数字信号处理等领域具有丰富经验的归国留学人员,一直依托中山大学微电子系、物理系、中山大学光电材料与技术国家重点实验室从事微弱信号仪器检测相关的研究工作。赛恩科仪是一家专注微弱信号检测技术近二十年的国家高新技术企业,拥有本领域的系列核心知识产权。公司推出涵盖各个频段的系列锁相放大器产品,性能参数全面覆盖国际同行,在国内外数百家科研机构与企业得到应用,深受国内外客户的一致好评。
  • 新材料助力大化所推出低价、高性能光电放大器组件
    仪器信息网讯 2016年10月10日,慕尼黑上海分析生化展(analytica China 2016)召开同期,中国科学院大连化学物理研究所(以下简称:大化所)携AccuOpt 2000光电放大器组件、小型化学衍生器等产品参加。 中国科学院大连化学物理研究所参加analytica China 2016  大化所研究员关亚风向仪器信息网介绍了AccuOpt 2000光电放大器组件的特点及潜在的优势应用领域。AccuOpt 2000光电放大器组件的检测器采用了硅光二极管制成的检测器,结合自有的信号放大电路设计,使得AccuOpt 2000的噪音电平达到0.01mV。硅光二极管检测器的应用,使AccuOpt 2000的光谱响应范围为320~1100nm,覆盖近红外光波段,可替代昂贵的红外增强型光电倍增管。同时,这也给AccuOpt 2000带来了抗震、抗强光的特点,为适应更多的应用场合带来潜在的优势。AccuOpt 2000仅需5~12V的供电电源,并能在2分钟内平衡稳定,一方面能降低仪器在供电电源方面的成本;同时,专为AccuOpt 2000提供的DC-DC电源,12V输入,单块电源功率2W或3W,就能同时为8支AccuOpt 2000供电,这也大大减少仪器运行中的能源消耗,契合当前绿色仪器的发展大趋势。 AccuOpt 2000光电放大器组件  AccuOpt 2000价格远低于光电倍增管,如果应用于食品快检领域,将为用户提供低价、高质的食品安全快速筛查解决方案。从大化所展位现场看到,AccuOpt 2000已经成功应用于LED荧光检测器、激光诱导荧光检测器、叶绿素α 检测器中。据了解,AccuOpt 2000已经实现批量化生产,第一批生产1000支。  大化所的小型化学衍生器也吸引了信息网编辑的目光。这是一款小型柱后碘/溴化学衍生器,能使黄曲霉毒素B1和G1的荧光强度提高6.5倍。关亚风介绍到,该款小型化学衍生器已经批量生产100台,完全具备了批量化生产能力,为国内企业的供货价格将是市场同类产品的4分之一。 小型化学衍生器  关亚风特别提到,是新材料在零部件上的使用,实现了AccuOpt 2000低价和高性能这两者之间的很好结合。
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • Molecular Devices 网络讲座:如何更有效使用Axon pCLAMP软件和Axon放大器系列讲座之二
    立即注册参加Axon传统电生理网络讲座 题目:全细胞电压钳记录模式为何需要补偿串联电阻?日期:2012年9月26日,周三时间:9:00 -10:00 AM 建议参会人包括: 正要建立新电生理实验室的教授及研究人员 大学研究院所和医药界的电生理学家 现在使用Axon软件及放大器的用户题目: 全细胞电压钳记录模式为何需要补偿串联电阻?主讲人:Jeffrey Tang, PhD, Product Marketing Manager of Axon Conventional Electrophysiology, Molecular Devices, LLC. 请点击 在线注册 注册本次网络讲座。本次讲座费用全免,但是参会人数有限,请尽快注册。在线注册后,您将收到一封确认邮件,同时附有如何登陆本次网络讲座的资料。我们期待您的参与! 若您在注册时遇到任何问题,请联系info.china@moldev.com或jeffrey.tang@moldev.com询问。
  • 科学家试制新型“激声”放大器
    据美国物理学家组织网9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。   声子激发理论是2009年由马克斯普朗克研究院和加州理工学院的一个科研小组首次提出的,目前尚处于较新的研究领域。其理论认为,声子是振动能量的最小独立单位,也能像光子那样,通过激发产生高度相干的声波束,尤其是高频超声波。他们首次描述了一个镁离子在电磁势阱中被冷冻到大约1/1000开氏温度,能生成单个离子的受激声子。但是单个声子的受激放大和一个光子还有区别,声子频率由单原子振动的频率所决定而不是和集体振动相一致。   在新研究中,葡萄牙里斯本高等技术学院的J.T.曼登卡与合作团队把单离子声子激发的概念,扩展到一个大的原子整体。为了做到这一点,他们演示了超冷原子气体整合声子激发。与单离子的情况相比,这里的声子频率由气态原子的内部振动所决定,和光子的频率是由光腔内部的振动所决定一样。   无论相干电磁波,还是相干声波,最大的困难来自选择系统、频率范围等方面。曼登卡说,该研究中的困难是要模仿光波受激放大发射的机制,但产生的是声子,而不是光子。即通过精确控制超冷原子系统,使其能完全按照激光发射的机制来发射相干声子。   新方法将气体限定在磁光陷阱中,通过3个物理过程产生激态声子。首先,一束红失谐激光将原子气体冷却到超冷温度 然后用一束蓝失谐光振动超冷原体气体,生成一束不可见光,最后使原子形成声子相干发射,此后衰变到低能级状态。研究人员指出,最后形成的声波能以机械或电磁的方式与外部世界连接,系统只是提供一种相干发射源。   关于给声子激发命名,科学家先是沿袭“镭射(laser)”之名使用了“声射(saser)”,即声音受激放大发射。但曼登卡认为使用“激声(phaser)”更准确,它强调了声子的量子特性而不是声音,也暗示了其发射过程类似于光子受激发射。   高相干超声波束的一个可能用途是,在X光断层摄影术方面,能极大地提高图像的解析度。曼登卡说:“激光刚开发出来时,仅被当做一种不能解决任何问题的发明。所以,对于激声,我们现在担心的只是基础科学方面的问题,而不是应用问题。”
  • 量子半导体器件实现拓扑趋肤效应,可用于制造微型高精度传感器和放大器
    科技日报北京1月22日电 德国维尔茨堡—德累斯顿卓越集群ct.qmat团队的理论和实验物理学家开发出一种由铝镓砷制成的半导体器件。这项开创性的研究发表在最新一期《自然物理学》杂志上。由于拓扑趋肤效应,量子半导体上不同触点之间的所有电流都不受杂质或其他外部扰动的影响。这使得拓扑器件对半导体行业越来越有吸引力,因为其消除了对材料纯度的要求,而材料提纯成本极高。拓扑量子材料以其卓越的稳健性而闻名,非常适合功率密集型应用。新开发的量子半导体既稳定又高度准确,这种罕见组合使该拓扑器件成为传感器工程中令人兴奋的新选择。利用拓扑趋肤效应可制造新型高性能量子器件,而且尺寸也可做得非常小。新的拓扑量子器件直径约为0.1毫米,且易于进一步缩小。这一成就的开创性在于,首次在半导体材料中实现了微观尺度的拓扑趋肤效应。这种量子现象3年前首次在宏观层面得到证实,但只是在人造超材料中,而不是在天然超材料中。因此,这是首次开发出高度稳健且超灵敏的微型半导体拓扑量子器件。通过在铝镓砷半导体器件上创造性地布置材料和触点,研究团队在超冷条件和强磁场下成功诱导出拓扑效应。他们采用了二维半导体结构,触点的排列方式可在触点边缘测量电阻,直接显示拓扑效应。研究人员表示,在新的量子器件中,电流—电压关系受到拓扑趋肤效应的保护,因为电子被限制在边缘。即使半导体材料中存在杂质,电流也能保持稳定。此外,触点甚至可检测到最轻微的电流或电压波动。这使得拓扑量子器件非常适合制造尺寸极小的高精度传感器和放大器。
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 科学家构筑出表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 br/ /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。(来源:中科院合肥物质科学研究院) /p p br/ /p p br/ /p
  • 合肥研究院构筑出表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p style=" text-align: center " img width=" 250" height=" 321" title=" ea14fe0b8668f5b02fa47ae1ab982279.jpg" style=" width: 250px height: 321px " src=" http://img1.17img.cn/17img/images/201706/noimg/f983e4b8-d607-4608-b35c-43557cf4f477.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助 (2016T90590)的支持。 /p
  • 中科院杨良保团队构筑表面增强拉曼光谱单热点放大器
    p   近日,中国科学院合肥物质科学研究院智能机械研究所研究员杨良保等利用自发的毛细力捕获纳米颗粒,构筑了由单根银纳米线和单个金纳米颗粒组成的单热点放大器,实现了表面增强拉曼光谱(SERS)高稳定和超灵敏检测。相关成果以A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis为题,作为封面文章发表在Journal of Materials Chemistry C (J. Mater. Chem. C., 2017, 5, 3229-3237) 杂志上,得到了同行和杂志编辑的高度肯定。 /p p   表面增强拉曼光谱(SERS)因其独特的分子指纹信息以及超灵敏检测优势,被广泛应用于各个领域。但是SERS热点一直受方法繁琐、不均一等问题困扰。因此,如何简单构筑均一可靠的SERS热点是人们一直追求的目标。 /p p   基于此目标,杨良保等利用司空见惯的毛细力构筑了由纳米线和纳米颗粒组成的点线单热点放大器。纳米颗粒在毛细力作用范围内,被捕获到纳米线表面,因此耦合的纳米线和纳米颗粒产生了巨大的电磁场增强 其次,纳米颗粒与纳米线耦合形成的孔道可通过毛细力自发捕获待测物进入热点,进而放大热点区域待测物的拉曼信号。实验和理论结果均表明:利用毛细力构筑的单热点结构能够放大待测物信号,且毛细力捕获的颗粒位置差异对电磁场分布影响较小。该项研究工作利用毛细力构筑单热点放大器,不仅避免了颗粒团聚造成的SERS热点不均一难题,也解决了使用巯基等聚合物对基底组装引起的信号干扰问题。 /p p   以上研究工作得到了国家自然科学基金(21571180, 21505138)和博士后自然科学基金特别资助(2016T90590)的支持。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201705/insimg/c1557673-0290-4c66-b7f3-c167bb5da6fc.jpg" title=" 微信图片_20170518091903_副本.jpg" / /p p style=" text-align: center " 文章封面以及毛细力构筑单热点结构示意图 /p
  • 关亚风团队“微光探测器(光电放大器)”通过成果鉴定
    1月27日,由大连化物所微型分析仪器研究组(105组)关亚风研究员、耿旭辉研究员团队研发的“微光探测器(光电放大器)”通过了中国仪器仪表学会组织的新产品成果鉴定。鉴定委员会一致认为:该产品设计新颖、技术创新性强,综合性能达到国际先进、动态范围和长期稳定性能达到国际领先水平,同意通过鉴定。  微光探测器是科学仪器和光学传感器中的关键器件之一,广泛应用于表征仪器和化学分析仪器中,如物理发光、化学发光、生物发光、荧光、磷光、以及微颗粒散射光等弱光探测中,其性能决定着光学检测仪器的灵敏度和动态范围指标。该团队经过十五年技术攻关,成功研制了具有自主知识产权的高灵敏、低噪音、低漂移的AccuOpt 2000系列微光探测器(光电放大器),并批量生产,用于替代进口光电倍增管(PMT)、制冷型雪崩二极管(APD)和深冷型光电二极管(PD)对弱光的探测。  该微光探测器已形成产品,在单分子级激光诱导荧光检测器、黄曲霉毒素检测仪、深海原位荧光传感器等多款仪器上应用,替代PMT得到相同的检测信噪比和更宽的动态线性范围。经权威机构检测和多家用户使用表明,该微光探测器具有比进口PMT更好的重复性、稳定性和性能一致性,具有广阔的应用前景。  由于疫情原因,鉴定会以线上会议方式召开。该项目研发得到了国家自然科学基金、中国科学院重点部署项目等资助。
  • 赛恩科仪双通道锁相放大器被以色列维茨曼研究所应用在SQUID扫描显微镜测量中
    赛恩科仪双通道锁相放大器OE1022D被以色列维茨曼研究所应用在SQUID扫描显微镜测量中,维茨曼研究所已累计采购了十多台赛恩科学仪器的锁相放大器,该型号锁相放大器获得以色列维茨曼研究所的认可,具体见如下用户评价:
