当前位置: 仪器信息网 > 行业主题 > >

空气检测标准

仪器信息网空气检测标准专题为您提供2024年最新空气检测标准价格报价、厂家品牌的相关信息, 包括空气检测标准参数、型号等,不管是国产,还是进口品牌的空气检测标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合空气检测标准相关的耗材配件、试剂标物,还有空气检测标准相关的最新资讯、资料,以及空气检测标准相关的解决方案。

空气检测标准相关的资讯

  • 别说没标准 空气净化产品检测细则解读
    近年来由于城市环境空气PM2.5污染的严重加剧,人们开始真正意识到良好空气品质的重要。空气净化器作为一种专业改善和解决室内空气污染的家用电器,备受消费者的关注,市场上的所有主流产品几乎脱销,与之相伴的是空气净化行业中出现了严重的夸大宣传、误导消费者的无序竞争现象,直接导致消费者无法科学合理选择空气净化器。其中一个重要原因是由于我国空气净化器产品检测评价方法不统一,因此,选择合适的检测标准显得尤为重要。   广州工业微生物检测中心致力于空气净化产品检测方法、标准的研究多年,成为华南地区乃至全国最权威的空气净化产品性能评价机构之一,是参与国标&ldquo GB/T 18801空气净化器&rdquo 修订的核心机构之一,开展了大量的数据摸索试验,为新国标提供了有利的参考依据。本中心杨冠东主任就空气净化产品的检测标准及检测指标作出解读,为空气净化产品行业的相关人员在检测标准方面给出专业的意见与建议,促进空气净化行业的健康有序发展。   空气净化产品主要分为三大块(对应的检测标准见表1):1.家用空气净化器产品 2.空气过滤器产品 3.被动式净化材料。由于市场以空气净化器产品为主导产品,且产品的品质参差不齐,下面主要解读空气净化器产品的检测标准及应用范围。     面对市场乱象 空气净化器更多的是缺乏监管而不是标准   目前国内空气净化器检测标准主要有六个,包括了三大类检测指标:功能性指标(洁净空气量CADR、累积净化量CCM)、安全性指标(电气安全、有害物质释放量)及其它(噪音、功率等)。GB 4706.45为空气净化器电气安全检测标准,而GB/T 18801和GB 21551.3为家用空气净化器性能检测的核心标准,其中GB/T 18801目前正在修订中,新版本计划于2015年颁布,修改内容包括以下几方面:   1)在08版的气态污染物CADR、固态污染物CADR、净化寿命、净化效能、噪音、功率等指标的基础上,新增了适用面积以及风道式空气净化器净化性能等指标。适用面积的提出,主要是考虑到消费者对CADR的概念不了解,通过一定的计算公式转换成适用面积,消费者综合适用面积和净化房间的大小选择合适的净化器。另外,随着新风系统进入家用领域,新风机的发展也越来越快,但目前尚无此类产品的检测标准依据,GB/T 18801新增此指标,将弥补目前国内此类产品在检测标准上的空白,促进新风机市场的良好有序发展。   2)对净化寿命及气态污染物CADR测定方法做了大幅度修改,明确了洁净空气量(CADR)和累积净化量(CCM)为评价净化器净化性能(固态、气态)的核心指标,然而气态污染物CADR和CCM的测试仍存在较大争议,包括以下几点:a)在线监测仪器与化学法测试结果差异。新国标中气态CADR测试拟将在线监测仪器测试法列入标准中,但由于在线监测仪器本身的质量参差不齐,且需定期校准,各检测机构的校准周期不一,但目前尚无统一的仪器校准标准依据,因此质量很难把控。化学法测试为推荐测试方法,但化学法亦存在采样时间点误差、采样量误差及其它操作误差等问题,因而对检测人员的技术要求相对较高。广州工业微生物检测中心实验中严格按标准把控质量,在气态CADR测试中,同时采用化学法和在线监测仪器测试,确保试验的准确性。b)气态CADR测试重复性问题。为进一步规范空气净化器市场,打击虚假夸大效果的净化器产品,标准提出了气态CADR重复性测试的问题,气态CADR测试由原来的一次试验改为两次试验(两次试验之间,样机至少静置24h),取第二次的CADR测试结果作为特定气态污染物洁净空气量的最终评价结果。此检测方案一方面能促进国内空气净化产品的质量提升,但同时测试的时长及工作量会大大增加,因此相应会增加企业的检测费用。   GB 21551.3主要包括微生物及有害物质释放两大类指标。其中有害物质释放包括臭氧、紫外线泄露强度、TVOC、PM10四个指标,但此标准在有害物质释放量检测方面存在以下不足:1. GB 21551.3为强制性国标,必须全指标测试,但有电离装置及安装了紫外灯的机器才会产生臭氧,安装了紫外灯或类似装置的机器才会产生紫外线泄露,仅采用HEPA和活性炭原理的净化器,一般不会有臭氧释放和紫外线泄露的问题。2. 在空气净化器有害物质释放检测方法方面,目前GB 21551.3中仅对检测距离、指标控制浓度以及计算方法做出了规定,并且对检测的实验条件(如实验舱、温湿度等)、检测步骤、机器运转状况等作出详细说明,这样会导致不同检测机构间的测试结果存在较大误差。3. GB 21551.3和GB 4706.45均为强制性标准,GB 4706.45第32章、GB 21551.3中第4章均包含臭氧释放量的检测,但两个标准中的检测方法却不一致,检测中,可能会出现同一台机器臭氧释放量仅符合某一个标准的情况。因此,广州工业微生物检测中心建议GB 21551.3在下一版的修订中考虑以上因素以实现标准的统一性。
  • 环保部拟修订空气质量检测标准
    8月底的环保部常务会议,对《环境空气质量标准》修订情况进行汇报。   根据今年年初征求公开意见的该标准修订版,将增加臭氧8小时监测值 PM2.5可吸入颗粒物尚未列入新标准,但开始作为各地指标的参考值。这是目前国内空气质量指标最具争议的两个指标。   据了解,修订仍处于征求意见阶段,新标准最终有可能在年底出台。   标准虽宽仍能保护公众健康   我国在1982年制定了《大气环境质量标准》,污染物项目只有6项。1996年进行了第一次修订,改名为《环境空气质量标准》,污染物项目扩大到了10项,此后,环保部又在2000年进行了局部修改,取消了氮氧化物指标,并放宽了二氧化氮和臭氧的标准。   此次修订最令人关注的问题之一,是增设了臭氧8小时平均浓度限值。   环保部《环境空气质量标准(征求意见稿)编制说明》(以下简称《说明》)中写道,以连续8小时最高浓度限值为主的臭氧的空气质量标准已成为世界各国臭氧环境空气质量发展的趋势,一小时的浓度限制已不能适应环境管理的需求。   此次修订将臭氧8小时的平均浓度限制二级标准设定为160微克/m3,该浓度限值在国际上虽然相对较宽,但基本上能够起到保护公共健康的作用。   根据《说明》,6到8小时暴露在臭氧浓度在120微克/m3以下存在健康危害。北京市2001年至2002年臭氧小时浓度在14.4-232微克/m3之间,平均为88.9微克/m3。   此前臭氧标准为1小时监测值   我国此前环境空气质量标准中,并非没有臭氧监测,但依据的是一小时的监测值,即一天中监测到的每小时最大臭氧浓度作为指标,但是,这个时间值无法反映长时间累积臭氧浓度给人体造成的慢性伤害。   “应该说,这是一个科学上的进步,更全面地考虑臭氧污染造成的效应。”北大环境科学与工程学院教授邵敏指出。他还表示,标准设立和信息公开是两回事。臭氧一小时监测值此前也列入了国家标准,但一直没有公开。   背景资料   可吸入颗粒物   PM2.5是指大气中直径小于或等于2.5微米的颗粒物,它的直径还不到人的头发丝粗细的1/20。目前,在城市空气质量日报或周报中的可吸入颗粒物标准为PM10,指直径等于或小于10微米,可以进入人的呼吸系统的颗粒物。   臭氧   是地球大气中一种微量气体,含有3个氧原子。虽然臭氧在平流层起到了保护人类与环境的重要作用,但若其在对流层浓度增加,则会对人体健康产生有害影响。臭氧对眼睛和呼吸道有刺激作用,对肺功能也有影响,较高浓度的臭氧对植物也是有害的。   焦点   可吸入颗粒物暂不实施更严标准   在此次修订标准中,首次列出了PM2.5,但是并非列入强制的统一标准,而是作为参考值供各地参考。   在我国当前很多城市,可吸入颗粒物是主要污染物,粒径小于等于10微米可吸入颗粒物叫PM10,粒径小于等于2.5微米的叫PM2.5。   “PM2.5更小,进入人体肺部的也就更多,”北大医学部公共卫生学院教授潘小川说,因为颗粒物上会附带有毒物质,当进入人体的颗粒物更多时,对人体各方面造成的伤害也更多。   研究显示,2004年至2006年期间,当北大观测点的PM2.5日均浓度增加时,约4公里以外的北大第三医院的心血管病急症患者数量也有所增加。   是否有PM2.5监测值,是我国环境空气质量标准与WHO准则和其他很多国家环境空气质量标准的首要差别,也是目前我国环境空气指标中最具争议的一块。我国目前的监测,只有PM10的颗粒物。虽然有多个城市和科研机构在做PM2.5的监测,但因为没有国家标准,就无法进行考核和公开。   而国际上主要发达国家均已制定了PM2.5的环境空气质量标准,亚洲的日本、泰国和印度也制定了该标准。   北京市环保局:地方任务将重得多   北京市环保局副局长杜少中说,一旦发布了PM2.5的标准,对各地政府环境考核和环保部门来说,将承担重得多的任务。   “北京环保局肯定会遵照国家标准来做,指标越多,压力肯定也越大。”杜少中说,“就像血压等人的健康指标一样,三项指标增加到四项了,合格的人也更少了,但要想健康,就应该锻炼身体,大气治理也是一样,改善空气质量,减排才是硬道理。”   据了解,北京市在空气治理上分了16个阶段,实施了200多项政策,是所有城市中政策实施最多的。北京市又从今年开始实施为期五年的“清洁空气行动计划”。但是,因为北京市独特的地理位置,城市经济快速发展,经济结构复杂,机动车保有量不断增长等原因,大气治理的任务依然非常艰巨,去年的“达标天”也仅占了 78%,一级天数仅为14.5%。   争议   “勿因不能达标就不实施”   对于PM2.5未列入强制的统一标准,公众环境研究中心主任马军(微博)说,“这挺令人失望的。”   根据环保部的《说明》,虽然PM2.5污染较重,全国113个重点城市2008年的年均浓度远高于世卫组织的准则值,但如果制定实施PM2.5环境空气质量标准,将大范围超标,此外,我国还缺少对PM2.5监测的基础,因此,从全国角度制定PM2.5的标准依然较早。   马军认为,“不能因为会大范围超标就不制定这个标准,标准的设置应该以是否会对人体健康造成损害而定。不能因为达不到标准就不公开这个标准。”   马军说,PM2.5的监测就中国的经济发展水平是可承受的,标准的设立涉及公众重要的环境知情权。“它可能会对数以亿计的人口造成潜在的很大的影响,这么严重的公众健康的影响,不能永远瞒着,应该告诉公众,我们存在这个问题,解释现在为什么达不到这个指标,五年解决不了的话,十年,二十年是否能解决。这是激发公众参与到环境保护的最大的动力。”   不过,北大医学部公共卫生学院教授潘小川则认为,“如果一个标准80%都会超标,那标准就没有意义了,设置标准要有经济和技术的可行性。当然从健康角度而言,指标越低越好。”
  • 一大波空气检测新标准来袭!这些仪器请就位
    近日,小编从生态环境部了解到多个环境检测新标准即将实施,特地选取了环境空气相关的标准分享给大家,帮助众多环境领域用户了解新标准概况及涉及到的仪器品类和检测方法。接下来,就让小编带领大家一起看下吧~一、空气检测新标准1、HJ 1261-2022 固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法实施日期:2023年1月15日标准说明:本标准为首次发布。本标准规定了测定固定污染源废气中苯系物的气袋采样/直接进样气相色谱法。检测项目:苯系物(苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯)所需仪器:气相色谱仪、自动稀释系统、气体采样器/大气采样器等。2、HJ 1262-2022 环境空气和废气 臭气的测定 三点比较式臭袋法实施日期:2023年1月15日标准说明:自HJ 1262-2022标准实施之日起,原国家环境保护总局1993 年 9 月 18 日批准发布的《空气质量 恶臭的测定三点比较式臭袋法》(GB/T 14675-93)在相应的国家生态环境标准实施中停止执行。本标准规定了测定环境空气及各类恶臭污染源(包括水域)以不同形式排放的臭气的三点比较式臭袋法。本标准适用于环境空气、无组织排放监控点空气和固定污染源废气样品中臭气的测定。本标准测定方法是嗅觉器官测定法,不受臭气物质种类、种类数目、浓度范围及所含成分浓度比例的限制。检测项目:臭气所需仪器:分析天平、真空泵、空气压缩机等。3、HJ 1263-2022 环境空气 总悬浮颗粒物的测定 重量法实施日期:2023年1月15日标准说明:自HJ 1263-2022标准实施之日起,原国家环境保护总局1995 年 3 月 25 日批准发布的GB/T 15432-1995《环境空气 总悬浮颗粒物的测定 重量法》在相应的国家生态环境标准实施中停止执行。本标准规定了测定环境空气中总悬浮颗粒物的重量法。本标准适用于使用大流量或中流量采样器进行环境空气中总悬浮颗粒物浓度的手工测定,同时适用于无组织排放监控点空气中总悬浮颗粒物浓度的手工测定。检测项目:总悬浮颗粒物所需仪器:大气采样器、分析天平、恒温恒湿箱等。4、HJ 1270-2022 环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法实施日期:2023年6月15日标准说明:本标准为首次发布。本标准规定了测定环境空气中多溴二苯醚的高分辨气相色谱-高分辨质谱法。本标准适用于环境空气气相和颗粒相中26种多溴二苯醚的测定。检测项目:26种多溴二苯醚分别为:BDE 7、BDE 15、BDE 17、BDE 28、BDE 47、BDE 49、BDE 66、BDE 71、BDE 77、BDE 85、BDE 99、BDE 100、BDE 119、BDE 126、BDE 138、BDE 153、BDE 154、BDE 156、BDE 175/183、BDE 184、BDE 191、BDE 196、BDE 197、BDE 206、BDE 207和BDE 209所需仪器:大气采样器、高分辨气质联用仪、索氏提取器、快速溶剂萃取仪、旋转蒸发仪、氮吹浓缩仪等。5、HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法实施日期:2023年6月15日标准说明:本标准为首次发布。本标准适用于环境空气和无组织排放监控点空气颗粒物中甲酸、乙酸和乙二酸的测定。检测项目:甲酸、乙酸、乙二酸所需仪器:颗粒物采样器、离子色谱仪、超声波清洗器等。6、HJ 759-2023 环境空气 63种挥发性有机物的测定 罐采样/气相色谱-质谱法实施日期:2023年8月1日标准说明:本标准自实施之日起,《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759-2015)废止。本标准规定了测定环境空气和无组织排放监控点空气中 65 种挥发性有机物的罐采样/气相色谱-质谱法。本标准适用于环境空气和无组织排放监控点空气中 65 种挥发性有机物的测定。检测项目:挥发性有机物所需仪器:采样罐、气体流量计、气质联用仪、气体稀释装置、气体浓缩仪等。除了上述仪器,小编了解到还有很多【环境监测仪器】以及【实验室常用设备】在环境检测实验中会经常用到,感兴趣的用户,可点击查看。更多仪器种类,请访问【仪器优选】。二、空气检测相关解决方案1、离子色谱法测定环境空气颗粒物中甲酸、乙酸、乙二酸方案简介:本文建立了一种使用离子色谱法测定环境空气颗粒物中甲酸、乙酸、乙二酸的方法。参考2021年版《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法(征求意见稿)》标准,用IC-16进行定性定量分析。结果显示甲酸、乙酸和乙二酸线性良好,标准曲线相关系数均≥0.995;低中高浓度混标溶液连续分析6次,保留时间RSD≤0.032%,峰面积的RSD≤1.587%;低中高浓度加标样品回收率在93.1%~107.0%之间,相对标准偏差<0.620%,方法准确可靠。该方法重现性好,灵敏度高,可用于环境空气 颗粒物中甲酸、乙酸、乙二酸的测定。使用仪器:岛津离子色谱仪Essentia IC-162、天美赛里安气相色谱仪在空气检测的应用——热脱附-气相色谱法(TD-GC)测定空气中的苯系物方案简介:本应用采用GC456i气相色谱仪搭配热脱附进行测试,符合国家标准要求,该方法配置合理,线性良好。使用仪器:天美公司赛里安456i气相色谱仪3、环境空气中二噁英类检测方案简介:二噁英类剧毒物质通常指具有相似结构和理化特性的一组多氯取代的平面芳烃类化合物,属氯代含氧三环芳烃类化合物,包括75 种多氯代二苯并一对一二噁英和135种多氯代二苯并呋哺,缩写分别PCDDs/PCDFs。人类可能因摄取被污染食物,不断地将二噁英类物质富集在人体脂肪中,最终对人体产生严重影响。使用仪器:睿科HPFE高通量加压流体萃取仪4、罐采样-气相色谱质谱法检测环境空气中挥发性有机物方案简介:挥发性有机物(简称VOCs)是空气中非常重要的一类污染物,能够形成二次气溶胶,是PM2.5和臭氧的重要前体物。HJ759-2015是非常重要的实验室环境空气中VOCs的检测方法,能够有效解决国内环境空气中VOCs检测难题。标准更新征求意见稿中扩宽了符合方法标准的预浓缩仪类型,细化了采样和分析中的技术细节,使得方法更具有普遍适用性和专业性。本文主要针对2021年3月15日生态环境部发出的《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法(征求意见稿)》(简称HJ759修订稿)进行仪器适用性评价。使用仪器:赛默飞ISQ™ 7000单四极杆GC-MS三、关于导购平台【仪器优选】作为专业性及影响力兼具的国内一线科学仪器导购平台,囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等15大类仪器,1000+个仪器品类,收录20万+台优质仪器。其核心宗旨是帮助仪器用户快速找到优质靠谱的仪器。经过多年的持续建设,平台实现了可以同时从价格、品牌、行业、口碑、产品横向对比等多维度快速查找仪器产品的功能,助力千万级用户轻松找到靠谱仪器。【行业应用】是仪器信息网专业的行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、制药、环境、农/林/牧/渔、石化、汽车、建筑、医疗/卫生等二十余个行业领域。目前,已经收录行业解决方案6万+篇。四、空气检测新标准采购节马上开启仪器信息网围绕2023年实施的一系列空气检测新标准,特于2023年3月底举办【空气检测新标准采购节】活动。活动将邀请相关专家及知名仪器厂商为行业用户带来新标准解析,同时,联合各优质厂商助力空气检测仪器选型。敬请期待!
