当前位置: 仪器信息网 > 行业主题 > >

三轴仪原理

仪器信息网三轴仪原理专题为您提供2024年最新三轴仪原理价格报价、厂家品牌的相关信息, 包括三轴仪原理参数、型号等,不管是国产,还是进口品牌的三轴仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三轴仪原理相关的耗材配件、试剂标物,还有三轴仪原理相关的最新资讯、资料,以及三轴仪原理相关的解决方案。

三轴仪原理相关的资讯

  • 盘点:三代PCR仪原理及应用
    p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 前言 /span /strong /p p   人类对于核酸的研究已经有100多年的历史。20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。Khorana于1971年最早提出核酸体外扩增的设想:经过DNA变性,与合适引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因。 /p p   但由于测序和引物合成的困难,以及70年代基因工程技术的发明使克隆基因成为可能,所以,Khorana的设想被人们遗忘了。 /p p   1985年,美国科学家穆利斯在高速公路的启发下,经过两年的努力,发明了PCR(聚合酶链式反应)技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。从此,PCR技术开始走进生命科学界,应用于各大小实验室,成为生命科学实验室不可或缺的技术手段和工具,极大地推动了生命科学的研究进展。穆利斯也因此而获得1993年的诺贝尔化学奖。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/42353234-b84b-4124-8228-ad9e5dd139c7.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 穆利斯 /span /strong br/ /p p   PCR是分子生物学研究极其重要的工具,是一种用于放大扩增特定的DNA片段的分子生物学技术,基本原理是在试管中模拟细胞内的DNA复制,即人为创造核酸半保留复制条件,使目的DNA在细胞外完成扩增的过程,它可被看作是生物体外的特殊DNA复制。 /p p   根据PCR原理,商业公司在PCR仪的基础功能上不断进行创新和改进。至今,PCR仪已经更新至第三代技术。为方便读者朋友理解,本文将对三代PCR仪的原理、特点、主要厂商及产品、应用领域做一系统梳理。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第一代——标准PCR仪 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/41d48cc2-6454-41a4-80a2-32d8206eeb55.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 标准PCR反应过程 /span /strong br/ /p p   标准PCR仪也叫做终点PCR仪,是指目的基因仅经过预变性、变性、退火、延伸阶段产生大量的核酸序列的PCR仪,PE-Cetus公司推出的世界上第一台PCR自动化热循环仪属于此种。根据PCR退火温度和扩增条件(细胞内/外),标准PCR又可以分为三类:普通PCR、梯度PCR和原位PCR。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/2749e6d5-017a-46c5-9cae-a379b96def96.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p    strong 普通PCR仪 /strong :一般把一次PCR扩增只能运行一个特定退火温度的PCR仪,称之为普通PCR仪。如果要用它做不同的退火温度则需要多次运行。主要是用作简单的、对单一退火温度的目的基因的扩增。 /p p   主要应用于科研、教学、临床医学、检验、检疫等。 /p p    strong 梯度PCR仪 /strong :普通PCR仪衍生出的带梯度PCR功能的基因扩增仪。梯度PCR仪每个孔的温度可以在指定范围内按照梯度设置,一次性PCR扩增可以设置一系列不同的退火温度条件(通常12种温度梯度)。由于被扩增的DNA片段不同,其最佳退火温度也不同,通过梯度设置,可一次性筛选出最佳的退火温度。这样既可节省试验时间,提高实验效率,又能节约实验成本。在不设置梯度的情况下亦可当做普通的PCR用。 /p p   梯度PCR仪多应用于科研、教学机构。 /p p    strong 原位PCR仪 /strong :是将PCR技术的高效扩增与原位杂交的细胞定位结合起来,用于从细胞内靶DNA的定位分析的细胞内基因扩增仪,从而在组织细胞原位检测单拷贝或低拷贝的特定DNA或RNA序列。原位PCR技术的待检标本一般先经化学固定,以保持组织细胞的良好形态结构。细胞膜和核膜均具有一定的通透性,当进行PCR扩增时,各种成分,如引物、DNA聚合酶、核苷酸等均可进进细胞内或细胞核内,以固定在细胞内或细胞核内的RNA或DNA为模板,于原位进行扩增。 /p p   原位PCR仪对于在分子和细胞水平上研究疾病的发病机理和临床过程及病理的转变有着重要意义。 /p p   需要说明的是,以上三种类型PCR仪并非是对立的,许多普通PCR仪结合了以上两种或者两种以上功能。 /p p   市售标准PCR仪种类繁多,国内外公司都有相应产品,赛默飞旗下PCR仪占据国内生命科学实验室的半壁江山,其次分别是是伯乐、罗氏和艾本德。 /p p style=" text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 此处列出部分在仪器信息网参展并且是仪器信息网新品或者仪器信息网“绿色仪器”的一代PCR仪。 /span /strong /p p style=" text-align: center text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201812/uepic/d7059e6f-1922-4b57-b5f8-f58abfaedd51.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " Eppendorf Mastercycler X50 梯度 PCR 仪(绿色仪器) /span /strong /p p   艾本德此款PCR仪采用2D-梯度技术,能够同时优化退火与变性条件,升温速度高达10° C/s,10台仪器可直接并组成网,适用于高通量应用或者人员众多需求复杂的实验室。 /p p   strong span style=" color: rgb(0, 112, 192) "   /span /strong a href=" https://www.instrument.com.cn/netshow/C273735.htm" target=" _self" title=" 详情请点击" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/cd7674e4-20aa-44cb-8e24-97e172abc108.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 力康Trident 960基因扩增仪(新品) /span /strong /p p   此款基因扩增仪与今年5月上市,创新点在于它是多模块PCR仪,可同时运行三种控温程序 界面采用安卓系统,操作体验大幅提升 最大升温速率达到6℃/s。 /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/netshow/C288657.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第二代——qPCR(实时定量PCR) /span /strong /p p   1996年Applied Biosystems(现被赛默飞收购)公司推出了实时荧光定量PCR(RTFQ PCR)技术,并发明了世界上第一台荧光定量PCR仪,开始了从定性到定量的跨越。 /p p   实时定量PCR仪是指在PCR反应体系中加入能够指示DNA片段扩增过程的荧光染料(SYBR Green等)或荧光标记的特异性的探针(TaqMan Probe等),在普通PCR仪设计基础上增加荧光信号激发和采集系统和计算机分析处理系统,形成了具有荧光定量PCR功能的仪器,通过对PCR过程中产生的荧光信号积累实时监测整个PCR过程,再结合相应的计算机软件对所获得的荧光信号数据进行分析,计算待测样品特定DNA片段的初始浓度。 /p p   目前根据荧光信号反应样品浓度主要有两种该方法: /p p    strong 1.Taqman探针法 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a439631b-e389-434b-9801-df6dd2552a4a.jpg" title=" taqman.jpg" alt=" taqman.jpg" / /p p style=" text-indent: 2em " 探针两端分别为报告荧光基团R和荧光淬灭基团Q,当探针完整时,R发出的荧光被Q吸收,检测不到荧光信号。探针随机结合到DNA单链上,PCR扩增时,探针被水解,R与Q分离,R发出的荧光就会被检测到。每扩增一条DNA链都会生成一个荧光分子。 /p p    strong 2. SYBR Green Ι染料法 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/38bc15e1-e944-4d6b-b2e8-8cba519b1f26.jpg" title=" ranliao.jpg" alt=" ranliao.jpg" / /p p style=" text-indent: 2em " SYBR Green Ι是一种只有在和双链DNA结合时才会发荧光的染料。在PCR变性时,无荧光产生,到了复性和延伸阶段则能检测到荧光信号。 /p p   实时荧光定量PCR仪主要应用于病原体检测、药物疗效考核、肿瘤基因检测、基因表达研究、转基因研究、单核苷酸多态性(SNP)及突变分析等细分研究方向,广泛应用于临床医学检测、生物医药研发、食品行业等研究领域。 /p p   目前市售qPCR仪种类繁多,伯乐、罗氏、赛默飞均推出系列定量PCR仪产品,国内生物公司也相继进入这一市场,并取得了不错的口碑,如博日、力康、福生生物等。 /p p style=" text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 本篇列出部分在仪器信息网参展的新品qPCR仪: /strong /span /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f9abfbd2-a173-48ae-925e-cdd3516dc9e2.jpg" title=" olumeikesi.jpg" alt=" olumeikesi.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 鲁美科斯实时荧光定量PCR AriaDNA-4(新品) /span /strong br/ /p p   鲁美科斯此款荧光定量PCR仪主要创新点如下: 1.采用专利冻干微芯片技术,实现超微量进样分析,和常规PCR试剂和样品大大减少,普通PCR15微升,LUMEX实时微芯片PCR进样量1-2微升,节省进样量和后续使用成本 2.专利冻干微芯片技术,避免试剂冷链储存,动感试剂涂布在芯片上,可实现一次性检测多种DNA和RNA样品,实现常温储存运输。 /p p    a href=" https://www.instrument.com.cn/netshow/C278549.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d3a9640c-b164-4331-9c13-5879ae51e203.jpg" title=" 天隆科技.jpg" alt=" 天隆科技.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 天隆科技Gentier 96E实时荧光定量PCR检测系统(优秀新品) /span /strong /p p   Gentier 96E实时荧光定量PCR检测系统是天隆科技最新一代、为满足高端用户的实验需求而量身定制。该款产品具有科学高效的温控系统与光电系统、强大易用的软件分析功能、人性化的操控方式、六通道同步检测等诸多优势,能够轻松实现下游多重基因检测、定量分析、SNP分析、HRM分析等应用。 /p p   strong span style=" color: rgb(0, 112, 192) "   /span /strong a href=" https://www.instrument.com.cn/netshow/C260668.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第三代——dPCR(数字PCR) /span /strong /p p   不同于qPCR 对每个循环进行实时荧光测定的方法,数字 PCR 技术是在扩增结束后对每个反应单元的荧光信号进行采集。 /p p   数字PCR是一种基于PCR反应(聚合酶链反应)的单分子绝对定量技术。如图1,在数字PCR的过程中:(a) PCR反应体系(含有荧光染料或探针)被分割为数以万计的均一微液滴,(b) 其中部分微液滴内会含有一个或多个模板,(c) 将这些微液滴收集到试管内进行PCR反应,其中含有模板的微液滴会产生扩增产物,由此具有较强的荧光,成为阳性微液滴,(d) 在PCR反应完成后,依次对每个微液滴内的荧光进行检测,(e) 根据微液滴信号的峰值高度,绘制出微液滴荧光分布的散点图,(f) 通过合理的荧光分类阈值将微液滴内的荧光强度数字化,判断出其中具有较强荧光的阳性微液滴(图1f中绿色的数据点,称为“1”)和具有较弱荧光的阴性微液滴(图1f中蓝色的数据点,称为“0”),并通过“1”和“0”的个数来实现绝对定量。因此,与实时定量PCR不同,数字PCR不需要使用标准曲线,即可直接对核酸拷贝数的绝对值进行定量。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d60f8316-ce67-4b06-81fb-9f90f95250f2.jpg" title=" 数字PCR的原理示意图.jpg" alt=" 数字PCR的原理示意图.jpg" width=" 427" height=" 489" style=" width: 427px height: 489px " / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 数字PCR原理示意图 /span /strong /p p   最后通过直接计数或泊松分布公式计算得到样品的原始浓度或含量。 /p p   迄今为止,目前市面上常见的数字PCR仪器主要有两种,根据微反应的形成原理不同,主要分为 “芯片数字PCR”与“微滴数字PCR”两类。 /p p    strong 1.芯片数字PCR /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f4f13392-c096-4bbd-abde-2bd2e3719bb7.jpg" title=" 芯片数字PCR.jpg" alt=" 芯片数字PCR.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 芯片数字PCR原理图 /span /strong br/ /p p    strong 2.液滴数字PCR /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/1f2874f7-5e13-494d-a138-f50fbd7fe98b.jpg" title=" 22.jpg" alt=" 22.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 微液滴数字PCR原理图 /span /strong /p p   液滴数字PCR源于乳液PCR( emulsion PCR) 技术,即将DNA模板与连接引物的磁性微球以极低的浓度(比如单拷贝) 包裹于油水两相形成的纳升至皮升级液滴中进行 PCR 扩增,扩增后的产物富集在磁性微球上,收集破乳后进行测序。通过油水两相间隔得到的以液滴为单位的 PCR 反应体系,比微孔板和 IFC 系统更容易实现小体积和高通量,而且系统简单,成本低,因此成为理想的数字PCR技术平台。 /p p   数字PCR技术主要应用于不稳定性分析、肿瘤早期研究、产前诊断、致病微生物检测、癌症标志物稀有突变检测等研究领域,也用于验证NGS中的低频突变、 DNA甲基化检测、突变多重检测等方向。 /p p   基于数字PCR精准、灵敏、高效的应用场景,巨头公司(伯乐、罗氏和赛默飞)纷纷在这一领域布局,并相继推出数字PCR产品,许多国产数字PCR厂商如泛生子、顺德永诺生物、科维思、 诺禾致源、小海龟科技也争相进入市场,数字PCR大有可为。 /p p    strong span style=" color: rgb(192, 0, 0) " 本篇列出在仪器信息网参展的部分数字PCR仪产品 /span /strong strong span style=" color: rgb(192, 0, 0) " : /span /strong /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/f8fdec21-ba5e-48ef-b8dc-c83c1ba0d937.jpg" title=" 11.jpg" alt=" 11.jpg" style=" text-align: center " / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 伯乐QX200 微滴式数字PCR系统 /span /strong br/ /p p   Bio-Rad的技术主要来源于QuantaLife公司,QuantaLife 利用油包水微滴生成技术开发了微滴式数字PCR技术,这也是最早出现的相对成熟的数字PCR平台,在运行成本和实验结果稳定性方面都基本达到了商品化的标准。2011年,QuantaLife 公司被Bio-Rad公司收购,其微滴式数字PCR仪产品更名为QX100型号仪继续在市场上销售,这个早期型号为dPCR概念的普及和应用领域的拓展发挥了重要作用。2013年该公司又推出了升级型号QX200。 /p p    a href=" https://www.instrument.com.cn/netshow/C293849.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a75e17b8-0d45-4394-9f8e-afb3ad61b6c7.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 赛默飞QuantStudio 3D Digital PCR System /span /strong /p p   Applied Biosystems于2013年也推出了产品,Quant Studio 3D数字PCR系统。采用高密度的纳升流控芯片技术,样本均匀分配至20,000个单独的反应孔中。在整个工作流程中,样本之间保持完全隔离,可以有效地防止样品交叉污染,减少移液过程,简化操作步骤。同时芯片式设计避免了微滴式系统可能面临的管路堵塞问题。作为Applied Biosystems在OpenArray芯片平台之外推出的全新的芯片式数字PCR系统,值得一提的是,这个全新的系统在设计理念上综合考虑了系统稳定性与运行成本因素,直接反映了该系统“适合所有分子生物学实验室使用的数字PCR系统”的市场定位。2013年,Thermo Fisher收购Applied Biosystems。 /p p    a href=" https://www.instrument.com.cn/netshow/C194603.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/35dde0a8-6e31-4ee4-b590-e7284aa84e5e.jpg" title=" 13.jpg" alt=" 13.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " Naica crystal微滴数字PCR系统 /span /strong /p p   NaicaTMcrystal 微滴数字PCR系统是法国Stilla公司开发的下一代核酸绝对定量技术。使用cutting-edge微流体创新型芯片——Sapphire芯片作为数字PCR过程的唯一耗材。样品通过毛细通道网格以30,000个微滴的形式进入2D芯片中,可称作Crystal微滴。PCR扩增实验在芯片上实现。对微滴成像用以检测包含扩增片段的微滴。最后一步是对阳性微滴计数从而得到精准的核酸绝对数量。 /p p    a href=" https://www.instrument.com.cn/netshow/C277808.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/80eaf629-bff9-48a9-af5b-629dcf2eb49c.jpg" title=" 14.jpg" alt=" 14.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 新羿TD-1 微滴式数字PCR系统 /span /strong /p p   新羿TD-1微滴式数字PCR系统由Drop Maker 样本制备仪和 Chip Reader 生物芯片阅读仪及其他相关试剂耗材构成。Drop Maker 样本制备仪采用光、机、电一体化设计,配套具有自主知识产权的微流控芯片,可以将水相样本快速制备成纳升体积的液滴,液滴数与样本体积相关,30微升样本可制备约5万个液滴。液滴尺寸均一,并可在PCR扩增后保持稳定。 /p p   Chip Reader R1生物芯片阅读仪采用光、机、电一体化设计,及激光共聚焦原理,配套具有自主知识产权的微流控芯片,可以准确快速地定位、识别纳升体积微液滴,获取其荧光信号值。经过泊松统计分析,提供研究者所需的阳性、阴性液滴数绝对数值,从而推算出起始靶标核酸分子精确浓度。Chip Reader R1 生物芯片阅读仪兼容Taqman水解探针和EVAGreen检测。 /p p    a href=" https://www.instrument.com.cn/netshow/C289823.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p    span style=" color: rgb(0, 0, 0) " strong 与传统定量 PCR 不同,数字 PCR 通过直接计数的方法,可以实现起始 DNA 模板的绝对定量但是,目前的数字 PCR 技术仍然存在一些不足,制约了该技术广泛应用。例如,数字 PCR 自身特点决定了其分析的样品通量很低,基本每块芯片上万个反应单元都是针对单一样本的分析。而荧光检测技术的局限性限制了多个芯片的同时检测,因此该技术目前在常规基因表达分析中不具备优势。此外,数字PCR技术的灵敏度(分辨率) 和准确性有待进一步提高和优化,在临床诊断中需要进行大量的比较和验证实验(对照传统方法) 。基于精密仪器和复杂芯片的数字 PCR 技术成本高昂,也是制约其广泛应用的一个原因。 /strong /span /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 小结 /span /strong /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/31e8b226-4e10-4fd4-b9e4-40cf1c10a698.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 582" height=" 265" style=" text-align: center width: 582px height: 265px " /    span style=" text-align: center " /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td width=" 121" valign=" top" style=" border-width: 1px border-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " 代次 /span /span /p /td td width=" 151" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px word-break: break-all " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 标准 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第一代) /span /span /p /td td width=" 142" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 定量 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第二代) /span /span /p /td td width=" 146" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 数字 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第三代) /span /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px word-break: break-all " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 定量能力 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 定性 /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 半定量 /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 绝对定量 /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 分子数灵敏度 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 100 /span span style=" line-height: 150% color: rgb(51, 51, 51) " 个分子 /span /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 10 /span span style=" line-height: 150% color: rgb(51, 51, 51) " 个分子 /span /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 1 /span span style=" line-height: 150% font-family: 宋体 color: rgb(51, 51, 51)" 个分子 /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 稀有突变灵敏度 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 10-50% /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 1-5% /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 0.1% /span /p /td /tr /tbody /table p style=" text-indent: 2em " PCR技术已在生命学、医学诊断、遗传工程、法医学和考古学等领域广泛应用,在临床检验中的应用,对疾病的诊断提高到基因水平,众多的疑难病症得到及时确诊和有效的治疗。 br/ /p p   对于不同的应用场景,三代PCR各有优势,但是可以看出,数字PCR具有绝对定量的优势,是未来临床标准化分子诊断的首选技术。 /p p   相信在未来的几年里将会不断有新的技术和产品出现,不断扩展其应用范围,使之成为新一代分子诊断工具。 /p p strong 附: a href=" https://www.instrument.com.cn/zc/133.html" target=" _self" 仪器信息网PCR仪专场 /a /strong /p
  • 长春应化所老中青三代传承:从基础原理到仪器研制突破国际难题
