红外温度检测

仪器信息网红外温度检测专题为您提供2024年最新红外温度检测价格报价、厂家品牌的相关信息, 包括红外温度检测参数、型号等,不管是国产,还是进口品牌的红外温度检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外温度检测相关的耗材配件、试剂标物,还有红外温度检测相关的最新资讯、资料,以及红外温度检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

红外温度检测相关的仪器

  • EXPEC 1880 红外热成像气体检测仪是一款针对挥发性有机气体(VOCs)的非接触式泄漏检测仪,热灵敏度≤0.010℃@25℃。检测仪工作温度范围为-25℃~+50℃,设备不受环境温度影响,可正常工作(包括调焦距、亮度和对比度,存储图像)低温储存:温度低于-40℃时仪器各项功能不受影响(包括调焦、图像储存等)。设备重量3.2kg,方便随身携带。同时检测仪内置可旋转4.3英寸LCD液晶显示器,可以图像形式快速发现VOCs的泄漏,并准确地定位泄漏/排放的源头。产品概述检测对象可检测的气体包含但不限于甲烷,乙酸,苯,丁二烯,丁烯,丁烷,二甲基苯,乙烷,乙烯,乙苯,环氧乙烷,己烷,庚烷,异丁烯,异丙醇,异戊二烯,甲醇,甲基乙基酮,辛烷,戊烯,丙烷,丙醛,丙醇,环氧丙烷,苯乙烯,甲苯,二甲苯等挥发性有机物。性能优势高灵敏度的EXPEC 1880红外热成像气体检测仪让用户通过肉眼可以检测到无组织排放气体的泄漏。其主要特点为:准确的泄漏定位,非接触式,远距离操作、更安全。可扩展WIFI连接便携式挥发性有机气体分析仪(氢火焰离子法FID+光离子法PID),显示界面实时的显示FID和PID检测器的定量数据。可通过WIFI连接防爆手操器,远程接收EXPEC 1880的显示图像,并可进行远程控制。具有拍照、语音和视频录制、GPS定位功能,便于监督执法的现场取证。应用领域石油化工、炼油厂、井场、油气储集区、加油站、天然气管道、海上石油平台、泄漏检测与修复(LDAR)、环保监督执法等。
    留言咨询
  • CR红外冠层温度监测系统一、用途CR红外冠层温度监测系统主要用于室内外环境中高精度非接触式连续表面温度监测。可应用于植物冠层温度监测、路面温度测量,能量平衡研究等方面。典型应用:植物冠层温度测量,用于植物水分状态估计;地面表面温度测量(土壤,植被,水,雪),用于能量平衡研究;路面温度测量,用于确定结冰条件;二、特点低功耗非接触式叶面温度测量可在恶劣环境下使用可选配多种环境因子传感器,如空气温湿度、风速风向、太阳辐射、气压、土温和降雨量等三、技术参数1、红外温度传感器SI-111传感器:测量范围:-40℃~+70℃;测量精度:±0.2℃@-20℃~+65℃ ;±0.5℃@-40℃~+70℃;视场角:22°半角光谱范围:8~14 μm操作环境:-55℃~+80℃,0~饱和 RH;尺寸:直径23 mm,长度60 mm(带5 m缆线)输出:模拟SI-411传感器:测量范围:-55℃~+80℃测量精度:±0.2℃@-20℃~+65℃ ;±0.5℃@-40℃~+80℃;视场角:22°半角光谱范围:8~14 μm操作环境:-55℃~+80℃;0~饱和 HR(非冷凝)尺寸:直径23mm,长度60mm(带5 m缆线)输出:SDI-12数字输出2、数据采集器2.1 CR300数据采集器CR300 是一款小型的高性价比的数据采集器。它通讯速度快,低功耗,内置USB 接口,模拟输入精度和分辨率高,可以测量 4~20 mA传感器。模拟输入:6单端或3对差分扫描速率:10Hz开关激发通道:2个激发电压数字通道:2 个I/O,1 个TX/RX 类型RS-232通讯/ 数据存储端口:1 个RS-232,1 个USB,1 个10/100 网口输入电压:-0.1 ~+2.5A/D 转换位数:24内存:10M 用于数据存储,5M 用于驱动CPU和程序,2M 用于运行系统电源:16-32 CHS,9.6-16V电池功耗:5W(1Hz 模拟扫描频率)SDI-12:支持2.2 CR1000X数据采集器CR1000X数据采集器,32位FPU, 运行速度1000 MHz,24位A/D转换,高精度快速模拟测量,多种端口。低功耗体现在传感器测量、直接/ 远程通讯连接、数据分析、外部设备控制及数据和程序的存储等方面。具备时钟功能,类BASIC 编程语言,数据处理和分析等功能。模拟输入:16单端或8对差分扫描速率:≤1000Hz开关激发通道:4个激发电压数字通道:8 个I/O,4 个TX/RX 类型RS-232 或4个SID-12通讯端口:1个USB,1个CSI/O,1个RS-232,1个SD卡,1个10/100网口 CPI 端口:1输入电压:±5VdcA/D 转换位数:24内存:128M 内存,4M SRAM电源:10~16Vdc功耗:1W(1Hz采样频率),55W(20Hz采样频率)SDI-12:支持四、系统组成数据采集器、红外温度传感器、环境因子传感器(可选),供电单元,支架及线缆等。产地:美国
    留言咨询
  • ENVIdata-CT 红外群落冠层温度监测系统一. 背景原理在西欧,春天和初夏时的作物潜在蒸发蒸腾量一般均超过有效雨量。在此情况下,当根部周围作物有效水分耗尽,并且地下水位的毛细管上升作用不能补足潜在蒸发-蒸腾率所耗去的水分时,则蒸发-蒸腾量将下降。这将导致作物生长不良和产量下降。在此条件下,在蒸发-蒸腾量下降的同时,作物表面温度则上升。ENVIdata-CT 红外群落冠层温度监测系统是我司应用户需求自主研发创新的集成系统,采用进口红外测温传感器及数据采集器。搭配可控制旋转平台,实现不同方位角度控制,实现不同方位叶面温度同步测量,取得作物叶面同一时间针对不同太阳入射角度的表面温度差异性数据,对研究作物生长因子有一定的指导作用。二.系统工作原理及特点工作原理:数据采集单元自动记录红外叶温传感器温度的数据。 SI-111是一个精密的红外温度计,可以连续的测量监测点温度状况。