当前位置: 仪器信息网 > 行业主题 > >

煤气分析标准

仪器信息网煤气分析标准专题为您提供2024年最新煤气分析标准价格报价、厂家品牌的相关信息, 包括煤气分析标准参数、型号等,不管是国产,还是进口品牌的煤气分析标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合煤气分析标准相关的耗材配件、试剂标物,还有煤气分析标准相关的最新资讯、资料,以及煤气分析标准相关的解决方案。

煤气分析标准相关的资讯

  • 多组分检测:让煤气分析再简单一点
    煤的气化是我国煤化工工业的重要组成部分,特别是在石油资源日益紧张的条件下显得更加重要。煤气成分的检测分析是气化炉优化控制的前提,也是煤化工行业其他工序的重要参数。此外,高炉、转炉,焦炉以及玻璃,陶瓷等工业领域也经常需要进行煤气成分的检测。本文将详细介绍一种采用新型的电调制多组分红外气体分析方法,配合最新发展的MEMS 技术热导 TCD 气体传感器以及长寿命电化学 O2、H2S传感器开发的集成化多组分煤气分析仪Gasboard-3100的技术应用。希望对你从事煤气成分检测有所裨益。1红外线多组分气体分析上图为 ndir 红外气体分析原理图:以 CO2分析为例,红外光源发射出1-20um的红外光,通过一定长度的气室吸收后,经过一个4.26μm 波长的窄带滤光片后,由红外传感器监测透过4.26um 波长红外光的强度,以此表示 CO2气体的浓度,如果在探测器端放置一种具备四元的探测器,并配备四种不同波长的滤光片,如CO2、CO、CH4以及参考的滤光片,就可在一台仪器内完成对煤气成分中 CO2、CO、CH4的同时测量。煤气分析仪Gasboard-3100红外测量部分技术在一体化的四元探测器上安装有四个不同的滤光片(CO2、CO、CH4、参考),可实现对三种气体的同时测量(如下图)。 滤光片一体化四元红外探测器2MEMS 技术热导 tcd分析目前国内H2分析大都采用双铂丝热敏元件制成的热导元件,体积大精度低,传感器的死区(dead space)大。煤气分析仪Gasboard-3100采用了国际最新发展的基于MEMS技术的TCD气体传感器,只需要加上合适的电压就可以输出一个与浓度对应的毫伏级信号。3电化学氧气、硫化氢分析在煤气成分分析中,O2是一个安全参数,有些时候H2S 也是一个重要参数。煤气分析仪Gasboard-3100采用了一种长寿命(6年)的电化学 O2传感器和H2S 传感器,该传感器实际上是一种微型电流发生器,配合高精度的前置放大电路,直接输出与浓度对应的电压进入仪器测控系统。4多组分煤气分析仪特点煤气分析仪Gasboard-3100包括用于CO、CO2、CH4的 NDIR 红外气体探测器,测量 H2的TCD热到探测器,O2、H2S 探测器;ADUC842测控系统及软件; ICD、键盘、打印机、气泵、以及报警等外部装置。电调制红外光源传统的红外气体分析仪采用连续红外热辐射型光源,如镍锘丝、硅碳棒等红外加热元件,其发出红外光的波长在2~15μm之间,由于其热容量大,通常采用切光片对光源进行调制。因此需要一个同步电机带动切光片旋转,其缺点在于存在机械转动。抗振性差,攻耗大,不适合于便携设备。其次为保证调制的频率,还需要严格同步的电机以及驱动电路,使得系统复杂化,成本也大大增加。煤气分析仪Gasboard-3100采用了国际上最新研制的一种类金刚石镀膜红外光源。该光源采用导电不定型碳(CAC)多层镀膜技术,热容量很低,因此升降温速度很快,其调制频率最高可以达到200HZ,新型电调制光源的使用,使得红外气体分析技术在仪器体积、成本、性能等方面都有实质性的提高。气体干扰校正从原理上讲,CO,CO2,CH4之间由于采用了特征波长,彼此测量间没有相互干扰,但是由于受当前滤光片生产工艺的限制,滤光片具有一定的带宽,CO 与CO2,以及 CO2与参考通道之间具有一定的干扰,因此成分之间具有一定的干扰,如果不加以校准,测量的误差将达到10% 以上,很难达到工业应用的要求,如按照单一标准气体 CO2标定后,如果通入不含CO2的70%的 CO进入仪器,CO2读数将达到7%左右。为了消除红外分析气体之间的相互干扰,煤气分析仪Gasboard-3100设置了10点标定程序,采用计算机算法得到了气体干扰校正方法,通过该方法的使用,可使CO、CO2、CH4的精度达到2%以上。研究表明,采用以往单一组分红外气体分析仪组成的煤气分析系统,如果直接采用测量读数,将可能得到不准确的测量结果。同时,煤气成分中的CO、CH4、N2、O2对 H2的测量准确性影响不大,主要是CO2的影响。通过大量实践证明,CO2对H2的影响是线性的,每1%含量的CO2将降低 H2含量为0.08%, 如果没有 CO2数据的校准,当CO2含量达到40%,则H2的误差将超过3%。这也充分说明,要想得到准确的煤气成分分析结果,各组分必须同时测量。测量流量控制虽然红外以及电化学气体分析在一定程度上受测量流量影响较少,但是对于 TCD 热导H2分析来说,气体流量的稳定直接关系到 H2的测量精度。为了保证测量流量的稳定,煤气分析仪Gasboard-3100采用了微型的柱塞气泵,将测量气体压缩到0.2mPa, 通过气体稳压和稳流阀后进入气体分析仪,这样可以将整个气体的测量流量维持在1L/min。流量的稳定在一定程度上,也提高了红外以及电化学气体测量的精度和稳定性。通过以上技术的采用,多组分煤气分析仪可以实现以下组分和精度的测量(表1),并已经应用在包括高炉、转炉、煤气发生炉等工业现场,取得了良好的成绩。表1:多组分煤气分析仪技术参数结论(1)通过采用新型电调制红外光源,省却了以往红外气体分析仪器复杂和昂贵的电机调制系统,大大降低了系统成本和功耗。实现了CO、CO2、CH4的同时测量。(2)通过采用MEMS 技术的 TCD 热导,以及长寿命的 O2、H2S 电化学气体传感器与红外气体测量的组分,实现了煤气多组分的同时在线测量。(3)红外测量组分间由于受滤光片带宽的限制,存在一定的相互干扰,通过计算机校正算法可以将组分的测量精度提高到2%以上,这也说明,以往单一组分的红外气体分析仪直接用于煤气分析,很可能造成测量数据不准确。(4)TCD 热导 H2分析必须进行 CO2气体的校准,否则将可能造成超过3%的误差。因此如果仅仅采用单一H2分析仪而没有其他气体气体的校准,以往组合式的煤气成分监测系统很可能得不到准确的测量数据。
  • 定制GC课堂系列三丨水煤气、半水煤气、焦炉煤气傻傻分不清楚——岛津煤气分析方案
    我国总体能源格局是“富煤、贫油、少气”,煤炭在我国有着丰富的储备。煤炭从单一燃料向煤化工原料转变已成为高效利用主流方式之一。在煤化工中煤气化工艺占有重要地位,所生产的煤气可作为气体燃料、合成液体燃料、化工品等多种产品的原料。 根据不同加工方法,煤气主要有水煤气、半水煤气、空气煤气、焦炉煤气,它们有什么区别呢?岛津煤气专用分析系统探究不同类型煤气本质区别:组分、浓度。 方案设计● GC主机、双TCD检测器、三阀五柱分析系统。● 满足水煤气、半水煤气、空气煤气、焦炉煤气检测分析。● Nexis GC-2030、GC-2014、GC-2014C多种机型自由选择。 优势● 13分钟内可完成H2、O2、N2、CH4、CO、CO2、C2H4、C2H6和C2H2煤气主要组分分析,可兼顾常量H2S分析。● 双TCD通道,组分全量程分析。● 可选配热值分析软件。● 交钥匙解决方案,出厂设备随机带原厂方法文件、数据等相关资料。 流路图煤气分析流路图 色谱图煤气分析流路图 色谱图TCD2通道色谱图 注:岛津可根据用户需求提供定制化分析方案,具体可联系当地营业。
  • 在线气体分析系统监测电捕焦油器中煤气含氧量的真相
    煤气生产过程中产生焦油的一部分以极其微小的雾滴悬浮于煤气中,其粒径1~7μm。煤气中的焦油雾会在后续的煤气净化过程中被洗涤下来而进入溶液或吸附于管道和设备上,造成溶液污染、产品质量降低、设备及管道堵塞。下面来看看在线气体分析系统监测电捕焦油器中煤气含量的真相。1、电捕焦油器的安全操作要求 捕集煤气中焦油雾的设备有机捕焦油器和电捕焦油器两种,我国目前主要采用电捕焦油器捕集煤气中的焦油雾。电捕焦油器按沉淀极的结构可分为管式、蜂窝式、同心圆式和板式等类型。电捕焦油器都是利用高压静电作用下产生正负极,使煤气中的焦油雾在随煤气通过电捕焦油器时,由于受到高压电场的作用被捕集下来。由于煤气易燃易爆,就必须保证电捕焦油器的安全操作。另外,电捕焦油器电极间有电晕,可能会发生火花放电现象。如果煤气中混有氧气,当煤气与氧气的混合比例达到爆炸极限时就会发生爆炸。2、煤气中氧含量的控制 煤气中氧气的主要来源有以下几方面 一是生产过程中因设备及管道泄漏而进入的空气; 二是气化用气化剂过剩或短路; 三是在煤气生产过程中,会有一定量的空气进入煤气中。为保证混入的空气与煤气混合后不达到爆炸极限,就应控制煤气中的氧气含量。 《城镇燃气设计规范》( GB 50028-2006)规定,当干馏煤气中氧的体积百分数大于1%时,电捕焦油器应发出报警信号。当氧的体积百分数达到2%时,应设有立即切断电源的措施。《工业企业煤气安全规程》(GB 6222-2005)中也有此规定。这些规定都是以煤气中氧的体积百分数不得超过1%为界限。3、煤气中氧含量与爆炸极限的关系 不同煤气的爆炸极限各不相同,各种人工煤气的爆炸极限见下表。各种人工煤气的爆炸极限(%体积) 从上表可知,对于焦炉煤气、油煤气和直立炉煤气,当达到煤气的爆炸上限时,煤气中氧的体积百分数为12%~13.5%(即煤气中的空气体积百分数达60%左右)时才能形成爆炸性气体。而正常生产情况下,煤气中空气量不可能达到如此高的程度,因此煤气中氧体积百分数低于1%的控制指标可以适当放宽。 对于发生炉煤气及水煤气,当煤气中空气的体积百分数达到30%左右(即煤气中氧体积百分数达到6%以上)时才能达到爆炸极限。以爆炸极限范围最宽的水煤气为例,如果控制煤气中氧的体积百分数≤3%,相当于煤气中空气的体积百分数≤14. 3 %,这时距离其爆炸上限(空气体积百分数为29.6%)还相当远,还有相当大的缓冲空间。因此,从爆炸极限角度分析,控制煤气中氧的体积百分数≤3%应是安全的。4、建议 首先,实际生产过程中一般建议企业采用必要的在线气体分析系统,实时在线监测煤气成分中O2含量,如在线气体分析系统Gasboard-9021,该系统针对多焦油、粉尘、水汽的特定工况设计,通过控制单元可自动化完成样气净化,保证系统长期稳定工作,降低运维成本。其气体分析单元煤气分析仪(在线型)Gasboard-3100可设定O2的高低报警输出,当O2浓度超过报警设定值时,继电器开关触点闭合,外接声光报警器接收信号,可发出声光报警,提醒操作人员采取必要的安全措施;同时可在线测量煤气中CO、O2等气体浓度并自动计算显示煤气热值,为工艺运行提供数据参考。 该在线气体分析系统已广泛应用于煤气化、生物质气化等领域,如安徽某新能源发电股份公司在电捕焦装置后端采用Gasboard-9021用于O2含量监测,将煤气O2含量控制在0.8%以下,以确保电捕焦装置的正常运行,保证工艺现场安全;同时实时监测煤气化炉运行情况,分析煤气成分并计算自动显示煤气热值,为工艺运行提供数据参考,以进生产工艺,提高煤气生产品质及产量。项目现场防尘分析小屋 其次,在实际生产过程中控制煤气中氧的体积百分数低于1%很难进行操作,许多企业采用氧的体积百分数≤1%时切断电源的控制程序,故经常发生断电停车事故,影响后续工序的正常生产。随着工艺、设备及控制技术的发展和操作人员素质的提高,相当一部分企业能够控制煤气中的氧体积百分数≤1 %,如上海的几个煤气厂、焦化厂,均能够控制电捕焦油器煤气中氧的体积百分数≤1%。但国内大部分相关企业都反映很难控制电捕焦油器煤气中氧的体积百分数≤1%,大部分企业都控制在2%~4%。国内外多年的实际生产运行,没有因煤气含氧量过高而发生电捕焦油器爆炸的情况。 从理论上分析及国内外企业多年的生产实践看,控制电捕焦油器煤气中的氧体积百分数≤3%是可行的。为满足安全生产的要求,建议当煤气中的氧体积百分数≥2%时自动报警,当煤气中的氧体积百分数达到3%时切断电源。对于用一氧化碳变换的低热值煤气,氧的体积百分数>0.5%时应自动报警,并控制煤气中的氧体积百分数≤1%。这是由于采用镍系催化剂对煤气含氧量的要求。(来源:工业过程气体监测技术)
  • 煤气化行业煤气成分监测实例剖析
