热电气质原理

仪器信息网热电气质原理专题为您提供2024年最新热电气质原理价格报价、厂家品牌的相关信息, 包括热电气质原理参数、型号等,不管是国产,还是进口品牌的热电气质原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电气质原理相关的耗材配件、试剂标物,还有热电气质原理相关的最新资讯、资料,以及热电气质原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热电气质原理相关的仪器

  • GM-5000 微型空气质量连续监测仪Thermo Scientific™ GM-5000微型空气质量连续监测仪,是一款运行于室外的微型化,高性价比,多参数连续空气监测系统。其采用光学、电化学、光电离传感器技术,结合Thermo Scientific领先的空气监测产品设计经验,旨在为您提供多样并适合的空气污染物连续监测方案,帮助实现更精细、更有效的大气污染防治计划和监管目标。GM-5000可以对空气中的PM2.5、PM10、SO2、NO2、NO、O3、CO、TVOC等污染物进行连续无人值守监测,设计紧凑,易于安装,坚固耐用。赛默飞专业的技术团队为您提供设备应用和技术服务支持。产品特点:• 实时连续监测空气中的主要污染物(PM2.5、PM10、SO2、NO2、NO、O3、CO、TVOC)• 仪器采用加热主动采样和冷却循环风道设计,为传感器提供更优的工作环境• 仪器同时监测运行环境温度、湿度和压力,并对污染物监测数据进行补偿• 4G通讯模块实现实时数据传输• 仪器内置Wi-FI功能,可实现操作者与仪器的交互• 通过浏览器登陆仪器用户界面,直观显示仪器测量数据和运行状态• 仪器内置SD卡可存储1年数据记录• 可使用标准气体对仪器进行校准,也可通过与标准空气站进行比对校准• 断电恢复自动启动运行• 防水机箱直接应用于户外环境,提供多种现场安装方式• 可集成气象参数监测、噪声监测、LED屏幕显示、GPS定位等功能产品综述:Thermo Scientific™ GM-5000微型空气质量连续监测仪通过过滤网和加热垂直进气管来采样空气,去除较大的颗粒及过多的水分,允许气态污染物和颗粒物进入分析仪被检测。对于颗粒物的检测,采样气流进入激光粒子计数器(OPC)来检测颗粒物粒子数和粒径分布,并通过工厂校准计算出相应的质量浓度;气体样品继续通过采样风扇和过滤器,进入气态传感器测量室进行气态污染物测量。测量后,气体样品流出传感器测量室进入到仪器机箱,并通过软件控制的冷却风扇排回到环境中。每条测量数据记录不仅包括污染物浓度,还包括传感器运行温度、日期、时间等。测量数据通过无线网络发送至指定服务器;同时测量数据也会存储在仪器内部SD卡上,可通过个人智能设备浏览器登陆并下载。产品应用:Thermo ScientificTM GM-5000微型空气质量监测仪可作为对现有空气质量监测网络的补充,用于污染物变化趋势跟踪,动态溯源,异常事件捕获,预警预报数据支撑等领域,有助于提高城市各级环境监管和执法检查的针对性和有效性,提高城市大气污染监管和防治的精细化水平。1.城市空气质量监测网络加密网格监测2.常规空气质量评价敏感区加密监测3.道路交通空气质量加密监测4.建筑施工场所扬尘颗粒物监测5.工业园区及企业集群边界预警监测6.科研院所污染分布及空气质量变化趋势研究
    留言咨询
