当前位置: 仪器信息网 > 行业主题 > >

空气项目标准

仪器信息网空气项目标准专题为您提供2024年最新空气项目标准价格报价、厂家品牌的相关信息, 包括空气项目标准参数、型号等,不管是国产,还是进口品牌的空气项目标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合空气项目标准相关的耗材配件、试剂标物,还有空气项目标准相关的最新资讯、资料,以及空气项目标准相关的解决方案。

空气项目标准相关的资讯

  • 环保部:空气质量新标准仅与世界“低轨”相接
    国务院新闻办2日上午10时在国务院新闻办新闻发布厅举行新闻发布会,环境保护部副部长吴晓青介绍了环境空气质量标准等方面情况,吴晓青指出,新的《环境空气质量标准》进一步扩大了人群保护范围,增设了PM2.5平均浓度限值,但由于中国还是一个发展中国家,新标准仅仅与世界“低轨”相接。   吴晓青称,2011年12月30日,环保部常务会议审议通过新标准,2012年1月5日送交国家质检总局会签 2月29日,环境保护部和国家质检总局联合发布了《环境空气质量标准》。与这个标准配套,环境保护部同时发布了《环境空气质量指数技术规定》与《关于实施环境空气质量标准的通知》。   吴晓青强调,与现行《环境空气质量标准》相比,新的标准强调以保护人体健康为首要目标,调整了环境空气功能区分类方案,进一步扩大了人群保护范围。标准体现了调整、增设、收严、更新8个字。我们调整了污染物项目及限值,增设了PM2.5平均浓度限值和臭氧八小时平均浓度限值 收紧了PM10等污染物的浓度限值,收严了监测数据统计的有效性规定,将有效数据要求由原来的50%—75%提高至75%—90% 更新了二氧化硫、二氧化氮、臭氧、颗粒物等污染物项目的分析方法,增加了自动监测分析方法 明确了标准分期实施的规定,依据《中华人民共和国大气污染防治法》,规定不达标的大气污染防治重点城市应当依法制定并实施达标规划。   吴晓青评价说,总体上看,新的《环境空气质量标准》中污染物控制项目实现了与国际接轨,但由于我国还是一个发展中国家,经济技术发展水平决定了 PM10、PM2.5等污染物的限值目前仅能与发展中国家空气质量标准普遍采用的世卫组织第一阶段目标值接轨。从这个意义上说,新标准仅仅与世界“低轨” 相接,要正确实现与WHO提出的指导值接轨,我们国家还将有更长的路要走。   关于《环境空气质量指数技术规定》,吴晓青提出,针对现行空气污染指数评价结果与人民群众客观感受不一致问题,新发布的技术规定进一步强调了服务于公众健康的指引作用,增加了参与评价的污染物项目,调整了分级分类表述方式,完善了监测数据和空气质量指数发布方式,通过每一整点时刻发布各监测点位的主要污染物浓度和环境空气质量指数(AQI)以及相应的空气质量评价结果,为公众了解环境质量、合理安排生活与出行提供参考。
  • 《大气中国》发布:我国空气质量改善已提前实现2025年目标
    “对比欧美和亚洲其他典型国家的多个指标,中国已成为全球空气质量改善最快的国家,这得益于中国空气质量标准修订和排放标准提升等一系列关键措施。”在近日举行的2022中国蓝天观察论坛上,亚洲清洁空气中心中国区项目总监万薇介绍说。在论坛上,亚洲清洁空气中心发布了最新报告《大气中国2022:中国大气污染防治进程》及其特别篇《十年清洁空气之路,中国与世界同行》(以下简称报告)。报告显示,过去一年我国339个地级及以上城市平均优良天数比例达87.5%,已提前实现2025年目标。但是随着经济发展,我国也全面迈向“减污降碳、协同增效”的新征程。中国工程院院士、清华大学环境学院教授贺克斌在论坛上指出,我国要实现碳达峰碳中和,仍需要付出艰苦努力。十年交出空气质量优秀答卷2012年,我国修订并发布了《环境空气质量标准(GB3095-2012)》,开启了大气污染防治的“黄金十年”。报告显示,2013年至2021年,中国整体PM2.5年均浓度下降约56%,同时中国国内生产总值(GDP)保持了平均6.6%的高增长率, 是发展中经济体平均增长速率的近两倍。万薇认为,过去10年间,中国人均GDP突破了一万美元大关,实现“拐点”跨越,进入经济发展与环境质量改善“双赢”的状态。报告横向对比了全球20个国家在清洁空气与气候变化领域的进展与成绩,结果显示中国不仅已成世界上空气质量改善最快的国家,且多项排放控制标准已处于世界先进水平,从“跟跑”转变为“领跑”;同时,通过能源与产业结构调整、节能增效等方式,中国在过去十年间碳排放强度下降了34.4%;其中新能源车行业的发展尤其亮眼,是目前全球汽车新车销量和保有量最大的国家,占全球新能源乘用车市场一半的份额。贺克斌在会上指出,目前中国正全面迈向“减污降碳、协同增效”的新征程,任重而道远。伴随经济发展,中国的温室气体排放总量还会持续上升。我国要实现“双碳”目标,需要付出艰苦努力,才能继续书写中国传奇。全国城市空气质量持续向好《大气中国2022》显示,2021年全国空气质量达标城市数量增至218个,同比增加了16个城市;339个地级及以上城市的平均优良天数比例上升至87.5%,提前实现了《关于深入打好污染防治攻坚战的意见》中提出的2025年空气优良天数目标。168个重点城市的六项标准污染物更是首次实现整体年评价浓度全部达标。万薇表示:“得益于一系列政策的出台,进入‘十四五’,我国在‘双碳’目标引领下,推动源头治理,减少重点领域的大气污染物和温室气体排放,在结构调整和优化方面政策力度大,协同控制成效初显。”“2022中国蓝天百强城市榜”在论坛上发布,北京摘得综合评分排名桂冠,鹤壁依然垫底但分数高于去年。在城市空气质量改善榜上,拉萨、吕梁、肇庆荣登三甲;而在城市政策措施榜上,得分追得很紧,北京、杭州、深圳位列前三。万薇指出,在城市政策措施榜上,一线城市排名靠前,这些城市大多采取了领先于大部分城市的做法,比如全面的减排措施、领先的科学决策基础和治理方案等。这是亚洲清洁空气中心连续第4年发布该榜单。中国蓝天百强城市榜评估了168个重点城市的PM2.5年均浓度和达标天数的三年滑动平均改善情况和政策措施,分别得到“成效分”和“努力分”,加总得到“综合评分”,并依据评分进行城市排名,旨在鼓励城市加大措施力度,不断改善空气质量。全力奔赴减污降碳新征程空气污染治理在深水区前行,与此同时,中国正在向 “双碳”目标进发,摆在面前的将是更为严峻的挑战。围绕减污降碳、持续提升空气质量这一目标,与会专家给出了自己的建议。万薇指出,当前我国开展PM2.5监测的城市年均浓度平均值已经低于标准限值要求。“过去十年,中国空气质量标准发挥了积极引领作用,继续提标可以进一步保护公众健康。”北京大学环境科学与工程学院教授张世秋表示,过去十年,中国空气质量改善带来的效益是治理成本的1.5倍甚至5-10倍;未来,中国持续改善空气质量依然会带来巨大的效益。最新研究显示,如果在2020年水平的基础上持续改善空气质量,使之达到世界卫生组织提出的更严格的空气质量管理目标、甚至是指导值,所带来的健康效益大约可占GDP的1%-4%,高于直接治理成本。中国电力企业联合会专家委员会副主任委员王志轩对能源行业的低碳转型提出了建议,他认为,能源的高质量发展需要煤电和可再生能源合力推动,而煤电需要兼顾低碳转型和稳定供给。当前,在严格限制新建煤电项目的同时,还要发挥好现役煤电机组的“托底保供和灵活调节”作用。在交通运输领域,中重卡的减污降碳仍面临较大挑战。清华大学环境学院教授吴烨建议,一方面要研究出台更严格的新车排放标准和碳排放法规,加强在用车实际道路的排放和油耗监管;另一方面要积极推动新能源中重卡的规模化应用,从完善法规政策、加快基础设施布局、优化应用模式、建立绿色物流区等方面共同发力。
  • 实现“双碳”目标,计量和标准能做什么
    日前,市场监管总局、国家发改委、工信部、自然资源部、生态环境部、住建部、交通运输部、中国气象局、国家林草局等九部门联合发布《建立健全碳达峰碳中和标准计量体系实施方案》(以下简称《方案》),对推动碳达峰碳中和领域标准、计量工作作出全面部署。《方案》提出,到2025年,“双碳”标准计量体系基本建立;到2060年,“双碳”标准计量体系全面建成,服务经济社会发展全面绿色转型,有力支撑碳中和目标实现。计量被称为工业的“眼睛”,通过精密测量,“盯”住生产的每个环节。标准是一把把“尺子”,为生产生活行为提供规范和引领。“充分发挥计量、标准的约束引领和标尺衡量作用,有利于带动重点领域工艺流程、技术装备升级换代,以及高耗能产品淘汰、能效标识、节能产品认证等制度的实施,对实现经济社会绿色低碳转型具有重要意义。”国家节能中心副主任史作廷说。宏观“碳核算”向精准“碳计量”转变要实现“双碳”目标,首先得摸清楚产生和排放了多少碳。知道了各个环节产生的碳排放数据,才能有针对性地找出潜在的减排环节和方式,实现减排。摸清碳排放,这就是碳排放统计核算。“碳排放统计核算为‘双碳’工作提供全面、科学、可靠的数据支撑,是制定政策、推动工作、开展考核、谈判履约的重要依据。”史作廷强调。目前,国内外广泛使用的碳核算方法主要为排放因子法。用排放源的数量,乘以该排放源的排放因子,就可以估算出碳排放总量。不过,这种基于计算的统计方法得出的是理论上的碳排放数据,与实际排放之间会出现误差。比如,不同企业在不同地域燃料单位热值含碳量不同,燃料燃烧充分度也存在差异,使用同样的排放因子进行核算,会导致结果精准度较低。“近年来,一些国家和地区开始重视碳数据的准确性,逐步采用直接测量和间接核算相结合的方法。”中国计量科学研究院院长方向告诉记者,例如,欧盟为大型火电厂和部分小型机组装备二氧化碳浓度测量装置和烟气流量计,对温室气体进行直接测定。不依赖计算,直接监测和测量,这就是计量。方向指出,计量技术直接用于碳排放测量,而且采用国际互认、一致的测量标准和测量方法,既可以保障碳排放数据的准确性和可靠性,也有利于我们的碳排放数据被国际认可。《方案》坚持“科技驱动,技术引领”的原则,全面布局计量技术体系建设。“就是要通过先进碳测量技术支撑我国碳市场和国家碳排放清单数据质量,推动由宏观‘碳核算’向精准‘碳计量’的转变,达到‘报告的1吨就是排放的1吨’的国际要求,实现国际互认。”方向解释。史作廷指出,科学准确计量生产生活活动所产生的碳排放,可以实现温室气体排放“可测量、可报告、可核查”目标,有利于完善碳排放核算机制,对推动构建统一规范的碳排放统计核算体系具有重要意义。攻克关键共性测量技术难题既然直接测量碳排放量,那么,计量技术的水平很关键。测得越准,碳排放数据才能越精准,基于这些数据的“双碳”决策和工作才能越科学有效。“因此,《方案》提出开展碳计量方法学、碳排放量在线监测、碳排放测量不确定度评定方法等关键计量技术研究,攻克关键共性测量难题。”方向介绍说,绿色低碳关键共性计量技术在各个行业领域广泛应用,能够解决节能减排的关键共性问题,是实现“双碳”目标的“公约数”。解决共性关键计量技术问题的同时,前沿基础研究也不能放松。《方案》提出,加强基础前沿计量技术研究。如,加强量子传感技术和碳计量技术研究,建立健全碳计量基准、计量标准和标准物质体系;开展碳计量核心器件和高精度仪器研制;加强碳计量标准物质研制。“这些将为实现‘双碳’目标提供硬件支撑。”方向说,有了计量基准、标准物质和测量仪器等,可以建立健全“碳计量”溯源体系。完善的量值传递溯源体系,是确保测量器具溯源性、测量过程有效性、测量数据准确一致性的基础。此外,根据《方案》,还将加强煤炭、石油、天然气、电力、钢铁、有色金属、石化化工、交通运输、城乡建设、农业农村、林业草原等重点行业领域碳计量技术研究。开展重点行业和领域用能设施及系统碳排放计量测试方法研究和碳排放连续在线监测计量技术研究,提升碳排放和碳监测数据准确性和一致性。“将计量技术创新融入产业低碳转型进程中,将为我国实现‘双碳’目标注入长久的动力。”方向认为,提升碳排放和监测数据准确性与一致性,可以维护碳排放交易市场的公平性和稳定性,为产业低碳转型注入有效新动能。“双碳”标准将实现重点领域全覆盖计量使碳排放的监测更为精准,但要减少碳排放,还需要标准的助推。“强制性节能标准是严格控制高耗能、高排放项目盲目扩张,依法依规淘汰落后产能,加快化解过剩产能的重要技术依据。”中国标准化研究院院长宿忠民介绍,“十三五”期间,我国发布强制性能耗限额标准16项,实现年节能量7700万吨标准煤,相当于减排二氧化碳1.48亿吨。近年来,我国在节能、碳排放管理、非化石能源利用、化石能源清洁高效低碳利用等领域标准化工作取得突出成效。“但与‘双碳’工作的迫切需求相比,标准体系的全面性、协调性、先进性都有待提升,标准与政策衔接、标准有效实施机制、标准国际化水平等还存在不足。”宿忠民坦言。《方案》提出构建多维度、多领域、多层级的“双碳”标准体系,包括碳排放基础通用标准、碳减排标准、碳清除标准、碳市场标准等四个方面。“实现标准对‘双碳’工作重点领域的全面覆盖。”宿忠民说,这些标准将广泛用于能源、工业、城乡建设、交通、农业、林草、金融、商务、公共机构等领域,而且兼顾地区、园区、企业、产品等不同层次标准化对象的特点,协同布局政府颁布标准与市场自主制定标准,实现各层次各类型标准的协调配合。除了规范行为,标准的另一个作用是引领发展。先进的标准,可以带动整个行业的升级。宿忠民解释,标准在推动新能源、可再生能源、碳清除技术等创新技术迭代升级、构建产业链等方面发挥着重要作用,是创新技术推广应用的“通行证”。《方案》提出,加快生态系统固碳和增汇、碳捕集利用与封存、直接空气碳捕集等碳清除技术标准的研制。市场监管总局有关负责人介绍,这些碳清除技术是实现碳中和目标所必需的,但目前技术和标准还存在较多空白,因此要通过技术创新和标准制定协同推进,尽快补齐短板。此外,《方案》还提出开展低碳前沿技术标准引领行动,2025年前完成30项前沿低碳技术标准的制定。宿忠民认为,这种标准先行的做法,将为实现“双碳”目标提供创新引领,带动绿色低碳技术创新突破和推广应用。
  • 环保部正式发布新版《环境空气质量标准》
    关于发布国家环境质量标准《环境空气质量标准》的公告   为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,防治大气污染,现批准《环境空气质量标准》为国家环境质量标准,并由我部与国家质量监督检验检疫总局联合发布。   标准名称、编号如下:   环境空气质量标准(GB 3095-2012)   按有关法律规定,本标准具有强制执行的效力。   本标准自2016年1月1日起在全国实施。   在全国实施本标准之前,国务院环境保护行政主管部门可根据《关于推进大气污染联防联控工作改善区域空气质量的指导意见》(国办发〔2010〕33号)等文件要求指定部分地区提前实施本标准,具体实施方案(包括地域范围、时间等)另行公告,各省级人民政府也可根据实际情况和当地环境保护的需要提前实施本标准。   本标准由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自本标准实施之日起,《环境空气质量标准》(GB3095-1996)、《〈环境空气质量标准〉(GB3095-1996)修改单》(环发〔2000〕1号)和《保护农作物的大气污染物最高允许浓度》(GB 9137-88)废止。   特此公告。   (此公告业经国家质量监督检验检疫总局陈钢会签)   附件:GB 3095-2012 环境空气质量标准.pdf   二○一二年二月二十九日   相关文件:   关于实施《环境空气质量标准》(GB3095-2012)的通知   各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局,解放军环境保护局,辽河保护区管理局,各计划单列市、副省级城市环境保护局,各派出机构、直属单位:   为贯彻落实第七次全国环境保护大会和2012年全国环境保护工作会议精神,加快推进我国大气污染治理,切实保障人民群众身体健康,我部批准发布了《环境空气质量标准》(GB 3095-2012)。现就分期实施该标准通知如下:   一、充分认识实施《环境空气质量标准》的重要意义   实施《环境空气质量标准》是新时期加强大气环境治理的客观需求。随着我国经济社会的快速发展,以煤炭为主的能源消耗大幅攀升,机动车保有量急剧增加,经济发达地区氮氧化物(NOx)和挥发性有机物(VOCs)排放量显著增长,臭氧(O3)和细颗粒物(PM2.5)污染加剧,在可吸入颗粒物(PM10)和总悬浮颗粒物(TSP)污染还未全面解决的情况下,京津冀、长江三角洲、珠江三角洲等区域PM2.5和O3污染加重,灰霾现象频繁发生,能见度降低,迫切需要实施新的《环境空气质量标准》,增加污染物监测项目,加严部分污染物限值,以客观反映我国环境空气质量状况,推动大气污染防治。   实施《环境空气质量标准》是完善环境质量评价体系的重要内容。健全环境质量评价体系,建立科学合理的环境评价指标,使评价结果与人民群众切身感受相一致,逐步与国际标准接轨,是探索环保新道路的重要任务。实施《环境空气质量标准》是落实《国务院关于加强环境保护重点工作的意见》、《关于推进大气污染联防联控工作改善区域空气质量的指导意见》以及《重金属污染综合防治“十二五”规划》中关于完善空气质量标准及其评价体系,加强大气污染治理,改善环境空气质量的工作要求。   实施《环境空气质量标准》是满足公众需求和提高政府公信力的必然要求。与新标准同步实施的《环境空气质量指数(AQI)技术规定(试行)》增加了环境质量评价的污染物因子,可以更好地表征我国环境空气质量状况,反映当前复合型大气污染形势 调整了指数分级分类表述方式,完善了空气质量指数发布方式,有利于提高环境空气质量评价工作的科学水平,更好地为公众提供健康指引,努力消除公众主观感观与监测评价结果不完全一致的现象。   二、分期实施新修订的《环境空气质量标准》   我国不同地区的空气污染特征、经济发展水平和环境管理要求差异较大,新增指标监测需要开展仪器设备安装、数据质量控制、专业人员培训等一系列准备工作。为确保各地有仪器、有人员、有资金,做到测得出、测得准、说得清,确保按期实施新修订的《环境空气质量标准》,现提出如下要求:   (一)分期实施新标准的时间要求   2012年,京津冀、长三角、珠三角等重点区域以及直辖市和省会城市   2013年,113个环境保护重点城市和国家环保模范城市   2015年,所有地级以上城市   2016年1月1日,全国实施新标准。   (二)鼓励各省、自治区、直辖市人民政府根据实际情况和当地环境保护的需要,在上述规定的时间要求之前实施新标准。   (三)经济技术基础较好且复合型大气污染比较突出的地区,如京津冀、长三角、珠三角等重点区域,要做到率先实施环境空气质量新标准,率先使监测结果与人民群众感受相一致,率先争取早日和国际接轨。   三、大力推进大气污染防治,不断改善环境空气质量   当前,我国大气污染形势十分严峻,突出表现在大气污染物排放量大、大气环境污染物浓度高、区域性大气复合型污染严重。实施环境空气质量标准、开展监测和公布数据只是解决大气环境问题的第一步,必须大力推进大气污染防治,采取切实措施改善空气质量。近期,环保部门应积极联合有关部门,重点做好以下工作:   (一)开展科学研究,制定达标规划。在抓紧开展监测与信息发布的基础上,组织力量尽快开展达标减排相关科研,摸清规律,明确排放清单和控制对策,针对空气质量改善途径和阶段目标以及相应的控制工程技术进行科学、系统、深入地研究,探索建立辖区大气环境质量预报系统、逐步形成风险信息研判和预警能力,进一步增强大气污染防治科技支撑。未达到环境空气质量标准的大气污染防治重点城市,要制定达标规划报上级部门批准实施。   (二)提高环境准入门槛。严把新建项目准入关,严格控制“两高一资”项目和产能过剩行业的过快增长及产品出口。加强区域产业发展规划环境影响评价,严格控制钢铁、水泥、平板玻璃、传统煤化工、多晶硅、电解铝、造船等产能过剩行业扩大产能项目建设。   (三)深入开展重点区域大气污染联防联控。在京津冀、长三角、珠三角等重点区域实施大气污染防治规划,加大产业调整力度,加快淘汰落后产能。积极推广清洁能源,开展煤炭消费总量控制试点。实施多污染物协同控制,制定并实施更加严格的火电、钢铁、石化等重点行业大气污染物排放限值,大力削减二氧化硫、氮氧化物、颗粒物和挥发性有机物排放总量。   (四)切实加强机动车污染防治。采取激励与约束并举的经济调节手段,加快推进车用燃油品质与机动车排放标准实施进度同步,提升车用燃油清洁化水平。全面落实第四阶段机动车排放标准,鼓励重点地区提前实施第五阶段排放标准。全面推行机动车环保标志管理,加快淘汰“黄标车”,到2015年基本淘汰2005年以前注册运营的“黄标车”。加强机动车环保监管能力建设,强化在用车环保检验机构监管,全面提高机动车排放控制水平。   (五)建立健全极端不利气象条件下大气污染监测报告和预警体系。地级以上城市环保部门要按照《环境空气质量指数(AQI)技术规定(试行)》开展环境空气监测结果日报和实时报工作,为公众提供健康指引,引导当地居民合理安排出行和生活。结合当地实际情况,研究制定大气污染防治预警应急预案、构建区域应急体系,出现重污染天气时及时启动应急机制,实行重点排放源限产限排、建筑工地停止土方作业、机动车限行等应急措施,向公众提出防护措施建议。   各地应尽快做好实施新标准的相关准备工作,按期实施,并将实施情况及时报告我部。   二○一二年二月二十九日
  • 政策解读:建设双碳标准体系 实现双碳既定目标