    p   中科院长春应化所功能化界面设计及分析化学应用基础研究团队依托电分析化学国家重点实验室,由汪尔康院士和董绍俊院士担任学术顾问,逯乐慧研究员作为学术带头人,研究群体中2人为中国科学院院士,1人为发展中国家科学院院士、1人为国家千人计划,3人为国家杰出青年基金获得者,1人入选青年千人计划。研究群体主持承担了一批国家重点研发计划、973计划、863计划、国家自然科学基金重大、重点项目,在分子识别、功能化界面调控、化学生物分析应用及高灵敏电化学生物传感器构建等方面取得重大突破。 /p p    strong 老中青团队的传承 /strong /p p   化学与生物分析是中国科学院长春应用化学研究所电分析化学国家重点实验室的主要研究方向。自上世纪50年代开始,汪尔康院士、董绍俊院士开始化学与生物分析研究,并建立了我国最早的极谱实验室,1980年实验室率先开始“化学修饰电极”研究并扩展至全国,1989年经中国科学院批准建立电分析化学开放实验室。1997年杨秀荣加入研究团队开展分子识别与相互作用的研究工作,并于2013年当选为中国科学院院士,2001年开放实验室经国家科技部批准建立国内第一个分析化学方面的国家重点实验室。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/7769127c-19cb-468a-876c-033bca1a5af4.jpg" title=" 1.png" / /p p   随着研究工作的深入,实验室十分重视学科布局、人才培养和引进方面的发展。逯乐慧介绍说,“我们的团队就是我们的核心竞争力,团队的研究群体体现了学科交叉的特点,融合了具有不同学科背景和基础的优秀人才,优势互补,开展多层次系统性研究,有利于取得原始创新性成果。”记者了解到,研究团队人员年龄在55岁以上的3人,46-55岁的3人,45岁以下的2人,形成了一支老中青结合、专业结构合理的高水平研究团队。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/af02823c-5e5d-4eee-be63-e8b45b2a1180.jpg" title=" 2.png" width=" 500" height=" 413" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 413px " / /p p    strong 以振兴中华为理想 甘于奉献 /strong /p p   团队无论是在学术还是在项目上的坚持,也深受汪尔康院士和董绍俊院士的影响,生活中汪尔康院士和董绍俊院士是夫妻,了解老两口的人都知道:办公室—图书馆—家,三点一线 五加二、白加黑,没有休息日。数十年来,这样的耕耘周而复始,团队的成员在这样的科研环境下,也深受感染,经常周末都泡在实验室搞研究,汪尔康院士曾说,做科研就像打仗一样,稍有放松,就可能被别人超过。“我们对吃穿没任何讲究,为了节省时间,都习惯把菜盛在一个盘子里。”妻子董绍俊说。逯乐慧说,“汪先生和董先生一直以来都专职带我们实验室,没有其它的兼职,同时他们对自己的严格要求也深深地影响着后面的年轻人。”汪尔康曾有机会离开长春,北京、上海等地的多家高校邀请他任职,却被他婉拒。对此,汪尔康说:“是党培养了我,是吉林和应化所这片沃土造就了我。这里是我的第二故乡,不论在哪里工作,振兴中华是我最高的理想和追求。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/594f36eb-49a3-47f7-8dac-ac2c1d81f3a3.jpg" style=" width: 500px height: 333px " title=" 3.png" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/a7cddd29-668b-45b1-8cc6-f4bfa27e5677.jpg" style=" width: 500px height: 329px " title=" 4.png" width=" 500" height=" 329" border=" 0" hspace=" 0" vspace=" 0" / /p p    strong BOD (生化耗氧量)监测仪突破国际难题 /strong /p p   据了解,团队在基础研究方面的系列创新性成果大大推动了某些电分析化学仪器及装置的产业化进程,已研制新型电化学分析仪器10余种,部分已商品化并取得经济效益。其中与吉林光大分析技术有限公司合作研发的BOD (生化耗氧量)监测仪突破了国际上有关BOD快速-原位-在线监测的难题,为我国环境保护与管理提供了重要的技术支撑。 /p p   据悉,该BOD监测系统已经在太湖流域沙渚水质自动监测站、无锡梁塘河湿地公园、无锡尚贤河湿地公园、常州江边污水处理厂、无锡芦村污水处理厂、北京玉渊潭水质自动监测站、天津七里海国家湿地公园等8个自动监测站进行应用示范,涵盖了实时的系统工作状态,仪表工作状态,仪表监测数据等信息。仪表监测数据还可以图表、曲线等形式呈现,在手机客户端可实现数据的远程监控。吉林光大分析技术有限公司近五年相关仪器的销售额超过1亿元。研究团队前期培养的研究生近5年已有18人入选国家青年千人计划,取得的相关研究成果获得国家自然科学二等奖3项,吉林省科技进步一等奖7项。 /p p   “由于最初团队是做化学的,所以最困难的部分是从基础原理到仪器研制的过程上,在汪先生的带领下,实验室很早就开始做仪器研制,实验室也特别注重这方面人才的培养,专门建立了仪器研制的团队,有效地弥补了实验室和企业之间的代沟。”逯乐慧说。 /p p    strong 承担国家重大重点、973、863等项目 /strong /p p   据了解,团队多年来团结协作,持续发展,曾共同承担一批国家重大重点、973、863等项目,团队成员在“功能化电极界面的研究—从化学修饰到自组装”“电化学发光及其毛细管电泳联用的分析方法研究”及“生物分子识别的分析化学基础研究”的系列创新性基础研究成果分别获得2007年、2009年、2015年国家自然科学二等奖,在“扫描探针显微技术在电化学和生命科学中的基础研究”(2003年)、“功能化电极界面的研究—从化学修饰到自组装的基础研究”(2004年)、“电化学发光、毛细管电泳电化学发光及电化学检测的研究”(2005 年)、“水质自动监测系统关键技术及集成化研究”(2006年)、“模拟生物膜和生物传感器的电化学研究”(2007年)、“生物分子识别与相互作用的分析化学基础研究”(2012年)及“石墨烯材料的制备及其应用研究”(2015 年)的系列创新性研究成果分别获得吉林省科技进步一等奖。 /p p br/ /p
  • ​深圳三思纵横试验机|粉末压实密度仪:解析工作原理与应用领域
    在材料科学、化工、制药等众多领域中,粉末材料的处理与测试是不可或缺的一环。粉末压实密度仪作为一种专用的测试设备,在粉末材料的压实密度测量中发挥着至关重要的作用。本文深圳三思纵横试验机小编将探讨粉末压实密度仪的工作原理、应用领域以及未来发展趋势,大家一起来看下吧。一、粉末压实密度仪的工作原理粉末压实密度仪的工作原理主要基于粉末在受到外力作用下的压实过程。测试时,将一定量的粉末样品置于压实模具中,通过施加压力使粉末颗粒重新排列、相互接触并发生一定的塑性变形,从而达到压实效果。压实密度仪通过测量压实前后粉末的体积变化,并结合样品的质量信息,计算得出粉末的压实密度。二、粉末压实密度仪的应用领域粉末压实密度仪广泛应用于多个领域,尤其在材料科学、化工、制药等行业具有重要地位。1、材料科学领域粉末压实密度仪可用于评估粉末材料的可压性、流动性和成型性能,为材料制备和加工工艺的优化提供数据支持;2、化工领域粉末压实密度仪可用于测定催化剂、吸附剂等粉末材料的压实密度,为反应器的设计和操作提供重要参数;3、制药行业粉末压实密度仪可用于评估药物粉末的堆密度和压实性,为药物制剂的制备和质量控制提供有力保障。三、粉末压实密度仪的未来发展趋势随着科学技术的不断进步和应用需求的日益增长,粉末压实密度仪正朝着更加智能化、高精度和多功能化的方向发展。1、智能化与自动化未来的粉末压实密度仪将更加注重智能化和自动化的发展。通过引入先进的传感器和控制系统,实现测试过程的自动化操作和数据的实时采集、处理与分析。此外,智能化的粉末压实密度仪还将具备自我诊断和维护功能,提高设备的稳定性和可靠性;2、高精度化随着材料科学和制药等领域的不断发展,对粉末压实密度的测量精度要求也越来越高。因此,粉末压实密度仪将不断提高测量精度,采用更先进的测量技术和算法,以满足更精细的测试需求;3、多功能化除了基本的压实密度测量功能外,未来的粉末压实密度仪还将具备更多的测试功能。如可同时测量粉末的粒度分布、比表面积、孔隙率等参数,为研究者提供更全面的材料性能信息。此外,还可通过集成其他测试模块,实现一站式测试服务,提高测试效率和便捷性;4、绿色化与环保在环保意识日益增强的背景下,粉末压实密度仪的绿色化设计将成为未来的发展趋势。通过优化设备结构、采用环保材料和节能技术,降低设备在运行过程中的能耗和排放,实现可持续发展。三思纵横粉末压实密度仪作为粉末材料测试领域的重要工具,其原理、应用和发展趋势均体现了科技进步和市场需求的推动。随着技术的不断创新和市场的不断拓展,三思纵横粉末压实密度仪将在更多领域发挥重要作用,为材料性能评估、质量控制以及工艺优化提供有力支持。未来,我们可以期待三思纵横粉末压实密度仪在性能、功能和智能化方面取得更大的突破,为科研和工业生产带来更多便利和价值。
  • 仪器论坛线上活动第三期:原子吸收之塞曼吸收原理、参数设置(火热讨论中!)
    岁月荏苒,转瞬之间,又至盛夏季节。 论坛的线上活动不因时间的流逝而停滞,我们陆续推出第一期与第二期后,第三期的线上活动——“塞曼吸收之原理、参数设置”也如期来临,本期我们邀请了论坛专家anping老师主讲。 anping老师从1976年起在地质部门从事分析仪器维修工作,工作年限已经达到32年之久,他经验丰富,知识渊博,涉及到光谱领域的各个方面;其主要擅长原子吸收、紫外可见分光光度计、荧光分光光度计、液相色谱、氨基酸分析仪等的维修工作。 anping老师首先举例分析Z-2000的光学系统,再详细阐述了塞曼方式扣除背景的简单原理和特点;anping老师在此次的线上活动的讲座中重点从灯电流的设置方法、狭缝的设定原则、时间常数的选择等仪器条件和参数设置的注意事项。图文并貌,让人一目了然。 如果您对塞曼吸收这个方面感兴趣,或者您正在从事或研究这个方面的,欢迎您参与讨论。anping老师和论坛的其他专业人士将与您一起交流心得、切磋观点、分享经验。(参与讨论连接地址:http://www.instrument.com.cn/bbs/shtml/20080612/1306411/) 相关活动连接: 第一期线上活动:http://www.instrument.com.cn/bbs/shtml/20080407/1214319/(气路系统  主讲:水中月) 第二期线上活动:http://www.instrument.com.cn/bbs/shtml/20080513/1260791/(华山论剑之能谱篇主讲人:德国工兵) 第三期线上活动:http://www.instrument.com.cn/bbs/shtml/20080612/1306411/(原子吸收之塞曼吸收原理、参数设置 主讲:anping) 后记:第四期的线上活动anping老师将针对塞曼吸收的常见故障进行分析。
  • 科学家提出一种单质新原理开关器件 为研发海量三维存储芯片提供新方案
    中国科学院上海微系统与信息技术研究所宋志棠、朱敏研究团队在集成电路存储器研究领域获重大进展,成功研制出一种单质新原理开关器件,为海量三维存储芯片的研发提供了新方案。12月10日,这项成果发表于《科学》。  集成电路是我国的战略性、基础性和先导性产业,其中存储芯片是集成电路的三大芯片之一,直接关系国家的信息安全。然而,现有主流存储器——内存和闪存,不能兼具高速与高密度特性,难以满足指数型增长的数据存储需要,急需发展下一代海量高速存储技术。三维相变存储器是目前成熟的新型存储技术,其核心是两端开关单元和存储单元,然而,商用的开关单元组分复杂,通常含有毒性元素,严重制约了三维相变存储器在纳米尺度的微缩以及存储密度的进一步提升。  针对以上问题,宋志棠、朱敏与合作者提出了一种单质新原理开关器件,该器件通过单质Te与电极产生的高肖特基势垒降低了器件在关态的漏电流(亚微安量级);利用单质Te晶态(半导体)到液态(类金属)纳秒级高速转变,产生类金属导通的大开态电流(亚毫安量级),驱动相变存储单元。单质Te开关器件基于晶态—液态新型开关机理,与传统晶体管等完全不同,是集成电路全新开关器件。单质Te具有原子级组分均一性,能与TiN形成完美界面,使二端器件具有一致性与稳定性,并可极度微缩,为海量三维存储芯片的研发提供了新方案。  据悉,该单质新原理器件为我国首次发明,打破了外国公司的专利壁垒,为我国自主高密度三维存储器的研发奠定了坚实的基础。  意大利国家研究委员会微电子和微系统所教授Raffaella Calarco同期在《科学》上发表评论文章,认为该研究“取得的成果是前所未有的,为实现晶态单质开关器件提供了稳健的方法,此单质开关为3D Xpoint架构提供了新视角”。  相关论文信息:https://doi.org/10.1126/science.abi6332
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • ​深圳三思纵横试验机|持久蠕变试验机:分析工作原理及应用领域
    在材料科学研究领域,持久蠕变试验机作为一种重要的测试设备,对于评估材料在长时间受力作用下的变形行为具有不可替代的作用。今天,跟着深圳三思纵横试验机小编一起来看下持久蠕变试验机的工作原理、应用领域以及未来发展趋势。一、持久蠕变试验机的工作原理持久蠕变试验机主要用于模拟材料在长时间恒定或变化应力作用下的蠕变行为。蠕变是指固体材料在应力作用下,随时间发生的缓慢而连续的变形现象。持久蠕变试验机通过施加恒定的或变化的载荷,以及控制温度、湿度等环境因素,来模拟实际工作环境中的材料受力情况。试验机通过高精度传感器和数据采集系统,实时记录材料的变形数据,为材料性能评估提供可靠的依据。二、持久蠕变试验机的应用领域1、金属材料研究:持久蠕变试验机在金属材料研究领域具有广泛应用,如钢铁、铝合金、钛合金等。通过对金属材料进行持久蠕变测试,可以评估其在高温、高压等恶劣环境下的性能表现,为航空航天、能源、交通等领域提供关键材料性能数据;2、高分子材料测试:高分子材料如塑料、橡胶、纤维等,在长时间受力作用下容易发生蠕变现象。持久蠕变试验机能够模拟这些材料在实际应用中的受力情况,评估其蠕变性能,为产品设计、生产和使用提供重要参考;3、复合材料性能评估:复合材料由于具有优异的力学性能和多功能性,在航空航天、汽车、建筑等领域得到广泛应用。持久蠕变试验机可用于评估复合材料在不同应力状态下的蠕变性能,为复合材料的优化设计和应用提供有力支持。三、持久蠕变试验机的未来发展趋势1、智能化与自动化:随着人工智能和自动化技术的不断发展,持久蠕变试验机将实现更高级别的智能化和自动化。通过引入智能控制系统和机器人技术,试验机能够实现更精确的试验操作、更高效的数据处理以及更便捷的远程监控,提高试验的准确性和效率;2、多功能化与集成化:未来的持久蠕变试验机将更加注重多功能化和集成化设计。通过集成多种测试功能,如拉伸、压缩、弯曲等,以及实现多种环境因素的模拟和控制,试验机将能够满足更多种类的材料测试需求,提高设备的利用率和灵活性;3、高精度与高可靠性:随着材料科学研究对测试精度的要求不断提高,持久蠕变试验机将致力于实现更高的测试精度和可靠性。通过优化机械结构、提高传感器精度、加强设备校准和维护等措施,试验机将能够提供更加准确、可靠的测试数据,为材料科学研究提供有力支持。四、结论综上所述,持久蠕变试验机在材料科学研究领域具有广泛的应用前景和重要的价值。随着技术的不断进步和市场的不断发展,相信未来持久蠕变试验机将在材料性能测试领域发挥更加重要的作用。
  • 阿蛋学仪器 | 色谱分离的原理 So Easy !