  • Thermo ScientificTM TSQ 8000TM Evo三重四极杆 GC-MS/MS 专为寻找进一步提高生产率的实验室设计。它是高度成功的TSQ 8000 GC-MS/MS的最新进化版,为您带来永不停歇的生产率,MS/MS 易用性和SRM 的顶级性能。TSQ 8000 Evo 三重四极杆 GC-MS/MS 专为高通量分析实验室而设计并与之共同发展。这套独特系统将多种硬件与软件特性完美结合,能够帮助实验室适应不断变化的分析环境,每次都能及时提供高质量分析结果。 Fast EvoCell 技术与智能仪器控制; T-SRM使检测效率最大化,适合高通量分析实验室; 无论一级扫描还是二级扫描都具有超高灵敏度; 永不停歇的生产力,ExtractaBriteTM 专利离子源采用双加热技术,不仅加热离子源还加热RF透镜,极大得提高了抗污染效率。真空锁定装置可以在不泄真空的情况下更换整个离子源,包括EI或者CI离子盒以及透镜组,方便清洗更换,维护更加简便; 多种扫描模式提供更高的灵活性以最好地解决您的分析挑战; 业界领先的检测器线性Thermo Scientific DynaMax 监测系统; 易用的 MS/MS性能,无论从单杆或是其他串接气质上转移方法,都得心应手; AutoSRM自动优化离子对信息; 快速、灵活,易用的质谱软件TraceFinder; POPS 定量分析方面一路领先,独特的TargetQuan 软件专为流程导向的POPs(例如 PCDD/Fs, PCBs, PBDEs); GC 模块化设计解决未来的挑战。
    留言咨询
  • 赛默飞DFS高分辨率磁式气质联用仪是业内唯一一台可以配备两台气相色谱仪(Trace 1310 )的双聚焦磁式质谱仪。两个气相色谱仪同时安装在同一个离子源上,分离则是在两个气相色谱装置中独立进行。这个系统被设计为无人值守。全新TriPlus 自动进样器提供了最高的样品容量和最灵活的进样方式。针对大量样品具有无与伦比的灵活性和工作效率。 主要特点:● 放射状的叠片磁体;● 基于场校准,也就是说质量校正不受扫描速度、离子极性和离子化方式的影响;● 高性能的环形ESA静电场;● 检测器系统通过转换倍增器电极和长寿命的二级电子倍增器能够高效检测离子;● 气动阀锁定真空功能,更换离子盒无需放真空;● 双Trace 1310配一个TriPlus RSH自动进样器,在一个进样序列里可以使用不同极性的气相色谱柱。样品可以自动从一个进样瓶取出进样到两个不同的气相色谱中;● 可移动离子盒, 易于离子源维护。 创新技术:1. 新型分析器 DFS拥有第一款真正实现了无图像失真的新型分析器。通过一个极高精密度环形静电场分析器和一个精心改进的磁分析器,使它能完美地实现双聚焦。从而直接地提高了它的稳定性和重现性。 创新性的分析器设计给常规的化合物分析提供了高灵敏度,低达法克水平。● 调谐高灵敏度时不影响已经设置好的分辨率● 全自动的离子源调谐● 自动设置质量分辨● 不需调整其它的离子光学器件● 质量校正完全独立于离子● 一次全质量校正适用于所有操作模式2. 最先进的电子技术 DFS拥有全新的最先进的电子技术。在所有电板上都安装有专用的微控制器,通过一个内连接主线,使电脑高效快速的控制和读取所有重要参数和电压值。磁场控制器快速而稳定,由于使用“power-on-demand”(根据需求供电)技术提供电源,所以非常节电。 应用: 新型DFS高分辨GC/MS系统是分析多溴代和多氯代二恶英类物质的黄金标准仪器,拥有迄今最低的检测限,可靠的结果能经受任何法规考验。 DFS高分辨的气质联用可以进行常规农药的定性定量分析,对杀真菌剂甲苯氟磺胺(Tolyfluanid)的分析灵敏度极好,定量检测线性范围很宽,浓度范围可以低至法克(fg)水平。
    留言咨询