    近日,作为碳达峰碳中和“1+N”政策体系的重要组成部分,市场监管总局联合相关部门印发了《建立健全碳达峰碳中和标准计量体系实施方案》(以下简称《方案》),提出了构建双碳标准体系的工作要求,以双碳工作对标准的全方位需求为导向,为构建全覆盖、多维度、多层次的双碳标准体系提供了“路线图”。   一、标准体系建设是双碳工作的重要基础   标准作为国家基础性制度的重要方面,在实现碳达峰碳中和目标过程中发挥着基础性、引领性作用。加快健全双碳标准体系,既是双碳工作的迫切需要,也是落实《国家标准化发展纲要》,完善重点领域绿色发展标准化保障,实现标准化生态效益的具体任务。   标准为实现双碳目标提供重要支撑。强制性节能标准是严格控制高耗能、高排放项目盲目扩张,依法依规淘汰落后产能,加快化解过剩产能的重要技术依据。我国现有强制性能耗限额标准112项,强制性能效标准75项,有力支撑了节能降碳减污工作。“十三五”期间,我国发布强制性能耗限额标准16项,实现年节能量7700万吨标准煤,相当于减排二氧化碳1.48亿吨。   标准为实现双碳目标提供创新引领。标准在推动新能源、可再生能源、负碳技术等创新技术迭代升级、构建产业链等方面发挥着重要作用,是创新技术推广应用的“通行证”。以氢能产业为例,中国已制定加氢站技术、设计、安全等系列标准,为加氢站建设运营提供重要技术依据。目前,国内已依据相关标准建设和运营170余座加氢站,成为全球投入运营加氢站数量最多的国家之一。   标准为实现双碳目标提供国际协调的规则。标准是世界“通用语言”,是全球治理体系和经贸合作发展的重要技术基础,也是应对气候变化的技术规则。国际标准化组织发布《伦敦宣言》,承诺以国际标准更好支撑《巴黎协定》、联合国可持续发展目标和“联合国气候适应和韧性行动呼吁”等的实施。《欧盟绿色协定》明确提出,欧盟将利用其经济地位塑造国际标准,以实现环境和气候雄心。   近年来,我国在节能、碳排放管理、非化石能源利用、化石能源清洁高效低碳利用等领域标准化工作取得了突出成效,并在特高压输变电、智能电网、风电、光伏等方面实现国际标准引领。但与碳达峰碳中和工作的迫切需求相比,“双碳”标准体系的全面性、协调性、先进性都有待提升,标准与政策衔接、标准有效实施机制、标准国际化水平等还存在不足。《方案》坚持问题导向、目标导向,夯实双碳基础共性标准,结合能效提升、传统能源清洁化、新能源和可再生能源利用、负碳技术推广等碳达峰碳中和的主要技术路径,系统布局碳减排和碳清除标准制修订任务,以标准为双碳市场化机制提供规则、指引,强化标准实施应用。   二、双碳标准体系全面覆盖未来双碳工作重点领域   《方案》充分考虑相关政策、技术和市场化机制的标准需求,提出了包含基础共性、碳减排、碳清除、碳市场等四个子体系的双碳标准体系框架,实现标准对双碳工作重点领域全面覆盖。标准体系支撑能源、工业、城乡建设、交通、农业、林草、金融、商务、公共机构等重点行业和部门推进工作,构建了多维立体的标准体系架构。标准体系兼顾地区、园区、企业、产品等不同层次标准化对象的特点,协同布局政府颁布标准与市场自主制定标准,实现各层次各类型标准的协调配合。   《方案》中的基础共性标准子体系,主要包括术语、分类、碳信息披露等基础性标准,碳监测、核算方法与核查程序以及低碳评价等标准,为各行业双碳工作提供统一协调的标准支撑。   《方案》中的碳减排标准子体系主要包括节能降碳、非化石能源推广利用、化石能源清洁低碳利用、生产和服务过程温室气体减排、资源循环利用等5个部分。碳减排标准为能源、工业、城乡建设、交通运输、农业农村、公共机构、居民生活等重点领域节能降碳提供规范和引领,以标准引领产业低碳转型,促进形成绿色低碳生活方式。   《方案》中的碳清除标准子体系重点包括碳汇、碳捕集利用与封存(CCUS)、直接空气碳捕集(DAC)等3个部分。碳清除领域标准不仅为CCUS、DAC等前沿技术的推广使用提供标准支持,还为各领域的生态固碳提供技术指导,以标准先行带动碳中和前沿技术创新和推广应用。   《方案》中的市场化机制标准子体系主要包括绿色金融、碳排放交易、生态产品价值实现等3个部分。绿色金融产品、信用评级评估、统计共享、风险管理等绿色金融标准是绿色金融体系的重要支柱之一。碳交易程序、碳排放配额、信息披露、自愿减排交易等标准为各类碳排放交易市场提供技术规则。生态产品调查监测、确权、评估、核算、交易等标准为生态产品价值实现提供技术保障。这些标准将在双碳市场化机制持续健康发展中发挥规则和指引作用。   三、实施四项行动加快双碳标准体系建设   面对当前双碳工作对标准的迫切需求,《方案》提出实施四项重点行动,以加快重点领域标准体系建设进程。   一是开展双碳标准强基行动。加快完善碳排放监测、数据管理、核算、核查、报告与评估、碳中和、信息披露、碳排放管理体系等碳达峰急需的基础通用标准,2023年前完成30项国家标准制修订。通过集中申报、集中立项,急需标准随时立项等有效措施,提速基础标准制定进程。结合区域协调发展战略的实施,推动在京津冀、长江经济带、粤港澳大湾区、黄河流域生态保护和高质量发展先行区及重点生态环境保护和自然保护区等地区建立区域协同的标准实施机制,满足不同地区对实施双碳基础标准的特色需求。   二是开展百项节能降碳标准提升行动。在用能产品和设备领域,加大制冷产品、工业设备、农业机械、信息通信设备等用能产品强制性能效标准及测量检测评估标准的制修订工作;在工业领域,结合节能低碳等技术的发展趋势,加快钢铁、化工、有色、建材、煤炭等重点行业能耗限额标准水平提升,形成更加先进的标准;在交通领域,推进车辆燃油经济性及电动车能效等标准制修订。同时加速完善与强制性标准配套的推荐性节能标准的制修订工作,有效支撑能效能耗标准实施。。《方案》明确提出2025年前完成100项能效能耗标准及配套标准的制修订工作。在扩大标准覆盖面的同时,更加重视现有标准的更新升级和推荐性标准的衔接配套。推动能效“领跑者”和企标“领跑者”工作,为制定国际领跑的节能降碳标准奠定基础。加快建立能效能耗标准实施监测统计系统,加强标准实施与宣贯培训,鼓励重点区域提前实施更高的能耗限额标准,提升节能降碳标准的实施效果。   三是开展低碳前沿技术标准引领行动,2025年前完成30项减碳负碳等前沿低碳技术标准的制定。布局若干双碳领域重点研发计划项目,推动技术研发与标准研制协同布局。通过开展双碳领域国家级标准验证点建设,提高标准的有效性。推动双碳领域国家技术标准创新基地创建,培育技术、标准、产业联动的创新机制。优化标准供给二元结构,体现政府颁布标准与市场自主制定标准的协调协同。发挥团体标准的灵活性和及时性优势,积极引导社会团体制定原创性、高质量生态碳汇、碳捕集利用与封存等碳清除前沿技术、绿色低碳技术相关标准,以标准先行带动绿色低碳技术创新突破和推广应用。   四是开展绿色低碳标准国际合作行动,联合更多相关方,扩大合作渠道,培育绿色低碳国际标准专家队伍,积极争取承担国际标准化组织绿色低碳领域相关技术机构秘书处和领导职务,加大节能、新能源、碳排放、碳汇、碳捕集利用与封存等领域国际标准的实质性参与力度。更加重视绿色低碳标准成果的国际转化和自主创新技术的国际标准突破,2025年前提交30项绿色低碳生态国际标准提案,提升我国对国际双碳标准的贡献力。推进节能低碳国家标准及其外文版同步立项、同步制定、同步发布,提升我国标准的国际影响力。   四、进一步夯实双碳标准体系建设基础   在推进双碳标准体系建设过程中,面对标准研究基础相对薄弱、人才队伍相对不足、国际形势复杂动荡等多种挑战,《方案》提出应加大技术研究、人才培养和国际协调等工作保障力度,夯实双碳标准体系建设基础。一是更加重视双碳标准的技术研究,集中力量支持双碳基础通用标准相关技术方法研究、数据平台建设和应用工具开发,为双碳标准体系奠定坚实的科研基础。二是加快双碳标准化人才培养,主动培养具有国际视野和创新理念的应用型、复合型双碳标准化专家队伍,加大宣传培训力度,提升各相关方运用双碳标准的技术能力。三是坚持开放包容的态度建设国际国内协调的双碳标准体系,推动碳核算、碳足迹、碳中和等先进适用国际标准在我国转化应用,支持绿色低碳前沿技术等国内标准的国际转化,积极分享我在气候变化、绿色金融等方面的双碳标准化经验,提升我国可持续发展的能力。
  • 关于第十批国家农业标准化示范区目标 考核合格项目名单的公示
    按照《国家标准化管理委员会关于做好2022年农业农村标准化试点示范项目考核评估工作的通知》(国标委发〔2022〕34号)要求,依据《国家农业标准化示范区管理办法(试行)》,国家标准化管理委员会组织各省(区、市)市场监管局(厅、委)和有关部门,开展了第十批国家农业标准示范区项目的目标考核工作,经考核评估,确定“国家生态节约型宿根植物生产标准化示范区”等105个目标考核合格项目,现将考核合格名单进行公示。如有异议,请在公示期内以书面形式进行反馈,以单位名义提出异议的应加盖单位公章,以个人名义提出异议的应签字并提供有效联系方式。逾期或不符合要求的异议不予受理。公 示 期:2023年4月13日—5月8日联系电话:010-82261652、82262964附件第十批国家农业标准化示范区目标考核合格项目表地方/部门项目编号项目名称项目承担单位项目参加单位北京(4)SFQ10-1国家生态节约型宿根植物生产标准化示范区北京花乡花木集团有限公司北京市园林绿化局、北京市丰台区市场监督管理局、北京市丰台区花乡人民政府、北京花乡花卉科技研究所有限公司、北京草桥杨镇花木种植基地有限公司SFQ10-2国家蔬菜产业链质量控制标准化示范区北京天安农业发展有限公司北京市农业农村局、北京市怀柔区市场监督管理局、北京市怀柔区农业农村局SFQ10-79国家高效乳肉兼用牛良种繁育标准化示范区北京市北务广峰养殖场北京市顺义区农业农村局、北京市顺义区市场监督管理局 SFQ10-80国家一年两熟葡萄栽培标准化示范区北京市延庆区延庆镇人民政府、中国航空综合技术研究所北京金粟种植专业合作社、北京市延庆区市场监督管理局、北京市延庆区农业农村局 天津(2)SFQ10-3国家桃果生产与繁育综合标准化示范区天津昽森家庭农场有限公司天津市农业质量标准与检测技术研究所SFQ10-4国家小站稻栽培标准化示范区天津市农业发展服务中心天津市优质农产品开发示范中心河北(2)SFQ10-6国家有机蔬菜种植标准化示范区河北和平农业技术开发有限公司-SFQ10-81国家红梨产业标准化示范区河北鑫鼎农业科技有限公司-山西(3)SFQ10-7国家生猪育种创新标准化示范区山西凯永养殖有限公司高平市市场监督管理局、高平市畜牧兽医局SFQ10-8国家辣椒种植标准化示范区屯留县源达农资有限公司长治市屯留区市场监督管理局、长治市屯留区农业农村局SFQ10-82国家有机旱作羊肥小米产业发展标准化示范区山西太行沃土农业产品有限公司武乡县农业农村局内蒙古(3)SFQ10-9国家高寒水稻种植标准化示范区阿荣旗伟涛水稻产销专业合作社兴安盟隆华农业科技有限公司、内蒙古自治区生物技术研究院、呼伦贝尔劳模英才科技服务中心、阿荣旗农业技术推广中心SFQ10-10国家西门塔尔优质肉牛养殖标准化示范区内蒙古沃金农业有限公司阿鲁科尔沁旗农牧局SFQ10-11国家蒙中药材种植标准化示范区奈曼旗人民政府、奈曼旗国安农业开发有限公司通辽市蒙中药产业发展研究中心、奈曼旗占布拉道尔吉蒙中药材研究发展管理中心、内蒙古民族大学、奈曼旗市场监督管理局、奈曼旗教育科技体育局辽宁(3)SFQ10-12国家软枣猕猴桃种植标准化示范区辽宁玉泉圣果种植业有限公司沈阳东方奇异莓休闲农业有限公司、辽宁聚缘生物科技有限公司、岫岩满族自治县市场监督管理局SFQ10-13国家智慧集约蛋鸡养殖标准化示范区新民市公主屯镇人民政府、中国航空综合技术研究所辽宁众盟禽业有限公司、新民市市场监督管理局SFQ10-83国家大榛子种植标准化示范区桓仁富农果业专业合作社、桓仁众诚生态农业有限公司桓仁县人民政府、桓仁县重点产业发展服务中心、五里甸子镇人民政府吉林(5)SFQ10-14国家智慧农业综合标准化示范区长春农业博览园长春现代农业示范中心有限责任公司SFQ10-15国家水稻种植与加工标准化示范区吉林好雨现代农业股份有限公司镇赉县市场监督管理局SFQ10-16国家有机蓝莓种植标准化示范区通化禾韵现代农业股份有限公司通化县市场监督管理局SFQ10-84国家农业标准化示范市(梅河口)吉林省梅河口市人民政府梅河口市市场监督管理局、梅河口市农业局、梅河口市九星米业有限责任公司、梅河口市福海水稻种植专业合作社SFQ10-85国家林下灵芝种植标准化示范区延边大阳参业有限公司吉林省和龙市人民政府、吉林省延边州农业农村局、吉林省和龙市市场监督管理局、吉林省和龙市农业农村局黑龙江(2)SFQ10-17国家大榛子产业标准化示范县通河县人民政府、通河县佳隆大果榛子农民专业合作社通河县市场监督管理局、通河县林业和草原局SFQ10-18国家刺嫩芽、刺五加栽培和管护标准化示范区黑龙江省林口林业局有限公司林口县市场监督管理局上海(3)SFQ10-19国家鱼类绿色生态综合标准化示范区上海品兴农家乐专业合作社上海市奉贤区市场监督管理局、上海市奉贤区农业农村委员会SFQ10-86国家红掌花栽培标准化示范区上海瀛庙果蔬专业合作社上海市崇明区农业农村委员会、上海市崇明区市场监督管理局SFQ10-87国家种养结合生态农业标准化示范项目上海松林食品(集团)有限公司-江苏(5)SFQ10-20国家蛋鸡全产业链标准化示范区江苏天成科技集团有限公司南通天成现代农业科技有限公司、江苏天成蛋业有限公司SFQ10-21 国家青花菜种植标准化示范区盐城万洋食品集团有限公司响水县昌盛蔬菜专业合作社、响水县村嫂家庭农场SFQ10-88国家农产品品质智能控制标准化示范区江苏省农业科学院江阴市农业农村局、江苏华西都市农业科技发展有限公司SFQ10-89国家稻虾共生标准化示范区盱眙县人民政府江苏省盱眙龙虾协会SFQ10-90国家芦笋设施栽培标准化示范区涟水县人民政府涟水县市场监管局、淮阴工学院、涟水县红窑镇延寿芦笋种植专业合作社、淮安市标准计量情报所浙江(2)SFQ10-22国家“中黄1号”茶产业标准化示范区天台县市场监督管理局、浙江天台九遮茶业有限公司天台县特产技术推广站SFQ10-91国家中蜂“三产融合+精准帮扶”标准化示范区泰顺县百花蜜蜂专业合作社泰顺县市场监管局、泰顺县农业农村局安徽(3)SFQ10-23国家祁门红茶生产标准化示范区安徽省祁门红茶发展有限公司-SFQ10-24国家特色食用菌一二三产融合发展标准化示范区芜湖野树林生物科技有限公司-SFQ10-25国家种鸭养殖标准化示范区安徽强英鸭业集团有限公司-福建(4)SFQ10-26国家生态樱花茶园产业融合标准化示范区福建漳平台品茶业有限公司-SFQ10-27国家高山茶种植标准化示范区南靖县高竹金观音茶叶专业合作社南靖县高竹金观音茶叶专业合作社、南靖县市场监督管理局、漳州市市场监督管理局SFQ10-92国家种猪繁育标准化示范区福建永诚农牧科技集团有限公司福清市市场监督管理局SFQ10-93国家百香果种苗繁育标准化示范区福建省龙岩市福果时代农业科技有限公司-江西(2)SFQ10-28国家贝贝小南瓜种植标准化示范区会昌县人民政府、江西华中标准化事务所会昌县市场监督管理局、会昌县农业农村局、会昌县宏源果蔬农业发展有限公司SFQ10-29国家竹荪种植标准化示范区宜黄县人民政府、江西华中标准化事务所宜黄县市场监督管理局、宜黄县农业农村局、宜黄县富民食用菌种植专业合作社山东(5)SFQ10-30国家有机蔬菜良好农业规范标准化示范区山东省泰安市泰山区人民政府、泰安市有机食品协会、泰安泰山亚细亚食品有限公司等泰安市泰山区市场监督管理局、泰安市泰山区农业农村局SFQ10-31国家核桃全产业链发展标准化示范区费县绿缘核桃专业合作社-SFQ10-32国家日照绿茶三产融合发展标准化示范区山东日照祥路碧海茶业有限公司-SFQ10-94国家平阴玫瑰全产业链发展标准化示范区山东芳蕾玫瑰科技开发有限公司山东芳蕾田园综合体有限公司SFQ10-95国家禽类智慧养殖标准化示范区山东众客食品有限公司-河南(4)SFQ10-33国家肉牛产业三产融合标准化示范区科尔沁牛业河南有限公司、科尔沁牛业南阳有限公司新野县歪子镇人民政府、新野县肉牛产业化集群示范区管理委员会、新野县市场监督管理局SFQ10-34国家肉鸽养殖标准化示范区河南天成鸽业有限公司舞钢市市场监督管理局、舞钢市大明肉鸽养殖专业合作社SFQ10-96国家伊普吕肉兔现代化养殖标准化示范区济源市阳光兔业科技有限公司济源产城融合示范区市场监督管理局SFQ10-97国家良好农业规范认证实施标准化示范区河南中农华盛农业科技有限公司荥阳市市场监督管理局湖北(3)SFQ10-35国家资丘道地药材生产标准化示范区长阳土家族自治县特色农业发展中心、湖北泰悦中药材种业有限公司长阳土家族自治县市场监督管理局、中南民族大学、湖北康农种业股份有限公司SFQ10-36国家大蒜良种繁育标准化示范区湖北省农业科学院经济作物研究所、当阳市长坂坡农业专业合作社当阳市市场监督管理局SFQ10-98国家无性系茶树良种繁育标准化示范区湖北福良山农业科技有限公司孝感市农业农村局、湖北大悟玄坛村福坛农业科技有限公司、湖北孝感红贡茶有限公司湖南(4)SFQ10-37国家稻虾生态产业标准化示范区益阳市南县人民政、湖南省标准化协会湖南助农农业科技发限公司、顺祥食品有限公司、湖南金之香米业有限公司SFQ10-38国家食用菌药材立体高效循环种植标准化示范区长沙众益农业开发有限公司湖南农业大学、湖南省食用菌研究所、长沙商贸旅游职业学院SFQ10-39国家黄茶种植标准化示范区临湘市白石千车岭茶业有限公司临湘市农业农村局、临湘市市场监督管理局SFQ10-99国家猪资源保护标准化示范区湘潭市家畜育种站(湘潭市饲料监测站)湘潭市农业农村局广东(4)SFQ10-40国家铁皮石斛仿野生种植标准化示范区仁化县鑫宇生态开发有限公司广东省岸海标准技术服务有限公司SFQ10-41国家农产品跨境电子商务标准化示范区蓝天星农产品交易有限公司东莞港蓝天星综合物流有限公司SFQ10-42国家高山耐寒单丛茶种植标准化示范区广东天池茶业股份有限公司-重庆(4)SFQ10-44 国家晚熟龙眼种植标准化示范区重庆宏林龙眼有限公司重庆九星山生态农业发展有限公司、重庆永川区刘承会龙眼种植有限公司 SFQ10-45国家巫山脆李种植标准化示范区巫山县农业农村委员会、巫山县脆李协会巫山县果品产业发展中心SFQ10-46国家油橄榄种植标准化示范区重庆油橄榄研究院有限公司奉节县农业农村委员会、奉节县林业局SFQ10-101国家猕猴桃种植标准化示范区重庆三磊田甜农业开发有限公司 黔江区市场监督管理局、黔江区农业农村委员会四川(3)SFQ10-47国家园艺标准化示范区成都市温江区人民政府、成都添益农业科学研究院(有限合伙)-SFQ10-48国家桑茶生产标准化示范区南充市嘉陵区人民政府、南充创新桑产业技术研究院南充嘉陵区市场监管局、南充嘉陵区农业农村局、南充嘉陵区蚕桑产业发展中心、四川尚好茶业有限公司SFQ10-102国家鹌鹑产业标准化示范区四川九升食品有限公司东坡区科学技术协会、眉山市东坡区畜牧站、眉山市畜牧站 贵州(3)SFQ10-49国家猕猴桃种植标准化示范区水城县东部农业产业园区管理委员会、六盘水市农业科学研究院水城县农业农村局、水城县市场监督管理局、水城县绿美农业开发有限责任公司
  • 中国修空气质量标准 未将细颗粒物纳入检测范围
    2010年12月21日,上海外滩被雾霾所笼罩。当天,全市大部分地区出现了轻度污染的雾霾天气。   对频受恶劣空气侵害的中国人来说,这是一则被忽略的重要消息。   在经历了14年的等待后,指导中国空气质量控制的风向标——《环境空气质量标准》终于迎来了大修的可能。自1996年制定以来,这是该标准继2000年微调后首次修订,也可能是幅度最大的一次。   两个月前,《环境空气质量标准》征求意见稿出台。“亮点是取消了环境空气质量功能区的三类区,增设了臭氧8小时平均浓度限值,同时要求未达标城市制定限期达标规划,按期实现;遗憾是未能将PM2.5纳入强制检测的污染物范围,而只提供了参考限值。”中国科学院大气物理研究所研究员王庚辰说。   不能无视的PM2.5   动标准难,动空气标准尤难。环保部2008年便下达了环境空气质量标准修订项目,由中国环境科学研究院承担后,经历了长达两年的酝酿期。   环科院一位人士告诉南方周末记者,2009年9月至12月间,环保部曾发函给中国科学院、中国工程院等193家科研院校、机关部门广泛征集修订意见。当时收到的主要意见是,“调整二类和三类功能区的分类方式,取消三类区;污染物项目应增加PM2.5、重金属、挥发性有机污染物,增加二恶英等有毒有害污染物项目;增加臭氧的8小时浓度限值等”。此后,环保部科技标准司又在2010年六七月间两次召开专家会议讨论。   几次会议上,PM2.5污染问题一直是讨论的焦点。“对PM2.5是否列为强制性标准,大多数人支持将其列入,但也有专家认为时机不够成熟。”上述人士回忆。   王庚辰研究员是支持者,他说,1996国家标准主要针对当时的煤烟型大气污染特征,“十多年来社会经济状况翻天覆地,中国已进入区域复合型大气污染阶段,煤烟型污染减弱,而城市机动车排放引发的PM2.5污染成为突出问题。”城市灰霾天便是佐证,根据中国臭氧监测试点工作统计,2009年全年,试点城市中,发生灰霾的天数占监测天数的14%至57.8%。   1996年制定现行标准时,PM2.5在世界范围内并未有太多人关注,只设置了更宽松的PM10(直径等于或小于10微米)限值。但经过多年研究,PM2.5对人体健康的危害已成共识。   北京大学医学部教授潘小川亦告诉记者,相比PM10,PM2.5更容易长时间悬浮在空中,由于它粒径小,吸入几率变得更大,它可抵达肺的深部,深入下呼吸道,甚至穿透肺泡膜,对人体健康造成巨大伤害。他和同事还发现一种微妙联系:2004年至2006年期间,当北京大学校园观测点的PM2.5日均浓度增加时,在约4公里以外的北京大学第三医院,心血管病急诊患者数量也有所增加。   中国环境科学研究院的一份研究报告也承认,“珠三角、长三角、京津冀、四川盆地和沈阳等地区的城市群大气PM2.5污染日趋严重,不但造成能见度降低,也导致居民循环系统和呼吸系统发病率和死亡率上升。”   “《环境空气质量标准》最根本的作用就是用来保护公众健康和公共福利。我们不可能无视这一变化。”中国环科院的一名专家称。   重要的是,自从1997年美国率先将PM2.5列为检测空气质量的一个重要标准后,国际上主要发达国家均已制定相关标准。而在亚洲,除发达的日本外,连泰国和印度也已制定了该项目的空气质量标准。   分歧重重,最终折中   但在中国,将其纳入强制性目标考核的尝试却困难重重。   王庚辰称,环保部等相关部门许多执行官员也支持。据悉,此前环保部科技标准司 (技术处)就曾直接动议增加PM2.5限值。而在环保部此前的意见征求函中,绝大多数沿海地区的环保局官员也表态支持。   环保部一官员向记者证实,2009年9月至12月间征求意见时,在44家回函单位中,有25家单位建议增加PM2.5,只有2家单位认为没必要增加。建议增加的单位中,既有诸如大连、南京、杭州等沿海地区的声音,也包含鞍山、乌鲁木齐、桂林这样的内陆城市的声音。   反对者却也理直气壮,“制定标准,要符合实际。如果百分之八九十都做不到,标准等于无用,最终会变成虚设。”中国工程院院士、中国环境监测总站原总工程师魏复盛坦言。   魏的说法自有依据。中国环科院公布的一项统计数据显示,中国的PM2.5污染较重,全国113个重点城市2008年年均浓度均远高于世界卫生组织 WHO的准则值,仅有2个城市年均浓度低于目标值,“一旦制定实施PM2.5强制限值,全国城市将大范围超标。”“制定标准,比较务实的做法,应该是经济技术实力和科学性的结合。”魏复盛说。   以白志鹏教授为代表的南开大学在去年初的意见回函中,也同样认为“从工作基础和可执行性角度考虑,……尚不成熟”。“是否设立需要有依据、有工作基础和科学可行,这是个比较复杂的问题。”白志鹏向南方周末记者回复时表示。   征求意见稿最终采取了折中方式——2010年10月9日,环保部科技标准司标准处的修订讨论会上,最终确定了如下判断——“当前国家制定实施 PM2.5环境空气质量标准时机不成熟;统一发布PM2.5等污染物的环境空气质量参考限值,地方省级政府可参考其制定地方环境空气质量标准。”强制性指标悄然变身为参考推荐性指标。   王庚辰批评说,这样的标准,对环保部来说是最讨巧的办法,“最容易做,最不容易引起纠纷,也是最省事的办法。”这低估了国家对环境工作和研究的水平,“依我的了解,全国绝大地方来讲,已经有可能、有条件做这个工作。”   科学问题?政绩问题?   魏复盛承认,关于PM2.5引入标准之争,还是一场群体利益的博弈。   他说,PM2.5的污染,主要来自汽车排放等人工污染。但总量控制汽车、不能无序发展的呼声,在政府部门极力发展“1800万辆、产销两旺”的汽车产业面前,显得过于微弱。   而地方政府和环保部门的态度却显得微妙。浙江嘉兴市环保局副局长潘侃并不抗拒列入PM2.5,“我们此前已决定过两年开始做一些检测、研究这方面问题。”但他也有唯一的担心,由于此前依据PM10指标,嘉兴的空气质量达标率一直维持在90%以上,“到时可能要向社会公众做好说明工作。原来都是达标的,突然就指标换了,变成不达标了,恐怕老百姓要有意见。”   湘潭市环保局局长陈铁平建议各方应保持平和心态,“标准考核更多、更严,数据自然下降,但也能更反映出真实情况”,“让老百姓能呼吸到新鲜的空气,这才是环境监测治理的本意”。作为中西部较早开展PM2.5试点监测工作的环保局,他更担心的是另一些问题,“PM2.5即使成为强制性监测项目,其它工作跟不上来,也起不到应有的作用。”他认为,跟国外发达国家相比,中国目前的评价体系、监测点位、监测手段,都存在相当差距,以湘潭为例,5100平方公里的范围内,就6个监测点位,“要让评价的标准更科学,让数据更具代表性,监测网络更完善”。   “这不单纯是科学问题,还是个政治问题。”王庚辰直言,有官员曾向他当面提出,如果每年达标的天数骤降,他们担心会影响职能部门的声誉,最终危及旅游、投资等行业的地方诸多政绩。   王庚辰表示,环保部本可借鉴WHO的指导准则,从科学角度出发,“我们可以首先定一个国标,然后分阶段、分步骤实施”,但无论如何“标准不能降低”。   他说,“哪怕步骤小一点,也应该往前走,决不能原地踏步。”否则,“大气污染防治的工作将永远停留在低水平,没办法提高。”   警钟或许已然敲响。2010年11月的北京,大部分地区出现空气轻度污染,有两天甚至达到中度污染。   2010年11月19日,就在征求意见稿公布的第二天,一直在用一台PM2.5监测仪和一个Twitter微博客独立监测直播北京空气质量的美国大使馆,再度给了中国首都难堪——   对于北京这令人难以忍受的一天,或许是找不到更贴切的形容词,他们最终将其定义为“crazy bad”——令人抓狂的糟。
  • 环保部通过空气质量新标准 增设PM2.5浓度限值
