当前位置: 仪器信息网 > 行业主题 > >

二次元检测

仪器信息网二次元检测专题为您提供2024年最新二次元检测价格报价、厂家品牌的相关信息, 包括二次元检测参数、型号等,不管是国产,还是进口品牌的二次元检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二次元检测相关的耗材配件、试剂标物,还有二次元检测相关的最新资讯、资料,以及二次元检测相关的解决方案。

二次元检测相关的资讯

  • 二次供水监测开启“互联网+” 时代
    二次供水水质在线监测系统将开启“互联网+”时代,未来手机上就能了解所在小区水质实时情况。12月18日,中科院上海微系统所-能讯传感技术联合实验室在上海发布二次供水水质在线监测系统,可实现24小时水质在线监测,明年3月正式投入上海市场。  水质监测设备进口替代空间大  2015 新环保法新增加了环境污染公共监测预警机制,对环境监测提出了更高要求。目前,二次供水陷入“最后一公里”水质监控困局。此次发布系统的前端无线传感监测系统外置水箱采样,无采集污染,自动实时监测包括浊度、余氯、ph、溶解氧等主要自来水水质指标,采用的自主研发的光学探头可使用8至10年左右。“在成本方面我们比国外公司大约节约了三分之一。”能讯环保董事长蒋洪明说。  长期以来,我国环境水质监测仪器主要依赖进口,国产水设备市场占有率不足10%,进口替代空间大。  前期投入后续收取服务费  这次中科院能讯联合实验室选择二次供水作为突破口,解决了二次饮用水在线监测系统的一些饮用水安全问题,还有报警功能。公司正在将水质监测做成app或者微信服务,届时人们打开手机就能了解所在小区的实时水质,就像现在了解天气和空气质量。  管理平台还可实现数据汇聚和共享。负责人金庆辉博士说,“目前有很多家庭安装了净水器,有了在线水质监测和大数据分析,就可以知道某个地区甚至某个小区水质到底如何,是否需要净化,重点从哪方面进行净化,净水器厂家甚至保健品厂商也可以根据不同地区的特点开发出更有针对性的产品。”  该系统已受到资本市场青睐。据透露,目前有五家投资机构进入了能讯环保公司,洽谈b轮融资。能讯环保也在积极筹备挂牌,可能先登录新三板,随后争取转到新兴战略板上市。蒋洪明表示,将努力在未来五年内建立地方性水污染数据库以及地方水污染应急响应机制,覆盖包括饮用水、地表水、地下水在内的立体水质在线监测网络,成为中国最大的第三方环境监测服务供应商。
  • 土壤新标二次征求意见 检测指标又增加
    p   近日,环保部发布《土壤环境质量标准》(GB 15618-1995)修订二次征求意见稿。与初次发布的征求意见稿相比,此次稿件仍是将《土壤环境质量标准》分拆为《农用地土壤环境质量标准》和《建设用地土壤污染风险筛选指导值》。但标准内容有了一定的调整。《农用地土壤环境质量标准》继上次增加10项选测项目外,又增加一项检测项目——钼,此次征求意见稿含9项必测项目和12项选测项目,同时农用地土壤分类也做了一定调整。《建设用地土壤污染风险筛选指导值》检测标准取消了基本项目和其他项目的分类,检测指标增至121项。 /p p    strong 具体全文如下: /strong /p p style=" TEXT-ALIGN: center" 关于征求《农用地土壤环境质量标准(二次征求意见稿)》等三项国家环境保护标准意见的函 /p p   各有关单位: /p p   为贯彻落实《中华人民共和国环境保护法》,保护土壤环境,防治土壤污染,保障人体健康,我部决定修订《土壤环境质量标准》(GB 15618-1995),并于2015年1月对标准修订草案公开征求意见。根据反馈意见和相关研究,标准修订项目组进一步梳理了土壤环境质量评价标准体系,修改完成了《农用地土壤环境质量标准(二次征求意见稿)》和《建设用地土壤污染风险筛选指导值(二次征求意见稿)》,并完成了配套标准《土壤环境质量评价技术规范(征求意见稿)》。 /p p   根据国家环境保护标准制修订工作规定,现将上述三项标准规范征求意见稿及其编制说明印送给你单位,请研究并提出书面意见,于2015年9月15日前反馈我部。征求意见材料电子版可登录我部网站(http://www.mep.gov.cn/)“征集意见”栏目检索查阅。 /p p   联系人:环境保护部科技标准司 段光明 /p p   通信地址:北京市西直门南小街115号 /p p   邮政编码:100035 /p p   电话:(010)66556621 /p p   传真:(010)66556213 /p p   电子邮箱:biaozhun@mep.gov.cn /p p   附件:1. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/5c4d1e61-ce01-4522-b1b6-17615e9e54af.pdf" 部分主送单位名单.pdf /a /p p   2 img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/fbaec221-e690-4463-827d-ff99122d81d0.pdf" 农用地土壤环境质量标准(二次征求意见稿).pdf /a /p p   3. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/25d68d18-4a4c-43cb-8ac8-172cb9a07c35.pdf" 建设用地土壤污染风险筛选指导值(二次征求意见稿).pdf /a /p p   4. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/0ef78b61-cb17-4b94-a694-90e471050f26.pdf" 土壤环境质量评价技术规范(征求意见稿).pdf /a /p p   5. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/cf934708-e3c8-4edd-93dc-7af0f53be3e6.pdf" 土壤环境质量评价标准体系建设方案.pdf /a /p p   6. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/edc4b2ae-f5e9-4a5c-846f-1c1e9ba5dcb8.pdf" 《农用地土壤环境质量标准(二次征求意见稿)》编制说明.pdf /a /p p   7. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/f95082ef-cdb4-4b63-8c63-16b04a9a5e1e.pdf" 《建设用地土壤污染风险筛选指导值(二次征求意见稿)》编制说明.pdf /a /p p   8. img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201508/ueattachment/a597ee99-0ab5-4b52-9da3-1e5f03ce52de.pdf" 《土壤环境质量评价技术规范(征求意见稿)》编制说明.pdf /a /p p /p
  • 环保法修正二次审议 增排污单位监测设备规定
    十二届全国人大常委会第三次会议6月26日起至6月29日在北京举行,备受关注的《环境保护法修正案(草案)》(以下简称《草案》)将进行第二次审议。   现行《环境保护法》自1989年正式施行至今,20多年未曾修改。2012年8月召开的十一届全国人大常委会第二十八次会议,对《草案》进行首次审议,并向社会公开征求意见。有专家提出,《环境保护法》作为环境领域的基础性、综合性法律,应当回应环境保护的制度需求,解决环境保护的突出问题,建议采用修订方式对这部法律作全面修改。   全国人大法律委员会副主任委员张鸣起6月26日在十二届全国人大常委会第三次会议上作了关于《草案》修改情况的汇报。   张鸣起说,《草案》新增以下内容:修正案对企业公开具体环境信息作了强制规定,重点排污单位应当向社会公开其主要污染物的名称、排放方式、排放浓度和总量、超标情况,及污染防治设施的建设和运行情况 重点排污单位应按规定安装使用监测设备,对其排放的污染物进行监测。   针对目前环保领域&ldquo 违法成本低、守法成本高&rdquo 的问题,《草案》将追究环境违法行为的刑事责任纳入修改内容,增加规定&ldquo 企业事业单位和其他生产经营者通过暗管、渗井、渗坑、高压灌注或者以其他逃避监管的方式排放污染物,构成犯罪的,依法追究刑事责任&rdquo 。   《草案》还规定,&ldquo 企业事业单位违法排放污染物,受到罚款处罚,被责令限期改正,逾期不改正的,依法作出处罚决定的行政机关可以按照原处罚数额按日连续处罚。&rdquo   同时,对政府及有关部门的工作人员在执行职务过程中滥用职权、玩忽职守、徇私舞弊的行为,《草案》加大了处罚力度。《草案》明确,对环境违法行为进行包庇的 伪造或者指使伪造监测数据的 应当依法公开环境信息而不公开的 依法应当做出限期治理或者责令停业、关闭的决定而未作出的 将征收的排污费或者环境保护专项资金截留、挤占或者挪作他用的,造成严重后果的,各级人民政府及其有关部门给予负责人撤职或者开除处分,其主要负责人应当引咎辞职。   张鸣起说,为将环境保护工作中一些行之有效的措施和做法上升为法律,完善环境保护基本制度,《草案》作如下修改:一是修改完善环境监测制度,增加&ldquo 建立环境信息共享机制&rdquo 的规定。二是增加规定&ldquo 未依法进行环境影响评价的建设项目,不得开工建设&rdquo ,&ldquo 建设单位未依法提交建设项目环境影响评价文件,擅自开工建设的,由环境保护行政主管部门责令停止建设,处以罚款,并可以责令恢复原状&rdquo 。三是明确联合防治协调机制,规定&ldquo 国家建立跨行政区重点区域、流域环境污染和生态破坏联合防治协调机制,实行统一规划、统一监测,实施统一的防治措施&rdquo 。四是增加环境经济激励措施,规定&ldquo 企业事业单位和其他生产经营者,在污染物排放已经达标的基础上,通过采取技术改造等措施,进一步减少污染物排放的,以及按照产业结构和城乡规划布局调整的要求关闭、搬迁、转产的,人民政府应当依法采取财政、价格、信贷、政府采购等方面的政策和措施予以支持&rdquo 。五是进一步强化地方各级人民政府对环境质量的责任,增加规定&ldquo 未达到国家环境质量标准的重点区域或者流域的有关地方人民政府,应当制定限期达标规划,并采取措施按期达标&rdquo 。六是加强对引进外来物种等行为的规范,规定&ldquo 引进外来物种以及研究、开发和利用生物技术,应当采取有效措施,防止对生物多样性的破坏&rdquo 。七是增加规定&ldquo 国家建立、健全生态保护补偿机制&rdquo 。
  • 陕西省检验检测机构信用风险分类管理办法(二次征求意见稿)
    各设区市、韩城市、杨凌示范区市场监管局,省质量技术评审中心,各检验检测机构,相关单位和专家:为加强我省检验检测机构监管和诚信体系建设,构建完善以信用为基础的新型监管机制,提升监管的科学性、精准性、有效性,省市场监管局组织起草了《陕西省检验检测机构信用风险分类管理办法(征求意见稿)》。前期已向社会公开征求意见,在充分吸收采纳相关意见的基础上进行修改完善的基础上形成了“二次征求意见稿”,现再次向社会公开征求意见。本次公开征求意见的时间为2024年4月2日至54月218日。有关单位和个人可将意见反馈至4825080@qq.com。请在电子邮件主题注明“检验检测机构信用分类监管再次征求意见反馈”。联系人:俞海源,联系电话:029-86138596。附件:1.陕西省资质认定检验检测信用风险分类管理办法(二次征求意见稿)2. 2.反馈意见表陕西省市场监督管理局2024年4月2日附件1陕西省资质认定检验检测机构信用风险分类管理办法(二次征求意见稿)第一章 总则第一条 为加强陕西省资质认定检验检测机构(以下简称检验检测机构)监管和诚信体系建设,构建完善以信用为基础的新型监管机制,提升监管的科学性、精准性、有效性,根据《陕西省社会信用条例》《检验检测机构监督管理办法》《检验检测机构资质认定管理办法》《市场监管总局关于推进企业信用风险分类管理进一步提升监管效能的意见》(国市监信发〔2022〕6号)等有关规定,制定本办法。第二条 本办法所称检验检测机构是指依法成立,取得陕西省检验检测机构资质认定部门颁发的检验检测机构资质认定证书的专业技术组织。本办法所称资质认定检验检测机构信用风险分级分类管理(以下简称信用风险分类管理)是指市场监督管理部门依托陕西省检验检测认证认可公共服务平台归集检验检测机构信用信息,建立信用风险分级分类指标体系,依据信用风险等级实施差异化监督管理。第三条 省市场监管局负责全省检验检测机构信用风险分类管理的统筹协调和制度建立,负责组织指导全省检验检测机构信用风险分类管理工作,负责建立管理陕西省检验检测机构信用风险分类管理平台(陕西省检验检测认证认可公共服务平台,以下简称管理平台)。全省各级市场监管部门按照“谁产生、谁提供、谁负责”的信用信息归集共享原则,将检验检测领域的双随机监督检查、重点专项检查、检验检测报告抽查结果、能力验证、行政处罚等信息依法依规记录归集到陕西省检验检测认证认可公共服务平台,并依据信用风险分级分类结果采取差异化的监管措施。第四条 检验检测机构信用风险分类管理,遵循科学合理、客观公正、内部评价、分类实施、协同运用的原则。第二章 指标体系建设第五条 省市场监管局从资质认定、监督检查、行政处罚、投诉举报、能力验证、统计年报和基础信息等七个维度,建立科学有效、运行规范的信用风险分类管理指标体系,并实施动态管理。第六条 检验检测机构信用风险分级分类指标信息应当“应归尽归”,记录及时、准确、规范、完整。第七条 省市场监管局在通用型企业信用风险分类管理模式基础上,结合检验检测领域特点,建立专业型信用风险分类模型。第三章信用风险分级分类第八条 根据国家信用风险分类管理要求,省市场监管局按照信用风险状况,依托管理平台按照定量与定性判定规则,将检验检测机构分类为信用风险低(A类)、信用风险一般(B类)、信用风险较高(C类)、信用风险高(D类)四类。第九条 满足下列全部条件的检验检测机构,应定为A类机构:(一)检验检测机构及其人员在从事检验检测活动中遵守法律、行政法规、部门规章的规定,没有行政处罚记录的;(二)在监督检查中,未发现违法违规行为,或发现存在不符合《检验检测机构资质认定管理办法》《检验检测机构监督管理办法》有关规定,但无需追究行政和刑事法律责任,采用说服教育、提醒纠正等非强制性手段予以处理的;(三)未被投诉举报,或被投诉举报,但经调查不存在违法违规行为的;(四)及时报送年度报告,数据客观准确的;(五)参加省局能力验证连续2年结果为“合格”的。第十条 存在下列条件之一的检验检测机构,应定为B类机构:(一)在监督检查中发现情节轻微的违法违规行为,被责令限期改正但不涉及行政处罚的;(二)被投诉举报,经调查违规情节轻微,被责令限期改正但不涉及行政处罚的;(三)及时报送年度报告,但数据存在瑕疵的;(四)参加省局能力验证结果为“补测合格”的。成立不满一年的资质认定检验检测机构,起始默认类别为B类。第十一条 存在下列条件之一的检验检测机构,应定为C类机构:(一)存在违法违规行为,被市场监管部门或行业主管部门行政处罚,被生态环境、公安等部门断网整改,或者被市场监管部门列入经营异常名录的;(二)被投诉举报,经调查存在违法违规行为,被行政处罚的;(三)在监督检查中被责令限期改正,但逾期未改正或改正后仍不符合要求的。基本条件和技术能力不能持续符合资质认定条件和要求,或者检验检测原始记录和报告归档留存不符合强制要求,或者(四)检验检测机构连续六个月未对外出具资质认定检验检测报告的;(四五)未及时报送年度报告,或者年度报告主要内容与实际严重不符的;(五六)参加省局能力验证结果为“不合格”的。第十二条 存在下列问题之一的检验检测机构,应定为D类机构:(一)检验检测机构作出虚假承诺或者承诺内容严重不实,由资质认定部门依照《行政许可法》的相关规定撤销资质认定证书或者相应资质认定事项的;(二)拒绝行政机关监督检查的;(三)被市场监管部门列入严重违法失信企业名单;或者被生态环境、公安等部门断网停线;或者被列入其他各类行政机关、司法机关“黑名单”的;(四)检验检测机构实际地址不存在,迁址未按要求进行变更或营业执照被吊销的;(五)连续十二个月以上未对外出具资质认定检验检测报告的;(六)未按照要求参加省局组织的能力验证,或能力验证的二次结果判定为“不合格”的;(七)国家“互联网+监管”系统中信用风险为E类,陕西省企业信用风险分类管理系统中信用风险为D类的;(八)提供虚假材料,以欺骗、贿赂等不正当手段取得信用评价等级的。(二)责令限期改正,但逾期未改正或改正后仍不符合要求的;(三九)出具不实、虚假检验检测报告的;(四)基本条件和技术能力不能持续符合资质认定条件和要求,对外出具报告的;(五)资质认定证书到期后或超出资质认定证书检验检测能力范围,对外出具报告的;(六)被市场监管部门列入严重违法失信企业名单;或者被生态环境、公安等部门断网停线;或者被列入其他各类行政机关、司法机关“黑名单”的;(七十)存在两条及以上行政处罚记录的;(八十一)被投诉举报,引发重大舆情事件,经调查存在违法违规行为的;(九)检验检测机构实际地址不存在或营业执照被吊销的;(十)连续十二个月以上未对外出具资质认定检验检测报告的;(十一)未按照要求参加省局组织的能力验证,或能力验证的二次结果判定为“不合格”的;(十二)国家“互联网+监管”系统中信用风险为E类,陕西省企业信用风险分类管理系统中信用风险为D类的;(十三二)发生重大安全生产、环境污染等事故的;(十四三)转让、出租、出借或伪造、冒用、租借资质认定证书和标志的;(十五四)其他存在其他严重违反法律、法违规规情形或因违法违规行为移送公安机关处理的;(十六)提供虚假材料,以欺骗、贿赂等不正当手段取得信用评价等级的。第十三条 检验检测机构信用风险分类依托检验检测综合监管平台实行实时评价,各市(区)市场监管部门要及时录入检验检测监督检查、行政处罚等指标信息,确保检验检测机构信用分类准确。生态环境、机动车领域检验检测机构信用分类应分别会同环境、公安部门联合实施。第四章 结果运用第十四条 检验检测机构信用风险分级分类结果与信用中国(陕西)互联互通,作为市场监管部门配置检验检测机构监管资源、实施“双随机、一公开”监管、重点监管等差异化监管的重要依据。第十五条 全省各级市场监管部门应运用检验检测机构信用风险分类结果,建立健全与信用风险分类相适应的监管机制,采取差异化监管措施,合理确定、动态调整抽查比例和频次,提升监管精准化和智慧化水平,实现信用风险分级分类结果在检验检测监管工作中的常态化运用。各市(区)市场监管部门可根据本行政区域实际情况,在本办法规定的信用风险分类基础上,制定更加具体的差异化监督检查计划方案,并在本行政区域内组织实施。第十六条 对A类检验检测机构合理降低抽查比例和频次,除投诉举报、新闻舆情、转办交办案件线索及法律法规另有规定外,不主动实施现场检查。可在证书有效期内安排一次现场检查,实现“无事不扰”,减少对检验检测机构正常营业活动的干扰,对其检验检测机构资质认定相关申请开放绿色通道。第十七条 对B类检验检测机构按照常规比例和频次开展抽查,一般不跨年度连续对其实施现场检查。第十八条 对C类检验检测机构实行重点关注,增加抽查比例和频次,每年现场检查不少于一次,并加强行政指导或行政约谈,对其检验检测机构资质认定相关申请不再适用告知承诺方式。第二十条 对D类检验检测实行严格监管,每半年至少现场检查1次,辖区市场监管部门应视情对其进行告诫、约谈,对其检验检测机构资质认定相关申请不再适用告知承诺方式。第二十一条对信用风险等级分级分类结果为A、B类的机构采取以下激励措施:(一)对许可周期内连续被确定为A类的检验检测机构,资质认定复查时可采取书面审查方式作出是否予以延续资质认定证书有效期的决定;(二)省局组织的能力验证活动,优先遴选A类检验检测机构作为能力验证承担机构;(三)对A类、B类的检验检测机构实施包容审慎监管,符合省局“首违不罚”“轻微违法减轻行政处罚”清单要求的,依法免予或减轻行政处罚;(四)支持A类、B类的检验检测机构采用告知承诺制方式申请检验检测机构资质认定。第二十二条 强化与农业、生态环境、公安、司法等部门的协同共享监管,推动跨部门联合确定检查对象、联合实施监督检查,实现线索互通、结果互认、依法实施联合惩戒、联合通报,拓展信用风险分级分类结果的应用场景。第五章 责任追究第二十三条 全省各级市场监管部门及其工作人员,在检验检测机构信用风险分类管理过程中,利用工作之便篡改、虚构、删除、泄露相关信息,情节严重或造成不良后果的,依法追究相关责任。第二十四条 公民、法人或其他组织以营利为目的非法批量获取机构信用风险分类管理数据,对信用风险分类管理信息化系统运行产生不良影响的,或非法篡改、虚构、删除、泄露相关信息的,依法追究相关责任。第二十五条 全省各级市场监管部门要强化检验检测机构诚信教育,引导检验检测机构和从业人员加强自身信用建设,夯实机构主体责任,促进检验检测行业有序发展。第六章 附则第二十六条 本办法由陕西省市场监督管理局负责解释。第二十七条 本办法有效期两年,自20234年 月 日起实施,有效期2年。附件2反馈意见表填报单位(如个人反馈意见无需填写单位):《办法》内容修改意见修改原因说明联系人:联系方式:
  • 圣湘生物布局快速药敏检测赛道 推进“二次创业”首季扣非增19倍