  • 室内空气检测无标准 漫天要价收费差10倍
    “家里新装修后,总是有一股刺鼻的味道,我打算找个室内空气检测机构,测一测空气污染物是否超标。”家住青岛市市南区的周先生来电话反映,自己看到新闻说有房地产商安装的地板污染物超标,他就想给自己家也做做检测。记者近日调查了解到,目前青岛做室内空气检测的公司有几十家,同样是检测5项指标,收费从300元到3000元不等。使用的仪器、出具的报告也各不相同。业内人士提醒,应尽量找正规的空气质量检测机构进行检测,以防花冤枉钱。   收费从300元到3000元不等   2月19日,记者拨通了青岛多家室内空气检测公司的电话,咨询空气检测收费标准。“按检测点收费,一个点相当于一个房间。检测甲醛一项,每个点100元。”青岛某公司工作人员告诉记者 而据记者了解,山东省建筑工程检测中心测甲醛的价格为每个点100元~200元 山东省质检院检测费用为每个点450元。   记者又咨询了测甲醛、苯系物、氡、氨、TVOC五项指标的价格,山东省质检院的收费标准是前四项每项450元 ,TVOC收费1386元 ,总计3186元 。而记者咨询了某公司等检测机构,客服人员开出的价格为五项指标共收费300元。   为何同是空气检测,各单位的收费标准却不一样?对此问题,青岛市物价局的工作人员表示,目前对于室内空气检测机构的收费,没有统一标准,实行的是市场调节价,各企业可以根据自己的实际情况定价。   检测公司也可治理污染?   “要是检测出来有超标物,我们可以提供清洁服务,价格优惠。”当记者以用户的身份咨询某公司的工作人员时,他们告诉记者,公司既能做空气检测,还能做污染治理。   在咨询另一家空气检测公司时,工作人员李先生却透露,如果检测公司既做运动员又做裁判员 ,这样会让检测结果的权威性大打折扣。“不排除个别检测公司做检测时把原本没有超标的房间说成超标,然后再来做超标治理收取高额费用。”李先生建议消费者装修后,可以先到独立的第三方检测机构检测室内空气质量状况,根据检测结果找相应的公司进行治理,治理后再回第三方机构复检。   检测机构应出具“CMA”报告   青岛逸新空气检测站的工作人员张先生告诉记者,现在市场上有很多的空气检测公司是花低价钱买不合格的检测仪器来“忽悠”业主的。 “质监部门会向达到标准的空气质量检测机构颁发计量认证合格证书,这些正规机构检测后出具的检测报告上,都会有质监部门的审核时间 、‘CMA’标志和唯一编号,在质监部门的网站上可以查询到。”张先生是一名有着多年检测检验空气污染的工作人员,他表示一般正规的检测公司价格高一点,像300元的检测肯定是不合格的 ,而3000元的价格也太高了。“有 CMA认证,主要好处在于它具备法律效力,在打官司、维权时,可以作为法律依据。”   空气检测要写进装修合同   根据《山东省装饰装修管理办法》第43条规定的“建筑装饰装修承包合同对室内空气质量检测是有约定的 ,应当出具室内空气质量检测报告”,如果装修业主大力主张,装修公司一般是会提供相应的报告。但是在实际情况中基本上没有装修公司会主动提议将室内空气质量的检测写进装修合同中,而业主也缺少维护自己正当权益的意识。   2月19日,记者拨打了青岛市近十家装修公司的电话 ,发现很少有公司愿意将“装修后提供空气质量检测报告”写入合同中。调查中,万顺装修公司的工作人员告诉记者:“目前我们公司还没有免费向客户提供空气检测报告的做法,也没有客户向我们提出过这个要求。”该工作人员表示,如果客户在签订合同时强烈要求将空气质量检测写进合同,公司也是可以考虑的。另有多家装饰公司表示,不会提供第三方检测,如果客户不放心,可以自行检测。而在北京 、上海等大城市,装饰公司的装修合同中早已将“提供空气质量检测报告”列入其中。
  • 连日雾霾催"热"空气净化器 无统一检测标准
    最近雾霾天气成为影响市民生活的重要因素,怎样合理的防范与预防成为新的话题。自22日山东省解除雾霾黄色预警后,雾霾天气的影响却促使空气净化器成为最近市场上的销售新星。而记者了解到,这些空气净化器的价格从几千元到几万元不等,并且宣称99%去除甲醛、pm2.5等污染物。经记者了解,目前空气净化器行业还没有统一的强制性质量检测标准,空气净化器厂家所宣传的功能多被夸大。   雾霾频袭,空气净化器成“香饽饽”   22日,记者来到滕州市几家大型商厦发现,空气净化器一时成为了市民热捧的对象。记者在其中一家商厦中看到,某知名品牌的空气净化器摆在显眼位置,在该品牌空气净化器专柜前的宣传栏上写着“可清除雾霾”的醒目字样,虽然已时近中午,但也有不少市民前来咨询。其中一位市民咨询销售人员空气净化器有何作用时,销售人员介绍道,对室内的甲醛、花粉、tvoc异味等都能起到良好的空气清洁净化作用。当记者询问是否能够净化飘入室内的“雾霾”时,该销售人员讲道,其实也是有一定效果的,但具体是否能彻底净化,她还得咨询一下厂家才能知道。   同时,该销售人员告诉记者,今年的空气净化器比往年要卖得好。往年空气净化器属于“冷淡”型产品。而最近雾霾天气频繁,家中有孩子的市民都前来咨询,并有意向购买。“有些家庭一下就买两三个,客厅、卧室各一个。”销售人员说道。在展示台,记者观察到空气净化器的价格从几千元到万元不等,特别是一些价格不高而且功能较全的空气净化器倍受市民推崇。   不仅实体店空气净化器的人气很高,而在网上空气净化器的销量也成直线上涨。一家网店已经挂出致歉信:“因受雾霾天气影响,店铺订单暴增,此期间我店如未提供周到贴心服务,请见谅。”翻看网页时,记者注意到,其中一款价格为1599元的空气净化器卖得最好,月销量2571件。还有的店铺挂有“微量现货”的字样。   净化有没有效,多数商家“空口无凭”   记者了解到,许多空气净化器产品,都标称对pm2.5、甲醛等有害物质具有净化功能,其中很多空气净化器的产品都打出了“pm2.5去除率达99%”、“甲醛净化率99%”的口号。但究竟效果如何,能否给出书面证明材料,多数代理商家都表示不清楚,也拿不出相关检查证书。   在其中一大型商厦,恰逢一位空气净化器的代理商家在现场,许多市民都比较关心甲醛、苯、pm2.5等污染物的去除效果,在这些方面,商家表示可以保证。“去除率都能达到99%,什么空气污染物都能除,一般一小时可以循环2至6次,有的净化器内安装电子眼,如果室内污染程度比较高,那电子眼就会显示红色,一般十几分钟后就会变成绿色,这就说明室内已经完成了一次净化。”但当记者问是否能够看一下检测报告时,商家却以各种理由不肯拿出检测证书。   专家说法   没有明确界定标准 容易被过度宣传   记者从相关部门获悉,目前,空气净化器的界定标准很难。没有统一标准,不同的净化器产品所谓的净化效能也基本不具有可比性。比如同样是声称甲醛净化效果能达到98%,有的净化器只需要一两个小时就能达到,而有的净化器却需要十几个小时。所以有些空气净化器产品执行的是推荐性的国家标准,而有的产品执行的是自己的企业标准。如果没有强制性国标,空气净化器市场就很容易出现过度宣传、混淆概念等现象。   专家指出,目前空气净化器标准只是在安全和性能上有部分规定,但对于综合适用面积等因素净化效能的规定还不够细致,基本都是推荐标准,对企业没有强制执行力,也很难判定这些净化器产品不合格。一位业内人士告诉记者:“在选购空气净化器时,还是要根据自身实际情况,不能片面的听从导购的推荐和介绍,要注意一下净化器参数、适用面积等,要在购买前做到心里有数,不要盲目认为贵的就是好的。”
  • 解读环境空气自动监测标准 分指标设计传递体系
    p & nbsp & nbsp & nbsp & nbsp 环境保护部日前印发《环境空气自动监测标准传递管理规定(试行)》(以下简称《规定》)。为什么要出台《规定》,其主要内容是什么,有什么意义?环境保护部监测司相关负责人对此进行了深入解读。    /p p strong 自动监测标准传递工作亟待健全完善 /strong    /p p & nbsp & nbsp & nbsp & nbsp 与手工监测相比,环境空气自动监测起步较晚,但发展快,质量管理体系建设有待健全和完善,各国控站点对环境空气自动监测标准传递工作急需加强。    /p p & nbsp & nbsp & nbsp & nbsp 一是环保系统需要建立全国统一的臭氧溯源和传递体系。由于各SRP量值校准方法、技术要求以及实验室质量控制等缺少统一标准和管理规定,影响了臭氧监测数据的一致性。因此急需建立全国环保系统的统一且规范的臭氧标准传递体系。    /p p & nbsp & nbsp & nbsp & nbsp 二是颗粒物标准传递工作急需加强。颗粒物(PM10和PM2.5)国控环境空气自动监测事权上收至国家后,中国环境监测总站委托社会运维机构负责国控站点的运维 “十三五”期间,环境保护部还将依托部分技术能力强的省级环境监测站组建区域质控实验室,形成国家—区域—运维机构三级质控体系。因此,颗粒物手工采样器标准传递体系和传递工作程序均需进一步健全和强化。另一方面,颗粒物采样滤膜材质不统一,应加强质量核查和评估,确保颗粒物自动监测数据的溯源性和可比性。    /p p & nbsp & nbsp & nbsp & nbsp 三是标准气体质量存在差异。在环境空气气态污染物(SO2、NO2和CO)自动监测中,需使用标准气体对自动监测仪器进行定期校准。目前,国内标准气体制备机构较多、标准气体种类繁杂,个别标准气体量值存在偏差,应加强对标准气体及其标准传递工作符合性的质量核查。    /p p strong 进一步推动环境空气自动监测规范化管理   /strong   /p p & nbsp & nbsp & nbsp & nbsp 一是履行政府职责,完善现有标准传递体系的客观需求。《规定》的出台,完善了环境空气自动监测标准传递体系,为规范环境空气自动监测标准传递提供了制度依据,从而使环境空气自动监测标准传递工作有章可循,依规管理。    /p p & nbsp & nbsp & nbsp & nbsp 二是落实《“十三五”环境监测质量管理工作方案》(以下简称《方案》)的迫切需要。2016年11月,环境保护部印发了《方案》。《方案》中提出构建国家—区域—运维机构三级质控体系,建设环境空气自动监测量值溯源和传递体系,建成臭氧自动监测量值溯源传递体系,健全颗粒物手工监测比对体系,完善SO2等常规气态污染物的标准传递体系等,并明确2017年底完成所有国控站点的颗粒物监测手工比对、臭氧量值溯源和传递的工作目标。《规定》的出台,是细化、落实《方案》的具体举措,将进一步推动环境空气自动监测的规范化管理。 /p p strong 分指标设计不同的传递体系 /strong    /p p & nbsp & nbsp & nbsp & nbsp 《规定》按照不同监测指标,遵循标准传递原理,设计了3个环境空气自动监测标准传递体系。    /p p & nbsp & nbsp & nbsp & nbsp (一)颗粒物(PM10和PM2.5)标准传递体系    /p p & nbsp & nbsp & nbsp & nbsp 建立基于手工与自动监测比对的颗粒物比对平台,是实现颗粒物自动监测结果溯源的基础。颗粒物比对平台由颗粒物一级比对平台(国家级)、二级比对平台(区域级)和三级比对平台(运维机构)组成。    /p p & nbsp & nbsp & nbsp & nbsp 颗粒物标准传递体系由两部分组成,即颗粒物手工采样器标准传递体系和颗粒物自动监测仪器标准传递。其中,颗粒物手工采样器标准传递体系对应比对平台分成三级,采取逐级比对的方式进行传递。颗粒物自动监测仪器标准传递是各级比对平台均需具备的标准传递能力,将参比方法通过比对方式传递至各个环境空气自动监测仪器。    /p p & nbsp & nbsp & nbsp & nbsp (二)臭氧标准传递体系    /p p & nbsp & nbsp & nbsp & nbsp 我国臭氧标准传递体系由臭氧一级标准(监测总站和标样所的SRP)、臭氧二级标准、臭氧传递标准(控制标准和传递标准)、臭氧工作标准和臭氧分析仪5部分组成,臭氧一级标准采用逐级或跨级传递至臭氧分析仪。    /p p & nbsp & nbsp & nbsp & nbsp (三)气态污染物(SO2、NO2、CO)标准传递体系    /p p & nbsp & nbsp & nbsp & nbsp 为确保标准气体质量,《规定》要求环境保护部标准样品研究所定期对各国控空气站在用标准气体标准传递符合性进行质量检查。    /p p strong 明确职责分工和监督检查机制 /strong    /p p & nbsp & nbsp & nbsp & nbsp 《规定》确定了空气自动监测标准传递体系的组织架构、职责分工,标准传递的工作程序、工作要求和监督检查内容。    /p p & nbsp & nbsp & nbsp & nbsp (一)明确责任机构。确定了环境保护部对环境空气自动监测标准传递工作实施统一管理,明确了三级标准传递机构的组成,其中一级标准传递机构由监测总站和标样所组成,区域质控实验室为二级标准传递机构,空气自动监测站运维机构为三级标准传递机构。    /p p & nbsp & nbsp & nbsp & nbsp (二)细化工作职责。环境保护部负责组织建设一级、二级标准传递机构,建立标准传递技术体系,开展标准传递工作的监督、检查和考核工作。监测总站承担一级标准传递机构能力建设,包括建立颗粒物(PM10和PM2.5)一级比对平台和臭氧一级标准,为标准传递工作提供技术支持,承担技术培训和考核工作。标样所负责建立臭氧一级标准,为臭氧标准传递和标准物质、标准样品提供技术支持,开展环境空气自动监测在用标准气体标准传递工作符合性的质量检查。区域质控实验室负责二级标准传递机构能力建设,向下级标准传递机构进行颗粒物手工采样器和臭氧标准传递工作,承担监测总站组织的区域环境空气自动监测标准传递的质量检查工作。运维机构承担三级标准传递机构能力建设,负责三级标准传递机构标准传递工作。    /p p & nbsp & nbsp & nbsp & nbsp (三)构建体系架构。确定了颗粒物(PM10和PM2.5)标准传递体系、臭氧标准传递体系和其他气态污染物标准传递体系架构以及与各级标准传递机构对应的关系。其中颗粒物(PM10和PM2.5)一级比对平台的手工采样器作为环境保护系统一级标准。通过颗粒物(PM10和PM2.5)一级比对平台传递确认的二级比对平台的手工采样器作为环境保护系统二级标准。通过颗粒物(PM10和PM2.5)二级比对平台传递确认的三级比对平台的手工采样器作为环境保护系统三级标准 对于臭氧传递,监测总站和标样所的臭氧标准参考光度计(SRP)作为环境保护系统臭氧一级标准,区域实验室SRP作为环境保护系统区域级臭氧标准,运维机构通过国控站点配备使用的臭氧校准仪、多气体动态校准仪等装置,将臭氧传递标准传递至臭氧分析仪。    /p p & nbsp & nbsp & nbsp & nbsp (四)规范工作程序。按照各级标准传递机构职责,遵循标准传递原理,规定了颗粒物、臭氧和气态污染物标准传递工作程序。一是一、二级标准传递机构应向下级标准传递机构每年至少开展一次颗粒物(PM10和PM2.5)手工采样器的比对工作。三级标准传递机构应每两年至少开展一次颗粒物(PM10和PM2.5)自动监测仪器标准传递工作。监测总站应每年组织开展一次在用手工采样器和采样滤膜的质量检查。二是将臭氧一级标准每年拿到中国计量科学研究院进行比对,监测总站每年组织一次环境保护系统内臭氧标准传递工作。三级标准传递机构配置两台或两台以上臭氧校准仪等,每年由臭氧一级或二级标准校准一次。三是标样所每年组织开展一次环境空气自动监测在用标准气体标准传递工作符合性的质量检查。   /p p & nbsp & nbsp & nbsp & nbsp (五)明确工作要求。一是要求各级标准传递机构制定标准传递计划并如期实施。二是要求属于强制检定的计量器具必须按照相关管理办法要求,送至有资质的计量部门检定。非强制检定的计量器具,可选择送至计量部门校准,或开展标准传递。三是要求各级标准传递机构开展标准传递时,使用的计量器具经过溯源,使用的标准气体为国家依法批准的有证标准物质或标准样品,并在有效期内使用。四是要求各级标准传递机构每年向上级标准传递机构提交工作报告,一级标准传递机构向环境保护部提交报告。   & nbsp & nbsp & nbsp & nbsp /p p & nbsp & nbsp & nbsp & nbsp (六)落实监督检查。一、二级标准传递机构按照各自职责开展环境空气自动监测标准传递质量检查工作,检查结果上报环境保护部。对标准传递工作中的违法违规行为,由相关部门按照相关法律、法规和国家有关规定予以处理。 /p
  • 全国新增40个城市按新标准实施空气质量监测
    玉溪市也开始监测PM2.5了。继昆明成为全国首批74个按照新标准实施空气监测的城市之一后,云南又添一个城市玉溪开始实施新空气质量标准,对PM2.5、臭氧等6项基本项目开展监测。   新增城市不参加今年空气测评   根据环保部通报,全国空气质量新标准第二阶段监测实施工作目前取得阶段性成果,包头、鄂尔多斯、泉州、烟台、威海、玉溪、北海等40个城市共172个国家环境空气监测网监测点位已建成或改造完毕,从10月1日起开展监测并在中国环境监测总站网站发布实时监测数据和AQI(空气质量指数)等信息。   但新增这40个城市172个监测点位的监测数据可不参加今年的空气质量评价。至此,我国共114个城市668个点位开展了空气质量新标准监测。按照国务院空气质量新标准&ldquo 三步走&rdquo 实施方案要求,明确规定2012年在74个京津冀、长三角、珠三角等重点区域以及直辖市和省会城市,2013年在113个环境保护重点城市和环保模范城市,2015年在所有地级以上城市,2016年1月1日在全国实施新标准的分期实施要求。首批74个城市已从今年1月1日起,正式对外发布监测数据。   玉溪设3个空气质量监测点位   昨日,玉溪市环境监测站一名工作人员介绍,玉溪市从今年1月份开始试运行监测,目前共有3个监测站,分别在东风水库、玉溪市监测站和大营街镇。经过试运行后,3套监测设备运行状况良好。按照要求,自10月1日起对外发布实时监测数据。&ldquo 目前,市民可通过登录中国环境监测总站的"全国城市空气质量实时发布平台"查看玉溪市3个监测点的实时空气质量监测情况。&rdquo 该工作人员表示。   昨日上午11点10分,登录中国环境监测总站看到,玉溪市3个监测点的实时监测情况均为一级优,AQI值分别是32、38、43,空气质量状况较好。   按照云南省的计划,曲靖市也将确保今年年底前按新空气质量标准要求实施监测工作并上传数据。同时,也提醒公众,可登录昆明市环保局官网、中国环境监测总站网查看昆明市空气质量,登录中国环境监测总站网查看玉溪市空气质量。
