当前位置: 仪器信息网 > 行业主题 > >

消音器的原理

仪器信息网消音器的原理专题为您提供2024年最新消音器的原理价格报价、厂家品牌的相关信息, 包括消音器的原理参数、型号等,不管是国产,还是进口品牌的消音器的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合消音器的原理相关的耗材配件、试剂标物,还有消音器的原理相关的最新资讯、资料,以及消音器的原理相关的解决方案。

消音器的原理相关的资讯

  • 长城发布隔膜真空泵新品
    1.产品技术特点:l 与气体接触部位均采用聚四氟乙烯PTFE材料制作,抗化学腐蚀能力强。l 可替代循环水式真空泵和旋片式真空泵。l 体积小,重量轻,移动方便,节省空间。l 不消耗水资源,环保、洁净。l 采用进口PEEK材质阀片,特氟隆材质隔膜,有效防止气体腐蚀。l 保养和维修方便。l 配备真空调节装置,可根据实验需要调节真空指标。l 配有消音器,可有效降低噪音。2.主要技术参数型号MP-301E电机功率(W)180电源220-240V~,50HZ转速(rpm)1300吸气口径(mm)Φ10×φ6真空度(MPa)/极限压力(mbar)0.0935/65抽气速率(L/min)40外形尺寸(mm)310W×225D×168H重量(kg)10 技术服务①设备到达需方现场后,供方无条件对缺损件负责,其补供件应保证需方的设备安装、调试进度。对有明显缺陷与供货内容不符的设备,需方有权拒收,并要求供方在规定的时间内重新提供合格设备。②设备在现场安装时,供方应指导设备的安装调试,并免费负责对需方操作人员、维修人员、技术人员进行操作、维护等方面的技术培训。③设备保修期为一年,保修期内因设备本身质量损坏的零件,供方承诺免费送货、上门维修更换。④当设备有问题时,需方应及时通知供方,供方售后服务人员保证在24小时内到达,以确保需方损失压缩到最小程度。⑤供方常年以优惠的价格向需方提供各种备品、备件。⑥需方在使用设备1年内出现问题若不能自行解决,供方有义务提供售后技术服务,如果不是设备本身的制造质量、设计原理等问题,需方将给予适当的技术服务费。⑦无论保修期内、外,供方都对设备高度负责,发现问题及时解决。创新点: 与气体接触部位均采用聚四氟乙烯PTFE材料制作,抗化学腐蚀能力强。 可替代循环水式真空泵和旋片式真空泵。 体积小,重量轻,移动方便,节省空间。 不消耗水资源,环保、洁净。 采用进口PEEK材质阀片,特氟隆材质隔膜,有效防止气体腐蚀。 保养和维修方便。 配备真空调节装置,可根据实验需要调节真空指标。 配有消音器,可有效降低噪音。 隔膜真空泵
  • 法国Bertin集团为我国岭澳核电站一期提供蒸汽消音系统
    法国Bertin集团是一家大型设备供应商,拥有50多年的历史,产品涉及卫生、环境、安全甚至军工等诸多领域。 Betin集团旗下的Bertin Technology公司,是奥然科技的重要合作伙伴,Bertin Technology指定奥然科技为中国独家代理商,负责Bertin公司Precellys 24多功能样品均质器及Coriolis μ便携式空气采样器的市场推广、销售和维修等服务。 Betin集团与中国开展了多渠道的合作,日前传来消息说,2006年签约的为中国广东核电集团岭澳核电站一期工程供应的蒸汽消音系统,已经在上月安装调试完毕。 参加设备评审的专家对此系统非常满意,他们希望在建的岭澳核电站二期工程也适用此消音系统,以有效降低噪音污染。 screen.width-300)this.width=screen.width-300" 核电站外景 screen.width-300)this.width=screen.width-300" 蒸汽消音系统
  • “低碳消化”,就看福斯Scrubber在江西
    江西省药品检验检测研究院福斯赛诺全自动定氮仪安装&培训低碳旨在倡导一种低能耗、低污染、低排放为基础的经济模式,减少有害气体排放,保护人类环境和健康。这里的“碳”主要指二氧化碳气体,也包括其他有毒有害气体等。对于在凯氏定氮消化过程中,排出的SO2和CO2气体,除了常规的通风橱排出法和负压水泵抽出法,福斯还可提供更为环保和高效的水吸收、碱中和处理法——Scrubber废气涤气装置。江西省药品检验检测研究院福斯消化炉&Scrubber废气涤气装置如何“碳中和”凯氏定氮消化?福斯的Scrubber废气涤气装置可以和任何型号的消化炉&排废罩配套使用,给您带来:1. 节水&稳定。作为一个封闭的循环系统,无需连接上下水使用,避免了供水流量的变化影响酸雾、废气的排出。2. 安全&环保。消化产生的酸雾和废气先用水吸收,再由10%-15%的NaOH溶液碱中和。废气不会直接排放到空气和下水中,适用于对环保要求较高的单位。3. 高效&便捷。内置防腐蚀真空泵和消音器,抽气量可调,操作安静。如与福斯自动消化炉 (Digestor Auto) 相连,可组成全自动的操作系统。江西省药品检验检测研究院福斯赛诺全自动定氮仪&自动进样器助力无人值守操作除了福斯的Scrubber废气涤气装置,江西省药品检验检测研究院还配备了福斯自动进样器,可进行20个样品的无人值守操作。消化后不再需要人工转移消化管和样品,只要将消化管架直接放入自动进样器中,即可开启自动检测过程。点击查看相关视频