    我国是以煤炭为主要一次能源的国家,一次能源消费中煤炭的占比达到62%。但我国的煤炭利用技术总体上是落后的,在煤炭的转化利用过程中普遍存在效率低、污染严重等问题。随着能源问题的日益突出,洁净煤技术越来越多地应用于实际生产过程中,其中大规模煤气化、煤气化多联产技术成为了煤炭综合应用的主要方向之一。 近年来红外煤气分析仪越来越多地应用于实际煤气化煤气分析当中,本文将结合Gasboard-3100在不同领域的实际应用,帮助大家更好的了解煤气分析仪在煤气化行业应用优势。煤气分析仪(在线型)Gasboard-3100 根据煤气化应用领域的不同,煤气分析仪可实现煤气热值分析和煤气成分分析两种用途。通常的应用如下:工业燃气应用 作为工业燃气,一般热值要求为1100-1350大卡热的煤气,可采用常压固定床气化炉、流化床气化炉均可制得。主要用于钢铁、机械、卫生、建材、轻纺、食品等部门,用以加热各种炉、窑,或直接加热产品或半成品。实际应用中通常需要精确控制加热温度,以达到工艺或质量控制目的,燃气的热值稳定性就尤为重要。Gasboard-3100针对H2和CH4的测量采用了测量补偿技术,可保证实际热值测试结果的准确性,为燃气的燃烧测控提供了有效有力的数据依据。民用煤气应用 民用煤气的热值一般在3000-3500大卡,同时还要求CO小于10%,除焦炉煤气外,用直接气化也可得到,采用鲁奇炉较为适用。与直接燃煤相比,民用煤气不仅可以明显提高用煤效率和减轻环境污染,而且能够极大地方便人民生活,具有良好的社会效益与环境效益。出于安全、环保及经济等因素的考虑,要求民用煤气中的H2、CH4、及其它烃类可燃气体含量应尽量高,以提高煤气的热值;而CO有毒其含量应尽量低。Gasboard-3100测试煤气热值可知道气化站的煤气混合,保证燃气热值;同时可测得CO、H2、CH4的实际浓度,有效控制CO浓度,保证燃气安全。冶金还原气应用 煤气中的CO和H2具有很强的还原作用。在冶金工业中,利用还原气可直接将铁矿石还原成海棉铁;在有色金属工业中,镍、铜、钨、镁等金属氧化物也可用还原气来冶炼。因此,冶金还原气对煤气中的CO含量有要求。Gasboard-3100可实时有效测量CO或H2浓度,指导调整气化工艺,保证产气效率。化工合成原料气 随着新型煤化工产业的发展,以煤气化制取合成气,进而直接合成各种化学品的路线已经成为现代煤化工的基础,主要包括合成氨、合成甲烷、合成甲醇、醋酐等。 化工合成气对热值要求不高,主要对煤气中的CO、H2等成分有要求,一般德士古气化炉、Shell气化炉较为合适。目前我国合成氨的甲醇产量的50%以上来自煤炭气化合成工艺。若煤气成分中CO2浓度过高,直接会影响合成工序压缩机的运行效率(一般降低10%左右),必然造成电耗和压缩机维修费用增加。Gasboard-3100用于CO、CO2、H2等气体的浓度测量,用于指导合成气工艺控制,可保证化工产品的产量和质量,同时可达到节能的目的。煤制氢应用 氢气广泛的用于电子、冶金、玻璃生产、化工合成、航空航天、煤炭直接液化及氢能电池等领域,目前世界上96%的氢气来源于化石燃料转化。而煤炭气化制氢起着很重要的作用,一般是将煤炭转化成CO和H2,然后通过变换反应将CO转换成H2和H2O,将富氢气体经过低温分离或变压吸附及膜分离技术,即可获得氢气。实际应用中由于CO含量的增加,必然会导致变换工序中变换炉的负荷增加。它不但会使催化剂的使用寿命缩短,而且使变换炉蒸汽消耗增加。Gasboard-3100红外煤气分析仪用于煤气成分分析,提供煤气中各气体成分的浓度数据,指导气化和转换工艺的控制,可起到节能增效的作用。 此外,Gasboard-3100红外煤气分析仪还可在煤气化多联产的应用中提高化工生产效率,提供清洁能源,改进工艺过程,以达到效益最大化,有助于提升产业技术水平。 随着煤气化技术在国内的应用和发展,对于煤气化过程的监测和控制提出了更高的要求。Gasboard-3100红外煤气分析仪集成了红外、热导和电化学三种气体传感器技术,可实现对煤气的成分分析和热值分析。在实际应用中解决了H2测量补偿和CH4测量抗干扰的问题,更广泛地应用于工业燃气、民用煤气、冶金、化工等行业,可指导工艺控制和改善,并达到节能增效的作用,有利于促进煤气化技术的提升。(欢迎转载,转载请注明来源:工业过程气体监测技术)
  • 如何对气烧石灰窑的入炉煤气热值进行准确测量
    因入炉煤气资源丰富,且属于可被循环利用的废气,故煤气是气烧石灰窑最理想的燃料,如高炉煤气、转炉煤气、焦炉煤气、电石尾气(煤气)、发生炉煤气等。由于气烧石灰窑的煅烧温度,关系到石灰质量,煅烧温度又与入炉煤气的热值直接相关,同时入炉煤气热值高、火焰短等因素易造成石灰窑的过烧或生烧现象,所以必须对入炉煤气的热值进行分析,以便现场工作人员根据实际工况调节窑内煅烧温度,提高气烧石灰窑的生产效率与企业经济效益。煤气分析仪(在线型)Gasboard-3100 煤气中贡献热值的气体有CO、CH4、CnHm和H2,所以在实际生产过程中,企业多采用在线煤气成分及热值分析仪对入炉煤气浓度进行实时在线测量,并根据成分浓度计算得出煤气的热值。由四方仪器自控系统有限公司研发推出的煤气分析仪(在线型)Gasboard-3100采用将自主知识产权的红外气体传感器与基于MEMS技术的热导传感器、电化学O2传感器相结合的方法,以消除气体间的相互干扰和外界因素对测量结果的影响,实现对煤气中CO、CO2、CH4、CnHm、H2及O2多组分的同时测量,并根据组分浓度计算得出准确度高的煤气热值,可替代燃烧法热值仪。一、CO、O2、CO2、CH4对H2的干扰校正 从上表可以看出,煤气主要成分中CO、O2与背景气N2的热导系数相当,对H2的测量结果影响不大,但是CO2、CH4对H2测量影响明显。通过理论分析,如果气体成分中含有CO2,会使H2的测量读数偏低;如果气体成分中含有CH4,会使H2的测量读数偏高。因此为了得到准确的H2浓度,需对H2浓度进行CO2、CH4的浓度校正。 此外,对于检测H2的热导测量通道,实验证明,煤气成分中CO、O2对H2的测量准确性影响不大,主要是CO2、CH4的影响。Gasboard-3100可对煤气中的各组分进行分析测量,并将各组分间的相互影响进行浓度校正和补偿,最大限度的减小煤气中CO、O2、CO2、CH4对H2的影响,保证H2浓度测量的准确性。二、控制流量波动对H2测量的影响 由于热导传感器的基本原理是通过对气体流动带走的热量计算进行换算,如果采用直接流通式的热导检测池,很难控制气流,从而影响H2浓度的准确测量;且目前国内对H2浓度的分析大都采用双铂丝热敏元件制成的热导元件,体积大,精度低,传感器死区大。Gasboard-3100配置了基于MEMS技术的热导传感器,采用了旁流扩散式的热导检测池,流量在0.3~1.5L/min的范围内波动对热导传感器的测量无影响,可有效减少因流量波动对H2浓度测量结果的影响。旁流扩散式的热导检测池三、CnHm浓度测量,保证热值测量准确性 在煤气成份中,特别是焦炉煤气,除CH4外,还含有CnHm。现市面上大多数红外分析仪仅以CH4为测量对象,并以此来计算煤气热值。而Gasboard-3100除对CH4浓度进行测量外,同时还可测量CnHm浓度(如C3H8),将CH4与CnHm的浓度折合成碳氢化合物的总量,以此计算得出煤气热值,保证入炉煤气热值测量的准确性。四、CnHm与CH4干扰的浓度修正甲烷、乙烷、丙烷、丁烷的红外吸收光谱 根据红外吸收原理,在甲烷特征波长3.3um左右,甲烷与乙烷等碳氢化合物有吸收干扰,从而导致热值测试不准。对此,Gasboard-3100在软件上进行了升级,产品采用abc系数修正算法,预先在软件运算过程中插入CnHm与CH4的浓度修正系数,修正CnHm与CH4的相互干扰,确保测量结果的准确性。五、单光源、双光束减小零点与量程漂移为减少因为光源不稳定以及电子元器件老化造成的零点和量程漂移,Gasboard-3100内置了自动调零装置,可实现对仪器零点的自动标定,以减小零点漂移,相应减小量程漂移。同时,Gasboard-3100基于NDIR气体分析技术,采用单光源双光束法对煤气中不同波长的组分进行测量。光源经过两个不同波长的滤光片,进行滤光处理,得到两个不同波长的信号:检测信号与参考信号。检测信号与参考信号的强度之比与光源强度的波动及电子元器件的老化等因素无关,这样就最大限度的减小了光源不稳定及电子元器件老化造成的零点、量程漂移,从而保障了仪器测量的准确性与稳定性。单光源、双光束技术原理图 高准确度的煤气热值有利于正确指导工作人员调节现场工况,保证石灰窑炉的煅烧温度,既能提高出炉石灰的质量,又可合理使用回收煤气,真正地实现节能降耗,提高企业经济效益。作为武汉四方光电旗下的全资子公司,四方仪器始终秉承“把握关键技术,实现产业创新”的发展理念,以自主知识产权的传感器核心技术为依托,致力于煤气分析仪器的研发创新、生产及销售,为我国煤气能源的高效利用提供更加合理、有效的行业解决方案。来源:微信公众号@工业过程气体监测技术,转载请务必注明来源
  • GC-7860-DM煤气分析专用气相色谱仪
    GC-7860-DM煤气分析专用气相色谱仪   (推荐行业石油化工)   适用于水煤气、半水煤气、焦炉气、高炉煤气等的快速分析。   GC-7860气相色谱仪配置单阀双柱、热导检测器用于煤气分析。组分包括H2、O2、N2、CO、CO2,CH4。检测范围H2为5%-100%,其他为1ppm-100%(体积分数)。   如要检测H2S,只要增加火焰光度(FPD)检测器和H2S分析专用柱即可,双通道并联,一次进样即可得到H2S、H2、O2、N2、CO、CO2,CH4组分的含量,其中H2S检测范围1ppm-100%。   该系统配置经济合理,操作维护简单,分析效率高,且性能稳定,重复性高。分析时间可控制在8min或者5min以内。   煤气分析谱图   图表 1 煤气分析谱图(H2)      图表 2 煤气分析谱图(He)
  • 案例分享:某煤化工企业高炉煤气在线监测项目技术方案探析
    煤气作为钢铁、有色、化工、新能源等工业领域重要的能源载体,为了有效、安全、合理地利用,其成分、热值及氧含量等各种参数监测具有至关重要的意义。下文将与大家分享云南一化工企业高炉煤气在线监测项目,阐述其气体分析技术方案及其对企业的价值。 方案概述 在企业生产过程中,科学高效利用发生炉煤气,可助推集团实现提产增效,在节能降耗上能创造良好的经济效益和社会效益。 该企业使用的在线气体分析系统Gasboard-9021是专门针对发生炉煤气含尘、含湿、含焦油的特定工况而设计的,由预处理单元、控制单元、分析单元三部分构成,采用PLC程序控制,自动完成水洗器换水、采样、故障处理等操作,可实现24小时无人值守,保证系统长期稳定、准确、连续自动在线运行。 系统原型:在线气体分析系统Gasboard-9021 系统分析单元采用煤气分析仪Gasboard-3100,用于在线测量煤气中CO、CO2、CH4、CnHm、H2、O2等气体浓度,并实时计算煤气热值,从而帮助企业提高发生炉煤气利用效率,达到节能降耗、保证安全生的目的。 此外,该系统可通过多种接口将测量数据传输到上级集中控制系统,为实现远程监测、调整现场工艺提供实时依据。技术方案 预处理单元:采用先进水洗器、一级活性炭过滤器、气水分离器、电子冷凝器除去样气中的粉尘、焦油、水分等诸多杂质,为分析仪表提供洁净样气,同时具备可再生能力,保证系统运行稳定。 控制单元:采用SIEMENS PLC作为核心控制元件,OMRON中间继电器作为输出元件,控制系统自动运行。 分析单元:我司自主研发的煤气分析仪Gasboard-3100,用于在线测量煤气中CO、CO2、CH4、CnHm、H2、O2等气体浓度并自动计算热值,具有在线动态补偿功能,能有效消除CO、CO2、CH4气体对H2检测的影响。 其它:配备校准装置,包含标准气体、减压阀、校准管线和接头等。 方案价值 该企业使用在线气体分析系统Gasboard-9021,同时在线监测CO、CO2、H2、CH4、O2及热值,帮助操作人员实时控制炉膛中的CO、CO2 含量及其分布,并据此控制进风和布料工艺, 实现了保护炉体、降低焦铁比例、降低能耗的目的。此外,通过对H2的测量,能够有效的判断炉膛是否存在漏水现象。 整套设备具有技术方案先进、结构简明、部件性能可靠、自动化程度高、操作简便、维护量小 的优势,大幅减轻了企业人工成本。来源:微信公众号@工业过程气体监测技术,转载请务必注明来源
  • 热烈祝贺红外煤气分析仪斩获2016中国仪器仪表学会“优秀产品奖”
    第27届中国国际测量控制与仪器仪表展览会(MICONEX 2016,简称多国仪器仪表展)日前在北京国际展览中心圆满闭幕。 在展会同期举办的2016中国仪器仪表学会“科学技术奖”颁奖盛典上,由我司自主研发生产的红外煤气分析仪一举斩获中国仪器仪表学会“优秀产品奖”,再次成为业界瞩目的焦点。 优秀产品奖颁奖现场 中国仪器仪表学会“科学技术奖”是经国家科技部批准,在国家科技奖励主管部门注册,经国家科学技术奖励工作办公室颁证,由中国仪器仪表学会设立的面向全国仪器仪表领域的综合性奖项,旨在表彰在仪器仪表科技工作中做出突出贡献的单位和个人,鼓励自主创新、团结协作,促进科学研究、技术开发与社会发展密切结合,促进科技成果转化,提高我国仪器仪表的综合实力和水平,在业内享有极高的声誉。 此次代表我司获奖的红外煤气分析仪产品,是一款针对煤炭、生物质气化热解转化气体成分快速测量的仪器,产品家族包含Gasboard-3100(在线型)和Gasboard-3100 P(便携型)两个型号。采用国际领先的NDIR非分光红外技术和基于MEMS的TCD热导技术,软硬件配置先进,精度高、性能稳定且功能强大,目前在钢铁、化工、煤气化、生物质气化裂解等领域都有着极为广泛的应用。 四方仪器是武汉四方光电科技有限公司旗下的全资子公司,肩负着气体成分流量仪器仪表业务相关的研发与市场销售工作,包括环境监测系统生产销售项目、工业过程分析系统生产销售项目、分析仪器生产销售项目、仪器仪表研发中心项目等。 秉承“把握关键技术,实现产业创新”的发展理念,以自主知识产权的传感器技术为依托,四方仪器将继续在气体分析仪器仪表的研发、生产、销售及行业监测解决方案等领域持续创新,推动行业发展。查看颁奖详情:2016年中国仪器仪表学会“科学技术奖”颁奖仪式举办
  • 红外气体分析仪技术之焦炉煤气脱硫为什么要选择负压脱硫?