热电气质原理相关的方案

热电气质原理相关的论坛

  • 求助热电气质联用的问题。急等!!!!!!!!!

    我们单位刚进了个热电的气质联用。。那位童鞋能发一下Xcalibur软件当中如何做内标法标准曲线,还有单点校正和多点校正的外标法标准曲线的详细步骤,最好能举例示范最好了,本人刚接触气质,基本上是小白。在这里谢谢大家了!!! 我的qq 4384403 ,qq上交流也可 。深夜在线等回复。。。。。

  • 【分享】热电气质相关资料

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=118971]热电四极杆[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]_DSQ_的操作和维护[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=118972]热电离子阱[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]PolarisQ培训讲义[/url]以上资料希望对各位版友有用。

热电气质原理相关的耗材

  • 空气质量传感器
    空气质量传感器 ZWIN-AQMS06-M空气质量传感器是专门针对探测器推出的一款新型智能传感器,主要用于SO2、NO2、CO、O3等四种组合气体(可替换)浓度的测量,也可配置颗粒物PM2.5、PM10进行同时监测。本传感器采用颗粒物与气体双路采样、各气体间单独分路进气的方式,互不干扰,测量准确,内置有吸气泵,响应速度快,灵敏度高。其中,颗粒物采样单元采用机械切割头,并且配置孔径为1mm的防护网,有效隔离杂质,增加传感器使用寿命;气体采样单元增加预处理模块,可有效除湿除尘,提高气体检测的J准度。传感器配备485信号传输接口,操作方便、测量准确、工作可靠,可嵌入各种与检测空气质量浓度相关的仪器仪表或空气质量改善设备,适用于多种场合。 规格参数:精度:±5% 输出方式:RS485 检测原理:光散射原理PM2.5测量范围/分辨率:0-1000/0.1ug/m3PM10测量范围/分辨率:0-2000/0.1ug/m3 检测原理:电化学原理NO2测量范围/分辨率:0-1/0.001ppm SO2测量范围/分辨率:0-1/0.001ppmCO测量范围/分辨率:0-10/0.01ppm O3测量范围/分辨率:0-1/0.001ppm
  • 室内空气质量测量仪SM70配件
    室内空气质量测量仪SM70配件是室内质量全天候监测仪器,它可以及时监测到臭氧和挥发性有机化合物。 室内空气质量测量仪SM70配件可以通过液晶显示器显示参数并具有超标报警声,可控制输出0-5V和继电器。 室内空气质量测量仪SM70配件特点 室内空气质量测量仪SM70配件应用 液晶显示 屏报警或控制模式 多路输出(模拟,串口,继电器) 主动抽样精度更高 电源 监测和控制气体环境温度 健康和安全的措施 挥发性有机化合物排放 测量室内空气的质量 控制臭氧发生器 编号 说明 SM70 监视器SM70
  • 陕西YK-PF空气质量控制器与空气质量监控系统
    系统简介许经理 一八〇 六六 八七 二二 三九ZXCK 空气质量控制器ZXCO 一氧化碳探测器ZXKQ 空气质量监控主机室内空气质量监控系统的空气质量检测仪可实时测量室内空气污染浓度水平,并将数据无线传送至云服务器的系统进行数据存储,分析及处理。是一款高精度传感器设备与App软件相结合的室内空气质量产品,具有缓解参数实时监测、电视屏幕实时展示、网页端后台管理功能、手机APP实时数据查询。可以应用于超市、仓库、餐厅、办公楼、学校、智能温室、医院、养殖场、实验室、宾馆、工地、公园、厂矿车间等需要监测空气质量并实时展示的场所,能够直观、实时的把监测数据显示出来,使用单位也可以根据自己的需求,在后头管理中添加上传要显示的照片设置界面和内容标题。用户除可以在大屏幕电视端看到图文信息和监测数据外,也可以下载APP用手机、平板电脑等移动端观看数据。产品特点:可扩展:基于PM2.5环境监测功能,可选温度湿度,二氧化碳,CO等传感器通讯方便:检测实时数据无线(WIFI,3G/4G)/有线传输安装简单:体积小,重量轻,功耗小,占用空间小,安装方便简易技术:按照工业标准的室内外环境有毒有害气体监测系统,集传感技术、微处理器控制为一体的24小时轻量级实时在线监测系统集成度高:系统集多种气体采集,数据传送,发布显示为一体。通过提高集成度,简化系统组成,降低造价,以满足各种应用场所使用多媒体显示:可对显示界面进行定制,附加显示日期,新闻滚动播出来产品型号:ECS-7000MF风机节能控制器 ECS-7000MB水泵节能控制器ECS-7000MU电梯节能控制器ECS-7000MR热水循环泵节能控制器ECS-7000MKT空调组节能控制器YK-PF/XS 空气质量控制器YK-KT 空气质量控制器YK-CMW 空间一氧化碳变送器YK-THI 空间温湿度变送器YK-PM2.5 空间PM2.5变送器无线多合一探测器带显示屏的多合一探测器带触摸屏的多合一探测器可监测甲醛、VOC的多合一探测器CB-AC1200 双路分区空气质量控制器CB-AC1100 分区空气质量控制器SKCK 一氧化碳控制器SKCO 一氧化碳探测器RXPF KQ 空气质量控制器RX-CO CO探测器ZHGAC-01 空气质量控制器KA-5000 风机动态节能仪、风机节能状态仪、动态节流仪、车库智能通风控制单元ZB420 空气质量控制器为什么选择亚川科技1、 技术人员为您设计系统方案,做系统二次设计优化设计;2、 技术服务人员指导施工现场布线或负责现场布线;3、根据施工环境现场调试每一台设备的参数,使之切合使用;4、根据应用环境现场调试监控中心的本地系统和云平台监控系统;5、主动配合与其它监控系统联网/调试;6、现场举办技术讲座、免费对工程技术人员及维护人员进行培训,使其能掌握所用装置的性能,与后台监控系统和云平台的组成,调试与维护等。亚川业绩阎良龙记观园蒲城龙记观园北京大华山西咸新区空港新城分局咸阳市渭城区广德路成都高新区西部园区合作街办 静宁县高城寨项目西咸新区第二小学项目南京高淳宝龙D地块喻嘉园(KCGD2018-24号地块)住宅项目云南昆明市保利城二期喻梦园项目主营产品建筑设备节能管理系统风机节能控制器智慧建筑运维系统楼宇自控BA通用节能控制器强弱电一体化能耗在线监测系统水泵节能控制器空气质量监控系统 空调节能控制器智能照明控制系统新风节能控制器余压监控系统冷却泵节能控制器冷却塔节能控制器中央空调计费节能管理系统冷水机组节能控制器电气综合监控系统热水循环泵节能控制器