    日前,圣湘生物发布公告称,公司拟与关联方成立合资公司,并将亏损参股公司21.69%的股权转让至合资公司旗下。公司合计投资金额为人民币5333万元。  圣湘生物表示,将依托合资公司作为整体运营,进一步聚焦于快速药敏检测领域,加速促进产业研究、应用开发及商业转化。  记者注意到,在新冠检测红利消失后,圣湘生物业绩连跌,2023年公司提出“二次创业”的口号,拓展业务范围,寻求业绩增量。今年一季度,圣湘生物在多赛道、多领域的布局初显成效,业绩实现大幅回升。  投资布局快速药敏检测  圣湘生物深耕检测领域。根据5月8日发布的最新公告,公司拟与关联方湖南湘江圣湘生物产业基金合伙企业(有限合伙)(以下简称“产业基金”)共同投资合资公司湖南圣微速敏生物科技有限公司(以下简称“湖南圣微速敏”),其中,公司合计投资金额为人民币5333万元。  具体而言,公司以0元的对价取得湖南圣微速敏39.9985%的股权,对应注册资本399.985万元,目前尚未实缴。同时,公司拟将参股公司First Light21.69%的股权转让至湖南圣微速敏下属全资子公司,转让对价为221.58万美元。  股权转让交易完成后,湖南圣微速敏新增注册资本人民币1.2333亿元,公司按39.9985%的持股比例认购其中新增注册资本人民币4933.015万元,公司合计投资金额为人民币5333万元。  资料显示,First Light成立于2006年,专注于抗生素药物敏感性的快速检测产品开发,具有在快速药敏细分领域全球领先的创新性和技术基础。截至2023年12月31日,First Light总资产683.86万美元,净资产-400.51万美元,2023年营业收入166.99万美元,净利润-667.44万美元。  据了解,First Light开发的Multi Path平台是一款兼具单分子免疫检测、微生物鉴定以及快速抗生素药敏测试三种功能的POCT检测仪(小型封闭式一体化检测仪)。其自主研发的独特快速药敏技术能够解决目前检测病原体抗生素敏感所需时间长、失败率高的痛点,有助于改善抗生素错用、滥用的根本性临床问题。  圣湘生物表示,基于产业基金与公司在药敏检测领域未来发展前景及商业开发的共同认知,后续将依托湖南圣微速敏作为整体运营,进一步聚焦于快速药敏检测领域,加速促进产业研究、应用开发及商业转化。  一季度业绩止跌回升  圣湘生物是一家集诊断试剂、仪器、第三方医学检验服务为一体的体外诊断整体解决方案提供商,曾因第一时间研发出新冠病毒核酸检测试剂产品实现业绩大增并成功上市。  资料显示,圣湘生物成立于2008年,2020年8月28日登陆科创板。2020年,公司实现营业收入47.63亿元、归母净利润26.17亿元,同比分别增长12倍、65倍。  随着新冠疫情消退,圣湘生物的业绩降幅明显。数据显示,2021年至2023年,公司的营业收入分别为45.15亿元、64.5亿元、10.07亿元;归母净利润分别为22.43亿元、19.37亿元、3.64亿元,连续三年下滑。  圣湘生物也试图通过并购和产业投资拓展检测领域业务。  2021年,圣湘生物曾计划收购体外诊断第一股科华生物(002022),但由于后者陷入百亿仲裁案而“告吹”。2021年6月,公司收购基因测序仪公司真迈生物14.77%的股权,成为其第二大股东。  2023年上半年,圣湘生物还通过产业投资寻找机会。当年,公司设立了湖南湘江圣湘生物产业基金,首期募集规模4亿元,专门用以投资生物医疗产业链上下游相关产业,涉及体外诊断、生物医药、生物科技、大健康等领域公司。  2023年提出“二次创业”后,圣湘生物将病毒性肝炎检测、血液筛查、呼吸道检测、生殖道感染检测当作“第二增长曲线”的主要战略产线。在一系列动作之下,2023年四季度,圣湘生物的营收规模环比开始回升。  2024年一季度,圣湘生物业绩大幅增长,一季报显示,报告期,公司实现营业收入3.91亿元,同比增长100.31%;归母净利润8102.47万元,同比增长35.01%;扣非净利润7375.57万元,同比增长1962.06%。  对于一季度业绩增长,公司表示,主要系报告期内公司凭借早期前瞻性战略规划与投入布局,在多赛道、多领域逐渐进入发力期,相关业务收入同比快速增长所致。
  • 关于召开《光谱法水质在线快速检测系统》标准第二次讨论会的通知
    p   各有关单位: br/ /p p   经中国水利企业协会立项的《光谱法水质在线快速检测系统》标准已于2019年1月11日在上海召开了标准第一次讨论会。根据上次会议的修改意见和建议,标准起草工作组进行了多次修改和完善,形成讨论稿第二稿。为保证按时完成标准制定任务,经研究讨论决定,将于2019年3月下旬在北京召开《光谱法水质在线快速检测系统》标准第二次讨论会议。请贵单位选派参与标准编写的专家参加。现将相关事宜通知如下: /p p   一、会议时间地点 /p p   2019年3月22日9:00-12:00开会(3月21日下午13:00-19:00报到,地址:北京中国职工之家饭店A座大堂,电话:010-68576699) /p p   二、参会人员 /p p   主编单位和参编单位的标准编制相关负责人。 /p p   三、会议内容 /p p   (一)标准起草负责人对标准编制修改情况进行汇报 /p p   (二)对标准第二稿进行充分讨论、修改和完善,会后完善形成标准送审稿 /p p   (三)标准下一步工作计划进行安排和确认。 /p p   四、会议地点 /p p   北京中国职工之家饭店A座四层NO.25会议室 /p p   (地址:北京西城区复兴门外大街真武庙路1号,电话:010-68576699) /p p   五、注意事项 /p p   (一) 为了便于标准编制工作开展和组织,请相关参编单位积极配合,提供相关人力、物力及资金支持,相关事宜请与我司联系。 /p p   (二)食宿由组委会统一安排,住宿费用自理。为便于安排食宿,请参编单位提前提交报名回执表。 /p p   六、联系方式 /p p   联系人:苑 萍 18366223266 /p p   电话:0532-80912156、80912157(传真) /p p   电子邮箱:lyndayuan@vip.163.com /p p   附件: /p p   1、报名回执单 /p p   2、标准工作下达文件 /p p style=" text-align: right "   二零一九年二月十八日 /p p br/ /p
  • 华测检测“实验室消耗品招标”项目第二次线上说明会成功举办
    p    strong 仪器信息网讯 /strong 2020年3月30日,华测检测“实验室消耗品招标”项目第二次线上说明会在仪器信息网平台成功举办,10家计划参与投标的供应商参加了此次线上会议。此次说明会由华测检测认证集团股份有限公司(以下简称& quot 华测检测& quot )与仪器信息网联合主办,华测检测采购部负责人——荆春波女士、华测检测耗材采购负责人——姚引杰先生分别在说明会上做了发言,并针对各大供应商关注的一系列问题给出了明确的答案。 /p p   姚引杰先生介绍,本次招标项目已完成供应商的初步审核,共10家厂商有资格进入招标项目的下一个环节。会议中姚引杰先生依据评标流程和招标文件,帮助参与的供应商理解评标方式、最终协议文本等内容,并提醒供应商在参与投标前一定详细查看招标要求,避免出现认知偏差。 /p p   荆春波女士在现场进行招投标文件意见征集,根据供应商提出的问题进行解答,并承诺对所有供应商提供的文件统一透明化,严格遵守公平、公开、公正的原则。 /p p    strong 第一期“标准物质”招标流程及时间节点 /strong /p p   说明会上,华测检测耗材采购部负责人姚引杰先生对该项招标的流程、重要时间节点、重新做了介绍,详情请见下表: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/21a21741-ce33-4595-ab6f-831444cfd899.jpg" title=" 华测-1.png" alt=" 华测-1.png" / /p p    strong 第一期“标准物质”参与供应商要求 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/6a330d00-270c-4fd8-a3f2-e047f2568537.jpg" title=" 华测-2.png" alt=" 华测-2.png" / /p p   仪器信息网也会持续关注招标项目的后续进展。据悉,华测检测启动消耗品招标项目是在推动一种全新的商业模式,将把年采购金额约1.5亿元的的消耗品采购分成8个品类对外进行招标采购,本次“标准物质”仅是第一期,(详情请见华测检测 a href=" https://www.instrument.com.cn/news/20200305/523192.shtml" target=" _blank" title=" “实验室消耗品招标”" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " “实验室消耗品招标” /span /a 项目说明会)。 /p
  • 涉嫌行贿 某环境监测仪器厂商二次闯关IPO又失败
    p   据证监会网站7月11日披露,最新审核结果显示,浙江皇马科技股份有限公司(下称皇马科技)、浙江春风动力股份有限公司(下称春风动力)、辰欣药业股份有限公司(下称辰欣药业)、起步股份有限公司(下称起步股份)以及中广天择传媒股份有限公司(下称中广天择)共五家公司首发获通过,而力合科技(湖南)股份有限公司(下称力合科技)首发未通过。 /p p   资料显示,首发被否的力合科技已经是第二次冲击IPO了,此前一次是在2017年1月,当时由于取消审核而暂时搁置。 /p p   力合科技是一家环境监测仪器制造商,根据招股书显示,公司拟在上交所公开发行不超过2000万股,募集资金2.06亿元,其中5000万元补充流动资金,其余用于环境监测体系建设项目、运营服务及第三方监测、研发中心建设项目。 /p p   发审委之所以未通过力合科技的上市申请,从其提出询问的问题,主要集中在涉嫌行贿等违法行为。 /p p   问询内容显示,报告期内力合科技存在因涉嫌单位行贿被司法机关立案和部分高管、员工涉及到多起商业贿赂案件的情形,发审委要求公司作出详细披露。此外,发行人有关销售、投标、资金费用管理等方面的内部控制制度是否健全且被有效执行也是发审委审核的重点。财务问题方面,力合科技需要进一步说明报告期各期期末公司应收账款余额较高、是否存在通过第三方公司回款进行冲抵的方式调节应收账款账龄的情形。 /p p   可以发现,发审委对于申报企业违法违规、内部企业管理以及应收账款的合理性方面要求尤为严格。力合科技也是今年以来发审委第51家审核未通过的企业。 /p
  • 210万!鹰潭市综合检验检测中心涉粮检验仪器设备采购(第二次)
    项目编号:JXXMYT2022-03-C11425-1项目名称:鹰潭市综合检验检测中心涉粮检验仪器设备采购(第二次)采购方式:公开招标预算金额:2100000.00 元最高限价:2037000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求鹰购2022F000572005旋转蒸发仪2套200000.00元详见公告附件鹰购2022F000572007气相色谱仪1台600000.00元详见公告附件鹰购2022F000572006气相色谱-质谱联用仪1台800000.00元详见公告附件鹰购2022F000572008液相色谱原子荧光联用仪1台500000.00元详见公告附件合同履行期限:中标人须在成交通知书发出之日起7个工作日内与招标人签订采购合同,合同生效之日起45天内到货安装、调试完毕并验收合格交付使用。本项目不接受联合体投标。
  • 中国生物检测监测产业技术创新战略联盟召开第一届第二次理事会
    仪器信息网讯 2017年1月6日,中国生物检测监测产业技术创新战略联盟第一届第二次理事会在江苏沭阳召开。来自沭阳县的各级领导、中国科学院院士陈洪渊、联盟理事长张学记、联盟秘书长周蕾以及联盟副理事长、常务理事、理事等30余人出席会议。 会议现场  沭阳县委常委、组织部部长张智超首先由沭阳县委常委、组织部部长张智超致辞。张智超对来到沭阳的院士及各位专家表示了欢迎和感谢,接着向各位参会嘉宾介绍了江苏沭阳的县情概况。随后,张智超介绍了沭阳县政府针对人才所设立的关于岗位、购房、租房等一系列补贴政策。另外,张智超还介绍了沭阳县政府针对高层次创新创业人才的扶持政策和人才项目。最后,张智超介绍了沭阳所建立的国家级经济技术开发区—沭阳经济技术开发区、沭阳软件产业园和沭阳高层次人才创新创业产业园的概况。  联盟秘书长、军事医学科学院微生物流行病研究所研究员周蕾  联盟秘书长、军事医学科学院微生物流行病研究所研究员周蕾则着重介绍了中国生物检测监测产业技术创新战略联盟的概况、2016年工作总结以及2017年初拟规划。  中国生物检测监测产业技术创新战略联盟(以下简称“联盟”) 成立于2015年12月12日,隶属于中国产学研合作促进会,旨在基于基金设置、开放技术平台、国内外交流、法律咨询等职能的设置,践行联盟核心定位“促进材料、器件与生物检测监测技术的交叉融合,从而推动原创高性能新型生物检测监测技术的研究与产业化,一方面,有效解决临床检验,食品安全,疾控应急、生物反恐,违禁筛查等领域所面临的生物检测监测相关问题 另一方面,以生物检测监测领域为带动,推动包括材料、器件在内的多领域协同创新与产业升级”。  目前,联盟理事长单位为北京科技大学,理事长由北京科技大学生物工程与传感技术研究中心主任、美国医学与生物工程院院士张学记教授担任 秘书长单位为军事医学科学院微生物流行病研究所,秘书长由军事医学科学院微生物流行病研究所研究员周蕾担任。联盟目前注册在案团队有64个,包括17家研究所、33家高校、3家医院和11家企业。其研究领域包括生物医药中的微生物医学检验 化学中的分析化学、纳米材料,微纳器件及表界面 物理中的光电子、智能传感和仪器制造等。创新存在于产、学、研、用、金等各个环节。  联盟的目的在于加强企业与科研团队之间的互动与融合。对于企业来讲,可以提升产品与市场需求的吻合度,提高同类产品的竞争力 对于科研团队来讲,以市场需求为牵引的创新,可以提高成果转化的成功率 而对于投资企业来讲,有利于挖掘有升值前景的原始创新技术和产品。联盟的宗旨是作为学界内部学科交叉、原始创新的平台,成为创新成果在政、学、研、用、金之间转移、转化、成熟、落地的桥梁。  目前联盟已建立了一系列对外信息发布的平台,自成立至今,成功举办了两场学术交流研讨会,还在仪器信息网成功举办了线上的网络讲堂,可以说,借助了各种媒体宣传了联盟的理念 在基金支持服务方面,也有了一定的工作进展 在产业拓展方面,中国生物检测监测产业技术创新联盟深圳创新研究院已于2016年12月28日成立 人才队伍提升方面,联盟理事长张学记教授当选美国医学与生物工程院院士、副理事长谭蔚泓当选中国科学院院士、理事汪夏燕教授获国家杰出青年科学基金。  2017年,联盟除拟成立中国仪器仪表学会分析仪器分会-生物检测监测仪器专业委员会外,还将成立沭阳、青岛、兰州创新研究院等实体机构。之后,在联盟理事长张学记教授和中国科学院陈洪渊院士的带领下,各位与会嘉宾热烈讨论了关于联盟建设与未来发展的建议。  联盟理事长、北京科技大学生物工程与传感技术研究中心主任、美国医学与生物工程院院士张学记  中国科学院院士陈洪渊  王建俊少将  中国仪器仪表学会分析仪器分会副理事长刘长宽  联盟副理事长、北京大学教授刘虎威  江南大学教授詹晓北  武汉康复得生物科技股份有限公司董事长李青山  联盟副理事长、南京大学教授鞠熀先  北京理工大学教授屈锋  西北大学国家微检测系统工程技术研究中心副主任崔亚丽  中国仪器仪表学会分析仪器分会副秘书长吴爱华  中国科学院上海生科院营养所研究员尹慧勇  美国乔治亚州立大学教授王鹏  北京中润兆和技术咨询有限公司创始人王坤  2016年中国生物检测监测产业技术创新战略联盟年会暨沭阳生物医药产业论坛即将召开,请关注仪器信息网后续报道。
  • 关于《无人船船载水质监测系统》等2项标准第二次讨论会时间调整通知
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/3bc56d7f-38dd-4b47-aeb7-4bc4f26d3ef5.jpg" title=" 232.jpg" alt=" 232.jpg" / /p p   各有关单位: /p p   根据中国质量检验协会与中国水利企业协会关于下达《无人船船载水质监测系统》《水质监测无人船安全作业技术标准》两项标准立项的通知(中检联发〔2019〕3号),为保证按时完成标准制定任务,进一步完善标准,经研究讨论决定,因疫情防控原因推迟的《无人船船载水质监测系统》等两项标准第二次讨论会举办时间调整为2020年5月21日通过视频会议召开,现就会议有关事宜通知如下: /p p   一、会议时间和方式 /p p   会议时间:2020年5月21日上午9:00-17:00。 /p p   会议方式:使用亿联会议软件召开会议,参会专家、起草负责人使用手机或笔记本电脑下载亿联会议(https://www.yealink.com.cn/)并注册登录,申请加入指定的企业通讯录,在云会议室选择进入视频会场参会。 /p p   二、会议内容 /p p   (一)标准起草负责人对标准编制修改情况进行汇报 /p p   (二)对标准第二稿进行充分讨论、修改和完善,会后完善形成标准征求意见稿 /p p   (三)对标准下一步工作计划进行安排和确认。 /p p   三、联系方式 /p p   苑 萍 18366223266, lyndayuan@vip.163.com /p p   文 翔 13661041954, stevencsw8292@163.com /p p   王 军 010-63204884, slqx@mwr.gov.cn /p p   许汉平 010-63203604 /p p style=" text-align: right "   中国质量检验协会 /p p style=" text-align: right "   中国水利企业协会 /p p style=" text-align: right "   2020年4月17日 /p p br/ /p
  • 用二次离子质谱法检测锂——表面形貌与化学分析的相关性