    广州绿百草推出全新连载短篇小说【阿蛋学仪器】, 不定期的跟大家讲述关于学渣阿蛋在工作后不得不学习仪器知识的苦逼经历。夸张的剧情下都是以现实为原型,记得准时关注哦!夏天的风正暖暖吹过,穿过头发穿过耳朵.........话说在那天气晴朗万里无云的某个周末,正在抠着大脚丫吃着冰西瓜思考人生意义的胖##突然接到领导的一个任务。“喂。小胖呀~ 上头下了个任务,要拍一个化学知识视频,我看你一向最受学生欢迎,就随便摆弄一下吧。课题已经帮你选好了,色谱分析原理。”“额,不不不,虽然为了科学教育的发展我上刀山下火海都在所不辞,但是......”“别啰嗦,就这么定了。告诉你啊,给我做的好好的,不然你今年的考评....88”嘟嘟嘟。。。胖##现在已经无法继续好好玩耍了,学生喜欢他都是因为他风流一趟玉树临风知识渊博心地善良从不让人挂科呀~真是。。。冷冷清清凄凄惨惨戚戚呀~内心再抗拒,生活还是要继续的。胖##叫来了以前跟他一起打LOL的阿蛋,浑浑噩噩迷迷糊糊想了三天三夜的剧本,终于开拍了。( 导演和其它演员的召唤,这里就不详细说啦哈! )导演:色谱分析原理So Easy 剧组 Action!!!场景预设 ——色谱柱:为一间双门房子,一门可进,一门可出。分析的样品:胖##,高大威猛略胖。阿蛋,形象气质佳小明星(剧情需求,大家多多包涵,少吐些。)Part 1 —— 反相柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:众美女都喜欢帅哥,不断有人拉阿蛋的手并要求合影签名。胖##由于高大威猛,也有部分小萝莉喜欢,但是还是比阿蛋少,走的自然比阿蛋快。结果胖##和阿蛋的距离越来越远,出门的时候,已经分离的很好了。分离度3.0,柱效15万/m。反相柱分离注意事项:1)不可用于分离帅得离谱的人(非极性太强的物质),会造成美女互相踩伤践踏拥挤的现象,造成柱堵塞,柱压升高;心脏不好的美女会由于过于激动而休克,甚至兴奋而死,造成柱子过早老化,降低柱效。另外,还会造成吸附现象,出峰时间太久甚至不出峰。2)不可用于分离过于猥琐丑陋可怕的人(极性太强的物质),会导致美女流失,造成柱效下降,出峰时间太快,影响分离效果。不过这时有个色谱柱再生方法可以回复柱效,就说“牛掰了”的鞋正挥泪大甩卖,美女将迅速赶回,恢复柱效!Part 2 —— 正相柱分析原理屋子里有一大群男子,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:阿蛋由于太帅招人嫉妒率先被赶出来。胖##被同胞惺惺相惜,留下来吃饭唱K看电影,最后才依依不舍的含泪送别。分离度2.8,柱效13万/m。正相柱分离注意事项:并不适用于分离Gay男(无保留物质)。Part 3 —— 体积排阻色谱柱分析原理屋子里面变成了溶洞效果,溶洞里的洞有大有小,非常好玩。胖##和阿蛋从一个门进入,穿过溶洞,从另一个门出来。结果:本以为阿蛋个头小灵活,会早点爬出来,谁知是体积庞大的胖##先出来啦。因为两人一钻溶洞,便仿佛回到了童年,逮着洞就想钻。阿蛋个子小,钻来钻去玩得不亦乐乎。而胖##在意思到自己已非3岁的小胖胖后,害怕被小洞卡住而崴了,只好作罢,沿大路走了出来,扼腕叹息“时光蹉跎,青春少年已不复!”Part 4 —— 离子对色谱柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。胖##痛苦回忆:美女都喜欢帅哥,不断有人拉住阿蛋吟诗作对自拍萌萌哒,拉胖##的仅有几个发育不全的小萝莉。结果胖##和阿蛋渐行渐远。。。胖##对策:往事不堪回首,所以第二天再过这间屋子的时候,带上了他的必杀技——萌萌哒小鲜肉胖小子。结果:胖##抱着胖小子和阿蛋一起穿过屋子,美女们发现居然还有个小鲜肉,纷纷过来捏捏小脸蛋。“美女,敢吃青椒吗?” 胖小子搭配美女的功夫一点也不含糊呢。胖##色眯眯的看着围着的众美女,美其名曰为胖小子报仇,把美女的脸蛋一一捏了个编。直到胖小子微怒言 “爸比,我饿了!” ,才恋恋不舍的抱起小胖,发话 “最后再捏一遍!......” 阿蛋在门口,秒倒!Part 4 拍摄花絮 ——1)观众问:美女为什么喜欢小鲜肉抛弃阿蛋呢? 回复:现在流行小鲜肉。另外,女人总是有母爱的,这是与生俱来的本能,所以此处美女年龄要大些。呵呵。2)拍完这段以后,导演“卡”了N次。因为胖小子被捏后没有表现出天真烂漫可爱的样子,反而哭了N次,最终拍得胖小子又累又饿又痛才终被导演放行。3)Case结束时,镜头正面是胖##得意而归的表情,远端发现众美女一脸哀怨的正在揉脸,忿忿曰“死胖子,手够狠啊!̷�!”By the way, 这次拍摄的视频非常受欢迎,胖##终于又能在领导的眼皮底下好好思考人生了!想知道阿蛋后续又有怎样的遭遇?记得持续关注广州绿百草微信公众号~我们会不定期推出续集哦~关注广州绿百草微信公众号,获取更多资讯!
  • 第三届微流控细胞分析学术报告会圆满落幕——新原理、新技术未来可期
    2021年9月29日,为期两天的第三届微流控细胞分析学术报告会在北京中国国际展览中心(天竺新馆)圆满落幕。本届论坛由中国分析测试协会和清华大学化学系联合举办,旨在为从事相关领域专家学者、科研人员等提供多学科交叉学术交流平台。本届会议,共计20余位资深专家学者就微流控细胞分析领域的最新科研成果分别作精彩报告!会议首日,10余位专家就器官模拟与细胞代谢分析等领域进行分享探讨(点击查看首日精彩报告:微流控技术大有可为)。会议次日,7位专家学者分别就微流控新原理、新技术等方向带来精彩主题报告,详情如下:报告人:南京大学 李仲秋副研究员报告题目:《生物传感和能源转化的纳流控器件》李仲秋副研究员报道了各类纳流控器件应用于不同的材料与生物的成果,对比说明了纳流控器件之于传统器件在性能上的优势,并提出了纳米通道中分子检测方法的一般模型。报告人:南方科技大学 蒋兴宇教授报告题目:《微流控-液态金属的细胞调控与分析》蒋兴宇教授介绍了用微流控芯片来提升细胞分析检测性能的系列方法与各类应用,此外还着重介绍了结合微流控芯片的金属高分子导体(MPC),拓展了微流控芯片研究的新思路。报告人:北京工业大学 汪夏燕教授报告题目:《基于超薄可控温微坑阵列芯片的单细胞胞内递送》汪夏燕教授介绍了一整套单细胞操作的基本流程,包括对细胞的捕获、固定到探针递送等步骤,结合三光路显微镜成像技术,能有效实现对单个细胞的精准检测研究。报告人:中国农业大学 林建涵教授报告题目:《用于病原微生物快速检测的微流控生物传感器研究》林建涵教授提出了食源性致病微生物检测的重要性,并针对此问题提出了免疫磁珠分选的方法,实现了对目标微生物的高通量检测;此外还针对提升检测灵敏度介绍了电化学生物传感器等有效新型分析方法。报告人:清华大学 梁琼麟教授报告题目:《药物分析“芯”方法》梁琼麟教授介绍了建立“芯片药物实验室”的基本思路,并基于此设计了一系列的芯片器官与仿生材料,以物理结构重现、细胞结构重现和器官功能重现为目标,完成了肾小球模拟的重要工作。报告人: Chinese Chemical Letters编辑部 郭焕芳副主编报告题目:《中国化学快报进展》郭焕芳副主编介绍了CCL杂志的创办理念与该期刊目前取得的优异成绩,并呼吁各位学者在撰写高水平论文的同时,保持学术端正。报告人:华中农业大学 何子怡副研究员报告题目:《微流控芯片质谱联用细胞分析仪器的研制与应用》何子怡副研究员通过总结传统芯片液滴产生的模式,提出了基于声控产生液滴的新型方法,兼备了仪器的便携性与实验的可控性,为芯片液滴技术发展提供了新的思路。报告环节过后,清华大学林金明教授就闭幕式致辞。清华大学林金明教授闭幕式致辞林金明教授总结了为期两天的专家报告内容,为各位从事微流控生命分析的学者们提出了期许,希望大家铭记该会议的追求创新的精神,共同推动中国微流控分析领域更上一层楼。后记放眼未来,林金明教授认为微流控芯片在单细胞分析等领域应用意义重大,将会对生命科学的研究起到巨大的促进作用。与此同时,我们期待各位专家学者在微流控细胞分析技术领域取得更多的突破与创新,也期待在下一届微流控细胞分析技术学术会议能继续为听众带来如此前沿技术的饕餮盛宴。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 技术原理:浊度仪测浊度采用的原理
    浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。水中含有泥土、粉尘、微细有机物、浮游动物和其他微生物等悬浮物和胶体物都可使水中呈现浊度。浊度仪采用90°散射光原理。由光源发出的平行光束通过溶液时,一部分被吸收和散射,另一部分透过溶液。与入射光成90°方向的散射光强度复合雷莱公式:IS = ×I0其中:I0---------------入射光强度;IS----------散射光强度;N-------单位溶液微粒数;V-----------微粒体积;-------入射光波长 ;K-----------系数;在入射光很定条件下,在一定浊度范围内,散射光强度与溶液的浑浊度成正比。上式可 表示为 =K’N (K’为常数) 根据这一公式,可以通过测量水样中微粒的散射光强度来测量水样的浊度。浊度仪分为便携式,台式和在线浊度仪。台式一般用于实验室检测浊度;便携式和在线浊度仪一般用于现场检测。便携式用于不连续的检测,在线浊度仪用于连续,现场浊度监测。它可以实时,连续监测浊度,一般用于自来水厂,污水厂,渠道,水利设施,防洪监测,水池等处。
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 【仪器百科】光合作用测定仪工作原理与参数指标
    工作原理植物光合作用测定仪是一款用于检测植物叶片光合作用的实验仪器,适用于人工气候室、温室、大棚、大田等环境。该测定仪通过多项参数的测量,分析植物在不同环境条件下的光合作用情况。其工作原理主要包括以下几个方面:CO2分析:采用非扩散式红外CO2分析技术,测定空气中的CO2浓度,通过监测植物周围CO2浓度变化,计算出植物的光合作用速率。温湿度测量:利用高精度传感器,测量环境温度、环境湿度、叶室温度、叶室湿度及叶面温度,提供植物生理状态及环境条件的全面信息。光合有效辐射(PAR):通过光传感器测定植物接收到的光合有效辐射强度,了解光照对植物光合作用的影响。气体交换测量:通过测量气孔导度、蒸腾速率及胞间CO2浓度,评估植物叶片的气体交换效率和水分利用情况。通过上述测量数据,光合作用测定仪可以计算出植物的光合速率(Pn)、水分利用率(WUE)、呼吸速率(Rd)及蒸腾比(TR)等重要生理参数,为植物生长生理、光合生理及胁迫生理研究提供可靠的数据支持。