    周生贤主持召开环境保护部常务会议   12月30日,环境保护部部长周生贤主持召开环境保护部常务会议,审议并原则通过《环境空气质量标准》、《环境空气质量指数(AQI)技术规定》和“十二五”国家环境空气监测网建设方案,听取《全国土壤环境保护规划(2011—2015年)》编制情况汇报。   会议认为,现行的《环境空气质量标准》,在加强空气污染防治、保护公众健康方面发挥了积极作用。但随着我国经济高速发展,环境空气污染特征已由煤烟型向复合型转变,区域性大气细颗粒物和臭氧污染不断加重,一些城市经常出现长时间灰霾天气,空气污染对公众健康产生了严重威胁,同时,发布的评价结果与人民群众主观感受存在差异。为适应我国经济发展水平和人民群众对空气质量要求,落实以人为本,切实保障人民群众健康的要求,有必要在总结实践经验的基础上,对《环境空气质量标准》进行修订,进一步完善环境监测标准,增加大气污染物监测指标,改进环境质量评估办法。   会议指出,环境保护部高度重视《标准》的修订工作。2008年正式启动修订工作后,编制组深入研究了世界10多个国家、地区、组织的环境空气质量基准和标准,全面分析了我国经济社会发展阶段要求和空气质量特征和管理需求,在此基础上形成了标准初稿。2009年9月,环境保护部通过部网站公开征集社会各界意见,编制组认真研究吸纳了多方面意见,并对初稿进行了修改,完善了标准的有关内容。2011年8月,环境保护部常务会议听取了《环境空气质量标准》修订情况的汇报,审议了修订思路。编制部门根据会议决定,组织30多名大气环境科学领域院士、知名专家对草案进行了反复研讨,使标准草案的内容进一步完善。2010年11月和2011年11月分别两次向全社会公开征求意见。2011年12月,环境保护部党组召开会议,专门听取了标准草案修订情况汇报,原则通过了标准草案,要求编制部门根据会议讨论的意见进一步修改后提交部常务会审议。   会议经过认真讨论,原则同意修订后的《环境空气质量标准》。与现行标准相比较,新修订后的标准草案作了如下调整:   一是调整了环境空气功能区分类方案,将三类区(特定工业区)并入二类区(城镇规划中确定的居住区、商业交通居民混合区、文化区、一般工业区和农村地区)   二是调整了污染物项目及限值,增设了PM2.5平均浓度限值和臭氧8小时平均浓度限值,收紧了PM10、二氧化氮、铅和苯并[a]芘等污染物的浓度限值   三是收严了监测数据统计的有效性规定,将有效数据要求由50%-75%提高至75%—90%   四是更新了二氧化硫、二氧化氮、臭氧、颗粒物等的分析方法标准,增加自动监测分析方法   五是明确了标准实施时间。规定新标准发布后分期分批予以实施。会议决定,请编制部门根据会议讨论意见进一步修改完善、并抓紧履行相关的法律程序后,尽快发布。   会议原则通过了修订的《环境空气质量指数(AQI)技术规定》和“十二五”国家环境空气监测网建设方案。修订后的环境空气质量指数技术规定与现行规定相比,调整了指数的名称和分级分类表述方式,强调了AQI服务于公众健康指引的作用,增加了参与评价的污染物项目,完善了监测数据和空气质量指数发布方式。会议决定,《环境空气质量指数(AQI)技术规定》经进一步修改后发布实施。   会议听取了《全国土壤环境保护规划(2011—2015年)》编制情况汇报,明确了“十二五”时期土壤环境保护的指导思想、原则和目标,提出了土壤环境保护的主要任务、重点工程和保障措施。会议决定,请编制部门根据会议讨论的意见进一步修改后,按程序报批发布实施。   会议还研究了其他事项。   环境保护部副部长潘岳、张力军、吴晓青、周建、李干杰,纪检组长傅雯娟,党组成员胡保林、何捷,总工程师万本太,核安全总工程师徐庆华出席了会议。   机关有关司局主要负责同志列席了会议。
  • 碳中和目标下,盘点近年来实施的大气污染物排放标准及相应检测仪器
    “加强生态文明建设,确保实现2030年前二氧化碳排放达到峰值、2060年前实现碳中和的目标。”为了实现蓝天愿景,兑现对全世界的减排承诺,自2021年起,一系列规划和阶段性目标都会陆续落地,围绕“碳中和”这个核心风向标,更大力度推动节能减排,应对气候变化带来的挑战。我国碳达峰、碳中和愿景与美丽中国建设目标高度协同,应尽快构建新一代大气污染防治科学体系。政策把“治标和治本很好地结合起来”,并特别指出“大气污染物与温室气体要协同减排”。专家们认为加快能源转型变革对深度融合大气污染防治和气候变化应对至关重要,“十四五”期间,大气环境治理更不能放松,特别是在碳中和目标下。为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治环境污染,改善环境质量,生态环境部对之前相关标准进行了修订,将加油站在卸油、储存、加油过程,油品运输过程以及储油库储存、收发油品过程中油气排放控制要求、监测和监督管理要求进行了单独的规定,相应大气污染物排放标准已于2021年4月1日正式实施。为促进农药制造工业、铸造工业以及陆上石油天然气开采工业的技术进步和可持续发展,出台了相应工业大气污染物排放控制要求、监测和监督管理要求,同时对温室气体甲烷的排放提出了协同控制要求。相应大气污染物排放标准已于2021年1月1日正式实施。涂料、油墨及胶黏剂工业、制药工业以及VOCs无组织排放的相应大气污染物排放标准是在2019年发布并实施。无机化学工业污染物排放标准、合成树脂工业污染物排放标准、石油化学工业污染物排放标准和石油炼制工业污染物排放标准,这四项标准是在2015年发布并实施,目前仍未分离出单独的大气污染物排放标准,但其中涵盖了相应工业大气污染物排放控制要求。近年来实施的大气污染物排放标准(发布稿)标准号标准名称发布日期实施日期GB 20952-2020加油站大气污染物排放标准2020-12-312021-04-01GB 20951-2020油品运输大气污染物排放标准2020-12-312021-04-01GB 20950-2020储油库大气污染物排放标准2020-12-312021-04-01GB 39728-2020陆上石油天然气开采工业大气污染物排放标准2020-12-242021-01-01GB 39727-2020农药制造工业大气污染物排放标准2020-12-242021-01-01GB 39726-2020铸造工业大气污染物排放标准2020-12-242021-01-01GB 37824-2019涂料、油墨及胶粘剂工业大气污染物排放标准2019-05-252019-07-01GB 37823-2019制药工业大气污染物排放标准2019-07-292019-07-01GB 37822-2019挥发性有机物无组织排放控制标准2019-05-252019-07-01GB 31573-2015无机化学工业污染物排放标准2015-05-152015-07-01GB 31572-2015合成树脂工业污染物排放标准2015-05-152015-07-01GB 31571-2015石油化学工业污染物排放标准2015-05-152015-07-01GB 31570-2015石油炼制工业污染物排放标准2015-05-152015-07-01标准引用了下列文件或其中的条款涉及到了分析仪器,未来这些仪器将是重中之重。GB/T 14669 空气质量 氨的测定 离子选择电极法GB/T 14678 空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法GB/T 15264 环境空气 铅的测定 火焰原子吸收分光光度法GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法HJ/T 27 固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法HJ/T 30 固定污染源排气中氯气的测定 甲基橙分光光度法HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法HJ/T 38 固定污染源排气中非甲烷总烃的测定 气相色谱法HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法HJ/T 42 固定污染源排气中氮氧化物的测定 紫外分光光度法HJ/T 43 固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法HJ/T 56 固定污染源排气中二氧化硫的测定 碘量法HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法HJ/T 67 大气固定污染源 氟化物的测定 离子选择电极法HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法HJ 57 固定污染源废气 二氧化硫的测定 定电位电解法HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法HJ 533 环境空气和废气 氨的测定 纳氏试剂分光光度法HJ 539 环境空气 铅的测定 石墨炉原子吸收分光光度法HJ 549 环境空气和废气 氯化氢的测定 离子色谱法HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法HJ 584 环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法HJ 629 固定污染源 废气二氧化硫的测定 非分散红外吸收法HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法HJ 657 空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法HJ 685 固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 688 固定污染源废气 氟化氢的测定 离子色谱法HJ 692 固定污染源废气 氮氧化物的测定 非分散红外吸收法HJ 693 固定污染源废气 氮氧化物的测定 定电位电解法HJ 732 固定污染源废气 挥发性有机物的采样 气袋法HJ 734 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法HJ 777 空气和废气 颗粒物中金属元素的测定 电感耦合等离子体发射光谱法HJ 1006 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法HJ 1131 固定污染源废气 二氧化硫的测定 便携式紫外吸收法HJ 1132 固定污染源废气 氮氧化物的测定 便携式紫外吸收法
  • 二恶英应纳入新版空气质量标准考量范围
    《法制日报》记者对话北京师范大学化学学院博士后毛达。   近日,北京市常务副市长吉林在参加市政协专题座谈会时,公布了北京在改善空气质量方面的成绩,并表示对外公布的数据是真实的,同时解释了市民感受与监测数据有所差别的原因。下一步,北京市要打一场进一步提高空气质量的攻坚战,要进一步淘汰高耗能、高污染的企业,宁可牺牲一些GDP和财政收入。   此前,《环境空气质量标准》二次公开征求意见截止,PM2.5首次被纳入标准。中国工程院院士、清华大学教授郝吉明在不久前举办的第七届中美空气质量研讨会上公开表示,单纯地强调PM2.5减排,并不能达到区域空气质量改善的预期效果,应该做好多项污染物协同减排的工作。改善空气质量,还应该控制哪些污染物?对此,《法制日报》记者与对空气污染物二恶英有深入研究的北京师范大学化学学院博士后毛达展开了对话。   对话   记者:近段时间,公众对PM2.5的态度可谓闻之色变。但也有专家提出,在空气污染物中,对人体健康造成影响的远不止PM2.5,还包括二恶英等污染物。   毛达:这段时间,我国大城市空气中高浓度的PM2.5让公众感到极度担忧。然而,有严重健康之忧的大气污染物并非只有细微颗粒物这一种,所以正在进行中的空气质量新国标制定应全面评估各种大气污染物的环境健康风险,包括被世人称为持久性有机污染物的二恶英。   二恶英类化合物是迄今为止人类已知的最强的有毒污染物之一。大量动物实验和人类流行病学研究的结果表明,二恶英对人体的健康影响是全方位的,它已被确认为具有致癌性、神经毒性、生殖毒性、发育毒性和致畸性、心血管毒性、免疫毒性,并能直接引发氯痤疮和肝脏疾病,同时也是一种内分泌干扰物。根据世界卫生组织的建议,为确保人类健康,个体的二恶英日容许摄入量为1至4皮克(毒性当量)每公斤体重,而长远目标是降至1皮克(毒性当量)每公斤体重以下。   科学研究还表明,二恶英在环境中几乎无处不在,而且会积累和富集在各种生物体内,所以人可以通过呼吸、饮食和皮肤接触等多种途径摄入二恶英。尽管大多数二恶英都是经过饮食摄入和消化道被人体吸收的,但空气中的二恶英浓度过高也很有可能使人体的日摄入量超过世卫组织的建议值。   记者:据了解,广东省东莞市环保局局长袁绍东透露,今年将推进东莞市环境监测监控中心建设,并加快PM 2.5、二恶英、辐射、持久性有机污染物、生态环境等检测实验室建设。按照目前的情况来看,限制二恶英应该参照怎样的标准?   毛达:为保护公众健康,世界上的许多国家或地区已经制定了大气二恶英浓度限值标准,有过惨痛公害历史教训的日本更不例外。早在1999年,日本的《二恶英对策特别实施法》便设定了各种环境媒介,包括大气、土壤、水体和沉积物中的二恶英浓度最大允许值,其目的就是使日本国民的二恶英日摄入水平低于世卫组织的最大建议值,即4皮克(毒性当量)每公斤体重。根据该法律,日本国内的大气二恶英浓度不得超过0.6皮克(毒性当量)每立方米。   尽管日本的大气二恶英浓度限值并不是世界上最严格的(加拿大安大略省和美国亚利桑那州的标准分别为0.1和0.023皮克每立方米),但该环境标准对我国目前的二恶英污染防治工作却有着特殊的意义,因为环保部、国家发改委、国家能源局3个部门曾于2008年联合下发《关于进一步加强生物质发电项目环境影响评价管理工作的通知》,并在该通知的“技术要点”部分规定环评单位应参照日本二恶英大气浓度限值,评价和预测建设项目二恶英排放对周边环境质量的影响。这说明,我国政府在一定程度上认可大气二恶英浓度达到或超过0.6皮克(毒性当量)每立方米会对环境和人体健康产生不可忽略的影响。因此,这一数值或可看做目前大气二恶英浓度的最大容忍值。   记者:目前我国空气中二恶英含量大约处于一个什么样的水平线?   毛达:如果以3部门2008年所规定的二恶英环境影响参照值,即日本的大气二恶英浓度限值作为评价空气质量的一个基本标准,我国目前从已知的科研成果看,北京、上海、广州这3座特大城市的空气二恶英浓度已经逼近或超出了安全线。   2008年,中国科学院生态环境研究中心和香港浸会大学的多位研究者在国际学术杂志《大气环境》(Atmospheric Environment)上发表的一篇论文显示,北京市3个区的二恶英类化合物大气含量为0.018至0.644皮克(毒性当量)每立方米,平均值为0.268皮克(毒性当量)每立方米。这一结果说明,北京一些地区的大气二恶英平均浓度已经和0.6皮克(毒性当量)每立方米这一最大容忍值处于同一数量级,且某些时候还高于该值。   同年,中国科学院广州地球化学研究所和上海大学的多位研究者在另一国际学术杂志《化学圈》(Chemosphere)上发表了一篇关于上海大气二恶英浓度水平的论文,指出嘉定、闸北、浦东和黄浦4个区的大气二恶英浓度毒性当量平均值分别为0.4971、0.289、0.1444和0.1432皮克每立方米。该结果同样表明,上海一些地区的大气二恶英平均浓度已经接近0.6皮克(毒性当量)每立方米这一最大容忍值。   广州的情况同样不容乐观。2007年中国科学院广州地球化学研究所余莉萍的博士论文显示,花都、荔湾、天河、黄埔4个区大气中的二恶英平均浓度分别达到了0.1046、0.4305、0.1637和0.7693皮克(毒性当量)每立方米。这一结果不仅说明广州在总体上面临着和北京和上海同等程度的大气二恶英污染,局部如黄埔这样的工业活动密集区甚至超过了0.6皮克(毒性当量)每立方米这一最大容忍值。值得注意的是,余莉萍还通过暴露公式估算出天河区居民成人的日二恶英摄入量为1.1皮克(毒性当量)每公斤体重,某些季节儿童的日摄入量竟高达4.3皮克(毒性当量)每公斤体重,后者已超出世卫组织建议的安全标准。   记者:造成二恶英含量偏高的污染源有哪些?   毛达:事实上,上述发现不应令人惊奇,因为我国特大或大型城市早已存在着多种显著的二恶英排放源,包括钢铁行业、再生有色金属业、废弃物焚烧行业、造纸行业以及总量巨大的汽车尾气排放。如果这些排放源得不到有效控制,高浓度的二恶英仍会被继续排放,它在环境中的积累也会越来越严重,人体的健康风险也会随之增高。   此外,大城市并不是二恶英大气污染的唯一灾区。近期,一起发生在江苏海安县农村地区的二恶英污染诉讼揭露出当地一座生活垃圾焚烧厂可能给周围环境带来的二恶英污染。根据中国科学院大连化物所研究人员的实地采样检测,该焚烧厂在2008年运行期间,周边1.5公里内的大气二恶英平均浓度达到了0.716和0.622皮克(毒性当量)每立方米,最大值甚至达到了0.901皮克(毒性当量)每立方米。这一案例说明,农村地区也存在明显的二恶英污染源,其大气二恶英浓度也可能超过0.6皮克(毒性当量)每立方米这一最大容忍值。   记者:既然3部门已经有了关于二恶英的环评技术要求,为什么还提出在新的空气质量标准中纳入二恶英数值?   毛达:尽管我国的二恶英污染监测和研究工作总体而言还十分薄弱,但以上重要的科研结果或发现足以说明大气二恶英污染已经是一个不容回避的环境和健康问题,其危险程度并不亚于颗粒物的污染。因此,目前由PM2.5引发的我国空气质量标准的再讨论和再制定必须将二恶英及其他被忽视但有同等危害的污染物纳入其考量范围。毕竟,3部门2008年所建议的与二恶英有关的环评技术要求并不是国家环境标准,其法律约束力不仅有限,而且仅适用于生物质发电项目的环境影响评价工作,不足以成为全面控制大气二恶英污染的最基本的法律保障。   记者:那么,新的空气质量标准应该如何限定二恶英?   毛达:至于新国标应该如何规定大气二恶英浓度的最大限值,有关部门应以最可靠的科研数据为基础,充分征求社会各界意见,同时参考国外经验,给出一个能够最大限度保护环境与国民健康安全的标准。而这个标准从目前的情形看,一定不应比日本所设定0.6皮克(毒性当量)每立方米更宽松。因为只有更严格,才能确保普通民众,尤其是一些敏感人群,如孕妇和儿童的二恶英暴露程度应低于世卫组织的建议值。
  • 空气质量不达标、排放目标难实现 德国“环保先锋”标签难保
    p   一场突如其来的空气质量检查将包括德国在内的9个欧盟成员国推上了风口浪尖,也彻底撕掉了“低碳经济领军者”德国的最后一块“遮羞布”。 /p p   事实证明,德国这个被打上“光伏大国”、“环保先锋”标签的欧盟经济总量最高的国家,其环保减排实力恐怕只是“看上去很美”。 /p p   “2020年排放承诺要食言” /p p   路透社报道称,德国对于“2020年将温室气体排放水平降低到1990年60%”的承诺恐怕要食言。该国环境部部长BarbaraHendricks表示,德国无法按计划达到2020减排目标,尽管各方仍呼吁要努力实现,但恐怕是心有余而力不足。 /p p   1月底,德国被欧盟“点名”为空气污染严重的9个欧盟国家之一,并与法国成为垫底的“坏学生”,其它7国分别是英国、意大利、西班牙、匈牙利、罗马尼亚、捷克和斯洛伐克。欧盟已经向上述9国发出“最后通牒”:要么改,要么罚! /p p   欧盟早在2010年就引入了对可吸入颗粒物和二氧化氮的限制,但许多欧盟成员国特别是一些主要城市,其空气污染程度仍远远超出限制。欧委会最终忍无可忍,要求上述9国遵守欧盟标准并限期交出改善空气质量的方案,否则将诉诸法律。 /p p   欧委会主管环境、海洋事务和渔业的委员卡尔梅努˙韦拉强调:“我们提供帮助、建议和警告的期限太宽裕,现在是时候采取行动了。”欧委会指出,工业、交通和供暖是空气污染的主要来源,柴油、木材、煤炭等在德国、法国、波兰等国保持高消耗,给环境带来了巨大负担,欧盟平均每年有40万人因空气质量问题而过早死亡,其中德国、法国分别高达8万和4.8万。 /p p   对于这一警告,德国总理默克尔迅速予以回应,称将至少为20个空气污染最严重的城市制定具体的减排措施并提供一定帮助,如通过加大出租与公交等手段实现减排效果。她同时呼吁,应该继续监督对柴油车的改造,但对进展和结果表示担忧,因为德国柴油车数量庞大,很难制定立竿见影的方案。 /p p   去年8月,德国政府与汽车制造商达成一致,同意对德国数百万辆柴油车的发动机软件进行升级,以减少污染并努力修复柴油车的声誉。两个月后,德国政府推翻了这一协议,称软件升级花费较少、影响较小,呼吁汽车制造商对某些车型的发动机和排气系统进行整体升级。 /p p   有环保人士直言不讳,不执行柴油车禁令以及电动汽车补贴政策执行不力等因素,是导致德国无法实现2020年排放目标的促因。 /p p   德国《明镜》日前报道称,在欧盟“空气质量差”的严厉指责下,德国环境部、交通部最终拿出了新方案,2017至2020年间将增加电动汽车充电点以全面鼓励电动汽车在德国的发展,同时还将改善柴油公交车的排气系统。 /p p   BarbaraHendricks透露,已经就德国未来能源、环保政策的各项措施达成一致,计划投资15亿欧元资助产业整改,按部就班地降低各行业的排放量。“虽然将2020年排放目标推后数年,但仍维持2030年减排目标。”她强调。 /p p   据了解,德国计划2030年将可再生能源发电量占比从目前的30%提升至65%,原计划是2025年可再生能源电量占比45%至55%。 /p p   “多座城市空气污染严重” /p p   在降低温室气体排放方面,德国的确需要“特别关注”,甚至需要进行“自我检讨”。德国环境部日前发布的2017年德国环境测量报告显示,相较于西部和南部,东部污染最少,70个城镇空气中可吸入颗粒物含量超过最高规定限度,40个城镇空气中二氧化氮含量超标。 /p p   德国之声指出,鉴于柴油汽车是二氧化氮的主要排放源之一,且目前仍是德国汽车市场的主流,大部分城市二氧化氮浓度超过欧盟规定的40微克/立方米上限是意料中事。根据世界卫生组织的标准,二氧化氮含量全年最多只能有3天超标,但德国87%的监测站所测情况都高于这个上限。 /p p   德国第三大城市慕尼黑是该国空气污染最严重的城市,去年以年均二氧化氮含量78微克/立方米位居榜首。慕尼黑是德国主要的经济、文化、科技和交通中心,重工业尤以汽车制造实力较强,作为德国三大车企之一宝马的故乡,污染加剧的现状迫使慕尼黑必须直面环保挑战。 /p p   德国另外两大车企奔驰和保时捷的故乡斯图加特,空气污染程度紧随慕尼黑之后,去年年均二氧化氮含量73微克/立方米,虽然低于2016年82微克/立方米的水平,但空气质量情况仍不乐观。斯图加特是著名的汽车城,由于地形地势等原因,长期以来都遭受空气污染困扰。 /p p   德国第四大城市科隆以年均二氧化氮含量62微克/立方米的水平位列第三。以大教堂闻名遐迩的科隆是重工业城市,是德国重要的褐煤产地之一。距离斯图加特31公里的小城罗伊特林根,尽管人口只有约11.2万,但去年年均二氧化氮含量却达到60微克/立方米,程度与科隆不相上下。 /p p   汉堡、杜塞尔多夫、基尔、海尔布隆去年年均二氧化氮含量分别高达58微克/立方米、56微克/立方米、56微克/立方米和55微克/立方米。据了解,基尔是德国通往波罗的海的门户,也是重要的造船和海事基地,但优越的地理位置也没有让该市远离空气污染。 /p p   德国去年年均二氧化氮含量超过50微克/立方米的城镇还有以炼铁和机械为核心产业的工业城市达姆斯达特(约52微克/立方米)、路德维希堡(约51微克/立方米)、曾经的采煤炼钢城市多特蒙德(约50微克/立方米)。 /p p   此外,首都柏林、航铁枢纽法兰克福、美因茨等大城市的年均二氧化氮含量虽然并未超过50微克/立方米,但仍然确定超标,柏林达到49微克/立方米。 /p p   《南德意志报》指出,随着引入限速、街道收窄、奖励购买环保新车等措施,德国各城市空气污染虽然有所改善,但还是远远不够,冰冷的数字似乎是对自诩为“环保创新者”的德国的无声讽刺,进而更加折射出其在低碳能源转型之路上的举步维艰。 /p
  • 生态环境部发布《环境空气质量标准》及配套环境监测标准修改单