  • 我国161个城市实现了新空气质量监测标准全覆盖
    记者2013年12月31日从环保部获悉,第二阶段实施空气质量新标准的全部449个监测点位已与国家联网,并将于2014年1月1日起,在当地环保网站和全国空气质量实时发布平台上对社会发布空气质量信息。   环保部监测司司长罗毅介绍说,继去年第一阶段74个城市实现了新空气质量标准监测之后,到今天为止,发布空气质量实时信息、空气质量月报及参与空气质量排名的地级城市将由现在的74个增加到161个,实现了直辖市、省会城市、计划单列市、“三区”所有地级城市、环保重点城市和环保模范城市全覆盖。   为做好第二阶段空气质量新标准监测实施工作,环保部重点抓了五方面工作:一是全面部署第二阶段空气质量新标准监测实施工作,印发了《空气质量新标准第二阶段监测实施方案》。二是第二阶段国家和地方共计投入约4.4亿元,有力地推动新增指标的监测能力形成。三是进一步完善新标准监测技术体系。四是开展环境空气监测质量大检查,组织近百名专家对29个省、76个城市的部分国控空气监测站进行了现场检查,并将检查发现的问题通报各省要求整改,有力地提高了空气监测数据质量。五是在中国环境监测总站官方网站上进一步完善了“全国城市空气质量实时发布系统”网络版、手机app版和ipad版,供公众及时了解空气质量信息。   罗毅表示,下一步,环保部将全力保证监测设备的稳定运行,加强质量保证和质量控制,进一步完善质量管理制度与规范,并把交叉检查、飞行检查作为数据质量常态化管理手段,对空气质量监测的运行和数据质量进行监督。   同时,进一步改进空气质量信息的发布形式,将在环保部官方网站对外发布空气质量信息,各地也将采用网络、电视、手机、微博等方式向公众发布空气质量信息,使公众能够方便快捷地获取环境空气质量信息,发挥监测数据为民服务的作用。扎实完成第三阶段的任务,力争尽早在全国所有地级以上城市均依照新标准开展监测、评价并发布数据。 文章转载自:中央政府门户网站
  • 空气、水质等检测方法国家环保标准发布
    关于发布《固定污染源废气 铅的测定 火焰原子吸收分光光度法(暂行)》等十四项国家环境保护标准的公告   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《固定污染源废气 铅的测定 火焰原子吸收分光光度法(暂行)》等十四项标准为国家环境保护标准,并予发布。   标准名称、编号如下:   一、固定污染源废气 铅的测定 火焰原子吸收分光光度法(暂行)(HJ 538-2009);   二、环境空气 铅的测定 石墨炉原子吸收分光光度法(暂行)(HJ 539-2009);   三、环境空气和废气 砷的测定 二乙基二硫代氨基甲酸银分光光度法(暂行)(HJ 540-2009);   四、黄磷生产废气 气态砷的测定 二乙基二硫代氨基甲酸银分光光度法(暂行)(HJ 541-2009);   五、环境空气 汞的测定 巯基棉富集-冷原子荧光分光光度法(暂行)(HJ 542-2009);   六、固定污染源废气 汞的测定 冷原子吸收分光光度法(暂行)(HJ 543-2009);   七、固定污染源废气 硫酸雾的测定 离子色谱法(暂行)(HJ 544-2009);   八、固定污染源废气 气态总磷的测定 喹钼柠酮容量法(暂行)(HJ 545-2009);   九、环境空气 五氧化二磷的测定 抗坏血酸还原-钼蓝分光光度法(暂行)(HJ 546-2009);   十、固定污染源废气 氯气的测定 碘量法(暂行)(HJ 547-2009);   十一、固定污染源废气 氯化氢的测定 硝酸银容量法(暂行)(HJ 548-2009);   十二、环境空气和废气 氯化氢的测定 离子色谱法(暂行)(HJ 549-2009);   十三、水质 总钴的测定 5-氯-2-(吡啶偶氮)-1,3-二氨基苯分光光度法(暂行)(HJ 550-2009);   十四、水质 二氧化氯的测定 碘量法(暂行)(HJ 551-2009)。   以上标准自2010年4月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   特此公告。   二○○九年十二月三十日
  • “湖北空气负氧离子浓度地方标准”出台 监测数据将公示
    11月18日,“湖北省空气负氧离子浓度等级”地方标准(以下简称标准)正式实施。该标准制定科学客观,公众易于理解,对湖北省空气负氧离子浓度的监测、评估和服务,以及指导公众健康生活,具有重要作用。  湖北省空气负氧离子浓度等级地方标准由湖北省气象局和湖北省林业科学研究院联合起草,结合湖北地域气候、地貌类型等特点,利用2014年湖北省逐10min的空气负氧离子浓度数据,统计各小时平均值作为建模数据,以反映空气的平均状态,建立空气负氧离子浓度等级。  标准界定:当负氧离子浓度100个/cm3时为Ⅴ级,当负氧离子浓度在100~500个/cm3时为Ⅳ级,当负氧离子浓度在500~1000个/cm3时为Ⅲ级,当负氧离子浓度在1000~1500个/cm3时为Ⅱ级,当负氧离子浓度≥ 1500个/cm3时为Ⅰ级。  据了解,湖北是全国较早开展空气负氧离子观测和应用的省份之一。2013年10月,由湖北省气象局和湖北省林业厅共同开展全省空气负氧离子站网建设,湖北省气象信息与技术保障中心、湖北省林业科学研究院作为具体承建单位于2014年1月完成了空气负氧离子观测仪器站网的建设,2014年3月提供湖北省空气负氧离子浓度的实时监测和服务。  随着湖北省空气负氧离子浓度等级地方标准的出台实施,湖北空气负氧离子浓度监测数据及相关服务产品也将陆续开始对公众发布。
  • PALL PM 2.5空气监测膜片满足美国EPA标准
    PM 2.5标准是为了检测可吸入颗粒物的一个标准,来衡量空气的被污染程度   PM,是颗粒物英文全称Particulate matter的缩写   PM2.5,指大气中空气动力学直径小于或等于2.5微米的颗粒物,亦称可入肺颗粒物.   人为来源:主要来自燃烧过程,比如化石燃料(煤、汽油、柴油)的燃烧、生物质(秸秆、木柴)的燃烧、垃圾焚烧。在空气中转化成PM2.5的气体污染物主要有二氧化硫、氮氧化物、氨气、挥发性有机物。   自然来源:风扬尘土、火山灰、森林火灾、漂浮的海盐、花粉、真菌孢子、细菌其粒径小,富含有毒有害物质,因而对人体健康和大气环境质量影响极大   PM10,则指大气中空气动力学直径等于或小于10微米的颗粒物,也称可吸入颗粒物,粒径2.5微米至10微米的粗颗粒物主要来自道路扬尘等,属于粗颗粒物,与细颗粒物相对。   PM2.5的危害   PM2.5主要对呼吸系统和心血管系统造成伤害,包括呼吸道受刺激、咳嗽、呼吸困难、降低肺功能、加重哮喘、导致慢性支气管炎、心律失常、非致命性的心脏病、心肺病患者的过早死。老人、小孩以及心肺疾病患者是PM2.5污染的敏感人群。 世界卫生组织(WHO)和一些国家的PM2.5标准(单位:微克/立方米)   PM 2.5的标准最早是由美国在九七年的时候提出来,目前世界上很多的发达国家都把PM 2.5列入了一个评价空气质量的标准,我们国家采用的是新的环境空气评价办法—环境空气质量指数(AQI).   《环境空气PM10和PM2.5的测定 重量法》(中华人民共和国国家环境保护标准,HJ618-2011)   “根据样品采集目的可以选用玻璃纤维、石英等无机滤膜或聚氯乙烯、聚丙烯、混合纤维素等有机滤膜。滤膜对0.3um标准粒子的截留效率不低于99%。”   美国EPA标准,用做PM2.5 检测的膜厂家应该满足的EPA 40 CFR Part 50 (EPA 1997a)   生产标准:   • 大小—圆盘, 46.2-mm ±0.25 mm (带支撑环)   • 材质—带完整支撑环的(PTFE) Teflon®   • 支撑环—PMP或相等的惰性材料,0.38±0.04mm厚度,外部直径46.2±0.25mm,宽3.68 mm。支撑环应保持性能一直,否则会影响操作。   • 孔径—2μm (按ASTM F 316-94标准)   • 厚度—30-50μm   其他信息请访问美国环保局网站,http://www.epa.gov/air/particlepollution/health.html   PALL用于PM 10,PM 2.5检测的膜片符合EPA规定   Teflo PTFE膜片   PTFE膜,拥有EPA规定的PMP支撑层,专用于PM-10, PM-2.5,分道采样和其他空气抽样检测技术。在X射线萤光分析下极低的化学背景,低成分也适用于高精度的重量分析测定法。   滤材:带 PMP支撑层的PTFE膜(符合美国EPA法规)   厚度: 1 µ m: 76 µ m (3 mils), 2 µ m: 46 µ m (1.8 mils), 3 µ m: 30.4 µ m (1.2 mils)   典型气溶胶截留 (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求) :1 和2 µ m: 99.99%, 3 µ m: 99.79%   典型空气流速(0.7 bar (70 kPa, 10 psi)): 1 µ m: 17 L/min/cm2, 2 µ m: 53 L/min/cm2 , 3 µ m: 90 L/min/cm2   A/E玻璃纤维   用于各种空气分析的顶级玻璃纤维过滤膜,符合EPA法规推荐使用的要求为:无粘合剂的硼酸硅玻璃纤维。   滤材: 无粘合剂的硼酸硅玻璃纤维   孔径: 1 µ m (nominal)   厚度: 330 µ m (13 mils)   典型气溶胶截留 :99.98% (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)   典型空气流速(0.7 bar (70 kPa, 10 psi)): 60 L/min/cm2   典型水流速度(0.3 bar (30 kPa, 5 psi) ): 250 mL/min/cm2   最大操作温度-空气: 550 °C (1022 °F)   Zefluor™ PTFE膜   低化学本底,高灵敏度,无干扰. 0.5 µ m孔径,满足 NIOSH标准,适合监测酸雨,芳香烃和为例检测.   滤材: 有PTFE支持层的PTFE 膜   孔径: 0.5, 1, 2, 和3 µ m   厚度: 0.5 µ m: 178 µ m (7 mils), 1 µ m: 165 µ m (6.5 mils), 2 and 3 µ m: 152 µ m (6 mils)   典型气溶胶截留 :0.5, 1, and 2 µ m: 99.99%, 3 µ m: 99.98% ((按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)   典型空气流速(0.7 bar (70 kPa, 10 psi))0.5 µ m: 1, 1 µ m: 14.6, 2 µ m: 25.3, 3 µ m: 53 L/min/cm2   Pallflex Tissuquartz™ (石英膜)   纯石英,没有粘合剂,最高化学纯度, 高流速,高过滤效率. 独特的设计适用用高温和热气体的监测应用。   滤材: 纯石英,没有粘合剂   厚度: 432 µ m (17 mils)   重量t: 5.8 mg/cm2   典型气溶胶截留 :99.98% (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)   典型空气流速(0.7 bar (70 kPa, 10 psi)): 73 L/min/cm2   典型水流速度(0.35 bar (35 kPa, 5 psi) ): 220 mL/min/cm2   最大操作温度-空气: 1093 º C (2000 º F)   PM 10, PM 2.5监测配件   滑动盖   保护样品膜的完整性   具体购买事宜,请联系PALL当地代理商:   http://www.ebiotrade.com/custom/ebiotrade/DLS2009/pall.htm   或Email PALL 实验室市场部:   Jessie_jing_chen@ap.pall.com
  • 生态环境部发布《环境空气质量标准》及配套环境监测标准修改单
    p   近日,生态环境部发布“关于发布《环境空气质量标准》(GB 3095-2012)修改单的公告”,公告中指出,批准《环境空气质量标准》(GB 3095-2012)修改单,并由生态环境部与国家市场监督管理总局联合发布。 /p p   该标准修改单自2018年9月1日起实施。 /p p   特此公告。 /p p   (此公告业经国家市场监督管理总局田世宏会签) /p p   附件:《环境空气质量标准》(GB 3095-2012)修改单 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 3.14“标准状态 standard state 指温度为273 K,压力为101.325 kPa时的状态。本标准中的污染物浓度均为标准状态下的浓度”修改为:“参比状态 reference state 指大气温度为298.15 K,大气压力为1013.25 hPa时的状态。本标准中的二氧化硫、二氧化氮、一氧化碳、臭氧、氮氧化物等气态污染物浓度为参比状态下的浓度。颗粒物(粒径小于等于10 μm)、颗粒物(粒径小于等于2.5 μm)、总悬浮颗粒物及其组分铅、苯并[a]芘等浓度为监测时大气温度和压力下的浓度”。 /span /p p   关于监测时记录气温、气压等气象参数的要求,考虑到相关配套监测方法标准已有规定,且近期将在相关监测标准规范和工作部署中进一步细化、明确,《环境空气质量标准》修改单不再重复要求。 /p p   此次修改不涉及标准中的污染物项目及限值。为保持监测数据的一致性和可比性,环境空气污染物质量浓度的历史数据也将进行回溯。今后,生态环境部将按照统一可比的监测数据对各地环境空气质量改善情况进行评价、考核,标准修改单的发布实施不影响“十三五”环境空气质量改善目标。 /p p   为配合《环境空气质量标准》修改单的实施,生态环境部同步发布了与环境空气质量标准中污染物项目监测直接相关的19项环境监测标准修改单,对涉及结果计算与表示中污染物浓度的监测状态内容进行调整,与标准保持一致。 /p p   19项标准名称、编号如下: /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/65e0432c-60aa-469e-8706-e95e01c28e50.pdf" target=" _self" title=" " textvalue=" 一、《环境空气二氧化硫的测定甲醛吸收—副玫瑰苯胺分光光度法》(HJ 482—2009)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 一、《环境空气二氧化硫的测定甲醛吸收—副玫瑰苯胺分光光度法》(HJ 482—2009)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/da6c3c2f-2c5a-44f9-9681-620061bd9b5f.pdf" target=" _self" title=" " textvalue=" 二、《环境空气二氧化硫的测定四氯汞盐吸收-副玫瑰苯胺分光光度法》(HJ 483—2009)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 二、《环境空气二氧化硫的测定四氯汞盐吸收-副玫瑰苯胺分光光度法》(HJ 483—2009)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/a489b919-2d55-489d-806e-9d4c976f51e2.pdf" target=" _self" title=" " textvalue=" 三、《环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法》(HJ 479—2009)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 三、《环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法》(HJ 479—2009)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/ab3c1428-bb6f-4851-be79-dcd66d235eaa.pdf" target=" _self" title=" " textvalue=" 四、《环境空气臭氧的测定靛蓝二磺酸钠分光光度法》(HJ 504—2009)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 四、《环境空气臭氧的测定靛蓝二磺酸钠分光光度法》(HJ 504—2009)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/141ee726-bb48-4a57-89c9-f19ed0b5cf31.pdf" target=" _self" title=" " textvalue=" 