红外温度传感器提供一个非接触式测量,主要用于测量目标物体的表面温度,通过感知物体表面释放的红外线辐射实现测量,该传感器由Apogee公司生产。功能特点:? 系统自动实时旋转扫描区域叶面并记录温度。? 记录相关过程中的气象参数? 可选配各种环境因子传感器,如:空气温湿度、风速风向、气压、太阳辐射、土温和降雨量等。? 可选Envidata在线数据管理软件,用于远程GPRS传输数据,监控系统运行状态等。三.数据参数 红外叶温传感器是基于斯特藩-玻尔兹曼定律(Stefan-Boltzmann law)特点:测量植物冠层、土壤、水面等温度技术指标:数据采集器:模拟输入:2-6个单端通道(4个差分)脉冲通道:8个数字I/O口:4个最大扫描速率:25Hz处理器:采用18位A/D转换器,精度±0.025%通讯:RS232、USB、以太网等采样间隔:10ms至天,可自定义红外温度传感器:测量范围:-40…80℃ 精度:-20…+65℃, ±0.2℃ -40…+80℃ , ±0.5℃工作温度:-55….+80℃ 0…100% RH可控制旋转平台,实现360度旋转,无死角监测四、支架两种支架可供选择,三角支架(图一)和十字底座支架(图二)建议根据场地条件选择:1、 三角支架,整体比较大气、平稳,适合安装在平整的场地中,整体高度约2.3米;2、 十字底座支架,占地范围更小,适宜安装在林地或有坡度的场地中。图一图二五. ENVIdata数据传输和管理该系统直接将数据传送到 (中国生态数据网)网站上,通过对监测的生态环境因子的时序变化和相关性分析,确定监测对象的状态发展。ENVIdata 服务器软件既可以作为独立的应用软件,运行在用户的服务器上;也可以运行在澳作公司安全的服务器上,为多个用户提供数据接收服务,同时帮助用户监控野外测点硬件系统的运行状态。澳作公司ENVIdata系列生态环境监测系统是业内首家成功获得 ISO9001国际质量体系认证,于2010年获得 ISO9001 质量认证书,至今全部通过专家的年度复核,确保系统集成的品质,用户采用用户名和密码登陆,只要能上网,就能浏览实时和历史数据特点:1) 生态环境信息以各种时间间隔 (分钟、每小时、每天)发送到网站上。2) 用户只要能上网,既可浏览实时数据。3) 中心服务器中文界面,便于操作和管理4) 提供多参数、实时或历史数据曲线图5) 系统提供多站点地图显示 ENVIdata 生态环境信息系统页面ENVIdata 生态环境信息系统登录页面用户选择时间段绘制数据变化曲线视频显示界面历史数据浏览和下载ENVIdata 数据服务平台已为国内的客户服务多年,系统稳定、可靠。应用案例河海大学南皮试验站ENVIdata-CT 红外群落冠层温度监测系统2015年4月,我司完成了河海大学南皮试验站ENVIDATA-CT红外旋转测温系统安装调试,系统运行正常可靠,顺利通过验收。数据图表是八个扫描区域内页面温度变化情况,可以看出在日照强烈的时段,不同区域同一时间叶面温度的差异性。
    留言咨询

红外温度检测相关的方案

红外温度检测相关的论坛

  • 红外热像仪在刹车片温度检测中的应用

    刹车片的质量直接关系到汽车停车过程或者应急刹车过程的有效性和可靠性,对驾驶和乘坐人员的生命有直接的影响。利用热像仪可以完全知道整个的刹车片的工作后温度变化过程,从而检验刹车片制动性和耐磨性。为什么要对刹车片进行温度监测?高性能的制动能力出自完美的刹车系统。汽车刹车系统一般包括刹车踏板、液压回路、卡钳、刹车片和刹车盘。当驾驶者踩下踏板时,液压回路将力量施加于装有刹车片的卡钳,卡钳合拢抱住车轮中的刹车盘,实现减速。对于刹车片而言,最重要的就是摩擦材料的选择,它基本决定了刹车片的制动性能。温度是影响刹车片性能的一个重要的环境变量。一方面,温度制约着刹车片的制动性、耐磨性等各方面的性能。另一方面,它又体现了刹车的制动性和耐磨性等性能。所以,温度采集在刹车片材料的研究中是至关重要的。红外热像仪在刹车片温度检测中的应用刹车片如果温度过高,它的效率就会降低。急刹车时,强烈的摩擦会使刹车盘和刹车片的温度高达1000℃!如果摩擦材质过硬会导致制动盘加快磨损,紧急制动时还有可能让制动摩擦片开裂或脱落,最终导致刹车失灵。使用热像仪,工程师可以完全知道整个的刹车片以及制动系统这个温度变化趋势。根据这个温度变化趋势,可以分析出刹车片制动状况,以及耐磨性。如果刹车片摩擦材质过软,在连续刹车后刹车片温度急剧升高,制动力会明显下降。相反,如果摩擦材质过硬,温度变化趋势较缓,则会导致刹车片制动盘加快磨损,紧急制动时还有可能让制动摩擦片开裂或脱落,最终导致刹车失灵。红外热像仪温度检测独特优势现有温度测量手段分三种:1、接触式热电偶接触式热电偶反应速度较慢,而且无法显示整个刹车片的整体温度分布情况,同时操作过于复杂,工程师的效率难以提高。2、红外点温仪红外点温仪反应速度快,又是非接触测温,但红外点温仪同样不具备整个刹车片温度分布的功能。3、红外热像仪红外热像仪弥补了接触式热电偶和红外点温仪的缺点,操作简捷,反应速度快,非接触测温,同时能够反映刹车片的温度分布,是目前最理想的检测工具总结红外热像仪拍摄时可能会遇到哪些问题?1、刹车片工作后,温度比较高(大于600℃),选用的热像仪时需要注意测温范围2、表面比较光亮时,非常容易将附近高温辐射源反射进红外热像仪,造成严重干扰,在拍摄时要注意避开附近高辐射物体。如何能做好红外热像检测?3、选择合适的测温范围,应该能够检测到1200℃的高温;4、先使用自动模式测量温度范围;然后用手动设置水平跨度,将温度范围设置在最小,并包含有先前测量的温度范围;5、切换各调色板模式,使热像图显示效果达到最佳(建议使用高对比度或铁红模式)。

  • 红外热像仪在检测汽车刹车片温度变化中的应用

    刹车片如果温度过高,它的效率就会降低。急刹车时,强烈的摩擦会使刹车盘和刹车片的温度高达1000℃!如果摩擦材质过硬会导致制动盘加快磨损,紧急制动时还有可能让制动摩擦片开裂或脱落,最终导致刹车失灵。  使用热像仪,工程师可以完全知道整个的刹车片以及制动系统这个温度变化趋势。根据这个温度变化趋势,可以分析出刹车片制动状况,以及耐磨性。  如果刹车片摩擦材质过软,在连续刹车后刹车片温度急剧升高,制动力会明显下降。相反,如果摩擦材质过硬,温度变化趋势较缓,则会导致刹车片制动盘加快磨损,紧急制动时还有可能让制动摩擦片开裂或脱落,最终导致刹车失灵。红外热像仪在温度检测中的独特优势。