    p   近日,生态环境部发布“关于发布《环境空气质量标准》(GB 3095-2012)修改单的公告”,公告中指出,批准《环境空气质量标准》(GB 3095-2012)修改单,并由生态环境部与国家市场监督管理总局联合发布。 /p p   该标准修改单自2018年9月1日起实施。 /p p   特此公告。 /p p   (此公告业经国家市场监督管理总局田世宏会签) /p p   附件:《环境空气质量标准》(GB 3095-2012)修改单 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 3.14“标准状态 standard state 指温度为273 K,压力为101.325 kPa时的状态。本标准中的污染物浓度均为标准状态下的浓度”修改为:“参比状态 reference state 指大气温度为298.15 K,大气压力为1013.25 hPa时的状态。本标准中的二氧化硫、二氧化氮、一氧化碳、臭氧、氮氧化物等气态污染物浓度为参比状态下的浓度。颗粒物(粒径小于等于10 μm)、颗粒物(粒径小于等于2.5 μm)、总悬浮颗粒物及其组分铅、苯并[a]芘等浓度为监测时大气温度和压力下的浓度”。 /span /p p   关于监测时记录气温、气压等气象参数的要求,考虑到相关配套监测方法标准已有规定,且近期将在相关监测标准规范和工作部署中进一步细化、明确,《环境空气质量标准》修改单不再重复要求。 /p p   此次修改不涉及标准中的污染物项目及限值。为保持监测数据的一致性和可比性,环境空气污染物质量浓度的历史数据也将进行回溯。今后,生态环境部将按照统一可比的监测数据对各地环境空气质量改善情况进行评价、考核,标准修改单的发布实施不影响“十三五”环境空气质量改善目标。 /p p   为配合《环境空气质量标准》修改单的实施,生态环境部同步发布了与环境空气质量标准中污染物项目监测直接相关的19项环境监测标准修改单,对涉及结果计算与表示中污染物浓度的监测状态内容进行调整,与标准保持一致。 /p p   19项标准名称、编号如下: /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/65e0432c-60aa-469e-8706-e95e01c28e50.pdf" target=" _self" title=" " textvalue=" 一、《环境空气二氧化硫的测定甲醛吸收—副玫瑰苯胺分光光度法》(HJ 482—2009)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 一、《环境空气二氧化硫的测定甲醛吸收—副玫瑰苯胺分光光度法》(HJ 482—2009)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/da6c3c2f-2c5a-44f9-9681-620061bd9b5f.pdf" target=" _self" title=" " textvalue=" 二、《环境空气二氧化硫的测定四氯汞盐吸收-副玫瑰苯胺分光光度法》(HJ 483—2009)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 二、《环境空气二氧化硫的测定四氯汞盐吸收-副玫瑰苯胺分光光度法》(HJ 483—2009)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/a489b919-2d55-489d-806e-9d4c976f51e2.pdf" target=" _self" title=" " textvalue=" 三、《环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法》(HJ 479—2009)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 三、《环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法》(HJ 479—2009)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/ab3c1428-bb6f-4851-be79-dcd66d235eaa.pdf" target=" _self" title=" " textvalue=" 四、《环境空气臭氧的测定靛蓝二磺酸钠分光光度法》(HJ 504—2009)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 四、《环境空气臭氧的测定靛蓝二磺酸钠分光光度法》(HJ 504—2009)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/141ee726-bb48-4a57-89c9-f19ed0b5cf31.pdf" target=" _self" title=" " textvalue=" 五、《环境空气臭氧的测定紫外光度法》(HJ 590—2010)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 五、《环境空气臭氧的测定紫外光度法》(HJ 590—2010)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/1f90aef4-027a-41b3-a920-f7948cfd9838.pdf" target=" _self" title=" " textvalue=" 六、《环境空气PM10和PM2.5的测定重量法》(HJ 618—2011)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 六、《环境空气PM10和PM2.5的测定重量法》(HJ 618—2011)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/d78d789f-f680-4f52-a7b8-24cfd8ae78cf.pdf" target=" _self" title=" " textvalue=" 七、《环境空气铅的测定石墨炉原子吸收分光光度法》(HJ 539—2015)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 七、《环境空气铅的测定石墨炉原子吸收分光光度法》(HJ 539—2015)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/de486937-3b03-41fc-add2-3ea86ccea6d1.pdf" target=" _self" title=" " textvalue=" 八、《环境空气铅的测定火焰原子吸收分光光度法》(GB/T 15264—1994)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 八、《环境空气铅的测定火焰原子吸收分光光度法》(GB/T 15264—1994)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/cc16d833-d342-4636-87fd-81d030b2509a.pdf" target=" _self" title=" " textvalue=" 九、《环境空气总悬浮颗粒物的测定重量法》(GB/T 15432—1995)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 九、《环境空气总悬浮颗粒物的测定重量法》(GB/T 15432—1995)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/5165c9ee-5c03-48f5-bffa-c02176785385.pdf" target=" _self" title=" " textvalue=" 十、《环境空气质量手工监测技术规范》(HJ 194—2017)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十、《环境空气质量手工监测技术规范》(HJ 194—2017)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/8a9bda73-427f-46a0-9e35-8230bbdb34b7.pdf" target=" _self" title=" " textvalue=" 十一、《环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法》(HJ 653—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十一、《环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法》(HJ 653—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/76a7a6f6-1f00-4c0e-8083-6027cbd77e77.pdf" target=" _self" title=" " textvalue=" 十二、《环境空气颗粒物(PM10和PM2.5)连续自动监测系统安装和验收技术规范》(HJ 655—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十二、《环境空气颗粒物(PM10和PM2.5)连续自动监测系统安装和验收技术规范》(HJ 655—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/a859da01-a68c-418b-b854-7298e90394cb.pdf" target=" _self" title=" " textvalue=" 十三、《环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统技术要求及检测方法》(HJ 654—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十三、《环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统技术要求及检测方法》(HJ 654—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/7e6b2f91-e42a-4d72-80f2-5d9f517b808b.pdf" target=" _self" title=" " textvalue=" 十四、《环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法》(HJ 93—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十四、《环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法》(HJ 93—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/db899c8f-1a4b-479e-b8d1-4b380bf2c985.pdf" target=" _self" title=" " textvalue=" 十五、《环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范》(HJ 656—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十五、《环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范》(HJ 656—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/84c9bc0e-4be9-485e-8b03-764b8b2369b5.pdf" target=" _self" title=" " textvalue=" 十六、《空气和废气颗粒物中铅等金属元素的测定电感耦合等离子体质谱法》(HJ 657—2013)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十六、《空气和废气颗粒物中铅等金属元素的测定电感耦合等离子体质谱法》(HJ 657—2013)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/0cd46815-2bb8-469d-b1e5-2b8b7695b5f2.pdf" target=" _self" title=" " textvalue=" 十七、《环境空气六价铬的测定柱后衍生离子色谱法》(HJ 779—2015)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十七、《环境空气六价铬的测定柱后衍生离子色谱法》(HJ 779—2015)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/c18107f3-1f4d-441c-8655-fe0fe6fc73a2.pdf" target=" _self" title=" " textvalue=" 十八、《环境空气气态汞的测定金膜富集冷原子吸收分光光度法》(HJ 910—2017)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十八、《环境空气气态汞的测定金膜富集冷原子吸收分光光度法》(HJ 910—2017)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201808/ueattachment/6593adb5-0e8b-4017-97f1-6285755d1f80.pdf" target=" _self" title=" " textvalue=" 十九、《环境空气汞的测定巯基棉富集-冷原子荧光分光光度法(暂行)》(HJ 542—2009)修改单.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 十九、《环境空气汞的测定巯基棉富集-冷原子荧光分光光度法(暂行)》(HJ 542—2009)修改单.pdf /span /a span style=" color: rgb(0, 112, 192) " 。 /span /p p   据了解,下一步,生态环境部将启动国家环境空气质量监测网的监测状态转换工作,抓紧完成1436个国控监测站点仪器设备调试升级,预计9月1日起发布监测状态转换后的监测数据 同时,指导各地做好地方监测点位的监测状态转换工作,2019年1月1日起发布监测状态转换后的监测数据。 /p
  • 《环境空气质量标准》等国标修订意见征集
    环办函〔2009〕956号   为贯彻落实《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,加强生态文明建设,适应国家经济社会发展和环境保护工作的需要,保护生态环境和人体健康,完善国家环境质量标准体系,我部决定对国家环境保护标准《环境空气质量标准》(GB3095-1996)和《保护农作物的大气污染物最高允许浓度》(GB9137-88)进行修订。   鉴于标准对于环境保护工作和环境质量评价工作有重大影响,与社会公众利益密切相关,为做好标准修订工作,充分了解各有关方面的意见,根据《国家环境保护标准制修订工作管理办法》的有关规定,现就修订该标准征集意见。请各单位参照附件所列问题或其他问题,就修订标准工作提出意见和建议,征集意见截止时间为2009年11月30日。   联系人:环境保护部科技标准司李晓弢冯波   通信地址:北京市西城区西直门内南小街115号   邮政编码:100035   传真:(010)66556213   环境保护部办公厅   二○○九年十一月二十日   注:   《环境空气质量标准》(GB3095-1996)和《保护农作物的大气污染物最高允许浓度》(GB9137-88)的文本可在环境保护部网站查询,网址如下:http://bz.mep.gov.cn。   附件:修订国家环境空气质量标准相关问题   一、现行《环境空气质量标准》(GB3095-1996)在实施过程中主要存在哪些不适应国家经济社会发展和环境保护工作需要的问题?   二、修订《环境空气质量标准》的过程中,是否有必要将《保护农作物的大气污染物最高允许浓度》(GB9137-88)并入《环境空气质量标准》中?   三、在修订《环境空气质量标准》过程中,是否维持既分类(分功能区)又分级的方式?是否有必要保留三级(特定工业区)标准?   四、在修订《环境空气质量标准》过程中,关于污染物项目的调整有何具体建议?是否有必要增加细颗粒物(PM2.5)?是否有必要恢复氮氧化物(NOx)?   五、在修订《环境空气质量标准》过程中,对污染物项目浓度的取值时间及浓度限值的调整有何具体建议?   六、是否要改变现行《环境空气质量标准》实行的"单指标评价"方法(即只要有一项指标超标,就判定空气质量不符合要求并降低评价等级)?
  • 专家解读 —《环境空气质量标准》主要修改了哪些内容?
    p   生态环境部近日对《环境空气质量标准》(GB 3095-2012)修改单公开征求意见。《环境空气质量标准》评估专家组组长、中国工程院院士郝吉明,标准修改单及原标准编制组组长、中国环境科学研究院研究员武雪芳就标准评估和修改中的若干问题回答了记者提问。 /p p    strong span style=" color: rgb(0, 112, 192) " 问:《环境空气质量标准》评估工作是如何开展的? /span /strong /p p   郝吉明:2017年3月,中国工程院受原环境保护部委托对《环境空气质量标准》(GB 3095-2012)开展专题评估,中国工程院对此十分重视,成立了评估工作领导小组、顾问专家组、评估专家组、执笔组及支持团队,组织了本领域的主要院士、专家和重点区域一线业务骨干约50多名的评估队伍,组建了标准实施成效评估、国内外标准综合评述、完善我国标准体系的对策建议等三个工作组,重点分析标准各指标在空气质量管理中的作用、诊断标准及配套技术在执行过程中的问题、梳理了标准与国外主要标准体系设计的异同,结合我国未来空气质量管理的需求,提出完善环境空气质量标准体系和管理制度体系的建议。 /p p   评估工作历时5个月,在各工作组研究的基础上,组织了七次全体人员参加的研讨会,形成了最后的评估报告。 /p p   strong span style=" color: rgb(0, 112, 192) "  问:为什么说现行标准的首要问题是状态参数问题? /span /strong /p p   郝吉明:评估报告认为《环境空气质量标准》(GB 3095-2012)自2012年颁布和分阶段实施以来,在改善环境空气质量、保护生态环境和保障人群健康等方面发挥了重要作用,引领了我国环境管理制度的转型。但标准及配套技术在不同区域的适应性也存在一些问题,例如标准体系中的状态参数、PM2.5监测结果的湿度影响、空气质量指数(AQI)实时报反映空气质量快速变化的准确性,以及标准中六项污染物浓度限值的匹配性。在这些问题中,有些需要深入研究,特别是标准中各项污染物的浓度限值,就需要在系统研究污染状况、健康影响、控制技术、社会发展等方面的基础上,才能进行科学的调整 有些问题可以根据标准实施过程的科学研究成果,并参考国际标准体系中的通行做法,尽快完善并颁布实施。 /p p   评估报告通过对2013-2016年国家环境空气质量监测网全国338个城市的业务化监测和国内主要科研单位研究成果的系统总结,认为现行标准在实施过程中的最主要问题,是标准体系中的状态参数。我国历次制修订的环境空气质量标准和大气污染物排放标准均规定按照标准状态(0℃,1个标准大气压)计算污染物质量浓度和排放量,与主要发达国家和国际组织的规定不一致,使得国内外污染物质量浓度的监测结果可比性不强。 /p p   首先,我国国土面积幅员辽阔、地形地貌具有西高东低的特征,全国平均气温显著高于0℃,特别是青藏高原与东部沿海地区的气压差别很大,高原地区PM2.5污染状况被高估40%以上,标准状态下的污染物浓度水平难以很好反映真实的环境空气质量状况,影响了我国环境空气质量的分区管理和污染防治。 /p p   其次,南方地区与北方地区相比,温度和湿度相差较大,颗粒物在大气中沉降速率具有很强的区域性差异,进而导致采样时颗粒物粒径筛选及测量质量浓度计算的较大误差,影响了PM2.5和PM10监测结果准确性。测量工况采用大气实际状况,将有利于从颗粒物筛选等方面提高监测的准确度和精度。 /p p   第三,目前,主要国家特别是发达国家或国际组织规定气态污染物的质量浓度通常折算到参考状态(美国:25℃,欧盟:20℃,一个大气压),颗粒物及其组分的监测评价通常按照大气实际状况(实况)计。我国的标准状态与国际通行的参比状态或实际状态在质量浓度测量和计算上存在一定的差异,在开展国别污染状况评估时不能准确反映我国真实环境空气质量状况,也不利于开展积极的环境外交和参与全球大气污染治理。 /p p   基于上述综合考虑,评估报告系统分析了标准状态和参比状态对全国环境空气质量状况的影响和主要区域大气污染防治的重点,认为现行标准体系应当保持基本稳定,建议参照国际通行方法,将标准中气态污染物的状态参数调整为参考状态(25 ℃,1个大气压),将颗粒物的状态参数调整为实际状态。同时,建议应加强与标准制修订相关的科学技术研究,为完善我国环境空气质量标准体系提供更加坚实的科技支撑。 /p p    strong span style=" color: rgb(0, 112, 192) " 问:2012年修订标准时为何未调整监测状态? /span /strong /p p   武雪芳:我国环境空气质量标准于1982年首次发布,1996年第一次修订,2000年部分修改,2012年第二次修订。1982年首次制定的标准中未规定监测状态,但当时配套的监测分析方法标准规定监测状态采用标准状态,即温度为273 K、压力为101.325 kPa(0℃、1个标准大气压)的状态 此后,1996年首次修订时在标准中明确规定采用标准状态,沿用至今。 /p p   2012年修订标准时,考虑到纵向的历史继承和横向的相关标准协调等问题,未修改监测状态。标准状态在大气环境标准体系中沿用时间长,涉及到的标准种类多、数量大,修改相关规定涉及面广、工作任务比较繁重,2012年修订标准重点关注调整污染物项目、限值、统计要求等一系列急需解决的突出问题,当时标准修订草案两次公开征求意见,多次召开专家、部门、地方研讨会,相关各方均未提出修改监测状态。 /p p   从2013年1月1日首批城市开始实施,GB 3095-2012标准实施时间已经超过五年。中国工程院专题评估表明,标准内容总体科学、可行,在引领环境管理、促进空气质量改善方面发挥了积极作用,当前应当继续保持标准内容基本稳定,推进标准实施。但是,我国标准沿用的监测状态规定已经与当前发达国家、地区或国际组织的现行法规、标准、导则均不一致,为更好借鉴国际先进经验、提升大气污染防治科学化、精准化水平,有必要尽快予以修改,与国际通行做法接轨。 /p p    strong span style=" color: rgb(0, 112, 192) " 问:这次修改的主要内容及依据是什么? /span /strong /p p   武雪芳:修改单内容有两条,一是将关于监测状态统一采用标准状态,修改为气态污染物监测采用参考状态(25℃、1个标准大气压),颗粒物及其组分监测采用实况状态(监测期间实际环境温度和压力状态) 二是增加了开展环境空气污染物浓度监测同时要监测记录气温、气压等气象参数的规定。 /p p   发达国家对监测状态的规定在历史上也曾作统一要求,如美国自1971年首次发布环境空气质量标准后长期对各类污染物统一按照参考状态监测污染物质量浓度。