五、《环境空气臭氧的测定紫外光度法》(HJ 590—2010)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 五、《环境空气臭氧的测定紫外光度法》(HJ 590—2010)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/1f90aef4-027a-41b3-a920-f7948cfd9838.pdf" target=" _self" title=" " textvalue=" 六、《环境空气PM10和PM2.5的测定重量法》(HJ 618—2011)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 六、《环境空气PM10和PM2.5的测定重量法》(HJ 618—2011)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/d78d789f-f680-4f52-a7b8-24cfd8ae78cf.pdf" target=" _self" title=" " textvalue=" 七、《环境空气铅的测定石墨炉原子吸收分光光度法》(HJ 539—2015)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 七、《环境空气铅的测定石墨炉原子吸收分光光度法》(HJ 539—2015)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/de486937-3b03-41fc-add2-3ea86ccea6d1.pdf" target=" _self" title=" " textvalue=" 八、《环境空气铅的测定火焰原子吸收分光光度法》(GB/T 15264—1994)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 八、《环境空气铅的测定火焰原子吸收分光光度法》(GB/T 15264—1994)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/cc16d833-d342-4636-87fd-81d030b2509a.pdf" target=" _self" title=" " textvalue=" 九、《环境空气总悬浮颗粒物的测定重量法》(GB/T 15432—1995)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 九、《环境空气总悬浮颗粒物的测定重量法》(GB/T 15432—1995)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/5165c9ee-5c03-48f5-bffa-c02176785385.pdf" target=" _self" title=" " textvalue=" 十、《环境空气质量手工监测技术规范》(HJ 194—2017)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十、《环境空气质量手工监测技术规范》(HJ 194—2017)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/8a9bda73-427f-46a0-9e35-8230bbdb34b7.pdf" target=" _self" title=" " textvalue=" 十一、《环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法》(HJ 653—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十一、《环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法》(HJ 653—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/76a7a6f6-1f00-4c0e-8083-6027cbd77e77.pdf" target=" _self" title=" " textvalue=" 十二、《环境空气颗粒物(PM10和PM2.5)连续自动监测系统安装和验收技术规范》(HJ 655—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十二、《环境空气颗粒物(PM10和PM2.5)连续自动监测系统安装和验收技术规范》(HJ 655—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/a859da01-a68c-418b-b854-7298e90394cb.pdf" target=" _self" title=" " textvalue=" 十三、《环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统技术要求及检测方法》(HJ 654—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十三、《环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统技术要求及检测方法》(HJ 654—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/7e6b2f91-e42a-4d72-80f2-5d9f517b808b.pdf" target=" _self" title=" " textvalue=" 十四、《环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法》(HJ 93—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十四、《环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法》(HJ 93—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/db899c8f-1a4b-479e-b8d1-4b380bf2c985.pdf" target=" _self" title=" " textvalue=" 十五、《环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范》(HJ 656—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十五、《环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范》(HJ 656—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/84c9bc0e-4be9-485e-8b03-764b8b2369b5.pdf" target=" _self" title=" " textvalue=" 十六、《空气和废气颗粒物中铅等金属元素的测定电感耦合等离子体质谱法》(HJ 657—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十六、《空气和废气颗粒物中铅等金属元素的测定电感耦合等离子体质谱法》(HJ 657—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/0cd46815-2bb8-469d-b1e5-2b8b7695b5f2.pdf" target=" _self" title=" " textvalue=" 十七、《环境空气六价铬的测定柱后衍生离子色谱法》(HJ 779—2015)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十七、《环境空气六价铬的测定柱后衍生离子色谱法》(HJ 779—2015)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/c18107f3-1f4d-441c-8655-fe0fe6fc73a2.pdf" target=" _self" title=" " textvalue=" 十八、《环境空气气态汞的测定金膜富集冷原子吸收分光光度法》(HJ 910—2017)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十八、《环境空气气态汞的测定金膜富集冷原子吸收分光光度法》(HJ 910—2017)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/6593adb5-0e8b-4017-97f1-6285755d1f80.pdf" target=" _self" title=" " textvalue=" 十九、《环境空气汞的测定巯基棉富集-冷原子荧光分光光度法(暂行)》(HJ 542—2009)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十九、《环境空气汞的测定巯基棉富集-冷原子荧光分光光度法(暂行)》(HJ 542—2009)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " 。 /span /p p   据了解,下一步,生态环境部将启动国家环境空气质量监测网的监测状态转换工作,抓紧完成1436个国控监测站点仪器设备调试升级,预计9月1日起发布监测状态转换后的监测数据 同时,指导各地做好地方监测点位的监测状态转换工作,2019年1月1日起发布监测状态转换后的监测数据。 /p
  • 中国修空气质量标准 未将细颗粒物纳入检测范围
    2010年12月21日,上海外滩被雾霾所笼罩。当天,全市大部分地区出现了轻度污染的雾霾天气。   对频受恶劣空气侵害的中国人来说,这是一则被忽略的重要消息。   在经历了14年的等待后,指导中国空气质量控制的风向标——《环境空气质量标准》终于迎来了大修的可能。自1996年制定以来,这是该标准继2000年微调后首次修订,也可能是幅度最大的一次。   两个月前,《环境空气质量标准》征求意见稿出台。“亮点是取消了环境空气质量功能区的三类区,增设了臭氧8小时平均浓度限值,同时要求未达标城市制定限期达标规划,按期实现;遗憾是未能将PM2.5纳入强制检测的污染物范围,而只提供了参考限值。”中国科学院大气物理研究所研究员王庚辰说。   不能无视的PM2.5   动标准难,动空气标准尤难。环保部2008年便下达了环境空气质量标准修订项目,由中国环境科学研究院承担后,经历了长达两年的酝酿期。   环科院一位人士告诉南方周末记者,2009年9月至12月间,环保部曾发函给中国科学院、中国工程院等193家科研院校、机关部门广泛征集修订意见。当时收到的主要意见是,“调整二类和三类功能区的分类方式,取消三类区;污染物项目应增加PM2.5、重金属、挥发性有机污染物,增加二恶英等有毒有害污染物项目;增加臭氧的8小时浓度限值等”。此后,环保部科技标准司又在2010年六七月间两次召开专家会议讨论。   几次会议上,PM2.5污染问题一直是讨论的焦点。“对PM2.5是否列为强制性标准,大多数人支持将其列入,但也有专家认为时机不够成熟。”上述人士回忆。   王庚辰研究员是支持者,他说,1996国家标准主要针对当时的煤烟型大气污染特征,“十多年来社会经济状况翻天覆地,中国已进入区域复合型大气污染阶段,煤烟型污染减弱,而城市机动车排放引发的PM2.5污染成为突出问题。”城市灰霾天便是佐证,根据中国臭氧监测试点工作统计,2009年全年,试点城市中,发生灰霾的天数占监测天数的14%至57.8%。   1996年制定现行标准时,PM2.5在世界范围内并未有太多人关注,只设置了更宽松的PM10(直径等于或小于10微米)限值。但经过多年研究,PM2.5对人体健康的危害已成共识。   北京大学医学部教授潘小川亦告诉记者,相比PM10,PM2.5更容易长时间悬浮在空中,由于它粒径小,吸入几率变得更大,它可抵达肺的深部,深入下呼吸道,甚至穿透肺泡膜,对人体健康造成巨大伤害。他和同事还发现一种微妙联系:2004年至2006年期间,当北京大学校园观测点的PM2.5日均浓度增加时,在约4公里以外的北京大学第三医院,心血管病急诊患者数量也有所增加。   中国环境科学研究院的一份研究报告也承认,“珠三角、长三角、京津冀、四川盆地和沈阳等地区的城市群大气PM2.5污染日趋严重,不但造成能见度降低,也导致居民循环系统和呼吸系统发病率和死亡率上升。”   “《环境空气质量标准》最根本的作用就是用来保护公众健康和公共福利。我们不可能无视这一变化。”中国环科院的一名专家称。   重要的是,自从1997年美国率先将PM2.5列为检测空气质量的一个重要标准后,国际上主要发达国家均已制定相关标准。而在亚洲,除发达的日本外,连泰国和印度也已制定了该项目的空气质量标准。   分歧重重,最终折中   但在中国,将其纳入强制性目标考核的尝试却困难重重。   王庚辰称,环保部等相关部门许多执行官员也支持。据悉,此前环保部科技标准司 (技术处)就曾直接动议增加PM2.5限值。而在环保部此前的意见征求函中,绝大多数沿海地区的环保局官员也表态支持。   环保部一官员向记者证实,2009年9月至12月间征求意见时,在44家回函单位中,有25家单位建议增加PM2.5,只有2家单位认为没必要增加。建议增加的单位中,既有诸如大连、南京、杭州等沿海地区的声音,也包含鞍山、乌鲁木齐、桂林这样的内陆城市的声音。   反对者却也理直气壮,“制定标准,要符合实际。如果百分之八九十都做不到,标准等于无用,最终会变成虚设。”中国工程院院士、中国环境监测总站原总工程师魏复盛坦言。   魏的说法自有依据。中国环科院公布的一项统计数据显示,中国的PM2.5污染较重,全国113个重点城市2008年年均浓度均远高于世界卫生组织 WHO的准则值,仅有2个城市年均浓度低于目标值,“一旦制定实施PM2.5强制限值,全国城市将大范围超标。”“制定标准,比较务实的做法,应该是经济技术实力和科学性的结合。”魏复盛说。   以白志鹏教授为代表的南开大学在去年初的意见回函中,也同样认为“从工作基础和可执行性角度考虑,……尚不成熟”。“是否设立需要有依据、有工作基础和科学可行,这是个比较复杂的问题。”白志鹏向南方周末记者回复时表示。   征求意见稿最终采取了折中方式——2010年10月9日,环保部科技标准司标准处的修订讨论会上,最终确定了如下判断——“当前国家制定实施 PM2.5环境空气质量标准时机不成熟;统一发布PM2.5等污染物的环境空气质量参考限值,地方省级政府可参考其制定地方环境空气质量标准。”强制性指标悄然变身为参考推荐性指标。   王庚辰批评说,这样的标准,对环保部来说是最讨巧的办法,“最容易做,最不容易引起纠纷,也是最省事的办法。”这低估了国家对环境工作和研究的水平,“依我的了解,全国绝大地方来讲,已经有可能、有条件做这个工作。”   科学问题?政绩问题?   魏复盛承认,关于PM2.5引入标准之争,还是一场群体利益的博弈。   他说,PM2.5的污染,主要来自汽车排放等人工污染。但总量控制汽车、不能无序发展的呼声,在政府部门极力发展“1800万辆、产销两旺”的汽车产业面前,显得过于微弱。   而地方政府和环保部门的态度却显得微妙。浙江嘉兴市环保局副局长潘侃并不抗拒列入PM2.5,“我们此前已决定过两年开始做一些检测、研究这方面问题。”但他也有唯一的担心,由于此前依据PM10指标,嘉兴的空气质量达标率一直维持在90%以上,“到时可能要向社会公众做好说明工作。原来都是达标的,突然就指标换了,变成不达标了,恐怕老百姓要有意见。”   湘潭市环保局局长陈铁平建议各方应保持平和心态,“标准考核更多、更严,数据自然下降,但也能更反映出真实情况”,“让老百姓能呼吸到新鲜的空气,这才是环境监测治理的本意”。作为中西部较早开展PM2.5试点监测工作的环保局,他更担心的是另一些问题,“PM2.5即使成为强制性监测项目,其它工作跟不上来,也起不到应有的作用。”他认为,跟国外发达国家相比,中国目前的评价体系、监测点位、监测手段,都存在相当差距,以湘潭为例,5100平方公里的范围内,就6个监测点位,“要让评价的标准更科学,让数据更具代表性,监测网络更完善”。   “这不单纯是科学问题,还是个政治问题。”王庚辰直言,有官员曾向他当面提出,如果每年达标的天数骤降,他们担心会影响职能部门的声誉,最终危及旅游、投资等行业的地方诸多政绩。   王庚辰表示,环保部本可借鉴WHO的指导准则,从科学角度出发,“我们可以首先定一个国标,然后分阶段、分步骤实施”,但无论如何“标准不能降低”。   他说,“哪怕步骤小一点,也应该往前走,决不能原地踏步。”否则,“大气污染防治的工作将永远停留在低水平,没办法提高。”   警钟或许已然敲响。2010年11月的北京,大部分地区出现空气轻度污染,有两天甚至达到中度污染。   2010年11月19日,就在征求意见稿公布的第二天,一直在用一台PM2.5监测仪和一个Twitter微博客独立监测直播北京空气质量的美国大使馆,再度给了中国首都难堪——   对于北京这令人难以忍受的一天,或许是找不到更贴切的形容词,他们最终将其定义为“crazy bad”——令人抓狂的糟。
  • 空气净化器雾霾检测仪靠谱吗?国家尚无相关仪器标准