红外温度检测相关的耗材

  • 检测用红外热像仪配件MTI395
    检测用红外热像仪配件MTI395是第三代热成像仪器,具有尖端的红外技术和高灵敏度红外探测器,NETD65mK,检测用红外热像仪是设备检测热像仪和维修检查热像仪的理想工具。 检测用红外热像仪配件MTI395特点 高度清晰的热图像和高精度温度测量2. 可折叠和270°可旋转显示器 单手操作的自动/机动焦点 温度测量范围宽 4. 激光笔 5. 明亮的LED灯 6. 直观和易于操作的菜单 7. 内置数码相机 8. 内置麦克风可录制40秒语音注释 9. 广角和长焦红外镜头 10. 可扩展的子母画面(P-I-P)和热融合 11. 自动热/冷/平均温度检测 12. 通过USB接口,实时将热视频传输到PC机,并通过MSN和Skype进行远程传输 13. 新一代IRSee分析软件 检测用红外热像仪配件MTI395应用 建立诊断 电气/机械检查 研究与开发 自动化应用 预防和预测性维护
  • 06032红外检测器
    中文名称:红外检测器 英文名称:Infrared detector 产地:进口 适用的仪器:埃尔特分析仪器
  • 消防电气检测用红外热像仪
    红外热成像仪 红外热像仪对应参数及价格红外热像仪配置测温范围空间分辨率红外分辨率价格选型一-20℃~300℃2.2mrad160*120像素12000元选型二-20℃~350℃2.2mrad160*120像素26500元选型三-20℃~600℃1.25mrad320*240像素64000元选型三-20℃~1200℃1.31mrad320*240像素95200 红外热像仪(带有可见光相机,能够拍摄高质量的红外融合照片,并有多种融合显示方式,用户可以选择最合适自己的方式来观察目标。采用3.5寸液晶显示屏,屏幕可翻转,具有专业的PC分析软件。可广泛应用于电力、建筑、电子、冶炼、能源、铁路、汽车、石化。产品特点:1.可旋转3.5寸“TFT高清液晶彩屏2.支持PAL和NTSC视频输出,对所拍摄的图像进行观测3.六种模式调色板更适合现场快速、清晰地捕捉问题点4.固定中心点测温/全屏最高/最低温度自动捕获5.温度修正:环境温度/辐射率/湿度/距离6.可设置高低温度报警,快速判断减少工作误差,提高工作效率7.仪表最高支持2GB图像拍摄储存、回放8.可选择自动调整图像,或者手动调节图像的色温中值和色温范围,提高观测清晰度9.拍摄时可通过图像冻结/激活功能在主机上进行简单分析 10.充电锂电池可连续工作3小时,有效节约购买电池的成本11.IP54:防水防尘12.25G/2G:抗冲击、抗震动能力13.工作模式可选:标准模式、节能模式14.自动校准温度 15.提供标准版测温分析软件,可对红外图像中的任意点测温分析探测器类型非制冷焦平面红外分辨率160*120像素视场角/最小成像距离20°×15°/0.1m空间分辩率2.2mrad可见光分辨率640*480全彩色像素图像模式红外/可见光/画中画/融合对焦方式手动工作波段8~14um温度灵敏度≤0.08℃@30℃温度测量范围-20℃~400℃测温精度±2°C 或者 ±2% (两者取大值) 特殊功能屏幕规格3.5"TFT屏,可旋转调色板铁红/反铁红/彩虹/羽红/黑热/百热图像调节手动或者自动调节图像格式*TIR.CCD(可见光)视频输出支持PAL(50Hz)或者NTSC(60Hz)复合视频测温模式4个可移动点,最高/最低温度捕捉,等温分析参数修正辐射率,距离,环境温度,相对湿度温差计算√报警设置可设置高低温度报警激光指示√图像保持√图像存储/回放/删除支持2G SD卡温度单位℃/℉照明灯有语言中/英文可选恢复出厂设置√工作模式可选择(标准模式、节能模式)可设置自动关机分析软件专业级测温分析软件,可对红外图像中的任意点测温分析。具备报告编辑功能,生成WORD报告防水防尘IP54抗冲击/震动25G/2G一般特征电源可充电锂电池机身颜色红色 + 灰色机身重量600g(含电池)700g(含电池UTi380D)机身尺寸220mm X 215mm X 80mm标准配件充电锂电池、座充、2G存储卡、读卡器、视频线、镜头盖、遮光罩、PC软件光盘标准包装纸箱、工具箱,说明书、保修卡 山东省消防电气检测箱配备序号设备名称量程 检测用途1红外热像仪(-20℃-350)℃用于电气装置发热部分表面温度的测量2超声波放电/泄漏检测仪20KHz-100KHzz用于定位或检测空气泄漏时产生的超声波音源的位置,各电气设备的连接处有无放电现象3非接触式测温仪(100-600)℃用于测量导线接头及端子连接点的温度4袖珍式漏电电流表0-150mA用于中性线或保护中性线异常电流的测定5真实有效值钳形表0-2000A主要用于测量相线电流6钳式接地电阻测试仪0-20Ω用于测量导线重复接地电阻7数字兆欧表(绝缘电阻测试仪) 0-2000MΩ用于测量导线相间绝缘电阻以及各相线对地绝缘电阻8钳形电流表0-2000A用于测量相线电流9数字温湿度计(-10℃-50)℃用于检测现场环境温湿度条件的测定10电子秒表0-9:59' 59' ' 用于时间的检测11组合工具/日常检测使用工具12数字测电笔/用于插座检测13活动电源盘/日常检测使用工具145m钢卷尺0-5m用于距离的检测15游标卡尺0-200mm用于导线直径等数据的检测16数码相机/用于检测过程中隐患部位的拍照17塞尺0-100mm用于检测裸露导线和接地线之间的厚度18剩余电流测试仪5-100mA用于检测剩余电流动作保护器的动作性能19消防电气检测箱HL-621S盛放以上仪器 产品名称数量 备注 