此后相关科研发现,颗粒物及其组分按照统一的标准状态或参考状态折算浓度,影响监测结果的准确性,且没有证据表明折算方法能够更科学地评价环境空气状况对人体健康的影响。为此,从1997年美国修订标准开始,各国陆续将颗粒物监测状态由统一的标准状态或参考状态,改为实况状态。为了历史数据可比,发达国家通常规定,在监测污染物浓度的同时,要监测并记录气温、气压等状态参数。气态污染物监测状态方面,通常采用常温和1个大气压作为参考状态,其中常温主要有美国为代表的25℃和欧盟为代表的20℃两类,接近多数人群的实际生活环境。 /p p   考虑到我国地理位置、气候条件等因素,本次修改拟采用25℃、1个大气压作为监测气态污染物的参考状态,颗粒物及其组分监测则采用实况状态。为确保数据科学性、可比性,不影响环境空气质量改善进程的客观评价,标准修改单提出,无论颗粒物还是气态污染物监测,均应监测并记录实测点位的气温、气压等状态参数,确保对历史数据能够回溯,用相同的“尺子”进行比较。与本标准配套的一系列标准或技术规范也将分别进行相应的修改或修订。 /p p    strong span style=" color: rgb(0, 112, 192) " 问:为何要发布21项监测标准修改单征求意见稿? /span /strong /p p   武雪芳:配合《& lt 环境空气质量标准(gb& gt (征求意见稿)》中污染物监测状态的调整,需要对与其直接相关的21项监测标准进行同步修订。 !--环境空气质量标准(gb-- /p p   21项监测标准分别规定了环境空气质量标准中污染物项目的监测要求,对于规范环境空气中气态污染物和颗粒物的监测,保护人体健康,保护和改善生态环境,支撑《环境空气质量标准》的实施具有重要作用。在这21项监测标准中均明确规定了监测状态为标准状态(273 K,101.325 kPa),故需要按照《& lt 环境空气质量标准(gb& gt 修改单(征求意见稿)》中规定的监测状态进行修改。 !--环境空气质量标准(gb-- /p p    strong span style=" color: rgb(0, 112, 192) " 问:21项监测标准规定了什么内容? /span /strong /p p   武雪芳:这21项监测标准是支撑《环境空气质量标准》实施的重要标准,其中,7项为二氧化硫、氮氧化物、臭氧、气态汞等气态污染物的监测分析方法标准,6项为总悬浮颗粒物、颗粒物(粒径小于等于10 μm)、颗粒物(粒径小于等于2.5 μm)、颗粒物中铅、镉、砷、六价铬等重金属监测分析方法标准,8项为环境空气质量手工监测技术规范、自动监测技术规范及采样器技术要求等。 /p p   另外,对于空气质量标准中规定的苯并[a]芘、氟化物、一氧化碳等污染物控制项目,正在对相应的监测标准进行修订,即将发布,不需要单独以修改单的形式进行修改。 /p p    strong span style=" color: rgb(0, 112, 192) " 问:这次对21项监测标准修改的主要内容是什么? /span /strong /p p   武雪芳:本次《& lt 环境空气质量标准& gt (GB 3095-2012)修改单(征求意见稿)》对监测状态进行了修改,规定“本标准中的气态污染物(二氧化硫、二氧化氮、一氧化碳、臭氧、氮氧化物)浓度均为参考状态下的浓度,颗粒物(粒径小于等于10 μm)、颗粒物(粒径小于等于2.5 μm)、总悬浮颗粒物(TSP)及铅、苯并[a]芘浓度为监测期间实际环境温度和压力状态下的浓度。” !--环境空气质量标准-- /p p   “21项监测标准修改单征求意见稿”仅对结果计算与表示中污染物浓度的监测状态进行了修改:颗粒物及颗粒物中铅、镉、砷、六价铬等由标准状态(273 K、101.325 kPa)修改为实际状态(监测采样时的实际气温和气压)下的质量浓度,气态污染物、气态汞等修改为参考状态(298K、101.325 kPa)下的质量浓度。同时,删去了11项标准中“标准状态”的定义,增加了“参考状态”的定义,21项监测标准的其他技术内容未做修改。 /p
  • 环保部拟修订空气质量检测标准
    8月底的环保部常务会议,对《环境空气质量标准》修订情况进行汇报。   根据今年年初征求公开意见的该标准修订版,将增加臭氧8小时监测值 PM2.5可吸入颗粒物尚未列入新标准,但开始作为各地指标的参考值。这是目前国内空气质量指标最具争议的两个指标。   据了解,修订仍处于征求意见阶段,新标准最终有可能在年底出台。   标准虽宽仍能保护公众健康   我国在1982年制定了《大气环境质量标准》,污染物项目只有6项。1996年进行了第一次修订,改名为《环境空气质量标准》,污染物项目扩大到了10项,此后,环保部又在2000年进行了局部修改,取消了氮氧化物指标,并放宽了二氧化氮和臭氧的标准。   此次修订最令人关注的问题之一,是增设了臭氧8小时平均浓度限值。   环保部《环境空气质量标准(征求意见稿)编制说明》(以下简称《说明》)中写道,以连续8小时最高浓度限值为主的臭氧的空气质量标准已成为世界各国臭氧环境空气质量发展的趋势,一小时的浓度限制已不能适应环境管理的需求。   此次修订将臭氧8小时的平均浓度限制二级标准设定为160微克/m3,该浓度限值在国际上虽然相对较宽,但基本上能够起到保护公共健康的作用。   根据《说明》,6到8小时暴露在臭氧浓度在120微克/m3以下存在健康危害。北京市2001年至2002年臭氧小时浓度在14.4-232微克/m3之间,平均为88.9微克/m3。   此前臭氧标准为1小时监测值   我国此前环境空气质量标准中,并非没有臭氧监测,但依据的是一小时的监测值,即一天中监测到的每小时最大臭氧浓度作为指标,但是,这个时间值无法反映长时间累积臭氧浓度给人体造成的慢性伤害。   “应该说,这是一个科学上的进步,更全面地考虑臭氧污染造成的效应。”北大环境科学与工程学院教授邵敏指出。他还表示,标准设立和信息公开是两回事。臭氧一小时监测值此前也列入了国家标准,但一直没有公开。   背景资料   可吸入颗粒物   PM2.5是指大气中直径小于或等于2.5微米的颗粒物,它的直径还不到人的头发丝粗细的1/20。目前,在城市空气质量日报或周报中的可吸入颗粒物标准为PM10,指直径等于或小于10微米,可以进入人的呼吸系统的颗粒物。   臭氧   是地球大气中一种微量气体,含有3个氧原子。虽然臭氧在平流层起到了保护人类与环境的重要作用,但若其在对流层浓度增加,则会对人体健康产生有害影响。臭氧对眼睛和呼吸道有刺激作用,对肺功能也有影响,较高浓度的臭氧对植物也是有害的。   焦点   可吸入颗粒物暂不实施更严标准   在此次修订标准中,首次列出了PM2.5,但是并非列入强制的统一标准,而是作为参考值供各地参考。   在我国当前很多城市,可吸入颗粒物是主要污染物,粒径小于等于10微米可吸入颗粒物叫PM10,粒径小于等于2.5微米的叫PM2.5。   “PM2.5更小,进入人体肺部的也就更多,”北大医学部公共卫生学院教授潘小川说,因为颗粒物上会附带有毒物质,当进入人体的颗粒物更多时,对人体各方面造成的伤害也更多。   研究显示,2004年至2006年期间,当北大观测点的PM2.5日均浓度增加时,约4公里以外的北大第三医院的心血管病急症患者数量也有所增加。   是否有PM2.5监测值,是我国环境空气质量标准与WHO准则和其他很多国家环境空气质量标准的首要差别,也是目前我国环境空气指标中最具争议的一块。我国目前的监测,只有PM10的颗粒物。虽然有多个城市和科研机构在做PM2.5的监测,但因为没有国家标准,就无法进行考核和公开。   而国际上主要发达国家均已制定了PM2.5的环境空气质量标准,亚洲的日本、泰国和印度也制定了该标准。   北京市环保局:地方任务将重得多   北京市环保局副局长杜少中说,一旦发布了PM2.5的标准,对各地政府环境考核和环保部门来说,将承担重得多的任务。   “北京环保局肯定会遵照国家标准来做,指标越多,压力肯定也越大。”杜少中说,“就像血压等人的健康指标一样,三项指标增加到四项了,合格的人也更少了,但要想健康,就应该锻炼身体,大气治理也是一样,改善空气质量,减排才是硬道理。”   据了解,北京市在空气治理上分了16个阶段,实施了200多项政策,是所有城市中政策实施最多的。北京市又从今年开始实施为期五年的“清洁空气行动计划”。但是,因为北京市独特的地理位置,城市经济快速发展,经济结构复杂,机动车保有量不断增长等原因,大气治理的任务依然非常艰巨,去年的“达标天”也仅占了 78%,一级天数仅为14.5%。   争议   “勿因不能达标就不实施”   对于PM2.5未列入强制的统一标准,公众环境研究中心主任马军(微博)说,“这挺令人失望的。”   根据环保部的《说明》,虽然PM2.5污染较重,全国113个重点城市2008年的年均浓度远高于世卫组织的准则值,但如果制定实施PM2.5环境空气质量标准,将大范围超标,此外,我国还缺少对PM2.5监测的基础,因此,从全国角度制定PM2.5的标准依然较早。   马军认为,“不能因为会大范围超标就不制定这个标准,标准的设置应该以是否会对人体健康造成损害而定。不能因为达不到标准就不公开这个标准。”   马军说,PM2.5的监测就中国的经济发展水平是可承受的,标准的设立涉及公众重要的环境知情权。“它可能会对数以亿计的人口造成潜在的很大的影响,这么严重的公众健康的影响,不能永远瞒着,应该告诉公众,我们存在这个问题,解释现在为什么达不到这个指标,五年解决不了的话,十年,二十年是否能解决。这是激发公众参与到环境保护的最大的动力。”   不过,北大医学部公共卫生学院教授潘小川则认为,“如果一个标准80%都会超标,那标准就没有意义了,设置标准要有经济和技术的可行性。当然从健康角度而言,指标越低越好。”
  • 车内空气质量标准为何难产
    车内空气标准六年难产   “本标准的实施,将对车内空气质量起到安全保障作用,能够保证车内乘员有一个安全的环境空间,不再受车内空气污染的困扰,对保护乘员安全和健康具有重要的环境效应。” 《车内空气中挥发性有机物浓度要求》(下称《要求》)编制组表示,这一标准的实施,还将对我国汽车业及汽车内饰行业的发展起到规范作用,促进相关企业的技术进步和可持续发展。   虽然《车内空气中挥发性有机物浓度要求》草案征求意见已过截止期,但这并不意味这一标准就能很快出台并实施。   车内空气污染这一“隐形杀手”引起各界关注,始发于2003年的一桩命案。   2002年8月,北京朱女士购买了一辆国产奥拓轿车,同年9月底发现身上有大量出血点,被医院确诊为重症再生障碍性贫血急性发作并接受治疗。2003年3月,朱女士因医治无效病逝。2004年4月,北京丰台区法院审理认为,原告认为再生障碍性贫血死亡为苯中毒所致证据不足,因此驳回了原告的诉讼请示。但法院同时认为,国家对车内空气质量未颁布标准,并为此向国家质监总局发出了司法建议书,建议尽早制定车内空气质量标准 同时建议将车内空气质量标准作为汽车制造业的强制性规定。   此后,车内空气污染问题受到国务院的高度重视。按照要求,原国家环保总局组织有关科研机构对车内空气污染问题进行了调查研究,并在2004年5月下达的文件中将《车内空气污染物浓度限值及测量方法》列入当年国家环保标准制修订计划,同年9月国家标准化管理委员会将该标准列入了《国家标准制(修)订计划〈车内空气污染物浓度限值及测量方法〉》。   自2006年至今,几乎每年都有消息称车内空气质量标准将出台,结果拖到现在也未能出台。   为何车内空气质量标准如此“难产”?   据有关专家介绍,目前国内外尚无关于车内空气污染控制的标准法规,需花费大量时间进行试验研究和验证。而汽车的使用环境和条件又变化太大,很难有一个具备可比性的内外部检测环境。   清华大学环境科学与工程系的郝吉明教授此前在接受采访时也表示:“制定车内空气质量标准存在技术难题。”   但技术难题似乎并不是标准“难产”的关键所在。据本报记者了解,早在2004年2月,原国家环保总局便委托有关机构开展了一系列车内空气污染状况的试验检测工作,最终编制出《车内挥发性有机物和醛酮类物质采样测定方法》,2007年12月7日发布, 2008年3月1日正式实施。这一测定方法的出台,被视为车内空气质量标准制定的第一步。   谁是第一责任方   第二步距离第一步有多远呢?   “本标准的编制涉及到病毒理、卫生学、国家汽车行业现状、汽车内饰供应商技术水平、国内外相关法规的协调一致等方面,所以制定本标准的难度较大,尤其是污染物项目选择及浓度限值的确定方面,既要考虑以人为本,保护消费者的健康,又要考虑汽车行业的实际技术水平,两者之间的协调统一较难把握。”《要求》编制说明中的这一表述,似乎泄露了标准难产的“天机”。   本报记者获悉,2008年5月,《要求》标准编制组主持召开了车内空气污染物卫生学专题讨论会议,相关专家对筛选拟控制物质提出建议 10月环保部科技标准司又召集了国内病毒理学专家,对拟控制的8种物质和限值进行了病毒理学分析,专家一致认为,所选择的挥发性有机物及浓度要求设置合理、可行 考虑到保护消费者健康的需要和当前汽车工业发展状况,8种控制物质限值应同时实施,不分阶段。   “我国汽车行业现状和内饰供应商技术水平才是问题的关键。”某业内人士直言不讳。   据了解,车内空气质量状况与车辆制造工艺和零部件种类有直接关系,影响较大的有汽车仪表台板、门内饰板、地毯、顶棚、汽车线束、座椅总成等。车内空气污染主要原因在于,汽车生产企业和装饰企业在设计、生产汽车和提供汽车装饰服务时,不断提高车厢密闭性,使车内空气污染物更容易聚积而产生污染 部分企业为降低成本,采用一些质量不高甚至对人体健康有害的劣质材料,加剧了车内空气污染。   标准编制组表示,车内空气质量的“祸根”一般是在车辆生产过程中种下的,在汽车使用过程中已经很难消除,而且汽车消费者一般也不可能具备这方面的专业知识和技术能力,“汽车生产企业应对车内污染治理承担第一责任。”   专家认为,汽车生产企业应对车内各种污染物的来源进行定量分析,找到污染物的发生源,有针对性地采取替换、升级等技术措施。零部件生产企业应根据汽车企业治理污染的要求,选择适当原材料,改进生产工艺。同时,汽车和零部件生产企业都应逐步建立和完善对产品挥发性有机物的检测、监控体系。   《要求》何时出台目前尚无准确消息,但据知情人士透露,该标准属于国家环保总局“十一五”期间需要修订的环保标准之一。2010是“十一五”的最后一年,今年能否顺利出台车内空气质量国家标准,也许还要看政府的决心,以及各利益方博弈的结果。
  • 解读环境空气自动监测标准 分指标设计传递体系
    p & nbsp & nbsp & nbsp & nbsp 环境保护部日前印发《环境空气自动监测标准传递管理规定(试行)》(以下简称《规定》)。为什么要出台《规定》,其主要内容是什么,有什么意义?环境保护部监测司相关负责人对此进行了深入解读。    /p p strong 自动监测标准传递工作亟待健全完善 /strong    /p p & nbsp & nbsp & nbsp & nbsp 与手工监测相比,环境空气自动监测起步较晚,但发展快,质量管理体系建设有待健全和完善,各国控站点对环境空气自动监测标准传递工作急需加强。    /p p & nbsp & nbsp & nbsp & nbsp 一是环保系统需要建立全国统一的臭氧溯源和传递体系。由于各SRP量值校准方法、技术要求以及实验室质量控制等缺少统一标准和管理规定,影响了臭氧监测数据的一致性。因此急需建立全国环保系统的统一且规范的臭氧标准传递体系。    /p p & nbsp & nbsp & nbsp & nbsp 二是颗粒物标准传递工作急需加强。颗粒物(PM10和PM2.5)国控环境空气自动监测事权上收至国家后,中国环境监测总站委托社会运维机构负责国控站点的运维 “十三五”期间,环境保护部还将依托部分技术能力强的省级环境监测站组建区域质控实验室,形成国家—区域—运维机构三级质控体系。因此,颗粒物手工采样器标准传递体系和传递工作程序均需进一步健全和强化。另一方面,颗粒物采样滤膜材质不统一,应加强质量核查和评估,确保颗粒物自动监测数据的溯源性和可比性。    /p p & nbsp & nbsp & nbsp & nbsp 三是标准气体质量存在差异。在环境空气气态污染物(SO2、NO2和CO)自动监测中,需使用标准气体对自动监测仪器进行定期校准。目前,国内标准气体制备机构较多、标准气体种类繁杂,个别标准气体量值存在偏差,应加强对标准气体及其标准传递工作符合性的质量核查。    /p p strong 进一步推动环境空气自动监测规范化管理   /strong   /p p & nbsp & nbsp & nbsp & nbsp 一是履行政府职责,完善现有标准传递体系的客观需求。《规定》的出台,完善了环境空气自动监测标准传递体系,为规范环境空气自动监测标准传递提供了制度依据,从而使环境空气自动监测标准传递工作有章可循,依规管理。    /p p & nbsp & nbsp & nbsp & nbsp 二是落实《“十三五”环境监测质量管理工作方案》(以下简称《方案》)的迫切需要。2016年11月,环境保护部印发了《方案》。《方案》中提出构建国家—区域—运维机构三级质控体系,建设环境空气自动监测量值溯源和传递体系,建成臭氧自动监测量值溯源传递体系,健全颗粒物手工监测比对体系,完善SO2等常规气态污染物的标准传递体系等,并明确2017年底完成所有国控站点的颗粒物监测手工比对、臭氧量值溯源和传递的工作目标。《规定》的出台,是细化、落实《方案》的具体举措,将进一步推动环境空气自动监测的规范化管理。 /p p strong 分指标设计不同的传递体系 /strong    /p p & nbsp & nbsp & nbsp & nbsp 《规定》按照不同监测指标,遵循标准传递原理,设计了3个环境空气自动监测标准传递体系。    /p p & nbsp & nbsp & nbsp & nbsp (一)颗粒物(PM10和PM2.5)标准传递体系    /p p & nbsp & nbsp & nbsp & nbsp 建立基于手工与自动监测比对的颗粒物比对平台,是实现颗粒物自动监测结果溯源的基础。颗粒物比对平台由颗粒物一级比对平台(国家级)、二级比对平台(区域级)和三级比对平台(运维机构)组成。    /p p & nbsp & nbsp & nbsp & nbsp 颗粒物标准传递体系由两部分组成,即颗粒物手工采样器标准传递体系和颗粒物自动监测仪器标准传递。其中,颗粒物手工采样器标准传递体系对应比对平台分成三级,采取逐级比对的方式进行传递。颗粒物自动监测仪器标准传递是各级比对平台均需具备的标准传递能力,将参比方法通过比对方式传递至各个环境空气自动监测仪器。    /p p & nbsp & nbsp & nbsp & nbsp (二)臭氧标准传递体系    /p p & nbsp & nbsp & nbsp & nbsp 我国臭氧标准传递体系由臭氧一级标准(监测总站和标样所的SRP)、臭氧二级标准、臭氧传递标准(控制标准和传递标准)、臭氧工作标准和臭氧分析仪5部分组成,臭氧一级标准采用逐级或跨级传递至臭氧分析仪。    /p p & nbsp & nbsp & nbsp & nbsp (三)气态污染物(SO2、NO2、CO)标准传递体系    /p p & nbsp & nbsp & nbsp & nbsp 为确保标准气体质量,《规定》要求环境保护部标准样品研究所定期对各国控空气站在用标准气体标准传递符合性进行质量检查。    /p p strong 明确职责分工和监督检查机制 /strong    /p p & nbsp & nbsp & nbsp & nbsp 《规定》确定了空气自动监测标准传递体系的组织架构、职责分工,标准传递的工作程序、工作要求和监督检查内容。    /p p & nbsp & nbsp & nbsp & nbsp (一)明确责任机构。确定了环境保护部对环境空气自动监测标准传递工作实施统一管理,明确了三级标准传递机构的组成,其中一级标准传递机构由监测总站和标样所组成,区域质控实验室为二级标准传递机构,空气自动监测站运维机构为三级标准传递机构。    /p p & nbsp & nbsp & nbsp & nbsp (二)细化工作职责。环境保护部负责组织建设一级、二级标准传递机构,建立标准传递技术体系,开展标准传递工作的监督、检查和考核工作。监测总站承担一级标准传递机构能力建设,包括建立颗粒物(PM10和PM2.5)一级比对平台和臭氧一级标准,为标准传递工作提供技术支持,承担技术培训和考核工作。标样所负责建立臭氧一级标准,为臭氧标准传递和标准物质、标准样品提供技术支持,开展环境空气自动监测在用标准气体标准传递工作符合性的质量检查。区域质控实验室负责二级标准传递机构能力建设,向下级标准传递机构进行颗粒物手工采样器和臭氧标准传递工作,承担监测总站组织的区域环境空气自动监测标准传递的质量检查工作。运维机构承担三级标准传递机构能力建设,负责三级标准传递机构标准传递工作。    /p p & nbsp & nbsp & nbsp & nbsp (三)构建体系架构。确定了颗粒物(PM10和PM2.5)标准传递体系、臭氧标准传递体系和其他气态污染物标准传递体系架构以及与各级标准传递机构对应的关系。其中颗粒物(PM10和PM2.5)一级比对平台的手工采样器作为环境保护系统一级标准。通过颗粒物(PM10和PM2.5)一级比对平台传递确认的二级比对平台的手工采样器作为环境保护系统二级标准。通过颗粒物(PM10和PM2.5)二级比对平台传递确认的三级比对平台的手工采样器作为环境保护系统三级标准 对于臭氧传递,监测总站和标样所的臭氧标准参考光度计(SRP)作为环境保护系统臭氧一级标准,区域实验室SRP作为环境保护系统区域级臭氧标准,运维机构通过国控站点配备使用的臭氧校准仪、多气体动态校准仪等装置,将臭氧传递标准传递至臭氧分析仪。    /p p & nbsp & nbsp & nbsp & nbsp (四)规范工作程序。按照各级标准传递机构职责,遵循标准传递原理,规定了颗粒物、臭氧和气态污染物标准传递工作程序。一是一、二级标准传递机构应向下级标准传递机构每年至少开展一次颗粒物(PM10和PM2.5)手工采样器的比对工作。三级标准传递机构应每两年至少开展一次颗粒物(PM10和PM2.5)自动监测仪器标准传递工作。监测总站应每年组织开展一次在用手工采样器和采样滤膜的质量检查。二是将臭氧一级标准每年拿到中国计量科学研究院进行比对,监测总站每年组织一次环境保护系统内臭氧标准传递工作。三级标准传递机构配置两台或两台以上臭氧校准仪等,每年由臭氧一级或二级标准校准一次。三是标样所每年组织开展一次环境空气自动监测在用标准气体标准传递工作符合性的质量检查。   /p p & nbsp & nbsp & nbsp & nbsp (五)明确工作要求。一是要求各级标准传递机构制定标准传递计划并如期实施。二是要求属于强制检定的计量器具必须按照相关管理办法要求,送至有资质的计量部门检定。非强制检定的计量器具,可选择送至计量部门校准,或开展标准传递。三是要求各级标准传递机构开展标准传递时,使用的计量器具经过溯源,使用的标准气体为国家依法批准的有证标准物质或标准样品,并在有效期内使用。四是要求各级标准传递机构每年向上级标准传递机构提交工作报告,一级标准传递机构向环境保护部提交报告。   & nbsp & nbsp & nbsp & nbsp /p p & nbsp & nbsp & nbsp & nbsp (六)落实监督检查。一、二级标准传递机构按照各自职责开展环境空气自动监测标准传递质量检查工作,检查结果上报环境保护部。对标准传递工作中的违法违规行为,由相关部门按照相关法律、法规和国家有关规定予以处理。 /p
  • 车内空气污染案例频发暴露标准缺位