    古德伦威廉(Gudrun Wilhelm) 乌特戈拉-辛德勒(Golla-Schindler)蒂莫伯恩塔勒(Timo Bernthaler) 格哈德施耐德(Gerhard Schneider)二次离子质谱 (SIMS) 允许分析轻元素,尤其是锂。研究者使用三种不同的探测器将二次电子图像与表面形貌、化学分析相关的元素映射相结合,过测量标准样品并将其质谱信息与老化阳极的质谱信息相比较来鉴定化合物,获得了对锂离子电池老化现象的新见解。介绍电动汽车、自行车和踏板车的使用正在增加,而这些都需要高性能、长寿命的电池。在开发这些电池时,需要了解的一个重要主题就是老化过程。如果锂电池老化,阳极表面会发生锂富集,这与功能性工作锂的损失成正比,将会降低电池的容量。然而,确切的结构和化学成分仍然难以捉摸。我们预计,将二次电子成像和二次离子质谱 (SIMS) 与锂的相关可视化相结合,将带来新的见解。材料和方法使用配备 Gemini II 柱、肖特基场发射电子枪、Inlens 检测器、Oxford Ultim Extreme EDS检测器和使用镓离子的聚焦离子束的 Zeiss crossbeam 540 进行研究。连接了 Zeiss 飞行时间检测器和 Hiden 四极检测器以实现 SIMS 分析。第三个检测器是一个扇形磁场检测器,它连接到使用氦或氖离子工作的 Zeiss Orion NanoFab。使用三种不同的 NMC/石墨电池系统证明了锂检测,这些系统具有降低的容量 ( 900 次充电和放电循环。 结果使用扫描电子显微镜 (SEM) 检测二次电子可以使循环阳极箔的表面形貌具有高横向分辨率(图 1a、b、c):阳极石墨板覆盖有 (a) 薄壳(几纳米厚),(b)纳米颗粒(约 10-100 nm),(c)大的沉淀物,如球形颗粒(约 100-500 nm),以及微米范围内的大纤维。这些结构具有不均匀分布,表明局部不同的老化条件和过程。化学成分使用能量色散光谱法(EDS,图 1d)进行了分析。EDS 光谱检测元素碳、氧、氟、钠和磷。除碳外,检测到的最高量是氧和氟。很明显,EDS场光谱和点光谱是不同的:场光谱具有更高量的氧、氟和磷。相位映射表明EDS点谱的测量点位于氧和氟含量低的区域,氧和氟都是纳米颗粒的一部分。这证明了不均匀分布与局部不同的元素组成成正比。图:1:具有高横向分辨率的循环阳极箔的表面形貌;石墨板覆盖有(a)结壳,(b)小颗粒,(c)由球形颗粒和微米级纤维组成的大沉淀物;(d) 用 EDS 分析的循环阳极表面;所呈现的点和场光谱显示了氧、氟和磷含量的差异;氧和氟在相位映射中更喜欢相同的表面结构。SIMS 可以检测到高锂信号(m/z 6 或 7),这允许锂映射与二次电子图像相关(图 2a、b)。锂覆盖整个表面并且是所有表面结构的一部分:结壳、纳米颗粒以及大小纤维。由于氧的电负性提高了对锂的检测,因此可以检测到具有高氧浓度的粒子的高信号。锂具有不同的键合伙伴,导致不同的表面结构。示例性地,显示了质荷比 33 和 55(图 2c,d)。M/z 33 是大纤维结构的一部分,而 m/z 55 在小纤维结构中富集。必须仔细解释质荷比。M/z 33 可以解释为正离子 Li2Li3+、OLi2+ 和 Li2F+。M/z 55 可以解释为锰。铜、钴和镍存在于与锰相同的表面结构中。这些元素表明正极材料(Mn、Co、Ni)的分解和负极集流体(Cu)的浸出。结壳和纳米颗粒均不含 m/z 33 和 m/z 55。在正离子质谱中只能检测到 m/z 6、7 和 14。负离子质谱为它们提供 m/z 16 和 m/z 19,可与氧和氟相关联。在正离子质谱中可以检测到图7和14。负离子质谱为它们提供 m/z 16 和 m/z 19,可与氧和氟相关联。 图 2:与 SIMS 元素映射 (bd) 相关的循环阳极箔的表面形貌 (a);(b) 锂覆盖整个表面,是所有表面结构的一部分;(c) m/z 33 和 (d) m/z 55(锰)偏好不同的表面结构,表明不同的化合物。使用 Zeiss Orion NanoFab [1] 测量了隔膜的阳极侧,与传统 SIMS 相比,它具有更高的横向分辨率。横向分辨率取决于离子探针的尺寸,因此 NanoFab 的横向分辨率显着提高(图 3)。可以识别球形颗粒和纳米颗粒。对于 (b) m/z 6 (锂)、(c) m/z 19 (氟)和 (e) m/z 16 (氧),球形颗粒显示出高信号。纳米粒子包含相同的元素和额外的 (d) 硅 (m/z 28)。可以使用每个像素的平均计数来半定量地解释质谱结果。这证明了球形颗粒和纳米颗粒的不同化学组成。 图 3:循环隔膜的表面形貌(阳极侧);与 SIMS 元素映射相关;沉淀物中含有锂和氟以及少量的氧气;纳米粒子含有锂、氟、硅和氧;二次离子质谱测量的半定量解释。SIMS 质谱由元素峰和分子峰组成。元素峰代表单个同位素,分子峰由几个同位素组成。通过将分子峰与标准样品的峰光谱进行比较,可以精确解释分子峰。这已在下一步中完成,并允许确定表面结构的化合物。图 4a 显示了化合物 LiF 的质谱(正离子)。可以找到几个峰:m/z 6、7、14 和 m/z 32 和 33 附近的一系列峰。这些是可以解释为 Li(6 和 7)和 Li2(14)的主峰。该组可能被视为 Li2Li3+ 或 OLi2+ 或 Li2F+。锂同位素 6 和 7 导致几个 m/z 比。该质谱可以与循环阳极的质谱(正离子)进行比较(图 4b)。主峰显示出良好的相关性,而由于循环阳极上的低 LiF 含量,强度较小的峰可能不可见。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。 图 4:(a) LiF 质谱与 (b) 循环阳极质谱的比较;m/z 6、7、14、32 和 33 的峰可以与循环阳极质谱相关;m/z 33 的正确解释需要进一步的标准样品测量。结论显示结壳、纳米颗粒和大沉淀物的不均匀表面形貌可以通过二次电子图像进行可视化,并通过 EDS 和 SIMS 进行分析。使用 SIMS 进行的锂分析表明,所有结构都包含具有不同键合伙伴的锂,例如纳米颗粒中的氧、氟和硅,球形颗粒中的锂、氟和氧,以及小纤维结构中的锰。标准样品(例如 LiF)的制备能够通过质谱解释来定义准确的化合物。 致谢我们感谢 Hiden GmbH 的四极质谱仪和 Graham Cooke 的有益讨论,我们感谢 Peter Gnauck、Fouzia Khanom、Antonio Casares 和 Carl Zeiss 使用 Orion 进行 SIMS 测量,我们感谢 Hubert Schulz 在飞行探测器,我们感谢 IMFAA 合作者的帮助和项目 LiMaProMet 的财政支持。联系古德伦威廉(Gudrun Wilhelm)德国,阿伦(Aalen),阿伦大学(Aalen University),材料研究所 (IMFAA),gudrun.wilhelm@hs-aalen.de 参考文献:[1] Khanom F.、Golla-Schindler U.、Bernthaler T.、Schneider G.、Lewis B.:显微镜和微量分析 25 (S2) S. 866-867 (2019) DOI:10.1017/S1431927619005063 ---------------------------------------------------------------------------------------------------关于作者古德伦威廉(Gudrun Wilhelm)德国,阿伦大学(Aalen University),材料研究所 (IMFAA),Gudrun Wilhelm 在弗里德里希-亚历山大-埃尔兰根-纽伦堡大学学习地球科学,重点是矿物学。2019 年,她以科学员工和博士生的身份加入阿伦大学材料研究所(IMFAA)。她的研究重点是锂离子电池的老化机制。主要方法有扫描电子显微镜法、能量色散光谱法和二次离子质谱法。原文Lithium detection with Secondary Ion Mass Spectrometry,Wiley Analytical Science 2022.8.10翻译供稿:符 斌
  • Hiden Analytical推出二次离子质谱仪,适用于锂电池检测
    科学仪器供应商 Hiden Analytical 近期宣布,其四极聚焦离子束二次离子质谱(FIB-SIMS)成功应用于锂离子电池研究。其四极聚焦离子束二次离子质谱(FIB-SIMS)成功应用于锂离子电池研究。这项技术具有高灵敏度和分辨率,适合低质量锂检测,将大幅推进锂离子电池研究的进程。  (图片来源:Hiden Analytical)  现在,人们对电动汽车和便携式电子设备的需求日益增长,更加需要可靠、有效的储能系统。锂离子电池被视为有前景的解决方案,但只有深入了解电池内部的复杂过程,才能进一步提高性能和安全性。Hiden Analytical 的 FIB-SIMS 为这一挑战提供了强大的解决方案,使研究人员能够获得关于电池内部锂分布和浓度的重要信息。  该研究展示了 Hiden Analytical 的 FIB-SIMS 在高灵敏度和高精度检测锂等低质量元素方面的能力。Hiden Analytical 的 FIB-SIMS 可与聚焦离子束扫描电子显微镜(FIB-SEM)无缝集成,为研究人员提供诸多优势,如相关成像、原位样品制备和三维元素分析。这样的组合有助于全面了解锂离子电池的微观结构,从而开发更高效、更安全的储能系统。该公司技术营销经理 Dr. Dane Walker 表示:" 很高兴看到 FIB-SIMS 技术在锂离子电池研究领域得到应用。这项突破表明,Hiden Analytical 致力于推进科学研究,为不断发展的储能市场提供尖端解决方案。"  产业分析人士表示,锂电池检测主要应用在锂电池领域,受到锂电池产业快速发展带动,锂电池检测应用需求持续攀升,行业发展前景较好。在生产方面,我国众多企业布局在领域,市场竞争激烈,但国内产品目前主要布局在低端的单体电池领域,在高端的电池组领域仍依赖进口。未来随着终端对于锂电池要求提升,未来锂电池检测向高精度方向发展。关于Hiden Analytical(点击了解)  Hiden Analytical 成立于1981年,位于英格兰沃灵顿。是世界著名的四极杆质谱仪及相关分析仪器的设计和生产者。客户多数都是工作在新技术研究的前沿,如等离子体、表面科学,致力为全球有关领域的研究者提供了最先进的技术手段,使其研究水平居于国际领先地位。产品
  • 关于召开无人船船载水质监测系统等两项标准第二次讨论会的通知
    p style=" text-align: center "   中国质量检验协会与中国水利企业协会 /p p style=" text-align: center "   关于召开无人船船载水质监测系统等两项标准 /p p style=" text-align: center "   第二次讨论会的通知 /p p style=" text-align: center "   中检联发﹝2020﹞1号 /p p   各有关单位: /p p   根据中国质量检验协会与中国水利企业协会关于下达《无人船船载水质监测系统》《水质监测无人船安全作业技术标准》两项标准立项的通知(中检联发〔2019〕3号),该两项标准已于2019年11月21日在杭州召开了标准第一次讨论会。 /p p   为保证按时完成标准制定任务,进一步完善标准,经研究讨论决定,我会将于2020年2月21日在北京召开《无人船船载水质监测系统》等两项标准第二次讨论会议,现就会议有关事宜通知如下。 /p p   一、组织单位 /p p   主办单位:中国质量检验协会 /p p   中国水利企业协会 /p p   承办单位:青岛中质脱盐质量检测有限公司 /p p   支持单位: /p p   中国水利水电科学研究院 /p p   珠江水利委员会珠江水利科学研究院 /p p   生态环境部海河流域北海海域生态环境监督管理局生态环境监测与科学研究中心 /p p   水利部交通运输部国家能源局南京水利科学研究院 /p p   大连海事大学无人驾驶船舶技术与系统协同创新研究院 /p p   自然资源部第一海洋研究所 /p p   河海大学河长制研究与培训中心 /p p   中国科学院西安光学精密机械研究所 /p p   哈工大(威海)船海光电装备研究所 /p p   深圳市百纳生态研究院有限公司 /p p   中科院软件研究所南京软件技术研究院 /p p   二、时间 /p p   (一)报到时间:2020年2月20日13:00-20:00 /p p   (二)会议时间:2020年2月21日09:00-14:00 /p p   三、会议地点 /p p   会议酒店:北京中国职工之家酒店 /p p   酒店地址:北京市西城区真武庙路1号 /p p   酒店电话:010-68576699 /p p   四、会议内容 /p p   (一)标准起草负责人对标准编制修改情况进行汇报 /p p   (二)对标准第二稿进行充分讨论、修改和完善,会后完善形成标准征求意见稿 /p p   (三)对标准下一步工作计划进行安排和确认。 /p p   五、联系方式 /p p   苑 萍 18366223266,lyndayuan@vip.163.com /p p   生江磊 18561658536,shengjianglei@foxmail.com /p p   王 军 010-63204884,slqx@mwr.gov.cn /p p   六、注意事项 /p p   (一)食宿由组委会统一安排,住宿费用自理 /p p   (二)为便于安排食宿,请参会人员提前一周提交回执表。 /p p   附件:《无人船船载水质监测系统》等两项标准参会人员回执表 /p p   中国质量检验协会 中国水利企业协会 /p p   2020年1月2日 2020年1月2日 /p p   附件 /p p   《无人船船载水质监测系统》等两项标准 /p p   第二次讨论会参会人员回执表 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 631" style=" border: none margin-left: 9px margin-right: 9px" tbody tr style=" height:40px" class=" firstRow" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 单 span & nbsp & nbsp & nbsp /span 位 /span /p /td td width=" 546" colspan=" 8" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td /tr tr style=" height:40px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 通信地址 /span /p /td td width=" 546" colspan=" 8" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td /tr tr style=" height:40px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 邮政编码 /span /p /td td width=" 124" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td td width=" 58" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 传真 /span /p /td td width=" 157" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td td width=" 76" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family: 方正仿宋简体" E-mail /span /p /td td width=" 132" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td /tr tr style=" height:40px" td width=" 84" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 标准名称 /span /p /td td width=" 547" colspan=" 9" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td /tr tr style=" height:49px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 姓名 /span /p /td td width=" 58" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 性别 /span /p /td td width=" 80" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 职务 /span /p /td td width=" 121" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 办公电话 /span /p /td td width=" 156" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 手机 /span /p /td td width=" 132" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 电子邮件地址 /span /p /td /tr tr style=" height:49px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td td width=" 58" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td td width=" 80" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td td width=" 121" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td td width=" 156" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td td width=" 132" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td /tr tr style=" height:41px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 58" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 80" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 121" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 156" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 132" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td /tr tr style=" height:41px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 58" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 80" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 121" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 156" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 132" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td /tr tr style=" height:84px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 84" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 房间预定 /span /p /td td width=" 546" colspan=" 8" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 84" p span style=" font-size:16px font-family:方正仿宋简体" 大床 span _ /span 房()间, span _ /span 双床 span _ /span 间()间;入住时间自 span ____ /span 至 span _____ /span 。 /span /p p span style=" font-size:16px font-family: 方正仿宋简体" ( /span span style=" font-size: 16px font-family:方正仿宋简体" 注:双床房 span 560 /span 元 span / /span 天含早 span ) /span /span /p /td /tr tr style=" height:104px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 104" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 备注 /span /p /td td width=" 546" colspan=" 8" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 104" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 参会单位务必提前一周通过电邮方式将附件表格填好,发送到规定的邮箱。 /span /p /td /tr /tbody /table p   联系人及联系方式: /p p   苑 萍 18366223266 /p p   lyndayuan@vip.163.com(请将回执发至此邮箱) /p p br/ /p
  • 复旦大学430.00万元采购二次离子质谱