  • 【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能
    【新品发布】Moku:Go 仪器套件新增数字滤波器、FIR滤波器生成器、锁相放大器功能Moku:Go提供全面的便携式实验室解决方案,不仅集成了工程实验教学所需的仪器套件,还可满足工程师和学生测试设计、研发等项目。Liquid Instruments最新发布Moku:Go应用程序,新增数字滤波器、FIR滤波器生成器、锁相放大器三个仪器功能。用户现在可以使用数字滤波器来创建IIR滤波器,使用FIR滤波器生成器来设计FIR滤波器,使用锁相放大器从噪声环境中提取已知频率的信号。这一更新使Moku:Go上集成的仪器总数达到了11种,将面向信号与系统等方向提供更完善的实验教学方案,不仅使电子信息工程、电气工程、自动化控制等学科教学进一步受益,并扩展到物理学、计算机科学等领域。数字滤波器数字滤波器作为设计和创建无限冲激响应(IIR)滤波器的常用工具,用户能够创建参数可调的高达8阶的低通、高通、带通和带阻IIR滤波器。这对噪声过滤、信号选择性放大等很有用。此外,Moku:Go的数字滤波器还集成示波器和数据记录器,有助于解整个信号处理链的参数变化,并轻松采集记录这些信号随时间的变化。 FIR滤波器生成器利用Moku:Go的FIR滤波器生成器,用户可以创建和部署有限冲激响应(FIR)滤波器。使用直观的用户界面,在时域和频域上微调您的滤波器的响应。锁相放大器作为第yi个在教育平台上提供的全功能锁相放大器设备,Moku:Go的锁相放大器满足更高级实验教学,如激光频率稳定和软件定义的无线电(Software Defined Radio,SDR)等。作为Liquid Instruments的Moku:Lab和Moku:Pro的旗舰仪器,Moku:Go增加了锁相放大器,使学生在其职业生涯中与Moku产品一起成长。其他更新和即将推出功能在此次更新中,Moku:Go也新增了对LabVIEW应用接口的支持,确保用户易于集成到更复杂的现有实验装置中。今年,Liquid Instruments计划进一步扩大软件定义的测试平台。届时,Moku:Go将在现有的逻辑分析仪仪器上增加协议分析,还将提供“多仪器并行模式”和“Moku云编译(Cloud Compile)”。多仪器模式允许同时部署多个仪器,以建立更复杂的测试配置,而Moku云编译使用户能够直接在Moku:Go的FPGA上开发和部署自定义数字信号处理。这些更新预计将在今年6月推出,将推动Moku:Go成为整个STEM教育课程的主测试和测量套件。目前Moku:Go的用户已经可以通过更新他们的Moku桌面应用程序来访问数字滤波器、FIR滤波器生成器和锁相放大器仪器功能。您也可以联系我们免费下载Moku桌面应用程序体验Moku:Go仪器演示模式。Liquid Instruments基于FPGA的平台的优势,将Moku:Lab和Moku:Pro上的仪器快速向下部署到Moku:Go上,并以可接受的成本提供一致的用户体验。如果您对Moku:Go 在数字信号处理、信号与系统、控制系统等教学方案感兴趣,请联系昊量光电进一步讨论您的应用需求。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 日本将禁止向俄罗斯出口示波器、光谱仪、信号放大器、信号发生器等产品
    近日,日本经济产业省公布了在乌克兰军事行动后将禁止向俄罗斯出口的产品清单。该禁令包括57个项目,将于3月18日生效。该部表示,该清单包括31种通用商品和26种技术项目,包括软件。出口禁令适用于半导体、雷达、传感器、激光器、通信设备、记录设备及其组件、示波器、光谱仪、信号放大器、信号发生器、电阻器、加密设备、电视摄像机、滤光片和氟化物光纤。此外,还对导航设备、无线电电子设备、水下监视设备、潜水设备和柴油发动机实施了禁令。此外,禁止的是拖拉机部件,飞机及其部件的燃气涡轮发动机以及炼油设备。2月24日,在分离的顿巴斯共和国呼吁帮助保卫自己免受乌克兰军方的攻击后,俄罗斯在乌克兰发动了军事行动。作为回应,西方国家对莫斯科实施了全面制裁。
  • 三宝兴业成为Rainbow Photonics太赫兹产品中国区代理
    三宝兴业(微视凌志)成为瑞士Rainbow Photonics品牌太赫兹系列产品中国区代理   2012年2月27日,北京三宝兴业(微视凌志)视觉技术有限公司与瑞士Rainbow Photonics公司签署了代理合作协议,正式成为其太赫兹系列产品的中国区代理。   太赫兹作为一个电子学向光子学过渡频段,其频段覆盖大分子的转动和振动频率,是有待全面研究的一个频率窗口,成为近年全球的科研热点。   频率:0.1THz –10 THz( 0.03 mm – 3 mm)   瑞士Rainbow Photonics成立于1997年,是世界一流的太赫兹成像与光谱产品生产商,其销售产品为瑞士联邦工学院非线性光学实验室的科研成果。三宝兴业(微视凌志),作为国内资深图像处理企业,自2003年成立以来,主营业务是以代理销售国际知名厂商的图像处理产品为主,成立近10年来,不断扩展其代理产品线,此次代理瑞士Rainbow Photonics品牌,将为广大中国科研用户在太赫兹研究领域带来福音,并提供更加本土化的技术支持。   若您对Rainbow Photonics太赫兹产品感兴趣,可致电北京三宝兴业(微视凌志)010-51262828-6603或wuxl@mvlz.com咨询。   公司简介:      瑞士Rainbow Photonics产品线涵盖实验室级太赫兹时域光谱系统(TeraKit-Transmission- TeraKit-Reflection)、最新太赫兹成像与光谱系统(TeraImage)、太赫兹一体化系统(TeraSys 4000)、基于高效有机电光晶体(OH1,DAST,DSTMS)的太赫兹产生器与探测器、高质量KNbO3 晶体、全固态近红外飞秒激光器等。广泛应用于实验室中进行的生物医学成像、安全检查、无损探伤、爆炸物探测等研究领域,客户遍布美、英、法、德、日等国家。 TeraSys 4000 TeraIMAGE      北京三宝兴业(微视凌志)科学部自2007年成立以来,一直致力于国际顶尖科研级产品的推广工作,宗旨是为中国广大的科研工作者提供优质服务,专业的硕博技术人员随时为您解答疑问产品及应用中的问题,可保障您的工作进展更顺畅。目前,代理品牌及产品主要有Princeton Instruments(科研级制冷CCD,光栅光谱仪)、e2v(科研级芯片)、Light conversion(飞秒激光器)、Advanced Research Systems(低温制冷设备)、B&W TEK(便携式光谱仪)、Ludl Electronic Products (显微纳米位移台)、Femto(电流、电压放大器、锁相放大器)、Quantum(时序脉冲发生器)、Scientech(激光功率计、能量计)、Delta(滤光片)、Frankfurt Lasers(固体激光器、激光二极管),Rainbow Photonics (太赫兹产品)等。
  • 中国科大彭新华教授团队实现新型自旋量子放大技术
    中国科学技术大学中国科学院微观磁共振重点实验室彭新华教授研究组在自旋量子精密测量领域取得重要进展,首次提出和验证了Floquet自旋量子放大技术,该技术克服了以往只在单个频率处量子放大的局限性,实现了多频段极弱磁场信号的量子放大,灵敏度达到了飞特斯拉水平。相关研究成果于6月9日以“Floquet Spin Amplification”为题在线发表于著名国际学术期刊《Physical Review Letters》上[Phys. Rev. Lett. 128, 233201 (2022)],并被选为“编辑推荐(Editors’Suggestion)”文章。现代自然科学和物质文明是伴随着测量精度的不断提升而发展的。随着量子力学基础研究和科学技术的发展,通过原子、分子、自旋等物理系统可以实现微弱信号的量子增强放大。相比于基于经典电路的传统放大技术,量子增强放大受限于更低的量子噪声且具有更高的放大增益,为提升测量精度提供了强有力的研究手段,因此受到大家的广泛关注和研究。目前,量子放大技术已经在诸多测量过程发挥不可替代的作用,催生出许多革命性成果,例如微波激射器、激光器、原子钟,甚至宇宙微波背景辐射的首次发现等,诺贝尔物理学奖也曾多次授予相关领域。然而目前对量子放大精密测量技术的探索仍然有限,实现信号放大主要依赖于量子系统固有的离散能级跃,由于可调谐性的限制,量子系统固有离散跃迁频率往往无法满足放大需要的工作频率,因此限制了量子放大器的性能,如工作带宽、频率和增益等。如果能够克服以上困难,量子放大技术的性能将可以得到很大改善,对探测极弱电磁波和奇异粒子等基础物理和实际应用具有重要意义。成果示意图:(a)Floquet能级;(b)Flqouet量子自旋放大器原理图;(c)磁探测灵敏度。针对以上难题,本文研究人员提出了Floquet自旋量子放大技术,成功克服了以往探测频率范围小等限制,实现了对多个频率的极弱磁场放大。这项技术得益于该组之前提出的“自旋放大技术”[Nat.Phys. 17, 1402 (2021)]和“Floquet调制技术”[Sci. Adv. 7(8), eabe0719 (2021)],将二者有机结合,从而将量子放大技术推广到Floquet自旋系统:利用Floquet调制技术调控自旋的能级与量子态,将固有的二能级系统(如129Xe核自旋)修饰为周期性驱动Floquet系统,从而具有很多独特的性质,使得系统形成了一系列等能量间距分布的Floquet能级结构,在这些能级之间可以发生共振跃迁,因此有效拓广了磁场放大的频率范围。通过理论计算和实验研究,首次展示了Floquet系统可以实现多个频率待测磁场2个数量级的同时量子放大,测量灵敏度达到了飞特斯拉级级别。该工作首次将量子放大技术扩展到Floquet自旋系统,有望进一步推广到其他量子放大器,实现全新的一类量子放大器——“Floquet量子放大器”。彭新华研究组长期瞄准量子精密测量领域,利用量子精密测量技术来解决世界前沿科学问题。包括于2018年自主研发出超灵敏原子磁力计,并且利用该技术实现了无需磁场的新型核磁共振技术——“零磁场核磁共振”[Sci. Adv. 4(6), eaar6327 (2018)];于2019年至2020年发展新型原子磁力仪技术[Adv. Quantum Technol. 3, 2000078 (2020),Phys. Rev.Applied 11, 024005 (2019)],达到了国际领先水平的磁场探测灵敏度;通过进一步研究,于2021年实现了新型的自旋微波激射器,在低频段创造了国际最佳的磁探测灵敏度[Sci. Adv. 7(8), eabe0719 (2021)]。之后,该研究组将已发展的平台型量子精密测量技术用于寻找超越标准模型的新粒子,取得了一系列对推动学科领域发展有实质性贡献的研究成果。包括于2021年利用新型量子自旋放大器搜寻暗物质候选粒子,首次突破国际公认最强的宇宙天文学界限[Nat.Phys. 17, 1402 (2021)],以及实现了对一类超越标准模型的新相互作用的超灵敏检验,实验界限比先前的国际最好水平提升至少2个数量级[Sci. Adv. 7, eabi9535 (2021)]。中科院微观磁共振重点实验室江敏副研究员、博士研究生秦毓舒和王鑫为该文共同第一作者,彭新华教授为该文通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.233201量子自旋放大技术论文链接:https://www.nature.com/articles/s41567-021-01392-z
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 飞纳电镜成功落户福建火炬电子
    2015 年 7 月,福建火炬电子科技股份有限公司采购的飞纳电镜能谱一体机 Phenom ProX 通过培训并顺利验收。该公司始创于 1989 年,是中国主要专业从事陶瓷电容器研发、生产、销售和技术支持的企业。陶瓷电容器按照介质不同可以分为 I 类电容器和 II 类电容器。其中,I 类电容器容量稳定性较好,但是一般容量较小,主要用于谐振回路、高频耦合、高频放大器、低噪音电路、高频旁路等电路;II 类电容器容量稳定性较差,随着温度、电压、时间变化幅度较大,所以一般用于电源滤波、旁路、低频耦合等电路。陶瓷电容器的一般制作方法是,用高介电常数的电容器陶瓷挤压成圆管、圆片或圆盘作为介质,并用烧渗法将银镀在陶瓷上作为电极制成。在这个过程中陶瓷粉末的颗粒均匀度以及电极的分布情况,对电容器的性能影响很大。借助飞纳电镜可以直观的观察到颗粒和电极的形貌。而且,可以使用飞纳电镜的能谱仪对电极等位置的化学成分进行分析,从而判断电极失效的原因。图1. 图片中白色的是银电极图2. 用来制备电容器的陶瓷粉末对于陶瓷这类不导电样品,飞纳电镜可以不用喷金直接测试,给企业带来了很大的方便,图 2 是放大倍数 2 万下不喷金的效果。衷心祝愿飞纳电镜助力火炬电子走向更美好的发展!