了解更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C561710.html参数指标1、空气CO2浓度测量技术:非扩散式红外CO2分析测量范围:0-3000 μmol/mol (ppm)分辨率:0.0005 ppm误差:≤ 3% FS2、环境温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃3、环境湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH4、叶室温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃5、叶室湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH6、叶面温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃7、大气压力测量范围:30-110 kPa分辨率:0.01 kPa误差:≤ ±0.06 kPa8、光合有效辐射(PAR)测量范围:0-3000 μmol/(m² s)分辨率:0.001 μmol/(m² s)误差:≤ ±5 μmol/(m² s)9、光合速率(Pn)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)10、气孔导度(Gs)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)11、蒸腾速率(Tr)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)12、胞间CO2浓度(Ci)单位:μmol/mol分辨率:0.001 μmol/mol13、水分利用率(WUE)单位:μmol CO2/mol H₂ O分辨率:0.001 μmol CO2/mol H₂ O14、呼吸速率(Rd)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)15、蒸腾比(TR)单位:μmol H₂ O/mmol CO2分辨率:0.001 μmol H₂ O/mmol CO2植物光合作用测定仪的高精度和多参数测量能力,使其成为农业科研、教学、园艺、草业、林业等领域中不可或缺的重要工具。农业科研植物光合作用测定仪在农业科研中用于评估作物光合作用效率,筛选高效能品种,优化栽培技术,并研究环境变化对作物生长的影响,从而提升农业生产力。教学在教学中,该仪器为植物生理学和生态学课程提供实验平台,帮助学生理解植物光合作用原理,培养科研能力和实验技能,通过多参数测量了解植物在不同环境下的生理响应。园艺园艺领域利用该仪器监测花卉和观赏植物的光合作用,调节温室环境,优化生长状态。它还能帮助选育具观赏价值和抗逆性的品种,并评估病虫害防治效果。草业在草业中,该仪器用于评估牧草生长状况和生产力,研究不同品种的适应性和生产潜力。还可用于草地改良和生态修复,指导草地管理和保护措施。林业林业领域通过测定仪监测树木光合作用,评估森林健康状况和碳吸收能力。它提供树木生理响应数据,帮助制定森林管理策略,并研究树木对环境胁迫的适应机制,指导林木品种选育和改良。植物光合作用测定仪在以上各领域中提供重要技术支持,促进了科研进步和产业发展。
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 济南微纳创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”完成验收
    2013年12月11日,山东省济南市科技局邀请有关专家组成验收组,对济南微纳颗粒仪器股份有限公司承担的科技型中小企业技术创新基金项目“基于动态光散射原理的光子相关纳米粒度仪”进行了验收。验收期间,专家组听取了有关报告,审查了相关资料,对项目开发的Winner801光子相关纳米粒度仪进行了现场考察,经山东省计量科学研究院测试,该项目主要性能指标优于粒度分析国家标准要求,用户使用效果良好。最终经质询、评议,鉴定委员会认为该项目成果整体达到国际先进水平。此次项目验收评定,是对微纳仪器综合性能的肯定,是国家权威部门对微纳多年来不懈努力所取得成绩的认可。济南微纳将不负所望,秉承自身作为中国颗粒测试技术的领航者的职责,为广大用户提供优异的仪器与满意的服务,继续为中国粒度测试技术赶超世界一流水平做出不懈努力。微纳销售热线0531-88873312
  • 一文了解原子层沉积(ALD)技术的原理与特点
    什么是原子层沉积技术原子层沉积技术(ALD)是一种一层一层原子级生长的薄膜制备技术。理想的 ALD 生长过程,通过选择性交替,把不同的前驱体暴露于基片的表面,在表面化学吸附并反应形成沉积薄膜。 20 世纪 60 年代,前苏联的科学家对多层 ALD 涂层工艺之前的技术(与单原子层或双原子层的气相生长和分析相关)进行了研究。后来,芬兰科学家独立开发出一种多循环涂层技术(1974年,由 Tuomo Suntola 教授申请专利)。在俄罗斯,它过去和现在都被称为分子层沉积,而在芬兰,它被称为原子层外延。后来更名为更通用的术语“原子层沉积”,而术语“原子层外延”现在保留用于(高温)外延 ALD。 Part 01.原子层沉积技术基本原理 一个完整的 ALD 生长循环可以分为四个步骤: 1.脉冲第一种前驱体暴露于基片表面,同时在基片表面对第一种前驱体进行化学吸附2.惰性载气吹走剩余的没有反应的前驱体3.脉冲第二种前驱体在表面进行化学反应,得到需要的薄膜材料4.惰性载气吹走剩余的前驱体与反应副产物 原子层沉积( ALD )原理图示 涂层的层数(厚度)可以简单地通过设置连续脉冲的数量来确定。蒸气不会在表面上凝结,因为多余的蒸气在前驱体脉冲之间使用氮气吹扫被排出。这意味着每次脉冲后的涂层会自我限制为一个单层,并且允许其以原子精度涂覆复杂的形状。如果是多孔材料,内部的涂层厚度将与其表面相同!因此,ALD 有着越来越广泛的应用。 Part 02. 原子层沉积技术案例展示 原子层沉积通常涉及 4 个步骤的循环,根据需要重复多次以达到所需的涂层厚度。在生长过程中,表面交替暴露于两种互补的化学前驱体。在这种情况下,将每种前驱体单独送入反应器中。 下文以包覆 Al2O3 为例,使用第一前驱体 Al(CH3)3(三甲基铝,TMA)和第二前驱体 H2O 或氧等离子体进行原子层沉积,详细过程如下:反应过程图示 在每个周期中,执行以下步骤: 01 第一前驱体 TMA 的流动,其吸附在表面上的 OH 基团上并与其反应。通过正确选择前驱体和参数,该反应是自限性的。 Al(CH3)3 + OH = O-Al-(CH3)2 + CH4 02使用 N2 吹扫去除剩余的 Al(CH3)3 和 CH4 03第二前驱体(水或氧气)的流动。H2O(热 ALD)或氧等离子体自由基(等离子体 ALD)的反应会氧化表面并去除表面配体。这种反应也是自限性的。 O-Al-(CH3)2 + H2O = O-Al-OH(2) + (O)2-Al-CH3 + CH4 04使用 N2 吹扫去除剩余的 H2O 和 CH4,继续步骤 1。 由于每个曝光步骤,表面位点饱和为一个单层。一旦表面饱和,由于前驱体化学和工艺条件,就不会发生进一步的反应。 为了防止前驱体在表面以外的任何地方发生反应,从而导致化学气相沉积(CVD),必须通过氮气吹扫将各个步骤分开。 Part 03. 原子层沉积技术的优点 由于原子层沉积技术,与表面形成共价键,有时甚至渗透(聚合物),因此具有出色的附着力,具有低缺陷密度,增强了安全性,易于操作且可扩展,无需超高真空等特点,具有以下优点: 厚度可控且均匀通过控制沉积循环次数,可以实现亚纳米级精度的薄膜厚度控制,具有优异的重复性。大面积厚度均匀,甚至超过米尺寸。 涂层表面光滑完美的 3D共形性和 100% 阶梯覆盖:在平坦、内部多孔和颗粒周围样品上形成均匀光滑的涂层,涂层的粗糙度非常低,并且完全遵循基材的曲率。该涂层甚至可以生长在基材上的灰尘颗粒下方,从而防止出现针孔。 ALD 涂层的完美台阶覆盖性 适用多类型材料所有类型的物体都可以进行涂层:晶圆、3D 零件、薄膜卷、多孔材料,甚至是从纳米到米尺寸的粉末。且适用于敏感基材的温和沉积工艺,通常不需要等离子体。 可定制材料特性适用于氧化物、氮化物、金属、半导体等的标准且易于复制的配方,可以通过三明治、异质结构、纳米层压材料、混合氧化物、梯度层和掺杂的数字控制来定制材料特性。 宽工艺窗口,且可批量生产对温度或前驱体剂量变化不敏感,易于批量扩展,可以一次性堆叠和涂覆许多基材,并具有完美的涂层厚度均匀性。
  • TA仪器2018年度巨献——流变学原理与前沿应用大师课程
    本次为期两天的流变大师课程旨在为化学家,石油工程师,生物医学研究者,药剂师以及材料工程师介绍流变基础理论知识,操作原理及在实际问题中的应用。课程将涵盖流变现象里的分子及微观结构基础包括聚合物,悬浮体,表面活性剂及生物高聚物网络。我们很荣幸地邀请到了大师中的大师-世界流变学权威、界面流变创始人gerald g. fuller院士、全球权威期刊polymer engineering and science编委、以及美国工程院院士christopher macosko教授亲自来到中国开授此次大师课程。同时,两位杰出的青年流变学家也将参与大师课程的部分授课内容。在此次大师课程中,两位世界级顶尖流变学家将从梳理基于聚合物、胶体、自组装表面活性剂、生物大分子凝胶等流变现象入手,使得参加课程者通过学习典型实际案例掌握流变学基本原理、定量表征技术、实验数据提炼和分析方法。 大师课程授课时间与地点:时间: 2018年4月9日-10日地点:上海市新园华美达广场酒店b楼3层兴园厅(上海市漕宝路509号b楼3层) 日程安排2018年4月9日(周一) 8:00学员登记8:30流变学介绍:主要现象,材料性能christopher macosko 院士9:30线性黏弹性amy shen 教授茶歇11:00线性黏弹性微观结构基础gerald g fuller 院士午餐13:00线性黏弹性课堂实践乔秀颖 博士13:30般粘性流体christopher macosko 院士14:30剪切流变仪christopher macosko 院士课间休息16:00剪切变稀,剪切增稠的微观结构基础gerald g fuller 院士17:00休会 2018年4月10日(周二)8:30非线性黏弹性christopher macosko 院士9:30拉伸流变仪gerald g fuller 院士茶歇11:00非线性现象的微观结构基础gerald g fuller 院士午餐及教员答疑13:00应力,絮凝悬浮体christopher macosko 院士14:00界面流变学gerald g fuller 院士课间休息15:30凝胶及实例分析christopher macosko 院士gerald g fuller 院士16:30微流变测量amy shen 教授17:30课程结束 授课专家(排名不分先后) gerald fuller, 斯坦福大学化学工程系fletcher jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。fuller教授曾获得流变学会宾汉奖章,并且是国家工程学院的院士。christopher w. macosko, 明尼苏达大学化学工程与材料科学系教授,国家工程学院院士。组织教学并著有广为使用的流变学教材。曾协助一些商用流变仪及大量测试方法的开发。他的团队目前致力于聚合物共混物,聚合物纳米复合材料及反应体系的流变学研究。曾获aiche及spe的奖项及流变学会宾汉奖章。 amy shen,日本冲绳科学技术研究所微流体/生物流体/纳流体部门教授,2014 年就职于日本之前曾于华盛顿大学担任机械工程系教员。shen教授的研究主要聚焦于复杂流体的微流体,粘弹性及小尺度惯性弹性的不稳定性,这些研究在纳米技术及生物技术方面得到应用。amy shen最近还被流变学学会选为学术委员。2003年荣获ralph e. powe junior faculty enhancement award奖项,2007年获得国家自然科学基金奖,2013获得富布莱特学者奖。 乔秀颖, 上海交通大学材料科学与工程学院副研究员,中国科学院长春应用化学研究所博士,曾于斯坦福大学,美国阿克伦大学,德国马克斯普朗克胶体与界面研究所进行博士后及国际合作研究项目。目前的研究方向包括智能及功能性高分子复合材料及纳米复合材料,聚合物融体流变学,悬浮体及表面活性剂。曾获得洪堡经验研究学者成员奖,并发表了70多篇文章及10多篇授权专利。 大师课程参加对象及相关费用1. 免费开放给拥有ta流变仪的高校及研究院所学生,研究生及以上学历(每个实验室2人免费名额)2. 企业界听众,酌收800元/2天华美达酒店自助午餐及茶歇费用。3. 课程人数:由于课程内容需要,仅限100名参会者。席位有限, 先到先得!