    详细信息 复旦大学二次离子质谱仪设备国际招标公告(第二次) 上海市-杨浦区 状态:公告 更新时间: 2023-12-11 复旦大学二次离子质谱仪设备国际招标公告(第二次) 2023年12月11日 17:58 公告信息: 采购项目名称 复旦大学二次离子质谱仪设备 品目 货物/设备/仪器仪表/教学仪器 采购单位 复旦大学 行政区域 上海市 公告时间 2023年12月11日 17:58 获取招标文件时间 2023年12月12日至2023年12月19日每日上午:8:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn) 开标时间 2024年01月03日 09:30 开标地点 1)投标人应在投标截止时间之前,按复旦大学采购与招标管理系统的操作步骤对其投标文件进行加密后递交(上传)至电子采购平台。 2)开标程序在复旦大学采购与招标管理系统上进行,所有投标人应登录到系统内参加开标,并在规定时间内进行投标文件解密。 预算金额 ¥430.000000万元(人民币) 联系人及联系方式: 项目联系人 邢楠、黄梦如、陈豪 项目联系电话 021-52555810 采购单位 复旦大学 采购单位地址 中国上海邯郸路220号 采购单位联系方式 何老师 ,021-65645530 代理机构名称 上海中世建设咨询有限公司 代理机构地址 中国上海市曹杨路528弄35号 代理机构联系方式 邢楠、黄梦如、陈豪,021-52555810 附件: 附件1 复旦大学二次离子质谱仪设备国际招标公告(2)-招标采购详情--____(第二次).pdf 项目概况 复旦大学二次离子质谱仪设备 招标项目的潜在投标人应在复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)获取招标文件,并于2024年01月03日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:1069-234Z20234470(HW2023111401) 项目名称:复旦大学二次离子质谱仪设备 预算金额:430.000000 万元(人民币) 最高限价(如有):421.000000 万元(人民币) 采购需求: 包件号 名称 数量 简要技术规格 备注 1 二次离子质谱仪设备 1套 应用于材料化学结构解析和组分分析。实现对金属元素的测定、氧化态和电子结构等信息表征,支持原位实时动态分析。 预算金额:人民币430万元 最高限价:人民币421万元 合同履行期限:交货期:2024年12月30日前交付。 合同履行期限:交货期:2024年12月30日前交付。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: / 3.本项目的特定资格要求:1) 投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织;2) 投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的正式授权;3) 投标人须在投标截止期之前在国家商务部认可的机电产品招标投标电子交易平台(以下简称机电产品交易平台,网址为:http://www.chinabidding.com)上完成有效注册;4) 本项目不允许联合体投标;5) 本项目不接受分包和转包。 三、获取招标文件 时间:2023年12月12日 至 2023年12月19日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn) 方式:通过复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)点击“校外用户登录”在线获取招标文件,逾期不再办理。潜在投标人进入系统后可在“正在进行的项目”版块中查看项目并在线领购招标文件。未按规定在系统内合法获取招标文件的潜在投标人将不得参加投标。获取招标文件所需上传的材料:有效授权委托书及被授权人身份证。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年01月03日 09点30分(北京时间) 开标时间:2024年01月03日 09点30分(北京时间) 地点:1)投标人应在投标截止时间之前,按复旦大学采购与招标管理系统的操作步骤对其投标文件进行加密后递交(上传)至电子采购平台。2)开标程序在复旦大学采购与招标管理系统上进行,所有投标人应登录到系统内参加开标,并在规定时间内进行投标文件解密。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1)投标人在投标前应在____(https://____)或机电产品招标投标电子交易平台(https://www.chinabidding.com)完成注册及信息核验。评标结果将在____和中国国际招标网公示。 2)本项目采用电子化采购线上方式进行。系统登录方法:进入https://czzx.fudan.edu.cn网站,点击校外用户登录。 3)投标文件需使用到CA加密和解密,操作步骤需严格按照复旦大学采购与招标管理系统的要求进行。 4)有兴趣的潜在投标人可从招标人得到进一步的信息和查阅招标文件。 复旦大学采购与招标管理系统使用技术咨询:400-808-5975转2 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:复旦大学 地址:中国上海邯郸路220号 联系方式:何老师 ,021-65645530 2.采购代理机构信息 名 称:上海中世建设咨询有限公司 地 址:中国上海市曹杨路528弄35号 联系方式:邢楠、黄梦如、陈豪,021-52555810 3.项目联系方式 项目联系人:邢楠、黄梦如、陈豪 电 话: 021-52555810 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:二次离子质谱 开标时间:2024-01-03 09:30 预算金额:430.00万元 采购单位:复旦大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海中世建设咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 复旦大学二次离子质谱仪设备国际招标公告(第二次) 上海市-杨浦区 状态:公告 更新时间: 2023-12-11 复旦大学二次离子质谱仪设备国际招标公告(第二次) 2023年12月11日 17:58 公告信息: 采购项目名称 复旦大学二次离子质谱仪设备 品目 货物/设备/仪器仪表/教学仪器 采购单位 复旦大学 行政区域 上海市 公告时间 2023年12月11日 17:58 获取招标文件时间 2023年12月12日至2023年12月19日每日上午:8:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn) 开标时间 2024年01月03日 09:30 开标地点 1)投标人应在投标截止时间之前,按复旦大学采购与招标管理系统的操作步骤对其投标文件进行加密后递交(上传)至电子采购平台。 2)开标程序在复旦大学采购与招标管理系统上进行,所有投标人应登录到系统内参加开标,并在规定时间内进行投标文件解密。 预算金额 ¥430.000000万元(人民币) 联系人及联系方式: 项目联系人 邢楠、黄梦如、陈豪 项目联系电话 021-52555810 采购单位 复旦大学 采购单位地址 中国上海邯郸路220号 采购单位联系方式 何老师 ,021-65645530 代理机构名称 上海中世建设咨询有限公司 代理机构地址 中国上海市曹杨路528弄35号 代理机构联系方式 邢楠、黄梦如、陈豪,021-52555810 附件: 附件1 复旦大学二次离子质谱仪设备国际招标公告(2)-招标采购详情--____(第二次).pdf 项目概况 复旦大学二次离子质谱仪设备 招标项目的潜在投标人应在复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)获取招标文件,并于2024年01月03日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:1069-234Z20234470(HW2023111401) 项目名称:复旦大学二次离子质谱仪设备 预算金额:430.000000 万元(人民币) 最高限价(如有):421.000000 万元(人民币) 采购需求: 包件号 名称 数量 简要技术规格 备注 1 二次离子质谱仪设备 1套 应用于材料化学结构解析和组分分析。实现对金属元素的测定、氧化态和电子结构等信息表征,支持原位实时动态分析。 预算金额:人民币430万元 最高限价:人民币421万元 合同履行期限:交货期:2024年12月30日前交付。 合同履行期限:交货期:2024年12月30日前交付。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: / 3.本项目的特定资格要求:1) 投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织;2) 投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的正式授权;3) 投标人须在投标截止期之前在国家商务部认可的机电产品招标投标电子交易平台(以下简称机电产品交易平台,网址为:http://www.chinabidding.com)上完成有效注册;4) 本项目不允许联合体投标;5) 本项目不接受分包和转包。 三、获取招标文件 时间:2023年12月12日 至 2023年12月19日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn) 方式:通过复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)点击“校外用户登录”在线获取招标文件,逾期不再办理。潜在投标人进入系统后可在“正在进行的项目”版块中查看项目并在线领购招标文件。未按规定在系统内合法获取招标文件的潜在投标人将不得参加投标。获取招标文件所需上传的材料:有效授权委托书及被授权人身份证。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年01月03日 09点30分(北京时间) 开标时间:2024年01月03日 09点30分(北京时间) 地点:1)投标人应在投标截止时间之前,按复旦大学采购与招标管理系统的操作步骤对其投标文件进行加密后递交(上传)至电子采购平台。2)开标程序在复旦大学采购与招标管理系统上进行,所有投标人应登录到系统内参加开标,并在规定时间内进行投标文件解密。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1)投标人在投标前应在____(https://____)或机电产品招标投标电子交易平台(https://www.chinabidding.com)完成注册及信息核验。评标结果将在____和中国国际招标网公示。 2)本项目采用电子化采购线上方式进行。系统登录方法:进入https://czzx.fudan.edu.cn网站,点击校外用户登录。 3)投标文件需使用到CA加密和解密,操作步骤需严格按照复旦大学采购与招标管理系统的要求进行。 4)有兴趣的潜在投标人可从招标人得到进一步的信息和查阅招标文件。 复旦大学采购与招标管理系统使用技术咨询:400-808-5975转2 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:复旦大学 地址:中国上海邯郸路220号 联系方式:何老师 ,021-65645530 2.采购代理机构信息 名 称:上海中世建设咨询有限公司 地 址:中国上海市曹杨路528弄35号 联系方式:邢楠、黄梦如、陈豪,021-52555810 3.项目联系方式 项目联系人:邢楠、黄梦如、陈豪 电 话: 021-52555810
  • 中国科学院地质与地球物理研究所2050.00万元采购二次离子质谱
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 中国科学院地质与地球物理研究所双束电镜-飞行时间二次离子质谱联用系统采购项目 北京市-朝阳区 状态:公告 更新时间: 2022-10-10 项目编号:OITC-G220271559 发布时间:2022-10-10 项目概况 中国科学院地质与地球物理研究所双束电镜-飞行时间二次离子质谱联用系统采购项目的潜在投标人应在http://www.oitccas.com/获取招标文件,并于2022年10月31日09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:OITC-G220271559 项目名称:中国科学院地质与地球物理研究所双束电镜-飞行时间二次离子质谱联用系统采购项目 预算金额: 2050万元(人民币) 最高限价(如有):2050万元(人民币) 采购需求: 1、采购项目的名称、数量: 包号 货物名称 数量(台/套) 是否接受进口产品 1 双束电镜-飞行时间二次离子质谱联用系统 1 是 投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。 2、技术要求详见公告附件。 合同履行期限:详见采购需求。 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目不属于专门面向中小企业采购的项目。 依据工信部联企业【2011】300号文件,采购标的对应的中小企业划分标准所属行业为:工业 3.本项目的特定资格要求: (1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的企事业法人、其他组织或者自然人; (2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标; (3)投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动; (4)按本投标邀请的规定获取招标文件; (5)投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。 三、获取招标文件 时间:2022年10月10日 至 2022年10月17日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外) 地点:http://www.oitccas.com/ 方式:登陆“东方招标”平台(http://www.oitccas.com/)注册并购买。 售价:¥600 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点: 2022年10月31日 09点30分(北京时间) 地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第一会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其它补充事宜 1、招标文件采用网上电子发售购买方式: (1)有兴趣的供应商可登陆“东方招标”平台(http://www.oitccas.com/)注册并购买。完成投标人注册手续(免费),然后登录系统浏览该项目下产品的“技术指标”,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 (2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号)。 开户名称:东方国际招标有限责任公司 开户行:招商银行北京西三环支行 账 号:862081657710001 (3)投标人应在“东方招标”平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在“东方招标”平台上登记的电子邮箱,投标人自行下载打印。 2、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途(如未标明招标编号,有可能导致投标无效)。 3、采购项目需要落实的政府采购政策: (1)政府采购促进中小企业发展 (2)政府采购支持监狱企业发展 (3)政府采购促进残疾人就业 (4)政府采购鼓励采购节能环保产品 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国科学院地质与地球物理研究所 地址: 北京市朝阳区北土城西路19号 联系方式:李金华, 010-82998323 2.采购代理机构信息 名 称:东方国际招标有限责任公司 地 址:北京市海淀区西三环北路甲2号院科技园6号楼13层01室 联系方式:窦志超、王琪,010-68290523 3.项目联系方式 项目联系人:窦志超、王琪 电 话:下载010-68290523 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:二次离子质谱 开标时间:2022-10-31 09:30 预算金额:2050.00万元 采购单位:中国科学院地质与地球物理研究所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:东方国际招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国科学院地质与地球物理研究所双束电镜-飞行时间二次离子质谱联用系统采购项目 北京市-朝阳区 状态:公告 更新时间: 2022-10-10 项目编号:OITC-G220271559 发布时间:2022-10-10 项目概况 中国科学院地质与地球物理研究所双束电镜-飞行时间二次离子质谱联用系统采购项目的潜在投标人应在http://www.oitccas.com/获取招标文件,并于2022年10月31日09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:OITC-G220271559 项目名称:中国科学院地质与地球物理研究所双束电镜-飞行时间二次离子质谱联用系统采购项目 预算金额: 2050万元(人民币) 最高限价(如有):2050万元(人民币) 采购需求: 1、采购项目的名称、数量: 包号 货物名称 数量(台/套) 是否接受进口产品 1 双束电镜-飞行时间二次离子质谱联用系统 1 是 投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。 2、技术要求详见公告附件。 合同履行期限:详见采购需求。 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目不属于专门面向中小企业采购的项目。 依据工信部联企业【2011】300号文件,采购标的对应的中小企业划分标准所属行业为:工业 3.本项目的特定资格要求: (1)在中华人民共和国境内依法注册的,具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的企事业法人、其他组织或者自然人; (2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标; (3)投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动; (4)按本投标邀请的规定获取招标文件; (5)投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。 三、获取招标文件 时间:2022年10月10日 至 2022年10月17日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外) 地点:http://www.oitccas.com/ 方式:登陆“东方招标”平台(http://www.oitccas.com/)注册并购买。 售价:¥600 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点: 2022年10月31日 09点30分(北京时间) 地点:北京市海淀区西三环北路甲2号院科技园6号楼13层第一会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其它补充事宜 1、招标文件采用网上电子发售购买方式: (1)有兴趣的供应商可登陆“东方招标”平台(http://www.oitccas.com/)注册并购买。完成投标人注册手续(免费),然后登录系统浏览该项目下产品的“技术指标”,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 (2)投标人可以电汇的形式支付标书款(应以公司名义汇款至下述指定账号)。 开户名称:东方国际招标有限责任公司 开户行:招商银行北京西三环支行 账 号:862081657710001 (3)投标人应在“东方招标”平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在“东方招标”平台上登记的电子邮箱,投标人自行下载打印。 2、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途(如未标明招标编号,有可能导致投标无效)。 3、采购项目需要落实的政府采购政策: (1)政府采购促进中小企业发展 (2)政府采购支持监狱企业发展 (3)政府采购促进残疾人就业 (4)政府采购鼓励采购节能环保产品 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国科学院地质与地球物理研究所 地址: 北京市朝阳区北土城西路19号 联系方式:李金华, 010-82998323 2.采购代理机构信息 名 称:东方国际招标有限责任公司 地 址:北京市海淀区西三环北路甲2号院科技园6号楼13层01室 联系方式:窦志超、王琪,010-68290523 3.项目联系方式 项目联系人:窦志超、王琪 电 话:下载010-68290523
  • 二次离子质谱可以测什么?