  • 中国科大实现低频射频场的高灵敏里德堡原子传感器
    中国科学技术大学郭光灿院士团队在基于里德堡原子的低频射频电场测量上取得重要进展。该团队史保森、丁冬生课题组利用非共振外差方法实现了基于里德堡原子的低频射频电场精密探测,相关成果以“Highly sensitive measurement of a MHz RF electric field with a Rydberg atom sensor”为题发表在国际应用物理期刊《Physical Review Applied》上。   里德堡原子由于其较大的电偶极矩和极化率等独特性质,在微波测量领域展现出巨大应用潜力。基于里德堡原子的量子传感器在测量精度﹑抗干扰性以及可朔源等方面有望超越传统微波接收系统,因此该研究方向受到广泛关注,例如:美国陆军研究室、桑迪亚国家实验室等开展了相关研究,并取得了重要进展[Physical Review Applied 13, 054034 (2020),Physical Review Applied 15, 014047 (2021)]。尽管里德堡原子传感器在GHz高频微波频段探测取得了重要进展,但在MHz附近的低频波段却遇到困难,测量灵敏度较低,其主要原因在于低频电场与里德堡原子之间的耦合是一种弱的非共振相互作用,受限于光谱测量分辨率,人们难以测量微弱微波电场造成的扰动,这就限制了里德堡原子微波测量向低频波段的扩展。   在本工作中,研究团队基于AC Stark效应和非共振外差技术,通过引入一个本地振荡电场来放大系统对微弱信号电场的响应,最后通过测量探测光的电磁诱导透明光谱得到信号电场的强度。研究团队实现了对30-MHz微波电场(波长近10米)的高灵敏度测量,最小电场强度为37.3µV/cm,灵敏度为−65 dBm/Hz,动态范围超过65 dB。此外,研究团队还演示了1 kHz振幅调制(AM)信号的传输和接收:通过对探测光束信号进行解调,并分别方波和正弦波调制下提取初始调制信息,保真度均达到98%。图1 (a)里德堡态激发 (b)传感器示意图图2 (a)系统灵敏度 (b)和(c)AM解调信号演示 这项工作提高了MHz电场的原子传感器灵敏度,有助于原子电场传感技术的发展。该工作对里德堡原子传感器的在其他领域的应用,如远程通信、超视距雷达和射频识别(RFID)也有参考价值。   中科院量子信息重点实验室硕士研究生刘邦为本文的第一作者,丁冬生教授、史保森教授为本文的共同通讯作者。该成果得到了科技部、基金委、中科院、安徽省重大科技专项以及中国科学技术大学的资助。
  • 振动试验基础:加速度传感器介绍
    如果说振动控制仪是振动试验系统的大脑,那么加速度传感器就是人体的感官部分。本文主要介绍电荷型加速度传感器的原理和使用方法。※振动领域常用传感器加速度:压电型(电荷输出型或电压输出型IEPE)、动电型等。速度:激光测定器等。位移:LVDT(Linear Variable Differential Transformer)、Laser等。频率响应特性:加速度传感器 速度传感器 位移传感器(原因:相位关系),所以振动试验机系统多采用加速度传感器。※电荷输出型加速度传感器构造:原理:Q(电荷量) = C(电容) × V(电压)压力(F=mA)作用,压敏材料上产生电荷,对应电荷,输出电压变化。常见电荷型加速度传感器:※加速度传感器质量要求必须保证测定物质量的1/10以下。※加速度传感器频率使用范围避开传感器的共振点,使用直线形区域。在低频区域(1-5Hz)尤其要注意,由于频率响应特性的缘故,测得的加速度会有一定的偏差,对反馈控制有较大影响。也许这就是振动台厂家的设备产品目录中设备频率使用范围都是从5Hz开始标注的缘故吧。另外还要注意环境对传感器灵敏度的影响,比如,温度、湿度、电磁干扰等,别篇叙述。※加速度传感器的固定要求①用手测 ②磁铁(2点吸附) ③磁铁(平面吸附) ④垫片胶水粘贴 ⑤胶水粘贴 ⑥螺丝固定上图中,可以看出采用螺丝固定是最好的,但是由于实际情况,一般振动试验,能提供螺丝固定的螺孔基本上没有,所以通常采用胶水(502胶水等)粘贴或垫片(绝缘地线)胶水粘贴传感器。※加速度传感器的使用方法※加速度传感器的重要参数灵敏度、最大测定加速度、电容等。例:加速度传感器型号:2353B、灵敏度:0.209pC/(m/s²)传感器电容: 890pF,加速度500m/s²振动时,输出的电压是多少?(传感器低噪声电缆的电容已忽略。)Q=0.209×500=104.5[pC]V=Q/C=104.5/890=0.11742[V]= 11.742[mV]※前置功放(电荷放大器)将加速度传感器的电荷输出电压(mV级别)转换,通过增幅放大到±V级的电压信号,输出给振动控制仪。电压输出型(IEPE or ICP)加速度传感器也经常应用,稳定可靠,直接电压输出。内部含有微电子电路,受温度和湿度的影响比较大,一般使用上限在+125℃左右,建议在常温下采用。在三综合试验中,尤其需要特别注意试验条件的温度。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 北京大学雷霆研究员Science:使用QSense E-QCMD技术研究半导体水凝胶电化学掺杂过程
    编者按:作者通过QSense E-QCMD技术研究了半导体水凝胶电化学掺杂过程中的质量变化和稳定性。相比于传统的有机混合离子电子导体,骨架为阳离子的半导体聚合物呈现出独特的质量下降的行为。这是由于还原过程中部分阴离子离去以维持体系电中性,剩余的阴离子保证交连体系的稳定性。体系去掺杂后,质量得以恢复。雷霆研究员出生于1987年,目前为北京大学工学院材料科学与工程系特聘研究员,为国家青年学科项目的带头人,长期致力于发展新型有机高分子电子材料和柔性电子器件。近年在Nat. Energy , Nat. Comm. , PNAS , Sci. Adv. , Acc. Chem. Res. , J. Am. Chem. Soc. , Adv. Mater.等顶级学术期刊发表论文超过60篇,总引用超过7000次。研究成果被国内外多家媒体报道,被多篇综述评论为该领域的重要进展。目前申请中国和国际专利10项,已获授权5项。部分专利成果已实现规模化生产,并与国内外多家公司开展了合作和产业化研究。最新Science:N型半导体水凝胶水凝胶由三维交联的亲水聚合物网络构成,具备保留大量水分的能力。相较于刚性无机材料和干燥聚合物,水凝胶的机械性能可以广泛调整,适用于模仿软骨、皮肤、肌肉及大脑等多种生物组织。其结构多样且易于改性,在生物功能工程中展现出杰出的多功能性,包括刺激响应性和优异的界面特性,应用广泛于传感器、致动器、涂层、声探测器、光学和电子学领域。尽管具有这些优点,但由于缺乏半导体特性,它们在电子学中的应用一直受到限制,传统上只能用作绝缘体或导体。在此,北京大学雷霆研究员团队开发了基于水溶性 n 型半导体聚合物的单网络和多网络水凝胶,赋予传统水凝胶以半导体功能。这些水凝胶显示出良好的电子迁移率和高导通/关断比,可用于制造低功耗、高增益的互补逻辑电路和信号放大器。作者证明,具有良好生物粘附性和生物相容性界面的水凝胶电子器件可以感应和放大电生理信号,并提高信噪比。相关成果以“N-type semiconducting hydrogel”为题发表在《Science》上,第一作者为李佩雲,Wenxi Sun为共同一作。单网络半导体水凝胶的设计与制备作者设计了一种 n 型水溶性半导体聚合物 P(PyV),它的阳离子骨架含有氯化物反离子,没有任何侧链(图 1B)。作者认为,无侧链聚合物设计可实现较高的电子性能,而离子骨架则为静电交联提供了可能性。通过密度泛函理论计算,发现苯磺酸离子与聚合物骨架的结合能优于氯离子,使热力学交换过程更为有利。作者选用1,3-苯二磺酸钠(DBS)作为体积小且对电子特性影响最小的交联剂。将P(PyV)和DBS混合后,形成不溶于水的亲水网络,显示出通过双离子静电交联形成的水凝胶结构。(图 1C,F)。利用旋涂和正交溶剂处理方法制备P(PyV)水凝胶薄膜,X射线光电子能谱(XPS)和紫外-可见-近红外光谱(UV-vis-NIR)结果证实了阴离子的完全交换和水凝胶的稳定性(图 1D )。掠入射广角X射线散射(GIWAXS)和扫描电子显微镜(SEM)分析显示,交联后的P(PyV)-H形成了稳定的三维多孔网络结构,适于储水及离子和分子的高效运输(图1E)。通过喷涂和水洗的方法实现了P(PyV)-H的图案化,此技术分辨率约200微米,简化了大尺寸水凝胶基器件的制造。这种半导体水凝胶的开发为构建与传统半导体类似的电路提供了新的可能性,并与生物组织保持良好的界面兼容性。图1.基于P(PyV)的单网络半导体水凝胶P(PyV)-H的半导体特性为探索水凝胶的电化学特性,作者进行了光谱电化学研究。在电化学还原过程中,阴离子离开P(PyV)-H,形成n掺杂水凝胶,其吸收带发生显著变化,得到DFT计算和化学掺杂实验的验证。作者利用有机电化学晶体管(OECTs)评估P(PyV)-H的半导体特性(图 2),发现其电子迁移率和体积电容的乘积μC*值非常高,表明其优异的离子存储和传输能力。通过电化学阻抗谱测量了电容,进一步证实了水凝胶的高电容性能。作者还利用P(PyV)-H制作了互补逆变器和逻辑电路(图2A),展示了其在低电压下的高增益和低功耗性能,验证了其构建集成电路的潜力(图2F-H)。此外,该水凝胶逆变器可用于生物电信号的有效放大,显示出在可穿戴式监测设备中的应用前景。这些结果突显了半导体水凝胶在高性能电子设备中的应用潜力(图2J,K)。图2. P(PyV)-H的半导体特性多网络半导体水凝胶的制备及性能P(PyV)-H可以与其他开发成熟水凝胶混合,形成多网络水凝胶(MNH),这些MNH展示了增强的机械性能和良好的生物粘附性(图 3A,B)。这些MNH包括三种聚合物网络:长链聚合物(如聚丙烯酰胺或聚丙烯酸)、生物聚合物(如聚乙烯醇或明胶)和半导体聚合物(P(PyV))。例如,MNH-1包含聚丙烯酰胺和聚乙烯醇,具有高拉伸强度和吸湿性;而MNH-2则包含聚丙烯酸和明胶,展现出良好的生物粘附性。MNH的含水量高达60%至70%,拉伸试验表明,MNHs 具有很高的拉伸性,断裂应变大于 100%。添加少量 P(PyV) 后,断裂应力急剧增加,因为 P(PyV) 比传统水凝胶更硬。随着 P(PyV) 的进一步增加,断裂应力基本保持不变,但断裂应变逐渐减小(图 3,C 和 D)。实验还表明,MNH在猪皮肤上显示出优异的界面韧性和剪切强度(图3E)。这些MNH在保持半导体性能的同时,能够与各种生物组织展示出更好的粘附(图3G,H),适合于制造电化学晶体管和逆变器,显示出稳定的电子性能和良好的信号放大功能,即使在受到物理应力的环境中也能保持性能稳定(图 3I,J)。图3.多重网络水凝胶的制备和性能用于生物信号扩增的半导体水凝胶半导体水凝胶的出色半导体性能促使作者探索其生物电子学应用。使用人类角质细胞进行的细胞活力测试表明,与传统聚合物相比,此水凝胶显示出较低的细胞毒性和出色的生物相容性(图4A),这可能得益于其高含水量和水可加工性。因此,这些水凝胶适合体内应用。利用P(PyV)-H的高容积容量,我们能够有效降低金电极的阻抗。作者还使用基于P(PyV)-H和MNH-2的放大器放大眼电图和心电图信号(图4B),与商用凝胶电极相比,基于水凝胶的放大器产生的信号强度高出40倍,显示出优异的信噪比。此外,此放大器在现场记录低电平生物信号如脑电图时(图4C),受到的噪声干扰极小,信噪比高。这些放大器被用于记录体内的皮层电图信号,展示了其在测量低频生物信号方面的巨大潜力,而P(PyV)-H则在测量较高频信号方面表现更佳(图4E-G)。研究表明,半导体水凝胶能够有效放大生物电子学中的各种电生理信号,具备优异的半导体特性、生物相容性、机械性能和生物粘附性,可用于构建逻辑电路和放大器。图 4. 半导体水凝胶放大器的应用原文链接: https://www.science.org/doi/10.1126/science.adj4397更多QSense E-QCMD技术详情请点击链接登录百欧林官网 查看。