  • 科众精密仪器-光学接触角测量仪原理
    科众精密-光学接触角测量仪原理 接触角是液体在液固气三态 交接处平衡时所形成的角度,液滴的形状由的表面张力所决定,θ 是固体被液 体湿润的量化指标,但它同时也能用于表面 处理和表面洁净的质量管控,表面张力 液体中的分子受到各个方向 相等的吸引力,但在液体表面的分子受到液体分子的拉力会大于气体分子的拉力,所以 液体就会向内收缩,这种自发性的收缩称之为表面张力 γ。对于清洗性,湿润度,乳化作用和其它表面相关性质而言,γ 是一个相当敏感的指标 悬垂液滴量测法悬垂液滴测量能提供 一个非常简便的方法来量测液体的表面张力 (气液接口) 和两个液体之间的接口张力 (液液接口) ,在悬垂液滴量测法中,表面张力和界面张力值的计算是经由分析悬吊在滴管顶端 的液滴的形状而来,接触角分析可依据液滴的影像做 杨氏议程计算 表面张力和接口张力。这项技巧非常的准确,而且在不同的温度和压力下也可以量测。 前进角与后退角使用在固体基板上的固着液滴可以得到静态的接触角。另外有一种量测方式称之为动态接触角,如果液固气三态接触的边界是处于移动状态,所形成的角度称之为前进角与后退角,这个角度的求取是由液滴形状的来决定。另外,固体样品的表面张力无法被直接量测,要求取这个值,只要两种以上的已知液体, 就可求得固体表面的临界表。以下是通过接触角测量仪测量单位济南大学材料学院设备序号5设备名称接触角测定仪 数量1调研产品(品牌型号)科众KZS-20共性参数1. 接触角测量范围:0~180°,接触角测量分辨率:±0.01°,测量精度±0.1°。2. 表界面张力测量范围和精度:0.01~2000mN/m,分辨率:±0.01mN/m。3. 光学系统:变焦镜头(放大倍率≧4.5倍),前置长焦透镜,通光量可调节。4. 高清晰度高速CCD,拍摄速度可达1220张图像/S,像素最高可达2048 x 1088。5. 光源:软件可调连续光强且无滞后作用的光源。6. 注射体积、速度可以软件进行控制;注射单元精度≤0.1uL;注射液体既可通过软件,亦可通过手动按钮控制液体注射。7. 注射单元调节:注射单元可进行X-、Y-、Z-轴准确调节;8. 整个注射单元支架可以旋转90°调整。9. 滚动角测量:自动倾斜台(整机倾斜),可调节倾斜角度范围≥90°,可测量滚动角。10. 接触角拟合方法:宽高法、椭圆法、切线法、L-Y法11. 动态接触角计算:全自动的动态接触角测量,软件控制注射体积、速率、时间,自动计算前进角和后退角。12. 表面自由能计算:9种可选模型计算固体表面自由能及其分量,分析粘附功曲线、润湿曲线。13. 具有环境控温功能,进行变温测试(0-110 oC), 分辨率0.1K。14. 品牌计算机: i7 4790 /8GB内存/1TB(7200转)硬盘/2G独立显卡/19英寸液晶显示器/DVD刻录光驱。15. 必备易耗品(供应商根据投标产品功能提供)16. 另配附件,要求:进口微量注射器3个,备用不锈钢针6根,一次性针头100根、适合仪器功率的稳压电源(190-250V)1台、配置钢木结构实验台( C型钢架、钢厚≥1.5mm,长2m、宽0.75m,板材采用三聚氰胺板,铝合金拉手,铰链采用国际五金标准,抽屉三阶式静音滑轨、抽屉负重≥25KG,含专用线盒,可安装5孔或6孔插座,优质地脚)。17. 售后服务:自安装调试验收完毕后之日起24个月内免费保修;每年提供至少一次的免费巡检。
  • 动态热机械分析仪原理简介
    p   动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。 br/ /p p   DMA仪器的结构及重要部件如图所示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title=" DMA结构.jpg" width=" 400" height=" 238" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 238px " / /p p style=" text-align: center " strong DMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构) /strong /p p style=" text-align: center " 1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器 /p p   DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。 /p p strong 驱动马达 /strong —以设定的频率、力或位移驱动驱动轴 /p p strong 试样夹具 /strong —DMA依据所选用夹具的不同,可采用如图所示的不同测量模式: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title=" DMA测量模式.jpg" width=" 400" height=" 152" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 152px " / /p p style=" text-align: center " strong DMA测量模式 /strong /p p style=" text-align: center " 1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩 /p p strong 炉体 /strong —控制试样服从设定的温度程序 /p p strong 位移传感器 /strong —测量正弦变化的位移的振幅和相位 /p p strong 力传感器 /strong —测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位 /p p strong 刚度、应力、应变、模量、几何因子的概念: /strong /p p   力与位移之比称为刚度。刚度与试样的几何形状有关。 /p p   归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度L sub 0 /sub 的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。 /p p   在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。 /p p   在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title=" DMA-1.jpg" / /p p 可得到 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title=" DMA-2.jpg" / /p p F sub A /sub /L sub A /sub 为刚度。所以测定弹性模量的最终方程为 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title=" DMA-3.jpg" / /p p 模量由刚度乘以几何因子得到。 /p p   各种动态热机械测量模式及几何因子的计算公式见下表: /p p style=" text-align: center " 表1 DMA测量模式及其试样几何因子的计算公式 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title=" DMA测量模式及其试样几何因子的计算公式.jpg" width=" 400" height=" 276" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 276px " / /p p   注:表中b为厚度,w为宽度,l为长度。 /p p strong DMA测试的基本原理: /strong /p p   试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。 /p p   测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。 /p p   DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。 /p p strong 复合模量、储能模量、损耗模量和损耗角的关系: /strong /p p   DMA分析的结果为试样的复合模量M sup * /sup 。复合模量由同相分量M& #39 (或以G& #39 表示,称为储能模量)和异相(相位差π/2)分量M& #39 & #39 (或以G& #39 & #39 表示,称为损耗模量)组成。损耗模量与储能模量之比M& #39 & #39 /M& #39 =tanδ,称为损耗因子(或阻尼因子)。 /p p   高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。 /p p   复合模量M sup * /sup 、储能模量M& #39 、损耗模量M& #39 & #39 和损耗角δ之间的关系可用下图三角形表示: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title=" 复合模量三角形关系.jpg" width=" 400" height=" 191" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 191px " / /p p   储能模量M& #39 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。 /p p   模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。 /p p & nbsp & nbsp 通常可区分3种不同类型的试样行为: /p p 纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。 /p p 纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。 /p p 粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。 /p p & nbsp & nbsp DMA分析的各个物理量列于下表: /p p style=" text-align: center " 表2 DMA物理量汇总 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" align=" center" tbody tr class=" firstRow" td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应力 /span /p /td td width=" 284" style=" border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " σ(t)=σ sub A /sub sinωt=F sub A /sub /Asinωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 应变 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " ε(t)=ε sub A /sub sin(ωt+δ)=L sub A /sub /L sub 0 /sub sin(ωt+δ) /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 模量值 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " |M*|=σ sub A /sub /ε sub A /sub /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 储能模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’(ω)=σ sub A /sub /ε sub A /sub cosδ /span /p /td /tr tr td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗模量 /span /p /td td width=" 284" style=" border-width: initial border-style: none border-color: initial padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " M’’(ω)=σ sub A /sub /ε sub A /sub sinδ /span /p /td /tr tr td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:宋体" 损耗因子 /span /p /td td width=" 284" style=" border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px " p style=" text-align:center" span style=" font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " tanδ=M’’(ω)/M’(ω) /span /p /td /tr /tbody /table p strong 温度-频率等效原理 /strong /p p   如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。 /p p   运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。 /p p strong 典型的DMA测量曲线: /strong /p p   DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。 /p p   动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。 /p p   等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G& #39 ,损耗模量G& #39 & #39 ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。 /p
  • 泡罩药板密封性测试仪的工作原理
    泡罩药板密封性测试仪的工作原理在医药包装、食品封装等领域,产品的密封性能直接关系到其保质期、安全性和使用效果。因此,对包装材料的密封性进行准确、高效的检测显得尤为重要。泡罩药板密封性测试仪,作为一种采用色水法原理的检测设备,凭借其直观、可靠的检测方式,在行业内得到了广泛应用。本文将详细介绍基于色水法原理的泡罩药板密封性测试仪的工作原理、操作流程及其在评估试样密封性能中的关键作用。一、工作原理泡罩药板密封性测试仪MFY-05S通过模拟包装物在特定条件下的压力变化,检测其密封完整性。其核心在于利用色水(常选用亚甲基蓝溶液以增强观察效果)作为介质,在真空室内形成一定深度的水层。当测试样品置于该水层之上,并对真空室进行抽真空操作时,样品内外形成显著的压力差。这一压力差促使空气(如果存在泄漏通道)从样品内部通过潜在泄漏点逸出,并在释放真空后,通过观察样品形状的恢复情况及色水是否渗入样品内部,来评估其密封性能。二、济南三泉中石的MFY-05S泡罩药板密封性测试仪操作流程准备阶段:首先,向真空室中注入适量的清水,并加入适量的亚甲基蓝溶液,搅拌均匀,使水呈现明显的蓝色,便于后续观察。同时,将待测样品按照测试要求放置在真空室上方的指定位置。抽真空过程:启动真空泵,对真空室进行抽气,直至达到预设的真空度。在此过程中,随着真空度的增加,样品内外压力差逐渐增大,可能存在的微小泄漏通道将被放大,使得空气或气体从样品内部向外逸出。保压与观察:在达到所需真空度后,保持一段时间(根据测试标准设定),以便充分观察样品在压力差作用下的反应。此时,若样品密封良好,则形状基本保持不变,色水不会渗入;若存在泄漏,则可能观察到样品形状发生变化,且色水会沿泄漏路径渗入样品内部。释放真空与评估:释放真空室内的真空状态,恢复至常压。仔细观察样品表面是否有色水渗入痕迹,以及样品形状的恢复情况。根据观察结果,结合测试标准,判定样品的密封性能是否符合要求。三、济南三泉中石的MFY-05S泡罩药板密封性测试仪优势与应用直观性:色水法的应用使得泄漏现象一目了然,无需复杂的数据分析即可快速判断样品的密封性能。高效性:测试过程简单快捷,提高检测效率。广泛适用性:不仅适用于泡罩药板包装,还可用于其他类型包装材料的密封性检测,如瓶盖、软管等。总之,济南三泉中石的MFY-05S泡罩药板密封性测试仪以其独特的色水法原理,为包装材料的密封性检测提供了一种高效、直观且可靠的解决方案。
  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
  • 包装耐压强度测试仪的测试原理解析
    包装耐压强度测试仪的测试原理解析在快速发展的药品、食品及医疗行业中,包装的安全性与可靠性直接关系到产品的质量与消费者的健康。特别是针对输液袋、液态奶包装袋、药品输液袋等液体包装产品,其耐压强度成为衡量包装质量的重要指标之一。为此,济南三泉中石的NLY-05包装耐压强度测试仪应运而生,成为这些行业不可或缺的测试设备,广泛应用于药品、食品生产企业、科研院校、质检机构等多个领域。测试原理解析济南三泉中石的NLY-05包装耐压强度测试仪基于先进的力学测试原理,通过模拟包装在实际运输、储存过程中可能遭受的压力环境,对包装材料的耐压性能进行全面评估。测试过程中,首先将待测样品(如输液袋、液态奶包装袋等)精确装夹在测试仪的两个夹头之间。这两个夹头能够精确控制并施加压力,模拟外部压力对包装的作用。随着测试的进行,位于动夹头上的高精度力值传感器实时采集并记录试验过程中的力值变化。当达到预设的压力值时,测试仪自动进入保压阶段,持续观察包装在恒定压力下的表现。若在整个测试过程中,包装样品未出现破裂、渗漏等现象,则判定为合格;反之,则视为不合格。广泛应用领域食品行业:对于液态食品如牛奶、果汁等的包装袋、纸盒及纸碗,包装耐压强度测试仪能够确保其在运输、储存过程中的安全性,防止因包装破裂导致的食品污染和浪费。医药行业:在药品输液袋、塑料输液瓶、血袋等医疗用品的生产过程中,该测试仪的应用至关重要。它不仅能验证包装的耐压性能,还能通过温度适应性和穿刺部位不渗透性试验,进一步确保医疗用品的安全性和有效性。科研院校与质检机构:作为科研与教学的重要工具,济南三泉中石的NLY-05包装耐压强度测试仪帮助研究人员深入了解包装材料的性能特点,为新材料、新技术的研发提供数据支持。同时,它也是质检机构进行产品认证、市场监管的重要技术手段。
  • 与你共成长 仪课通三周年活动顺利结束!