    二次离子质谱(secondaryionmassspectroscopy,简称SIMS),是一种非常灵敏的表面成份精密分析仪器,原理利用质谱法分析初级离子入射靶面后,样品表面被高能聚焦的一次离子轰击时,一次离子注入被分析样品,把动能传递给固体原子,引起中性粒子和带止负电荷的二次离子发生溅射,然后根据溅射的二次离子的质量信号,对被轰击样品的表面和内部元素分布特征进行分析。通过不同的操作模式,测试可以得到表面质谱、表面成像、深度剖析和三维分析信息,用来完成工业生产和科研研究过程中所需的掺杂和杂质深度数据;浅注入和超薄膜的超高分辨率深度分析;芯片结构及杂质元素定性定量分析;薄膜的组成和杂质的测量等,这种技术本身具有“破坏性”的物质溅射,可以应用在包括但不仅限于金属及合金、半导体、绝缘体、有机物、生物膜分析对象上。质量分析器可采用单聚焦、双聚焦,飞行时间、四极杆、离子阱、离子回旋共振等,其中飞行时间离子质谱TOF-SIMS是通过将二次离子质谱分析技术(SIMS)与飞行时间质量分析器(TOF)结合起来,由于其一次脉冲就可得到一个全谱,离子利用率最高,能最好地实现对样品几乎无损的静态分析,分析速度快和样品的消耗极少,分析质量范围宽,对有机、无机材料都有很好的分析能力。
  • 热烈祝贺《光谱法水质在线快速检测系统》标准第二次讨论会成功召开
    p   2019年3月22日是第27届“世界水日& quot ,也是第32届“中国水周”的第一天。为响应习主席号召,探索水生态文明建设,做好水资源的开源工作,由中国水利企业协会立项,青岛中质脱盐质量检测有限公司发起,中国水利水电科学研究院水环境所、由中国质量检验协会水环境工程技术与装备专业委员会、复旦大学、中科院西安光学精密机械研究所、中国科学院水生生物研究所联合技术支持的《光谱法水质在线快速检测系统》标准第二次讨论会在北京隆重召开。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/9e465b9c-9c51-442d-b793-360c3d8f5f45.jpg" title=" 全体合影.jpg" alt=" 全体合影.jpg" width=" 488" height=" 262" style=" width: 488px height: 262px " / /p p style=" text-align: center " span style=" font-size: 14px " i 全体合影 /i /span /p p style=" text-align: left "   中国水利企业协会张金宏会长、中国水科院水环境所彭文启所长、海河流域水资源保护局副局长罗阳、中国水科院水环境所高级工程师曹峰博士、复旦大学纪新明教授、南京大学李文涛博士等领导专家出席了本次会议。深圳一目、阿夸斯、赛莱默、中兴仪器、厦门斯坦道、奥谱天成、益清源、安杰环保、深圳水净、汉威、北京智科远达、华科仪、浙江西地、河北德润厚天、武汉正元、武汉天虹、深科健等企业技术专家参与了此次标准讨论会。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/5e35e82e-10dc-4546-9561-b586d2db51f5.jpg" title=" 海河流域水资源保护局,罗阳副局长.png" alt=" 海河流域水资源保护局,罗阳副局长.png" width=" 347" height=" 231" style=" width: 347px height: 231px " / /p p style=" text-align: center " i span style=" font-size: 14px " 海河流域水资源保护局,罗阳副局长 /span /i /p p   会议由海河流域水资源保护局罗阳副局长主持。首先,标准发起单位青岛中质脱盐质量检测有限公司总经理苑萍致辞并做了标准编制工作汇报。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/9285bb46-fd3e-4271-8d6f-94dcc9670ef5.jpg" title=" 青岛中质脱盐质量检测有限公司总经理,苑萍.jpg" alt=" 青岛中质脱盐质量检测有限公司总经理,苑萍.jpg" width=" 362" height=" 240" style=" width: 362px height: 240px " / /p p style=" text-align: center " i span style=" font-size: 14px " 青岛中质脱盐质量检测有限公司总经理,苑萍 /span /i /p p   之后由此次标准主笔专家曹峰博士主持了标准第二稿的讨论环节。各位领导专家对标准的第二稿进行了热烈讨论,结合新产品、新技术和市场应用提出了很多宝贵意见,会后将形成会议纪要,经过标准制定工作组修改后广泛征集业内意见与建议。随后确定了标准进度安排,以及送审时间。接着由此项标准主要技术支持单位,中国水利水电科学研究院水环境研究所彭文启所长对标准编制工作进行了总结与指导。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/d7edce44-83c3-4bcf-a69c-5e7cc02bf89c.jpg" title=" 中国水利水电科学研究院水环境研究所,彭文启所长.png" alt=" 中国水利水电科学研究院水环境研究所,彭文启所长.png" width=" 348" height=" 230" style=" width: 348px height: 230px " / /p p style=" text-align: center " i span style=" font-size: 14px " 中国水利水电科学研究院水环境研究所,彭文启所长 /span /i /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/6fb53df5-2b31-4a0d-b6fb-a60798fc3040.jpg" title=" 中国水科院水环境所高工,曹峰博士.png" alt=" 中国水科院水环境所高工,曹峰博士.png" width=" 350" height=" 243" style=" width: 350px height: 243px " / /p p style=" text-align: center " i span style=" font-size: 14px " 中国水科院水环境所高工,曹峰博士 /span /i /p p   最后,由中国水利企业协会张金宏会长传达了协会指示与标准的指导精神。张会长首先对此次标准讨论会的编制成果给予了高度赞同,并对包括参编领导专家、企业专家、发起单位及各参编单位在内的所有参与标准编制人员的工作给予了高度肯定。 /p p   张会长指出,技术研讨是标准编制环节中非常重要的一环,这一环节的好坏直接影响着标准的最终质量。本次参加技术研讨的专家来自科研院所、大专院校和生产企业等不同领域,具有广泛的代表性。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/523299c6-bd4c-49d0-bdf1-191090c39525.jpg" title=" 中国水利企业协会,张金宏会长.png" alt=" 中国水利企业协会,张金宏会长.png" width=" 341" height=" 247" style=" width: 341px height: 247px " / /p p style=" text-align: center " span style=" font-size: 14px " i 中国水利企业协会,张金宏会长 /i /span /p p   张会长强调,团体标准一定要代表行业和市场的意见,才能被大家所认可,并广泛采用和运用实施。一定要充分征求相关单位及专家意见,才能制定出具有生命力和竞争力的标准。同时可以通过征求意见将标准宣传出去,让更多人能够接触、认知制定的标准。 /p p   同时,张会长对标准下一步工作提出了要求:各编制单位应当继续积极配合工作,加强调查研究,做好实验论证,为标准编制工作提供强有力的技术支撑,争取标准尽快发布实施。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/c40d07ef-3a9e-4b04-b73d-839950193860.jpg" title=" 讨论会现场.png" alt=" 讨论会现场.png" width=" 349" height=" 179" style=" width: 349px height: 179px " / /p p style=" text-align: center " i span style=" font-size: 14px " 讨论会现场 /span /i /p p   今年“中国水周”提出了“坚持节水优先,强化水资源管理”的主题。“节水优先”是习近平总书记十六字治水方针第一条,“强化水资源管理”则是水利部明确的“补短板、强监管”水利工作总基调的内在要求。此次标准讨论会的召开弥补了现有光谱法水质在线监测系统的空白,进一步完善了水质在线监测工作所需的技术指导与规范,推动了水质监管的标准化进程,对整个水利、水务行业的发展起到了积极的影响。 /p p br/ /p
  • REACH法规第二次注册时限注册情况
    2013年9月10日,欧盟ECHA发布了第二次注册时限前(截至2013年5月31日)提交的注册的情况。统计显示,共提交了9030个卷宗,涉及到约2998种物质,企业交付的0.45亿欧元的注册费。   企业在376项卷宗中提出了770项的测试提案,其中的653项是为了满足REACH法规附件IX中的信息要求,ECHA将在2016年6月1日前评估所有的测试提案。   此外,ECHA收到了在254个卷宗中的301项的机密性要求。其中大多数的机密性要求都是关于安全数据表中的信息(包括公司的名称、注册号及物质的使用信息),ECHA将在接受这些要求前对其进行评估。而所有的非机密性信息则在年底前进入注册物质在线数据库。   ECHA提醒业界,即使在取得了注册号后,仍然要维护和更新其卷宗。此外,业界还需要保持REACH-IT以便接收来自EACH的信息。   详情参见:http://echa.europa.eu/view-article/-/journal_content/title/registration-numbers-granted-to-9-030-reach-2013-registrations
  • 中国检科院学术委员会第二次全体会议在京召开
    11月13日,中国检验检疫科学研究院学术委员会第二次全体会议在京召开。会议审议了中国检科院2009年度科技工作,研究了2010年度科技工作计划(草案)及“十二五”发展规划(草案)。会议还讨论了组建中国检验检疫学会的设想和学科建设问题。中国工程院院士田波、张钟华、庞国芳、金国藩、姚建年、夏咸柱、徐滨士、强伯勤、魏复盛以及来自中科院、中国疾控中心、军事医学科学院、中国农业大学等的顾问及委员共36人出席会议。   据中国检科院院长李怀林介绍,在过去的一年中,中国检科院全体科研技术人员秉持“崇学尚德,慎思笃行”的院训精神,在“求真务实、科学发展、服务质检、创优争先”的工作方针指导下,在科研创新和技术支撑保障方面取得了一系列优异的成绩。截至10月底,2009年该院共立项国家自然科学基金项目、国家科技支撑计划项目、科技部国际合作项目、国家质检总局科研计划项目、制标(其中ISO标准2项)等各类科研制标57项,高质量地完成科研课题28项,申请专利42项,获得发明专利11项,完成行业标准40项、国家标准22项。全年发表各类科技论文86篇,其中SCI论文16篇,核心期刊64篇,无论是数量还是质量较上一年度均有大幅度提高。此外,中国检科院国际合作与交流有了新跨越,尤其是在国际金融危机导致出口贸易严重受阻的情况下,中国检科院紧密围绕国家外交外贸大局和质检工作需要,为促进对外贸易健康持续发展,防控检验检疫性风险因子跨境传播,保障国民经济安全和公共卫生安全提供了强有力的科技支撑和保障。   据了解,中国检科院学术委员会成立于今年1月14日,由我国相关业务领域中作出较大贡献、有较高学术造诣、享有一定声誉的35名专家组成,此外还成立了由14名院士、国务院参事和教授组成的顾问委员会。成立以来,委员会在提高该院科学技术水平、协调科技合作、推动学术交流、调动科研人员积极性、形成良好科研道德等方面发挥了积极有效的作用,努力促进了检验检疫工作的更好更快发展,为加强检验检疫系统内外各单位间的合作与交流搭建了平台。   据悉,2010年,中国检科院将进一步集中学术委员会和系统内外专家的智慧,推进国际交流和合作工作进一步深化,加强“检学研”和“产学研”创新联盟构建,强化科研项目的执行力度,推动成果转化和应用。同时,该院还将进一步加强学术交流,扩大国内外同专业学者的协作,并筹备召开2010年度全国检验检疫学术报告会。
  • GCE本年度第二次销售培训圆满结束
    本年度GCE第二次销售培训于11月26日圆满结束。我们的销售团队在风景如画的朱家角古镇度过了两天时光。我们针对销售工作进行了完善的系统培训,力求使销售人员在面向客户时能尽可能地展现出专业、亲切的服务态度。 培训课程虽然很紧凑、忙碌,但大家在一起学习、做游戏,更好地体会了团队意识和凝聚力。我们的Sales Team结束前一阵繁忙的工作,停下脚步、思考、总结经验,在面对之后新一轮挑战时必将更加坚定不移,勇往直前! 关于上海GCE 上海GCE气体设备有限公司致力于为您提供专业气路系统,及相关零组件包括:减压器、汇流排、钢瓶阀、割炬等,公司设有技术支持为客户提供从工程咨询、项目设计、培训、实施、验收、工程安装到维修维护等一系列服务。产品适用于高纯气体、工业气体、医疗系统、切割焊接等领域。 上海GCE总部位于瑞典,在20世纪初就致力于气体控制设备的开发和制造,如今是该领域世界领导厂商之一。 欲了解更多产品,请您登陆公司网站:http://china.gcegroup.com/zh/home/
  • 中科院合成生物学重点实验室召开学术委员会一届二次会议
    1月23日,中国科学院合成生物学重点实验室2009年学术年会暨学术委员会一届二次会议在中国科学院上海生命科学研究院植物生理生态研究所召开。   实验室学术委员会主任杨胜利院士,学术委员会委员赵国屏院士、邓子新院士、黄力研究员、吴家睿研究员、孙志浩教授、张嗣良研究员、王磊教授、刘海燕教授、陈代杰研究员、姜卫红研究员、薛红卫研究员,专家委员会委员林国强院士、汤章城研究员以及实验室全体课题组长出席了本次会议。会议由实验室学术委员会主任杨胜利院士和实验室副主任覃重军研究员、李来庚研究员共同主持。   实验室主任赵国屏院士代表实验室向与会专家们致欢迎辞。常务副主任覃重军研究员向学术委员会汇报了2009年实验室各项工作的进展情况。   会上,学术委员会首先听取了各课题组的报告:覃重军研究员报告题为“合成生物学的细胞工场――超级链霉菌”,姜卫红研究员报告题为“丁醇的生物制造”,周志华研究员报告题为“纤维素酶的发现、重组与表达”,杨晟研究员报告题为“多酶组合制备手性化学品”,杨琛研究员报告题为“代谢网络检测和重构”,赵国屏研究员课题组赵维报告题为“Complete genomic sequence of Amycolatopsis mediterranei U32 revealed its genetic characteristics in biology and rifamycin production”,李来庚研究员报告题为“Understanding of Plant Secondary Growth System and Dissection of Cellulose Synthesis Machinery”,张鹏研究员报告题为“木薯和甘薯淀粉品质改良的基因工程”。学术委员会专家们对各课题组的工作给予了肯定和积极的评价,同时,还对各课题组的工作给予了具体的指导并提出许多宝贵的建议。
  • 第二次污染源普查来袭 第三方服务再迎新机会