热电气质原理相关的资料

热电气质原理相关的资讯

  • 全能!单腿器件能测,多偶也能测!助您实现热电发电器件的精准测量!
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电器件可以实现热能和电能的直接转换,在航空航天、低品位热回收和固态制冷领域具有重要的研究价值。 热电转换技术是利用材料的塞贝克(Seebeck)效应与帕尔贴(Peltier)效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。随着研究的深入,特别是对热电半导体输运机制的深入理解及新的调控机理及制备手段的应用,热电材料的性能得到了长足的进步,研究重点也逐渐从侧重基础的材料研究向侧重应用的器件研究转移。热电器件可按用途简单分为热电发电器件(TEG)及热电制冷器件(TEC),一般由n型和p型的热电材料通过热并联和电串联的形式构成,其工作原理见图1。随着航空航天、物联网及低品位热回收等领域的发展,热电发电器件的性能越来越受到人们关注,除了用于制备器件的热电材料本身的zT值这一重要因素外,器件的结构(形状、尺寸、连接方式)以及界面材料等都对器件性能有重要影响,因此,对于发电器件性能的准确测量从而改善器件的设计及制造工艺成为科研工作者的迫切需求。图1、热电发电器件与制冷器件的工作原理日本Advance Riko公司推出的小型热电转换测量系统Mini-PEM(图2)可以测量单腿器件的热电转换效率,该设备为目前商用的可以测量单腿器件热电转换效率的测量系统,热端温度高达500℃,可以测量器件在不同温差条件下的发电量、热流量及大转换效率。在近期的工作中,科研工作者使用小型热电转换测量系统Mini-PEM测量了碲化铋基热电材料制备的单腿发电器件。图2、小型热电转换效率测量系统Mini-PEM碲化铋基热电材料是目前应用广的热电材料,其具有优异的热电性能,且能在近室温附近表现出佳性能,国内外大量的科研团队对于提升其性能进行了大量深入的研究。近日,来自清华大学的研究团队使用放电等离子体烧结法,对碲化铋合金的制备工艺的改良进行了研究。该团队在原料中加入过量碲单质,随后控制放电等离子体烧结温度在共晶点上循环升降。采用此工艺能有效降低晶粒的界面自由能,促进晶粒的快速长大,从而减弱了块体内部晶界对载流子的散射作用,显著改善了电学性能提升了功率因子(PF);在伴随共晶液相的挤出过程中引入大量位错。同时还可形成大量二相,进一步增加了位错密度。这些结构能有效增强声子散射,从而降低晶格热导率(κL)。终,优化工艺参数和组分的p型(Bi,Sb)2Te3材料的ZT值达到1.46,较常规放电等离子体烧结得到的商用(Bi,Sb)2Te3材料提升了50%,采用该材料制备的单腿器件的热电转换效率提升超过80%[1]。图3、单腿器件结构图及实物照片(a),热电转换效率(η)与电流(I)的关系:经过4次SPS循环的Bi0.4Sb1.6Te3.2(b),1C样品:1次循环(c),商用(Bi,Sb)2Te3:标准球磨-烧结制备(d),经过4次SPS循环的Bi0.4Sb1.6Te3.2的理论值(e)作为发电热电材料,p型Bi2Te3基热电材料性能高,但高性能的n型材料相对缺乏,为解决这一问题,科研工作者进行了多种尝试。来自南方科技大学的科研团队在n型Bi2Te3材料中复合过量的碲(Te)单质,通过烧结使碲单质熔化流出,在基体中引入位错。此外,还复合掺杂了锑(Sb)元素,使材料中同时存在多种缺陷,从而达到了降低热导率的目的,显著提高zT值。使用Bi1.8Sb0.2Te2.7Se0.3 + 15 wt% Te 的n型热电腿和Bi0.5Sb1.5Te3的p型热电腿制备的热电转换器件,实现了3.7W的大输出功率及6.6%的转换效率[2]。与上述研究不同,此工作中科研工作者制备了由70对π形结构组成的器件(图4),器件尺寸30 mm×30 mm×3.8 mm,值得注意的是,本工作的发电量及热电转换效率是由日本ADVANCE RIKO公司生产的热电转换测量系统PEM-2测得的。