红外测温仪1测温范围-10℃-900℃;发射率范围:0.1-1.0;距离系数:50︰1;测温精确度:读数的1℃;红外热像仪1测温范围-10℃-350℃;发射率范围:0.1-1.0;测温精确度:读数的±2%或±2℃;光谱响应8um-14um;图像储存和回放超声波探测仪1频率响应:20KHz~50KHz;测温精确度:读数的±1%普通钳形表1电流:OA~600/600A AC/DC电压:OV~600/600V 电阻:200MΩ;精度2.5级真有效值钳形表1AC/DC电流:OA~600/600A AC/DC电压:OV~600/600V 电阻:60MΩ;测量精确度:读数的±2.5%漏电电流测试仪1 里程:10mA~1A;测量精确度:读数的±2.5%绝缘电阻测试仪1测量范围: 250V 0.01 MΩ~10000 MΩ;精度2%钳式接地电阻测1电阻:里程0.1Ω~1200Ω;精确度的±(1.5%+0.1Ω) 分辨率0.1Ω;电流:量程1MA~30A,精确度的±(2.5%+20mA) 分辨率最大可钳导体尺寸32mm低欧姆表1电阻:4Ω~24Ω 最小电流:0.2A剩余电流发生器1工作电压:220V AC 电压频率:50HZ/60HZ 输出电流:AC 0.1mA-1000mA 输出精度:<±0.2%

红外温度检测相关的资料

红外温度检测相关的资讯

  • 人体红外测温仪的科普小知识:不建议用工业检测红外温度计
    p style=" margin: 0px 0px 14px padding: 0px font-weight: 400 font-size: 22px color: rgb(51, 51, 51) text-indent: 2em " span style=" text-indent: 2em font-family: sans-serif font-size: 16px " 近期,新型冠状病毒感染的肺炎疫情严峻,测量体温成为防控疫情的必要手段。人体红外测温仪因其非接触、效率高、使用方便的特点在人流密集的各交通关口、医院、住宅小区、企事业单位广泛用。 /span /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) font-size: 18px " strong 分类 /strong /span /p p style=" text-indent: 2em " 常用的人体红外测温仪可分为 strong 红外热成像体温快速筛检仪 /strong 和 strong 红外体温计 /strong 两类。 /p p style=" text-indent: 2em " strong 红外热成像体温快速筛检仪 /strong ,可在人流密集的公共场所进行大面积监测,自动跟踪、报警高温区域,与可见光视频配合,快速找出并追踪体温较高的人员。当红外热成像体温快速筛检仪集成人脸识别、手机探针等技术时,还能掌握体温较高人员的更多信息。 /p p style=" text-indent: 2em " strong 红外体温计 /strong 又可分为 strong 红外耳温计 /strong 和 strong 红外额温计 /strong ,红外体温计设备简单、使用方便、价格实惠,应用,可实现对人员的依次、快速测温。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 226px " src=" https://img1.17img.cn/17img/images/202002/uepic/ecce79d9-ccc2-4895-9bf2-5799f71421f9.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 226" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" background-color: rgb(255, 0, 0) font-size: 18px " strong span style=" background-color: rgb(255, 0, 0) text-indent: 2em color: rgb(255, 255, 255) " 原理及测量方式 /span /strong /span /p p style=" text-indent: 2em " 人体的热量会通过热辐射的形式散发到环境中,人体红外测温仪通过内置的传感器探测人体的热辐射,从而实现测量体温的目的。 /p p style=" text-indent: 2em " strong 红外热成像体温快速筛检仪 /strong 利用红外测温技术对人体表面温度进行非接触式的快速测量,当被测温度达到或超过预设警示温度值时进行警示的仪器。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 177px " src=" https://img1.17img.cn/17img/images/202002/uepic/b0333c0b-9653-4df8-a095-286109107104.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 500" height=" 177" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " strong 红外耳温计 /strong 是利用耳道和鼓膜与探测器间的红外辐射交换测量体温的仪器;测量的是人体耳部鼓膜部位,测量前应清理耳道,将探头深入耳孔内测量,须配备卫生耳套使用,避免多人使用交叉感染。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 371px " src=" https://img1.17img.cn/17img/images/202002/uepic/295a4666-925d-41a1-ac5f-57341cfaad84.