    雾霾检测仪  雾霾侵袭,山西多地发布雾霾黄色预警,引发空气净化器、雾霾检测仪购买风潮。这些产品的测试结果有无依据?记者近日进行走访,并从相关部门获知,目前对于市场上售卖的的雾霾检测仪器,国家并无相关标准。  空气净化器销售火爆  在百度中输入“测试雾霾”,点击进入一些网页,不少都密密麻麻展示着各式产品,记者粗略看了一遍发现,产品的功能大多集中在净化空气方面,兼可测试PM2.5、PM10数据,功能相差并不大,但价格从七八十到三五千不等。  记者随机在淘宝网上咨询了一位售卖空气净化器的卖家,店中的一款空气净化器售价1600元,主要净化家中的空气,并可测试家中污染情况,能测PM2.5、PM10,也能测甲醛。  11月27日下午5时,记者来到省城长风街居然之家5层,在某品牌销售区域,记者看到,有5款净化器设备标注着可测试雾霾,外形跟普通的柜式空调相差无几。其中最高端的价格在3万元左右,便宜的为6000元左右。“我家的产品测试雾霾一点问题也没有,而且会根据测试数据净化室内空气,保持室内空气新鲜。”导购员杨先生介绍,5款产品功能相差并不大,价格高的材质会好些,智能化程度更高一些。杨先生介绍,净化系统属于内循环,适用于家庭,耗电量两天一度电 小一点的,功能一样,但是适用的面积有所减少,耗电量三天一度电。“一个月最少可以卖10台,每天基本都有顾客咨询。”杨先生说,该产品冬天的销量是夏天的二到三倍。当记者正准备离去时,正好有一位顾客前来更换滤芯,对方告诉记者,产品挺实用,昨天户外PM2.5是300多,而家里使用该产品后 PM2.5仅为18,效果非常明显。  随后,记者来到省城长治路苏宁易购,在空气净化器售卖区域,记者看到,不少品牌在售的产品上,大多都标注有“测雾霾、测甲醛、净化空气”等字样。在某品牌专卖柜前,价格普遍在万元以下。导购介绍,产品销售得非常火爆,但是因为现在空气净化器品牌很多,且功能相差不大,所以竞争很激烈。  同一区域不同仪器测量结果不同  11月29日11时许,省城双塔寺街某大厦20层。由于当日太原遭遇雨夹雪天气,空气较为湿润。记者首先用手机下载的测雾霾软件测试,显示室内雾霾指数为270,户外则为310 随后,记者拿出一款激光测霾仪,显示室内为177,户外则为187,且数据处于动态中,但波动幅度并不大。“我家里买了一款能测雾霾的空气净化器,使用该机器后,家里的雾霾指数和户外的雾霾指数相差有百倍。”和记者一同做试验的郭女士告诉记者,她买过两款空气净化器,使用前后,家里的空气指数确实大为不同。在郭女士看来,净化器确有奇效。  市民康女士花费8000多元买了一款空气净化设备。“设备采取的是外循环系统,就是把设备安装在墙上,然后打个孔,把外边的空气抽进来,经过设备过滤,净化出新鲜空气。”康女士告诉记者,设备自带有测试雾霾的功能,每次测试结果数值都是个位数。有一次,她还借了一款测试雾霾的仪器,显示家里污染指数确实低。“效果还是很明显的,现在我不仅家里买了设备,我还买了口罩和车载测霾仪器,全方位保卫自己。”康女士说。  不过,记者走访中,不少市民对于市场上在售的空气净化器并不感冒。市民陈先生的观点代表了不少消费者的心声。“现在卖的带测霾功能的净化器,其实跟以前的空气净化器没什么区别,都是玩噱头。”陈先生认为,虽然人们保健意识逐渐增强,但市场上在售的产品,大多换汤不换药,产品肯定有一定的作用,但绝对不是物超所值。陈先生表示,市场上产品鱼龙混杂,难辨“李鬼”,国家应该推荐一款有效缓解雾霾的仪器,供大家选择。  国家暂未出台测霾仪器标准  事实上,雾和霾属于两种气象。但是随着雾、霾相伴出现,如影随形,一般来说,相对湿度80%—90%时空气能见度恶化,是雾和霾的混合物共同造成的,统称为雾霾天气。在雾霾天气中,PM2.5是“罪魁祸首”,但雾霾并不单纯指PM2.5。“雾霾天气的形成,受6种物质的影响,因此,国家在对雾霾天气监控中,分别有6种仪器。”省环保厅有关人士介绍,目前国家在全国都设置了监控点,相对来说,6种物质均有单独的测试仪器,而每个仪器均有对应地标准。“比如说6 种物质中,有专门测试PM2.5的,也有专门测试PM10的,还有测试一氧化碳的̷̷单纯的雾霾测试仪器,我没有听说过,更不用说对于测霾仪器的国家标准了,肯定没有。”该人士表示,依据各个仪器测试的数据,再通过相应的标准,提供给气象部门后,才会出具是否属于重度污染天气的根据,每个仪器测试的数据都可以作为界定是否为雾霾天气的标准。  目前,全省11市分布有近60个监控点,而每个县则设置有一到两个监控点。“如果市场上出售的产品直接称可测试雾霾,那一定是骗人的 如果市场上在售的产品仅表明测试PM2.5,则测试的数据并不准确。”该人士介绍,因为雾霾天的形成受很多因素的影响,虽然PM2.5是“罪魁祸首”,但并不意味着有效防治了PM2.5,就可以预防了雾霾对人体带来的疾病隐患,因此,客观地说,市场上在售的产品可以作为一定的保障,但不能盲目地全部依赖。
  • 车内空气标准须强制 20家单位呼吁增加有机物检测
    北京、天津、上海、重庆、南京消协等20家消费维权单位今天联合呼吁,相关部门应从保护消费者合法权益的角度出发,完善相关法律法规,将推荐性标准《乘用车内空气质量评价指南》上升为强制性标准。   中央电视台近日对部分豪华轿车车内空气污染现象进行的报道,引起社会广泛关注。对此,20家消费维权单位提出,将推荐性标准《乘用车内空气质量评价指南》上升为强制性标准的同时,要在标准中适当增加有机物挥发物质的检测项目,而且检测方法也应增加模拟车辆实际使用时的状态。另外,还应加强对汽车厂商的监管力度,对存在产品缺陷的产品采取强制召回等措施,督促汽车厂商更好地履行产品质量责任。   20家消费维权单位指出,汽车生产企业尤其是跨国企业在赚取丰厚利润的同时,不应“区别对待”中国消费者,更不能对我国消费者尤其是消费者群体提出的诉求,采取视而不见或避重就轻的态度。即使相关法律法规没有明文禁止某些有害物质的使用,企业也应保证它的产品质量是安全的,而不应该拿相关法律法规不完善或标准缺失作为推卸自身责任的理由。   20家单位还表示,车内空气污染的“祸根”一般是在车辆生产过程中“种”下的,在汽车使用过程中已经很难消除,而且汽车消费者一般也不具备专业知识和技术能力,因此,汽车生产企业应对车内污染治理承担第一责任,汽车和零部件生产企业应建立和完善产品空气污染物释放性能的检测、监控体系,在车辆制造过程中选择环保绿色材料,改进生产工艺,切断车内空气污染源。
  • 四项重要空气监测仪器标准及规范将于下月发布
    在2013年7月24日第十三届中国国际环保展览会期间举办的PM2.5控制技术专题报告会上,中国环境监测总站相关负责人表示,我国环境空气质量标准将分为四步实施,2012年在京津冀、长三角、珠三角等重点区域以及直辖市、省会城市开展PM2.5和臭氧监测 2013年完成113个环境保护重点城市和保护模范城市的监测工作 2015年在所有地级以上城市开展监测 2016年在全国实施环境空气质量新标准,即GB 3095-2012标准。   该负责人还透露,环境空气连续监测系统的四项标准方法及技术规范已编制完成并通过审核,将于8月份发布,《环境空气气态污染物(SO2、NO2、O3和CO)连续监测系统技术要求及检测方法》、《环境空气颗粒物(PM10和PM2.5)连续监测系统技术要求及检测方法》将作为对环境空气连续监测系统的技术要求、功能要求和检测方法 《环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范》、《环境空气颗粒物(PM10 和 PM2.5)采样器技术要求及检测方法》将作为手工采样和仪器比对的技术依据。
  • 吴晓青在湖南调研空气质量新标准监测实施工作时强调尽快制定发布新标准的方案
    中国环境报记者 刘立平 长沙报道   环境保护部副部长吴晓青一行日前到湖南省调研环境空气质量新标准监测实施工作情况。他要求,必须尽快制定并完善发布新标准的方案,监测数据的发布要更加客观、更加真实、更加准确地反映当前我国城市空气质量现状,更加贴近老百姓对环境的现实感觉。   吴晓青一行在湖南调研期间,现场察看了长沙市PM2.5空气自动监测站点建设和运行情况,观看了长沙市空气质量监测数据发布平台的演示,并听取了湖南省环保厅和长沙市政府关于&ldquo 十一五&rdquo 环境保护及实施环境空气质量新标准工作落实情况的汇报。吴晓青对湖南省及长沙市环境保护工作以及环境空气质量新标准第一阶段实施情况给予了充分肯定和高度评价。   吴晓青指出,空气质量新标准的贯彻落实,是国务院交给环保系统今年必须要完成的一项硬任务;新的空气质量标准是经国务院常务会今年2月29日审议通过的一项新的环境质量标准。由国务院来讨论一项环境标准,这是中国开展环境保护工作以来是第一次,充分体现了国家对这项新标准的重视程度。   吴晓青说,贯彻新标准是环保系统今年以来最大的民生工程之一;新标准制定出台之后,老百姓关注度之高前所未有,因为这项新标准更加客观、更加真实、更加准确地反映了当前我们国家的空气质量现状。我们要全面、准确地理解这项新标准,绝不能简单地把这项新标准理解为一个PM2.5;实施新标准后,虽然有部分城市的空气质量数据与老标准相比要下降许多,但由于有了更加严格的空气质量标准、更加全面的污染因子评价,这样的数据才会更加真实地反映城市空气质量,与老百姓对环境的客观感受更加贴近。   吴晓青要求,要尽快制定并完善发布新标准的方案,保证设备准确运行和监测数据真实可靠,要有专业的队伍进行支撑。数据发布要通俗易懂,要更加人性化,更加贴近老百姓,要让老百姓看得懂、看得明白。在发布时间上,要先对外试运行一段时间,多听听各方面的意见和反映,同时考核监测设备和发布平台,试运行工作要向社会公开,不要只停留在环保部门内部进行。必须把监测数据的质量控制工作排在首位,确保新标准能够有效实施。新标准贯彻落实的宣传工作要及时到位,各级环保部门要主动和媒体沟通,主动和公众交流,要客观真实地反映空气质量。 来源:中国环境报 崂应官网:www.hbyq.net PM2.5采样,烟尘采样,烟气分析,大气采样,粉尘采样,紫外烟气分析,二恶英采样,油气回收检测,烟尘测试仪、真空箱采样、酸尘降采样、24小时恒温气体采样
  • 明年底河北县级站将按新标准监测空气质量
    从6月2日召开的河北省第四届环境与健康论坛上了解到,明年底前,河北省县级站力争按照新标准监测空气质量。   本届环境与健康论坛的主题是&ldquo 天蓝水净· 美丽河北&rdquo 。河北省政协副主席、中国农工民主党河北省委主委段惠军出席论坛,河北省政协原副主席、河北环保联合会会长陈慧致辞。   记者从论坛上了解到,今年前五个月,河北省11个设区市按新环境空气质量标准监测的6个项目,一氧化碳、臭氧达标,PM10、PM2.5、二氧化硫、二氧化氮均超标。张家口、承德、秦皇岛3个城市环境空气质量相对较好,其他城市均连续出现雾霾天气,尤其是邢台、石家庄、邯郸、保定四个城市,在今年1月1日至5月29日的149天中,优良天数低于30天,重度污染和严重污染的天数在55天以上。为加强空气质量监测,明年底前,全省县级站力争按照新标准监测空气质量。
  • 华爱参与起草的标准《工业园区空气污染自动监测技术指南》实施
    由华爱色谱参与起草的标准T/SHAEPI007-2023《工业园区空气污染自动监测技术指南》2023年7月1日正式实施。该标准规定了工业园区空气污染自动监测的监测体系、数据审核、数据统计、污染预警、评价的要求。适用于工业园区或生态环境管理部门对工业园区及周边环境敏感目标开展空气污染自动监测、预警、分析和评价。园区包括石化、化工、工业涂装、包装印刷等涉挥发性有机物(VOCs)排放的工业园区,以及其他涉氮氧化物和颗粒物排放量较大的工业园区,其他涉挥发性有机物(VOCs)排放或异味污染突出的工业园区和产业集群,生产或大量使用消耗臭氧层物质(ODS)、氢氟碳化物(HFCs)的企业或园区的相关监测工作可参照执行。
  • 标准日趋完善 辐射环境空气自动监测站运行工作有据可依
    p   近日,生态环境部发布了国家环境保护标准《辐射环境空气自动监测站运行技术规范》(HJ1009-2019)。该标准由生态环境部核设施安全监管司、法规与标准司组织制定,标准中规定了辐射环境空气自动监测站的组成和功能、运行和日常检查、维护检修、数据处理与报送、质量保证和档案等技术要求。 /p p   标准适用于生态环境部建设的国控辐射环境空气自动监测站。各级辐射环境监测机构及其他机构采用自动监测站对辐射环境空气质量进行监测的活动也可参考执行。该标准自2019年3月1日起实施。 /p p   辐射环境空气自动监测站一般由一种或多种辐射环境监测设备(剂量率监测仪、能谱仪等)、采样设备(气溶胶、沉降物、空气中碘等采样器 )、气象监测设备、控制设备、数据采集处理和传输设备及基础设施等组成。采样设备和监测设备可根据需要选配。 /p p   它的主要功能是对环境γ辐射水平和气象状况进行自动连续监测,实时采集、处理和存储监测数据,通过有线或无线网络实时向数据汇总中心传输监测数据、设备运行状况等信息,了解辐射环境质量状况及变化趋势,并对外发布监测数据。配有采样设备的 辐射环境空气自动监测站,对空气中的气溶胶、沉降物和碘进行采集,采集后的样品送实验室分析。 /p p   附件为标准详细内容: /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://img1.17img.cn/17img/files/201901/attachment/36966f7b-dc51-4255-baf1-90804e307ee9.pdf" target=" _self" title=" W020181229568291720603.pdf" textvalue=" 《辐射环境空气自动监测站运行技术规范》(HJ1009-2019).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " 《辐射环境空气自动监测站运行技术规范》(HJ1009-2019).pdf /a /span /p
  • 生态环境部征求四项环境空气和废气等相关检测标准意见 涉及气相色谱法
    p   近日,生态环境部发布“关于征求《环境空气和废气 臭气的测定三点比较式臭袋法》等四项国家环境保护标准意见的函”,四项标准分别为《环境空气和废气 臭气的测定 三点比较式臭袋法(征求意见稿)》、《环境空气质量数值预报技术规范(征求意见稿)》、《环境空气和废气 吡啶的测定 气相色谱法(征求意见稿)》、《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法(征求意见稿)》。 /p p   通知中指出,征求意见单位如有相关意见请于2019年7月15日前将书面意见反馈至生态环境部部,逾期未反馈将按无意见处理。 /p p   联系人:生态环境监测司 李江 /p p   电话:(010)66556826 /p p   传真:(010)66556824 /p p   邮箱:zhiguanchu@mee.gov.cn /p p   地址:北京市西城区西直门南小街115号 /p p   邮编:100035 /p p   附件: strong img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201906/attachment/01d0710c-8363-4672-8d65-213813c6d8fe.pdf" target=" _self" title=" 1.pdf" textvalue=" 1.征求意见单位名单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 1.征求意见单位名单.pdf /span /strong /a /p p strong span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201906/attachment/dda2a9a7-de2e-46ed-b6a1-b8a163c44e4e.pdf" target=" _self" title=" 2.pdf" textvalue=" 2.环境空气和废气 臭气的测定 三点比较式臭袋法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 2.环境空气和废气 臭气的测定 三点比较式臭袋法(征求意见稿).pdf /span /strong /a /p p strong span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201906/attachment/1dc58b0d-1394-448d-bef3-b3dc174676aa.pdf" target=" _self" title=" 3.pdf" textvalue=" 3.《环境空气和废气 臭气的测定 三点比较式臭袋法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 3.《环境空气和废气 臭气的测定 三点比较式臭袋法(征求意见稿)》编制说明.pdf /span /strong /a /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 本标准规定了测定有组织源排放和环境及周界无组织源排放中臭气的三点比较式臭袋 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai " 法。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   本标准的附录A~附录E为资料性附录。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   本标准是对《空气质量 恶臭的测定 三点比较式臭袋法》( GB/T 14675-93)的修订。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   原标准首次发布于1993年,原标准起草单位为沈阳环境科学研究所。