    国内外对焦炉煤气的脱硫工艺分为正压脱硫和负压脱硫二种。某公司焦炉煤气净化一开始采用HPF正压脱硫工艺,但脱硫效率低,且正压脱硫需将煤气冷却,送入脱硫塔进行脱硫、脱氰,经过脱硫后,煤气进入硫铵单元,又需对煤气进行预热,煤气经过冷却、预热存在较大的能源浪费,不利于节能降耗生产,对此该公司将正压脱硫工艺改为负压脱硫工艺,采用红外气体分析仪(防爆型)Gasboard-3500对脱硫效果进行监测,项目运行3年来,脱硫效率提高,节能效果显著,具有良好的经济效益和环保效益。 一、正、负压脱硫工艺对比1、正压脱硫工艺 从鼓风机来的约55~60℃的煤气,先进入预冷塔,用循环水冷却至30℃左右,然后进入脱硫塔。预冷塔用冷却水自成循环系统,从塔底排出的热水经循环泵送往冷却器,用循环冷却水换热后进入预冷塔顶部喷洒用于冷却煤气,预冷循环水定期进行排污,送往机械化澄清槽,同时往循环系统中加入剩余氨水予以补充。 从预冷塔来的煤气进入脱硫塔底部与塔顶喷淋的脱硫液逆向接触,脱除H2S、HCN后由塔顶溢出去往硫铵单元。 从脱硫塔底排出的脱硫液经液封槽进入反应槽,再由脱硫液循环泵送出,一部分经过冷却器冷却后与另一部分未冷却液体混合后经预混喷嘴送入再生塔底部,同时在再生塔底部鼓入压缩空气,使脱硫液在塔内得以再生,再生后的脱硫液于塔上部经液位调节器流至脱硫塔循环喷洒使用,上浮于再生塔顶部扩大部分的硫泡沫利用液位差自流入硫泡沫槽,产生的硫泡沫用泵送至离心机离心分离,滤液返回反应槽,硫膏装袋后外销。 脱硫所用成品氨水由蒸氨每班送至脱硫反应槽加入脱硫液循环系统。 2、负压脱硫工艺 电捕来的约25℃煤气进入填料脱硫塔底部,与塔顶喷洒下来的再生溶液逆向接触,吸收煤气中的H2S和HCN(同时吸收煤气中的NH3,以补充脱硫液中的碱源)。脱硫后煤气进入鼓风机单元。脱硫塔底吸收了H2S、HCN的循环液,经脱硫液泵进入再生塔底预混喷嘴(脱硫液温度高时,部分进入板框式换热器进行冷却),与压缩空气剧烈混合,形成微小气泡后进入再生塔底部,沿再生塔上升过程中,在催化剂作用下氧化再生。再生后的脱硫液于再生塔上部经液位调节器进入U型管后,进入脱硫塔顶分布器,循环喷淋煤气。 上浮于再生塔顶部扩大部分的硫磺泡沫利用液位差自流入硫泡沫槽,产生的硫泡沫用泵送至板框式压滤机,滤液进入放空槽后,由放空槽自吸泵送至脱硫塔底继续循环使用,硫膏装袋后外销。脱硫所用成品氨水由蒸氨每班送至脱硫塔底,加入脱硫液循环系统。 3、正、负压脱硫运行指标对比 在同等煤气发生量情况下,采用红外气体分析仪(防爆型)Gasboard-3500对正负压脱硫工艺的脱硫效果进行对比监测,再综合脱硫工艺各方面运行参数,可得出正压脱硫与负压脱硫运行指标如下。 由上表可知,负压脱硫较正压脱硫,脱硫塔入口煤气温度降低了6℃,脱硫液温度降低了5.5℃,脱硫液温度的降低,有利于挥发氨(游离氨)浓度的提高,挥发氨浓度提高了5.2g/L;副盐浓度由300g/L以上降低至250g/L以下,降低了52.8g/L,副盐浓度的降低有利于脱硫效率的提高,脱硫效率由86.3%提高至99.0%,提高了12.7%。 二、正、负脱硫工艺特点对比1、 温度变化 正压脱硫位于鼓风机后,进入脱硫工段的煤气温度约55~60℃,而脱硫反应适宜温度为25~35℃左右,脱硫工段后为硫铵工段,而硫铵工段适宜吸收反应温度为50~55℃,因此煤气经正压脱硫进入硫铵工段需对煤气现冷却再加热,存在较大的能源浪费。 负压脱硫位于电捕后,鼓风机前,进入脱硫工段的煤气约25℃,满足脱硫吸收、再生要求,而经过风机后的煤气直接进入硫铵工段,避免了对煤气冷却和预热,温度变化梯度更加合理,节约了冷能和热能,降低了系统能耗。 2、游离氨浓度 HPF法脱硫是以氨为碱源的湿法氧化脱硫,吸收过程为化学反应,即通过吸收煤气中的氨(或外加氨水),增加氨的浓度提高对硫化氢、氰化氢等物质吸收效率,脱硫液中游离氨的浓度越高越有利于脱硫反应。 正压脱硫经过预冷后煤气温度一般在30℃左右,负压脱硫煤气温度为25℃左右,其脱硫液温度较正压降低5℃左右,脱硫液温度低有利于氨的吸收、溶解,同时避免了正压条件下预冷喷洒液的直接接触吸收煤气中的氨。因此,负压脱硫工艺有效提高了游离氨(挥发氨)浓度,游离氨浓度由正压脱硫的4~6g/L提高至负压脱硫的10~12g/L,达到较高的吸收效率,进而提高了脱硫效率。3、设备投资 负压脱硫与正压脱硫设备上相比,脱硫工段不再用预冷塔及其配套的循环喷洒泵、换热器等设备,硫铵工段不再用预热器,节约大量设备投资,占地面积减少近80m2。 负压脱硫根据工艺特点,不用反应槽,节省两个约150m3的反应槽,占地面积减少约120m2。 4、环保效益 负压脱硫再生尾气回收至煤气系统内,减轻对大气污染的同时,尾气中的氧气、氨气等有效组分进入脱硫吸收塔内,参与脱硫吸收、解离反应,进一步增强了脱硫效率。 三、负压脱硫经济经济效益 负压脱硫较正压脱硫减少预冷塔、预冷喷洒泵、预冷换热器、反应槽等设备;减少煤气冷却消耗循环冷却水量150m3/h;节省硫铵预热器蒸汽量1t/h(冬季)。因此负压脱硫较正压脱硫节省成本为: 1)降低循环消耗成本:节约循环水量为150m3/h,按0.5元/m3、年运行360天计,则年节约循环冷却水成本为150×24×360×0.5=64.8万元。2)降低蒸汽消耗:节约蒸汽量为1t/h,蒸汽按150元/t、冬季按120天计,则年节约蒸汽消耗成本为1×24×120×150=43.2万元。 3)降低设备投资成本:减少预冷塔、循环泵、换热器、反应槽等设备及工程投资费用约500万元。按设备折旧费用计,年降低投资费用50万元。 则年降低成本为:64.8+43.2+50=158万元。另外,脱硫效率的提高,降低了脱硫后煤气中硫化氢含量,进一步降低燃烧时二氧化硫排放量,环保效益显著。 四、结论 1、负压脱硫较正压脱硫减少预冷系统、反应槽等设备,投资费用低,占地面积小,操作简便。 2、负压脱硫较正压脱硫较好地利用了煤气温度变化梯度,避免煤气经过冷却再加热,降低了循环冷却水及蒸汽消耗成本,经济效益显著。 3、负压脱硫入口煤气温度、脱硫液温度较正压脱硫降低约5℃,挥发氨浓度提高至10g/L以上,提高了对硫化氢的吸收,进而提高了脱硫效率。 4、负压脱硫再生尾气全部并入煤气负压系统,实现了脱硫尾气“零”排放,改善了工作环境,降低了大气污染。 5、负压脱硫较正压脱硫效率显著提高,降低了煤气中硫化氢含量,进而减少燃烧时二氧化硫的排放量,具有显著的环保效益。(来源:微信公众号@工业过程气体监测技术)
  • 『应用案例』钢铁厂电炉煤气的回收与应用
    目前,世界钢铁制造采用的炼钢方式主要有转炉炼钢和电炉炼钢两种。其中,相比转炉炼钢,电炉炼钢具有工序短、投资省、建设快、节能减排效果突出等优势。据测算,炼钢使用1吨废钢,可减少1.7吨精矿的消耗,比使用生铁节省60%能源、40%新水,可减少排放废气 86%、废水 76%、废渣 72%、固体排放物(含矿山部分的废石和尾矿)97%。电炉炼钢主要利用电弧热,在电弧作用区,温度高达4000℃。冶炼过程一般分为熔化期、氧化期和还原期,在炉内不仅能造成氧化气氛,还能造成还原气氛,因此脱磷、脱硫效率很高。同时,电炉炼钢多用于生产优质碳素结构钢、工具钢和合金钢,这类钢材质量优良、性能均匀;在相同含碳量时,电炉钢的强度和塑性优于平炉钢。且电炉炼钢用相近钢种废钢为主要原料,也有用海绵铁代替部分废钢;通过加入铁合金来调整化学成分、合金元素含量。电炉炼钢过程中将产生大量电炉煤气,电炉煤气中含有CO、H2、CH4及其他碳氢化合物等可燃气体成分和潜热。由于电炉煤气中的CO含量高达60%,热值高,属于洁净能源,充分利用该资源势在必行。近年来因能源价格上涨,煤炭价格涨幅较大,燃煤成本占热电成本构成比例已达70%~80%,因此,将矿热炉冶炼过程中烟气净化回收的煤气用于热电厂掺烧煤粉发电,既能节能环保,又能提高经济效益。典型工况条件如下:某客户是华南和西南地区的钢铁联合企业,拥有2650m3高炉、150吨转炉、360m2烧结机、6m焦炉、1550mm和1250mm冷轧板带生产线、2032mm和1450mm热轧板带生产线、2800mm中厚板生产线、高速线材及连轧棒材生产线、连轧中型生产线等一批先进工艺装备,主导产品为冷轧卷板、热轧卷板、中厚板、带肋钢筋、高速线材、圆棒材、中型材等。* 过程分析挑战性该应用测量氧气含量采用电化学氧传感器,配置样品预处理系统;由于过程气中的SO2,CH4等背景气干扰,存在测量值误差及波动范围很大,传感器寿命短,预处理系统维护量大,备品配件消耗量大且响应时间慢等缺点。该工艺流程测量点位于电炉上的煤气回收管线,过程气具有温度高、粉尘含量高且具有一定腐蚀性等特点。* 梅特勒托利多解决方案为适应高温、高粉尘恶劣工况条件,采用取样过程分析的解决方案,GPro500激光氧气分析取样池的解决方案,具有取样池体积小、响应速度快、系统结构紧凑、测量稳定性及精度高、备品备件消耗低等特点。* 选型配置:GPro500取样池探头+M400Type3采用激光在线取样池,实现在线激光氧分析,可以实时、快速、准确测量过程气体中的氧含量,保障生产过程安全及效率。与传统取样式电化学氧分析仪系统相比,具有独特技术优势:GPro500在线激光氧分析仪凭借产品的技术先进性,灵活的过程连接方式,响应速度快,测量准确及可靠性,运行成本低,在炼钢炼铁行业得到广泛应用,并通过实际现场应用检验,运行稳定、可靠,积累了丰富的行业应用经验。* 部分图片来源于网络
  • 赫施曼助力焦炉煤气中氰化氢含量的测定
    焦炉煤气中含有氰化氢,氰化氢本身有剧毒,其水溶液腐蚀设备和管道,在系统中产生引起管道堵塞的铁盐,因此要进行脱除,并检测其具体含量。其检测标准为YB/T 4495-2015(焦炉煤气 氰化氢含量的测定 硝酸银滴定法)。原理是用氢氧化钾溶液吸收煤气中的氰化氢,加入醋酸镉溶液,使吸收液中的硫化物都形成难溶硫化镉沉淀过滤除去。在pH11条件下,用硝酸银标准溶液滴定,氰离子与硝酸银作用形成可溶性银氰络合离子,过量的银离子与试银灵指示剂反应,溶液由黄色变为橙红色即为终点,根据消耗硝酸银标准溶液的体积计算煤气中氰化氢含量。试验要先对硝酸银标准溶液进行标定(四次滴定),计算出其准确浓度:移取25.00mL氯化钠标准溶液各三份,加50mL水,加入3滴~4滴铬酸钾指示剂溶液,在不断摇动下,用硝酸银标准溶液滴定至溶液由黄色变为砖红色即为终点,记录滴定消耗体积。在标定的同时做空白试验。经计算确定了硝酸银标准溶液浓度后,再进行取样和测定(两次滴定,样品滴定和空白滴定)。标准中特别指出,所用的滴定管是5mL棕色微量滴定管,分度值要达到0.02mL。棕色滴定管,比一般的透明滴定管的观察、读数等更加困难,操控也需多加练习和足够的耐心。赫施曼的光能滴定器和电子滴定器,均有10、20、50mL三个规格,最小分度为0.01mL或0.001mL(电子滴定10mL),对于硝酸银这类需要避光的试剂,换用附带的棕色挡光板即可。均可实现抽提加液、手转/手按控制滴定速度、屏幕直接读数,可解决常规滴定管的三大难点:灌液慢、控速难,读数乱(不同人、不同位、不同次的凹液面读数均有可能出现偏差)。
  • 工信部公示一批石化、冶金等行业仪器分析方法标准
    仪器信息网讯 2015年4月30日,工业和信息化部科技司对246项纺织、化工、冶金、建材、石化等行业的行业标准进行公示。公示截止日期为2015年5月30日。其中有关仪器分析检测的方法标准如下表所示。 标准编号 标准名称 标准主要内容 代替标准 石化行业 SH/T 1157.2-2015 生橡胶 丙烯腈-丁二烯橡胶(NBR)中结合丙烯腈含量的测定 第2部分:凯氏定氮法 本标准规定了采用凯氏定氮法测定丙烯腈-丁二烯橡胶(NBR)中结合丙烯腈含量的两种方法:方法A和方法B。 本标准适用于测定NBR生橡胶,其他NBR也可参照使用。 SH/T 1157-1997 SH/T 1141-2015 工业用裂解碳四的烃类组成测定 气相色谱法 本标准规定了用气相色谱法测定工业用裂解碳四的烃类组成。 本标准适用于工业用裂解碳四馏分中浓度不低于0.01%(质量分数)的烃类组成测定。本标准还适用于其它来源碳四烃类的定量分析。 SH/T 1141-1992 SH/T 1493-2015 碳四烯烃中微量羰基化合物含量的测定 分光光度法 本标准规定了用分光光度法测定碳四烯烃中微量羰基化合物的含量。 本标准适用于1-丁烯和1,3-丁二烯中微量羰基化合物含量的测定,最小检测浓度为0.5 mg/kg(以丁酮计)。不适用于异丁烯的测定。 SH/T 1493-1992 SH/T 1782-2015 工业用异戊二烯纯度和烃类杂质含量的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊二烯纯度和烃类杂质含量。 本标准适用于工业用异戊二烯纯度和烃类杂质含量的测定,其杂质最低检测浓度为0.005%(质量分数)。   SH/T 1784-2015 工业用异戊二烯中微量抽提剂的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊二烯(聚合级)中的微量抽提剂二甲基甲酰胺和乙腈。 本标准适用于测定工业用异戊二烯(聚合级)中含量不低于0.5 mg/kg的二甲基甲酰胺或不低于1.0 mg/kg的乙腈。   SH/T 1786-2015 工业用异戊烯纯度和烃类杂质含量的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊烯试样纯度和烃类杂质含量。 本标准适用于异戊烯试样中的烃类组分含量的测定,其最低检测浓度为0.005%(质量分数)。  SH/T 1787-2015 工业用异戊烯中含氧化合物的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异戊烯中含氧化合物的含量。 本标准适用于甲醇、二甲醚、甲基叔戊基醚、叔戊醇等含氧化合物杂质浓度不低于0.001%(质量分数)的异戊烯样品的测定。   SH/T 1790-2015 工业用裂解碳五中烃类组分的测定 气相色谱法 本标准规定了用气相色谱法测定工业用裂解碳五中各烃类组分的含量。 本标准适用于裂解碳五组分含量的测定,其最小检测浓度为 0.01 %(质量分数)。   SH/T 1793-2015 工业用裂解碳九组成的测定 气相色谱法 本标准规定了气相色谱法测定工业用裂解碳九中碳八芳烃、苯乙烯、甲基苯乙烯、双环戊二烯、茚、萘等组分含量。 本标准适用于工业用裂解碳九中含量不低于 0.01 %(质量分数)组分的测定。   SH/T 1796-2015 工业用三乙二醇纯度及杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用三乙二醇的纯度和杂质含量。 本标准适用于三乙二醇含量不低于80.0%(质量分数),乙二醇、二乙二醇杂质含量不低于0.01%(质量分数)、四乙二醇杂质含量不低于0.02%(质量分数)样品的测定。   SH/T 1798-2015 工业用1-己烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用1-己烯纯度和烃类杂质的方法。 本标准适用于纯度不低于97.0%(质量分数)以及正己烷、3-己烯、2-己烯、2-甲基-1-戊烯等烃类杂质含量不低于0.005%(质量分数)的工业用1-己烯的测定。   冶金行业 YB/T 4493-2015 焦化油类产品馏程的测定 自动馏滴法 本标准规定了自动馏滴法测定焦化轻油类馏程的原理、试样的采取、仪器、试验步骤、结果计算、精密度、试验报告等。 本标准适用于焦化轻油类(焦化苯类、酚类、吡啶类、喹啉类等)、粘油类(焦化洗油、蒽油、木材防腐油、炭黑用焦化原料油等)产品馏程的测定。   YB/T 4495-2015 焦炉煤气 氰化氢含量的测定 硝酸银滴定法 本标准规定了测定焦炉煤气中氰化氢含量的试剂、仪器设备、取样、分析步骤和结果计算。 本标准适用于高温炼焦所得的焦炉煤气中氰化氢含量的测定,测定范围:0.1 g/m3~2.0 g/m3。   YB/T 4496-2015 焦炉煤气 硫化氢含量的测定 气相色谱法 本标准规定了焦炉煤气中硫化氢含量的气相色谱测定的原理、仪器和材料、采样、分析步骤、结果计算、精密度和安全注意事项。 本标准适用于焦炉煤气中硫化氢含量的测定。   YB/T 4503-2015 钢筋机械连接件 残余变形量试验方法 本标准规定了钢筋机械连接件残余变形量试验的术语及定义、符号及说明、试验原理、试件、试验设备、试验程序及试验报告。 本标准适用于室温下钢筋机械连接件承受规定静载荷后残余变形量的测量。   YB/T 5325-2015 黄血盐钠含量的测定方法 本标准规定了黄血盐钠含量的测定方法的原理、试剂、仪器、试样的采取和制备、试验步骤、结果计算和精密度。 本标准适用于从炼焦煤气回收中所制得的黄血盐钠含量的测定。 YB/T 5325-2006 建材行业 JC/T 2336-2015 碳纤维中硅、钾、钠、钙、镁和铁含量的测定 本标准规定了碳纤维中硅、钾、钠、钙、镁和铁含量测定方法。硅的测定用氟硅酸钾容量法和硅钼蓝分光光度法。钾、钠、钙、镁和铁的测定用原子吸收分光光度法和电感耦合等离子体发射光谱法。   JC/T 2342-2015 氮化硅材料相含量分析方法 本标准规定了X射线多晶衍射法测定氮化硅材料相含量的术语和定义、仪器、测试步骤及定量分析方法 本标准适用于氮化硅中&alpha 相和&beta 相的定量分析。   纺织行业 FZ/T 50032-2015 聚丙烯腈基碳纤维原丝残留溶剂试验方法 本标准规定了聚丙烯腈基碳纤维原丝残留溶剂测试方法-气相色谱法(方法A)、比色法(方法B)和汞盐滴定法(方法C)。 方法A和方法B适用于以二甲基亚砜(DMSO)、二甲基乙酰胺(DMAC)为溶剂的聚丙烯腈基碳纤维原丝残留溶剂的测定,仲裁时使用方法A。 方法C适用于以硫氰酸钠(NaSCN)为溶剂的聚丙烯腈基碳纤维原丝残留溶剂的测定。   附件:246项行业标准名称及主要内容
  • 新奥煤气化国家重点实验室获批