  • Moku:Go轻松助力校园无线电接收实验的教学
    Moku:Go轻松助力校园无线电接收实验的教学Moku:Go将10几种实验室仪器结合在一个高性能设备中,具有2个模拟输入、2个模拟输出、16个数字I/O和可选的集成电源。 一. 介绍本实验的目的是介绍调幅无线电接收器的基本原理,并演示使用锁相放大器的基本原理。你将使用Moku:Go的锁定放大器、数字滤波器、频谱分析仪和集成电源来设计和优化AM无线电接收器。调幅(AM)无线电,虽然在很大程度上被调频(FM)无线电所取代,但它仍然是通过无线电波传输信息中非常有用的一种方法。本实验设计并实现一个调幅无线电接收器。可以学习到如何找到本地AM无线电频率,并使用锁定放大器实现无线电接收器。图1显示了使用频谱分析仪在澳大利亚堪培拉接收到的AM无线电信号。图1 堪培拉地区频谱分析仪的例子 扫码查看产品详情二. 背景2.1 调幅广播在调幅收音机中,信号的振幅是经过调制的;与调幅收音机相比,调频收音机的信号频率是经过调制的。这种差异可以从图2中看出,在调幅调制波形中,波的振幅明显变化,而在调频调制波形中,正弦波的频率随时间变化。两种类型的无线电传输都有优点和缺点。商业调幅广播电台工作在535kHz至1605kHz的范围内,因此与调频广播相比,其覆盖范围通常更大在88-108 MHz范围,但它更容易受到噪声的影响,与基于音乐的广播节目相比,更适合谈话广播。图2 使用Moku:Go上的波形发生器的调幅波形和调频波形示例。 AM收音机通过使用正弦载波工作,该载波由消息信号(音频信号)调制;正在发送的信息就是这个音频。在这种类型的调制中,载波的振幅被信息信号被改变(因此称为AM)。特定无线电台的调制信号在频域中可以清楚地被视为尖峰(例如图1),尽管在时域中通常很难看到。Moku:Go的FIR滤波器生成器可以帮助我们在无线电台周围设置一个窄带通滤波器,去除电台以外的几乎所有信号。图3给出了一个例子,FIR滤波器生成器挑选出一个大约600 kHz的AM无线电台。蓝色轨迹中可以清楚地看到用语音信号调制的AM载波。红色的轨迹(天线输入)表明,如果没有窄带通,就不可能接收这个或任何其他电台;事实上,该信号完全由截图所在办公室的可调光LED照明的~25 kHz开关控制。 图3 FIR滤波器生成器将AM广播电台(蓝色轨迹)与背景信号(红色)隔离开来。 为了接收和收听消息信号,无线电接收器需要接收特定的AM无线电频率并对其进行解调,以从消息信号中分离出载波信号。简单AM无线电接收器的框图如图4所示。图4 调幅无线电接收器框图接收器通过使用无线电天线检测无线电波来工作;然而,这种信号通常相对较弱,因此需要一个RF放大器来增强信号,以便进一步处理。由于天线将捕捉所有可能的频率,因此需要一个调谐器来找到所需的特定频率。 图5 LC电路原理图示例 2.2 模拟解调模拟解调调谐器通常由一个LC(电感电容)电路组成,如图5所示。根据所用的电感和电容,电路将在特定频率下谐振。高于和低于该谐振频率的所有其他频率将被阻挡。消息信号可以被整流为仅给出DC信号,并通过二极管和旁路电容器从载波中解调。该信息信号然后可以被放大并发送到扬声器、耳机等。2.3 锁定放大器锁定放大器是一种功能强大的器件,可以从噪声背景中分离出调制信号,在我们的情况下,是从一系列信号中分离出特定的AM信号。这意味着锁定放大器可以作为无线电接收器,因为它包含无线电接收器的几个关键部件。Moku:Go的锁定放大器能够通过使用相敏检波器(PSD)解调调制信号,例如无线电波。它使用与载波信号频率相同的正弦参考信号。它可以跟踪参考信号的任何变化,因此能够跟踪频率漂移。PSD将两个信号相乘或“混合”在一起,产生两个信号的和项和差项。所需频率和参考信号由相同的频率组成,因此频率之间的差异为零。因此,所需的无线电波信号被设置为DC。混合信号然后通过低通滤波器发送,该低通滤波器去除调制信号的交流分量。这仅留下与信号幅度成比例的DC信号,在这里,信号然后可以使用直流放大器放大。输出幅度可以从通过混频器和低通滤波器发送的信号中找到。这些可以在直角坐标或极坐标中找到。振幅R可以通过坐标之间的转换得到,其中 。对于AM信号,只需要振幅或R(在极坐标中);信号的相位可以忽略。三. 实验前练习找到并详细列出你所在地区的AM电台列表。你觉得什么信号会最强?为什么?实验装置成分:○ Moku:Go [2x]○ 天线○ 扬声器○ 低噪声放大器(可选)1○ 鳄鱼夹○ 实验室程序3.1 第一部分确保您拥有最新版本的在地址:Moku: desktop app2将磁性电源适配器插入每个Moku:去等待前面的LED变成绿色。这些最初的步骤将解决Moku:Go #1的配置问题。将天线连接到Moku:Go的输入1,如图6和图7所示。图6 第一部分照片Moku:去设置 1、常用的30分贝LNA。如需完整的物料清单,请联系我们。2、Moku:Go可以通过三种不同的方式连接到笔记本电脑:以太网、USB-C和Wi-Fi。请参考Moku:Go Quick StartGuide 如何连接你的Moku:去你的电脑。一旦连接,Moku:Go将出现在Windows或MacOS应用程序的设备选择屏幕上。图7 Moku:go:设置第1部分 双击频谱分析仪。找到调幅范围,并随意平均频谱,以改善图表。找到最主要的调幅无线电信号频率,你可以通过添加一个跟踪光标来完成。信号应在小于2 MHz的范围内。频谱分析仪和设置配置的示例如图8所示。 图8 如何配置频谱分析仪 ○ 将您的扬声器连接到Moku:Go #1的输出1。○ 返回仪器选择屏幕,双击锁定放大器。打开示波器部分,确保可以看到A和b。○ 将探针A添加到输入1(天线)○ 将探头B添加到输出1(扬声器)在图9中可以看到锁定放大器仪器页面的一个例子。 图9 锁定放大器解调AM广播电台的示例。上面(红色)的轨迹是天线信号,下面(蓝色)的轨迹是音频。 改变本地振荡器到你最主要的调幅信号的频率。首先将低通滤波器设置为12kHz。根据需要改变极性和增益。您可能需要改变低通滤波器和增益,以改善信号并产生尽可能清晰的声音。小心不要让信号饱和。图10给出了堪培拉地区各种变量的设置示例。 图10 堪培拉地区锁定放大器设置示例。 3.2 第二部分在第2部分中,我们将使用第二个Moku:Go作为数字滤波器来进一步增强接收到的无线电信号。将扬声器连接电缆移至Moku:Go #2的输出2。将一根电缆从Moku:Go #1的输出1连接到Moku:Go #2的输入2。这种设置可以在图11和图12中看到。 图11 Moku的照片:去设置第2部分 图12 Moku:go:设置第2部分 返回主屏幕,双击Moku:Go #2的图标。双击数字滤波器框。数字滤波器盒界面如图13所示。 图13 数字滤波器盒用户界面 将探针A添加到输入2,将探针B添加到输出2。首先,将滤波器改为贝塞尔带通滤波器,并根据需要改变增益。改变频率,仅隔离信息信号,即音乐或声音,从而尝试去除低频噪音。试着瞄准音乐和声音产生的频率。图14给出了堪培拉地区的数字滤波器盒变量。 图14 堪培拉地区的数字滤波器盒示例 3.2 第3部分将低噪声放大器连接在天线和Moku:Go #1的输入1之间。为低噪声放大器供电,将鳄鱼夹连接到电源连接和Moku:Go #1的背面。设置如图15所示。图15 Moku的框图:设置第3部分 确保它连接到PPSU2或类似的12 V电源。单击 打开电源,并将电压设置为12 V。电源弹出窗口可能如图16所示。 图16 PPSU的例子 根据需要改变数字滤波器盒和锁定放大器的变量,以产生尽可能清晰的信号。尝试改变你所在区域的其他AM信号,你能通过改变锁定放大器和数字滤波器盒中的变量来优化你的音质吗?3.3.1 摘要本实验探索在Moku:Go上使用锁定放大器作为AM无线电接收器。锁定放大器是一个强大的工具,帮助学生了解如何从嘈杂的背景中解调信号。此外,学生还能够学习如何利用许多其他工具进一步提高信号清晰度。在Moku: App中,通过截屏或文件共享可以轻松发布和报告结果。您可以通过点击屏幕顶部的云图标来完成此操作。Moku的好处:Go面向教育工作者和实验室助理有效利用实验室空间和时间易于实现一致的仪器配置专注于电子设备而非仪器设置最大限度地利用实验室助教的时间个人实验室,个人学习通过屏幕截图简化评估和评级对于学生来说各个实验室按照自己的节奏加强理解和保留便携式,选择实验室工作的速度、地点和时间,无论是在家里、在校园实验室,甚至是在熟悉的Windows或macOS笔记本电脑环境中进行远程协作,同时使用专业级仪器。3.3.2 Moku:Go演示模式您可以在Liquid Instruments网站下载适用于macOS和Windows的Moku:Go应用程序。演示模式操作不需要任何硬件,并提供了使用Moku:Go的一个很好的概述。关于昊量光电:上海昊量光电设备有限公司是目前国内知名光电产品专业代理商,也是近年来发展迅速的光电产品代理企业。除了拥有一批专业技术销售工程师之外,还有拥有一支强大技术支持队伍。我们的技术支持团队可以为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等工作。秉承诚信、高效、创新、共赢的核心价值观,昊量光电坚持以诚信为基石,凭借高效的运营机制和勇于创新的探索精神为我们的客户与与合作伙伴不断创造价值,实现各方共赢!