    由于甲醛兴风作浪,我国消费者对于室内空气污染有了相对足够的重视,但是在车厢这一狭小的空间内,同样存在大量有害气体。由汽车内空气质量引发的健康问题屡见不鲜,而系列车内空气检测的数据更是触目惊心,频发的车内污染案例彰显出国家标准的明显缺位。   车内空气检测数据触目惊心   记者日前从内蒙古自治区消费者协会获悉,该协会2009年底公布的一份“汽车空气检验情况报告”显示,在抽查的29辆汽车中只有奥迪A4\A6等八个品牌汽车的室内空气符合标准,其余21辆不同品牌的汽车室内空气均存在甲醛超标和总挥发性有机化合物(TVOC)含量不符合要求的问题。   据了解,这项针对呼和浩特市市场上销售的不同品牌汽车车内空气质量的检测活动,由内蒙古自治区石油化学工业检验测试所实施,检测项目为甲醛、苯、氨、TVOC等四个,检测的标准参照GB/T18883-2002《室内空气质量标准》检测结果表明:72%以上的新汽车存在不同程度的超标问题,其中以甲醛的超标现象最为严重,大多数被测新车车内空气中所含的甲醛含量都超过室内甲醛国标限量值。   实际上,随着我国经济的发展和人民生活水平的不断提高,在汽车增加和高档装饰盛行的同时,车内空气质量问题并未受到足够的重视,但这一问题却逐渐显露出来。   类似的检测数据已经多次显示出近似的结果。相关资料显示,2009年1月,广东参照室内空气质量标准检测的60款车型中,有50款存在不同程度的污染。而上海有关机构抽查的100辆轿车中只有17辆达到国家室内标准,八成以上的轿车内可吸入颗粒物超标,最严重的超过国家室内标准七倍。   污染源主要来自内饰材料   据专业机构的调查显示,车内空气中挥发性有机物的成分较为复杂,有几百种之多,包括烃类、醛类、酮类物质等。主要受到关注的是甲醛、苯、甲苯、二甲苯、乙苯等几种。   “特别是甲醛对婴幼儿和妇女特别敏感。由于很多消费者买新车是因为结婚,然后生小孩,因此车内空气很大一部分是针对敏感性人群,这样的社会危害就相对更大。”国内知名汽车行业分析师贾新光在接受记者采访时表示。   贾新光表示,室内空气污染主要是装修污染,原因之一是使用劣质装修材料,污染的主要特点就是甲醛含量高,与此相类似,车内空气的污染源也源于类似的因素。   专家表示,车内空气污染问题成因比较简单,主要是汽车内饰材料释放的挥发性有机物。车内空气质量状况与车辆制造工艺和零部件种类有直接关系,影响较大的主要为汽车仪表台板、门内饰板、地毯、顶棚、汽车线束、座椅总成等。   仅以汽车的内饰构造而言,主要以皮质、纤维和各种工程塑料(12085,-25.00,-0.21%)组成,而这些材料在生产时便需要使用到甲醛、苯等有害物质。有着完善质量管理系统的企业会在内饰组件出厂前进行一轮“消毒”处理,但碍于成本,并不是所有零件配套企业都会做足“消毒”的功夫。同时,车内装饰物如毛绒玩具、塑料地毯等是造成二次污染的主要来源。   车内污染案例频发   “有关标准得到重视的起因,是有车主得了白血病,但最终官司却没有打赢,法院不支持的理由是没有证据。”贾新光向记者表示。   记者了解到,2002年8月,北京朱女士购买了一辆国产奥拓轿车,同年9月底发现身上有大量出血点,被医院确诊为重症再生障碍性贫血急性发作并接受治疗。2003年3月,朱女士因医治无效病逝。2004年4月,北京丰台区法院审理认为,原告认为再生障碍性贫血死亡为苯中毒所致证据不足,因此驳回了原告的诉讼请示。   自2003年以来,因车内空气污染引起的法律纠纷开始增多,除了“奥拓车苯超标引发死亡赔偿纠纷案”外,还包括“道奇公羊车甲醛超标案”、“奇瑞QQ疑致儿童白血病案”、“ 新甲壳虫甲醛超标三倍”、“中华轿车六年后甲醛仍超标4.4倍”等事件。   记者了解到,由于国内外没有适用的车内空气污染物控制标准,一些企业对车内空气污染没有引起足够的重视,且并未采取相应的措施。在发生相关诉讼案件时,司法机关和有关部门由于没有车内污染物判定标准,无法对消费者权益实施有效的保护,也无法约束企业的生产活动。   发生在2003年的那场命案中,虽然法院认为,原告的再生障碍性贫血死亡为苯中毒所致的证据不足,但由于存在没有车内空气质量标准的问题,法院为此向国家质监总局发出了司法建议书,建议尽早制定车内空气质量标准,同时建议将车内空气质量标准作为汽车制造业的强制性规定。   相关标准制定迫在眉睫   据中国汽车工业协会最新统计表明,2009年,我国汽车产销达1379.10万辆和1364.48万辆,同比增长48.30%和46.15%。其中乘用车产销1038.38万辆和1033.13万辆,同比增长54.11%和52.93% 商用车产销340.72万辆和331.35万辆,同比增长33.02%和28.39%。2009年,我国成为全球主要的汽车消费市场。中国汽车工业协会预计,2010年,我国全年汽车产量增速在10%左右,有望达到1500万辆。   环保部相关专家根据相关调研的结果表示,汽车的大量使用造成了两方面不容忽视的环境问题,一方面是汽车排放的大气污染物和噪声对车外环境的污染,另一方面就是车体材料释放有害物质造成的车内环境污染。   对汽车排放造成的环境污染,国家已经制定并发布了一系列汽车大气污染物和噪声排放标准,并实施了型式核准、生产一致性检查和在用车排放检查制度,对控制汽车污染发挥了重要作用。而对车内环境污染,国家尚未制定控制标准和采取污染治理措施。   业内人士认为,随着汽车进入家庭步伐的加快,车内空气污染问题会越来越受到关注,相关国家标准的制定和颁布已经显得较为迫切。
  • 一大波空气检测新标准来袭!这些仪器请就位
    近日,小编从生态环境部了解到多个环境检测新标准即将实施,特地选取了环境空气相关的标准分享给大家,帮助众多环境领域用户了解新标准概况及涉及到的仪器品类和检测方法。接下来,就让小编带领大家一起看下吧~一、空气检测新标准1、HJ 1261-2022 固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法实施日期:2023年1月15日标准说明:本标准为首次发布。本标准规定了测定固定污染源废气中苯系物的气袋采样/直接进样气相色谱法。检测项目:苯系物(苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯)所需仪器:气相色谱仪、自动稀释系统、气体采样器/大气采样器等。2、HJ 1262-2022 环境空气和废气 臭气的测定 三点比较式臭袋法实施日期:2023年1月15日标准说明:自HJ 1262-2022标准实施之日起,原国家环境保护总局1993 年 9 月 18 日批准发布的《空气质量 恶臭的测定三点比较式臭袋法》(GB/T 14675-93)在相应的国家生态环境标准实施中停止执行。本标准规定了测定环境空气及各类恶臭污染源(包括水域)以不同形式排放的臭气的三点比较式臭袋法。本标准适用于环境空气、无组织排放监控点空气和固定污染源废气样品中臭气的测定。本标准测定方法是嗅觉器官测定法,不受臭气物质种类、种类数目、浓度范围及所含成分浓度比例的限制。检测项目:臭气所需仪器:分析天平、真空泵、空气压缩机等。3、HJ 1263-2022 环境空气 总悬浮颗粒物的测定 重量法实施日期:2023年1月15日标准说明:自HJ 1263-2022标准实施之日起,原国家环境保护总局1995 年 3 月 25 日批准发布的GB/T 15432-1995《环境空气 总悬浮颗粒物的测定 重量法》在相应的国家生态环境标准实施中停止执行。本标准规定了测定环境空气中总悬浮颗粒物的重量法。本标准适用于使用大流量或中流量采样器进行环境空气中总悬浮颗粒物浓度的手工测定,同时适用于无组织排放监控点空气中总悬浮颗粒物浓度的手工测定。检测项目:总悬浮颗粒物所需仪器:大气采样器、分析天平、恒温恒湿箱等。4、HJ 1270-2022 环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法实施日期:2023年6月15日标准说明:本标准为首次发布。本标准规定了测定环境空气中多溴二苯醚的高分辨气相色谱-高分辨质谱法。本标准适用于环境空气气相和颗粒相中26种多溴二苯醚的测定。检测项目:26种多溴二苯醚分别为:BDE 7、BDE 15、BDE 17、BDE 28、BDE 47、BDE 49、BDE 66、BDE 71、BDE 77、BDE 85、BDE 99、BDE 100、BDE 119、BDE 126、BDE 138、BDE 153、BDE 154、BDE 156、BDE 175/183、BDE 184、BDE 191、BDE 196、BDE 197、BDE 206、BDE 207和BDE 209所需仪器:大气采样器、高分辨气质联用仪、索氏提取器、快速溶剂萃取仪、旋转蒸发仪、氮吹浓缩仪等。5、HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法实施日期:2023年6月15日标准说明:本标准为首次发布。本标准适用于环境空气和无组织排放监控点空气颗粒物中甲酸、乙酸和乙二酸的测定。检测项目:甲酸、乙酸、乙二酸所需仪器:颗粒物采样器、离子色谱仪、超声波清洗器等。6、HJ 759-2023 环境空气 63种挥发性有机物的测定 罐采样/气相色谱-质谱法实施日期:2023年8月1日标准说明:本标准自实施之日起,《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759-2015)废止。本标准规定了测定环境空气和无组织排放监控点空气中 65 种挥发性有机物的罐采样/气相色谱-质谱法。本标准适用于环境空气和无组织排放监控点空气中 65 种挥发性有机物的测定。检测项目:挥发性有机物所需仪器:采样罐、气体流量计、气质联用仪、气体稀释装置、气体浓缩仪等。除了上述仪器,小编了解到还有很多【环境监测仪器】以及【实验室常用设备】在环境检测实验中会经常用到,感兴趣的用户,可点击查看。更多仪器种类,请访问【仪器优选】。二、空气检测相关解决方案1、离子色谱法测定环境空气颗粒物中甲酸、乙酸、乙二酸方案简介:本文建立了一种使用离子色谱法测定环境空气颗粒物中甲酸、乙酸、乙二酸的方法。参考2021年版《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法(征求意见稿)》标准,用IC-16进行定性定量分析。结果显示甲酸、乙酸和乙二酸线性良好,标准曲线相关系数均≥0.995;低中高浓度混标溶液连续分析6次,保留时间RSD≤0.032%,峰面积的RSD≤1.587%;低中高浓度加标样品回收率在93.1%~107.0%之间,相对标准偏差<0.620%,方法准确可靠。该方法重现性好,灵敏度高,可用于环境空气 颗粒物中甲酸、乙酸、乙二酸的测定。使用仪器:岛津离子色谱仪Essentia IC-162、天美赛里安气相色谱仪在空气检测的应用——热脱附-气相色谱法(TD-GC)测定空气中的苯系物方案简介:本应用采用GC456i气相色谱仪搭配热脱附进行测试,符合国家标准要求,该方法配置合理,线性良好。使用仪器:天美公司赛里安456i气相色谱仪3、环境空气中二噁英类检测方案简介:二噁英类剧毒物质通常指具有相似结构和理化特性的一组多氯取代的平面芳烃类化合物,属氯代含氧三环芳烃类化合物,包括75 种多氯代二苯并一对一二噁英和135种多氯代二苯并呋哺,缩写分别PCDDs/PCDFs。人类可能因摄取被污染食物,不断地将二噁英类物质富集在人体脂肪中,最终对人体产生严重影响。使用仪器:睿科HPFE高通量加压流体萃取仪4、罐采样-气相色谱质谱法检测环境空气中挥发性有机物方案简介:挥发性有机物(简称VOCs)是空气中非常重要的一类污染物,能够形成二次气溶胶,是PM2.5和臭氧的重要前体物。HJ759-2015是非常重要的实验室环境空气中VOCs的检测方法,能够有效解决国内环境空气中VOCs检测难题。标准更新征求意见稿中扩宽了符合方法标准的预浓缩仪类型,细化了采样和分析中的技术细节,使得方法更具有普遍适用性和专业性。本文主要针对2021年3月15日生态环境部发出的《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法(征求意见稿)》(简称HJ759修订稿)进行仪器适用性评价。使用仪器:赛默飞ISQ™ 7000单四极杆GC-MS三、关于导购平台【仪器优选】作为专业性及影响力兼具的国内一线科学仪器导购平台,囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等15大类仪器,1000+个仪器品类,收录20万+台优质仪器。其核心宗旨是帮助仪器用户快速找到优质靠谱的仪器。经过多年的持续建设,平台实现了可以同时从价格、品牌、行业、口碑、产品横向对比等多维度快速查找仪器产品的功能,助力千万级用户轻松找到靠谱仪器。【行业应用】是仪器信息网专业的行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、制药、环境、农/林/牧/渔、石化、汽车、建筑、医疗/卫生等二十余个行业领域。目前,已经收录行业解决方案6万+篇。四、空气检测新标准采购节马上开启仪器信息网围绕2023年实施的一系列空气检测新标准,特于2023年3月底举办【空气检测新标准采购节】活动。活动将邀请相关专家及知名仪器厂商为行业用户带来新标准解析,同时,联合各优质厂商助力空气检测仪器选型。敬请期待!
  • 空气质量标准将修订为国家强制性标准
    中国工程院院士侯立安在北京透露,中国国家环保部和国家标准委下达2014年标准修订计划,决定将2012年3月1日实施的推荐性标准《乘用车内空气质量评价指南》修订为强制性标准。   这个标准如何强制执行,对于消费者来讲是个莫大的好事,对于行业来讲,历经高速发展这么多年,也算是一种进步的体现。   当然,强制执行的过程中,对于目前存在问题多家汽车制造商或许会带来成本、库存时间等方面的压力,综合来看,跟上整个行业的步伐,避免被空气质量这样的门槛排除在外,长久来看,对于任何一家汽车制造商来讲,也都是好事,在此谈三点内容。   第一、强制执行标准对消费者有利。   中国车市下&ldquo 消费者是弱势群体&rdquo 仍是不争事实、需改观,但是你要让消费者主动去维权,个体消费者一方面能力和影响力有限,未必能够抗衡汽车制造商和汽车经销商。另外一个方面,作为个体的维权成本太高,维权时间有限,也很难凑效,整个过程来讲,消费者只能去寻求一只另外的力量去改善这种状态。   我们也能够发现,汽车制造商在赚取利润的过程中,对于消费者的诉求并没有太多的保证,我们看到了消费者关于汽车维权案例层出不穷,有很多种规则原本就是行业中普遍存在的一种弊病,消费者反复申诉都没有相应的回应,这种事情如果已经成为普遍存在的问题,就需要政府方面或者第三方能够站起来,为消费者进行维权。   空气质量问题前几年就被公布出来,多家汽车制造商为了能够降低成本,在进行产品集成的过程中使用低成本、挥发有害气体的材料,并没有受到相应的惩处,这样的情况下,根据资本的趋利性,这种产品的应用会逐步泛滥,这个时候,我们还去谈所谓的汽车大国、汽车强国,连消费者消费过程中的自身健康都不能实现,显得滑稽可笑了。   当然,作为强制执行的标准,或许我们还未能够完善,对每一样有害挥发物都进行标定对比,但是这是好的开端,对于消费者最为关注的几个问题进行逐步的完善,这是一种进步,值得称赞。   第二、主动迎合标准能够让车企受益。   谈到汽车车内空气质量标准的问题,很多人第一反应就是汽车制造商的挑战是不是更大了?这种情况确实存在,包括汽车成本可能有一定程度的增加,汽车检测的难度也会增大,但是从趋势上来讲,这种鞭策的强制标准,更有助于行业的发展。   车市竞争加剧、多思考为消费者做事情有利自身发展,前段时间看到汽车制造商的广告,不列出这家汽车制造商的品牌名称,只是它们多次提到了自己的空气质量如何好的问题,这原本应该是入门级别的质量要求,因为其它家做的不好,就成了它们的优点了,事实上如果有一家或者几家在这个方面做得好的话,对于处于同一平台竞争的汽车制造商来讲,就显得非常不利了。   很多事情是个悖论,比如去年很多汽车媒体谈到的福特汽车在车展过程中遇到的维权问题,以及杭州多家媒体曝光的问题车展等情况,这些可能都是属于一种极端情况,或许解决这些问题只需要花费很少的资金,在设计的过程中只需要增加一点点的成本,但是如果这些问题走上了台面,意味着花费巨大的资金去填补这个漏洞都很难恢复。   可能很多人会想,有没有防患于未然的策略,当然有,就是我们在进行标准制定的时候,充分考虑到这些问题,制定公平的规则,然后合理的执行下去,这样那些极端问题就不会出现,即便出来了有违规则的极端维权事情,在媒体上也未必站得住脚。   所以,我们主动去迎合一些标准,主动作出对于消费者有利的事情来,或许并不需要太多精力、太多成本,这些细节可能铸就了汽车制造商在消费者心目中的位置,也决定了自己有没有饭吃。   第三、多方相互促进消除&ldquo 不良潜规则&rdquo 有着行业发展。   对于很多新车购买者来讲,都一个困境,就是如何避免自己和家人受到新车有害空气的危害,可能在购车之后,弄一堆&ldquo 碳包&rdquo 放在车里吸取甲醛等有害身体的气味,这些措施有可能是亲友告知的,也有可能是销售顾问提的的建议,甚至很多经销商出售碳包给新车车主用来进行吸附有害新车气体挥发物,这个时候来讲,新车有害气体挥发物已经成为经销商和消费者心知肚明的&ldquo 潜规则&rdquo 。   检测机构也发布相关的数据:中国室内环境监测中心对车内空气污染问题调查显示,随机抽检了100辆轿车,发现90%存在车内空气污染 汽车环境专业委员会调查发现,在接受测试的1175辆汽车中,全部检测项目均达到标准的车辆仅为52辆,占已测总数的6.18%。&ldquo 3· 15&rdquo 前夕,国家质检总局发布了过去一年里消费者有关汽车产品质量的投诉,新车车内空气质量是投诉的四大焦点问题之一。   不管这个时候很多人可能会质疑,这个问题能不能解决?这个问题既然大家都知道为什么没有解决?   事实上,这些年,由于汽车快速发展,我们发展过程中出现了很多问题,此前或许是关注度太低,或许是其它方面的原因,这些潜在的问题并没有受到重视,但是现在这些问题暴露在阳光下之后,就需要给予解决。   最可能有效的方式,是行业协会或者政府监管机构给予建设构架,然后汽车经销商、汽车制造商等在这个过程中有所作为,共同为行业的进步,为消费者的身体健康做点事情,这些才是我们整个事情的出发点。
  • 环境空气质量评价技术规范等两项环保标准发布
    为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,规范环境空气质量监测和评价工作,环境保护部批准《环境空气质量评价技术规范(试行)》等两项标准为国家环境保护标准,并予发布。   标准名称、编号如下:   一、环境空气质量评价技术规范(试行)(HJ 663-2013);   为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,加强环境空气质量的管理,保护和改善生态环境,保障人体健康,规范环境空气质量评价工作,保证环境空气质量评价结果的统一性和可比性,制定本标准。本标准规定了环境空气质量评价的范围、评价时段、评价项目、评价方法及数据统计方法等内容。本标准附录A和附录B为规范性附录,附录C为资料性附录。本标准为首次发布,将根据国家经济社会发展状况和环境保护要求适时修订。   二、环境空气质量监测点位布设技术规范(试行)(HJ 664-2013)。   为贯彻《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》,加强空气污染防治,规范环境空气质量监测工作,制定本标准。本标准规定了环境空气质量监测点位布设原则和要求、环境空气质量监测点位布设数量、环境空气质量监测点位开展监测项目等内容。本标准附录A和附录B为规范性附录。本标准为首次发布,将根据国家经济社会发展状况和环境保护要求适时修订。   以上标准自2013年10月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。
  • 华爱参与起草的标准《工业园区空气污染自动监测技术指南》实施
    由华爱色谱参与起草的标准T/SHAEPI007-2023《工业园区空气污染自动监测技术指南》2023年7月1日正式实施。该标准规定了工业园区空气污染自动监测的监测体系、数据审核、数据统计、污染预警、评价的要求。适用于工业园区或生态环境管理部门对工业园区及周边环境敏感目标开展空气污染自动监测、预警、分析和评价。园区包括石化、化工、工业涂装、包装印刷等涉挥发性有机物(VOCs)排放的工业园区,以及其他涉氮氧化物和颗粒物排放量较大的工业园区,其他涉挥发性有机物(VOCs)排放或异味污染突出的工业园区和产业集群,生产或大量使用消耗臭氧层物质(ODS)、氢氟碳化物(HFCs)的企业或园区的相关监测工作可参照执行。
  • 重磅!环境空气中65种挥发性有机物测定HJ 759标准换新啦!
    导读挥发性有机物(VOCs)是PM2.5和臭氧污染的重要前体物。‘十四五’规划纲要明确要推进PM2.5和臭氧的协同控制,提出加快VOCs排放综合整治。新形势下的蓝天保卫战迫切需要全面加强VOCs的综合治理,生态环境部于2023年2月9日发布了HJ 759-2023《环境空气 65种挥发性有机物的测定 罐采样/气相色谱-质谱法》(以下简称新标准),并将于2023年8月1日正式实施。新标准解读新标准与旧标准HJ 759-2015相比,扩展了适用范围,增加了无组织排放监控点空气中VOCs的测定。新标准中目标化合物删除了甲硫醇和甲硫醚2种组分,增加了气体浓缩仪的种类,增加了SIM扫描方式及此模式下的方法性能指标,还增加了对标准使用气的加湿要求和绘制校准曲线中标准使用气浓度(详见表1)。兼容不同浓缩仪,全方位应对新标准1方案优势一与国家环境分析测试中心合作,开展HJ 759-2023新标准的验证,岛津方案满足新标准的需求。从2017年年底生态环境部印发《2018年重点地区环境空气挥发性有机物监测方案》,岛津就开始着手开发环境空气VOCs的检测方案,在环境空气VOCs检测方面我们起步早、并且积累了丰富的经验。方案采用岛津的GCMS-QP2020 NX气相色谱质谱仪分别结合液氮型气体浓缩仪、非液氮型气体浓缩仪,配置2罐标准使用气,分别进行了Scan模式和SIM模式采集方法的建立,方法均满足新标准的需求。图1. 65种VOCs总离子流图(2.5 nmol/mol)图2. 部分VOCs校准曲线(SIM模式)图3. GCMS-QP2020 NX2方案优势二GCMS-QP2020 NX具有良好的兼容性,可以和不同类型的气体浓缩仪联用。岛津GCMS-QP2020 NX 气相色谱质谱仪搭载全新超强高效涡轮分子泵,抽速可达400 L/s,可以短时间实现高真空,助力用户高效分析。图4. 涡轮分子泵同时GCMS-QP2020 NX 具有良好的兼容性,可以和不同类型的气体浓缩仪(液氮制冷型、电子制冷型、吸附剂型)进行联机,满足用户使用不同类型气体浓缩仪测试VOCs的分析需求。多方案可选,提供定制化方案除了HJ 759-2023环境空气65种VOCs检测方案,岛津还提供其他离线+在线环境空气VOCs检测方案,满足不同用户差异化VOCs检测需求。多方案可选,总有一款适合您!无论是在线VOCs检测方案,还是离线VOCs检测方案,我们都可以提供一针进样同时分析117种VOCs的方案。方案可以有效提高实验室的工作效率,节省时间精力和财力成本,降本增效。用户心声 国家环境分析测试中心,HJ 759-2023新标准内部验证现场国家环境分析测试中心老师表示:2018年初,我们与岛津在环境空气VOCs检测方面开展了合作,先后共同开发了116种、104种环境空气VOCs检测方法,同时研究了甲醛GCMS检测技术。随后我们与岛津又开展了环境空气中消耗臭氧层物质(ODS)检测的合作。岛津的GCMS产品皮实耐用,在长期使用过程中性能表现优异。期待今后与岛津继续合作开展环境领域有机污染物的检测。结语大气中挥发性有机物(VOCs)是形成臭氧污染的重要前体物,是生成光化学烟雾污染物的主要前体物,也是大气细颗粒物中有毒有害有机组分的重要来源。随着我国大气污染控制的不断深化,VOCs成为继颗粒物、二氧化硫、氮氧化物之后,大气污染控制中又一新关注点。岛津一直聚焦环境监测领域的创新产品研发和应用方案,积极助力相关部门开展“科学治污、精准治污、依法治污”,让我们共同携手打好蓝天保卫战!撰稿人:杜世娟本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士sshqll@shimadzu.com.cn
  • 车内空气质量标准:强制还是推荐?