    p   近日,国务院印发了《第二次全国污染源普查方案》,详细规定了我国第二次全国污染源普查的工作目标、时间节点、范围、内容以及普查经费来源等内容。 /p p   此次普查标准时点为2017年12月31日,时期资料为2017年度资料。2017年完成前期准备、启动清查建库和普查试点,2018年完成全面普查,2019年完成成果总结与发布。 /p p   根据《方案》,此次普查对象为中华人民共和国境内有污染源的单位和个体经营户。范围包括:工业污染源,农业污染源,生活污染源,集中式污染治理设施,移动源及其他产生、排放污染物的设施。主要污染物包括废水、废气和工业固体废物。 /p p   不同污染源监测指标也有所不同,废水污染物主要包括化学需氧量、氨氮、总氮、总磷、石油类、挥发酚、氰化物、汞、镉、铅、铬、砷、五日生化需氧量、动植物油。废气污染物主要包括二氧化硫、氮氧化物、颗粒物、挥发性有机物、氨、汞、镉、铅、铬、砷。对于可能存在放射性的废水、固体废物等也需要监测。 /p p   在实际普查过程中,工业污染源、生活污染排污口、集中式污染治理设施等基于实测和综合分析进行核算,农业污染源、生活污染源、移动源等基于产排污系数核算。 /p p   《方案》中还指出,要借助购买第三方服务和信息化手段,提高普查效率。 /p p style=" text-align: center " strong 国务院办公厅关于印发第二次全国污染源普查方案的通知 /strong br/ /p p style=" text-align: center "   国办发〔2017〕82号 /p p   各省、自治区、直辖市人民政府,国务院各部委、各直属机构: /p p   《第二次全国污染源普查方案》已经国务院同意,现印发给你们,请认真组织实施。 /p p style=" text-align: right "   国务院办公厅 /p p style=" text-align: right "   2017年9月10日 /p p   (此件公开发布) /p p style=" text-align: center "    strong 第二次全国污染源普查方案 /strong /p p   根据《全国污染源普查条例》和《国务院关于开展第二次全国污染源普查的通知》(国发〔2016〕59号)精神,为指导开展第二次全国污染源普查工作,制订本方案。 /p p   一、普查工作目标 /p p   摸清各类污染源基本情况,了解污染源数量、结构和分布状况,掌握国家、区域、流域、行业污染物产生、排放和处理情况,建立健全重点污染源档案、污染源信息数据库和环境统计平台,为加强污染源监管、改善环境质量、防控环境风险、服务环境与发展综合决策提供依据。 /p p   二、普查时点、对象、范围和内容 /p p   (一)普查时点。普查标准时点为2017年12月31日,时期资料为2017年度资料。 /p p   (二)普查对象与范围。普查对象为中华人民共和国境内有污染源的单位和个体经营户。范围包括:工业污染源,农业污染源,生活污染源,集中式污染治理设施,移动源及其他产生、排放污染物的设施。 /p p   1.工业污染源。普查对象为产生废水污染物、废气污染物及固体废物的所有工业行业产业活动单位。对可能伴生天然放射性核素的8类重点行业15个类别矿产采选、冶炼和加工产业活动单位进行放射性污染源调查。 /p p   对国家级、省级开发区中的工业园区(产业园区),包括经济技术开发区、高新技术产业开发区、保税区、出口加工区等进行登记调查。 /p p   2.农业污染源。普查范围包括种植业、畜禽养殖业和水产养殖业。 /p p   3.生活污染源。普查对象为除工业企业生产使用以外所有单位和居民生活使用的锅炉(以下统称生活源锅炉),城市市区、县城、镇区的市政入河(海)排污口,以及城乡居民能源使用情况,生活污水产生、排放情况。 /p p   4.集中式污染治理设施。普查对象为集中处理处置生活垃圾、危险废物和污水的单位。其中: /p p   生活垃圾集中处理处置单位包括生活垃圾填埋场、生活垃圾焚烧厂以及以其他处理方式处理生活垃圾和餐厨垃圾的单位。 /p p   危险废物集中处理处置单位包括危险废物处置厂和医疗废物处理(处置)厂。危险废物处置厂包括危险废物综合处理(处置)厂、危险废物焚烧厂、危险废物安全填埋场和危险废物综合利用厂等 医疗废物处理(处置)厂包括医疗废物焚烧厂、医疗废物高温蒸煮厂、医疗废物化学消毒厂、医疗废物微波消毒厂等。 /p p   集中式污水处理单位包括城镇污水处理厂、工业污水集中处理厂和农村集中式污水处理设施。 /p p   5.移动源。普查对象为机动车和非道路移动污染源。其中,非道路移动污染源包括飞机、船舶、铁路内燃机车和工程机械、农业机械等非道路移动机械。 /p p   (三)普查内容。 /p p   1.工业污染源。企业基本情况,原辅材料消耗、产品生产情况,产生污染的设施情况,各类污染物产生、治理、排放和综合利用情况(包括排放口信息、排放方式、排放去向等),各类污染防治设施建设、运行情况等。 /p p   废水污染物:化学需氧量、氨氮、总氮、总磷、石油类、挥发酚、氰化物、汞、镉、铅、铬、砷。 /p p   废气污染物:二氧化硫、氮氧化物、颗粒物、挥发性有机物、氨、汞、镉、铅、铬、砷。 /p p   工业固体废物:一般工业固体废物和危险废物的产生、贮存、处置和综合利用情况。危险废物按照《国家危险废物名录》分类调查。工业企业建设和使用的一般工业固体废物及危险废物贮存、处置设施(场所)情况。 /p p   稀土等15类矿产采选、冶炼和加工过程中产生的放射性污染物情况。 /p p   2.农业污染源。种植业、畜禽养殖业、水产养殖业生产活动情况,秸秆产生、处置和资源化利用情况,化肥、农药和地膜使用情况,纳入登记调查的畜禽养殖企业和养殖户的基本情况、污染治理情况和粪污资源化利用情况。 /p p   废水污染物:氨氮、总氮、总磷、畜禽养殖业和水产养殖业增加化学需氧量。 /p p   废气污染物:畜禽养殖业氨、种植业氨和挥发性有机物。 /p p   3.生活污染源。生活源锅炉基本情况、能源消耗情况、污染治理情况,城乡居民能源使用情况,城市市区、县城、镇区的市政入河(海)排污口情况,城乡居民用水排水情况。 /p p   废水污染物:化学需氧量、氨氮、总氮、总磷、五日生化需氧量、动植物油。 /p p   废气污染物:二氧化硫、氮氧化物、颗粒物、挥发性有机物。 /p p   4.集中式污染治理设施。单位基本情况,设施处理能力、污水或废物处理情况,次生污染物的产生、治理与排放情况。 /p p   废水污染物:化学需氧量、氨氮、总氮、总磷、五日生化需氧量、动植物油、挥发酚、氰化物、汞、镉、铅、铬、砷。 /p p   废气污染物:二氧化硫、氮氧化物、颗粒物、汞、镉、铅、铬、砷。 /p p   污水处理设施产生的污泥、焚烧设施产生的焚烧残渣和飞灰等产生、贮存、处置情况。 /p p   5.移动源。各类移动源保有量及产排污相关信息,挥发性有机物(船舶除外)、氮氧化物、颗粒物排放情况,部分类型移动源二氧化硫排放情况。 /p p   6.各省份可根据需求适当增加普查附表,报国务院第二次全国污染源普查领导小组(以下简称全国污染源普查领导小组)办公室批准后实施。 /p p   三、普查技术路线 /p p   (一)工业污染源。全面入户登记调查单位基本信息、活动水平信息、污染治理设施和排放口信息 基于实测和综合分析,分行业分类制定污染物排放核算方法,核算污染物产生量和排放量。 /p p   根据伴生放射性矿初测基本单位名录和初测结果,确定伴生放射性矿普查对象,全面入户调查。 /p p   工业园区(产业园区)管理机构填报园区调查信息。工业园区(产业园区)内的工业企业填报工业污染源普查表。 /p p   (二)农业污染源。以已有统计数据为基础,确定抽样调查对象,开展抽样调查,获取普查年度农业生产活动基础数据,根据产排污系数核算污染物产生量和排放量。 /p p   (三)生活污染源。登记调查生活源锅炉基本情况和能源消耗情况、污染治理情况等,根据产排污系数核算污染物产生量和排放量。抽样调查城乡居民能源使用情况,结合产排污系数核算废气污染物产生量和排放量。通过典型区域调查和综合分析,获取与挥发性有机物排放相关活动水平信息,结合物料衡算或产排污系数估算生活污染源挥发性有机物产生量和排放量。 /p p   利用行政管理记录,结合实地排查,获取市政入河(海)排污口基本信息。对各类市政入河(海)排污口排水(雨季、旱季)水质开展监测,获取污染物排放信息。结合排放去向、市政入河(海)排污口调查与监测、城镇污水与雨水收集排放情况、城镇污水处理厂污水处理量及排放量,利用排水水质数据,核算城镇水污染物排放量。利用已有统计数据及抽样调查获取农村居民生活用水排水基本信息,根据产排污系数核算农村生活污水及污染物产生量和排放量。 /p p   (四)集中式污染治理设施。根据调查对象基本信息、废物处理处置情况、污染物排放监测数据和产排污系数,核算污染物产生量和排放量。 /p p   (五)移动源。利用相关部门提供的数据信息,结合典型地区抽样调查,获取移动源保有量、燃油消耗及活动水平信息,结合分区分类排污系数核算移动源污染物排放量。 /p p   机动车:通过机动车登记相关数据和交通流量数据,结合典型城市、典型路段抽样观测调查和燃油销售数据,更新完善机动车排污系数,核算机动车废气污染物排放量。 /p p   非道路移动源:通过相关部门间信息共享,获取保有量、燃油消耗及相关活动水平数据,根据排污系数核算污染物排放量。 /p p   四、普查组织及实施 /p p   (一)基本原则。全国统一领导,部门分工协作,地方分级负责,各方共同参与。 /p p   (二)普查组织。全国污染源普查领导小组负责领导和协调全国污染源普查工作。全国污染源普查领导小组办公室设在环境保护部,负责污染源普查日常工作。全国污染源普查领导小组成员单位的职责分工由全国污染源普查领导小组办公室商有关方面确定。 /p p   县级及以上地方人民政府污染源普查领导小组,按照全国污染源普查领导小组的统一规定和要求,领导和协调本行政区域内的污染源普查工作。对普查工作中遇到的各种困难和问题,要及时采取措施,切实予以解决。 /p p   县级及以上地方人民政府污染源普查领导小组办公室设在同级环境保护主管部门,负责本行政区域内的污染源普查日常工作。 /p p   乡(镇)人民政府、街道办事处和村(居)民委员会应当积极参与并认真做好本区域普查工作。 /p p   重点排污单位应按照环境保护法律法规、排放标准及排污许可证管理等相关要求开展监测,如实填报普查年度监测结果。各类污染源普查调查对象和填报单位应当指定专人负责本单位污染源普查表填报工作。 /p p   充分利用相关部门现有统计、监测和各专项调查成果,借助购买第三方服务和信息化手段,提高普查效率。发挥科研院所、高校、环保咨询机构等社会组织作用,鼓励社会组织和公众参与普查工作。 /p p   (三)普查实施。分阶段组织实施前期准备、清查建库、普查试点、全面普查、总结发布等方面工作:2017年完成前期准备、启动清查建库和普查试点,2018年完成全面普查,2019年完成成果总结与发布。 /p p   1.前期准备:成立机构,制定普查方案,落实经费渠道,制定相关技术规范和普查制度、确定污染物排放核算方法、完成普查信息系统开发建设以及其他技术准备工作。开展普查宣传与培训工作。 /p p   2.清查建库:开展污染源普查调查单位名录库筛选,开展普查清查,建立普查基本单位名录库。对伴生放射性矿产资源开发利用企业进行放射性指标初测,确定伴生放射性污染源普查对象 排查市政入河(海)排污口名录,开展排污口水质监测。 /p p   3.普查试点:开展普查试点,完善普查制度、技术规范和信息系统。 /p p   4.全面普查:开展入户调查与数据采集、数据审核、数据汇总、质量核查与评估、建立数据库等工作。 /p p   5.总结发布:总结发布普查成果,开展成果分析、验收与表彰等工作。 /p p   (四)普查培训。全国污染源普查领导小组办公室负责对省、市两级污染源普查工作机构技术骨干以及各省级普查培训师资的培训。省级污染源普查领导小组办公室负责对本行政区域内其余普查工作人员的培训。 /p p   (五)宣传动员。各级污染源普查领导小组办公室要按照国发〔2016〕59号文件要求,充分利用报刊、广播、电视、网络等各种媒体,广泛动员社会力量参与污染源普查,为普查实施创造良好氛围。 /p p   五、普查经费 /p p   本次普查工作经费由中央财政和地方财政分担。中央财政负担部分,由财政部按部门预算管理要求,列入相关部门的部门预算。地方财政负担部分,由同级地方财政根据工作需要统筹安排。 /p p   中央财政安排经费主要用于:研究制定全国污染源普查方案,编制污染源普查涉及的监测、调查、质量管理等相关规范 开展普查表格设计、软件及信息系统开发建设,宣传、培训与指导,普查试点,普查质量核查与评估,全国数据汇总、加工,建档、检查验收、总结等。 /p p   地方财政安排经费主要用于:各地污染源普查实施总体方案制定,组织动员、宣传、培训,入户调查与现场监测,普查人员经费补助,办公场所及运行经费保障,普查质量核查与评估,购置数据采集及其他设备,普查表印制、普查资料建档,数据录入、校核、加工,检查验收、总结、表彰等。对开展普查试点工作的地区和贫困县予以补助。 /p p   各级污染源普查领导小组办公室根据普查方案确定年度工作计划,领导小组成员单位据此编制年度经费预算,经同级财政部门审核后,分别列入各相关部门的部门预算,分年度按时拨付。 /p p   六、普查质量管理 /p p   全国污染源普查领导小组办公室统一领导普查质量管理工作,建立覆盖普查全过程、全员的质量管理制度并负责监督实施。各级普查机构要认真执行污染源普查质量管理制度,做好污染源普查质量保证和质量管理工作。 /p p   建立健全普查责任体系,明确主体责任、监督责任和相关责任。建立普查数据质量溯源和责任追究制度,依法开展普查数据核查和质量评估,严厉惩处普查违法行为。 /p p   按照依法普查原则,任何地方、部门、单位和个人均不得虚报、瞒报、拒报、迟报,不得伪造、篡改普查资料。各级普查机构及其工作人员,对普查对象的技术和商业秘密,必须履行保密义务。 /p
  • 计量级蓝光三维检测系统,助力手机制造高质高效品控
    随着科技的发展,智能手机功能不断强大,因此在手机设计制造中,对质量检测的需求及检测工艺的要求日益增多。对手机制造行业来说,由人工或传统三坐标检测转变为自动化检测是行业发展的必然趋势。 图片来源:爱活网 在手机的设计和质量检测中,利用三维光学测量技术,有助于优化原型和模具的构建,易于数模比对以及对具有形状复杂、容易变形等特点的塑料零部件进行质量控制,有效节省设计和检测时间,提高生产效率,加快产品迭代速度。 OKIO-9M 蓝光三维检测系统 OKIO-9M蓝光三维检测系统,采用窄带蓝光光源,实现非接触式的物体表面三维数据的高细节、高精度快速获取。系统搭载900万像素高分辨率相机,精度可达0.01mm,平均点距可达0.05mm,可以实现高精度高细节的数据获取,从小型零部件到大型物体整体测量均可胜任,满足用户计量级别高精度的检测需求。 在手机制造行业中,OKIO-9M主要应用于实现零部件的逆向建模设计与质量检测的模型获取。基于手机部件的精密工业检测需求,OKIO-9M蓝光三维检测系统可做到快速准确的获取各零部件三维数据,解决物体复杂形面测量问题。 手机部件实例检测应用 在产品制造过程中,由于制作工艺及质量检测等问题,不可避免的会在检测样件上产生划痕、磕碰、污迹和凹坑等缺陷,因此需对手机部件做数模对比检测,以确保其质量可靠。 针对这些部件的检测,传统方式是使用三坐标和二次元来实现数据的测量,但是由于三坐标的工作方式是“打点”式,因此效率较低,每次测量需要先装夹,不能快速查看产品的整体形变,且在细小位置探针无法准确获取数据,无法做到全尺寸测量,设备的操作对检测人员的技能要求较高。 OKIO-9M的优势-手机部件的检测无需装夹,工件可随意翻转,扫描数据完整; -加工CAD模型数据与扫描数据导入检测软件可输出色谱图,通过直观的色谱图来表达产品外形的变形度和料厚余量; -可以快速检测全尺寸和形位公差,发现漏缺或多加工位置,并且可以实现全自动化检测,提高检测效率,缩短检测时间; 实例应用-手机外壳检测 手机外壳工件结构复杂,特征细节较多,在扫描检测中,需要准确获取外壳的特征,还原工件的复杂形面。利用OKIO-9M 蓝光三维检测系统获取手机外壳完整的三维数据,然后将扫描获取的三维数据导入检测软件中与标准CAD模型进行对比分析,输出准确的关键部位形变等误差质量报告,掌握详尽的三维检测结果,便于进行质量管控,方便后续的批量生产。 实例应用-后盖板检测 如今手机后盖材质越来越多样化,有塑料、金属、玻璃、陶瓷等。在变换材质的同时,为获得更好的舒适触感,手机后盖需要很高的平整度。而手机后壳的测量包括平面度、曲面度、阶高和孔深等,这对检测提出了更高的要求。 OKIO-9M支持全程自动化操作,无需人工参与,一键完成3D扫描并生成检测报告,仅需1分钟就可完成手机后盖板所有位置的检测报告,为产品提供质量考核依据。 实例应用-手机充电口检测 手机充电口检测数据图 手机充电口的尺寸,想必大家并不陌生,上图为利用OKIO-9M扫描手机充电口后与原始加工CAD模型对比的色谱图,得益于设备优良的性能,检测精度可达0.015mm-0.01mm,小尺寸物体检测也得心应手。 随着智能手机市场的火热,从外形到配置,手机制造企业之间的竞争日趋激烈,产品的迭代速度越来越快。因手机制造对设计、质量、交付时间要求严苛,以及零部件的轻量化和制造成本降低的趋势,三维检测技术在设计和品控环节中受到了越来越多手机制造商的重视。 先临三维旗下子公司天远三维坚持产品核心技术的自主研发和创新,多年来持续聚焦于工业领域的高精度、快速、便携的三维检测需求。自主研发的OKIO-9M蓝光三维检测系统,给手机制造行业带来了新的质量检测解决方案,把控产品质量,为企业有效的解决制造检测环节中的实际问题,助力企业提高产品设计及检测效率,缩短产品的上市周期,推动产业升级。
  • 计量级蓝光三维检测系统,助力手机制造高质高效品控
    随着科技的发展,智能手机功能不断强大,因此在手机设计制造中,对质量检测的需求及检测工艺的要求日益增多。对手机制造行业来说,由人工或传统三坐标检测转变为自动化检测是行业发展的必然趋势。在手机的设计和质量检测中,利用三维光学测量技术,有助于优化原型和模具的构建,易于数模比对以及对具有形状复杂、容易变形等特点的塑料零部件进行质量控制,有效节省设计和检测时间,提高生产效率,加快产品迭代速度。OptimScan 9M 蓝光三维检测系统OptimScan 9M蓝光三维检测系统,采用窄带蓝光光源,实现非接触式的物体表面三维数据的高细节、高精度快速获取。系统搭载900万像素高分辨率相机,精度可达0.01mm,平均点距可达0.05mm,可以实现高精度高细节的数据获取,从小型零部件到大型物体整体测量均可胜任,满足用户计量级别高精度的检测需求。在手机制造行业中,OptimScan 9M主要应用于实现零部件的逆向建模设计与质量检测的模型获取。基于手机部件的精密工业检测需求,OptimScan 9M蓝光三维检测系统可做到快速准确的获取各零部件三维数据,解决物体复杂形面测量问题。手机部件实例检测应用在产品制造过程中,由于制作工艺及质量检测等问题,不可避免的会在检测样件上产生划痕、磕碰、污迹和凹坑等缺陷,因此需对手机部件做数模对比检测,以确保其质量可靠。针对这些部件的检测,传统方式是使用三坐标和二次元来实现数据的测量,但是由于三坐标的工作方式是“打点”式,因此效率较低,每次测量需要先装夹,不能快速查看产品的整体形变,且在细小位置探针无法准确获取数据,无法做到全尺寸测量,设备的操作对检测人员的技能要求较高。OptimScan 9M的优势-手机部件的检测无需装夹,工件可随意翻转,扫描数据完整;-加工CAD模型数据与扫描数据导入检测软件可输出色谱图,通过直观的色谱图来表达产品外形的变形度和料厚余量;-可以快速检测全尺寸和形位公差,发现漏缺或多加工位置,并且可以实现全自动化检测,提高检测效率,缩短检测时间;实例应用-手机外壳检测手机外壳工件结构复杂,特征细节较多,在扫描检测中,需要准确获取外壳的特征,还原工件的复杂形面。利用OptimScan 9M 蓝光三维检测系统获取手机外壳完整的三维数据,然后将扫描获取的三维数据导入检测软件中与标准CAD模型进行对比分析,输出准确的关键部位形变等误差质量报告,掌握详尽的三维检测结果,便于进行质量管控,方便后续的批量生产。实例应用-后盖板检测如今手机后盖材质越来越多样化,有塑料、金属、玻璃、陶瓷等。在变换材质的同时,为获得更好的舒适触感,手机后盖需要很高的平整度。而手机后壳的测量包括平面度、曲面度、阶高和孔深等,这对检测提出了更高的要求。OptimScan 9M支持全程自动化操作,无需人工参与,一键完成3D扫描并生成检测报告,仅需1分钟就可完成手机后盖板所有位置的检测报告,为产品提供质量考核依据。实例应用-手机充电口检测手机充电口检测数据图手机充电口的尺寸,想必大家并不陌生,上图为利用OptimScan 9M扫描手机充电口后与原始加工CAD模型对比的色谱图,得益于设备优良的性能,检测精度可达0.015mm-0.01mm,小尺寸物体检测也得心应手。随着智能手机市场的火热,从外形到配置,手机制造企业之间的竞争日趋激烈,产品的迭代速度越来越快。因手机制造对设计、质量、交付时间要求严苛,以及零部件的轻量化和制造成本降低的趋势,三维检测技术在设计和品控环节中受到了越来越多手机制造商的重视。先临三维旗下子公司天远三维坚持产品核心技术的自主研发和创新,多年来持续聚焦于工业领域的高精度、快速、便携的三维检测需求。自主研发的OptimScan 9M蓝光三维检测系统,给手机制造行业带来了新的质量检测解决方案,精准把控产品质量,为企业有效的解决制造检测环节中的实际问题,助力企业提高产品设计及检测效率,缩短产品的上市周期,推动产业升级。