    仪器信息网讯 2019.1.9-2022.1.9,信立方旗下的在线教育平台,仪课通,已经走过了三年的历程。三年了,仪课通平台和众多学员共同见证了彼此的成长,为了纪念这一里程碑的时刻,“我与仪课通共成长暨仪课通三周年师生联欢会”于2022年1月9日在北京线上线下同步举行。北京大学周江老师、北京化工大学杜振霞老师、清华大学谢桦老师、北京排水集团翟家骥老师现场参加了此次活动。信立方副总经理陈艳凤北京信立方科技发展股份有限公司陈艳凤副总经理开场致辞。终身学习已成为主流观念,而人才是科学仪器和检验检测行业的卡脖子问题,仪课通就是为解决这一问题而生。三年来,仪课通服务的学员人数超过了10万,践行“为梦想而学习”的理念,助力检验检测人员的职业梦想,生根发芽,蓬勃生长。陈总也希望未来各位专家、学员能与仪课通共同成长,实现各自的职业梦想。座谈现场(左二:杜振霞 左三:周江 右二:谢桦 右一:翟家骥)仪课通的发展历程离不开各位专家讲师,产出了一门又一门的优质课程,为行业职业教育的发展及众多学员的职业提升道路做好了铺垫。周江、杜振霞、翟家骥、谢桦四位老师分享了他们和仪课通的合作历程,同时就科学仪器以及检验检测从业人员的职业教育以及职业发展等问题进行了热烈讨论。“就业难 招人难”这一现场的产生与我国职业教育的缺失有很大关系。目前,包括985、211在内的各大高校开始注重职业教育,从检验检测行业的角度来说,除基本原理外,方法开发等工作中更加实用的技能也开始得到重视。除了专业知识以外,独立思考、团队协作、继续学习等也是需要高校对学生进行培养的能力。“检验检测人员职业发展没有前途”也是行业的普遍困惑。职位提升是很重要但是竞争激烈的一条发展道路,而密切关注仪器技术发展、将检验检测工作与所从事的行业深度结合,从而在单位拥有更高话语权也是一条不错的职业发展道路。如对于污水检验员来说,如果既能检测各项指标,又能明白各项指标与工艺之间的关系,那在单位的发展肯定更有前途。仪课通平台针对不同需求,推出了检验检测、实验室管理、认证认可、行业检测等不同维度的课程,助力检测检测人员全方位发展。活动现场,多位学员进行了现场连线,分享了他们在仪课通平台学习的故事,如何一步步实现能力提升和技能进阶。“学霸”任先生在仪课通已经学习了95门课,涉猎检验检测、实验室安全、实验室管理、维护保养等;王女士学习了15门课,现场推荐了“水质检测与分析”这门课,认为全面实用、通俗易懂,对平时工作中遇到的问题有建设性的指导;“新学员”董女士,半年时间就学习了5门课程,带着问题而不仅仅是兴趣来到了仪课通,还参加了线上答疑,学习效果显著;“三年老学员”孙先生给仪课通提了两个非常诚恳的建议。仪课通与各位学员的故事每天都在发生,成为了各位学员工作进阶的好助手,也期待仪课通未来可以帮助更多的学员成长。仪课通项目经理王德智仪课通项目经理王德智分享了“你不知道的仪课通”。100多位专家、近800门课程、10万+学员是仪课通三年的成绩,也是学员对仪课通的信任,未来仪课通将带着这份信任继续前行,为大家创造更多的好课,同时继续提供优质的服务。抽奖环节切蛋糕环节活动现场还穿插了抽奖、游戏、优惠券发放、课程秒杀、专家送祝福、切蛋糕等多个小环节,现场气氛热烈。三年的成绩只代表过去,凡是过往,皆为序曲,希望未来仪课通和专家、学员联手走过下一个三年、五年、十年… …
  • 深大学子使用色谱原理研发出食品安全检测仪
    p   最近在广州举行的第十三届“挑战杯”广东大学生课外学术科技作品竞赛终审决赛上,由深圳大学推荐的“食品安全检测仪”项目获得特等奖,团中央书记处书记傅振邦会见了该项目的研发团队,给予了亲切鼓励。 /p p   食品安全检测仪是由深圳大学的20多名大学生研发出来的,该仪器获得了4项国家专利和1项软件著作权,并已顺利投产。项目领头人张小虎是深圳大学2011级信息工程学院毕业生,目前就读于北京大学深圳研究生院。这个年仅23岁、对新技术有着特殊敏感的大男孩,凭借食品安全检测仪技术创业开办了自己的公司,实现了从技术到应用的转化。 /p p strong 历时两年研发成功 /strong /p p   食品安全检测仪于2011年开始研发,那时张小虎在深圳大学读本科一年级。 /p p   “三鹿奶粉事件,把中国的食品安全问题再一次推向了风口浪尖。短短几年的时间,致病的瘦肉精、毒米、毒面、毒油,为什么问题一再出现?中国的食品安全问题该如何解决?”张小虎说,由于食品中的有毒物质具有多样性和微量性,传统的检测设备不能满足要求,他因此萌发了自主研发一款针对中国食品安全问题的绿色食品安全检测仪器的心思。 /p p   在学校的支持与老师的指导下,张小虎带领深大信息工程学院的20多名大学生开始研发这款化学分析仪器,并一直坚持了两年多的时间。“有一次,有一个不合格的氘灯电源损坏了氘灯,氘灯光源不稳定导致输出的基线数据不稳定。开始我们不知道问题在哪里,因为影响基线稳定的因素很多,我们费了九牛二虎之力才最终定位问题。中途,我们几乎都想放弃了,在老师的鼓励和帮助下,我们还是挺过来了。”张小虎说。 /p p   2013年底,绿色食品安全检测仪研发成功。这个仪器有两个30寸传统电视机叠加起来大小,检测时,食物样品由自动进样器进入设备,被高压泵打入色谱柱,在色谱柱中进行分离,再到达检测器的流通池,经过光电管,用24位高精度AD采集数据,电脑计算出图谱并进行比较分析,实现了一键式全程操作。 /p p   2014年该仪器通过了广东省计量院的测试,并获得了广东省技术监督局颁发的生产许可证,正式投产。 /p p strong 技术上实现多项创新 /strong /p p   这款食品安全检测仪在技术上实现了多项创新,其中用液相色谱原理设计制作更属于国际国内首创。 /p p   张小虎介绍,液相色谱技术由于具有高分辨率、高灵敏度、速度快、色谱柱可反复利用以及流出组分易收集等优点,比传统的基于分光光度法原理的食品安全检测仪灵敏度更高,定性定量分析更准确。“在检测食品中的有毒物质时,我们往往不知道有毒物质是什么,这时我们就要利用大数据的图谱分析方法,通过工作量的图谱在几千张,人工读图要花费很多时间。而我们利用自己编写的MapReduce来处理图谱数据,使用计算机代替人工大量读图。” /p p   食品安全检测仪目前已获得了4项国家专利和1项软件著作权。其中一项专利技术“双流通池系统”,在不降低性能的同时可大幅度降低系统成本。“这种双系统特别适用于那些要检测大量的,相同类型的样品,比如食品的原料检测等。” /p p   项目的开发成功让张小虎有了创业的冲动,他迫切希望能将技术予以应用,从而将技术的价值最大化。在父母的支持下,他与伙伴于2012年12月6日成立了“通用深圳仪器公司”,同时他还被聘请为深圳市分析测试协会委员。 /p p   而这款针对中国食品安全问题的绿色食品安全检测仪器投放市场后也颇受青睐,目前已拥有广州饲料添加剂厂、佛山富维生物饲料有限公司、广州格拉姆生物科技有限公司等几十家饲料和生物制品企业“客户”。 /p p strong 用高科技创业成功概率大 /strong /p p   2014年10月,张小虎被北京大学深圳研究生院录取为研究生,继续着他的学业,他的导师亦非常支持他的项目。而他的企业,从原来的3个人发展到现在的16个人,几乎都是青春勃发的大学生,其中还有一个麻省理工学院的博士。 /p p   “从小到大,我都希望能成为一个通过自己努力实现个人梦想、掌控自己生活的人。小到成功拆装一个玩具、读完一本喜欢的书籍,大到选择自己热爱的专业、做出几项发明专利、创办自己的公司,很幸运的是,我正按照自己的人生规划,如愿地逐步实现自己的人生目标。每当实现一个目标,我都有深深的满足感和成就感。”张小虎说,尤其当自己创办的公司做出了对人们生活质量有所促进的产品的时候,“我感觉自己的成就感不仅来自于实现个人梦想、掌控自己的生活,而更大的来自于自己对于社会的价值和意义。” /p p   对于未来,张小虎充满了信心:“食品安全检测设备的市场很大,全国有大小近百家生产企业,但他们用的技术大都是分光光度法原理或比色试纸原理。这两种方法的检测精度都很低,不能有效检出食品中的微量有毒物质。市场急需新的高灵敏的检测设备,我们基于液相色谱原理的食品安全检测仪会有广阔的市场空间。” 他打算以“直销”和“代理”的模式,继续推广食品安全检测仪。 /p p   作为一个大学生创业成功的“典型”,时常有学弟学妹追问张小虎“成功的秘诀”。他的切身体会是:“大学生创业应该具有非常强的专业知识,用高科技创业成功的概率会大得多。同时,项目开发最重要的是团队开发管理的能力和设计模式。”而创业更让他感受到了责任,也让他有了更高的目标:争取创立食品安全的行业标准,最终为解决中国现有的食品安全问题贡献自己的一分力量。 /p p /p
  • 即插即用可定制 多器官芯片演绎人体原理
    美国哥伦比亚大学工程系和医学中心的一组研究人员报告说,他们已经开发出一种多器官芯片形式的人体生理模型,该芯片由经过工程改造的人体心脏、骨骼、肝脏和皮肤组成,通过循环免疫细胞的血管流动,以重现相互依赖的器官功能。研究人员创造的这种即插即用的多器官芯片,大小与显微镜载玻片相当,可为患者定制。由于疾病进展和对治疗的反应因人而异,因此这种芯片最终将为每位患者提供个性化的治疗。这项研究刊载于4月27日出版的《自然生物医学工程》杂志上。灵感来自人体工程组织已成为疾病建模和在人体环境中测试药物疗效和安全性的关键组成部分。研究人员面临的一个主要挑战,是如何使用多种可进行生理交流的工程组织来模拟身体功能和全身性疾病,就像它们在体内所做的那样。然而,必须为每个工程组织提供自己的环境,以便特定的组织表型可维持数周至数月,符合生物学和生物医学研究的要求。使挑战变得更为复杂的是,必须将组织模块连接在一起以促进它们的生理交流,这是对涉及多个器官系统的建模所必需的。从人体的工作原理中汲取灵感,研究团队构建了一个人体组织芯片系统,在该系统中,他们通过循环血管流动将成熟的心脏、肝脏、骨骼和皮肤组织模块连接起来,让相互依赖的器官能够像在人类的身体里。研究人员之所以选择这些组织,是因为它们具有明显不同的胚胎起源、结构和功能特性,并且受到癌症治疗药物的影响。“在保持其个体表型的同时提供组织之间的交流一直是一项重大挑战,”该研究的主要作者、哥伦比亚大学干细胞和组织工程实验室副研究科学家凯西罗纳德森-博查得说,“因为我们专注于使用源自患者的组织模型,我们必须单独使每个组织成熟,以便它以模仿患者身上的反应方式发挥作用,我们不想在连接多个组织时牺牲这种先进的功能。在体内,每个器官都维持着自己的环境,同时通过携带循环细胞和生物活性因子的血管流动,与其他器官相互作用。因此,我们选择通过血管循环连接组织,同时保留维持其生物保真度所必需的每个单独的组织生态位,模仿我们的器官在体内连接的方式。”组织模块可维持一个月以上研究团队创建了组织模块,每个模块都在优化的环境中,并通过选择性渗透的内皮屏障将它们与常见的血管流分开。个体组织环境能够跨越内皮屏障并通过血管循环进行交流。研究人员还将产生巨噬细胞的单核细胞引入血管循环,因为它们在指导组织对损伤、疾病疗效的反应方面发挥着重要作用。所有组织均来自同一系人类诱导多能干细胞,从少量血液样本中获得,以证明个体化、患者特异性研究的能力。而且,为了证明该模型可用于长期研究,该团队将已经生长和成熟4到6周的组织在通过血管灌注连接后又维持了4周。研究人员还证明了该模型如何用于研究人类环境中的重要疾病,并检查抗癌药物的副作用。他们研究了多柔比星(一种广泛使用的抗癌药物)对心脏、肝脏、骨骼、皮肤和脉管系统的影响。他们表明,测试效果概括了使用相同药物进行癌症治疗的临床研究报告的效果。使用该模型研究抗癌药物该团队同时开发了一种新的多器官芯片计算模型,用于对药物的吸收、分布、代谢和分泌进行数学模拟。该模型正确地预测了阿霉素代谢成阿霉素醇并扩散到芯片中。在未来其他药物的药代动力学和药效学研究中,多器官芯片与计算方法的结合为临床前到临床外推提供了改进的基础,同时改进了药物开发流程。研究人员称,新技术能识别出一些心脏毒性的早期分子标志物,这是限制药物广泛使用的主要因素。最值得注意的是,多器官芯片准确地预测了心脏毒性和心肌病,这通常需要临床医生减少阿霉素的治疗剂量,甚至停止治疗。研究小组目前正在使用这种芯片的变体进行研究,所有这些都在个体化的患者特定环境中进行。如乳腺癌转移、前列腺癌转移、白血病、辐射对人体组织的影响、新冠病毒对多器官的影响、缺血对心脏和大脑的影响,以及药物的安全性和有效性。研究团队还在为学术和临床实验室开发一种用户友好的标准化芯片,以帮助充分利用其推进生物和医学研究的潜力。研究人员说:“我们对这种方法的潜力感到兴奋。它专为研究与损伤或疾病相关的全身性疾病而设计,将使我们能够保持工程人体组织的生物学特性及其交流。一次一个病人,从炎症到癌症。”