本次为第一次修订, /span span style=" font-family: 楷体, 楷体_GB2312, SimKai " 修订的主要内容如下: /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   ——实验材质:对实验过程中使用的空气净化用活性炭、采样袋、采样管、嗅辨袋、橡 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai " 胶管和橡胶塞、配气系统连接管等实验用品材质进行了规定 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   ——标准臭液配制:规定了标准臭液贮备液和使用液的配制过程 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   ——嗅辨员培训管理:提出对嗅辨员的嗅觉培训管理方法,明确实际样品测定时嗅辨员 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai " 的挑选原则 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   ——现场监测技术:将样品分为有组织源样品和环境及周界无组织源样品,明确不同样 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai " 品的采样方法 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   ——分析实验:对于有组织源样品分析,将嗅辨小组调整为不少于4人,规定了实验进 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai " 程、终止条件等 对于环境及周界无组织源样品,引入自信度嗅辨判断方法,明确嗅辨小组 /span span style=" font-family: 楷体, 楷体_GB2312, SimKai " 平均正解率的计算方法 增加了判定师的概念和职责 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   ——结果计算与处理:改进了有组织源样品分析数据的计算过程 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   ——质量控制与质量保证:增加质量保证和质量控制章节。 /span /p p span style=" color: rgb(0, 112, 192) "    /span strong img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201906/attachment/9a8fbefb-84d9-4958-8423-fda23a4605bf.pdf" target=" _self" title=" 4.pdf" textvalue=" 4.环境空气质量数值预报技术规范(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 4.环境空气质量数值预报技术规范(征求意见稿).pdf /span /strong /a /p p strong span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201906/attachment/160acc72-2984-41d9-a0ff-640e9396d527.pdf" target=" _self" title=" 5.pdf" textvalue=" 5.《环境空气质量数值预报技术规范(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 5.《环境空气质量数值预报技术规范(征求意见稿)》编制说明.pdf /span /strong /a /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 本标准规定了环境空气质量数值预报模式基本要求、 模式运算和产品、预报效果评估等内容。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   本标准适用于指导全国环境监测系统开展环境空气质量数值预报业务。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   本标准为首次发布。 /span /p p span style=" color: rgb(0, 112, 192) "    /span strong img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201906/attachment/71a5de70-79cf-460b-9c88-7ec30d5c67a5.pdf" target=" _self" title=" 6.pdf" textvalue=" 6.环境空气和废气 吡啶的测定 气相色谱法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 6.环境空气和废气 吡啶的测定 气相色谱法(征求意见稿).pdf /span /strong /a /p p strong span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201906/attachment/425fc1c1-7850-4e26-ba85-9a07b492afe7.pdf" target=" _self" title=" 7.pdf" textvalue=" 7.《环境空气和废气 吡啶的测定 气相色谱法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 7.《环境空气和废气 吡啶的测定 气相色谱法(征求意见稿)》编制说明.pdf /span /strong /a /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 本标准规定了测定环境空气和废气中吡啶的气相色谱法。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   本标准的附录 A 为资料性附录。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   本标准为首次发布。 /span /p p span style=" color: rgb(0, 112, 192) "    /span strong img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201906/attachment/69e1828b-cb94-42ca-9f78-cf5fe9866adf.pdf" target=" _self" title=" 8.pdf" textvalue=" 8.固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 8.固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法(征求意见稿).pdf /span /strong /a /p p strong span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201906/attachment/406d184f-3ed5-4238-9c06-5daaaad6c468.pdf" target=" _self" title=" 9.pdf" textvalue=" 9.《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 9.《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法(征求意见稿)》编制说明.pdf /span /strong /a /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 本标准规定了测定固定污染源废气中苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯的气袋采样/直接进样-气相色谱法。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   本标准的附录A为规范性附录,附录B为资料性附录。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   本标准为首次发布。 /span /p
  • 《环境空气颗粒物(PM10、PM2.5)自动监测质量评估指南》等3项标准征求意见
    1月13日,生态环境部发布了关于征求《环境空气颗粒物(PM10、PM2.5)自动监测质量评估指南》等3项国家环境保护标准意见的函。文件中指出,生态环境部制定了《环境空气颗粒物(PM10、PM2.5)自动监测质量评估指南》等3项国家环境保护标准。目前,标准编制单位已完成征求意见稿。按照《国家环境保护标准制修订工作管理办法》(国环规科技〔2017〕1号)要求,现就标准征求意见稿征求相关单位意见。  附件:  1.征求意见单位名单.pdf  2.环境空气颗粒物(PM10、PM2.5)自动监测质量评估指南(征求意见稿).pdf  3.《环境空气颗粒物(PM10、PM2.5)自动监测质量评估指南(征求意见稿)》编制说明.pdf  4.环境空气臭氧自动监测质量评估指南(征求意见稿).pdf  5.《环境空气臭氧自动监测质量评估指南(征求意见稿)》编制说明.pdf  6. 固定污染源废气 非甲烷总烃连续监测技术规范(征求意见稿).pdf  7.《固定污染源废气 非甲烷总烃连续监测技术规范(征求意见稿)》编制说明.pdf
  • 浙江省辐射防护协会立项《环境空气氚自动连续监测系统技术要求》 等2项团体标准
    各有关单位:为贯彻落实国务院《深化标准化工作改革方案》,增加标准的有效供给,更好地发挥团体标准对行业治理的支撑作用,根据市场需求及《浙江省辐射防护协会团体标准管理办法》规定,协会标准化工作委员会于2024年2月1日组织专家组审议并通过了《环境空气氚自动连续监测系统技术要求》等2项团体标准(见附件)的立项事宜,现予以公告。请通过立项的各标准起草单位按照相关要求,严格遵守标准制定程序,落实立项评审意见并做好数据、检测方法分析和验证工作,切实提高标准编制的技术水平,增加标准的适用性和实效性,保证标准质量,广泛征求意见,按期完成标准编制的相关工作。联系人:夏林芝 联系电话:0571-87356614电子邮箱:237026825@qq.com 附件:浙江省辐射防护协会团体标准立项项目 序号项目名称制修订主要起草单位1《环境空气氚自动连续监测系统技术要求》制定浙江恒达仪器仪表股份有限公司2《气溶胶 钋-210 α能谱仪法》制定浙江国辐环保科技有限公司浙江省辐射防护协会2024年2月5日2项团体标准立项公告.pdf
  • 浙江省市场监管局发布省地方标准《环境空气气态污染物(SO2、NO2、NO、O3、CO)传感器法自动监测系统技术要求及检测方法》
    浙江省市场监督管理局拟批准发布《环境空气气态污染物(SO2、NO2、NO、O3、CO)传感器法自动监测系统技术要求及检测方法》长江三角洲区域地方标准,根据《浙江省标准化条例》的规定,现将拟批准发布的报批文本予以公示,公示期2023年5月9日至2023年5月16日。有关单位和个人如有意见建议,可通过来信、来电、来访等形式,向浙江省市场监管局标准化处反映。单位反映的意见建议请加盖单位公章,个人反映的请署真实姓名。逾期不再接受意见建议。联系地址:浙江省杭州市莫干山路77号(省市场监管局标准化处),联系电话:0571-89761453,传真:0571-89761453,电子邮件:zjbz2012@126.com。附件:《环境空气气态污染物(SO2、NO2、NO、O3、CO)传感器法自动监测系统技术要求及检测方法》(公示稿).pdf2023年5月9日
  • 中国首次研制成功达到环境空气碳监测高精度要求的标准物质
    标准物质是开展化学、生物等检测活动必不可少的“标尺”和“砝码”,是国家重要计量战略资源。近期,中国国家市场监管总局批准新建合成空气中二氧化碳和甲烷温室气体国家一级标准物质,成为中国首批达到环境空气碳监测高精度要求的标准物质,为中国环境空气中温室气体二氧化碳和甲烷含量的高精度准确测量提供有力支撑。二氧化碳和甲烷是两种由人类活动产生的主要温室气体。温室气体监测是研究温室气体浓度变化趋势的基础,也是评价温室效应的依据和指定减排措施的标尺。全球大气中二氧化碳、甲烷浓度的年均变化率仅为0.6%和0.4%,为精确反映温室气体浓度的微小变化,必须使用高精度标准物质保证长期监测过程中不同时间、不同空间的监测结果的准确、可比。中国首次研制成功的合成空气中二氧化碳和甲烷温室气体标准物质,突破量值的准确度分别为0.05%(相当于1个成年人在30平方米的房间内一次呼吸引起的二氧化碳浓度变化)和0.1%。高精度碳监测国家一级标准物质的研制成功,对温室气体监测数据的准确可比和国际等效性提供了技术依据,有力促进温室气体监测技术及仪器国产化研发和推广,体现了计量服务“碳达峰碳中和”技术基础作用。下一步,国家市场监管总局将强化碳监测相关标准物质技术研发应用,加速高水平标准物质科技成果转化为计量实力,进一步提升中国温室气体监测“度量衡”的源头统一性和量值一致性,为碳排放监测提供“精准标尺”。
  • 众瑞针对《环境空气质量标准》不在执行标准状态, 改为参比状态或监测时状态的解决方案
    众瑞针对《环境空气质量标准》不在执行标准状态, 改为参比状态或监测时状态的解决方案告知函 尊敬的各位众瑞客户:生态环境部新发布了《环境空气质量标准》(gb 3095-2012)修改单以及《环境空气 二氧化硫的测定 甲醛吸收—副玫瑰苯胺分光光度法》(hj 482-2009)等19项标准修改单公告。标准修改单自2018年9月1日起实施。根据生态环境部《环境空气质量标准》(gb 3095-2012)修改单,3.14“标准状态standard state 指温度为273 k,压力为101.325 kpa时的状态。本标准中的污染物浓度均为标准状态下的浓度”修改为:“参比状态 reference state 指大气温度为298.15 k,大气压力为1013.25 hpa时的状态。本标准中的二氧化硫、二氧化氮、一氧化碳、臭氧、氮氧化物等气态污染物浓度为参比状态下的浓度。颗粒物(粒径小于等于10 μm)、颗粒物(粒径小于等于2.5 μm)、总悬浮颗粒物及其组分铅、苯并[a]芘等浓度为监测时大气温度和压力下的浓度”。 众瑞参与此次软件升级的仪器清单如下:zr-3922型环境空气颗粒物综合采样器zr-7200系列扬尘在线监测系统zr-3920系列环境空气颗粒物综合采样器zr-5410a便携式气体、粉尘、烟尘采样仪综合校准装置zr-3920g型高负压环境空气颗粒物采样器zr-5040孔口流量校准器zr-3930系列环境空气颗粒物采样器zr-5220烟尘采样器校准仪zr-3500系列大气采样器zr-5330a智能质量流量计zr-3950环境空气有机物采样器zr-5320智能皂膜流量计zr-3620abc小流量气体采样器zr-5400气体罗茨流量计zr-7010便携式空气颗粒物浓度测定仪zr-5420孔口流量校准装置升级内容包括:空气颗粒物采样器:所有保持不变,在采样、查询、u盘导出和打印过程中,增加“参比体积”; 空气颗粒物直读采样器:所有保持不变,在采样、查询、u盘导出和打印过程中,增加“参比体积”,仪器显示的颗粒物浓度值更改为“工况浓度”;环境空气气态污染物的采样器:所有保持不变,在采样、查询、u盘导出和打印过程中,增加“参比体积”;环境空气气态污染物直读类仪器:所有保持不变,在采样、查询、u盘导出和打印过程中,增加“参比体积”;把原来的“标况浓度”更改为“参比浓度”;我司提供的解决方案:1、在上述仪器不进行软件升级的情况下,您依然可以使用,只要通过以下公式即可将标准状态下的采样体积换算为参比状态下的采样体积,再进行浓度的计算。v参体= v标体*298.15/273=v标体*1.09式中:v参体——参比状态(298.15k,1013.25 hpa)下的采样体积,l;v标体——标准状态(273k,101.325kpa)下的采样体积,l。2、颗粒物(粒径小于等于10 μm)、颗粒物(粒径小于等于2.5 μm)、总悬浮颗粒物及其组分铅、苯并[a]芘等浓度为监测时大气温度和压力下的浓度”。 备注:众瑞相关仪器原来就有大气温度和压力下体积(实体)的显示和存储,所以仪器不需要改变。3、近期内(1~2个月)没有仪器使用情况,您可联系我司当地客服工程师,预约时间为您上门升级程序。注意:因程序升级将改变数据的存储格式,仪器中原保存的数据可能会发生变化,请客户提前做好相关数据的备份。 我们会尽快为您安排仪器软件升级,因升级给您带来的不便敬请谅解! 特此函达青岛众瑞智能仪器有限公司二〇一八年八月二十九日
  • 中山市质量技术协会批准发布《环境空气 104种挥发性有机物的测定 罐采样 气相色谱-氢火焰离子化检测器 质谱联用法》团体标准
    各有关单位:根据《中山市质量技术协会团体标准管理办法》规定,现批准《环境空气 104种挥发性有机物的测定 罐采样/气相色谱-氢火焰离子化检测器/质谱联用法》为本协会的团体标准,标准编号为T/ZSZJX 010-2023。2023年12月29日发布,自2024年1月1日起实施,现予公告。中山市质量技术协会2023年12月29日【50号文】关于《环境空气 104种挥发性有机物的测定 罐采样 气相色谱-氢火焰离子化检测器 质谱联用法》团体标准发布的公告.pdf
  • 车内空气质量标准:强制还是推荐?