    近日,新奥煤气化国家重点实验室正式获得科技部批准,至此新奥集团已正式成为中国煤基能源领域最高研究水平的科研基地之一,同时为国内外煤清洁转化核心技术开发构建了技术研发平台。   2009年2月科技部启动了第二批企业或改制科研院所申报国家重点实验室建设工作,在新奥董事局副主席、新奥科技CEO甘中学博士的带领下,公司成立了国家重点实验室申报领导小组,并邀请已有国家重点实验室单位的相关领导和技术人员来公司指导国家重点实验室的组建工作,经过交流与论证明确了实验室的研究方向和对国家能源保障、环境保护等方面的重要作用。   未来建成的煤气化国家重点实验室将与国内外高校、科研院所进行广泛的技术交流,联合承担国家项目,并为煤气化核心技术的发展和集成创新提供科学指导和依据。它的建成和发展将对国家能源的基础研究和应用研究方面起到巨大的推动作用,为产业化示范打下坚实的基础。
  • 武汉四方光电成功开发出煤气在线监测系统
    基于公司自主开发的NDIR红外气体分析仪器,配合最新开发的TCD热导H2分析技术。武汉四方光电科技有限公司开发成功完整的煤气在线监测系统。该系统包括样品取样、预处理、反吹、气体分析、数据传输、数据库等先进技术。 该系统检测技术主要解决了一下主要难题:(1)CO/CO2的相互干扰。(2)CO2、CH4等对热导H2测量精度的影响。(3)取样气体流量对H2分析传感器的影响。该系统已经在我国大型钢铁公司得到应用。
  • 国家标准委发布3项煤炭行业分析检测标准
    近日,国家标准委发布3项煤炭行业国家分析检测标准。详情如下表:#标准号标准中文名称发布日期实施日期备注1GB/T 23561.11-2024煤和岩石物理力学性质测定方法 第11部分:煤和岩石抗剪强度测定方法2024-04-252024-08-01替代GB/T 16659-20082GB/T 23561.1-2024煤和岩石物理力学性质测定方法 第1部分:采样一般规定2024-04-252024-08-01替代GB/T 23561.1-20093GB/T 16659-2024煤中汞的测定方法2024-04-252024-11-01替代GB/T 23561.11-2010GB/T 16659-2024《煤中汞的测定方法》主要起草单位为重庆地质矿产研究院 、煤炭科学技术研究院有限公司 、秦皇岛海关煤炭检测技术中心 。本标准非等效采用ISO国际标准:ISO 15237:2016。
  • 在线气体分析仪在煤化工中的应用—甲醇合成
    甲醇合成的原料主要是气化煤气、焦炉煤气、天然气等,经过净化(变换,脱硫,脱碳),然后调整其压力进合成塔,出来后冷却,然后在经过醇分进精馏塔提纯。在线分析仪器的主要用量在煤气化工段,而对于净化和合成工段所使用的仪器数量较少。针对相同制煤气工艺而言,甲醇工艺所需要的分析仪器数量要少于合成氨工艺。煤气化技术是发展煤基化学品(如甲醇,氨、二甲醚),煤基液体燃料,先进的IGCC发电技术,多联产系统,制氢,燃料电池,直接还原炼铁等过程工业的基础,是这些行业的共性技术,关键技术和龙头技术,可以说是工业领域许多行业发展的“引擎”。航天炉煤气化工艺主要技术路线:干煤粉作原料,采用激冷流程,主要特点是技术先进,具有较高的热效率(可达95%),碳转化率高(可达99%) 气化炉为水冷壁结构结构,气化温度能到1500-1700℃的高温 对煤种要求低,可实现原料本地化 拥有自主知识产权 关键设备全部国产化,投资少,生产成本低。(图源网络,侵删)不同的设计院、以上数据有差异
  • 161项行业标准报批公示 涉及AAS、ICP-AES等多项仪器分析方法
    p   日前,工业和信息化部科技司发布通知,对161项行业标准进行报批公示,包括《风机包装通用技术条件》等78项机械行业标准、《扫路车》等13项汽车行业标准、《药用X射线异物检测机》等7项制药装备行业标准、《船舶行业危险作业许可审批管理要求》等7项船舶行业标准、《磷矿石采矿和选矿矿渣技术规范》等5项化工行业标准、《石油化工氮氧系统设计规范》等7项石化行业标准、《冶金企业煤气管道防泄漏排水安全要求》等8项冶金行业标准的制修订工作、《二次电池废料化学分析方法第1部分:镍含量的测定 丁二酮肟重量法和火焰原子吸收光谱法》等5项有色行业标准、《铜及铜复合板幕墙技术条件》等5项建材行业标准、《家用和类似用途一般水质处理器》等25项轻工行业标准、《包装用镀铝薄膜》1项包装行业标准等。 /p p   值得注意的是,本次报批的161项行业标准涉及多项仪器分析方法,如 a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" 火焰原子吸收光谱法 /a 、 a href=" https://www.instrument.com.cn/zc/39.html" target=" _blank" 电感耦合等离子体原子发射光谱法 /a 、 a href=" https://www.instrument.com.cn/zc/23.html" target=" _blank" 高效液相色谱法 /a 等多项仪器分析方法。 /p p   仪器信息网摘录部分如下: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 605" align=" center" tbody tr class=" firstRow" td width=" 107" p style=" text-align:center " strong 标准编号 /strong /p /td td width=" 134" p style=" text-align:center " strong 标准名称 /strong /p /td td width=" 332" p style=" text-align:center " strong 标准主要内容 /strong /p /td /tr tr td width=" 107" p style=" text-align:center " JB/T 13738-2019 /p /td td width=" 134" p style=" text-align:center " a href=" https://www.instrument.com.cn/list/sort/26.shtml" target=" _blank" 便携式多参数水质分析仪 /a /p /td td width=" 332" p style=" text-align:center " 本标准规定了便携式多参数水质分析仪的要求、试验方法、检验规则、标志、包装、运输和贮存。 br/ & nbsp & nbsp & nbsp 本标准适用于以分光光度法为原理且能同时检测两个及以上水质指标的便携式多参数水质分析仪。 /p /td /tr tr td width=" 107" p style=" text-align:center " YS/T 1342.1-2019 /p /td td width=" 134" p style=" text-align:center " 二次电池废料化学分析方法 第1部分:镍含量的测定 丁二酮肟重量法和火焰原子吸收光谱法 /p /td td width=" 332" p style=" text-align:center " 本部分规定了丁二酮肟重量法和火焰原子吸收光谱法测定二次电池废料中镍含量的方法。 br/ & nbsp & nbsp & nbsp 本部分适用于二次电池废料中镍含量的测定。丁二酮肟重量法测定范围:>5.00 % ~ 70.00 %; a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" 火焰原子吸收光谱法 /a 测定范围:1.00 % ~ & nbsp & nbsp 5.00 %。 /p /td /tr tr td width=" 107" p style=" text-align:center " YS/T 1342.2-2019 /p /td td width=" 134" p style=" text-align:center " 二次电池废料化学分析方法 第2部分:钴含量的测定 电位滴定法和火焰原子吸收光谱法 /p /td td width=" 332" p style=" text-align:center " 本部分规定了电位滴定法和火焰原子吸收光谱法测定二次电池废料中钴含量的方法。 br/ & nbsp & nbsp & nbsp 本部分适用于二次电池废料中钴含量的测定。电位滴定法测定范围:>5.00 % ~ 60.00 %; a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" 火焰原子吸收光谱法 /a 测定范围:1.00 % ~ & nbsp & nbsp 5.00 %。 /p /td /tr tr td width=" 107" p style=" text-align:center " YS/T 1342.3-2019 /p /td td width=" 134" p style=" text-align:center " 二次电池废料化学分析方法 第3部分:锰含量的测定 电位滴定法和火焰原子吸收光谱法 /p /td td width=" 332" p style=" text-align:center " 本部分规定了电位滴定法和火焰原子吸收光谱法测定二次电池废料中锰含量的方法。 br/ & nbsp & nbsp & nbsp 本部分适用于二次电池废料中锰含量的测定。电位滴定法测定范围:>5.00 % ~ 60.00 %; a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" 火焰原子吸收光谱法 /a 测定范围:0.10 % ~ & nbsp & nbsp 5.00 %。 /p /td /tr tr td width=" 107" p style=" text-align:center " YS/T 1342.4-2019 /p /td td width=" 134" p style=" text-align:center " 二次电池废料化学分析方法 第4部分:锂含量的测定 火焰原子吸收光谱法 /p /td td width=" 332" p style=" text-align:center " 本部分规定了 a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" 火焰原子吸收光谱法 /a 测定二次电池废料中锂含量的方法。 br/ & nbsp & nbsp & nbsp 本部分适用于二次电池废料中锂含量的测定。测定范围:1.00 % ~ 8.50 %。 /p /td /tr tr td width=" 107" p style=" text-align:center " YS/T 1171.11-2019 /p /td td width=" 134" p style=" text-align:center " 再生锌原料化学分析方法 第11部分:锗含量的测定 a href=" https://www.instrument.com.cn/zc/39.html" target=" _blank" 电感耦合等离子体原子发射光谱法 /a /p /td td width=" 332" p style=" text-align:center " 本部分规定了再生锌原料中锗含量的测定方法。 br/ & nbsp & nbsp & nbsp 本部分适用于再生锌原料(包括锌渣、锌灰,烟道灰,瓦斯泥/灰、含锌烟尘,含锌物料等,不包括电池、锌合金废料等)中锗含量的测定。测定范围:100µ g/g~10000 µ g/g。 /p /td /tr tr td width=" 107" p style=" text-align:center " QB/T XXXX-2019 /p /td td width=" 134" p style=" text-align:center " 大豆食品中异黄酮含量的测定 /p /td td width=" 332" p style=" text-align:center " 本标准规定了大豆食品中异黄酮(大豆苷、染料木苷、大豆苷元、染料木素、黄豆黄素、黄豆黄苷)含量测定的 a href=" https://www.instrument.com.cn/zc/23.html" target=" _blank" 高效液相色谱法 /a 。 br/ & nbsp & nbsp & nbsp 本标准适用于原料大豆及豆浆、豆腐、腐乳等大豆食品中异黄酮含量的测定。 br/ & nbsp & nbsp & nbsp 本标准测试方法的线性范围:0.5μg/mL~100μg/mL。 br/ & nbsp & nbsp & nbsp 本标准测试方法的检出限:2.5μg/kg。 /p /td /tr /tbody /table p   附件: span style=" color: rgb(0, 102, 204) font-size: 14px text-decoration: underline " a href=" https://img1.17img.cn/17img/files/201903/attachment/836f75d3-3c1f-434a-b6d1-8da51bf3673b.doc" title=" 161项行业标准名称及主要内容.doc" style=" color: rgb(0, 102, 204) font-size: 14px text-decoration: underline " 161项行业标准名称及主要内容.doc /a /span /p
  • 危险区域防爆法规与标准解析
    危险区域防爆法规与标准解析 防爆的概念随着我国工业化进程的不断发展,越来越多的电气设备被广泛应用于工业生产的各个领域,极大的促进了生产力的提高;然而在石油、化工、粮食、医药等可能出现爆炸性危险场所的行业,随着其生产规模的日益扩大,自动化程度的不断提高,如何防止事故性爆炸的发生已成为十分迫切的需求。 爆炸和爆炸三要素爆炸必须具备的三个要素: 爆炸性物质 空气(氧气)点燃源典型的爆炸性物质有:丙烷、柴油、乙烯、焦炉煤气、氢气和乙炔等典型的点燃源有:机械火花、静电、电磁辐射、超声波和热表面电火花等 爆炸性物质分类 我国将爆炸性物质分为以下三类:Ⅰ类:矿井甲烷Ⅱ类:爆炸性气体混合物Ⅲ类:可燃性粉尘/纤维其中,Ⅱ类爆炸性气体混合物依据点燃能量的不同,又可以进一步划分为:ⅡA、ⅡB和ⅡC三个等级,其点燃特性和典型气体如下: 爆炸性物质温度组别划分:根据爆炸性物质的自动点燃温度将爆炸性物质的点燃温度划分为六个组别 危险场所的区域划分 气体环境:根据爆炸性气体环境出现的频率和持续时间把危险场所分为三个区域:0区、1区和2区。粉尘环境:根据可燃性粉尘/空气混合物出现的频率和持续时间及粉尘层厚度进行划分为三个区域:20区、21区和22区。 防爆危险区域划分的主要标准依据:GB3836.14 爆炸性气体环境用电气设备 第14部分 危险场所分类GB12476.3 可燃性粉尘环境用电气设备 第3部分 存在或可能存在可燃性粉尘的场所分类 具有潜在爆炸性危险的工业领域:石油/天然气开采炼油和化工企业燃油/燃气充装站制药业气体管线和输配站分析实验室表面喷涂工业印刷工业电子器件制造业地下煤矿工业污水处理厂医院手术室等 防爆的基本方法危险区的电气设备的火花和热效应是引起火灾和爆炸的主要因素,因此防止产生火花,控制电气设备最高表面温度就成为电气设备防爆的重点。此外,控制爆炸性物质中的氧气含量,使其低于爆炸极限,也能有效规避石化罐区和管线的爆炸风险。 梅特勒托利多过程分析部提供用于危险区域的气体和液体分析设备,并获得世界等级的认可,如IECEx、ATEX和FM认证。这些认证适用于大多数国家。
  • 标记免疫分析需求大 标准建设迫在眉睫
    p    strong 仪器信息网讯: /strong 2016年4月9日,中国分析测试协会标记免疫专业委员会(以下简称专委会)第一次筹备会在北京市丰台科技园新华医疗大楼圆满召开。解放军总医院颜光涛,工信部王学恭,科技基础平台中心卢凡,中国分析测试协会张渝英、吴波尔、尹碧桃,中国计量院李红梅,军事医学科学院荫俊,以及来自全国各地的院校、医院、企业相关代表一百余人参加了会议。 br/ /p p   本次筹备会由荫俊主持。会议流程包括:颜光涛介绍专委会筹备组工作情况、专委会管理办法(草案)、推荐委员名单,荫俊介绍筹备组下一步工作设想,军事医学科学院吕明介绍专委会成立大会事宜及其他领导发言。 /p p   据颜光涛介绍,专委会于2015年11月12日申请,12月11日经过中国测试协会第七届理事会第五次全体会议批准,官方网站预期5月初上线,微信公众平台预期4月中旬运营,常设办公地点在北京市丰台区广安路9号国投财富广场6号楼318室。 /p p style=" text-align: center " img title=" 颜.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/eadb9389-5285-470c-b187-ea2fcf6b8fd3.jpg" / /p p style=" text-align: center " span style=" text-align: center " 解放军总医院生化科主任、标记免疫专委会推荐主任委员颜光涛教授 /span /p p   目前,标记免疫分析技术是我国 a title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(0, 112, 192) " strong 生命科学 /strong /span /a 、重大疾病防治、健康 a title=" " style=" color: rgb(0, 112, 192) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(0, 112, 192) " strong 医疗 /strong /span /a 、生物防控、食品安全、环境保护、检疫检定的关键性技术支撑平台。据了解,各领域,标记免疫分析技术总的市场规模已超过2000亿,年均复合增长率达18%。其中,专业实验室超过12000家,研发企业与机构超过1500家,资本市场推动已形成庞大的产业规模。随着“十三五”国家科技创新战略实施,产业规模的增速将大大加快。同时,基因组学、精准医疗、生殖健康、互联网医疗、养老康复等产业的融合,预计到2025年标记免疫分析技术有望突破万亿市场规模。 /p p & nbsp & nbsp & nbsp 荫俊在讲话中提到我国的标记免疫分析技术产业将迎来前所未有的重大发展机遇以及也面临像因相关标准缺失所带来的诸多挑战。 /p p style=" text-align: center " img title=" 荫.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/d7a03130-adf3-4db5-9994-64f902723d7a.jpg" / /p p style=" text-align: center " 军事医学科学院荫俊教授 /p p   此外,荫俊还向参会代表介绍了专委会下步的工作重点,主要包括:2016年6月18-19日召开第一届学术峰会与专委会成立大会筹备工作;确定管理办法、工作制度与第一届专委会组织管理的工作架构;组织制定发展规划、主要工作目标、服务内容与工作机制;组建工作组与各专业学组,明确任务分工与制定工作计划;设立专委会工作网站,手机终端工作APP;委员单位需求与建议调研,建立专家与会员单位数据库,完善信息与工作平台等。 /p p   同时,专委会拟关注的技术领域及下一步的工作方向包括: /p p   1.标准与质量体系建设 /p p   基于标记免疫分析技术与产品的质控标准,相关领域分析测试的实验室规范,新型标记免疫分析技术产品的评价与认证体系研究,标记免疫试剂生产和质量控制行业与国家标准研究,标准的临床评价与推广,组织协调标准研究的科研协作。 /p p   2. 分析测试设备硬件与软件系统平台 /p p   标记免疫分析技术与自动化设备的整合研究,新型标记免疫分析仪器设备研发与质量控制体系,单机、模块与自动化测试流水线的信息与控制系统,标记免疫分析检测数据库及云平台建设。 /p p   3. 标记免疫分析测试共性技术平台建设 /p p   遴选重点研发机构组建联合开放实验室,遴选重点企业联合组建第三方中试与产业化技术中心,遴选重点企业提供第三方研发外包、产品注册、认证服务,临床转化医学、上市后再评价的多中心临床研究平台。 /p p   4. 产医研用协同创新与成果转化 /p p   建立会员单位间的共性技术协作机制,形成针对国家重大需求的项目联合攻关协作机制,组织协调会员单位联合申报国家重大平台与产业化专项,新型分析测试技术与产品的转化应用研究,实验室成果向生产企业的技术转移和产业化实施。 /p p   5. 学术交流培训与技术推广 /p p   组织召开专业委员会学术会议(年会及不定期专业学术会议),专业委员会专家技术咨询(设立领域专家咨询组),新技术及新产品培训及应用推广,国家级与部门继续教育(学分制),创新技术平台与产品的成果鉴定与奖励申报。 /p p style=" text-align: center " img title=" 王.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/d6d2f301-cc6c-4ee9-8102-c546a9c798b1.jpg" / /p p style=" text-align: center " 工信部王学恭处长讲话 /p p style=" text-align: center " img title=" 卢.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/5de9b8d0-5f1e-4d9c-81f5-83eedc729704.jpg" / /p p style=" text-align: center " 科技基础平台中心卢凡处长讲话 /p p style=" text-align: center " img title=" 张.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/8e955dbe-62fd-4e18-9a83-3a45a5895fb0.jpg" / /p p style=" text-align: center " 中国分析测试协会张渝英副理事长兼秘书长讲话 /p p style=" text-align: center " img title=" 吴.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/30ce2708-52fb-477b-af10-1f65837a4acc.jpg" / /p p style=" text-align: center " 中国分析测试协会副理事长吴波尔讲话 /p p style=" text-align: right " 撰稿:史秀明 /p
  • 2016年新增色谱分析方法标准59项 气相最多
    p   仪器信息网讯 2016年,国家标准委、农业部、工信部、环保部等多个部门连续多次发布相关分析方法标准或征集意见,其中包括明确指定仪器分析方法标准。据仪器信息网不完全统计,2016年度,各政府部门发布正式标准及征集意见标准超过100多次。 /p p   根据仪器信息网不完全跟踪报道整理,2016年度各部门发布或征集意见的色谱/色谱-质谱仪器相关标准共计59项,涉及气相色谱、液相色谱、毛细管电泳、离子色谱、凝胶渗透色谱、液相色谱-质谱联用、气相色谱-质谱联用七类仪器。从分析仪器种类来看,气相色谱和液相色谱方法居多 从发布的部门看,国家标准委、环保部、农业部发布的标准数量排在前三位。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/9a3bb2e3-d858-4d4b-ba81-f79605bce883.jpg" title=" 色谱标准及数量.jpg" / /p p   数据来源:仪器信息网整理 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/32aadb46-ef96-428d-8b87-5991487de8d8.jpg" title=" 部门.jpg" / /p p   数据来源:仪器信息网整理 /p p   整理发现,发布液相色谱方法相关标准最多的部门为农业部,共计6项,涉及农业、饲料、饮料等产品分析检测 ;发布气相色谱方法相关标准最多的部门为国标委,共计12项,涉及纺织品、燃料、化工产品、食品接触材料等产品分析检测;发布离子色谱方法相关标准最多的部门为环保部,共计5项,涉及水质、空气等分析检测。 /p p style=" text-align: center " strong 2016年发布/征集意见的色谱方法相关标准 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 48%" p style=" text-align:center " strong 标准名称 /strong /p /td td width=" 25%" p style=" text-align:center " strong 色谱仪器种类 /strong /p /td td width=" 25%" p style=" text-align:center " strong 发布部门 /strong /p /td /tr tr td width=" 48%" p style=" text-align:left " 分析型气相色谱方法通则-征求意见稿 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 教育部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 水质 亚硝胺类化合物的测定 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 水质 丙烯腈和丙烯醛的测定 吹扫捕集气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 轻质石油馏分和产品中烃族组成和苯的测定 多维气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 纺织品 消臭性能的测定& nbsp & nbsp & nbsp 第3部分:气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 喷气燃料中芳烃总量的测定& nbsp & nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 蜂蜡中二十八烷醇、三十烷醇的测定& nbsp & nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 光敏材料用多官能团丙烯酸酯单体中有机溶剂的测定 顶空进样毛细管气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 光敏材料用多官能团丙烯酸酯单体纯度(酯含量)的测定 毛细管气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 工业用苯乙烯试验方法 第1部分:纯度及烃类杂质的测定 & nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 纺织品 消臭性能的测定& nbsp & nbsp & nbsp 第3部分:气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 喷气燃料中芳烃总量的测定& nbsp & nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 反刍动物甲烷排放量的测定 六氟化硫示踪—气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 食品接触材料& nbsp & nbsp 纸和纸制品中饱和烃矿物油(MOSH)的测定 & nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 文具中苯、甲苯、乙苯及二甲苯的测定方法& nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 塑料& nbsp & nbsp 聚苯乙烯和抗冲聚苯乙烯中残留苯乙烯单体含量的测定 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 工业用异戊二烯中微量炔烃和二烯烃含量的测定气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 工信部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 工业用碳十粗芳烃中烃类组分的测定气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 工信部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 焦炉煤气 萘含量的测定 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 工信部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 稻米中γ-氨基丁酸的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 饲料中叶酸的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 饲料中斑蝥黄的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 饲料中β-阿朴-8& #39 -胡萝卜素醛的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 饲料中串珠镰刀菌素的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 咖啡及制品中葫芦巴碱的测定高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 环境空气和废气 酰胺类化合物的测定 液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检测 粮食中伏马毒素B1、B2的测定 超高效液相色谱方法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检测 粮食中黄曲霉毒素的测定 超高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检测 粮食中脱氧雪腐镰刀菌烯醇的测定 超高效液相色谱方法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检测 粮食中玉米赤霉烯酮的测定& nbsp 超高效液相色谱方法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检测 粮食中赭曲霉毒素A的测定 超高效液相色谱方法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 肥料中植物生长调节剂的测定& nbsp & nbsp & nbsp 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 蜂蜜中脯氨酸的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 有机肥料中土霉素、四环素、金霉素与强力霉素的含量测定& nbsp & nbsp & nbsp 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 肥料中植物生长调节剂的测定& nbsp 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 离子色谱分析方法通则-征求意见稿 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 教育部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 水质 可溶性阳离子(Li+ 、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 水质 无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 环境空气和废气 氯化氢的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 环境空气 颗粒物中水溶性阴离子(F-、Cl-、Br-、NO2-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 环境空气 颗粒物中水溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 区域地球化学样品分析方法 第22部分:氯和溴量测定 & nbsp & nbsp 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 国土资源部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 区域地球化学样品分析方法 第23部分:碘量测定 & nbsp & nbsp 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 国土资源部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 肥料中三聚氰胺含量的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 硅中氯离子含量的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 农药理化性质测定试验导则 第35部分:聚合物分子量和分子量分布测定(凝胶渗透色谱法) /p /td td width=" 25%" p style=" text-align:center " 凝胶渗透色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 农药理化性质测定试验导则 第36部分:聚合物低分子量组分含量测定(凝胶渗透色谱法) /p /td td width=" 25%" p style=" text-align:center " 凝胶渗透色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 饲料中氨基酸的测定 毛细管电泳法 /p /td td width=" 25%" p style=" text-align:center " 毛细管电泳 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 毛细管电泳法通则-征求意见稿 /p /td td width=" 25%" p style=" text-align:center " 毛细管电泳 /p /td td width=" 25%" p style=" text-align:center " 教育部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 水质 挥发性有机物的测定 顶空/气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 土壤和沉积物 多环芳烃的测定 气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 电子电气产品中多氯联苯的测定 气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 电子电气产品中四溴双酚A的测定 气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 肥料中多环芳烃含量的测定 气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 汽油中苯胺类化合物的测定 气相色谱质谱联用法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 橡胶烟气中挥发性成分的测定 热脱附-气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检验 粮食中黄曲霉毒素等16种真菌毒素的测定 & nbsp & nbsp 液相色谱-串联质谱法 /p /td td width=" 25%" p style=" text-align:center " 液质联用 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 玩具产品 聚碳酸酯和聚砜材料中双酚A迁移量的测定& nbsp & nbsp & nbsp 高效液相色谱-质谱联用法 /p /td td width=" 25%" p style=" text-align:center " 液质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 电子电气产品中六溴环十二烷的测定& nbsp & nbsp & nbsp 高效液相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 液质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr /tbody /table p style=" text-align: left "   依据仪器信息网整理的色谱分析方法相关标准,农业部和国家粮食局发布15个色谱方法标准中有11个与液相色谱方法直接相关。