  • 2010年上半年上市仪器新产品:电化学仪器类
    电化学分析是现代仪器分析中的一个重要组成部分,由于电化学分析法具有快速、灵敏、准确、所用仪器结构简单及使用方便等一系列特点,因而在科学研究、现代化学工业、生物与药物分析、环境监测等领域发挥着重要作用。   电化学分析仪器可以直接或间接地测量由化学传感器(电极)将化学量转换成的电信号,如电流、电压、电位、电导、电量等各种物理量,从而来研究、确定参与化学反应的物质的量。电化学的研究和技术发展,在一定程度上和电化学仪器的发展密切相关,它们是相互促进,不可分割的有机整体。以下将就2010年上半年上市的电化学新品做一简单介绍。   法国 Bio-logic公司最新推出的 SP-200便携式电化学工作站改变了以前对电化学工作站放置位置的限制,可以在条件比较恶劣的环境中进行电化学测试。   美国阿美特克新推出的电化学综合测试系统应用了最新的数位讯号处理技术,能够快速准确的获取实验数据。Multi-sine /快速傅立叶变换(FFT)分析可以满足用户同时选用不同的频率进行分析。   赛默飞世尔科技新推出的Orion Star LogR pH测量仪,无需另外的温度电极,即可进行pH温度补偿。   上海精科推出的PHSJ-5型实验室pH计采用高精度A /D 转化芯片,配置精密级pH电极、精密级参比电极和精密级温度传感器,确保了仪器具有0.001级pH的测量精度。   上海纳锘仪器推出的全新系列绿色pH电极采用了绿色环保材料完全符合RoHS指令规定。   英国Uniscan公司3100型多通道恒电位仪功率放大器使用最新的处理器设备,提供多通道电化学应用所需要的速度、通用性和精度。外壳设计凭借独特的层流流动路径和机载微控制的均衡速度风扇,用户可以确定与低噪音空气流动水平相结合的总热量管理体系。   美国哈希公司推出的MP测定仪是一款不需要使用探头的电化学测定仪,能够快速监测pH、ORP、电导率、电阻率、总溶解固体(TDS)以及温度。   法国 Bio-logic SP-200便携式电化学工作站    SP-200便携式电化学工作站   SP-200是一台便携式的电化学工作站,其可以在条件比较恶劣的环境中进行电化学测试,允许此设备用于接地池、高压设备和手套室设备、现场腐蚀实验也可以应用,弥补了以前对电化学工作站放置位置的限制。   美国阿美特克电化学综合测试系统    Solartron Modulab(电化学综合测试系统)   Solartron Modulab最灵活方便的模块化电化学综合测试系统,仪器虽然小型化但是仍然能广泛的应用于电化学测试的各个领域。   Solartron Modulab的恒电位仪和恒电流仪中应用了最新的数位讯号处理技术,能够快速准确的获取实验数据。采用目前最高效的频率响应分析仪,其频率响应范围从10μHz -1 MHz,保证测量过程的精度和准确度。   Solartron Modulab采用Multi-sine /快速傅立叶变换(FFT)分析可以满足用户同时选用不同的频率进行分析。这个特别适用于低频分析和测量随时间变化的不稳定的电池。   赛默飞世尔科技Orion Star LogR pH测量仪 Orion Star LogR pH测量仪   新型Orion Star LogR 测量系列仪表采用独特的LogR 技术,配合专门的pH电极,通过电极膜电阻测量样品温度,提供了一种新的电极测量方法。测量仪将显示膜电阻值,用于电极故障判断,节省故障排除时间。使用Orion Star LogR 测量仪,无需另外的温度电极,即可进行pH温度补偿。   Orion Star LogR 测量仪目前有两种型号:一种用于pH 测量,另一种用于pH 和离子浓度测量。两种型号均可测量毫伏,温度和电阻(LogR 功能开启时)。   Orion Star LogR 测量仪将替代目前的Thermo Scientific Orion PerpHecT® LogR™ 测量仪320, 350和370系列。Orion Star LogR系列测量仪改进了LogR校正程序,具有更多的优势和pH校正点,并能够显示膜电阻。   上海精科PHSJ-5型实验室pH计    PHSJ-5型实验室pH计   PHSJ-5型实验室pH计采用高精度A /D 转化芯片,配置精密级pH电极、精密级参比电极和精密级温度传感器,确保了仪器具有0.001级pH的测量精度,能满足用户精密测量水溶液的pH值和电位mV值。该仪器主要有五个特点:   一是触摸式大屏幕液晶显示屏,全中文操作界面,使用方便   二是可选择多种pH标准缓冲溶液标定仪器,利于用户建立自己的标液组   三是具有自动识别五种标准溶液功能   四是自动和手动温度补偿、自动校准、自动计算电极百分理论斜率   五是能储存、删除、打印、查阅,最多可储存200套测量数据,并有RS-232通讯功能。   上海纳锘仪器全新系列绿色pH电极    GS9106BNWP绿色pH电极   Orion推出全新电极—— 完全符合RoHS指令的全新系列pH电极。并采用了更环保的包装材料,堪称是真正的“绿色电极”。   英国Uniscan公司3100型恒电位仪功率放大器    3100型恒电位仪功率放大器   3100型多通道恒电位仪功率放大器是一款新一代的多通道高电流仪器,使用最新的处理器设备,提供多通道电化学应用所需要的速度、通用性和精度。   3100 型多通道恒电位仪功率放大器具有完全的直流性能。理想应用于宽广范围的电化学应用,其多通道性能允许多种测试速率和比传统设计更高的工作通量。   3100的创新的外壳设计凭借独特的层流流动路径和机载微控制的均衡速度风扇,用户可以确定与低噪音空气流动水平相结合的总热量管理体系。   美国哈希公司MP测定仪    MP测定仪   不需要使用探头的电化学测定仪,快速监测pH、ORP、电导率、电阻率、总溶解固体(TDS)以及温度。操作极其简便,只需两步即可完成测量:1. 灌满采样量杯、2. 按键读数。无需频繁校准,两周一次到每个月一次,并且校准简单,只需按一个按键,然后将仪器调节为标准值即可。高防护等级,IP67,防水防尘,可漂浮,浸没在水下1米处也完全可以操作。 了解更多电化学仪器请访问仪器信息网电化学仪器专场   了解更多新品请访问仪器信息网新品栏目
  • 质检总局公布第二批部门计量检定规程清理结果
    2013年2月27日,质检总局公布第二批部门计量检定规程清理结果,本次清理范围涉及轻工、电子、化工、建材、民航等领域,涉及的仪器包括实验室、表面粗糙度仪等大量仪器。详情如下: 国家质量监督检验检疫总局《关于公布第二批部门计量检定规程清理结果的公告》(2013年第32号) 2013年第32号 质检总局关于公布第二批部门计量检定规程清理结果的公告   根据《中华人民共和国计量法》的规定,为进一步做好部门计量检定规程备案工作,质检总局组织有关单位对已备案的部门计量检定规程进行了集中清理,现将清理后的第二批现行有效的部门计量检定规程公布如下(见附件)。   附件:现行有效的部门计量检定规程(第二批) 现行有效的部门计量检定规程(第二批) 序号 规程编号 规程名称 主管部门 1 JJG(轻工) 2-89 自行车滑行道检定规程 工业和信息化部 2 JJG(轻工) 4-89 自行车车架精度检具检定规程 工业和信息化部 3 JJG(轻工) 5-89 自行车前后叉中心测量轴检定规程 工业和信息化部 4 JJG(轻工) 6-89 自行车车架中接头垂直度检具检定规程 工业和信息化部 5 JJG(轻工) 7-89 自行车前叉精度检具检定规程 工业和信息化部 6JJG(轻工) 8-89 自行车车把精度检具检定规程 工业和信息化部 7 JJG(轻工) 9-89 自行车车圈接口凹陷量检具检定规程 工业和信息化部 8 JJG(轻工)10-89 自行车窜动量调整架检定规程 工业和信息化部 9 JJG(轻工)11-89 自行车车轮静负荷能力试验台检定规程 工业和信息化部 10 JJG(轻工)12-89 自行车后轴身螺纹圆跳动量检具检定规程 工业和信息化部 11 JJG(轻工)13-89 自行车曲柄心轴检定规程 工业和信息化部 12 JJG(轻工)14-89 自行车飞轮心轴检定规程 工业和信息化部 13 JJG(轻工)15-89 自行车脚蹬轴冲击试验台检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 14 JJG(轻工)16-89自行车链条灵活性测量板检定规程 工业和信息化部 15 JJG(轻工)17-89 自行车轴挡碗耐磨试验机检定规程 工业和信息化部 16 JJG(轻工)18-89 自行车漆膜冲击器检定规程 工业和信息化部 17 JJG(轻工)20-89 自行车负荷试验砝码检定规程 工业和信息化部 18 JJG(轻工)21-89 自行车盐雾试验箱检定规程 工业和信息化部 19 JJG(轻工)22-89 自行车鞍座疲劳试验机检定规程 工业和信息化部 20 JJG(轻工)23-89 自行车车把鞍座夹紧力矩试验台检定规程 工业和信息化部 21 JJG(轻工)24-89 自行车车架前叉组合件落重试验机检定规程 工业和信息化部 22 JJG(轻工)25-89 自行车车架前叉组合件冲击试验机检定规程 工业和信息化部 23 JJG(轻工)26-89 自行车前后轴灵敏度光电计数器检定规程 工业和信息化部 24 JJG(轻工)28-89 自行车飞轮圆跳动量测试仪检定规程 工业和信息化部 25 JJG(轻工)29-89 自行车前后轴灵敏度试验检具检定规程 工业和信息化部 26 JJG(轻工)32-89 自行车轴脚蹬耐磨试验机检定规程 工业和信息化部 27 JJG(轻工)35-89 自行车外露突出物测试圆柱棒检定规程 工业和信息化部 28 JJG(轻工)36-89 自行车检测专用角度块检定规程 工业和信息化部 29 JJG(轻工)40-89 自行车道路试验障碍器检定规程 工业和信息化部 30 JJG(轻工)41-89 自行车车铃寿命试验机检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 31 JJG(轻工)45-89 自行车链条耐磨试验机检定规程 工业和信息化部 32 JJG(轻工)46-89 自行车脚蹬静态试验机检定规程 工业和信息化部 33 JJG(轻工)47-89 自行车脚蹬动态试验机检定规程 工业和信息化部 34 JJG(轻工)48-2000 反射光度计 工业和信息化部 35 JJG(轻工)49-2000 纸板压缩强度试验仪 工业和信息化部 36 JJG(轻工)50.1-2000 纸与纸板厚度测定仪 工业和信息化部 37 JJG(轻工)50.2-2000 瓦楞纸板厚度仪 工业和信息化部 38 JJG(轻工)50.3-2000 可变压力厚度仪 工业和信息化部 39 JJG(轻工)51-2000 纸与纸板透气度仪 工业和信息化部 40 JJG(轻工)52-2000 纸与纸板粗糙度测定仪 工业和信息化部 41 JJG(轻工)53-2000 纸浆打浆度测定仪 工业和信息化部 42 JJG(轻工)54.2-2000 纸与纸板定量测定仪 工业和信息化部 43 JJG(轻工)55-2000 纸与纸板吸收性测定仪 工业和信息化部 44 JJG(轻工)56-2000 纸板戳穿强度测定仪 工业和信息化部 45 JJG(轻工)57-2000 纸板挺度测定仪 工业和信息化部 46 JJG(轻工)58.1-2000 摆锤式纸张抗张力试验机 工业和信息化部 47 JJG(轻工)58.2-2000 卧式纸张抗张试验机 工业和信息化部 48 JJG(轻工)59-2000 MIT式耐折度仪检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 49 JJG(轻工)60-2000 肖伯尔式耐折度仪 工业和信息化部 50 JJG(轻工)61-2000 纸与纸板耐破度仪 工业和信息化部 51 JJG(轻工)62-2000 纸和纸板平滑度仪 工业和信息化部 52 JJG(轻工)63-2000 