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 371" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " strong 红外额温计 /strong 是利用皮肤与探测器间的红外辐射交换和适当的发射率修正测量皮肤温度的仪器。测量的是人体额头部位,将温度枪对准额心,如有汗水应擦干,与额头的距离建议在1-3厘米为佳。 /p p style=" text-indent: 2em " span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) font-size: 18px " strong 使用注意事项 /strong /span /p p style=" text-indent: 2em " strong 红外测温的优点 /strong :一是与被测对象不接触,在测体温时不会造成不必要的感染;二是快速,通常测量时间小于1秒,一般不会超过2秒。因此十分适合于在发烧类疾病预防检测中应用。 /p p style=" text-indent: 2em " 通常在人体温度37℃附近,红外热成像体温快速筛检仪的准确度能达到± 0.3℃,红外体温计能达到± 0.2℃。 /p p style=" text-indent: 2em " 从测量准确度来说,红外耳温计测量准确度最高,红外额温计次之。但是,如果测量方法不正确,测量结果也会不准确。对于新购买的人体红外测温仪,或使用频繁以及对测量结果有怀疑时,应当对人体红外测温仪进行校准,以确定其修正值,则能尽量消除测温仪的系统误差。 /p p style=" text-indent: 2em " 黑体辐射源可用于对人体红外温度仪的校准。其有效发射率、控温稳定度都有较高的要求。黑体温度通常采用铂电阻温度计或玻璃液体温度计等接触温度计测量,其温度与红外体温计测得值相比较以获得校准值。校准红外耳温计的黑体还需根据被检温度计的要求专门设计其开口形状和尺寸。 /p p style=" text-indent: 2em " strong span style=" background-color: rgb(255, 255, 0) " 特别提示 /span /strong span style=" background-color: rgb(255, 255, 0) " :不建议将工业检测用红外温度计用于测量人体温度。 /span /p p style=" text-indent: 2em " 工业检测用红外温度计通常测量范围下限可达-20℃~-30℃,上限从200℃~1000℃都有,测量范围较广,准确度较低,在人体温度附近一般不会优于± 1.0℃。因此仅从测量准确度的要求来看使用工业检测用红外温度计来测量人体温度是不太合适的。 /p p style=" text-indent: 2em " 上海市计测院建有华东地区准确度最高、测量范围最广的红外温度计量标准,可及时为疫情防控提供人体红外测温仪的计量校准服务。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 264px " src=" https://img1.17img.cn/17img/images/202002/uepic/bf6ca908-56a7-4a88-b161-1ef8293bbe55.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 264" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" background-color: rgb(255, 0, 0) font-size: 18px " strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 使用小贴士 /span /strong /span /p p style=" text-indent: 2em " 经校准后的红外测温仪均会提供校准温度点和修正值,供实际使用。 /p p style=" text-indent: 2em " 以图中这只已经过校准的红外额温计为例,实际测温时,若显示数值为36.4℃,则实际数值应为36.4℃+0.2℃=36.6℃。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 207px " src=" https://img1.17img.cn/17img/images/202002/uepic/e1e44478-d5a3-4a98-aa27-7b4487a37be2.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 500" height=" 207" border=" 0" vspace=" 0" / /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-indent: 2em text-align: center " ------------------------------------------- br style=" margin: 0px padding: 0px " / /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-indent: 2em " span style=" font-family: arial, helvetica, sans-serif " strong style=" margin: 0px padding: 0px " 征稿活动: /strong “红外体温检测仪技术及相关应用”主题征稿活动进行中,一经入选,将在资讯栏目发布并支付一定稿酬,并择优邀请做线上专家报告 span style=" margin: 0px padding: 0px color: rgb(127, 127, 127) " (新冠病毒主题研讨会---红外体温检测仪检测技术与应用现状) /span 。