  • 60%城市居民饮用二次供水存卫生隐患
    “一打开水龙头,我就吓一跳,放进盆里的水怎么会有杂质?”上海市杨浦区殷行路一小区业主抱怨道。   原来,不久前,物业贴出了清洗小区水箱的通知,清洗结束后,业主们却发现,水龙头里流出的水依然有杂质,当天小区里约400户住户无法使用饮用水。   据了解,在上海等大城市,一般六层以上民用建筑的供水都使用水箱二次供水,也就是说,约有60%的人都在饮用二次供水。然而,根据记者的调查,清洗水箱———这一关系到小区业主饮水安全的隐性物业服务,如今却在很大程度上遭遇“捣浆糊”(上海方言,意指打马虎眼、敷衍———编者注),而水质检测、监督等环节也存在漏洞。怎样才能让老百姓喝上安全的水,已成为城市管理中一个迫切需要解决的问题。   “看得到杂质,肯定不符合标准”   租住在上海市机场新村小区的一位房客向有关部门投诉,不久前,他发现自来水管放出的水中含有丝蚯蚓状的小红虫等肉眼可见的杂质,便向物业管理公司反映情况,但大半个月过去了,问题迟迟没有得到解决。   无独有偶。在上海康城、春申景城、天山河畔花园、东方城市花园等多个小区的业主论坛上,记者也看到了关于水里有杂质、红虫,或者是异色异味等问题的议论,有业主拆下了家里水龙头的滤网,发现上面有不少杂质。   仙霞路一小区的业主周先生告诉《法制日报》记者,他所住的小区是上世纪90年代末建成的住宅楼,用的是水泥面的水箱,业主们一直对用水水质怨声载道,当他们对楼顶水箱进行实地探查时,被里面的景象惊呆了:水箱内部青苔成片、铁锈成团———平时用的,竟然是如此脏水。   上海市黄浦区卫生监督所综合执法一科科长俞爱群告诉记者,该所在对水厂、水箱、现制现售水、管道水等的监督中,市民投诉水箱的水浑浊、有虫等问题最多。   上海市卫生监督所产品卫生监督科副科长应亮表示,“如果在水中看得到杂质,肯定不符合卫生标准,这样的水是不能饮用的”。   “红虫就是水蚯蚓,一般在中污带生存。”上海水产大学水产养殖学科教授王武介绍说,水蚯蚓的出现说明自来水已经受到一定程度的污染。但水质的污染程度是否会引起腹泻等问题,还需要看水蚯蚓的数量,并对水中的大肠杆菌等进行检测后才能知道。   有业内专家指出,屋顶水箱是供水二次污染中很重要的一个污染源,因为不少水箱是半开放式甚至开放式的,特别是一些水箱因为内壁材料不佳,就容易滋生微生物。一旦负责清洗水箱的房管或物业部门疏忽,就可能导致水质污染问题。   “究竟洗没洗,居民根本不知道”   市民李女士向《法制日报》记者反映,她所住的小区尽管每隔一段时间,就能看到小区物业贴出“因清洗水箱而停水”的告示,但究竟洗没洗,居民根本不知道。有一次清洗水箱时,她特别注意了一下,发现水箱里连水都没放出来,“这种情况下,又不可能爬上去看。水箱里的情况到底如何,恐怕只有物业自己知道”。   据了解,水箱的清洗消毒有着严格的要求和规定。“按照相关规定,二次供水应每季度清洗一次,现在大都降低到了一年两次的标准。”业内人士介绍说,即便如此,还有物业在清洗次数上打折扣,有的一年洗一次,更有甚者两年清洗一次,还有不少物业在清洗过程中“捣浆糊”。由于清洗水箱所需的药水、人工、工具都是成本,为了省下这笔费用,一些物业就派人放一下水做样子。其实物业费里已包括了清洗费,能节省一次,对物业来说也就是“盈利”。   根据规定,水箱清洗后要由超过一定比例的业主签名认可,水质要经疾病预防控制中心检测并公示检测结果,但时下没有几个小区能做到这点。   上海物业管理行业协会副秘书长王青兰坦言,“检测水样作为监督环节,在实际效果中有些形同虚设”。她表示,取样地点应来自于使用者家中,同时在清洗完成后的48小时内审核比较准确。然而,现在水样从何而来,送水过程有无“调包”,都存在漏洞,“肯定不排除物业公司在清洁过程中存在不正规的操作方式”。   “有没有机构专门监督物业”   “如果物业公司不能及时清洗水箱,有没有机构专门监督他们?”有上海市民提出这样的问题。   记者查阅了1993年制定颁布的《上海市二次供水水箱清洗消毒要求》后发现,该要求对于水箱清洗工作中涉及的清洗消毒人员的资格、清洗程序以及水箱周边环境卫生、清洗药物和工具的保管等问题,都有十分细致和明确的规定。   而根据1995年制定颁布的《上海市生活饮用水二次供水卫生管理办法》,对没有按照规定对水箱进行消毒和清洗的房屋管理单位,除责令其限期整改外,还可并处1000元以上10000元以下的罚款。然而,事实上,15年来,真正被处罚过的单位寥寥无几。   据了解,目前上海中心城区的水箱数量大约是11.4万个,而眼下上海市对二次供水进行的监督检查,主要由各区县卫生监督所进行抽检,抽检量为几千个水箱,因此难以做到对所有小区每个水箱的全覆盖检查。现场监督抽检也主要是对消毒剂指标和浑浊度指标的检测,但二次供水的其他检查环节,包括水样送检在内,是依靠物业公司的自身运作来完成的。   上海市卫生监督所相关工作人员表示,水箱的清洗消毒监管应该依靠社会各方面齐抓共管。目前,对闵行区的试点工作已经展开,对水箱清洗消毒的工作由区卫生局、房地局、自来水公司联合进行公示。此外,徐汇区也开始尝试聘请社区医院的预防和保健人员以及房地局人员做协管员,并请业委会派员加入到监管中。
  • 全国颗粒表征与分检及筛网标准化技术委员会六届二次会议顺利召开
    2021年5月27日至28日,全国颗粒表征与分检及筛网标准化技术委员会(编号:SAC/TC168)六届二次会议在青岛召开,由我公司协办。会议听取了标准会年度工作报告、分技术委员会年度工作汇报,宣布增补青岛众瑞智能仪器股份有限公司总经理何春雷等6人为委员,提出了2个国际标准提案,审查通过5项国家标准。其中,青岛众瑞参与制定2项国家标准——《气溶胶数浓度 凝结核计数器法》与《基于单分散球形颗粒尖桩栅栏分布的多分散物质》。青岛众瑞结合自身在气溶胶颗粒物领域的技术积累,积极参与了相关标准的起草及审议工作。《气溶胶数浓度凝结核计数器法》(计划号:20184752-T-469)标准的建立确保全国范围内颗粒物质量浓度监测结果的一致性与准确性,填补了我国目前无气溶胶数浓度标准的空白。青岛众瑞气溶胶技术的研发和成果转化已走在行业前列,公司气溶胶光度计、气溶胶发生器等一系列仪器设备,广受市场好评,是各高校实验室、科研机构、政府部门采购的标准仪器。《基于单分散球形颗粒尖桩栅栏分布的多分散物质》(20173607-T-469)标准的建立,完善和规范了颗粒物领域标准物质的应用,促进工业生产中质量控制等方面的发展,填补我国单分散球形颗粒尖桩栅栏分布的多分散物质相关标准的空白。青岛众瑞生产的颗粒物采样设备、颗粒物实时监测仪器性能完善,功能齐全,能满足不同工况的要求,客户遍布全国。27日下午,会议专家及委员一行来到青岛众瑞参观,对众瑞产品性能及研发能力给予了高度评价。青岛众瑞自成立以来,始终致力于科技创新,积极参与、推动国家、行业标准的建立,努力成为中国最受信赖的检测仪器生产商。借助此次正式加入委员会的契机,青岛众瑞将在颗粒物相关领域的系列化国标的起草和优化发挥更大的作用,并共同跟委员会一起推动国内颗粒物相关国家标准体系的完善。
  • 半导体硅片检测标准汇总 涉气相色谱、二次离子质谱等多类仪器
    p    span 硅基半导体材料是目前产量最大、应用最广的半导体材料,90%以上的半导体产品都离不开硅片。 /span span 硅片行业是资金和技术密集型行业,垄断度极高,目前前四厂商市场占有率占比超过80%,分别是 /span span 日本信越、日本SUMCO、台湾环球晶圆、德国世创。 /span /p p   硅元素是地壳中储量最丰富的元素之一,以二氧化硅和硅酸盐的形式大量存在于沙子、岩石、矿物中。硅从原料转变为半导体硅片要经过复杂的过程:首先硅原料和碳源在高温下获得纯度约98%的冶金级硅,再经氯化、蒸馏和化学还原生成纯度高达99.999999999%的电子级多晶硅。半导体材料的电学特性对杂质浓度非常敏感,而硅自身的导电性不佳,常通过掺杂硼、磷、砷和锑来精确控制其电阻率。一般,将掺杂后的多晶硅加热至熔点,然后用确定晶向的单晶硅接触其表面,以直拉生长法生长出硅锭,硅锭经过金刚石切割、研磨、刻蚀、清洗、倒角、抛光等工艺,即加工成为半导体硅片。根据制造工艺分类,半导体硅片主要可以分为抛光片、外延片、SOI 硅片等。根据半导体尺寸分类,半导体硅片的尺寸(直径)主要有 50mm(2 英寸)、75mm(3 英寸)、100mm(4 英寸)、150mm(6 英寸)、200mm(8 英寸)、 300mm(12英寸)等规格。目前硅片生产以8英寸和12英寸为主,其中8英寸硅片主要应用于电子、通信、计算、工业、汽车等领域,而12英寸硅片多用于PC、平板、手机等领域。 /p p   在生产环节中,半导体硅片需要尽可能地减少晶体缺陷,保持极高的平整度与表面洁净度,以保证集成电路或半导体器件的可靠性。硅片检测要检查直径、厚度、弯曲、翘曲、缺陷、晶面、表面污染(有机物)、电阻率、晶面取向、氧碳含量、表面平整度和粗糙度、微量元素含量、反射率等。使用到的仪器有测厚仪、显微镜、XRD、气相色谱、X射线荧光光谱、二次离子质谱、电阻率测试仪等。 /p p style=" text-align: center " strong 硅片测试国家标准 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse border:none" align=" center" tbody tr style=" height:18px" class=" firstRow" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p strong span style=" font-family:宋体" 标准编号 /span /strong /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p strong span style=" font-family:宋体" 标准名称 /span /strong /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T11073-2007 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片径向电阻率变化的测量方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T13388-2009 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片参考面结晶学取向 /span span X /span span style=" font-family:宋体" 射线测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T14140-2009 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片直径测量方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T19444-2004 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片氧沉淀特性的测定 /span span - /span span style=" font-family:宋体" 间隙氧含量减少法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T19922-2005 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片局部平整度非接触式标准测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T24577-2009 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 热解吸气相色谱法测定硅片表面的有机污染物 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T24578-2015 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片表面金属沾污的全反射 /span span X /span span style=" font-family:宋体" 光荧光光谱测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T26067-2010 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片切口尺寸测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T26068-2018 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片和硅锭载流子复合寿命的测试非接触微波反射光电导衰减法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T29055-2019 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 太阳能电池用多晶硅片 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T29505-2013 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片平坦表面的表面粗糙度测量方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T30701-2014 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 表面化学分析硅片工作标准样品表面元素的化学收集方法和全反射 /span span X /span span style=" font-family:宋体" 射线荧光光谱法 /span span (TXRF) /span span style=" font-family:宋体" 测定 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T30859-2014 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 太阳能电池用硅片翘曲度和波纹度测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T30860-2014 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 太阳能电池用硅片表面粗糙度及切割线痕测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T30869-2014 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 太阳能电池用硅片厚度及总厚度变化测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T32280-2015 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片翘曲度测试自动非接触扫描法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T32281-2015 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 太阳能级硅片和硅料中氧、碳、硼和磷量的测定二次离子质谱法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T32814-2016 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅基 /span span MEMS /span span style=" font-family:宋体" 制造技术基于 /span span SOI /span span style=" font-family:宋体" 硅片的 /span span MEMS /span span style=" font-family:宋体" 工艺规范 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T37051-2018 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 太阳能级多晶硅锭、硅片晶体缺陷密度测定方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T6616-2009 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 半导体硅片电阻率及硅薄膜薄层电阻测试方法非接触涡流法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T6617-2009 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片电阻率测定扩展电阻探针法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T6618-2009 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片厚度和总厚度变化测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T6619-2009 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片弯曲度测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T6620-2009 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片翘曲度非接触式测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T6621-2009 /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片表面平整度测试方法 /span /p /td /tr tr style=" height:18px" td width=" 112" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span GB/T29507-2013& nbsp & nbsp /span /p /td td width=" 456" nowrap=" " valign=" middle" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 18" align=" center" p span style=" font-family:宋体" 硅片平整度、厚度及总厚度变化测试自动非接触扫描法 /span /p /td /tr /tbody /table p   据 Gartner 预计,2017-2022 年半导体增速最快的应用领域是工业电子和汽车电子;预计2020年半导体发货总量将超过一万亿,其中增长率最高的半导体细分领域包括智能手机、汽车电子以及人工智能等。 /p p   需要相关标准,请到 a href=" https://www.instrument.com.cn/download/L_5DBC98DCC983A70728BD082D1A47546E.htm" target=" _self" 仪器信息网资料中心 /a 查找。 /p