据国家粮食局发布的《粮食行业“十三五”发展规划纲要》,未来五年,将重点建立和完善 500 个国家粮食质量检验监测机构,提高常规质量、储存品质、卫生安全、添加剂和非法添加物、微生物等方面的综合检验监测能力,粮食质量安全指标的综合检验能力达到70%以上。而日前,农业部下发“关于开展“十三五”新增农业部重点实验室申报工作的通知”,“十三五”期间将新增37个重点实验室。可以预见,在未来五年,液相色谱在粮食行业的市场潜力可见一斑。 /p p   依据《国家环境保护“十三五”科技发展规划纲要》,大气、土壤、地下水等成为未来重点攻关的对象,并且在未来五年,将新建一批国家环境保护重点实验室和科学观测研究站,建设完善一批国家环境保护工程技术中心,建成环保科技基础数据和信息共享平台。争取新建1~2个国家重点实验室、国家工程技术中心或国家工程实验室。而仪器信息网统计的环保部发布的色谱方法相关标准中,离子色谱和气相色谱方法居多,此两类仪器在环境领域的市场或有可期。 /p p   2016年度,国家标准委发布的色谱方法相关标准共计25项,其中气相色谱方法标准11项,而涉及的分析检测对象包含文具、食品接触材料、化学品、电子电器产品等。依据《质量监督检验检疫事业发展“十三五”规划》,到2020年国家质检中心和国家检测重点实验室数量将达到1000个,新增检测实验室数量逾百个,并且重点加强对儿童用品、食品、化妆品、化学品等产品质量安全监管。未来五年,气相色谱仪器在质检领域的应用也有增长。 /p p br/ /p
  • 315项行业标准正在公示中,涉及ICP-AES、GC等多类仪器方法
    根据行业标准制修订计划,相关标准化技术组织完成了315项行业标准的制修订工作,28项行业标准外文版的编制工作以及5项行业标准样品的研制工作,在以上标准、标准外文版及标准样品发布之前,目前正处于公示阶段,以听取社会各界意见,公示时间截止至2022年5月14日。小编整理了上述标准中与科学仪器相关的标准,主要涉及石化、冶金、有色金属、轻工和稀土行业,包含色谱、质谱、光谱方法等。行业标准共有20项与仪器相关,其中使用电感耦合等离子体发射光谱法的共有5项,使用气相色谱法的3项,还有高效液相色谱法、辉光放电质谱法、(波长色散型)X射线荧光光谱法、核磁共振波谱法等。行业标准名称及主要内容等一览序号标准编号标准名称标准主要内容代替标准1 SH/T 1833-2022合成生橡胶色差的测定 色差仪法 本文件规定了用色差仪测定合成生橡胶色差的方法。 本文件适用于浅色的丁二烯橡胶、丁苯橡胶、丁腈橡胶、乙丙橡胶、异戊橡胶及丁基橡胶等块状合 成生橡胶。 2 SH/T 1835-2022低碳α-烯烃中金属含量的测定 电感耦合等离子体发射光谱法 本文件规定了用电感耦合等离子体发射光谱法(ICP-OES)测定低碳α-烯烃中金属含量的方法。 本文件适用于C6~C10低碳α-烯烃中铁、铝和铬金属含量的测定,其最低测定浓度分别为0.2 mg/kg、0.5 mg/kg和0.2 mg/kg。 3 SH/T 1054-2022工业用二乙二醇纯度和杂质的测定 气相色谱法 本文件规定了工业用二乙二醇的纯度及杂质测定的气相色谱法。 本文件适用于纯度不低于99.0%(质量分数)的工业用二乙二醇样品。其中乙二醇、三乙二醇、1,3-二氧戊环-2-甲醇、1,4-二氧六环-2-醇和1,4-丁二醇等杂质的检测限为0.0020%(质量分数)。SH/T 1054-19914 SH/T 1496-2022工业用叔丁醇酸度的测定 滴定法 本文件规定了工业用叔丁醇酸度测定的手动滴定法和电位滴定法。 本文件适用于异丁烯水合法及异丁烷共氧化法工艺制得的酸度不低于2 mg/kg的工业用叔丁醇的测定。SH/T 1496-19925 SH/T 1497-2022工业用叔丁醇纯度及杂质的测定 气相色谱法 本文件规定了用气相色谱法测定工业用叔丁醇纯度及杂质含量。 本文件适用于异丁烯水合法和异丁烷共氧化法工艺生产的工业用叔丁醇的测定。当采用热导检测器(TCD)测定TBA-85时,其杂质的最低测定含量为0.01%(质量分数),当采用氢火焰离子化检测器(FID)测定TBA-85、TBA-95、TBA-99时,其杂质的最低测定含量为0.001%(质量分数)。SH/T 1497-20026 SH/T 1498.6-2022尼龙66盐 第6部分:硝酸盐含量的测定 高效液相色谱法 本文件规定了测定尼龙66盐中硝酸盐含量的高效液相色谱法。 本文件适用于尼龙66盐中硝酸盐含量的测定,最低测定含量为0.15 mg/kg。SH/T 1498.6-19977 YB/T 4983-2022磷铁 磷、硅、锰、钛含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了采用电感耦合等离子体原子发射光谱法测定磷、硅、锰和钛的含量。 本文件适用于磷铁中磷、硅、锰和钛含量的测定。8 YB/T 4989-2022焦炉煤气 煤焦油含量的测定 分光光度法 本文件规定了焦炉煤气中煤焦油含量测定的试剂和材料、仪器和设备、测试步骤、试验结果、允许差和试验报告。 本文件适用于焦炉煤气中煤焦油含量测定。9 YB/T 4990-2022焦化轻油酚含量的测定 气相色谱法 本文件规定了焦化轻油中酚含量测定的试剂材料、仪器设备、试验步骤、数据处理、允许差等。 本文件适用于煤焦油蒸馏所制得的焦化轻油中酚含量的测定。10 YS/T 1525-2022镍铂合金化学分析方法 氧和氮含量测定 脉冲-红外吸收法和热导检测法 本文件规定了镍铂合金中氧含量和氮含量的测定方法。 本文件适用于镍铂合中氧含金量和氮含量的测定。测定范围:0.0010%~0.020%。11 YS/T 1530-2022高纯锡化学分析方法 杂质元素含量的测定 辉光放电质谱法 本文件规定了高纯锡中杂质元素含量的测定方法。 本文件适用于高纯锡中杂质元素含量的测定。各元素测定范围:0.001 μg/g~5 μg/g。12 YS/T 482-2022铜及铜合金分析方法 火花放电原子发射光谱法 本文件规定了铜及铜合金中合金元素及杂质元素的火花放电原子发射光谱法。 本文件适用于铜及铜合金中铅、铁、铋、锑、砷、锡、镍、锌、磷、硫、锰、硅、铬、铝、银、锆、镁、硒、碲、钴、镉、硼、钛、铍含量的测定。YS/T 482-200513 YS/T 483-2022铜及铜合金分析方法 X射线荧光光谱法 (波长色散型) 本文件规定了铜及铜合金中合金元素及主要杂质元素的X射线荧光光谱分析方法。 本文件适用于铜及铜合金中铜、镍、锌、铝、铁、锡、铅、锰、硅、铬、砷、磷、镁、银、钴、铋、锑、硫、硒、碲、镉含量的测定。YS/T 483-200514 YS/T 1075.9-2022钒铝、钼铝中间合金化学分析方法 第9部分:氯含量的测定 氯化银分光光度法 本文件规定了钒铝、钼铝中间合金中氯含量的测定方法。 本文件适用于钒铝、钼铝中间合金中氯含量的测定。测定范围:0.010%~0.10%。15 YS/T 1075.10-2022钒铝、钼铝中间合金化学分析方法 第10部分:钠含量的测定 火焰原子吸收光谱法 本文件规定了钒铝、钼铝中间合金中钠含量的测定方法。 本文件适用于钒铝、钼铝中间合金中钠含量的测定。测定范围:0.001%~0.020%。16 YS/T 1075.13-2022钒铝、钼铝中间合金化学分析方法 第13部分:铁、硅、钼、铬含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了钒铝中间合金中铁、硅、钼、铬含量及钼铝中间合金中铁、硅含量的测定方法。 本文件适用于钒铝中间合金中铁、硅、钼、铬含量及钼铝中间合金中铁、硅含量的测定。测定范围:0.004%~0.50%。17 YS/T 1539-2022铝基氮化硼粉末中氮化硼含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了铝基氮化硼粉末中氮化硼含量的测定方法。 本文件适用于不含有机粘接剂的铝基氮化硼粉末中氮化硼含量的测定,测定范围:10.00%~23.00%。18 YS/T 1531-2022铑炭化学分析方法 铑含量的测定 电感耦合等离子体原子发射光谱法 本文件规定了铑炭中铑含量的测定方法。 本文件适用于铑炭中铑含量的测定。测定范围:0.100%~8.00%。19 QB/T 5759-2022番茄酱罐头中番茄红素含量测定 高效液相色谱法 本文件规定了采用高效液相色谱法测定番茄酱罐头中番茄红素含量的方法。 本文件适用于采用高效液相色谱法进行番茄酱罐头中番茄红素含量的测定。20 QB/T 5761-2022食品中水苏糖的测定 核磁共振波谱法 本文件规定了食品中水苏糖的测定方法——核磁共振波谱法。 本文件适用于采用核磁共振波谱法测定食品中的水苏糖,包括水苏糖原料、饮料及压片糖果。行业标准外文版序号标准编号标准名称(中文)标准名称(外文)标准主要内容项目类型翻译语种1XB/T 617.3-2014钕铁硼合金化学分析方法 第3部分:硼、铝、铜、钴、镁、硅、钙、钒、铬、锰、镍、锌和镓量的测定 电感耦合等离子体原子发射光谱法Chemical analysis methods for neodymium iron boron alloy -Part 3: Determination of boron, aluminum, copper, cobalt, magnesium, silicon, calcium,vanadium,chromium, manganese, nickel, zinc and gallium contents-Inductively coupled plasma atomic emission spectrometry本部分规定了钕铁硼合金中硼、铝、铜、钴、镁、硅、钙、钒、铬、锰、镍、锌和镓量的测定方法。翻译已有标准英语2XB/T 617.4-2014钕铁硼合金化学分析方法 第4部分:铁量的测定 重铬酸钾滴定法Chemical analysis methods of neodymium iron boron alloy-Part 4: Determination of iron content - The potassium dichromate titrimetry本部分规定了钕铁硼合金中铁含量的测定方法。翻译已有标准英语行业标准样品目录序号标准号标准名称有效期研 制 单 位1 YSS106-2022铝合金3004化学标准样品15年东北轻合金有限责任公司2 YSS107-2022铝合金3004铸态光谱单点标准样品15年东北轻合金有限责任公司3 YSS108-2022铝合金3A11化学标准样品15年东北轻合金有限责任公司4 YSS109-2022铝合金3A11铸态光谱单点标准样品15年东北轻合金有限责任公司5 YSS110-2022铝合金6063铸态光谱单点标准样品15年抚顺铝业有限公司
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 常见实验室分析仪器及过程分析仪器选型指南
    红外煤气成分分析仪主要应用于工业上对煤气成分进行分析,通过对测量的气体参数变化情况的分析,掌握这些成分的变化规律,从而对于实现生产全程动态控制,无论是理论计算还是现场操作,都具有十分重要的指导意义。该仪器适合氮肥厂、钢铁公司、煤气厂等行业的分析煤气、半水煤气、变换气、原料气中CO2,CnHm,O2,CO,CH4,H2及NOx等成分的分析。目前市场上主要有实验室分析仪和过程分析仪两大类分析仪器,现就适合于煤气成分分析的仪器简单介绍一下。一、常用实验室分析仪器 1.奥氏气体分析仪 作为一种经典的化学式手动分析器,奥氏气体分析仪具有价格便宜、操作方便、维修容易等优点,该仪器一直在广泛应用着,常用于煤气中CO2、O2、CO、H2等的含量测定。其原理是利用吸收法来测定酸性气体、不饱和烃、氧和一氧化碳,使氢在氧化铜上燃烧,使饱和烃铂丝上与空气中的氧燃烧,利用称重法来测定。该仪器虽然是操作简单,价格较便宜,但测定时精度不是很高,准确度取决于操作者的熟练程度,且测量数据不象LCD那么直观、清晰。 奥氏气体分析仪在应用上存在的不足主要有: 1)梳形管容积对分析结果有影响; 2)不能分析出Ar,不适宜用奥氏仪分析循环气,应逐步采用气相色谱仪; 3)奥氏仪进行动火分析测定时间长,有时存在一定误差,还必须注意化学反应的完全程度,否则读数不准误导生产。 2.微量硫分析仪 随着常温精脱硫新工艺的应用,象氮肥厂就很有必要配备微量硫分析仪,以确保联醇催化剂、氨合成催化剂的安全,为生产样气中各种微量形态硫的定性和定量检测提供了方便快捷的检测手段。 3.可燃气体测爆仪 用奥氏仪进行动火分析测定时间长,有时存在一定误差,因此建议选用可燃气体测爆仪。 4.工业气相色谱仪 工业气相色谱在煤气分析中应用最多,气体组分按H2、N2、CO和CO2的顺序依次被测定。此外该技术还可用于转炉炉气和烧结废气中此类组分的分析。近年来色谱分析仪得到推广,但是色谱分析仪需要对气体进行分离后再检测,很难实现实时在线。除了国内少数高炉仍采用该方法之外,工业气相色谱仪逐渐被质谱仪或红外分析系统代替。 5.工业气体质谱仪 质谱仪以物质离子的质荷比作为判据进行定性和定量分析。气体质谱仪通常采用电子轰击方式离子化,所有物质都有特征的解离方式。质谱仪的特点是分析速度极快、可同时分析的组分多,而且分析的精度很高。但质谱仪多成分和高速度的分析性能在高炉、烧结等工段应用的优势并不明显,也需要对气体进行分离后再检测,很难实现实时在线分析,仪器成本又很高。目前高精度的质谱仪主要还是依靠进口,其维修零备件也都要从国外进口,国内代理商响应大多缓慢,这对系统的投用率影响很大。还有,国内运行环境与国外有差异,仪器故障率也很高,维护相当频繁,维护费用也大。 6.其它 其它常用的还有电导仪、酸度计、分光光度计、含水测定仪等。二、常用过程分析仪器 1.微量气体分析仪 精炼气中微量(CO+ CO2)的测定是氮肥厂比较重要的分析项目,由于含量低(CO+CO2≤25×10-6),有些场合气体含量甚至是ppb级的低含量,用手工方法难以测出其组分。 2.热导式分析仪 热导式分析仪是出现最早、种类较多且应用较广的一类在线分析仪,常用来自动测定混合气中H2、Ar、SO2等多种气体的体积分数。 3.氧分析仪 煤气中氧含量的在线分析常采用电化学式或者热磁式氧分析仪,其灵敏度高,还可设置报警装置,维修更换方便。 4.常量红外线气体分析仪 常量红外线煤气分析仪常用来连续测定各种混合气体中的CO、CO2、NH3、CH、H2、O2等含量,是在线分析仪中比较重要的一类。非分光红外(NDIR)气体分析仪作为一种快速、准确的气体分析技术,特别在连续污染物监测系统(CEMS)以及机动车尾气检测应用中十分普遍。国内NDIR气体分析仪的主要厂家大都采用国际上八十年代初的红外气体分析方法,如采用镍锘丝作为红外光源、采用电机机械调制红外光、采用薄膜电容微音器或InSb等作为传感器等。由于采用电机机械调制,仪器功耗大,且稳定性差,仪器造价也很高。同时采用薄膜电容微音器作为传感使得仪器对震动十分敏感,因此不适合便携测量。随着红外光源、传感器及电子技术的发展,NDIR红外气体传感器在国内外得到了迅速的发展。主要表现在无机械调制装置,采用新型红外传感器及电调制光源,在仪器电路上采用了低功耗嵌入式系统,使得仪器在体积、功耗、性能、价格上具有以往仪器无法比拟的优势。 如现在市面上的煤气分析仪Gasboard-3100(在线型),采用国际领先的非分光红外气体分析技术,长寿命电化学传感技术,及基于MEMS的热导技术,可同时在线测量煤气、生物燃气的热值,以及CO、CO2、CH4、H2、O2、CnHm等气体的体积浓度。煤气分析仪Gasboard-3100(在线型) 该仪器广泛应用于煤气工业过程气体中多组分气体体积浓度的测量,如氮肥厂、钢铁公司、煤气厂等煤气、半水煤气、变换气、原料气等。通过对测量气体参数变化情况的分析,以掌握这些成分的变化规律,从而实现对生产全程动态的监测。 “分析技术仪器化,分析仪器自动化”是主导发展方向。分析方法和技术是分析仪器的导向,定型的分析测试方法都需要转化为仪器装置。随着生产的不断发展,对分析的质量和性能要求也在不断提高,实验室分析仪已经不能适应连续自动化的生产监测和控制。分析仪器自动化除了要利用当前发展的电子技术和计算技术实现以外,还会要综合地利用正在热门化的嵌入式智能化平台技术、超微精密加工技术。过程分析仪正逐渐在我国中、小型企业普及,实时为企业生产提供动态控制和监测。来源:微信公众号@工业过程气体监测技术,转载请务必注明来源