    中汽协反对强制性“标准”   环保部《车内空气中挥发性有机物浓度要求》(下简称《要求》)征求意见稿的封面代号让中国汽车工业协会(下称中汽协)有些不舒服。   在这份草案的封面,抬头部分有“中华人民共和国国家标准GB□□□□—20□□”的字样,虽然标准号和日期仍虚位以待,但带有强制性的“GB”代号,却似乎让中汽协难以接受(GB指国家标准,GB/T指推荐性国家标准)。   中国经济时报记者获悉,2009年12月28日,在征求意见截止日期前夕,中汽协秘书处向环保部正式提交了意见书,并同时抄报给了国家发改委和工信部。   “标准草案在前言中明确说明了本标准是自愿采用的,编写工作组也建议这个标准属推荐性的,但标准草案的封面代号却是强制性标准代号,这显然是矛盾的。”中汽协方面表示,“我们认为本标准不具备作为强制性标准的基础,改为推荐性行业标准更稳妥一些。”其依据在于:欧盟及美、日等汽车工业大国,对人的健康和环境保护十分重视,但任何一个政府均没有制定车内空气质量控制的技术法规,有关的标准组织也没有规定国际标准和国家标准,甚至都没有制定相关的行业标准 世界卫生组织虽然有对建筑物内的空气质量要求,但也没有对车内空气质量要求。   对于《要求》草案中把车内空气浓度与室内空气“挂钩”,中汽协表示了强烈的不满。   “汽车的空间、使用温度和环境、使用状况、车内所用材料与房屋建筑有极大差异,人在这两个不同空间每天停留的频次、时间段和累计时间也不同,即使有机物浓度相同,吸入的总量也不同。” 中汽协技术部认为,“简单等同并采用室内要求的限值或与室内限值有明显差异都是欠妥当的。”   “本标准的主要控制要素,参考了国际上的相关室内标准,目前制定的车内污染物标准相对室内标准,基本上处于上限水平。”《要求》编制组就此解释说,这主要是由于车内空间相对狭小,污染物相对不容易扩散,而乘员在车内滞留时间也比室内少,因此室内控制限值比车内高符合客观情况,同时也能够满足保护乘员健康的要求。   据悉,征求意见稿中的标准和其他标准(世卫、日本)比较,“红线”定得并不低。例如苯、甲醛的限制分别为0.11mg/m3和0.10mg/m3,与日本标准相当。   中汽协还抱怨说,最终确定限值必须根据医学评估报告,而标准编制组没有提供这方面的任何信息。   利益驱动挤压行业自律,“推荐标准”形同虚设?   一边是为汽车企业代言的中汽协“满腹怨言”,另一边则是车内空气污染调查数据触目惊心。   相关资料显示,2009年1月,广东参照室内空气质量标准检测的60款车型中,有50款存在不同程度的污染。上海有关机构抽查的100辆轿车中只有17辆达到国家室内标准,八成以上的轿车内可吸入颗粒物超标,最严重的超过国家室内标准7倍。《要求》的“编制说明”称,在被检车辆中共定性检测到有机物有200多种,苯、甲苯、二甲苯、苯乙烯、乙苯、甲醛等在车内空气中的检出率高达98%。   本报记者发现,发达国家前几年的情况似乎也好不到哪儿去。   早在2006年,美国生态研究中心经测试曾出炉十大“最毒车”名单,日产、丰田、铃木、斯巴鲁、雪佛兰等全球知名品牌均赫然在列,其中包括了Nissan的Versa国内为东风日产Tiida颐达、Chevy的Aveo雪佛兰品牌车型、Kia的Spectra5国内为起亚赛拉图、Subaru的Forester国内为斯巴鲁森林人等。   据了解,车内空气中挥发性有机物的成分较为复杂,一般包括甲醛、苯、甲苯、二甲苯、乙苯等。长期反复接触低浓度苯可引起慢性中毒,重者可出现再生障碍性贫血,而甲苯对神经系统作用比苯更强,长期接触有引起膀胱癌的可能。自2003年以来,因车内空气污染引起的法律纠纷开始增多,其中“奥拓车苯超标引发死亡赔偿纠纷案”、“道奇公羊车甲醛超标案”、“奇瑞QQ疑致儿童白血病案”、“新甲壳虫甲醛超标3倍”、“中华轿车六年后甲醛仍超标4.4倍”等事件,至今仍让人心悸。   “降低车内有机挥发物肯定是汽车行业努力的方向,因此我们十分赞赏日本汽车工业协会‘制定指南’的模式。”中汽协坚持认为,“这种依靠行业自律、履行社会责任、推进技术进步、保护消费者利益的做法,值得研究和借鉴。”   但业内人士透露,虽然到目前为止,发达国家尚未出台法律、法规控制车内污染,但对汽车的零部件和内饰材料却有严格的法律法规,在此基础上倡导,行业自律才会有整体效果。   本报记者查阅资料获悉,当前美国环保局已要求汽车制造厂所使用的材料必须申报,并必须经过环保部门审查以确保对环境和人体危害程度达到最低点后才能使用,申报者一旦违反规定,将承担巨额的罚款,还要召回产品清理污染,主要负责人甚至会被判刑。   德国环保署也与德国汽车制造学会联合制定了“德国汽车车内环境标准”,规定汽车本身、装在车内的塑料配件、地毯、车顶毡、沙发等必须符合德国“蓝天使”环保标志的要求,车内装饰,坐套垫、胶粘剂等装饰材料含有的苯、甲醛、丙酮、二甲苯等必须低于“德国三级车内环保标准”,汽车销售前还必须经过有毒空气释放期。   毋庸置疑,如果《要求》成为GB强制性标准,汽车厂商势必要采购符合要求的环保零部件和内饰,在生产环节中使用环保型黏合剂,而且出厂后就不能在第一时间销售(要等有毒空气释放),由此会占用更多库房,资金回流速度减慢,而一旦售后检测仍超标,还可能面临无数的索赔纠纷。   而如果《要求》只是一个指导性标准,并不具备强制力,“由汽车生产、使用过程中的各相关方自愿采用”,再加上我国对汽车零部件、内饰的环保性能没有硬性约束,这样一个推荐性标准的出台,对于改变我国车内空气质量现状,也许并无多大推进作用。   “发达国家没有这方面的强制法规,难道中国就不能有了?这个理由是不是有点荒唐?”北京车主徐先生在接受本报记者采访时表示,消费者肯定都期待这个标准能够成为国家强制行标准,并且早日出台。“这个标准事关千万车主的切身利益,很奇怪草案为什么不公开征求民众的意见呢?我相信消费者的呼声肯定要比汽车协会和汽车厂商的声音大得多!”   车内空气标准六年难产   “本标准的实施,将对车内空气质量起到安全保障作用,能够保证车内乘员有一个安全的环境空间,不再受车内空气污染的困扰,对保护乘员安全和健康具有重要的环境效应。” 《车内空气中挥发性有机物浓度要求》(下称《要求》)编制组表示,这一标准的实施,还将对我国汽车业及汽车内饰行业的发展起到规范作用,促进相关企业的技术进步和可持续发展。   虽然《车内空气中挥发性有机物浓度要求》草案征求意见已过截止期,但这并不意味这一标准就能很快出台并实施。   车内空气污染这一“隐形杀手”引起各界关注,始发于2003年的一桩命案。   2002年8月,北京朱女士购买了一辆国产奥拓轿车,同年9月底发现身上有大量出血点,被医院确诊为重症再生障碍性贫血急性发作并接受治疗。2003年3月,朱女士因医治无效病逝。2004年4月,北京丰台区法院审理认为,原告认为再生障碍性贫血死亡为苯中毒所致证据不足,因此驳回了原告的诉讼请示。但法院同时认为,国家对车内空气质量未颁布标准,并为此向国家质监总局发出了司法建议书,建议尽早制定车内空气质量标准 同时建议将车内空气质量标准作为汽车制造业的强制性规定。   此后,车内空气污染问题受到国务院的高度重视。按照要求,原国家环保总局组织有关科研机构对车内空气污染问题进行了调查研究,并在2004年5月下达的文件中将《车内空气污染物浓度限值及测量方法》列入当年国家环保标准制修订计划,同年9月国家标准化管理委员会将该标准列入了《国家标准制(修)订计划〈车内空气污染物浓度限值及测量方法〉》。   自2006年至今,几乎每年都有消息称车内空气质量标准将出台,结果拖到现在也未能出台。   为何车内空气质量标准如此“难产”?   据有关专家介绍,目前国内外尚无关于车内空气污染控制的标准法规,需花费大量时间进行试验研究和验证。而汽车的使用环境和条件又变化太大,很难有一个具备可比性的内外部检测环境。   清华大学环境科学与工程系的郝吉明教授此前在接受采访时也表示:“制定车内空气质量标准存在技术难题。”   但技术难题似乎并不是标准“难产”的关键所在。据本报记者了解,早在2004年2月,原国家环保总局便委托有关机构开展了一系列车内空气污染状况的试验检测工作,最终编制出《车内挥发性有机物和醛酮类物质采样测定方法》,2007年12月7日发布, 2008年3月1日正式实施。这一测定方法的出台,被视为车内空气质量标准制定的第一步。   谁是第一责任方   第二步距离第一步有多远呢?   “本标准的编制涉及到病毒理、卫生学、国家汽车行业现状、汽车内饰供应商技术水平、国内外相关法规的协调一致等方面,所以制定本标准的难度较大,尤其是污染物项目选择及浓度限值的确定方面,既要考虑以人为本,保护消费者的健康,又要考虑汽车行业的实际技术水平,两者之间的协调统一较难把握。”《要求》编制说明中的这一表述,似乎泄露了标准难产的“天机”。   本报记者获悉,2008年5月,《要求》标准编制组主持召开了车内空气污染物卫生学专题讨论会议,相关专家对筛选拟控制物质提出建议 10月环保部科技标准司又召集了国内病毒理学专家,对拟控制的8种物质和限值进行了病毒理学分析,专家一致认为,所选择的挥发性有机物及浓度要求设置合理、可行 考虑到保护消费者健康的需要和当前汽车工业发展状况,8种控制物质限值应同时实施,不分阶段。   “我国汽车行业现状和内饰供应商技术水平才是问题的关键。”某业内人士直言不讳。   据了解,车内空气质量状况与车辆制造工艺和零部件种类有直接关系,影响较大的有汽车仪表台板、门内饰板、地毯、顶棚、汽车线束、座椅总成等。车内空气污染主要原因在于,汽车生产企业和装饰企业在设计、生产汽车和提供汽车装饰服务时,不断提高车厢密闭性,使车内空气污染物更容易聚积而产生污染 部分企业为降低成本,采用一些质量不高甚至对人体健康有害的劣质材料,加剧了车内空气污染。   标准编制组表示,车内空气质量的“祸根”一般是在车辆生产过程中种下的,在汽车使用过程中已经很难消除,而且汽车消费者一般也不可能具备这方面的专业知识和技术能力,“汽车生产企业应对车内污染治理承担第一责任。”   专家认为,汽车生产企业应对车内各种污染物的来源进行定量分析,找到污染物的发生源,有针对性地采取替换、升级等技术措施。零部件生产企业应根据汽车企业治理污染的要求,选择适当原材料,改进生产工艺。同时,汽车和零部件生产企业都应逐步建立和完善对产品挥发性有机物的检测、监控体系。   《要求》何时出台目前尚无准确消息,但据知情人士透露,该标准属于国家环保总局“十一五”期间需要修订的环保标准之一。2010是“十一五”的最后一年,今年能否顺利出台车内空气质量国家标准,也许还要看政府的决心,以及各利益方博弈的结果。
  • 世卫组织首次发布室内空气有毒物质的量化标准
    世界卫生组织15号在其总部瑞士日内瓦发布了一份室内空气质量标准的报告。这是世卫组织首次公布对身体健康产生影响的室内空气有毒物质的量化标准,为世界各国制定相关法规提供了依据。   世界卫生组织发布的这份报告名为《室内空气质量指南》,是世卫组织欧洲地区办事处牵头搞的一个科研项目,全球60多名科学家参与到这个项目的研究。报告认为,室内空气中存在的九种主要化学物质对人类身体健康会产生重要影响,过量吸收这些化学有毒物会导致多种疾病,威胁生命。而提高室内空气质量,则可以有效降低人类健康面临的风险。   报告说,在欧洲地区,每年至少有400人死于一氧化碳中毒,14%的肺癌患者是由于吸入了居室中的氡造成的。有足够证据表明空气中的苯与白血病有着因果关系。世界卫生组织欧洲区域主任雅卡布女士在报告中表示,“了解这些污染物的危害是第一步,再下来各国政府要做的事情就是以必要的行动以减少这些污染物对健康的不利影响,这份报告提供了在世界各地区依法制定强制执行标准的科学基础。”参与此项研究的卡尔扎诺夫斯基认为,世卫组织发布这项标准还有一个意义,就是引起人们对室内空气污染的重视,目前公众对室内空气污染对健康危害的认识已经落后于室外空气污染的认识。   人们近些年对大气质量的关注度不断提高,了解了空气污染与健康的内在联系,但对室内空气给健康带来的威胁还了解不多,重视不够,这种情况在高、中、低收入的国家都普遍存在。报告呼吁各国重视那些最容易被污染的室内空气影响健康的群体,比如常年从事室内工作、护理中心、养老院的工作人员等。   世卫组织报告说,室内空气的污染源主要来自四个方面,比如水泥,涂料、油漆、家具等建筑和建材资料,家电等室内设备,还有取暖和做饭过程中产生的烟尘废气等等。室内空气中的化学污染物主要包括苯、一氧化碳、甲醛、二氧化氮、氡、三氯乙烯等九种物质。在这份报告中,被列在第一位的是苯,这种广泛在建筑材料中,尤其是油漆释料中使用的化学物质对人类健康具有最大的杀伤力。   报告说,苯可以使人致癌,尤其是导致白血病的高发,及其微小的数量就会产生危害,没有任何暴露安全水平可以被推荐,也就是说安全环境中不应该有苯存在。排在第二位的是一氧化碳。世卫报告给出的安全标准是每立方米空气中含7 毫克,时间限度为24小时,超量的一氧化碳则可能导致运动能力下降和缺血性心脏病的风险增加。   排在第三位的是甲醛。报告设定的安全标准是每立方米中含量0.1毫克,时间限度为30分钟,超量或超时则会伤害肺部功能,并可能患上鼻咽癌和白血病。报告对其他几种化学物的限量和时限也给出了标准,并列举了每种化学物对身体产生的具体影响。   那么我们应该如何提高室内空气的质量呢。其实有一些简便的方法可以提供给您。比如,每天开窗换气不少于两次,每次不少于15分钟,使用空气清净机,室内禁烟,摆放适量植物,使用除湿机等等。当然也建议您在天气好的时候,要多做室外活动。
  • 国家标准室内空气质量标准
    GB18883 中华人民共和国国家标准室内空气质量标准   1、范围   本标准规定了室内空气质量参数及检验方法。   本标准适用于住宅和办公建筑物。   2、规范性引用文件   下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。   GB 6921-86 大气飘尘浓度测定方法 重量法   GB 9801-88 空气质量 一氧化碳的测定 非分散红外法   GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法 气相色谱法   GB 12372-90 居住区大气中二氧化氮检验标准方法 改进的 Saltzman 法   GB/T 14679-93 空气质量 氨的测定 次氯酸钠 - 水杨酸分光光度法   GB/T 14669-93 空气质量 氨的测定 离子选择电极法   GB/T 14582-93 环境空气中氡的标准测量方法   GB 14677-93 空气质量 甲苯、二甲苯、苯乙烯的测定 气相色谱法   GB/T 15262-94 环境空气 二氧化硫的测定 甲醛吸收 - 副玫瑰苯胺分光光度法   GB/T 15435-1995 环境空气 二氧化氮的测定 Saltzman 法   GB/T 15438-1995 环境空气 臭氧的测定 紫外光度法   GB/T 15439-1995 环境空气 苯并 [a] 芘测定 高效液相色谱法   GB/T 15516-1995 空气质量 甲醛的测定 乙酰丙酮分光光度法   GB/T 16128-1995 居住区大气中二氧化硫卫生检验标准方法 甲醛溶液吸收 - 盐酸副玫瑰苯胺分光光度法   GB/T 16129-1995 居住区大气中甲醛卫生检验标准方法 分光光度法   GB/T 16146-1995 住房内氡浓度控制标准   GB/T 16147-1995 空气中氡浓度的闪烁瓶测量方法   GB/T 17095-1997 室内空气中可吸入颗粒物卫生标准   GB/T 18204.18-2000 公共场所室内新风量测定方法—示踪气体法   GB/T 18204.23-2000 公共场所空气中一氧化碳检验方法   GB/T 18204.24-2000 公共场所空气中二氧化碳检验方法   GB/T 18204.25-2000 公共场所空气中氨检验方法   GB/T 18204.26-2000 公共场所空气中甲醛测定方法   GB/T 18204.27-2000 公共场所空气中臭氧检验方法   5 室内空气质量检验   5.1 室内空气中各种化学污染物采样和检验方法见附录 A 和附录 B 。   5.2 室内空气中苯浓度的测定方法见附录 C 。   5.3 室内空气中总挥发性有机物( TVOC )的检验方法见附录 D 。   5.4 室内空气中细菌总数检验方法见附录 E 。   5.5 室内热环境参数的检验方法见附录 F 。   附录 A   (规范性附录)   室内空气采样技术导则   1、范围   本导则在进行室内空气污染物监测时,对采样点位,采样高度,采样时间和频率,以及采样方法和质量保证措施等项做出规定。 本导则作为《室内空气质量标准》配套的空气采样技术的指导原则,适用于《室内空气质量标准》中所规定的各种化学污染物的采样。   2、选点要求   2.1 采样点的数量:采样点的数量根据监测室内面积大小和现场情况而确定,以期能正确反映室内空气污染物的水平。原则上小于 50m 2 的房间应设 1~3 个点 50~100m 2 设 3~5个点 100m 2 以上至少设 5 个点。在对角线上或梅花式均匀分布。   2.2 采样点应避开通风口,离墙壁距离应大于 0.5m 。   2.3 采样点的高度:原则上与人的呼吸带高度相一致。相对高度 0.5m~1.5m 之间。   3、采样时间和频率   采样前至少关闭门窗 4 小时。日平均浓度至少连续采样 18 小时, 8 小时平均浓度至少连续采样 6 小时, 1 小时平均浓度至少连续采样 45 分钟。   4、采样方法和采样仪器   根据污染物在室内空气中存在状态,选用合适的采样方法和仪器,用于室内的采样器的噪声应小于 50dB 。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。   5、采样的质量保证措施   5.1 气密性检查:有动力采样器在采样前应对采样系统气密性进行检查,不得漏气。   5.2 流量校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过 5% 。   采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准 5 个点,绘制流量标准曲线。记录校准时的大气压力和温度。   5.3 空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制范围,则这批样品作废。   5.4 仪器使用前,应按仪器说明书对仪器进行检验和标定。   5.5 在计算浓度时应用下式将采样体积换算成标准状态下的体积:   式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。   5.6 每次平行采样,测定之差与平均值比较的相对偏差不超过 20% 。   6、记录和报告   采样时要对现场情况、各种污染源、采样日期、时间、地点、数量、布点方式、大气压力、气温、相对湿度、风速以及采样者签字等做出详细记录,随样品一同报到实验室。   附录 B   (规范性附录)   室内空气中各种参数的检验方法 *   污染物 检验方法 来源   (1) 二氧化硫 SO 2 甲醛溶液吸收 —— 盐酸副玫瑰苯胺分光光度法 ( 1 ) GB/T 16128-1995   ( 2 ) GB/T 15262-94   (2) 二氧化氮 NO 2 改进的 Saltzaman 法 ( 1 ) GB/ 12372-90   ( 2 ) GB/T 15435-1995   (3) 一氧化碳 CO ( 1 )非分散红外法   ( 2 )不分光红外线气体分析法 、气相色谱法 、汞置换法 ( 1 ) GB 9801-88   ( 2 ) GB/T 18204.23-2000   (4) 二氧化碳 CO 2 ( 1 )不分光红外线气体分析法   ( 2 )气相色谱法   ( 3 )容量滴定法 GB/T 18204.24-2000   (5) 氨 NH3 ( 1 )靛酚蓝分光光度法   纳氏试剂分光光度法   ( 2 )离子选择电极法   ( 3 )次氯酸钠—水杨酸分光光度法 ( 1 ) GB/T 18204.25-2000   ( 2 ) GB/T 14669-93  ( 3 ) GB/T 14679-93   (6) 臭氧 0 3 ( 1 )紫外光度法   ( 2 )靛蓝二磺酸钠分光光度法 ( 1 ) GB/T 15438-1995   ( 2 ) GB/T 18204.27-2000   (7) 甲醛 HCHO • AHMT 分光光度法   • 酚试剂分光光度法   气相色谱法   ( 3 )乙酰丙酮分光光度法 ( 1 ) GB/T 16129-95   ( 2 ) GB/T 18204.26-2000   ( 3 ) GB/T 15516-95   (8) 苯 C 6 H 6 气相色谱法 • 附录 C   ( 2 ) GB 11737-89   ( 9 ) 甲苯 C 7 H 8 、   二甲苯 C 8 H 10 气相色谱法 GB 14677-93   (10) 苯并 [a] 芘   B(a)P 高压液相色谱法 GB/T 15439-1995   (11) 可吸入颗粒   PM10 撞击式 —— 称重法 GB/T 17095-1997   (12) 总挥发性有机物   TVOC 气相色谱法 附录 D   (13) 细菌总数 撞击法 附录 E   (14) 温度、相对湿度、空气流速 热环境参数的检验方法 附录 F   (15) 新风量 示踪气体法 GB/T18204.18-2000   (16) 氡 Rn ( 1 )空气中氡浓度的闪烁瓶测量方法   ( 2 )环境空气中氡的标准测量方法 ( 1 ) GB/T 16147-1995   ( 2 ) GB/T 14582-93   * 注:检验方法中( 1 )法为仲裁法。   附录 C   (规范性附录)   空气中苯浓度的测定   (毛细管气相色谱法)   1、方法提要   1.1 相关标准和依据   本方法主要依据 GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法—气相色谱法。   1.2 原理:空气中苯用活性炭管采集,然后用二硫化碳提取出来。用氢火焰离子化检测器的气相色谱仪分析,以保留时间定性,峰高定量。   1.3 干扰和排除:空气中水蒸汽或水雾量太大,以至在碳管中凝结时,严重影响活性炭的穿透容量和采样效率。