让我们共同努力,携手抗“疫”! span style=" margin: 0px padding: 0px color: rgb(0, 176, 240) " (投稿或自荐邮箱:yanglz@instrument.com.cn) /span /span /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-indent: 2em " span style=" margin: 0px padding: 0px color: rgb(0, 0, 0) font-family: arial, helvetica, sans-serif " 更多红外体温检测仪技术与应用相关资讯点击关注以下专题: /span /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/hwcwy" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202002/uepic/bde094f1-56cd-4cf3-9247-45585be2bf41.jpg" title=" 1920_420_1(1).jpg" alt=" 1920_420_1(1).jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p
  • 红外近场辐射探测及超分辨温度成像
    红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所红外科学与技术全国重点实验室的科研团队在《红外与毫米波学报》期刊上发表了以“红外近场辐射探测及超分辨温度成像”为主题的文章。该文章第一作者为朱晓艳,主要从事红外被动近场成像方面的研究工作。本文将围绕扫描噪声显微镜(SNoiM)技术的实验原理及其应用,详细介绍如何通过自主研制的红外被动近场显微镜,突破红外热成像的衍射极限限制,实现纳米级红外温度成像。近场辐射我们首先从黑体辐射的本源入手。如图1(a)所示,绝大多数物体内部都包含大量带正电荷和负电荷的粒子,这些带电粒子永远不会静止不动,而是一直处于随机扰动状态(热运动)。我们所熟知的热辐射就源自物体内部的这种带电粒子热运动,辐射特征可由普朗克黑体辐射定律描述。但鲜为人知地是,物体内的电荷扰动不仅在距离物体辐射波长尺度以外的区域产生红外热辐射(远场辐射),而且在物体近表面处会生成一种能量密度极高的表面扰动电磁波(以倏逝波形式存在),可称之为近场辐射。理论很早就预言了这种表面电磁波(近场辐射)的存在,并发现针对远场辐射所建立的认知及规律(如普朗克辐射定律等)将不再适用于近场辐射,但相关实验研究由于探测难度极高而一直未有明显突破。2009年,美国麻省理工学院和法国CNRS的研究组取得重要进展,先后在实验上验证了纳米尺度下近场辐射热传输效率可远超黑体辐射极限。尽管该实验验证了物体表面近场倏逝波的存在,但相关物理现象仍然缺少更直接的实验手段对其进行更进一步地研究。图1(a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图红外被动近场显微镜(SNoiM)的实验原理及其应用SNoiM技术的实验原理物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问题。如图1(b)所示,当不引入纳米探针(或探针远离物体表面)时,物体近表面的近场倏逝波无法被探测,该显微镜工作于传统红外热成像模式,即仅获得其远场辐射信号。SNoiM技术的关键是,将探针靠近样品近表面(比如10 nm以内),近场倏逝波可以被针尖有效散射出来。该探测模式下,探测器所获取的样品信号中同时存在近场和远场分量。因此,通过控制探针至物体表面的间距h,即可获得近场、远场混合信号(h 100 nm或撤去探针,称为远场模式)。最终,利用探针高度调制及解调技术即可从远场背景中提取物体的近场信息。图1(d)展示了SNoiM系统探测近场信号的示意图。探针所散射的近场信号首先由一个高数值孔径的红外物镜进行收集。但在该过程中,无法消除来自环境、被测物体及仪器自身的远场辐射信号,它们随近场信号一同被红外物镜收集,导致被测物体微弱的近场信号湮没于巨大的远场背景辐射之中。为了最大程度降低远场背景信号,研究人员在红外物镜上方设计了一个孔径极小的共焦孔(约100 μm),通过此共焦结构可以缩小收集光斑,有效抑制背景辐射信号。然而,即使是这样,是否有足够灵敏的红外探测器能够检测到纳米探针所散射的微弱近场信号也是一大难点。为此,本团队研发了一款超高灵敏度红外探测器,攻克了这一技术壁垒。图2(a)展示了首套SNoiM设备实物图。其中,金色圆柱腔体为低温杜瓦,内部搭载了自主研制的超高灵敏度红外探测器(CSIP)及一些低温光学组件;白色方框内为实验室内组装的基于音叉的原子力显微镜(AFM)、红外收集物镜及样品台区域,具体细节参照图2(b)、(c)。红外近场图像的空间分辨率不再受探测波长限制,而是由探针尖端尺寸决定。如图2(b)中插图所示,通过电化学腐蚀方法,可制备出形貌优良的金属(钨)纳米探针,其中,针尖直径可小至100 nm以内。图2(a)红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片基于SNoiM的超分辨红外成像研究利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。图3(a)为Au薄膜样品在普通光学显微镜下所拍摄的图像。其中,亮金色区域为Au薄膜(约50 nm厚),其他区域为SiO₂衬底。使用SNoiM系统可同时获取该样品的远场和近场红外图像(获取远场图像时只需将探针挪离样品表面)。如图3(b)所示,由于成像波长较长(~ 14 μm),远场红外图像的分辨率远不如普通光学显微图像。比如,Au与衬底(SiO₂)的边界无法清晰区分以及中间细小金属条状结构无法识别等(图中黑色虚线所示)。然而,在相同探测波长下,如图3(c)所示的近场红外图像则展现了超高的空间分辨率,其图像清晰度可完全与普通光学显微镜所获取的图像相比拟。