图4、载流子局域化示意图(a),n型Bi2(TeSe)3的zT值与温度的关系曲线(b),热电器件的输出功率(c),热电转换效率(d)热电转换测量系统PEM-2支持多种器件尺寸,热端高温度可达800℃,测量在惰性气体(Ar)中进行。为了模拟热电发电器件在真实工况中的使用,Advance Riko公司新近推出了大气环境下热电材料性能评估系统F-PEM,该系统可在大气环境下,对负荷温差的器件的发电量及热流量进行测量,计算热电转换效率。该系统还可以长时间运行热循环测试,从而测试商用组件在负载和温度下的耐久性。图5、热电转换效率测量系统PEM-2(a),大气环境下热电材料性能评估系统F-PEM(b)此外,上述两篇文章中材料的电输运性能(电导率σ、塞贝克系数S)均使用日本Advance Riko公司生产的塞贝克系数/电阻测量系统ZEM-3(图6)测得。图6、塞贝克系数/电阻测量系统ZEM-3延伸阅读日本Advance Riko公司已专业从事“热”相关技术和设备的研究开发近60年,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国公司将日本Advance Riko公司的新先进热电材料测试设备:小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及薄膜厚度方向热电性能评价系统ZEM-d引进中国。2018年7月,Quantum Design中国与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。 目前,所有中国用户购买的日本Advance Riko热电产品,均由Quantum Design中国公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 参考文献:[1] H. Zhuang et al. / Thermoelectric Performance Enhancement in BiSbTe Alloy by Microstructure Modulation via Cyclic Spark Plasma Sintering with Liquid Phase. Adv. Funct. Mater. 2021, 2009681[2] B. Zhu et al. / Realizing Record High Performance in n-type Bi2Te3-Based Thermoelectric Materials. Energy Environ. Sci., 2020, 13, 2106-2114
  • 详解PM2.5监测技术及应用 赛默飞空气质量交流会举行
    仪器信息网讯 2012年3月16日,赛默飞世尔科技(以下简称赛默飞)在北京举行赛默飞空气质量媒体交流会。本次交流会以PM2.5监测技术为主题,赛默飞空气质量仪器部全球副总裁兼总经理Mike Nemergut先生结合该主题对赛默飞PM2.5监测技术及其在欧美地区的应用情况做了详细介绍。赛默飞环境与过程仪器事业部中国区商务总监周晓斌先生亦出席本次交流会。仪器信息网作为特邀媒体参加了此次交流会。   交流会现场   赛默飞空气质量仪器部全球副总裁兼总经理 Mike Nemergut先生   赛默飞世尔科技环境与过程仪器事业部中国区商务总监 周晓斌先生   “TEOM & FDMS,更好监测PM2.5中的可挥发颗粒物”   Mike Nemergut先生在会上详细介绍了美国监测PM2.5的历史以及各种PM2.5自动监测技术。   “美国EPA从1999年开始进行PM2.5监测,从1999年到2008年使用联邦参比方法(Federal Reference Method,FRM)作为标准方法监测PM2.5数据,2008年起,EPA开始批准使用联邦等效方法(Federal Equivalent Method,简称FEM)监测PM2.5。”   “目前经过EPA验证后,被认定为与PM2.5的FEM等效的监测仪器共6台,其中4台为赛默飞的产品。