空气湿度在 90% 时,活性炭管的采样效率仍然符合要求。空气中的其他污染物干扰,由于采用了气相色谱分离技术,选择合适的色谱分离条件可以消除。   2、适用范围   2.1 测定范围:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,测定范围为 0.05~10 mg/m 3 。   2.2 适用场所:本法适用于室内空气和居住区大气中苯浓度的测定。   3、试剂和材料   3.1 苯:色谱纯。   3.2 二硫化碳:分析纯,需经纯化处理,保证色谱分析无杂峰。   3.3 椰子壳活性炭: 20~40 目,用于装活性炭采样管。   3.4 纯氮: 99.99% 。   4、仪器和设备   4.1 活性炭采样管:用长 150mm ,内径 3.5~4.0mm ,外径 6mm 的玻璃管,装入 100mg 椰子壳活性炭,两端用少量玻璃棉固定。装好管后再用纯氮气于 300~350 ℃温度条件下吹 5~10min ,然后套上塑料帽封紧管的两端。此管放于干燥器中可保存 5 天。若将玻璃管熔封,此管可稳定三个月。   4.2 空气采样器:流量范围 0.2~1L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。   4.3 注射器: 1ml 。体积刻度误差应校正。   4.4 微量注射器: 1μl , 10μl 。体积刻度误差应校正。   4.5 具塞刻度试管: 2ml 。   4.6 气相色谱仪:附氢火焰离子化检测器。   4.7 色谱柱: 0.53mm × 30mm 宽径非极性石英毛细管柱。   5、采样和样品保存   在采样地点打开活性炭管,两端孔径至少 2mm ,与空气采样器入气口垂直连接,以 0.5L/min 的速度,抽取 20L 空气。采样后,将管的两端套上塑料帽,并记录采样时的温度和大气压力。样品可保存 5 天。   6、分析步骤   6.1 色谱分析条件:由于色谱分析条件常因实验条件不同而有差异,所以应根据所用气相色谱仪的型号和性能,制定能分析苯的最佳的色谱分析条件。   6.2 绘制标准曲线和测定计算因子:在与样品分析的相同条件下,绘制标准曲线和测定计算因子。   6.2.1 用标准溶液绘制标准曲线:于 5.0ml 容量瓶中,先加入少量二硫化碳,用 1μL 微量注射器准确取一定量的苯( 20 ℃时, 1μl 苯重 0.8787mg )注入容量瓶中,加二硫化碳至刻度,配成一定浓度的储备液。临用前取一定量的储备液用二硫化碳逐级稀释成苯含量分别为 2.0 、 5.0 、 10.0 、 50.0μg/ml 的标准液。取 1μL 标准液进样,测量保留时间及峰高。每个浓度重复 3 次,取峰高的平均值。分别以 1μL 苯的含量( μg/ml )为横坐标( μg ),平均峰高为纵坐标( mm ),绘制标准曲线。并计算回归线的斜率,以斜率的倒数 Bs[μg/mm] 作样品测定的计算因子。   6.3 样品分析:将采样管中的活性炭倒入具塞刻度试管中,加 1.0ml 二硫化碳,塞紧管塞,放置 1h ,并不时振摇。取 1μl 进样,用保留时间定性,峰高( mm )定量。每个样品作三次分析,求峰高的平均值。同时,取一个未经采样的活性炭管按样品管同时操作,测量空白管的平均峰高( mm )。   7、结果计算   7.1 将采样体积按式( 1 )换算成标准状态下的采样体积   式中 c —空气中苯或甲苯、二甲苯的浓度, mg/m 3   h —样品峰高的平均值, mm   h ' —空白管的峰高, mm   B s —由 6.2.1 得到的计算因子, μg/mm   E s —由实验确定的二硫化碳提取的效率   V 0 —标准状况下采样体积, L 。   8、方法特性   8.1 检测下限:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,检测下限为 0.05mg/m 3 。   8.2 线性范围: 10 6 。   8.3 精密度:苯的浓度为 8.78 和 21.9μg/ml 的液体样品,重复测定的相对标准偏差 7% 和 5% 。   8.4 准确度:对苯含量为 0.5 , 21.1 和 200μg 的回收率分别为 95% , 94% 和 91% 。   附录 D   (规范性附录)   室内空气中总挥发性有机物( TVOC )的检验方法   (热解吸 / 毛细管气相色谱法)   1、方法提要   1.1 相关标准和依据   ISO 16017-1 “Indoor , ambiant and workplace air — Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — part 1 : pumped sampling”   1.2 原理   选择合适的吸附剂( Tenax GC 或 Tenax TA ),用吸附管采集一定体积的空气样品,空气流中的挥发性有机化合物保留在吸附管中。采样后,将吸附管加热,解吸挥发性有机化合物,待测样品随惰性载气进入毛细管气相色谱仪。用保留时间定性,峰高或峰面积定量。   1.3 干扰和排除   采样前处理和活化采样管和吸附剂,使干扰减到最小 选择合适的色谱柱和分析条件,本法能将多种挥发性有机物分离,使共存物干扰问题得以解决。   2、适用范围   2.1 测定范围:本法适用于浓度范围为 0.5 m g/m 3 ~100mg/m 3 之间的空气中 VOC S 的测定。   2.2 适用场所:本法适用于室内、环境和工作场所空气,也适用于评价小型或大型测试舱室内材料的释放。   3、试剂和材料   分析过程中使用的试剂应为色谱纯 如果为分析纯,需经纯化处理,保证色谱分析无杂峰。   3.1 VOC S :为了校正浓度,需用 VOC S 作为基准试剂,配成所需浓度的标准溶液或标准气体,然后采用液体外标法或气体外标法将其定量注入吸附管。   3.2 稀释溶剂:液体外标法所用的稀释溶剂应为色谱纯,在色谱流出曲线中应与待测化合物分离。   3.3 吸附剂:使用的吸附剂粒径为 0.18~0.25mm ( 60~80 目),吸附剂在装管前都应在其最高使用温度下,用惰性气流加热活化处理过夜。为了防止二次污染,吸附剂应在清洁空气中冷却至室温,储存和装管。解吸温度应低于活化温度。由制造商装好的吸附管使用前也需活化处理。   3.4 纯氮: 99.99% 。   4、仪器和设备   4.1 吸附管:是外径 6.3mm 内径 5mm 长 90mm 内壁抛光的不锈钢管,吸附管的采样入口一端有标记。吸附管可以装填一种或多种吸附剂,应使吸附层处于解吸仪的加热区。根据吸附剂的密度,吸附管中可装填 200~1000mg 的吸附剂,管的两端用不锈钢网或玻璃纤维毛堵住。如果在一支吸附管中使用多种吸附剂,吸附剂应按吸附能力增加的顺序排列,并用玻璃纤维毛隔开,吸附能力最弱的装填在吸附管的采样人口端。   4.2 注射器:可精确读出 0.1 m L 的 10 m L 液体注射器 可精确读出 0.1 m L 的 10 m L 气体注射器 可精确读出 0.01mL 的 1mL 气体注射器。   4.3 采样泵:恒流空气个体采样泵,流量范围 0.02~0.5L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。   4.4 气相色谱仪:配备氢火焰离子化检测器、质谱检测器或其他合适的检测器。   色谱柱:非极性(极性指数小于 10 )石英毛细管柱。   4.5 热解吸仪:能对吸附管进行二次热解吸,并将解吸气用惰性气体载带进入气相色谱仪。解吸温度、时间和载气流速是可调的。冷阱可将解吸样品进行浓缩。   4.6 液体外标法制备标准系列的注射装置:常规气相色谱进样口,可以在线使用也可以独立装配,保留进样口载气连线,进样口下端可与吸附管相连。   5、采样和样品保存   将吸附管与采样泵用塑料或硅橡胶管连接。个体采样时,采样管垂直安装在呼吸带 固定位置采样时,选择合适的采样位置。打开采样泵,调节流量,以保证在适当的时间内获得所需的采样体积( 1~10L )。如果总样品量超过 1mg ,采样体积应相应减少。记录采样开始和结束时的时间、采样流量、温度和大气压力。   采样后将管取下,密封管的两端或将其放入可密封的金属或玻璃管中。样品可保存 5 天。   6、分析步骤   6.1 样品的解吸和浓缩   将吸附管安装在热解吸仪上,加热,使有机蒸气从吸附剂上解吸下来,并被载气流带入冷阱,进行预浓缩,载气流的方向与采样时的方向相反。然后再以低流速快速解吸,经传输线进入毛细管气相色谱仪。传输线的温度应足够高,以防止待测成分凝结。解吸条件 ( 见表 1) 。   表 1 解吸条件   解吸温度 250 ℃ ~325 ℃   解吸时间 5~15min   解吸气流量 30~50ml/min   冷阱的制冷温度 +20 ℃ ~-180 ℃   冷阱的加热温度 250 ℃ ~350 ℃   冷阱中的吸附剂 如果使用,一般与吸附管相同, 40~100mg   载气 氦气或高纯氮气   分流比 样品管和二级冷阱之间以及二级冷阱和分析柱之间的分流比应根据空气中的浓度来选择   6.2 色谱分析条件   可选择膜厚度为 1 ~ 5 m m 50m × 0.22mm 的石英柱,固定相可以是二甲基硅氧烷或 7% 的氰基丙烷、 7% 的苯基、 86% 的甲基硅氧烷。柱操作条件为程序升温,初始温度 50 ℃保持 10min ,以 5 ℃ /min 的速率升温至 250 ℃。   6.3 标准曲线的绘制   气体外标法:用泵准确抽取 100 m g/m 3 的标准气体 100ml 、 200ml 、 400ml 、 1L 、 2L 、 4L 、 10L 通过吸附管,制备标准系列。   液体外标法:利用 4.6 的进样装置取 1~5 m l 含液体组分 100 m g/ml 和 10 m g/ml 的标准溶液注入吸附管,同时用 100ml/min 的惰性气体通过吸附管, 5min 后取下吸附管密封,制备标准系列。   用热解吸气相色谱法分析吸附管标准系列,以扣除空白后峰面积的对数为纵坐标,以待测物质量的对数为横坐标,绘制标准曲线。   6.4 样品分析   每支样品吸附管按绘制标准曲线的操作步骤(即相同的解吸和浓缩条件及色谱分析条件)进行分析,用保留时间定性,峰面积定量。   7、结果计算   7.1 将采样体积按式( 1 )换算成标准状态下的采样体积   式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。   7.2 TVOC 的计算   ( 1 )应对保留时间在正己烷和正十六烷之间所有化合物进行分析。   ( 2 )计算 TVOC ,包括色谱图中从正己烷到正十六烷之间的所有化合物。   ( 3 )根据单一的校正曲线,对尽可能多的 VOC S 定量,至少应对十个最高峰进行定量,最后与 TVOC 一起列出这些化合物的名称和浓度。   ( 4 )计算已鉴定和定量的挥发性有机化合物的浓度 S id 。   ( 5 )用甲苯的响应系数计算未鉴定的挥发性有机化合物的浓度 S un 。   ( 6 ) S id 与 S un 之和为 TVOC 的浓度或 TVOC 的值。   ( 7 )如果检测到的化合物超出了( 2 )中 VOC 定义的范围,那么这些信息应该添加到 TVOC 值中。   7.3 空气样品中待测组分的浓度按( 2 )式计算   式中 : c —空气样品中待测组分的浓度 , mg /m 3   F —样品管中组分的质量 , mg   B —空白管中组分的质量 , mg   V 0 —标准状态下的采样体积, L 。   8、方法特性   8.1 检测下限:采样量为 10L 时,检测下限为 0.5 m g/m 3 。   8.2 线性范围: 10 6 。   8.3 精密度:在吸附管上加入 10μg 的混合标准溶液, Tenax TA 的相对标准差范围为 0.4% 至 2.8% 。   8.4 准确度: 20 ℃、相对湿度为 50% 的条件下,在吸附管上加入 10mg/ml 的正己烷, Tenax TA 、 Tenax GR ( 5 次测定的平均值)的总不确定度为 8.9% 。   附录 E   (规范性附录)   室内空气中细菌总数检验方法   1、适用范围   本方法适用于室内空气细菌总数测定。   2、定义   撞击法 (impacting method) 是采用撞击式空气微生物采样器采样,通过抽气动力作用,使空气通过狭缝或小孔而产生高速气流 , 使悬浮在空气中的带菌粒子撞击到营养琼脂平板上 , 经 37 ℃、 48h 培养后 , 计算出每立方米空气中所含的细菌菌落数的采样测定方法。   3、仪器和设备   3.1 高压蒸汽灭菌器。   3.2 干热灭菌器。   3.3 恒温培养箱。   3.4 冰箱。   3.5 平皿 ( 直径 9cm) 。   3.6 制备培养基用一般设备:量筒,三角烧瓶, pH 计或精密 pH 试纸等。   3.7 撞击式空气微生物采样器。
  • 空气产品公司研制的艾必利® 环境气体标准物质取得国家标准物质定级证书,助力更精准的环保分析
    一氧化氮、二氧化氮、二氧化硫是大气中的主要污染物和雾霾前驱物,这些污染物的存在不仅对人体和动植物有直接危害,还是调控臭氧,形成酸雨和光化学烟雾的重要因子,因此,这些污染物是我国空气质量监测的关键参数。随着环保力度的加强,我国环境监测部门对微量环境气体标准物质,尤其是国家有证气体标准物质的需求量急剧增加。为应对我国环境监测用气体标准物质的市场需求,空气产品公司旗下的北京氦普北分气体工业有限公司于2018年立项开展“低含量环境气体标准物质关键技术研究”项目。该项目由技术专家赵俊秀、项目负责人唐亮带领技术团队历时近1年半进行关键技术攻关研究,攻克了气瓶内壁处理、原料气中微痕量关键杂质定值等关键技术,采用称量法成功研制了低含量氮中一氧化氮、氮中二氧化硫、氮中二氧化氮系列气体标准物质,并考察了组分在气瓶中的长期稳定性。通过与国内最高水平的国家实验室开展比对,验证了认定值的准确性,取得了很好的比对等效度,并于2020年正式推出拥有自主知识产权的3种环境监测用低含量气体标准物质系列新产品——艾必利® 环境气体标准物质。这三种艾必利环境气体标准物质经全国标准物质管理委员会组织专家评审,符合国家二级标准物质定级鉴定技术条件和相关技术规定要求,于近期顺利通过了国家标准物质定级审查,并取得了国家标准物质定级证书。 艾必利环境气体标准物质定值数据表名称国家标准物质编号量分数(×10-6)不确定度(%)氮中一氧化氮气体标准物质GBW(E)0840031.00~10.0210.0~50.01氮中二氧化硫气体标准物质GBW(E)0840041.00~10.0210.0~50.01氮中二氧化氮气体标准物质GBW(E)08400510.0~1002100~1.00×1031.5 艾必利环境气体标准物质能够顺利获得国家标准物质定级证书,是空气产品公司在微痕量环境监测用气体标准物质研究领域的一项重要突破。该成果将广泛应用于我国各省、市和重点地区的环境空气监测、汽车污染物排放限值监测、汽车排气分析仪等分析仪器计量性能评价等,为进一步构建和完善我国气体成分量值溯源体系以及相关国家标准的有效实施起到有力的基础支撑和保障作用。标准物质作为量值传递与溯源的载体,广泛应用于能源、环境、化工等领域各类产品研发、技术评价、校准与质量控制活动中,对各领域的有效分析测量起到十分重要的作用,是确保测量结果可靠与国际互认的核心与关键。作为全球领先的工业气体供应商,空气产品公司长期致力于向客户提供高品质艾必利特种气体产品。包括本次获得国家标准物质定级证书的新产品在内的所有艾必利特种气体产品均采用了严格品控的原料气体,精确控制和检测杂质含量,同时配合先进的充装系统,确保产品的高准确性、长期稳定性以及可追溯性。同时,我们的技术专家不断探索和研发前沿技术,以帮助客户应对环保合规方面的挑战。 如需进一步了解空气产品公司艾必利特种气体产品,可登录我们的展台进行了解。
  • GB/T 18883-2022《室内空气质量标准》正式发布
    室内空气质量标准GB/T 18883-2022新版GB/T 18883-2022《室内空气质量标准》在2022年7月11日正式发布,将在2023年2月1日正式实施,新标准将全部代替现行的GB/T 18883-2002。2022版新空气标准与2002版相比,有了以下的变动:1. 新增细颗粒物PM2.5、三氯乙烯C2HCl3、四氯乙烯C2Cl4 三项化学性参数及其限值规定,室内空气质量指标由原来的19项变为22项。2.调整了5项指标的限值,包括二氧化氮、甲醛、苯、细菌总数、氡,其中有三项关键参数进行了限值缩紧。二氧化氮NO2限值从0.24mg/m³缩紧至0.20mg/ m³;甲醛HCHO限值从0.1mg/ m³缩紧至0.08mg/ m³;苯C6H6限值从0.11mg/ m³缩紧至0.03mg/ m³,缩紧力度较大;生物性菌落总数名称变更为细菌总数,限值由2500cfu/ m³缩紧为1500cfu/ m³。3. 检测方法变更,TVOC检测方法由之前的热解析+GC改成热解析+GCMS(附录D)的方法,新增的三氯乙烯、四氯乙烯也用相同方法。01GB/T 18883-2022 检测项目与应对方法02GB/T 18883-2022 与 GB 50325-2020 区别GB 50325-2020是强制标准,规定新建、扩建、改建的民用工程必须按要求检测并满足其要求,标准是由住房和城乡建设部发布,适用于新建、扩建和改建的民用建筑工程室内的环境污染控制,除监测大气外,还包括对建筑材料的监管。GB/T 18883为推荐标准,标准主要规定室内空气的要求,适用于住宅、办公建筑物以及其他室内环境,发布部门是国家卫生委员会。03岛津应对方案热脱附-GCMS法测定室内空气中总挥发性有机物LC测定室内空气中的甲醛含量岛津宗旨是为了人类和地球的健康,一直致力研究环境空气与大气污染的检测,在有机分析领域上,能很好地应对GB/T 18883-2022《室内空气质量标准》新标准,为环境大气检测保驾护航。本文内容非商业广告,仅供专业人士参考。
  • 全国新增40个城市按新标准实施空气质量监测
    玉溪市也开始监测PM2.5了。继昆明成为全国首批74个按照新标准实施空气监测的城市之一后,云南又添一个城市玉溪开始实施新空气质量标准,对PM2.5、臭氧等6项基本项目开展监测。   新增城市不参加今年空气测评   根据环保部通报,全国空气质量新标准第二阶段监测实施工作目前取得阶段性成果,包头、鄂尔多斯、泉州、烟台、威海、玉溪、北海等40个城市共172个国家环境空气监测网监测点位已建成或改造完毕,从10月1日起开展监测并在中国环境监测总站网站发布实时监测数据和AQI(空气质量指数)等信息。   但新增这40个城市172个监测点位的监测数据可不参加今年的空气质量评价。至此,我国共114个城市668个点位开展了空气质量新标准监测。按照国务院空气质量新标准&ldquo 三步走&rdquo 实施方案要求,明确规定2012年在74个京津冀、长三角、珠三角等重点区域以及直辖市和省会城市,2013年在113个环境保护重点城市和环保模范城市,2015年在所有地级以上城市,2016年1月1日在全国实施新标准的分期实施要求。首批74个城市已从今年1月1日起,正式对外发布监测数据。   玉溪设3个空气质量监测点位   昨日,玉溪市环境监测站一名工作人员介绍,玉溪市从今年1月份开始试运行监测,目前共有3个监测站,分别在东风水库、玉溪市监测站和大营街镇。经过试运行后,3套监测设备运行状况良好。按照要求,自10月1日起对外发布实时监测数据。&ldquo 目前,市民可通过登录中国环境监测总站的"全国城市空气质量实时发布平台"查看玉溪市3个监测点的实时空气质量监测情况。&rdquo 该工作人员表示。   昨日上午11点10分,登录中国环境监测总站看到,玉溪市3个监测点的实时监测情况均为一级优,AQI值分别是32、38、43,空气质量状况较好。   按照云南省的计划,曲靖市也将确保今年年底前按新空气质量标准要求实施监测工作并上传数据。同时,也提醒公众,可登录昆明市环保局官网、中国环境监测总站网查看昆明市空气质量,登录中国环境监测总站网查看玉溪市空气质量。
  • 车内空气质量标准国内尚无 车主维权难
    长沙聂先生购买比亚迪F3新车不到半月就疑因车内有害气体中毒入院。专业机构检测结果与《室内空气质量标准》比较,车内有害气体严重超标。然而,因国内尚无车内空气质量标准,车主至今不能退车。   今年6月22日,聂先生在长沙市金旋风汽车贸易有限公司购买了一辆比亚迪F3轿车并于当日提车。新车开了不到半个月,聂先生就连续多日出现恶心、头晕等不适状况。7月10日,他到长沙市中心医院检查,被告知可能是气味中毒。聂先生推测“污染源”可能就是新买的比亚迪轿车。7月28日,他委托长沙市环境监测中心站对该车进行了车内空气质量检测,结果显示车内甲醛、二甲苯超标。带着检测报告,聂先生找到了当初购车的4S店,要求退车。但4S店答复:因为没有相关标准,不能退车。   他又委托中国科学院理化技术研究所对他的车进行检测,检测结果与《室内空气质量标准》(GB/T18883-2002)比较,车内除了氨达标外,另外四大指标甲醛(超标2倍)、苯(超标1倍)、甲苯(超标5倍)、二甲苯(超标3倍)、TVOC(总挥发性有机物)(超标4倍)均严重超标。   据介绍,车内甲醛等污染主要来自汽车仪表盘的塑料件、地毯、车顶毡、沙发、胶水等。由于汽车空间窄小、密闭性好,有害气体对人体的危害比房屋室内的更大,严重者就可能导致贫血、白血病甚至致癌。   随着车内空气质量引发的维权纠纷日益增多,2004年,有关部门以《室内空气质量标准》为依据,对汽车内的空气质量进行过一次监测,但在接受测试的1175辆车中,全部检测项目均达标的仅有52辆,占6.18%。   2004年6月,《汽车内环境质量标准》起草专家小组成立,计划2006年出台该标准,因检测技术存在难点等原因被搁浅。2008年3月1日起,国内首次制定的检测车内空气污染的标准——《车内挥发性有机物和醛酮类物质采样测定方法》正式实施,迈出了改善车内坏境的艰难一步,但该《方法》并未包含如何判定车内空气污染物超标等问题,使消费者在维权的过程中无据可依。日前,相关部门透露,汽车内空气质量标准正在紧锣密鼓地制定中。有消息称,该标准有望于今年年底出台。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制