为了进一步理清上述三种显微成像技术的区别,图3示意图中给出了探测到的信号来源:对于光学显微图像,其信号来自于可见光的反射。由于金属的反射能力较强,因而Au上的信号远比SiO₂强。可见光波长范围为400~760 nm,因而光学显微镜可清晰分辨该样品表面的细微结构。远场红外成像不依赖于外界光源照射,直接通过红外物镜收集物体自身所发射出来的辐射信号,并对其进行成像。在探测波长为14 μm情况下,受衍射极限的限制,系统的实际空间分辨率也只有约14 μm。近场红外成像则检测探针尖端所散射的样品表面近场辐射信号,因此不受远场光学衍射极限限制,可获得超分辨红外图像(图3c)。图3 样品Au(SiO₂衬底)的(a)光学显微、(b)远场红外和(c)近场红外的图像及成像原理示意图另外值得注意的一点是,图3(c)所示的红外近场图像不仅仅在分辨率上有所提高,而且在金属与衬底的信号强度对比上出现了明显反转(由远场切换至近场后,Au由弱信号方(蓝色)转变为强信号方(红色))。针对上述现象的解释如下:远场成像时,Au是高反射物体,因此吸收红外光的能力极弱,根据基尔霍夫定律,则其红外发射率也很低。因而远场红外成像中其信号弱于衬底SiO₂;而在近场成像中,室温金属(Au)中的自由电子存在剧烈的热运动(热噪声),从而在金属表面产生极强的表面电磁波,因而Au上的信号远强于SiO₂。由此可见,SNoiM技术不仅突破了红外衍射极限限制,而且能够检测远场显微镜所无法探测的物理过程。基于SNoiM的微观载流子输运及能量耗散可视化研究基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视化。值得指出,SNoiM所检测的近场辐射信号来自于物体近表面的传导电子,因此其成像结果所反映的是物体表面的局域电子温度(Te)。目前仅SNoiM技术可实现纳米尺度下电子温度分布的直接成像。下面将以通电微小金属线(NiCr合金)为例进行说明。图4 (a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像图4(a)为NiCr金属线的光学显微图像(上)及其通电后的红外远场热图像(下)。红外远场成像检测通电器件的远场辐射,从而估算出器件的表面温度。比如,器件中心处出现明显热斑,该处温度最高,表明电流流经微小弯曲金属线时能量耗散最大。而受衍射极限限制,远场红外热成像无法分辨微小金属线(宽度约3.3 μm)上不同区域的温度分布,因此无法有效反映微观尺度上载流子的能量耗散特性。与之相比,近场红外热成像则可清晰展示器件中心区域微观载流子的输运及能量耗散行为。如图4(b)所示,当电流经过器件凹形弯折区时,近场红外热成像下,该区域内存在极其不均匀的温度分布,而且在凹形内侧出现显著热斑。该现象表明,通电NiCr器件的凹形区内存在非均匀局部焦耳热,且内侧区域电子能量耗散最大,这是由于电流的拥挤效应所造成的。此外,该温度分布图像似乎表明,通电时,载流子倾向于避开直角拐角处,并趋于沿着U形路径分布。为验证这一猜想,该实验进一步设计了中心区域呈U形弯折的通电NiCr金属线,并对其进行了近场红外热成像表征。图4(c)显示,U形区域温度均匀分布,无明显局域热斑,这表明载流子倾向于沿着U形路径均匀输运。基于SNoiM纳米热分析研究而提出的新设计大大缓解了电流拥挤效应可能对器件造成的局部热损伤,具有重要的指导意义。总结与展望综上,利用SNoiM技术,可以实现物体表面的近场辐射探测及红外超分辨温度成像。该技术是目前国际上唯一能够进行局域电子温度成像的科学仪器,不仅突破了红外远场热成像的衍射极限限制,且首次实现了纳米尺度下通电器件中载流子输运行为与能量耗散的直接可视化。该研究内容均基于第一代室温SNoiM系统,目前,第二代低温SNoiM系统已被成功搭建,有望进一步突破后摩尔时代信息和能源器件的功耗降低及能效提升难题,探索物理新机制,并推动纳米测温技术新的发展。这项研究获得国家自然科学基金优秀青年基金的资助和支持。论文链接:DOI: 10.11972/j.issn.1001-9014.2023.05.001
  • 一文了解|红外近场辐射探测及超分辨温度成像
    红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。本文将介绍红外被动近场显微成像技术的基本原理,以及基于此可实现的物体表面近场辐射探测与红外超分辨温度成像研究。近场辐射我们首先从黑体辐射的本源入手。如图1(a)所示,绝大多数物体内部都包含大量带正电荷和负电荷的粒子,这些带电粒子永远不会静止不动,而是一直处于随机扰动状态(热运动)。我们所熟知的热辐射就源自物体内部的这种带电粒子热运动,辐射特征可由普朗克黑体辐射定律描述。但鲜为人知的是,物体内的电荷扰动不仅在距离物体辐射波长尺度以外的区域产生红外热辐射(远场辐射),而且在物体近表面处会生成一种能量密度极高的表面扰动电磁波(以倏逝波形式存在),可称之近场辐射。理论很早就预言了这种表面电磁波(近场辐射)的存在,并发现针对远场辐射所建立的认知及规律(如普朗克辐射定律等)将不再适用于近场辐射,但相关实验研究由于探测难度极高而一直未有明显突破。2009年,美国麻省理工学院和法国CNRS的研究组取得重要进展,先后在实验上验证了纳米尺度下近场辐射热传输效率可远超黑体辐射极限。尽管该实验验证了物体表面近场倏逝波的存在,但相关物理现象仍然缺少更直接的实验手段对其进行更进一步的研究。图1 物体表面存在的近场辐射及其探测方式 (a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图红外被动近场显微镜(SNoiM)的实验原理及其应用SNoiM技术的实验原理物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问题。如图1(b)所示,当不引入纳米探针(或探针远离物体表面)时,物体近表面的近场倏逝波无法被探测,该显微镜工作于传统红外热成像模式,即仅获得其远场辐射信号。