  • 三水两气!国家连发多项生态环境标准
    为贯彻《中华人民共和国环境保护法》等法律法规,防治环境污染,改善生态环境质量,规范和指导相关行业的健康发展,国家近日连发多项国家生态环境标准。据了解,该系列标准将从2023年5月1日起实施。包括:一、《氮肥工业废水治理工程技术规范》(HJ 1277-2023)该标准规定了氮肥工业废水治理工程设计、施工、验收和运行维护的技术要求,适用于氮肥工业废水治理工程,作为氮肥工业建设项目可行性研究、设计、施工、安装、调试、验收、运行和维护管理的参考依据。该标准要求,要建设地下水水质监测井进行监测,防止土壤及地下水受到污染;对已有调查、监测和现场检查表明存在土壤污染风险的,需按照相关规定进行土壤污染状况调查。二、《陶瓷工业废水治理工程技术规范》(HJ 1278-2023)该标准规定了陶瓷工业废水治理工程的设计、施工、验收和运行维护等技术要求,适用于建筑陶瓷、卫生陶瓷、日用及陈设艺术瓷和特种陶瓷工业废水治理工程,可作为陶瓷工业项目环境保护设施设计、施工、验收及运行管理的参考依据。该标准要求,要建设地下水水质监测井进行监测,防止土壤及地下水受到污染;对已有调查、监测和现场检查表明存在土壤污染风险的,需按照相关规定进行土壤污染状况调查。三、《钛白粉工业废水治理工程技术规范》(HJ 1279-2023)该标准规定了钛白粉工业废水治理工程的设计、施工、验收和运行维护技术要求,适用于钛白粉工业废水治理设施新建、改建和扩建工程的设计、施工、验收及运行全过程,可作为钛白粉工业废水治理工程项目的环境保护设施设计与施工、验收及建成后运行与环境管理的参考依据。该标准要求,钛白粉工业废水治理工程应配套建设预防二次污染的技术措施;对废水治理设施应当采取防渗漏等措施,并建设地下水水质监测井进行监测,防止土壤及地下水受到污染;对已有调查、监测和现场检查表明存在土壤污染风险的,需按照相关规定进行土壤污染状况调查。污泥的处理处置应遵守GB 18599 要求。厂界环境噪声治理应符合 GB 12348 的要求。四、《炼焦化学工业废气治理工程技术规范》(HJ 1280-2023)该标准规定了炼焦化学工业废气治理工程的设计、施工、验收和运行维护的技术要求,适用于炼焦化学工业生产过程中备煤、炼焦、熄焦、焦处理、煤气净化、焦化废水处理等工序废气治理工程的建设和运行管理,可作为建设项目环境保护设施的工程咨询、设计、施工、验收及建成后运行与管理的参考依据。炼焦化学工业的大气污染物排放分为有组织排放和无组织排放,主要污染物有颗粒物、二氧化硫、苯并芘、氮氧化物、硫化氢、氨和各种烃类等。该标准要求,焦化企业应规范排污口建设,在焦炉装煤及推(出)焦除尘地面站烟囱、焦炉机侧炉门除尘地面站烟囱、干熄焦除尘地面站烟囱、焦炉烟囱、锅炉烟囱等有组织排放口应按照有关规定设置污染物排放自动监测装置,并与环境保护主管部门联网。有关自动监测,该标准要求,废气治理系统应配置完善的自动监测、报警和联锁控制系统,实现智能化、数字化控制,并根据需要与生产工艺进行必要的联锁。五、《玻璃工业废气治理工程技术规范》(HJ 1281-2023)该标准规定了玻璃工业废气治理工程的设计、施工、验收和运行维护的技术要求,适用于平板玻璃制造的废气治理工程,可作为工程咨询、环境保护设施设计与施工、建设项目竣工环境保护验收及建成后运行管理的参考依据。熔化工序产生的窑炉烟气中主要大气污染物包括颗粒物、NOx、SO2及少量的氯化氢(HCl)和氟化物、重金属及其化合物。该标准要求,玻璃制造企业应按照环境监测的相关规定开展自行监测,重点排污单位应安装大气污染物自动监控设备并与生态环境部门联网。按照《排污口规范化整治技术要求(试行)》设置规范化排污口,设置符合 GB 15562.1 要求的废气排放口(源)标志。
  • 丹东企业参与制定138项仪器仪表类国家标准
    近日,辽宁仪表研究所有限责任公司和丹东百特仪器有限公司参与制定的《无损检测仪器 相控阵超声设备的性能与检验 第1部分:仪器》(GB/T 42399.1-2023)、《颗粒标准样品的制备第1部分:基于单分散球形颗粒尖桩栅栏分布的多分散标准样品》(GB/T 42351.1-2023)等4项国家标准正式发布。截至目前,丹东企业参与制定的仪器仪表类国家标准累计达138项,彰显了丹东仪器仪表产业强大的市场竞争力。仪器仪表产业是丹东市的传统产业,产业基础雄厚,技术水平先进,人才资源丰富,生产体系完备。目前,全市相关企业达200余家,形成了以辽宁(丹东)仪器仪表产业基地及江湾工业园区等周边园区为核心区,元宝、振安等周边城区为辅助区域的分布格局,产业涵盖通用仪器仪表、专用仪器仪表、钟表计时仪器、其他仪器仪表四大类11小类100余个品种,拥有核仪表、煤气表及卡表、工业射线、流量仪表、粒度仪、高档手表机芯等一批高水平产品。近年来,丹东市市场监督管理部门积极鼓励引导企事业单位研制国家标准,及时帮助企业解决标准研制过程中遇到的问题。此次企业参与制定的4项国家标准,将进一步推动当地仪器仪表特色优势产业和高端装备制造等战略性新兴产业的发展。
  • 稳定性线下课程-如何使用Turbiscan分析配方的不稳定机理,如何以数据微基础有效的改善配方,制定质控标准
    大昌华嘉科学仪器部重磅发布稳定性分析线下系列讲座,课程议题是如何使用Turbiscan分析配方的不稳定机理,如何以数据微基础有效的改善配方,制定质控标准。线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!课程详情主讲专家介绍何羽薇何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到哪些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程连续举办4期,每期3天:上海,10月14-16日收费标准本次线下课程为收费培训,市场价格3500元/人。开课前10天报名享优惠价格,2800元/人。本次课程开班人数最低为15人,报名满15人开班,不满暂不开班,请感兴趣的朋友踊跃预报名。报名方式:联系人:李文艳 电话:13811359706/4008210778邮箱:swallow.li@dksh.com或者识别以下二维码报名~
  • 固废新标准正式实施,无机元素分析再添仪器
    为贯彻《中华人民共和国环境保护法》《中华人民共和国固体废物污染环境防治法》,防治生态环境污染,改善生态环境质量,规范固体废物中无机元素的测定方法,生态环境部新发布《固体废物 无机元素的测定 波长色散 X 射线荧光光谱法(HJ 1211—2021) 》,标准测定固体废物中 16 种无机元素和 7 种氧化物,标准在3月1日正式实施。 图 | 标准文件 起草单位是湖南省生态环境监测中心与湖南大学,岛津作为标准验证单位参与了标准的验证工作,新标准的正式实施后,固体废物的无机元素分析除了常规AA、ICPMS等原子光谱分析外,X射线荧光测定固体废物也有标准可依。在现行实施标准中,X射线荧光在土壤沉积物、环境空气、固体废物均有相应标准。(见下表) 现行X射线荧光光谱法标准 波长色散X射线荧光对于AA、ICPMS等仪器而言,最主要的是无需化学前处理,通过压片制样就可以分析。标准采用熔融玻璃片和粉末压片两种方式。熔融玻璃片法适用于污泥、污染土壤、粉煤灰、尾矿废石和冶炼炉渣等固体废物试样制备,而粉末压片法适用于污泥、污染土壤及粉煤灰固体废物试样制备。图 |左:熔融玻璃片制片;右:粉末压片制样 制样小技巧:1.保证制备样品的均匀性和一致性。使标准物质和待测样品的组成、粒度、制样条件等尽可能保持一致。这样才能进行准确的定性、定量分析。2.选择适宜的样品粒度,选用合适的制样方法。根据需要,将样品粉碎至符合分析要求的粒度。同时,尽管XRF分析通常可采用粉末压片法,但必要时应采用熔融玻璃片法制样,以基本消除粒度效应和矿物效应,保证足够的分析精密度和准确度。3.对于内聚力差、难以成团的样品(如粉煤灰),可以通过添加适当的黏结剂(如硼酸或微晶纤维素),增强样品的团聚性,使压片更均匀。 波长色散型X射线荧光光谱仪XRF-1800高稳定性--安全,低故障高灵敏度--元素Be~U,浓度ppm~%BG-FP法--可分析少量样品、高分子膜厚等250μm图像分析功能--元素分布成像分析 新标准的适用范围包括测定污泥、污染土壤、粉煤灰、尾矿废石和冶炼炉渣等固体废物,除新标准的规定的范围外,那么其他来源复杂的固危废如何分析呢? 新标准要求标样准确制样均匀,那么没有标样或难以前处理的固危废又如何分析呢? 作为X射线荧光的另一种类,岛津的能量色散型X射线荧光(EDX)可以解决上述问题。固危废行业的快速定性分析,重金属及有害元素的筛选分析,主量或特定元素分析,岛津的EDX都可以应对。相对于波长色散X射线荧光,EDX无需对样品进行压片或熔片的前处理,快速筛选时无需标样,虽然轻元素的灵敏度较波长色散稍微低一些,但作为化学分析的有利辅助绰绰有余。 能量色散型X射线荧光光谱仪EDX系列EDX分析应用: 工业固废直接分析油泥直接分析本文内容非商业广告,仅供专业人士参考。
  • 工信部新批425项标准 110项与仪器分析相关
    近日工信部最新批准了425项行业标准,涉及机械、化工、冶金、建材、有色金属、石化、稀土、轻工等行业,其中110项行业标准明确与ICP-MS、气相色谱仪、原子吸收光谱仪、核磁共振波谱仪、试验机、表界面测试仪器、热分析仪器等分析测试方法相关。并且该批标准将于明年1月1日实施。110项与仪器分析相关的行业标准标准编号 标准名称 标准主要内容 JB/T 12726-2016无损检测仪器 试样 通用技术条件本标准规定了无损检测仪器用试样的通用技术条件,包括试样原材料的选用、人工缺陷类型、表面粗糙度及试样加工方法等。 本标准适用于无损检测仪器用试样。JB/T 12727.3-2016无损检测仪器 试样 第3部分:电磁(涡流)检测试样本部分规定了涡流检测试样的类型、尺寸、技术要求、试验方法、标志、包装、运输和贮存等内容。 本部分适用于校验涡流检测系统试样的制作,其它探伤用途可参考本部分设定灵敏度。JB/T12727.4-2016无损检测仪器试样第4部分:磁粉检测用试样本部分规定了磁粉检测用试样的类型、尺寸、技术要求、试验方法、标志、包装、运输和贮存等内容。 本部分适用于校验磁粉检测系统试样的制作,试样用于评价磁粉检测系统的裂纹显示性能。JB/T12727.5-2016无损检测仪器试样第5部分:渗透检测试样本部分规定了渗透检测试样的类型、尺寸、技术要求、试验方法和标志、包装、运输、贮存等内容。 本部分适用于渗透检测试样的制作。HG/T4994-2016休闲胶鞋本标准规定了休闲胶鞋的要求、试验方法、检验规则以及标志、包装、运输和贮存。 本标准适用于以橡胶为鞋底主材料,用热硫化方法生产的供日常生活穿用的休闲鞋。HG/T4990-2016胶鞋扭转性能试验方法本标准规定了胶鞋扭转性能的试验方法。 本标准适用于胶鞋扭转性能的测试,其他鞋类的扭转性能可参照使用。HG/T4991-2016胶鞋漆膜伸长率试验方法本标准规定了胶面胶鞋(靴)鞋面漆膜伸长率的试验方法。 本标准适用于胶面胶鞋(靴)鞋面漆膜伸长率的测定。HG/T4993-2016鞋用微孔材料回弹性试验方法本标准规定了鞋用微孔材料回弹性的试验方法。 本标准适用于鞋用微孔材料的测试。HG/T4997-2016鞋眼拔出力试验方法本标准规定了鞋眼从附着材料拔出力的试验方法,本标准规定了A法和B法两种试验方法,A法为圆锥棒顶出法,B法为鞋带拉出法。 本标准适用于一般穿用鞋的鞋眼拔出力(特殊鞋眼或鞋眼饰件可参照使用)。HG/T5013-2016废弃化学品中铜的测定本标准规定了采用电感耦合等离子体原子发射光谱法(ICP-AES)测定废弃化学品中铜含量的原理、试剂、仪器、样品处理、分析步骤和结果计算。 本标准适用于化学废渣、废水(液)、废表面处理剂、油漆渣等废弃化学品中铜含量的测定。本方法检出限6.9μ g/L,检测范围5μ g/mL~500μ g/mL。HG/T5014-2016废弃化学品中铬的测定本标准规定了废弃化学品中总铬的测定、六价铬的测定。 本标准适用于废弃化学品中铬含量的测定。HG/T5016-2016含氟废气中氟含量的测定方法本标准规定了含氟废气中氟含量测定的术语和定义、警告、一般规定、方法提要、试剂和材料、仪器设备、试样的采集和制备、分析步骤及结果计算。 本标准适用于磷肥生产过程中产生的含氟废气中无机氟含量的测定(离子选择性电极法)。当采样体积为150L时,检出限为0.05mg/m3;测定范围为0.5mg/m3~500mg/m3。HG/T5017-2016化学镀铜废液中乙二胺四乙酸二钠(EDTA)和铜含量测定方法本标准规定了容量法测定化学镀铜废液中乙二胺四乙酸二钠(EDTA)含量和铜含量的原理、试剂、分析步骤和结果计算。 本标准适用于化学镀铜废液中乙二胺四乙酸二钠(EDTA)含量和铜含量的测定,测定范围为乙二胺四乙酸二钠(EDTA)含量0.1g/L~12.0g/L,铜含量0.05g/L~3.0g/L。HG/T5018-2016含铜蚀刻废液主要成分和微量金属元素分析方法本标准规定了含铜蚀刻废液主要成分和微量金属元素分析方法的酸度、碱度(游离氨)、总氨、铵离子、氯离子、铜的测定,以及镉、铬、铁、锰、镍、铅、锌、砷等微量元素的测定。 本标准适用于含铜蚀刻废液的分析检测。YB/T4547-2016焦炭在线自动采样、制样、粒度分析及机械强度测定技术规范本标准规定了焦炭机械采样、制样、在线粒度分析及机械强度测定的技术要求。 本标准适用于干熄焦生产线,湿熄焦生产线可参照使用。对于焦炭机械采制样、粒度分析及机械强度测定的集成系统只要符合本规范所述的基本原则,其系统的具体构成、工艺流程、采用形式可以多种多样。YB/T5082-2016粗酚灼烧残渣的测定方法本标准规定了重量法测定灼烧残渣量。本标准适用于从煤焦油、含酚污水制取的粗酚灼烧残渣的测定。YB/T5154-2016工业甲基萘甲基萘和萘含量的测定气相色谱法本标准规定了气相色谱法测定甲基萘和萘含量。 本标准适用于煤焦油经分馏所得的工业甲基萘中甲基萘和萘含量的测定。YB/T5156-2016高纯石墨制品中硅的测定硅-钼蓝分光光度法本标准规定了硅-钼蓝分光光度法测定高纯石墨制品中硅含量的原理、试剂及材料、仪器和设备、试样制取、校准曲线、分析步骤、结果计算、精密度及试验报告。 本标准适用于高纯石墨制品中硅含量的测定,测定范围(质量分数)≤ 0.01%。YB/T5157-2016高纯石墨制品中铁的测定邻二氮菲分光光度法本标准规定了邻二氮菲分光光度法测定高纯石墨制品中铁含量的方法原理、试剂及材料、仪器和设备、试样制取、校准曲线、分析步骤、结果计算、精密度及试验报告。 本标准适用于高纯石墨制品中铁含量的测定,测定范围(质量分数)≤ 0.01%。YB/T5171-2016木材防腐油试验方法40℃结晶物测定方法本标准规定了木材防腐油40℃结晶物测定方法的原理、仪器、试样的处理、试验步骤和安全注意事项。 本标准适用于由高温煤焦油的馏分配制而成的木材防腐油40℃结晶物的测定。YB/T5172-2016木材防腐油试验方法闪点测定方法本标准规定了木材防腐油闪点测定方法的试验原理、试剂、仪器和设备、准备工作、试验步骤、温度补正和安全注意事项。 本标准适用于由高温煤焦油的馏分配制而成的木材防腐油闪点的测定。YB/T5173-2016木材防腐油试验方法流动性测定方法本标准规定了木材防腐油流动性测定方法的方法要点、仪器和设备、试剂、试样的处理、试验步骤和安全注意事项。 本标准适用于由高温煤焦油的馏分配制而成的木材防腐油流动性的测定。YB/T5284-2016工业喹啉折射率测定方法本标准规定了工业喹啉折射率测定的仪器和设备、试剂和材料、试样脱水、试验步骤、结果计算和精密度。 本标准适用于从炼焦生产中回收的工业喹啉折射率的测定方法。JC/T2373-2016玻璃管材弹性模量和弯曲强度试验方法缺口环法本标准规定了采用缺口环法测试玻璃管材弹性模量和弯曲强度的术语和定义、符号及其物理意义、方法、设备、试样、试验步骤、计算公式和试验报告。 本标准适用于内外径比值在0.8-1范围内的玻璃和微晶玻璃管材弹性模量和弯曲强度的测试。YS/T1115.1-2016铜原矿和尾矿化学分析方法第1部分:铜量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中铜量的测定方法。 本部分适用于铜原矿和尾矿中铜量的测定。测定范围:0.010%~2.50%。YS/T1115.2-2016铜原矿和尾矿化学分析方法第2部分:铅量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中铅量的测定方法。 本部分适用于铜原矿和尾矿中铅量的测定。测定范围:0.050%~1.00%。YS/T1115.3-2016铜原矿和尾矿化学分析方法第3部分:锌量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中锌量的测定方法。 本部分适用于铜原矿和尾矿中锌量的测定。测定范围:0.0050%~1.00%。YS/T1115.4-2016铜原矿和尾矿化学分析方法第4部分:镍量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中镍量的测定方法。 本部分适用于铜原矿和尾矿中镍量的测定。测定范围:0.0050%~0.050%。YS/T1115.5-2016铜原矿和尾矿化学分析方法第5部分:钴量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中钴量的测定方法。 本部分适用于铜原矿和尾矿中钴量的测定。测定范围:0.0050%~0.050%。YS/T1115.6-2016铜原矿和尾矿化学分析方法第6部分:镉量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中镉量的测定方法。 本部分适用于铜原矿和尾矿中镉量的测定。测定范围:0.0005%~0.010%。YS/T1115.7-2016铜原矿和尾矿化学分析方法第7部分:锰量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中锰量的测定方法。 本部分适用于铜原矿和尾矿中锰量的测定。测定范围:0.0050%~0.50%。