这些被认定的仪器所采用的原理既有振荡天平法(TEOM),也有Beta射线法(BAM),还有Beta射线光浊度法(SHARP)。当前PM2.5监测面临的最大挑战是如何控制湿度的影响以及如何监测可挥发性颗粒物。”   “可挥发性颗粒物来自汽车尾气、木材燃烧、发电厂废气等源头,其成分复杂,包含硝酸铵、硫酸铵、有机化合物等物质。不同地区PM2.5中的可挥发性物质的含量具有很大差异,这取决于监测点的位置。颗粒物中挥发性物质的含量可以从近似0到接近100%。”   “由于相对湿度会影响颗粒物样品的组份和化学成分,因此会对PM2.5的监测结果产生显著影响。湿度的变化不仅会影响颗粒物的结合水,还会影响气溶胶的化学组成成分,进而产生吸湿效应,使得数据明显提高。所以,通过加热采样管降低湿度的影响,对PM2.5的分析非常必要。但采用Beta射线法的PM2.5分析仪如果采用动态加热系统一般也需要加热到40℃,这样也会造成可挥发性颗粒物的损失。因而,Beta射线法在捕捉挥发性化合物方面具有一定的局限性。”   “TEOM添加了膜动态测量系统(FDMS)以后,每隔六分钟切换阀会将样品气流在基准状态和参考状态之间进行切换,自净过滤器保持在4℃,控制相对湿度,提供实时集成的样品,能够总计颗粒物中的非挥发性物质和挥发性物质,因而对环境颗粒物具有更好的代表性。所以说,虽然TEOM的维护工作较多,价格也较高,但TEOM & FDMS才是能够真正意义上测量到了可挥发性颗粒物的监测方法,其测得的数值理论上是比Beta射线法要高。”   周晓斌先生补充到:“目前并没有完美的PM2.5监测技术,各种技术都存在挥发性颗粒物的损失。即便已经进行了十几年的研究,美国目前的FRM仍然是在不断改进中的。”   “TEOM、SHARP在欧美PM2.5自动监测中应用更广泛”   Mike Nemergut先生、周晓斌先生也介绍了各种监测方法在欧美等国的应用情况。   “在颗粒物浓度较高,可挥发性颗粒物相对较少的地方,推荐Beta射线法。在可挥发性颗粒物浓度较高的地方,还是推荐振荡天平法。在沙尘暴频发的地区,Beta射线法是不适用的,只能用振荡天平法。振荡天平法的适用面还是很广的,在美国无论是干燥地区,还是高湿地区,都有应用。”   “Beta射线光浊度法有两大优点,一是维护工作量少,二是能够给出连续的瞬时数据。在地广人稀、广泛布点的加拿大,如果采用TEOM,更换滤膜是非常麻烦的,所以Beta射线光浊度法在当地应用非常广泛。同时,因为该方法能够给出连续的瞬时数据,所以对人民群众的生活具有参考价值。比如说在美国,一位母亲想要带小孩出去玩耍,她可以上网查看现在的空气质量是否适合外出,进而避免在空气污染严重的天气外出。”   “所以总结起来,在北美及欧洲地区,振荡天平法与Beta射线光浊度法是应用相对较多的PM2.5自动监测方法。但就美国本土而言,目前手工监测仍然是使用最多的方法。”   “中国应走自己的PM2.5监测道路”   面对记者们关于“中国环境监测总站对包括赛默飞产品在内的PM2.5监测仪器比对的结果”的提问,周晓斌先生表示暂时不知道比对结果。但他坦言:“中国、美国的环境空气质量状况差别很大,可以说中国的情况比美国更复杂。中国想要用几个月的时间走完美国十几年都未走完的道路,面临非常大的挑战。”   “美国十几年的监测经验,或许可以给中国提供参考,但中国的PM2.5监测不可能、也没有必要跟着美国走。我们可以看到,中国似乎并没有像美国那样采用以手动监测为主的监测体系,而是一开始就走自动监测为主的道路。”   附录:   赛默飞世尔空气质量仪器部:http://thermoaqi.instrument.com.cn/   赛默飞世尔科技PM2.5监测方案:http://www.thermo.com.cn/particle   相关新闻:   赛默飞全力打造“PM2.5空气革命”之利器   揭秘PM2.5监测技术与仪器市场 赛默飞环境仪器高层答媒体问
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制