    中汽协反对强制性“标准”   环保部《车内空气中挥发性有机物浓度要求》(下简称《要求》)征求意见稿的封面代号让中国汽车工业协会(下称中汽协)有些不舒服。   在这份草案的封面,抬头部分有“中华人民共和国国家标准GB□□□□—20□□”的字样,虽然标准号和日期仍虚位以待,但带有强制性的“GB”代号,却似乎让中汽协难以接受(GB指国家标准,GB/T指推荐性国家标准)。   中国经济时报记者获悉,2009年12月28日,在征求意见截止日期前夕,中汽协秘书处向环保部正式提交了意见书,并同时抄报给了国家发改委和工信部。   “标准草案在前言中明确说明了本标准是自愿采用的,编写工作组也建议这个标准属推荐性的,但标准草案的封面代号却是强制性标准代号,这显然是矛盾的。”中汽协方面表示,“我们认为本标准不具备作为强制性标准的基础,改为推荐性行业标准更稳妥一些。”其依据在于:欧盟及美、日等汽车工业大国,对人的健康和环境保护十分重视,但任何一个政府均没有制定车内空气质量控制的技术法规,有关的标准组织也没有规定国际标准和国家标准,甚至都没有制定相关的行业标准 世界卫生组织虽然有对建筑物内的空气质量要求,但也没有对车内空气质量要求。   对于《要求》草案中把车内空气浓度与室内空气“挂钩”,中汽协表示了强烈的不满。   “汽车的空间、使用温度和环境、使用状况、车内所用材料与房屋建筑有极大差异,人在这两个不同空间每天停留的频次、时间段和累计时间也不同,即使有机物浓度相同,吸入的总量也不同。” 中汽协技术部认为,“简单等同并采用室内要求的限值或与室内限值有明显差异都是欠妥当的。”   “本标准的主要控制要素,参考了国际上的相关室内标准,目前制定的车内污染物标准相对室内标准,基本上处于上限水平。”《要求》编制组就此解释说,这主要是由于车内空间相对狭小,污染物相对不容易扩散,而乘员在车内滞留时间也比室内少,因此室内控制限值比车内高符合客观情况,同时也能够满足保护乘员健康的要求。   据悉,征求意见稿中的标准和其他标准(世卫、日本)比较,“红线”定得并不低。例如苯、甲醛的限制分别为0.11mg/m3和0.10mg/m3,与日本标准相当。   中汽协还抱怨说,最终确定限值必须根据医学评估报告,而标准编制组没有提供这方面的任何信息。   利益驱动挤压行业自律,“推荐标准”形同虚设?   一边是为汽车企业代言的中汽协“满腹怨言”,另一边则是车内空气污染调查数据触目惊心。   相关资料显示,2009年1月,广东参照室内空气质量标准检测的60款车型中,有50款存在不同程度的污染。上海有关机构抽查的100辆轿车中只有17辆达到国家室内标准,八成以上的轿车内可吸入颗粒物超标,最严重的超过国家室内标准7倍。《要求》的“编制说明”称,在被检车辆中共定性检测到有机物有200多种,苯、甲苯、二甲苯、苯乙烯、乙苯、甲醛等在车内空气中的检出率高达98%。   本报记者发现,发达国家前几年的情况似乎也好不到哪儿去。   早在2006年,美国生态研究中心经测试曾出炉十大“最毒车”名单,日产、丰田、铃木、斯巴鲁、雪佛兰等全球知名品牌均赫然在列,其中包括了Nissan的Versa国内为东风日产Tiida颐达、Chevy的Aveo雪佛兰品牌车型、Kia的Spectra5国内为起亚赛拉图、Subaru的Forester国内为斯巴鲁森林人等。   据了解,车内空气中挥发性有机物的成分较为复杂,一般包括甲醛、苯、甲苯、二甲苯、乙苯等。长期反复接触低浓度苯可引起慢性中毒,重者可出现再生障碍性贫血,而甲苯对神经系统作用比苯更强,长期接触有引起膀胱癌的可能。自2003年以来,因车内空气污染引起的法律纠纷开始增多,其中“奥拓车苯超标引发死亡赔偿纠纷案”、“道奇公羊车甲醛超标案”、“奇瑞QQ疑致儿童白血病案”、“新甲壳虫甲醛超标3倍”、“中华轿车六年后甲醛仍超标4.4倍”等事件,至今仍让人心悸。   “降低车内有机挥发物肯定是汽车行业努力的方向,因此我们十分赞赏日本汽车工业协会‘制定指南’的模式。”中汽协坚持认为,“这种依靠行业自律、履行社会责任、推进技术进步、保护消费者利益的做法,值得研究和借鉴。”   但业内人士透露,虽然到目前为止,发达国家尚未出台法律、法规控制车内污染,但对汽车的零部件和内饰材料却有严格的法律法规,在此基础上倡导,行业自律才会有整体效果。   本报记者查阅资料获悉,当前美国环保局已要求汽车制造厂所使用的材料必须申报,并必须经过环保部门审查以确保对环境和人体危害程度达到最低点后才能使用,申报者一旦违反规定,将承担巨额的罚款,还要召回产品清理污染,主要负责人甚至会被判刑。   德国环保署也与德国汽车制造学会联合制定了“德国汽车车内环境标准”,规定汽车本身、装在车内的塑料配件、地毯、车顶毡、沙发等必须符合德国“蓝天使”环保标志的要求,车内装饰,坐套垫、胶粘剂等装饰材料含有的苯、甲醛、丙酮、二甲苯等必须低于“德国三级车内环保标准”,汽车销售前还必须经过有毒空气释放期。   毋庸置疑,如果《要求》成为GB强制性标准,汽车厂商势必要采购符合要求的环保零部件和内饰,在生产环节中使用环保型黏合剂,而且出厂后就不能在第一时间销售(要等有毒空气释放),由此会占用更多库房,资金回流速度减慢,而一旦售后检测仍超标,还可能面临无数的索赔纠纷。   而如果《要求》只是一个指导性标准,并不具备强制力,“由汽车生产、使用过程中的各相关方自愿采用”,再加上我国对汽车零部件、内饰的环保性能没有硬性约束,这样一个推荐性标准的出台,对于改变我国车内空气质量现状,也许并无多大推进作用。   “发达国家没有这方面的强制法规,难道中国就不能有了?这个理由是不是有点荒唐?”北京车主徐先生在接受本报记者采访时表示,消费者肯定都期待这个标准能够成为国家强制行标准,并且早日出台。“这个标准事关千万车主的切身利益,很奇怪草案为什么不公开征求民众的意见呢?我相信消费者的呼声肯定要比汽车协会和汽车厂商的声音大得多!”   车内空气标准六年难产   “本标准的实施,将对车内空气质量起到安全保障作用,能够保证车内乘员有一个安全的环境空间,不再受车内空气污染的困扰,对保护乘员安全和健康具有重要的环境效应。” 《车内空气中挥发性有机物浓度要求》(下称《要求》)编制组表示,这一标准的实施,还将对我国汽车业及汽车内饰行业的发展起到规范作用,促进相关企业的技术进步和可持续发展。   虽然《车内空气中挥发性有机物浓度要求》草案征求意见已过截止期,但这并不意味这一标准就能很快出台并实施。   车内空气污染这一“隐形杀手”引起各界关注,始发于2003年的一桩命案。   2002年8月,北京朱女士购买了一辆国产奥拓轿车,同年9月底发现身上有大量出血点,被医院确诊为重症再生障碍性贫血急性发作并接受治疗。2003年3月,朱女士因医治无效病逝。2004年4月,北京丰台区法院审理认为,原告认为再生障碍性贫血死亡为苯中毒所致证据不足,因此驳回了原告的诉讼请示。但法院同时认为,国家对车内空气质量未颁布标准,并为此向国家质监总局发出了司法建议书,建议尽早制定车内空气质量标准 同时建议将车内空气质量标准作为汽车制造业的强制性规定。   此后,车内空气污染问题受到国务院的高度重视。按照要求,原国家环保总局组织有关科研机构对车内空气污染问题进行了调查研究,并在2004年5月下达的文件中将《车内空气污染物浓度限值及测量方法》列入当年国家环保标准制修订计划,同年9月国家标准化管理委员会将该标准列入了《国家标准制(修)订计划〈车内空气污染物浓度限值及测量方法〉》。   自2006年至今,几乎每年都有消息称车内空气质量标准将出台,结果拖到现在也未能出台。   为何车内空气质量标准如此“难产”?   据有关专家介绍,目前国内外尚无关于车内空气污染控制的标准法规,需花费大量时间进行试验研究和验证。而汽车的使用环境和条件又变化太大,很难有一个具备可比性的内外部检测环境。   清华大学环境科学与工程系的郝吉明教授此前在接受采访时也表示:“制定车内空气质量标准存在技术难题。”   但技术难题似乎并不是标准“难产”的关键所在。据本报记者了解,早在2004年2月,原国家环保总局便委托有关机构开展了一系列车内空气污染状况的试验检测工作,最终编制出《车内挥发性有机物和醛酮类物质采样测定方法》,2007年12月7日发布, 2008年3月1日正式实施。这一测定方法的出台,被视为车内空气质量标准制定的第一步。   谁是第一责任方   第二步距离第一步有多远呢?   “本标准的编制涉及到病毒理、卫生学、国家汽车行业现状、汽车内饰供应商技术水平、国内外相关法规的协调一致等方面,所以制定本标准的难度较大,尤其是污染物项目选择及浓度限值的确定方面,既要考虑以人为本,保护消费者的健康,又要考虑汽车行业的实际技术水平,两者之间的协调统一较难把握。”《要求》编制说明中的这一表述,似乎泄露了标准难产的“天机”。   本报记者获悉,2008年5月,《要求》标准编制组主持召开了车内空气污染物卫生学专题讨论会议,相关专家对筛选拟控制物质提出建议 10月环保部科技标准司又召集了国内病毒理学专家,对拟控制的8种物质和限值进行了病毒理学分析,专家一致认为,所选择的挥发性有机物及浓度要求设置合理、可行 考虑到保护消费者健康的需要和当前汽车工业发展状况,8种控制物质限值应同时实施,不分阶段。   “我国汽车行业现状和内饰供应商技术水平才是问题的关键。”某业内人士直言不讳。   据了解,车内空气质量状况与车辆制造工艺和零部件种类有直接关系,影响较大的有汽车仪表台板、门内饰板、地毯、顶棚、汽车线束、座椅总成等。车内空气污染主要原因在于,汽车生产企业和装饰企业在设计、生产汽车和提供汽车装饰服务时,不断提高车厢密闭性,使车内空气污染物更容易聚积而产生污染 部分企业为降低成本,采用一些质量不高甚至对人体健康有害的劣质材料,加剧了车内空气污染。   标准编制组表示,车内空气质量的“祸根”一般是在车辆生产过程中种下的,在汽车使用过程中已经很难消除,而且汽车消费者一般也不可能具备这方面的专业知识和技术能力,“汽车生产企业应对车内污染治理承担第一责任。”   专家认为,汽车生产企业应对车内各种污染物的来源进行定量分析,找到污染物的发生源,有针对性地采取替换、升级等技术措施。零部件生产企业应根据汽车企业治理污染的要求,选择适当原材料,改进生产工艺。同时,汽车和零部件生产企业都应逐步建立和完善对产品挥发性有机物的检测、监控体系。   《要求》何时出台目前尚无准确消息,但据知情人士透露,该标准属于国家环保总局“十一五”期间需要修订的环保标准之一。2010是“十一五”的最后一年,今年能否顺利出台车内空气质量国家标准,也许还要看政府的决心,以及各利益方博弈的结果。
  • 国家标准室内空气质量标准
    GB18883 中华人民共和国国家标准室内空气质量标准   1、范围   本标准规定了室内空气质量参数及检验方法。   本标准适用于住宅和办公建筑物。   2、规范性引用文件   下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。   GB 6921-86 大气飘尘浓度测定方法 重量法   GB 9801-88 空气质量 一氧化碳的测定 非分散红外法   GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法 气相色谱法   GB 12372-90 居住区大气中二氧化氮检验标准方法 改进的 Saltzman 法   GB/T 14679-93 空气质量 氨的测定 次氯酸钠 - 水杨酸分光光度法   GB/T 14669-93 空气质量 氨的测定 离子选择电极法   GB/T 14582-93 环境空气中氡的标准测量方法   GB 14677-93 空气质量 甲苯、二甲苯、苯乙烯的测定 气相色谱法   GB/T 15262-94 环境空气 二氧化硫的测定 甲醛吸收 - 副玫瑰苯胺分光光度法   GB/T 15435-1995 环境空气 二氧化氮的测定 Saltzman 法   GB/T 15438-1995 环境空气 臭氧的测定 紫外光度法   GB/T 15439-1995 环境空气 苯并 [a] 芘测定 高效液相色谱法   GB/T 15516-1995 空气质量 甲醛的测定 乙酰丙酮分光光度法   GB/T 16128-1995 居住区大气中二氧化硫卫生检验标准方法 甲醛溶液吸收 - 盐酸副玫瑰苯胺分光光度法   GB/T 16129-1995 居住区大气中甲醛卫生检验标准方法 分光光度法   GB/T 16146-1995 住房内氡浓度控制标准   GB/T 16147-1995 空气中氡浓度的闪烁瓶测量方法   GB/T 17095-1997 室内空气中可吸入颗粒物卫生标准   GB/T 18204.18-2000 公共场所室内新风量测定方法—示踪气体法   GB/T 18204.23-2000 公共场所空气中一氧化碳检验方法   GB/T 18204.24-2000 公共场所空气中二氧化碳检验方法   GB/T 18204.25-2000 公共场所空气中氨检验方法   GB/T 18204.26-2000 公共场所空气中甲醛测定方法   GB/T 18204.27-2000 公共场所空气中臭氧检验方法   5 室内空气质量检验   5.1 室内空气中各种化学污染物采样和检验方法见附录 A 和附录 B 。   5.2 室内空气中苯浓度的测定方法见附录 C 。   5.3 室内空气中总挥发性有机物( TVOC )的检验方法见附录 D 。   5.4 室内空气中细菌总数检验方法见附录 E 。   5.5 室内热环境参数的检验方法见附录 F 。   附录 A   (规范性附录)   室内空气采样技术导则   1、范围   本导则在进行室内空气污染物监测时,对采样点位,采样高度,采样时间和频率,以及采样方法和质量保证措施等项做出规定。 本导则作为《室内空气质量标准》配套的空气采样技术的指导原则,适用于《室内空气质量标准》中所规定的各种化学污染物的采样。   2、选点要求   2.1 采样点的数量:采样点的数量根据监测室内面积大小和现场情况而确定,以期能正确反映室内空气污染物的水平。原则上小于 50m 2 的房间应设 1~3 个点 50~100m 2 设 3~5个点 100m 2 以上至少设 5 个点。在对角线上或梅花式均匀分布。   2.2 采样点应避开通风口,离墙壁距离应大于 0.5m 。   2.3 采样点的高度:原则上与人的呼吸带高度相一致。相对高度 0.5m~1.5m 之间。   3、采样时间和频率   采样前至少关闭门窗 4 小时。日平均浓度至少连续采样 18 小时, 8 小时平均浓度至少连续采样 6 小时, 1 小时平均浓度至少连续采样 45 分钟。   4、采样方法和采样仪器   根据污染物在室内空气中存在状态,选用合适的采样方法和仪器,用于室内的采样器的噪声应小于 50dB 。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。   5、采样的质量保证措施   5.1 气密性检查:有动力采样器在采样前应对采样系统气密性进行检查,不得漏气。   5.2 流量校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过 5% 。   采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准 5 个点,绘制流量标准曲线。记录校准时的大气压力和温度。   5.3 空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制范围,则这批样品作废。   5.4 仪器使用前,应按仪器说明书对仪器进行检验和标定。   5.5 在计算浓度时应用下式将采样体积换算成标准状态下的体积:   式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。   5.6 每次平行采样,测定之差与平均值比较的相对偏差不超过 20% 。   6、记录和报告   采样时要对现场情况、各种污染源、采样日期、时间、地点、数量、布点方式、大气压力、气温、相对湿度、风速以及采样者签字等做出详细记录,随样品一同报到实验室。   附录 B   (规范性附录)   室内空气中各种参数的检验方法 *   污染物 检验方法 来源   (1) 二氧化硫 SO 2 甲醛溶液吸收 —— 盐酸副玫瑰苯胺分光光度法 ( 1 ) GB/T 16128-1995   ( 2 ) GB/T 15262-94   (2) 二氧化氮 NO 2 改进的 Saltzaman 法 ( 1 ) GB/ 12372-90   ( 2 ) GB/T 15435-1995   (3) 一氧化碳 CO ( 1 )非分散红外法   ( 2 )不分光红外线气体分析法 、气相色谱法 、汞置换法 ( 1 ) GB 9801-88   ( 2 ) GB/T 18204.23-2000   (4) 二氧化碳 CO 2 ( 1 )不分光红外线气体分析法   ( 2 )气相色谱法   ( 3 )容量滴定法 GB/T 18204.24-2000   (5) 氨 NH3 ( 1 )靛酚蓝分光光度法   纳氏试剂分光光度法   ( 2 )离子选择电极法   ( 3 )次氯酸钠—水杨酸分光光度法 ( 1 ) GB/T 18204.25-2000   ( 2 ) GB/T 14669-93  ( 3 ) GB/T 14679-93   (6) 臭氧 0 3 ( 1 )紫外光度法   ( 2 )靛蓝二磺酸钠分光光度法 ( 1 ) GB/T 15438-1995   ( 2 ) GB/T 18204.27-2000   (7) 甲醛 HCHO • AHMT 分光光度法   • 酚试剂分光光度法   气相色谱法   ( 3 )乙酰丙酮分光光度法 ( 1 ) GB/T 16129-95   ( 2 ) GB/T 18204.26-2000   ( 3 ) GB/T 15516-95   (8) 苯 C 6 H 6 气相色谱法 • 附录 C   ( 2 ) GB 11737-89   ( 9 ) 甲苯 C 7 H 8 、   二甲苯 C 8 H 10 气相色谱法 GB 14677-93   (10) 苯并 [a] 芘   B(a)P 高压液相色谱法 GB/T 15439-1995   (11) 可吸入颗粒   PM10 撞击式 —— 称重法 GB/T 17095-1997   (12) 总挥发性有机物   TVOC 气相色谱法 附录 D   (13) 细菌总数 撞击法 附录 E   (14) 温度、相对湿度、空气流速 热环境参数的检验方法 附录 F   (15) 新风量 示踪气体法 GB/T18204.18-2000   (16) 氡 Rn ( 1 )空气中氡浓度的闪烁瓶测量方法   ( 2 )环境空气中氡的标准测量方法 ( 1 ) GB/T 16147-1995   ( 2 ) GB/T 14582-93   * 注:检验方法中( 1 )法为仲裁法。   