纸与纸板撕裂度仪 工业和信息化部 53 JJG(轻工)64-2000 柔软度仪 工业和信息化部 54 JJG(轻工)65-2000 纸张透油度测定仪 工业和信息化部 55 JJG(轻工)66-2000 纸张光泽度计 工业和信息化部 56 JJG(轻工)67-2000 IGT印刷适应性测定仪 工业和信息化部 57 JJG(轻工)68-2000 纸与纸板油墨吸收性试验仪 工业和信息化部 58 JJG(轻工)69-2000 纸与纸板葛尔莱式透气度仪 工业和信息化部 59 JJG(轻工)70-2000 佛格式纸与板耐磨试验仪 工业和信息化部 60 JJG(轻工)72-2000 实验室PFI磨浆机 工业和信息化部 61 JJG(轻工)73-2000 纸浆用毛细管粘度计 工业和信息化部 62 JJG(轻工)74-2000 实验室VALLEY打浆机 工业和信息化部 63 JJG(轻工)76-91 SCI.327石英晶体阻抗计SPM.327 PPM计数器检定规程 工业和信息化部 64 JJG(轻工)77-91 盐雾试验箱检定规程 工业和信息化部 65 JJG(轻工)78-91 Ω打印计时仪检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 66 JJG(轻工)79-91 钟表仪器校验仪检定规程 工业和信息化部 67 JJG(轻工)80-91 钟表用齿轮、宝石元件投影样板检定规程 工业和信息化部 68 JJG(轻工)81-91 机械钟表校验仪检定规程 工业和信息化部 69 JJG(轻工)82-91 石英钟表校验仪检定规程 工业和信息化部 70 JJG(轻工)83-91 石英钟表仪器精度校验仪检定规程 工业和信息化部 71 JJG(轻工)84-91 手表防水测试仪检定规程 工业和信息化部 72 JJG(轻工)85-91 手表防震试验仪检定规程 工业和信息化部 73 JJG(轻工)86-91 手表综合测试仪检定规程 工业和信息化部 74 JJG(轻工)87-92 便携式地毯测厚仪 工业和信息化部 75 JJG(轻工)88-92 数显式地毯测厚仪 工业和信息化部 76 JJG(轻工)89-92 地毯绒簇拔出力测试仪 工业和信息化部 77 JJG(轻工)90-92 地毯四足踩踏试验仪 工业和信息化部 78 JJG(轻工)91-92 地毯动态负载仪 工业和信息化部 79 JJG(轻工)92-92 地毯静态负载试验仪 工业和信息化部 80 JJG(轻工)93-92 YGW-872型地毯染色牢度摩擦仪 工业和信息化部 81 JJG(轻工)94-92 水平法地毯燃烧试验装置 工业和信息化部 82 JJG(轻工)95-92 FL-45°型燃烧仪 工业和信息化部 83 JJG(轻工)98-93 家用制冷器具检测装置Ⅱ检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 84 JJG(轻工)100-1993 单盘闪光音准仪检定规程 工业和信息化部 85 JJG(轻工)101-1993 十二盘闪光音准仪检定规程 工业和信息化部 86 JJG(轻工)102-1994 便携式数字显示音准仪检定规程 工业和信息化部 87 JJG(轻工)103-1995 便携式指针显示音准仪检定规程 工业和信息化部 88 JJG(轻工)105-94 制冷压缩机量热计(第二制冷剂量热器法)检定规程 工业和信息化部 89 JJG(轻工)106-94 卤素检漏仪检定规程 工业和信息化部 90 JJG(轻工)107-94 洗净率检测装置检定规程 工业和信息化部 91 JJG(轻工)108-96 翘曲度指示器检定规程 工业和信息化部 92 JJG(轻工)109-96 150mm平整度指示器检定规程 工业和信息化部 93 JJG(电子)01001-87 SCP-2型时畴测频器试行检定规程 工业和信息化部 94 JJG(电子)03001-87 521A型PAL矢量示波器试行检定规程 工业和信息化部 95 JJG(电子)04001-87 JS-2C型晶体管反向截止电流测试仪试行检定规程 工业和信息化部 96 JJG(电子)04002-87 BJ3030型高频小功率晶体管CCrbb,乘积测试仪试行检定规程 工业和信息化部 97 JJG(电子)04003-87 BJ2952A(JS-3A)型晶体管反向击穿电压测试仪试行检定规程 工业和信息化部 98 JJG(电子)04004-87 BJ2911(HQ-1B)型晶体管综合参数测试仪试行检定规程 工业和信息化部 99 JJG(电子)04006-87 BJ2913型场效应管参数测试仪试行检定规程 工业和信息化部 100 JJG(电子)04008-87 QE1A型双基极半导体管测试仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 101 JJG(电子)04009-87 BJ2983型晶体三级管正偏二次击穿测试仪试行检定规程 工业和信息化部 102 JJG(电子)04010-87 BJ2961型晶体管集成电路动态参数测试仪试行检定规程 工业和信息化部 103 JJG(电子)04011-87 QG21~QG25型高频小功率晶体管Ft测试仪试行检定规程 工业和信息化部 104 JJG(电子)04012-87 BJ3022(QJ30)型低频大功率晶体管Ft测试仪试行检定规程 工业和信息化部 105 JJG(电子)05006-87 1620型电容测量装置试行检定规程 工业和信息化部 106 JJG(电子)05007-87 HP4192A型低频阻抗分析仪试行检定规程 工业和信息化部 107 JJG(电子)09002-87 WILTRON6409射频分析仪试行检定规程 工业和信息化部 108 JJG(电子)12004-87 363型电视频道信号发生器试行检定规程 工业和信息化部 109 JJG(电子)12005-874001A型音频扫频信号发生器试行检定规程 工业和信息化部 110 JJG(电子)12009-87 MSG-2161型调频立体声/调频-调幅信号发生器试行检定规程 工业和信息化部 111 JJG(电子)12011-87 XT24型立体声信号发生器试行检定规程 工业和信息化部 112 JJG(电子)12012-87 SBUF型电视测试发射机试行检定规程 工业和信息化部 113 JJG(电子)12014-87 MDA-456型立体声解调器试行检定规程 工业和信息化部 114 JJG(电子)12015-87 811B型电视机测量滤波器试行检定规程 工业和信息化部 115 JJG(电子)12016-87 843型收音机录音机测量滤波器试行检定规程 工业和信息化部 116 JJG(电子)14002-87 HL-12A型雷达综合测试仪试行检定规程 工业和信息化部 117 JJG(电子)15001-87 HP8970A型噪声系数仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 118 JJG(电子)18002-87 2307型电平记录仪试行检定规程 工业和信息化部 119 JJG(电子)02001-88 2610型测量放大器试行检定规程 工业和信息化部 120 JJG(电子)02003-88 DO30-C型数字式三用表校验仪 工业和信息化部 121 JJG(电子)04013-88 BJ2912(QE7)型稳压二极管测试仪检定规程 工业和信息化部 122 JJG(电子)04014-88 晶体管特性图示仪试行检定规程 工业和信息化部 123 JJG(电子)04015-88 QZ3.QZ4型高频小功率晶体管NF测试仪检定规程 工业和信息化部 124 JJG(电子)04016-88 BJ2984(QR-3)型晶体三极管瞬态热阻测试仪试行检定规程 工业和信息化部 125 JJG(电子)04017-88 BJ2900型双极型晶体管反向截止电流计量标准仪器试行检定规程 工业和信息化部 126 JJG(电子)04018-88 BJ2901型双极型晶体管反向击穿电压计量标准仪器试行检定规程 工业和信息化部 127 JJG(电子)04019-88 BJ2920型双极型晶体管h21E、VBE(sat)、VCE(sat)计量标准仪试行检定规程 工业和信息化部 128 JJG(电子)05009-88 TS-109型电解电容器半自动分选仪试行检定规程 工业和信息化部 129 JJG(电子)05010-88 RT150/RT160型继电器测试仪器试行检定规程 工业和信息化部 130 JJG(电子)05011-88 WZC-1A型电位器综合测试仪试行检定规程 工业和信息化部 131 JJG(电子)05013-88 AV2551型电位器动态接触电阻变化测量仪试行检定规程 工业和信息化部 132 JJG(电子)05014-88 HP4274A.HP4275A型多频LCR表试行检定规程 工业和信息化部 133 JJG(电子)05015-88 HP4342A型Q表试行检定规程 工业和信息化部 134 JJG(电子)05016-88 HL2801型数字式自动Q表试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 135 JJG(电子)05017-88 HP4276A.HP4277A型LCZ表试行检定规程 工业和信息化部 136 JJG(电子)05020-88 GR1658型RLC数字电桥试行检定规程 工业和信息化部 137 JJG(电子)07001-88 HP8901A型调制度分析仪试行检定规程 工业和信息化部 138 JJG(电子)07002-88 MSW-721E型中频扫频仪试行检定规程 工业和信息化部 139 JJG(电子)07003-88 MSW-7124型调频调幅扫频仪试行检定规程 工业和信息化部 140 JJG(电子)09004-88 AV3611型自动标量网络分析仪试行检定规程 工业和信息化部 141 JJG(电子)11001-88 杂音仪试行检定规程 工业和信息化部 142JJG(电子)12018-88 ZN3991型双通道分离度计试行检定规程 工业和信息化部 143 JJG(电子)15003-88 3280型射频晶体标志信号发生器试行检定规程 工业和信息化部 144 JJG(电子)18003-88 261型微微安电流源试行检定规程 工业和信息化部 145 JJG(电子)01003-89 AD5121型数字群时延测量仪试行检定规程 工业和信息化部 146 JJG(电子)01004-89 AD5122型微波群时延测量仪试行检定规程 工业和信息化部 147 JJG(电子)02007-89 2627型前置放大器试行检定规程 工业和信息化部 148 JJG(电子)04021-89 BJ3110型MOS集成电路测试仪试行检定规程 工业和信息化部 149 JJG(电子)04022-89 QO1型高频小功率晶体三极管fT计量标准装置试行检定规程 工业和信息化部 150 JJG(电子)04023-89 BJ2970型大功率半导体三极管tf测试仪试行检定规程 工业和信息化部 151 JJG(电子)04026-89 BJ2985型晶体三极管维持电压测试仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 152 JJG(电子)04028-89 BJ3190型集成运算放大器测试仪试行检定规程 工业和信息化部 153 JJG(电子)08001-89 DB-1型电场标准装置试行检定规程 工业和信息化部 154 JJG(电子)11008-89 3764A型数字传输分析仪试行检定规程 工业和信息化部 155 JJG(电子)12019-89 ZW3765A型调频广播接收机和录音机测量滤波器试行检定规程 工业和信息化部 156 JJG(电子)12020-89 电视视频电平表试行检定规程 工业和信息化部 157 JJG(电子)12023-89 MDA-453型调频线性解调器试行检定规程 工业和信息化部 158 JJG(电子)12025-89 