  • 哈希无人化解决方案,为二次供水端口防疫排忧解难
    目前,全国许多地区疫情形势好转,进入到把握好防疫态势组织企业积极复工复产的阶段。在市政供水领域,为了实现防疫目标,供水企业可以采用对水厂和供水生产场所进行严格管控的方法,限制人员进出并保证24小时值班,严防病毒入侵。然而,在供水系统的“人员密集端口”二次供水阶段,以上措施很难生效。二次供水端口疫情期间主要困难:入户作业困难。部分地区的小区实施了封闭式管理,导致供水企业对铺设了二次供水管道的小区的设备检修遭遇重重困难。同时,出于减少人员流动、避免过多人员接触的目的,部分企业也不愿特殊时期派遣员工前往现场作业。对水质监测准确度提出更高要求。疫情期间,城市用水状况与平时相比变化很大。在疫情较轻区,工商行业企业大面积停业,用水量与往年比急剧下降,导致管道中水压增大,水龄难以把控;而在疫情较严重地区,除了工商行业的停业导致的用水量下降外,还有医院的用水量迅速升高的情况,因此市政供水情况更加复杂。面对这样复杂而两难的局面,需要供水企业在二次供水端口的水质监测做到准确、及时的同时,更需要实现自动化、无人化管理,对企业的水质监管能力提出了较大考验。 哈希在线分析仪MS6100作为专为中国用户设计的多参数在线分析仪,可以帮助二次供水企业实现无人化管理。帮助您有效防疫的同时,提高供水效益。 MS6100多参数在线分析仪具有以下特性:l 连续监测7大参数MS6100可连续监测包括余氯、总氯、浊度、PH、ORP、电导率和温度7种水质参数l 全新检测技术360°x90°浊度检测技术让浊度测量进入准确时代l 低维护量,维护间隔长长达3个月的试剂更换周期,减低试剂消耗,满足供水管网/二次供水监测无人值守要求l 自动化运行省心省力停水停电可自动保护和恢复,漏水漏液能自动切断水路防止仪器被淹l 通讯功能齐备配有2个RS485接口,采用标准的RTU Modbus通讯协议,让数据传输更灵活l 专为中国设计一体化设计,安装空间小。IP65级别外壳防护等级,恶劣工况也不用担心。 MS6100 多参数水质分析仪采用一体化设计,安装简易、维护量低、配置灵活、通讯功能齐全,停水停电自动保护、来水来电自动恢复,专为无人值守的应用场合设计。在疫情期间实现无人化管理的同时帮助您快速了解管网水质实时情况,使水厂或者管理中心能及时根据连续监测结果作出及时的工艺调整或者应急预案,先于问题出现之前解决。从而为当地居民提供更优质、更有保障的饮用水,在有效防疫的同时,提高供水效益。
  • 如何拓展二次离子质谱在生命科学研究中的应用——访中科院化学所汪福意研究员
    在2012年以前,汪福意研究员一直带领团队通过有机质谱,如电喷雾电离质谱(ESI-MS)、基质辅助激光解析电离质谱(MALDI-MS)等进行药物相互作用组学研究、抗肿瘤药物的研究和开发等工作。一次与生物学家偶然的讨论给汪福意带来了启发,他萌生了使用高空间分辨率的二次离子质谱成像进行化学生物学和分子生物学研究的念头。中科院化学所领导对于他的想法非常赞成,在中国科学院和国家自然科学基金委的大力支持下,该团队在2012年购置了一台飞行时间二次离子质谱(ToF-SIMS)仪,从此汪福意研究员和他的团队开始了生命科学领域SIMS成像新技术和新方法的研究工作。  SIMS与其它质谱相比有什么特点?SIMS在哪些领域的应用中具有显著优势?汪福意团队用SIMS这个“庞然大物”在生命科学领域进行了哪些研究?国际上的SIMS相关领域有哪些前沿的创新?日前,仪器信息网编辑围绕二次离子质谱的应用,在中国科学院化学研究所采访了汪福意研究员。汪福意研究员离子源的发展把SIMS带到了生命科学门口  二次离子质谱(Secondary ion mass spectroscopy,SIMS) 的原理是利用聚焦的一次离子束轰击样品表面,使样品中的化学物质溅射产生二次离子,通过质量分析器后进入检测器记录离子的荷/质比,获得样品表面化学成分的结构信息。配合对样品表面的扫描和溅射剥离,还可获得样品的二维/三维化学成像。SIMS能检测元素周期表中所有元素及其同位素,质量分辨率较高(对29Si的质量分辨率大于11000),检测限达到ppm到ppb级。SIMS成像的横向分辨率小于100 纳米 基于溅射源的性能,纵向分辨率可达1 纳米。  根据一次离子束运行方式和质量分析器的不同,SIMS又分为NanoSIMS和ToF-SIMS。NanoSIMS的质量分析器为单聚焦或双聚焦磁质量分析器,其一次离子束为单原子或双原子离子,如Cs+和O2+。聚焦的离子束以连续方式轰击样品表面,溅射产生低质量数的离子碎片。基于这些特点,NanoSIMS多用在天体化学、天体年代学、地质沉积学、地矿探测和材料科学,特别是半导体材料研究等领域。顾名思义,ToF-SIMS的质量分析器为飞行时间质量分析器,其一次离子束以脉冲方式轰击样品表面,电离能量较为温和,与NanoSIMS相比,产生的碎片离子具有较高的质量数。ToF-SIMS的一次离子束经历了长达半个世纪的发展,从早期的Ga+、Aun+ (n = 1 – 5), 到后来更易于聚焦的Bin+ (n = 1, 3), 再到现在的C60+、Arn+ (n 高达4000)等团簇离子。团簇离子源的诞生,使ToF-SIMS 离子化产生的离子的质荷比更高,甚至可获得大分子量物质的准分子离子。因而SIMS数据包含的结构信息更为丰富,这对复杂生物体系的研究具有非常重要意义。可以说,正是离子源的发展将SIMS带到了生命科学研究的门口。  由日本京都大学教授Jiro Matsuo (松尾次郎)发明的氩气团簇离子源是SIMS技术领域一个里程碑式的事件。氩离子团簇包含上千个氩原子,其离子半径可以通过增加或减少亚原子数目进行调控,最多可达4000个氩原子。氩团簇离子源既可作为溅射源用于生物样品如细胞和生物组织的溅射剥离,也可作为分析源进行生物样品的表面分析。因而,配备氩团簇离子源的ToF-SIMS在生命科学研究领域得到越来愈多的青睐。  随着一次离子源团簇离子的直径变大,SIMS成像的空间分辨率也会相应降低。对此,汪福意说:“应用SIMS成像进行生物研究的时候,找到离子碎片大小和空间分辨率的平衡非常重要,也就是说在获得质量数较大的、结构信息丰富的碎片离子的前提下尽量保证质谱成像的空间分辨率。”  在团簇离子源发明之前,SIMS在生命科学领域的应用受到限制,因为强调生物大分子结构解析的生物学研究无法从SIMS产生的小碎片离子中得到足够有用的信息。在上个世纪90年代,开始有人尝试基于SIMS在同位素质谱研究中的优势,从生物代谢的角度去了解生物合成过程。汪福意提到:“在这方面,哈佛大学医学院有一支有名的研究团队,他们自己搭建SIMS装置,研究的重点就是利用SIMS成像探索生物合成和生物代谢过程,如DNA的合成、复制与转录。这种研究不是关注高质量数的离子碎片,只需要获得N-15和C-13等同位素标记的碱基碎片在细胞核内的分布信息,就可以分析研究由化学刺激或抑制作用导致的生化过程。”该研究组利用SIMS在细胞生物学前沿领域的研究中取得了很多高影响力的研究成果,对SIMS在生命科学研究领域的应用起到了极大的促进作用。“强强联手”,SIMS与显微技术共缔超高分辨细胞成像  作为传统意义上的无机质谱,SIMS与有机质谱都可以应用于生物组织成像研究。“能够用于组织成像的质谱技术有不少,但并没有哪类技术能被取代。利用MALDI-MS、DESI-MS等有机质谱技术进行生物组织成像分析比SIMS更快捷和简单,而SIMS在空间分辨率上的优势是其它质谱成像技术无法超越的。”在介绍不同质谱技术在生物组织成像中的应用和区别时,汪福意说:“SIMS不擅长分析生物大分子,如果想进行多肽、蛋白质或大DNA片段分析,有机质谱是更好的选择。SIMS的空间分辨率很高,即使是用氩团簇离子源也能达到微米、甚至亚微米级的空间分辨率,能够进行单细胞或亚细胞器的成像分析。仪器厂商都在提高质谱成像空间分辨率方面下了功夫,但到目前为止还是SIMS成像的空间分辨能力更有优势。”  在研究金属抗肿瘤候选药物细胞摄入和分布时,SIMS成像可以通过特征生物碎片,如磷脂碎片和DNA脱氧核糖碎片指示亚细胞器的位置,进而确定金属药物在细胞中的定位和分布。但是,在这些特征生物碎片离子的信号较弱或其指代的生物信息并不唯一时,仅仅基于SIMS离子信号的药物亚细胞器定位可能出现误差。在这种情况下,结合亚细胞器荧光染色的光学显微镜成像可以弥补SIMS信号低,不能准确定位的劣势。常与SIMS结合使用的光学显微镜有激光共聚焦显微镜和超高分辨率的受激辐射耗尽(Stimulated Emission Depletion,STED)显微镜技术。二者的区别在于空间分辨率:激光共聚焦显微镜的空间分辨率在亚微米级,STED荧光显微镜分辨率可以达到30纳米。  通过这种光学显微镜成像与SIMS化学成像相结合的方法,汪福意团队发现他们自主研发的一种有机金属钌抗肿瘤化合物可同时定位在细胞膜和细胞核上,证实了他们在分子水平上的研究结果,即该化合物可以同时作用于细胞膜上的受体激酶和细胞核内的DNA,具有潜在的双靶向特性。  利用SIMS与光学显微镜成像的融合,在完成金属抗肿瘤化合物在细胞中的分布研究之后,团队又进行了金属药物损伤DNA在细胞内与蛋白质相互识别、相互作用的机理研究。  “我们用顺铂等金属抗肿瘤药物中的金属离子指示药物损伤的DNA,用光学显微镜来定位抗体染色或融合荧光蛋白定位DNA结合蛋白。如果光学成像信号与SIMS化学成像信号完全重叠的话,说明它们在细胞水平能相互识别和相互作用。”汪福意表示,这个研究工作能够证实从分子水平研究获得的药物分子作用机制的猜想,“很多人在体外生理模拟环境中做这类研究,但细胞水平上药物损伤DNA与蛋白质相互识别和相互作用的研究还没有文献报道。”目前该工作进展顺利,团队还将继续研究DNA结合蛋白与药物损伤DNA的相互识别可能导致的细胞凋亡等生物过程。  在用SIMS成像与光学显微镜成像联用,研究细胞内和细胞间生物分子相互识别时,必然需要先后使用两类仪器寻找、定位样品板上微小区域内的同一个或几个单细胞。而在1平方厘米甚至更大面积的样品板上准确定位同一个微米级的细胞,是个不小的技术难题。为了解决这一制约研究进展的技术问题,汪福意团队在硅片或玻璃样品板上以光刻方式刻写上200微米的方形网格,并给每个格子一个标号,制备了一种简单、实用的可寻址样品板。这样对于相同网格内单个细胞的成像数据进行叠加处理就变得简便易行。“通过光刻网格定位单细胞仅是一个很小的技术改造,但确实给我们的研究带来很多方便。”汪福意介绍到。(图)ToF-SIMS与共聚焦激光扫描显微镜(CLSM)成像联用时的可寻址细胞定位借力微流控技术实现液相反应体系的SIMS实时原位分析  SIMS是基于高真空的分析技术,分析室内真空度极高,无法分析液态样品,生物样品一般都是采取冷冻干燥或树脂包埋等方式处理后再进行SIMS分析。在2010年前,没有人尝试过用SIMS分析液体样品,直到美国太平洋西北国家实验室的两位华人科学家朱梓华(Zhu Zihua)和于晓英(Yu Xiaoying) 开始研究真空兼容的微流控技术和装置。  汪福意从2013年初开始与两位科学家合作,进行基于微流控技术的液相SIMS技术研究。其研发技术的核心是真空兼容微流控装置,在留有微通道的聚合物基底上嵌入100纳米厚度的氮化硅薄膜,两端连接上微流控管道,通过一次离子束的轰击可在薄膜上打出2微米的小孔。由于小孔直径很小,即使在高真空中,液体的表面张力也能将微流控池内的液体限制在小孔内。这时的小孔内液面即为分析表面,用一次离子束轰击液面溅射出带电离子,即可进行反应池内化学反应的原位实时分析。  由于液体表面可以实时更新,所以该装置可以测定瞬时反应中间体。在氮化硅薄膜上镀上一层金属电极,在反应池内嵌入对电极和参比电极,即可构成三电极电化学反应系统,加上电压之后,可进行电化学氧化还原反应过程的原位实时检测。对于液相SIMS分析技术,汪福意评价说:“这样的分析对研究化学和生物反应很有帮助,能让我们更深入地了解化学、生物反应过程。实时和原位分析的优势是能够捕捉到一些转瞬即逝的中间产物。” 据了解,国内外都有不少科学家致力于用电喷雾电离(ESI)和解析电喷雾电离(DESI)等质谱技术进行反应中间体研究,而用SIMS进行(电)化学反应过程和中间体研究的团队相对较少。汪福意团队还将利用此装置开展电池的充放电反应和均相或液相催化反应研究。  SIMS研究固体样品,无论是矿物质、材料还是生物质冻干切片都是分析其最终状态,而液相SIMS技术让研究活细胞的生物化学过程,如神经递质的释放等成为可能。增进交流与学科交叉,铺就SIMS发展之路  凭借超高的空间分辨率,发挥在药物及代谢物成像研究和生物反应中间产物分析中的优势,SIMS理应在生物研究领域大有作为。然而,国内用于研究的SIMS仪器数量仍然不多,包括地学和材料分析在内也仅有二十多台。据汪福意分析,目前ToF-SIMS的价格在800万左右,NanoSIMS的价格更高,价格昂贵是限制其广泛应用的主要因素。另外,SIMS仪器维护较为复杂,维护费用高,样品制备等过程对技术要求也比较高,也是制约SIMS广泛应用的因素。  汪福意对今后SIMS的应用发展并不担忧,他说:“国家在仪器研发和应用研究方面的投入越来越大,相信以后会有更多的实验室引进SIMS仪器。” 在十二五国家重大科研仪器研制项目中,有两个项目涉及二次离子质谱,分别为“高分辨多功能化学成像系统”和“同位素地质学专用TOFSIMS科学仪器”。汪福意参加了中科院化学所万立骏院士领衔的 “高分辨多功能化学成像系统”的研究,负责SIMS和高分辨光学显微镜技术联用成像子系统的研究工作 北京离子探针中心刘敦一研究员领导的 “同位素地质学专用TOFSIMS科学仪器”项目主要研制和开发用于高精度同位素丰度分析的TOFSIMS新技术。  我国在二次离子质谱在地球科学领域的应用研究与国际上同类研究的水平相当,在一些领域甚至处于国际领先水平。“但是在生命科学领域的应用研究与国际同行相比仍然有较大的差距,推进SIMS在生命科学研究领域的应用需要国内同行共同努力。”汪福意和其他二次离子质谱领域的专家们在不断加强与国际SIMS应用研究同行的联系与交流。他们把每两年一届的国际二次离子质谱大会看作一个让国内研究学者直接接触国际前沿SIMS技术的绝佳平台,在中国物理学会质谱分会等组织的支持下,中国二次离子质谱研究的专家学者们也一直致力于申请该会议的主办权。采访编辑:郭浩楠  后记:今年10月“第六届中国二次离子质谱会议”将在大连举办。汪福意研究员是此会议学术委员会的共同主席,他与其他SIMS领域的科学家们共同邀请到一些国际SIMS专家来介绍他们的前沿技术和最新研究成果,与国内研究者们共同探讨SIMS技术及应用。正在或有意应用SIMS技术进行科学研究的科学家们希望通过会议或其他各种形式与国内外同行交流、沟通,寻求与其它学科的交叉合作。  生命科学领域的科学家可能并不完全了解SIMS技术,也不太清楚SIMS技术能解决生命科学研究中的哪些具体问题 而SIMS分析的研究者也可能不太了解生命科学的研究焦点,彼此存在“背靠背”的窘境。希望更多的科学家能够了解SIMS技术,实现多领域跨学科合作以解决更多生命科学难题。附件:汪福意研究员简历  学习经历  1999年6月 武汉大学化学系毕业,获理学博士学位  1991年6月 华中师范大学化学系毕业,获理学硕士学位  1983年7月 华中师范大学化学系毕业,获理学学士学位  工作经历  2007 – 至今 中国科学院化学研究所“百人计划” 研究员、课题组长、博士生导师、北京质谱中心主任  2002 – 2007 英国爱丁堡大学化学系 英国研究基金会(RCUK) Research Fellow  2000 – 2002 英国爱丁堡大学化学系 英国皇家学会皇家奖学金Research Fellow  1997 – 1999 华中师范大学分析测试中心 副教授,副主任  1991 – 1997 华中师范大学分析测试中心 讲师,无机分析部主管  1983 – 1988 湖北咸宁师范高等专科学校 助教,讲师  学术任职  中国物理学会质谱分会常务理事、有机质谱专业委员会委员 (2008.9 – 2012.8),生物质谱专业委员会副主任委员(2012.8 –)  中国生物化学与分子生物学学会蛋白质组专业委员会委员 (2011.4 –)  美国化学会会员  中国化学会会员  国际生物无机化学学会会员
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制