附录 C   (规范性附录)   空气中苯浓度的测定   (毛细管气相色谱法)   1、方法提要   1.1 相关标准和依据   本方法主要依据 GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法—气相色谱法。   1.2 原理:空气中苯用活性炭管采集,然后用二硫化碳提取出来。用氢火焰离子化检测器的气相色谱仪分析,以保留时间定性,峰高定量。   1.3 干扰和排除:空气中水蒸汽或水雾量太大,以至在碳管中凝结时,严重影响活性炭的穿透容量和采样效率。空气湿度在 90% 时,活性炭管的采样效率仍然符合要求。空气中的其他污染物干扰,由于采用了气相色谱分离技术,选择合适的色谱分离条件可以消除。   2、适用范围   2.1 测定范围:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,测定范围为 0.05~10 mg/m 3 。   2.2 适用场所:本法适用于室内空气和居住区大气中苯浓度的测定。   3、试剂和材料   3.1 苯:色谱纯。   3.2 二硫化碳:分析纯,需经纯化处理,保证色谱分析无杂峰。   3.3 椰子壳活性炭: 20~40 目,用于装活性炭采样管。   3.4 纯氮: 99.99% 。   4、仪器和设备   4.1 活性炭采样管:用长 150mm ,内径 3.5~4.0mm ,外径 6mm 的玻璃管,装入 100mg 椰子壳活性炭,两端用少量玻璃棉固定。装好管后再用纯氮气于 300~350 ℃温度条件下吹 5~10min ,然后套上塑料帽封紧管的两端。此管放于干燥器中可保存 5 天。若将玻璃管熔封,此管可稳定三个月。   4.2 空气采样器:流量范围 0.2~1L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。   4.3 注射器: 1ml 。体积刻度误差应校正。   4.4 微量注射器: 1μl , 10μl 。体积刻度误差应校正。   4.5 具塞刻度试管: 2ml 。   4.6 气相色谱仪:附氢火焰离子化检测器。   4.7 色谱柱: 0.53mm × 30mm 宽径非极性石英毛细管柱。   5、采样和样品保存   在采样地点打开活性炭管,两端孔径至少 2mm ,与空气采样器入气口垂直连接,以 0.5L/min 的速度,抽取 20L 空气。采样后,将管的两端套上塑料帽,并记录采样时的温度和大气压力。样品可保存 5 天。   6、分析步骤   6.1 色谱分析条件:由于色谱分析条件常因实验条件不同而有差异,所以应根据所用气相色谱仪的型号和性能,制定能分析苯的最佳的色谱分析条件。   6.2 绘制标准曲线和测定计算因子:在与样品分析的相同条件下,绘制标准曲线和测定计算因子。   6.2.1 用标准溶液绘制标准曲线:于 5.0ml 容量瓶中,先加入少量二硫化碳,用 1μL 微量注射器准确取一定量的苯( 20 ℃时, 1μl 苯重 0.8787mg )注入容量瓶中,加二硫化碳至刻度,配成一定浓度的储备液。临用前取一定量的储备液用二硫化碳逐级稀释成苯含量分别为 2.0 、 5.0 、 10.0 、 50.0μg/ml 的标准液。取 1μL 标准液进样,测量保留时间及峰高。每个浓度重复 3 次,取峰高的平均值。分别以 1μL 苯的含量( μg/ml )为横坐标( μg ),平均峰高为纵坐标( mm ),绘制标准曲线。并计算回归线的斜率,以斜率的倒数 Bs[μg/mm] 作样品测定的计算因子。   6.3 样品分析:将采样管中的活性炭倒入具塞刻度试管中,加 1.0ml 二硫化碳,塞紧管塞,放置 1h ,并不时振摇。取 1μl 进样,用保留时间定性,峰高( mm )定量。每个样品作三次分析,求峰高的平均值。同时,取一个未经采样的活性炭管按样品管同时操作,测量空白管的平均峰高( mm )。   7、结果计算   7.1 将采样体积按式( 1 )换算成标准状态下的采样体积   式中 c —空气中苯或甲苯、二甲苯的浓度, mg/m 3   h —样品峰高的平均值, mm   h ' —空白管的峰高, mm   B s —由 6.2.1 得到的计算因子, μg/mm   E s —由实验确定的二硫化碳提取的效率   V 0 —标准状况下采样体积, L 。   8、方法特性   8.1 检测下限:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,检测下限为 0.05mg/m 3 。   8.2 线性范围: 10 6 。   8.3 精密度:苯的浓度为 8.78 和 21.9μg/ml 的液体样品,重复测定的相对标准偏差 7% 和 5% 。   8.4 准确度:对苯含量为 0.5 , 21.1 和 200μg 的回收率分别为 95% , 94% 和 91% 。   附录 D   (规范性附录)   室内空气中总挥发性有机物( TVOC )的检验方法   (热解吸 / 毛细管气相色谱法)   1、方法提要   1.1 相关标准和依据   ISO 16017-1 “Indoor , ambiant and workplace air — Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — part 1 : pumped sampling”   1.2 原理   选择合适的吸附剂( Tenax GC 或 Tenax TA ),用吸附管采集一定体积的空气样品,空气流中的挥发性有机化合物保留在吸附管中。采样后,将吸附管加热,解吸挥发性有机化合物,待测样品随惰性载气进入毛细管气相色谱仪。用保留时间定性,峰高或峰面积定量。   1.3 干扰和排除   采样前处理和活化采样管和吸附剂,使干扰减到最小 选择合适的色谱柱和分析条件,本法能将多种挥发性有机物分离,使共存物干扰问题得以解决。   2、适用范围   2.1 测定范围:本法适用于浓度范围为 0.5 m g/m 3 ~100mg/m 3 之间的空气中 VOC S 的测定。   2.2 适用场所:本法适用于室内、环境和工作场所空气,也适用于评价小型或大型测试舱室内材料的释放。   3、试剂和材料   分析过程中使用的试剂应为色谱纯 如果为分析纯,需经纯化处理,保证色谱分析无杂峰。   3.1 VOC S :为了校正浓度,需用 VOC S 作为基准试剂,配成所需浓度的标准溶液或标准气体,然后采用液体外标法或气体外标法将其定量注入吸附管。   3.2 稀释溶剂:液体外标法所用的稀释溶剂应为色谱纯,在色谱流出曲线中应与待测化合物分离。   3.3 吸附剂:使用的吸附剂粒径为 0.18~0.25mm ( 60~80 目),吸附剂在装管前都应在其最高使用温度下,用惰性气流加热活化处理过夜。为了防止二次污染,吸附剂应在清洁空气中冷却至室温,储存和装管。解吸温度应低于活化温度。由制造商装好的吸附管使用前也需活化处理。   3.4 纯氮: 99.99% 。   4、仪器和设备   4.1 吸附管:是外径 6.3mm 内径 5mm 长 90mm 内壁抛光的不锈钢管,吸附管的采样入口一端有标记。吸附管可以装填一种或多种吸附剂,应使吸附层处于解吸仪的加热区。根据吸附剂的密度,吸附管中可装填 200~1000mg 的吸附剂,管的两端用不锈钢网或玻璃纤维毛堵住。如果在一支吸附管中使用多种吸附剂,吸附剂应按吸附能力增加的顺序排列,并用玻璃纤维毛隔开,吸附能力最弱的装填在吸附管的采样人口端。   4.2 注射器:可精确读出 0.1 m L 的 10 m L 液体注射器 可精确读出 0.1 m L 的 10 m L 气体注射器 可精确读出 0.01mL 的 1mL 气体注射器。   4.3 采样泵:恒流空气个体采样泵,流量范围 0.02~0.5L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。   4.4 气相色谱仪:配备氢火焰离子化检测器、质谱检测器或其他合适的检测器。   色谱柱:非极性(极性指数小于 10 )石英毛细管柱。   4.5 热解吸仪:能对吸附管进行二次热解吸,并将解吸气用惰性气体载带进入气相色谱仪。解吸温度、时间和载气流速是可调的。冷阱可将解吸样品进行浓缩。   4.6 液体外标法制备标准系列的注射装置:常规气相色谱进样口,可以在线使用也可以独立装配,保留进样口载气连线,进样口下端可与吸附管相连。   5、采样和样品保存   将吸附管与采样泵用塑料或硅橡胶管连接。个体采样时,采样管垂直安装在呼吸带 固定位置采样时,选择合适的采样位置。打开采样泵,调节流量,以保证在适当的时间内获得所需的采样体积( 1~10L )。如果总样品量超过 1mg ,采样体积应相应减少。记录采样开始和结束时的时间、采样流量、温度和大气压力。   采样后将管取下,密封管的两端或将其放入可密封的金属或玻璃管中。样品可保存 5 天。   6、分析步骤   6.1 样品的解吸和浓缩   将吸附管安装在热解吸仪上,加热,使有机蒸气从吸附剂上解吸下来,并被载气流带入冷阱,进行预浓缩,载气流的方向与采样时的方向相反。然后再以低流速快速解吸,经传输线进入毛细管气相色谱仪。传输线的温度应足够高,以防止待测成分凝结。解吸条件 ( 见表 1) 。   表 1 解吸条件   解吸温度 250 ℃ ~325 ℃   解吸时间 5~15min   解吸气流量 30~50ml/min   冷阱的制冷温度 +20 ℃ ~-180 ℃   冷阱的加热温度 250 ℃ ~350 ℃   冷阱中的吸附剂 如果使用,一般与吸附管相同, 40~100mg   载气 氦气或高纯氮气   分流比 样品管和二级冷阱之间以及二级冷阱和分析柱之间的分流比应根据空气中的浓度来选择   6.2 色谱分析条件   可选择膜厚度为 1 ~ 5 m m 50m × 0.22mm 的石英柱,固定相可以是二甲基硅氧烷或 7% 的氰基丙烷、 7% 的苯基、 86% 的甲基硅氧烷。柱操作条件为程序升温,初始温度 50 ℃保持 10min ,以 5 ℃ /min 的速率升温至 250 ℃。   6.3 标准曲线的绘制   气体外标法:用泵准确抽取 100 m g/m 3 的标准气体 100ml 、 200ml 、 400ml 、 1L 、 2L 、 4L 、 10L 通过吸附管,制备标准系列。   液体外标法:利用 4.6 的进样装置取 1~5 m l 含液体组分 100 m g/ml 和 10 m g/ml 的标准溶液注入吸附管,同时用 100ml/min 的惰性气体通过吸附管, 5min 后取下吸附管密封,制备标准系列。   用热解吸气相色谱法分析吸附管标准系列,以扣除空白后峰面积的对数为纵坐标,以待测物质量的对数为横坐标,绘制标准曲线。   6.4 样品分析   每支样品吸附管按绘制标准曲线的操作步骤(即相同的解吸和浓缩条件及色谱分析条件)进行分析,用保留时间定性,峰面积定量。   7、结果计算   7.1 将采样体积按式( 1 )换算成标准状态下的采样体积   式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。   7.2 TVOC 的计算   ( 1 )应对保留时间在正己烷和正十六烷之间所有化合物进行分析。   ( 2 )计算 TVOC ,包括色谱图中从正己烷到正十六烷之间的所有化合物。   ( 3 )根据单一的校正曲线,对尽可能多的 VOC S 定量,至少应对十个最高峰进行定量,最后与 TVOC 一起列出这些化合物的名称和浓度。   ( 4 )计算已鉴定和定量的挥发性有机化合物的浓度 S id 。   ( 5 )用甲苯的响应系数计算未鉴定的挥发性有机化合物的浓度 S un 。   ( 6 ) S id 与 S un 之和为 TVOC 的浓度或 TVOC 的值。   ( 7 )如果检测到的化合物超出了( 2 )中 VOC 定义的范围,那么这些信息应该添加到 TVOC 值中。   7.3 空气样品中待测组分的浓度按( 2 )式计算   式中 : c —空气样品中待测组分的浓度 , mg /m 3   F —样品管中组分的质量 , mg   B —空白管中组分的质量 , mg   V 0 —标准状态下的采样体积, L 。   8、方法特性   8.1 检测下限:采样量为 10L 时,检测下限为 0.5 m g/m 3 。   8.2 线性范围: 10 6 。   8.3 精密度:在吸附管上加入 10μg 的混合标准溶液, Tenax TA 的相对标准差范围为 0.4% 至 2.8% 。   8.4 准确度: 20 ℃、相对湿度为 50% 的条件下,在吸附管上加入 10mg/ml 的正己烷, Tenax TA 、 Tenax GR ( 5 次测定的平均值)的总不确定度为 8.9% 。   附录 E   (规范性附录)   室内空气中细菌总数检验方法   1、适用范围   本方法适用于室内空气细菌总数测定。   2、定义   撞击法 (impacting method) 是采用撞击式空气微生物采样器采样,通过抽气动力作用,使空气通过狭缝或小孔而产生高速气流 , 使悬浮在空气中的带菌粒子撞击到营养琼脂平板上 , 经 37 ℃、 48h 培养后 , 计算出每立方米空气中所含的细菌菌落数的采样测定方法。   3、仪器和设备   3.1 高压蒸汽灭菌器。   3.2 干热灭菌器。   3.3 恒温培养箱。   3.4 冰箱。   3.5 平皿 ( 直径 9cm) 。   3.6 制备培养基用一般设备:量筒,三角烧瓶, pH 计或精密 pH 试纸等。   3.7 撞击式空气微生物采样器。
  • 车内空气质量标准的前世今生
    最近相关报道说车内空气标准即将修订为强制性标准,难道GB/T27630-2011《乘用车内空气质量评价指南》将&ldquo 翻身农奴把歌唱&rdquo ?虽然总体来,这是好事。但作为消费者,眼瞅着GB/T27630-2011这两年的实施情况,不免担心&mdash &mdash 是否变为强制标准就能解决问题了?我看未必!下面我们来回顾下GB/T27630-2011《乘用车内空气质量评价指南》出台历程。   2004年5月下达的《关于下达〈土壤环境质量标准〉等环境保护标准制修订工作任务的函》(环办函[2004]318号)中将《车内空气污染物浓度限值及测量方法》列入2004年国家环保标准制修订计划。   2004年7月,原国家环保总局正式宣布《车内空气污染物浓度限值及测量方法》制订工作正式启动,由中国兵器装备集团公司、北京市环境保护监测中心、北京市劳动保护科学研究所、中国标准化研究院、中国兵器工业集团公司环境科技开发中心、大众汽车(中国)投资有限公司、日产(中国)投资有限公司、通用汽车(中国)投资有限公司等单位专家组成的标准编制组负责编制。   2004年9月国家标准化管理委员会将该标准列入了《国家标准制(修)订计划〈车内空气污染物浓度限值及测量方法〉》(国标委计划函[2004]58号)。本来是限量标准和检测方法合二为一的,但是标准编写组和相关专家组认为应先编写《车内空气污染物测量方法》作为环境保护行业标准,以便进一步开展大批量的数据采集工作,为国家标准《车内空气污染物浓度限值及测量方法》确定限值提供技术支持。   通过几年的调查和研究,标准编制组起草了《车内空气污染物测量方法》,后更名为《车内挥发性有机物和醛酮类物质采样测定方法》,于2007年11月29日通过原国家环保总局组织召开得标准审议会,并于2007年12月7日批准发布,标准号:HJ/T 400-2007,于2008年3月1日正式实施。时间过的很快,一晃眼过了三年了,估计很多人都忘记国家最初要制订《车内空气污染物浓度限值及测量方法》这回事了,话说这几年的调查和研究应该也够了?   HJ/T 400-2007《车内挥发性有机物和醛酮类物质采样测定方法》对挥发性有机组分(正己烷到正十六烷之间具有挥发性的有机物总称)和醛酮类化合物(甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等化合物总称)进行检测,至少可以分析超过20中有害物质。   到2008年,编写组大概拟定了8种有机物作为标准的限量物质,至于他们为什么仅仅拟定8种(配套检测方法可检测至少20种),而不是更多,我们姑且相信这是权威调查和研究的最佳结果。   2008年,环保部科技标准司发文对车内污染物数据进行征集(环科函[2008]37号&ldquo 关于开展车内空气质量状况调查的函&rdquo ),目的是为标准的制定提供实测数据参考。期间,标准编制组完成了《车内空气污染物浓度限值》征求意见稿初稿。   2008年9月,标准编制组召开会议将《车内空气污染物浓度限值》更名为《车内空气挥发性有机污染物浓度要求》,并确定为推荐性标准。2008年各大媒体也纷纷发文称&ldquo 标准&rdquo 有望在2009年3月1日实施,就在大家以为尘埃落定的时候,时间又这么慢慢的流逝了。   到2011年10月27日,环保部才正式发布&ldquo 标准&rdquo ,这次又改名为GB/T27630-2011《乘用车内空气质量评价指南》。   除了,《乘用车内空气质量评价指南》和《车内空气挥发性有机污染物浓度要求》除了适用范围少有区别之外,对污染物的限制均完全一致,为什么标准出台之后又要暂停3年才发布?是因为用这3年作为缓冲期吗?或者是遭到厂家的一致反对?   过了两年后的今天,又折腾要转为强制标准了,何不一开始就弄成强制。还有,转为强制标准就解决问题了吗?我看未必! GB/T27630-2011规定的只有8种污染物的现值,但是车内挥发的有机物估计有好几十种甚至上百种,就算拿HJ/T 400-2007检测也不只检测8种有机物。要是其他有机物危害,难道消费者就只能默默忍受了?   还有,就算GB/T27630-2011变成强制标准,但是里面的指标和限值会不会变?是变好还是变坏?中国据说被企业绑架的标准不在少数。   有人说,不管怎么样这对第三方检测机构有好处,呵呵,真的吗?大家都知道,汽车厂商都是大佬,你拿份报告,别人不见得认可。他们可能只会认可内部或指定检测机构的报告,就类似美泰为什么要他们的供应商的实验室都通过他们的认可和CNAS认可,一定程度上也是不想认可外面第三方的报告。这种情况在汽车行业已有先例,你说这个市场能暂时开放给多少第三方?   虽然,国务院法制办关于《缺陷汽车产品召回管理条例释义》&ldquo 常见的具体缺陷表现形式&rdquo 中,就包括了&ldquo 车内的苯、甲苯、甲醛等挥发性有毒有害物质影响车内人员健康&rdquo 的解释。因此,车内空气质量问题应属于缺陷产品范畴。但是,大家都知道这些有机物的检测费用对一般消费者来说是笔不小的费用,这样算下来维权成本过高,导致大部分人可能放弃维权。这个估计也是为什么今年到4月份,国家质检总局缺陷产品管理中心就收到有关车内异味或污染问题投诉/报告1564例。维权不成(成本太高),只能投诉了!   总之,车内空气质量标准的执行是一条漫漫长路,仅仅是强制标准不见得会改变现在&ldquo 一纸空文&rdquo 的局面。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制