TA03BD型电视多伴音信号发生器试行检定规程工业和信息化部 159 JJG(电子)12028-89 4143型互易校准仪试行检定规程 工业和信息化部 160 JJG(电子)12033-89 电视视频电平标准装置试行检定规程 工业和信息化部 161 JJG(电子)03009-91 SQ-20型取样示波器试行检定规程 工业和信息化部 162 JJG(电子)04041-91 BJ-3192型集成运算放大器自动测试仪试行检定规程 工业和信息化部 163 JJG(电子)04043-91 CTG-1型高频C-V特性测试仪试行检定规程 工业和信息化部 164 JJG(电子)04044-91 YWS-2980A型整流二极管IFSM和I2t测试仪试行检定规程 工业和信息化部 165 JJG(电子)05038-91 715型电位器线性示波器试行检定规程 工业和信息化部 166 JJG(电子)05039-91 YY-2781型RLC三用表试行检定规程 工业和信息化部 167 JJG(电子)05041-91 CJ-2780型三用误差分选仪试行检定规程 工业和信息化部 168 JJG(电子)05044-91 HP-4272A型预置容量表试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 169 JJG(电子)05045-91 HP-4273A型预置容量表试行检定规程 工业和信息化部 170 JJG(电子)05046-91 GR-1687型LCR数字桥试行检定规程 工业和信息化部 171 JJG(电子)05048-91 DA-1型电气安全参数测试仪试行检定规程 工业和信息化部 172 JJG(电子)07008-91 SWOF型视频扫频频谱分析仪试行检定规程 工业和信息化部 173 JJG(电子)07009-91 HP-3577A型网络分析仪试行检定规程 工业和信息化部 174 JJG(电子)10002-91 射频通过式中功率计试行检定规程 工业和信息化部 175 JJG(电子)10003-91 射频终端式中功率计试行检定规程 工业和信息化部 176 JJG(电子)12034-91 1617型带通滤波器试行检定规程 工业和信息化部 177 JJG(电子)12035-91 2010型外差式分析仪试行检定规程 工业和信息化部 178 JJG(电子)12036-91 HY-6060型驻极体传声器测试仪试行检定规程 工业和信息化部 179 JJG(电子)12037-91 DF-5990A型扬声器谐振频率测量仪试行检定规程 工业和信息化部 180 JJG(电子)12038-91 MWS-672型抖晃校准仪试行检定规程 工业和信息化部 181 JJG(电子)15019-91 XT-22型梳状频率发生器试行检定规程 工业和信息化部 182 JJG(电子)18005-91 工作用热偶真空计试行检定规程 工业和信息化部 183 JJG(电子)18006-91 电阻真空计试行检定规程 工业和信息化部 184 JJG(电子)18007-91 QF-11601型低通滤波器试行检定规程 工业和信息化部 185 JJG(电子)12026-89 MR-611A VTR抖动测量仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 186 JJG(电子)12032-89 148型电视插入测试信号发生器试行检定规程 工业和信息化部 187 JJG(电子)18004-89 HP4140B型微微安电流表/直流电压源试行检定规程 工业和信息化部 188 JJG(电子)01007-95 AD5120A型射频群时延标准检定规程 工业和信息化部 189 JJG(电子)01008-95 AD5120B型视频群时延标准检定规程 工业和信息化部 190 JJG(电子)01009-95 AD5120C型低频群时延标准检定规程 工业和信息化部 191 JJG(电子)02008-95 DA24型有效值电压表检定规程 工业和信息化部192 JJG(电子)02009-95 模拟电子电压表检定规程 工业和信息化部 193 JJG(电子)02010-95 QF2280A型超高频数字毫伏表检定规程 工业和信息化部 194 JJG(电子)02011-95 HP8405型矢量电压表检定规程 工业和信息化部 195 JJG(电子)04045-95 JS-7B型晶体管测试仪检定规程 工业和信息化部 196 JJG(电子)04046-95 QC-13型场效应管跨导参数测试仪检定规程 工业和信息化部 197 JJG(电子)04047-95 QG-6、QG-16型高频小功率晶体管fT参数测试仪检定规程 工业和信息化部 198 JJG(电子)04048-95 QG-29型高频晶体管GP(KP)、F(NF)、AGC特性测试仪检定规程 工业和信息化部 199 JJG(电子)04052-95 PTQ-2型晶体管快速筛选仪检定规程 工业和信息化部 200 JJG(电子)04055-95 安全栅检定规程 工业和信息化部 269 JJG(化工)9-89 指示计检定规程 工业和信息化部 270 JJG(化工)10-89 Q型操作器检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 271 JJG(化工)11-89 气电转换器检定规程 工业和信息化部 272 JJG(化工)12-89 电气转换器检定规程 工业和信息化部 273 JJG(化工)13-89 信号转换器检定规程 工业和信息化部 274 JJG(化工)14-89 隔离器、反向器、升压器检定规程 工业和信息化部 275 JJG(化工)101-91 橡胶圆盘摆动硫化仪检定规程 工业和信息化部 276 JJG(化工)102-91 橡胶门尼粘度计检定规程
  • 静态力学分析
    p style=" text-align: center " strong 原创: 徐颖【苏大】 江苏热分析 /strong /p p   研究物质形变或力学性质与温度关系的方法,常称之为热机械分析法,该法包括热膨胀法(DIL)、静态热机械分析(TMA)和动态热机械分析(DMA)三种技术,它们之间的差别最主要的来自于它们测量时负载力的不同。热膨胀法是测量试样负载力为零,即仅有自身重力而无外力作用时,在程序温度控制下,膨胀或收缩引起的体积或长度的变化 静态热机械分析是测量材料在静态负载力(非交变负荷)作用下,形变与温度间关系的技术 动态热机械分析是在程序控制温度下,测量材料在动态负载力(交变负荷)下动态模量和力学阻尼(或称力学内耗)与温度关系的一种技术。 /p p strong 一、TMA基本原理和结构 /strong /p p   静态热机械分析仪是在热膨胀仪的基础上发展起来的,它的基本原理和热膨胀仪相同,不仅可以替代热膨胀仪,而且在结构和功能上有进一步的扩充和提升。 /p p   (1) 可以设定试样所受负荷的大小,改变负荷会得到不同的热形变曲线,因此负荷大小成为一个重要的实验参数。而且将负荷大小设置为与材料实际使用中所受的力相近,热形变曲线更有实用价值。此外选用合适的负荷大小,可以得到更理想的曲线。 /p p   (2) 可选用更多不同的探头,大多配备拉伸、压缩、穿透(或称针入)和弯曲等探头,除了能测定热膨胀系数和各种相变点之外,还可以研究定应变的应力松弛和定应力的蠕变等力学性能。图1是DIL和TMA可选用探头和基本原理示意图。 /p p style=" text-align: center " img title=" 图1 热膨胀和热机械分析原理示意图.jpg" alt=" 图1 热膨胀和热机械分析原理示意图.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/ef21716a-4636-4630-8ec4-1facf9de83a5.jpg" / /p p style=" text-align: center " strong 图1 热膨胀和热机械分析原理示意图 /strong /p p style=" text-align: center " strong (a)热膨胀和TMA装置原理 1—仪器的基本形式 2—水平热膨胀 /strong /p p style=" text-align: center " strong 3—垂直热膨胀或TMA 4—TMA的垂直膨胀(天平型) (b)TMA的应力类型 /strong /p p   TMA按机械结构形式不同,可以分为天平式和直筒式两大类。天平式TMA的施力方向(拉伸还是压缩)和大小是通过刀口式天平来控制的,再根据试样与天平的相对位置又可分为上皿式和下皿式。直筒式TMA根据施力控制原理、方式不同可分为三种:弹簧型,通过顶部加压砝码和弹簧相互协调控制负载的方向和大小 磁力型,通过磁钢和控制磁拉力线圈中直流电的方向来决定负载的方向和大小 浮子型,通过浮子、浮液和顶部加压砝码来控制负载,浮子材料使用低密度的聚合物,而浮液采用高密度氟氯硅油。 /p p   以上这些分类实际上是依据TMA施力方式不同来分的,仪器其他部分:炉体、温度控制、气氛控制等雷同于差热仪、热重仪。而位移检测系统则都是由差动变压器将位移转变为电压信号,经相敏放大器、有源滤波器、电压放大器、A/D转换器后再进行数据处理。 /p p strong 二、操作模式 /strong /p p   TMA的操作模式可分为五种: /p p   (1) 标准模式,可进行3个实验程序。一个是线性升温时负载力保持恒定,监测位移的变化,则得到最经典的热膨胀曲线 如果线性升温保持恒定的应变,检测力的变化,可用于评价薄膜或纤维的收缩力。恒温条件下,往往设置力呈线性变化,监测其所产生的应变,可获得力位移曲线和模量信息。 /p p   (2) 应力/应变模式,有2个实验程序。在恒温条件下,施加线性变化的应力或应变,测量对应的应变或应力,从而得到应力/应变图谱及相关的模量信息。所计算出的模量可以分别作为应力、应变、温度或时间的函数来表示。图2就是保持恒温,应力线性增加,所获得的应力/应变曲线。该曲线的形状受所设温度及样品加工工艺的影响。 /p p style=" text-align: center " img title=" 图2 温度恒定,线性应力作用下所得应力_应变曲线.png" alt=" 图2 温度恒定,线性应力作用下所得应力_应变曲线.png" src=" https://img1.17img.cn/17img/images/201812/uepic/63918f4f-cced-471e-9587-5358e2d3a7ea.jpg" / /p p style=" text-align: center " strong 图2 温度恒定,线性应力作用下所得应力/应变曲线 /strong /p p   (3) 蠕变/应力松弛模式,可进行2个实验程序。一个是蠕变实验,即应力保持恒定,监测应变随时间的变化,获得柔量数据 另一个是应力松弛实验,应变保持恒定,监测应力的衰减,获得松弛模量数据。二者均为瞬态测试,可评估材料形变及回复性质。 /p p   (4) 动态TMA模式,在线性升温条件下,对样品施以正弦变化的力。测量由此产生的正弦变化的应变。通过应力、应变数据计算储能模量E& #39 、损耗模量E〞和损耗因子Tanδ对时间、温度或应力的关系,一般适用于薄膜的研究。 /p p   (5) 调制TMA模式,类似于调制DSC,是温度控制方式在传统的线性升温的基础上叠加一个设定振幅和周期的正弦波温度变化程序,将原始信号(总位移和热膨胀系数)解析成可逆和不可逆部分,可逆部分可获得相变信息(如Tg),不可逆部分得到具有时间依赖性的动力学过程(如应力松弛)。 /p p strong 三、TMA典型谱图及解析 /strong /p p   图3是比较典型的热膨胀曲线图,TMA(或DIL)确定线膨胀系数的公式为: /p p style=" text-align: center " img title=" 式1-1.jpg" alt=" 式1-1.