  • 气雾剂阀门密封性测试仪的原理与应用
    气雾剂阀门密封性测试仪的工作原理与应用气雾剂阀门作为气雾剂产品的重要组成部分,其密封性和促动性能直接影响到产品的安全性和使用效果。在现代工业生产中,对气雾剂阀门的测试变得尤为重要,特别是对其密封性的检测,这直接关系到产品是否能够在存储和运输过程中保持内容的完整性。本文将围绕三泉中石的气雾剂阀门密封性测试仪MFY-06S进行详细介绍,探讨其在质量控制中的重要性及应用。一、气雾剂阀门的功能与标准气雾剂阀门是一种固定在气雾剂容器上的机械装置,其主要功能在于两个方面:一是关闭时确保容器内的内容物不会泄漏,保护产品免受外界环境的污染或失效;二是促动时,使内容物以预定的形态和方式释放出来,以满足消费者的使用需求。为了确保气雾剂阀门能够达到这些要求,各国制定了相应的标准和规范,如我国的GB17447-1998标准。二、GB17447-1998标准下的密封性要求GB17447-1998标准对气雾剂阀门的性能进行了详尽的规定,特别是在密封性方面,提出了具体的要求。该标准要求气雾剂阀门在经受一定的压力测试(如0.85Mpa,持续1分钟)后,保持不泄漏,这是衡量阀门密封性能的关键指标。此外,标准还对引液管的拉脱力进行了规定,内插管需达到不少于49N的拉脱力,外插管则不少于40N,以确保在使用过程中,引液管能够稳固地连接在阀门上,不会因为外力作用而脱落。三、气雾剂阀门密封性测试仪的重要性为了满足GB17447-1998等标准对气雾剂阀门密封性的严格要求,三泉中石的气雾剂阀门密封性测试仪MFY-06S应运而生。这类测试仪通过模拟实际使用场景中的压力条件和操作方式,对气雾剂阀门的密封性能进行全面、准确的检测。它不仅提高了检测的效率和准确性,还大大减少了人工检测带来的误差和不确定性,为气雾剂产品的质量控制提供了强有力的技术支持。四、气雾剂阀门密封性测试仪MFY-06S的工作原理与应用济南三泉中石的气雾剂阀门密封性测试仪通常采用压力加载的方式,将一定的压力施加到气雾剂阀门上,并持续一定时间(如1分钟),然后观察并记录阀门是否有泄漏现象,广泛应用于气雾剂生产企业的质量控制部门、第三方检测机构以及科研院校等场所,成为保障气雾剂产品质量的重要工具。五、结语三泉中石的气雾剂阀门密封性测试仪MFY-06S的出现,为气雾剂产品的质量控制提供了有力的技术保障。它通过对气雾剂阀门密封性能的精确检测,确保了产品在存储和运输过程中的安全性和稳定性。
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style=" text-indent: 2em " strong 编者按: /strong 如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。 /p p style=" text-indent: 2em text-align: center " strong 激光粒度仪应用导论之原理篇 /strong /p p style=" text-indent: 2em " 当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。 /p p style=" text-indent: 2em " 首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 176, 240) " 【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。 /span /p p style=" text-indent: 2em " 麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。 /p p style=" text-indent: 2em " 现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。 /p p style=" text-indent: 2em " 世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title=" 图1:颗粒光散射示意图.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " 颗粒光散射示意图 /p p style=" text-indent: 2em " 激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。 /p p style=" text-indent: 2em " strong & nbsp 编者结: /strong 明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。 /p p style=" text-indent: 0em text-align: right " (作者:张福根) /p
  • 解读核辐射检测仪原理,是否“智商税”?
    8月24日,日本政府不顾国内外反对,福岛第一核电站启动核污染水排海,并计划排放30年。该消息发布后,引起我国出现盲目“抢盐”的恐慌现象,并导致核辐射检测仪在线上平台火爆销售,甚至被抢购一空。许多专家表示,我们无需过度恐慌,理性关注即可,也有人支持购置核辐射检测仪来保证身体安全,那么作为大众居民,我们是否必要购置核辐射检测仪?其原理是什么?核辐射检测仪到底是不是“智商税”?且听本网来揭秘。核辐射检测仪的原理核辐射检测仪是通过探测放射性物质的衰变过程来进行工作的。放射性物质会不断地释放出α粒子、β粒子、γ射线等辐射,这些辐射会与检测器中的物质相互作用,产生电离效应。在这个过程中,检测器中的物质会失去一部分电荷,导致检测器中的电荷量发生变化,从而产生电信号。核辐射检测仪通常采用闪烁晶体作为探测器,闪烁晶体是一种能够吸收射线并转化为可见光的物质。当放射性物质释放出的射线进入闪烁晶体时,晶体中的原子或分子会吸收这些射线,并把它们转化为可见光。这个过程被称为光致发光。然后,光被收集到光电倍增管中,并转化为电信号。这些电信号会被放大和整形,以便后续的信号处理和测量。除了闪烁晶体,核辐射检测仪还可以使用其他类型的探测器,如半导体探测器、液体闪烁计数器等。半导体探测器的工作原理与闪烁晶体类似,都是基于放射性物质的衰变过程,通过探测器中的物质与辐射相互作用产生电离效应,从而检测辐射的强度和类型。而液体闪烁计数器则是一种将闪烁剂和光电倍增管结合在一起的探测器,它能够测量β粒子和γ射线。总之,核辐射检测仪是基于放射性物质的衰变过程进行工作的,通过探测器中的物质与辐射相互作用产生电离效应,从而检测辐射的强度和类型。闪烁晶体和光电倍增管是核辐射检测仪中非常重要的部件,其性能直接影响核辐射检测的准确性和稳定性。随着科学技术的发展,核辐射检测仪的材料和性能将不断得到改进和完善,为保障人类安全和环境健康做出更加重要的贡献。核辐射检测仪的应用场景辐射检测仪的应用场景广泛,主要包括以下场景:1.核物理实验室、科研单位放射性实验室等会产生放射性物质的单位,主要用于日常放射性物质剂量检测,以便及时处理。2.用于海关和边境巡逻等,防止犯罪分子取放射性材料及放射性物质袭击的应急响应。3.环保部门、钢铁石材检测、矿山或金属检测公司等,用于监测放射源。4.医疗、工业等领域的X射线仪器的X射线辐射强度。5.其他检测放射性物质需要。综上所述,辐射检测仪的应用场景非常广泛,应用于各大领域。我们需要购买核辐射检测仪吗?最近的央视报道中,华南理工大学环境与能源学院教授张永清表示:“普通百姓购买放射性检测仪必要性不强。因为放射性测量过程中,只有一个仪器还是不够的,还要有相应适合的方法,不同的核素有不同的方法来进行测量,而且不同的样品有不同的前处理方法。如果说一般普通老百姓只是买一个仪器来测,他们还不具备专业的方法。”市面上价格较低的核辐射检测仪往往精度低,难以真正检测出放射性物质,而较为专业的核辐射检测仪价格昂贵,且需要专业知识和技能才能正确使用和维护才能合理使用。其次,普通人在日常生活中接触到的辐射量通常是非常低的,不需要过于担心辐射对健康的影响。而且,即使周围存在一些放射性物质,核辐射检测仪也并不能保证绝对的安全。因此,建议普通人不要盲目购买核辐射检测仪,更不需要过度恐慌,如果确实需要检测辐射水平,可以寻求专业的检测机构或者政府部门进行检测。
  • 热重分析仪原理简介
    p   热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪基本结构 /strong /span /p p   热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。 /p p strong 热天平 /strong /p p   热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。 /p p   TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。 /p p   天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。 /p p   天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。 /p p   物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。 /p p strong 加热炉 /strong /p p   炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title=" 炉体结构图.png" / /p p style=" text-align: center " strong 炉体结构图 /strong /p p   1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝 /p p strong 程序控温系统 /strong /p p   加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。 /p p   当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。 /p p strong 气氛控制系统 /strong /p p   气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪测量曲线 /strong /span /p p   热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。 /p p   当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。 /p p   引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。 /p p   同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制