YS/T1115.8-2016铜原矿和尾矿化学分析方法第8部分:镁量的测定火焰原子吸收光谱法本部分规定了铜原矿和尾矿中镁量的测定方法。 本部分适用于铜原矿和尾矿中镁量的测定。测定范围:0.010%~2.00%。YS/T1115.9-2016铜原矿和尾矿化学分析方法第9部分:硫量的测定高频红外吸收法和燃烧-碘酸钾滴定法本部分规定了铜原矿和尾矿中硫量的测定方法。 本部分适用于铜原矿和尾矿中硫量的测定,测定范围:高频红外吸收法0.10%~18.0%;燃烧-碘酸钾滴定法0.10%~40.0%。YS/T1115.10-2016铜原矿和尾矿化学分析方法第10部分:磷量的测定钼蓝分光光度法本部分规定了铜原矿和尾矿中磷量的测定方法。 本部分适用于铜原矿和尾矿中磷量的测定,测定范围:0.010%~0.10%。YS/T1115.11-2016铜原矿和尾矿化学分析方法第11部分:钼量的测定硫氰酸盐分光光度法本部分规定了铜原矿和尾矿中钼量的测定方法。 本部分适用于铜原矿和尾矿中钼量的测定。测定范围:0.0030%~0.040%。YS/T1115.12-2016铜原矿和尾矿化学分析方法第12部分:铜、铅、锌、镍、钴、镉、镁和锰量的测定电感耦合等离子体原子发射光谱法本部分规定了铜原矿和尾矿中铜、铅、锌、镍、钴、镉、镁和锰量的测定方法。 本部分适用于铜原矿和尾矿中铜、铅、锌、镍、钴、镉、镁和锰量的测定。YS/T1115.13-2016铜原矿和尾矿化学分析方法第13部分:氟量的测定离子选择电极法和离子色谱法本部分规定了铜原矿和尾矿中氟量的测定方法。 本部分适用于铜原矿和尾矿中氟量的测定。测定范围:离子选择电极法0.025%~1.00%,离子色谱法0.010%~1.00%。YS/T1115.14-2016铜原矿和尾矿化学分析方法第14部分:砷量的测定氢化物发生原子荧光光谱法和溴酸钾滴定法本部分规定了铜原矿和尾矿中砷量的测定方法。 本部分适用于铜原矿和尾矿中砷量的测定。测定范围:氢化物发生原子荧光光谱法0.0020%~0.20%;溴酸钾滴定法>0.20%~1.00%。YS/T1116.1-2016锡阳极泥化学分析方法第1部分:锡量的测定碘酸钾滴定法本部分规定了锡阳极泥中锡量的测定方法。 本部分适用于锡阳极泥中锡量的测定。测定范围:20.00%~50.00%。YS/T1116.2-2016锡阳极泥化学分析方法第2部分:铋量的测定Na2EDTA滴定法本部分规定了锡阳极泥中铋量的测定方法。 本部分适用于锡阳极泥中铋量的测定。测定范围:5.00%~20.00%。YS/T1116.3-2016锡阳极泥化学分析方法第3部分:铜量、铅量和铋量的测定火焰原子吸收光谱法本部分规定了锡阳极泥中铜量、铅量和铋量的测定方法。 本部分适用于锡阳极泥中铜量、铅量和铋量的测定。YS/T1116.4-2016锡阳极泥化学分析方法第4部分:砷量的测定碘滴定法本部分规定了锡阳极泥中砷量的测定方法。 本部分适用于锡阳极泥中砷量的测定。测定范围:0.10%~8.00%。YS/T1116.5-2016锡阳极泥化学分析方法第5部分:铟量的测定火焰原子吸收光谱法本部分规定了锡阳极泥中铟量的测定方法。 本部分适用于锡阳极泥中铟量的测定。测定范围:0.0500%~0.600%。YS/T1116.6-2016锡阳极泥化学分析方法第6部分:金量和银量的测定火试金法本部分规定了锡阳极泥中金量和银量的测定方法。 本部分适用于锡阳极泥中金量和银量的测定。测定范围:金10.0g/t~500.0g/t;银1500g/t~100000g/t。YS/T1116.7-2016锡阳极泥化学分析方法第7部分:锑量的测定硫酸铈滴定法本部分规定了锡阳极泥中锑量的测定方法。 本部分适用于锡阳极泥中锑量的测定。测定范围:3.00%~20.00%。YS/T716.7-2016黑铜化学分析方法第7部分:铂量和钯量的测定火试金富集-电感耦合等离子体原子发射光谱法和火焰原子吸收光谱法本部分规定了黑铜中铂量和钯量的测定方法。 本部分适用于黑铜中铂量和钯量的测定。测定范围:方法1:铂2.0g/t~40.0g/t;钯2.0g/t~180.0g/t。方法2:钯5.0g/t~180.0g/t。 本部分方法1为仲裁方法。YS/T745.2-2016铜阳极泥化学分析方法第2部分:金量和银量的测定火试金重量法本部分规定了铜阳极泥中金量和银量的测定方法。 本部分适用于铜阳极泥中金量和银量的测定。测定范围:金0.100kg/t~20.000kg/t,银20.00kg/t~300.00kg/t。 当试样中含有影响此方法测量准确性的干扰元素(如铑、铱、锇、钌等),本部分将不适用。YS/T341.4-2016镍精矿化学分析方法第4部分:锌量的测定火焰原子吸收光谱法本部分规定了镍精矿中锌量的测定方法。 本部分适用于镍精矿中锌量的测定。测定范围:0.0050%~1.00%。YS/T461.12-2016混合铅锌精矿化学分析方法第12部分:铊量的测定电感耦合等离子体质谱法和电感耦合等离子体原子发射光谱法本部分规定了混合铅锌精矿中铊量的测定方法。 本部分适用于混合铅锌精矿中铊量的测定。方法1测定范围:0.000050%~0.010%;方法2测定范围:0.0050%~0.10%。本部分范围交叉部分方法1为仲裁方法。YS/T1050.10-2016铅锑精矿化学分析方法第10部分铊量的测定电感耦合等离子体质谱法和电感耦合等离子体原子发射光谱法本部分规定了铅锑精矿中铊量的测定方法。 本部分适用于铅锑精矿中铊量测定,测定范围:方法一:0.0001%~0.010%,方法二:>0.010%~0.10%。YS/T1119-2016海绵钯化学分析方法镁、铝、硅、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋的测定电感耦合等离子体质谱法本标准规定了海绵钯中镁、铝、硅、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋的测定方法。 本标准适用于海绵钯中镁、铝、硅、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋的测定。YS/T1120.1-2016金锡合金化学分析方法第1部分:金量的测定火试金重量法本部分规定了金锡合金中金量的测定方法。 本部分适用于金锡合金中金含量的测定。测定范围:5%~85%。YS/T1120.2-2016金锡合金化学分析方法第2部分:锡量的测定氟化物析出EDTA络合滴定法本部分规定了金锡合金中锡量的测定方法。 本部分适用于金锡合金中锡量的测定。测定范围:15%~95%。YS/T1120.3-2016金锡合金化学分析方法第3部分:铁、铜、银、铅、钯、镉、锌量的测定电感耦合等离子体原子发射光谱法本部分规定了金锡合金中铁、铜、银、铅、钯、镉、锌量的测定方法。 本部分适用于金锡合金中铁、铜、银、铅、钯、镉、锌量的测定。YS/T1121.1-2016氯化钯化学分析方法第1部分:钯量的测定丁二酮肟重量法本部分规定了氯化钯中钯量的测定方法。 本部分适用于氯化钯中钯量的测定,测定范围59.0%~60.5%。YS/T1121.2-2016氯化钯化学分析方法第2部分:镁、铝、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋量的测定电感耦合等离子体质谱法本部分规定了氯化钯中镁、铝、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋量的测定方法。 本部分适用于氯化钯中镁、铝、铬、锰、铁、镍、铜、锌、钌、铑、银、锡、铱、铂、金、铅、铋量的测定。YS/T1122.1-2016氯铂酸化学分析方法第1部分:铂量的测定氯化铵沉淀重量法本部分规定了氯铂酸中铂量的测定方法。 本部分适用于氯铂酸中铂量的测定,测定范围37.0%~40.5%。YS/T1122.2-2016氯铂酸化学分析方法第2部分:钯、铑、铱、金、银、铬、铜、铁、镍、铅、锡量的测定电感耦合等离子体质谱法本部分规定了氯铂酸中钯、铑、铱、金、银、铬、铜、铁、镍、铅、锡量的测定方法。 本部分适用于氯铂酸中钯、铑、铱、金、银、铬、铜、铁、镍、铅、锡量测定。YS/T1130-2016烧结金属多孔材料焊接裂纹检测方法本标准规定了烧结金属多孔材料焊接裂纹的检测方法。 本标准适用于通过轧制-烧结、粉末压制-烧结法生产的用于过滤与分离的烧结金属多孔材料焊接裂纹的检测。YS/T1131-2016烧结金属多孔材料抗弯性能的测定本标准规定了烧结金属多孔材料抗弯性能的检测方法。 本标准适用于粉末冶金方法生产的片状或板状烧结金属多孔材料,包括烧结金属纤维多孔材料、烧结金属粉末多孔材料及金属泡沫材料,不适用于烧结金属多孔管材和致密金属材料。YS/T1132-2016烧结金属多孔材料压缩性能的测定本标准规定了烧结金属多孔材料压缩性能的测定方法。 本标准适用于粉末冶金方法生产的烧结金属多孔材料,包括烧结金属纤维多孔材料、烧结金属粉末多孔材料及金属泡沫材料,不适用于致密金属材料。YS/T1133-2016烧结金属多孔材料拉伸性能的测定本标准规定了烧结金属多孔材料拉伸性能的检测方法。 本标准适用于粉末冶金方法生产的烧结金属多孔材料,包括烧结金属纤维多孔材料、烧结金属粉末多孔材料及金属泡沫材料,不适宜致密金属材料。YS/T1147-2016超弹性镍钛合金拉伸测试方法本标准规定了超弹性镍钛合金拉伸测试方法。 本标准适用于超弹性镍钛合金拉伸上平台强度、下平台强度、残余应变、抗拉强度和均匀应变等指标的表征和测试。YS/T1148-2016钨基高比重合金本标准规定了钨基高比重合金的要求、试验方法、检验规则、标志、包装、运输、贮存、质量证明书和合同(或订货单)内容。 本标准适用于以粉末冶金方法生产的非形变态钨基高比重合金。产品可应用于射线屏蔽防护、配重、惯性元件、模具、砧块等。YS/T1149.1-2016锌精矿焙砂化学分析方法第1部分:锌量的测定Na2EDTA滴定法本部分规定了锌精矿焙砂中锌量的测定方法。 本部分适用于锌精矿焙砂中锌量的测定。测定范围:30.00%~70.00%。YS/T1149.2-2016锌精矿焙砂化学分析方法第2部分:酸溶锌量的测定Na2EDTA滴定法本部分规定了锌精矿焙砂中酸溶锌量的测定方法。 本部分适用于锌精矿焙砂中酸溶锌量的测定。测定范围:20.00%~61.00%。当Co≥ 0.05%、Ni≥ 0.4%时,本方法不适用。YS/T1149.3-2016锌精矿焙砂化学分析方法第3部分:硫量的测定燃烧中和滴定法本部分规定了锌精矿焙砂中硫量的测定方法。 本部分适用于氟含量0.1%的锌精矿焙砂中硫量的测定。测定范围:1.00%~5.00%。YS/T1149.4-2016锌精矿焙砂化学分析方法第4部分:可溶硫量的测定硫酸钡重量法本部分规定了锌精矿焙砂中可溶硫量的测定方法。 本部分适用于锌精矿焙砂可溶硫量的测定。测定范围0.10%~5.00%。YS/T1149.5-2016锌精矿焙砂化学分析方法第5部分:铁量的测定Na2EDTA滴定法本部分规定了锌精矿焙砂中铁量的测定方法。 本部分适用于锡量0.40%的锌精矿焙砂中铁量的测定。测定范围:2.00%~20.00%。YS/T1149.6-2016锌精矿焙砂化学分析方法第6部分:酸溶铁量的测定火焰原子吸收光谱法和Na2EDTA滴定法本部分规定了锌精矿焙砂中酸溶铁量的测定方法。 本部分适用于锌精矿焙砂中酸溶铁量的测定。方法1:测定范围0.50%~3.00%。方法2:测定范围≥ 3.00%~6.00%。YS/T1149.7-2016锌精矿焙砂化学分析方法第7部分:二氧化硅量的测定钼蓝分光光度法本部分规定了锌精矿焙砂中二氧化硅量的测定方法。 本部分适用于锌精矿焙砂中二氧化硅量的测定。测定范围在0.50%~4.00%。YS/T1149.8-2016锌精矿焙砂化学分析方法第8部分:酸溶二氧化硅量的测定钼蓝分光光度法本部分规定了锌精矿焙砂中酸溶二氧化硅量的测定方法。 本部分适用于锌精矿焙砂中酸溶二氧化硅量的测定。测定范围0.20%~4.00%。YS/T1157.1-2016粗氢氧化钴化学分析方法第1部分:钴量的测定电位滴定法本部分规定了粗氢氧化钴中钴量的测定方法。 本部分适用于粗氢氧化钴中钴量的测定。测定范围:20.00%~55.00%。YS/T1157.2-2016粗氢氧化钴化学分析方法第2部分:镍、铜、四乙酸盐和羧甲基纤维钠不干扰。 注2:存在非离子表面活性剂时,需视各特殊情况估计其影响。 注3:洗涤剂配方中的典型无机组分,如氯化钠、硫酸钠、硼酸钠、三聚磷酸钠、过硼酸钠、硅酸钠等不干扰,但过硼酸钠以外的漂白剂在分析前应予破坏,且样品应完全溶于水。
  • 岛津推出石油化工分析解决方案
    石油化工原料主要为来自石油炼制过程产生的各种石油馏分和炼厂气,油田气、天然气等。石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应者。随着能源紧缺,新型煤化工越来越引起人们的重视。主要包括煤的气化、液化、干馏,以及焦油加工和电石乙炔化工等。工业化、自动化程度的提高,对原材料、过程控制、成品检验提出了更快、更严的要求。气相色谱技术所呈现出的标准化、自动化和专用化的发展趋势已经形成,符合特定标准的商品化专用软件和应用分析系统已成为主流。目前世界市场上石油化工遵循的标准主要有:美国材料与试验协会标准 American Society for Testing and Materials (ASTM), 美国环球石油产品 Universal Oil Products (UOP), 气体加工协会 Gas Processors Association (GPA), 国际标准化组织International Organization for Standardization (ISO) 等方法。 岛津公司作为全球著名的分析仪器厂商,自1875年创业以来,始终继承创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。岛津公司自进去中国以来,一直积极应对石油石化、煤化、泛化工等行业的需求,及时提供交钥匙整体解决方案,应对各个行业的用户应用的需求。在石化行业,岛津一直致力于为客户提供整体解决方案,并以仪器性能稳定、方法和方案合理深受业内好评;在煤化行业,岛津一直处于行业领导地位,有完整的整体方案;在泛化行业,岛津以技术精湛、方法合理得到广大用户认可。此次最新参考岛津海外系统气相的应用案例,整理、编辑了《石油化工解决方案》。 主要内容包括:天然气分析解决方案天然气分析仪GC-2014NGA1天然气分析仪GC-2014NGA2天然气分析仪GC-2014ISO6974-3天然气分析仪GC-2014ISO6974-4快速天然气分析仪GC-2014FNGA1快速天然气分析仪GC-2014FNGA2快速天然气分析仪GC-2010PlusTracera USNGA炼厂气分析解决方案快速炼厂气分析仪GC-2014FRGA1快速炼厂气分析仪GC-2014FRGA2快速炼厂气分析仪GC-2014HSRGA1快速炼厂气分析仪GC-2014HSRGA2扩展炼厂气分析仪GC-2014ERGA1扩展炼厂气分析仪GC-2014ERGA2含VSO-2020快速炼厂气分析仪GC-2014HSRGA VSO快速炼厂气分析仪GC-2010PlusTracera USRGA扩展炼厂气分析仪GC-2011PlusTracera ERGA S扩展炼厂气分析仪GC-2012PlusTracera ERGA D永久性气体和轻烃分析解决方案城市煤气分析仪GC-2014TGA1城市煤气分析仪GC-2014TGA2城市煤气分析仪GC-2014TGA3城市煤气分析仪GC-2014TGA4微量CO,CO2,CH4分析仪GC-2014CCC1微量CO,CO2,CH4分析仪GC-2014CCC2微量CO,CO2,CH4分析仪GC-2014CCC3微量CO,CO2,CH4分析仪GC-2014CCC4微量CO,CO2,CH4分析仪GC-2014CCC5气态烃类分析仪GC-2014HCG1永久性气体分析仪GC-2010PlusPGAS1永久性气体和CO,CO2分析仪GC-2014PCC1永久性气体和CO,CO2分析仪GC-2014PCC2NGA/RGA中烃类分析仪GC-2014HNR1NGA/RGA中烃类分析仪GC-2014HNR2温室气体的分析解决方案土壤中释放的N2O分析仪GC-2010PlusN2O1土壤中释放的N2O分析仪GC-2014N2O1N2O/CO/CO2/CH4分析仪GC-2014NCCC1N2O/CO/CO2/CH4分析仪GC-2014NCCC2N2O/CO/CO2/CH4分析仪GC-2014NCCC3液化石油气的分析解决方案LPG烃类分析仪GC-2014LPGHC1LPG烃类分析仪GC-2014LPGHC2变压器油分析解决方案变压器油分析仪GC-2014TOGAS1人工取样的变压器油分析仪GC-2014TOGAS2带高灵敏度的PDHID变压器油分析仪GC-2014TOGAS3硫化物分析解决方案硫化物专用分析仪GC-2014FPD硫化物专用分析仪GC-2014PFPD1硫化物专用分析仪GC-2014PFPD2硫化物专用分析仪GC-2014PFPD3新配方燃料分析解决方案苯系物分析仪GC-2010PlusBTA1苯系物分析仪GC-2010PlusBTA1苯系物分析仪GC-2014BTA1苯系物分析仪GC-2014BTA2快速苯系物分析仪GC-2010PlusFBTA1快速苯系物分析仪GC-2010PlusFBTA2芳烃分析仪GC-2010PlusACA1芳烃分析仪GC-2014ACA1汽油中氧化物分析仪GC-2010PlusOSA1汽油中氧化物分析仪GC-2014OSA1汽油中氧化物分析仪GC-2010PlusOSA2苯,甲苯和芳烃分析仪GC-2010Plus_3606-4815-5580_1苯,甲苯和芳烃分析仪GC-2014_3606-4815-5580_1PONA分析仪GC-2010PlusPONA1 7模拟蒸馏分析仪GC-2010PlusSDA1高纯芳香族化合物微量不饱和烃的分析仪GC-2010PlusTSHA1高碳分布P-,N-,和A-,GC-2010PlusCAD1有关详情,请您向“岛津全球应用技术开发支持中心”咨询。咨询电话:021-22013542 期待我们的工作会给您带来有益的帮助! 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制