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/66c902b0-66e8-461f-9910-a288f34faefc.jpg" / /p p   式中l0为样品原始长度,Δl/ΔT为热膨胀曲线的斜率。相应的体膨胀系数γ的计算公式如下: /p p style=" text-align: center " img title=" 式1-2.jpg" alt=" 式1-2.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/0a79f259-09f2-436d-82c0-69a18aeaef5b.jpg" / /p p 其中V0为样品原始体积,ΔV/ΔT为热膨胀曲线的斜率。 /p p style=" text-align: center " img title=" 图3 热膨胀曲线以及线膨胀系数α的确定.png" alt=" 图3 热膨胀曲线以及线膨胀系数α的确定.png" src=" https://img1.17img.cn/17img/images/201812/uepic/480a5479-2a22-47f0-9e37-465d8ca4609b.jpg" / /p p style=" text-align: center " strong 图3 热膨胀曲线以及线膨胀系数α的确定 /strong /p p   热膨胀曲线也可以确定材料的玻璃化转变温度Tg,图4是比较常见的高分子材料和金属的热膨胀曲线,从(a)中可以看到聚苯乙烯PS的膨胀曲线突变处所做的外推温度就是Tg。如果将热膨胀曲线对温度一阶求导,如图5-7下方,将得到一个类似于DSC在Tg处台阶的曲线,更容易确定Tg值。 /p p style=" text-align: center " img title=" 图4常见的热膨胀曲线(a)聚苯乙烯PS;(b)高(低)密度聚乙烯PE;(c)金属Al、Pt和玻璃.jpg" alt=" 图4常见的热膨胀曲线(a)聚苯乙烯PS;(b)高(低)密度聚乙烯PE;(c)金属Al、Pt和玻璃.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/ab420d73-d6f7-40f3-8a62-8586c92c66fa.jpg" / /p p style=" text-align: center " strong 图4常见的热膨胀曲线(a)聚苯乙烯PS (b)高(低)密度聚乙烯PE (c)金属Al、Pt和玻璃 /strong /p p style=" text-align: center " img title=" 图5 TMA热膨胀曲线及其一阶导数曲线确定Tg.jpg" alt=" 图5 TMA热膨胀曲线及其一阶导数曲线确定Tg.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/79777183-9912-4ea3-a0ef-34a0ee703a9b.jpg" / /p p style=" text-align: center " strong 图5 TMA热膨胀曲线及其一阶导数曲线确定Tg /strong /p p style=" text-align: center " img title=" 图6 几种不同类型的热机械曲线示意图.jpg" alt=" 图6 几种不同类型的热机械曲线示意图.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7ec3e314-83b7-4eac-b62f-5d60ce321bb8.jpg" / /p p style=" text-align: center " strong 图6 几种不同类型的热机械曲线示意图 /strong /p p style=" text-align: center " strong (a) 非晶态无定形线形聚合物的温度—形变曲线 /strong /p p style=" text-align: center " strong (b) 非晶态无定形线型和交联型聚合物的蠕变曲线,1-线型 2-交联型 /strong /p p style=" text-align: center " strong (c) 不同力学状态高聚物的应力松弛曲线,1-玻璃态 2-高弹态 3-粘流态 /strong /p p   上文曾经提到TMA除了热膨胀法曲线之外,还可以研究保持应变恒定时的应力松弛和恒定应力下的蠕变行为,如图6。TMA所测的形变,除了一部分是样品自身膨胀或收缩引起的形变之外,还有一部分是应力引起的,这部分形变是分子相对移动时释放能量(粘性响应)或储藏能量(弹性响应)的结果,因此TMA所测形变实际上是膨胀行为和粘弹效应的加合。 /p p strong 四、TMA实验方法 /strong /p p   TMA是研究形变的技术,因此样品尺寸是否准确计量、是否稳定很重要,选用样品要求形状规整、无缺陷(气泡或裂纹),块状样品上下两面要求平行且光滑,复合材料尤其是高聚物中添加了无机填料要考虑两相间是否相溶,必要时类似于DSC测试要考虑去除热历史的影响。由于TMA的样品用量相对比TG和DSC要大,扫描速率相对的设定慢一些为好,一般5℃/min 保护气常用氮气或空气,流量10-50ml/min。 /p p   此外由于TMA配备有各种探头,了解这些探头的功能以及何种形态的样品适用于何种探头 了解测试的目的,在多种实验模式中选择合适的实验程序 负载力是TMA测试的一个重要参数,其大小的设定等等,这些往往依赖于实验人员的经验。 /p p   块状样品,一般适用的探头有:压缩探头、三点弯曲探头、针入(或称穿透)探头 所应用的测试有:线性膨胀系数、玻璃化转变温度、软化点、熔点、蠕变和松弛等等。 /p p   膜和纤维样品,一般适用的探头有:拉伸探头、针入探头 所测的参数:杨氏模量、玻璃化转变温度、软化点、蠕变、固化、交联密度和硬度等等。 /p p   粘性流体和胶,一般适用的探头有:剪切探头和针入式探头 适用的测试:粘性、凝胶化、胶体-熔体转变温度、固化和剪切模量。 /p p & nbsp /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
  • 中科大在利用量子精密测量技术检验新相互作用的领域取得重要进展
    11月17日,中国科大中科院微观磁共振重点实验室彭新华研究组和德国亥姆霍兹研究所Dmitry Budker教授合作,利用本团队近期发展的量子精密测量技术,实现了对一类超越标准模型的新相互作用的超灵敏检验,实验界限比先前的国际最好水平提升至少2个数量级。相关研究成果以“Search for exotic spin-dependent interactions with a spin-based amplifier”为题在线发表于国际知名学术期刊《Science Advances》上[Sci. Adv. 7, eabi9535 (2021)]。研究粒子及其相互作用是基础科学的核心,而标准模型则是目前公认最成功的理论。在其框架内,电磁相互作用由光子传递,弱相互作用由W及Z玻色子传递。然而,标准模型依旧无法解释当前宇宙天文学的一些重要观测事实,譬如暗物质和暗能量。因此物理学家普遍认为存在超越标准模型的新粒子,譬如弱相互作用大质量粒子(Weakly Interacting Massive Particle, WIMP)、轴子(axion)、暗光子(dark photon)等。这些新粒子可以作为传播子,传递标准模型粒子之间的新相互作用。诺贝尔物理学奖得主Wilczek在1984年提出轴子可以作为传播子诱导出新的自旋相互作用,并在2004年进一步提出自旋体系可以用来搜寻这种新自旋相互作用。随后,在2006年物理学家Dobrescu 和 Mocioiu 考虑传播子为一般玻色子的情形,引入15种新奇自旋相互作用,这为新粒子及其新相互作用的实验搜寻提供了更广阔的研究思路。一旦这些新粒子及新相互作用被实验发现,必将是诺贝尔奖级别的工作。但因新自旋相互作用的效应十分微弱,目前实验搜寻极具挑战性,亟需探索新方法来提升实验灵敏度。图1 检验新相互作用的实验装置和相应的磁探测灵敏度。针对以上难题,彭新华研究组利用近期发展的量子自旋放大器技术[Nat. Phys. 2021],实现了对待测磁信号2个数量级的放大(如图1所示),并进一步用于一类速度依赖的新相互作用的实验检验。物理学家Dobrescu等人预测,存在一种超越标准模型的自旋为1的Z’玻色子,在运动的质量源与核自旋之间传递新相互作用,其作用强度正比于质量源的相对速度及质量大小。因此,本研究采用一块高密度BGO晶体,并将其高速转动,从而诱导出BGO晶体和自旋放大器中氙核自旋的相互作用。更近一步研究发现,这种新相互作用等效于在原子核上产生一个交流震荡磁场,因此可以将新相互作用的测量转化为磁场测量。量子自旋放大器技术能够以超低噪声水平放大待测磁场,因此可以大大提高新相互作用的搜寻灵敏度。针对可能的技术噪声的干扰,研究人员巧妙地利用新相互作用速度依赖的特性,对震动和经典磁场等干扰信号进行的有效排除。本工作的实验结果表明,在搜寻范围未发现新粒子存在的证据,并由此给出一类新波色子与原子核耦合界限,其优于以前国际最佳界限至少2个数量级[如图2(a)和(b)所示]。图2 新奇相互作用实验界限(a)提升至少4个数量级。(b)提升至少2个数量级。审稿人对这一工作高度评价“I therefore recommend publication of this work for its scientific impact, application of a new experimental method in this field, and strong potential for future improvements.(考虑到这个工作在新奇相互作用探索领域应用了一种新的实验技术和未来广泛的应用前景,我因此极力推荐发表工作)”。这一成果展示了量子精密测量技术与基础物理检验的有机结合,说明利用核自旋量子放大器来研究各种超越标准模型的新物理具有独特优势,有望激发宇宙天文学、粒子物理学和原子分子物理学等多个基础科学的广泛兴趣。彭新华研究组长期瞄准量子精密测量领域,利用量子精密测量技术来解决世界前沿科学问题。包括于2018年自主研发出超灵敏原子磁力计,并且利用该技术实现了无需磁场的新型核磁共振技术,“零磁场核磁共振” [Sci. Adv. 4(6), eaar6327 (2018)];于2019年至2020年发展新型原子磁力仪技术[Adv. Quantum Technol. 3, 2000078 (2020),Phys. Rev. Applied 11, 024005 (2019)],达到了国际领先水平的磁场探测灵敏度;通过进一步研究,于2021年实现了新型的自旋微波激射器,在低频段创造了国际最佳的磁探测灵敏度[Sci. Adv. 7(8), eabe0719 (2021)]。之后,彭新华研究组将已发展的平台型量子精密测量技术用于寻找新粒子,取得了一系列对推动学科领域发展有实质性贡献的研究成果。包括于2021年利用新型量子自旋放大器搜寻暗物质候选粒子,首次突破国际公认最强的宇宙天文学界限[Nat.Phys. (2021),DOI:10.1038/s41567-021-01392-z]。中国科学院微观磁共振重点实验室博士研究生苏昊文和王元泓为该文共同第一作者,彭新华教授和江敏副研究员为共同通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。论文链接:https://www.science.org/doi/10.1126/sciadv.abi9535量子自旋放大技术论文链接:https://www.nature.com/articles/s41567-021-01392-z
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制