SNoiM技术的关键是,将探针靠近样品近表面(比如10 nm以内),近场倏逝波可以被针尖有效散射出来。该探测模式下,探测器所获取的样品信号中同时存在近场和远场分量。因此,通过控制探针至物体表面的间距,即可获得近场、远场混合信号( 100 nm或撤去探针,称为远场模式)。最终,利用探针高度调制及解调技术即可从远场背景中提取物体的近场信息。图1(d)展示了SNoiM系统探测近场信号的示意图。探针所散射的近场信号首先由一个高数值孔径的红外物镜进行收集。但在该过程中,无法消除来自环境、被测物体及仪器自身的远场辐射信号,它们随近场信号一同被红外物镜收集,导致被测物体微弱的近场信号湮没于巨大的远场背景辐射之中。为了最大程度降低远场背景信号,研究人员在红外物镜上方设计了一个孔径极小的共焦孔(约100 μm),通过此共焦结构可以缩小收集的光斑,有效抑制背景辐射信号。然而,即使是这样,是否有足够灵敏的红外探测器能够检测到纳米探针所散射的微弱近场信号也是一大难点。为此,本团队研发了一款超高灵敏度红外探测器,攻克了这一技术壁垒。图2(a)展示了首套SNoiM设备实物图。其中,金色圆柱腔体为低温杜瓦,内部搭载了自主研制的超高灵敏度红外探测器(CSIP)及一些低温光学组件;白色方框内为实验室内组装的基于音叉的原子力显微镜(AFM)、红外收集物镜及样品台区域,具体细节参照图2(b)、(c)。红外近场图像的空间分辨率不再受探测波长限制,而是由探针尖端尺寸决定。如图2(b)中插图所示,通过电化学腐蚀方法,可制备出形貌优良的金属(钨)纳米探针,其中,针尖直径可小至100 nm以内。图2 红外被动近场显微镜SNoiM的实物图(a) 红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片基于SNoiM的超分辨红外成像研究利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。图3(a)为Au薄膜样品在普通光学显微镜下所拍摄的图像。其中,亮金色区域为Au薄膜(约50 nm厚),其他区域为SiO2衬底。使用SNoiM系统可同时获取该样品的远场和近场红外图像(获取远场图像时只需将探针挪离样品表面)。如图3(b)所示,由于成像波长较长( ~ 14 μm),远场红外图像的分辨率远不如普通光学显微图像。比如,Au与衬底(SiO2)的边界无法清晰区分以及中间细小金属条状结构无法识别等(图中黑色虚线所示)。然而,在相同探测波长下,如图3(c)所示的近场红外图像则展现了超高的空间分辨率,其图像清晰度可完全与普通光学显微镜所获取的图像相比拟。为了进一步理清上述三种显微成像技术的区别,图3示意图中给出了探测到的信号来源:对于光学显微图像,其信号来自于可见光的反射。由于金属的反射能力较强,因而Au上的信号远比SiO2强。可见光波长范围为400~760 nm,因而光学显微镜可清晰分辨该样品表面的细微结构。远场红外成像不依赖于外界光源照射,直接通过红外物镜收集物体自身所发射出来的辐射信号,并对其进行成像。在探测波长为14μm情况下,受衍射极限的限制,系统的实际空间分辨率也只有约14μm。近场红外成像则检测探针尖端所散射的样品表面近场辐射信号,因此不受远场光学衍射极限限制,可获得超分辨红外图像(图3c)。图3 样品Au(SiO2衬底)的几种显微图像及成像原理示意图:(a)光学显微、(b)远场红外和(c)近场红外另外,值得注意的一点是,图3(c)所示的红外近场图像不仅仅在分辨率上有所提高,而且在金属与衬底的信号强度对比上出现了明显反转(由远场切换至近场后,Au由弱信号方(蓝色)转变为强信号方(红色))。针对上述现象的解释如下:远场成像时,Au是高反射物体,因此吸收红外光的能力极弱,根据基尔霍夫定律,则其红外发射率也很低。因而远场红外成像中其信号弱于衬底SiO2;而在近场成像中,室温金属(Au)中的自由电子存在剧烈的热运动(热噪声),从而在金属表面产生极强的表面电磁波,因而Au上的信号远强于SiO2。由此可见,SNoiM技术不仅突破了红外衍射极限限制,而且能够检测远场显微镜所无法探测的物理过程。基于SNoiM的微观载流子输运及能量耗散可视化研究基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视化。值得指出,SNoiM所检测的近场辐射信号来自于物体近表面的传导电子,因此其成像结果所反映的是物体表面的局域电子温度(Te)。目前仅SNoiM技术可实现纳米尺度下电子温度分布的直接成像。下面将以通电微小金属线(NiCr合金)为例进行说明。图4(a)为NiCr金属线的光学显微图像(上)及其通电后的红外远场热图像(下)。红外远场成像检测通电器件的远场辐射,从而估算出器件的表面温度。比如,器件中心处出现明显热斑,该处温度最高,表明电流流经微小弯曲金属线时能量耗散最大。而受衍射极限限制,远场红外热成像无法分辨微小金属线(宽度约3.3 μm)上不同区域的温度分布,因此无法有效反映微观尺度上载流子的能量耗散特性。与之相比,近场红外热成像则可清晰展示器件中心区域微观载流子的输运及能量耗散行为。如图4(b)所示,当电流经过器件凹形弯折区时,近场红外热成像下,该区域内存在极其不均匀的温度分布,而且在凹形内侧出现显著热斑。该现象表明,通电NiCr器件的凹形区内存在非均匀局部焦耳热,且内侧区域电子能量耗散最大,这是由于电流的拥挤效应所造成的。此外,该温度分布图像似乎表明,通电时,载流子倾向于避开直角拐角处,并趋于沿着U形路径分布。为验证这一猜想,该实验进一步设计了中心区域呈U形弯折的通电NiCr金属线,并对其进行了近场红外热成像表征。图4(c)显示,U形区域温度均匀分布,无明显局域热斑,这表明载流子倾向于沿着U形路径均匀输运。基于SNoiM纳米热分析研究而提出的新设计大大缓解了电流拥挤效应可能对器件造成的局部热损伤,具有重要的指导意义。图4 NiCr金属线在不同测试模式下的红外热成像结果:(a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制