  • 洪洞县大槐树中学147.73万元采购仪器专用电源/高压电源
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 洪洞县大槐树中学公开招标洪洞县大槐树中学理化生实验室设施设备建设项目的采购公告 山西省-临汾市-洪洞县 状态:公告 更新时间: 2024-08-01 招标文件: 附件1 投标邀请 项目概况 洪洞县大槐树中学理化生实验室设施设备建设项目的潜在投标人应登录山西省政府采购信息平台(http://www.ccgp-shanxi.gov.cn/home.html)获取电子招标文件,使用投标文件编制工具编制电子投标文件,并于2024年8月23日15:30:00 (北京时间)前提交(上传)响应文件。 一、项目基本情况1.项目编号:1410242024AGK001792.项目名称: 洪洞县大槐树中学理化生实验室设施设备建设项目3.采购方式:公开招标4.预算金额:1477308元5.最高限价:1358419.44元6.采购需求: 序号 名称 数量 单位 备注 1 教师演示台 2 张 2 教师椅 2 把 3 ※实验台 56 张 4 水槽台 30 个 5 三联水龙头 30 个 6 滴水架 30 套 7 排水系统 30 套 8 实验凳 112 条 9 全智能系统控制箱 2 台 10 智能控制屏 2 套 11 app吊装控制系统 2 项 12 温湿度探测系统 2 项 13 吊装主体框架 18 套 14 顶装固定支架护罩 36 只 15 智能摇臂升降系统 30 个 16 低压电源供应模块 30 组 17 高压电源供应模块 60 组 18 485接口 30 组 19 急停装置 30 组 20 供电线路 2 项 21 智能照明 36 套 22 给水管路 2 项 23 排水管路 2 项 24 安装支架 2 室 25 系统调试 2 项 26 系统安装辅件 2 套 27 万向伸缩吸风罩 60 个 28 室内通风系统 2 项 29 室外通风系统 2 项 30 风机 2 套 31 变频器 2 套 32 消音器 2 套 33 风机软连接 2 套 34 风机控制线 2 项 序号 名称 单位 数量 备注 1 化学准备台 张 1 2 水槽柜 套 1 3 水嘴 套 1 4 滴水架 套 1 5 试剂架 个 2 6 通风药品柜 个 57 仪器柜 个 5 8 通风系统 套 1 9 安装调试 项 1 序号 名称 单位 数量 备注 1 毒害品存储柜 个 3 2 通风橱 个 1 3 通风药品柜 个 10 4 通风系统 套 1 5 安装调试 项 1 序号 名称 单位 数量 备注 1 仪器柜 个 20 2 安装调试 项 1 序号 名称 数量 单位 备注 1 教师演示台 2 张 2 教师椅 2 把 3 ※实验台 56 张 4 水槽台 30 个 5 三联水龙头 30 个 6 滴水架 30 套 7 排水系统 30 套 8 实验凳 112 条 9 全智能系统控制箱 2 台 10 智能控制屏 2 套 11 app吊装控制系统 2 项 12 温湿度探测系统 2 项 13 吊装主体框架 18 套 14 顶装固定支架护罩 36 只 15 智能摇臂升降系统 30 个 16 低压电源供应模块 30 组 17 高压电源供应模块 60 组 18 485接口 30 组 19 急停装置 30 组 20 供电线路 2 项 21 智能照明 36 套 22 给水管路 2 项 23 排水管路 2 项 24 安装支架 2 室 25 系统调试 2 项 26 系统安装辅件 2 套 序号 名称 单位 数量 备注 1 生物准备台 张 1 2 水槽柜 套 1 3 水嘴 套 1 4 滴水架 套 1 5 试剂架 个 2 6 仪器柜 个 5 7 标本柜 个 5 8 安装调试 项 1 序号 名称 单位 数量 备注 1 仪器柜 个 20 2 安装调试 项 1 序号 名称 数量 单位 单价 1 教师演示台 2 张 2 教师椅 2 把 3 ※实验台 56 张 4 实验凳 112 条 5 全智能系统控制箱 2 台 6 智能控制屏 2 套 7 app吊装控制系统 2 项 8 温湿度探测系统 2 项 9 吊装主体框架 18 套 10 顶装固定支架护罩 36 只 11 智能摇臂升降系统 30 个 12 低压电源供应模块 30 组 13 高压电源供应模块 60 组 14 485接口 30 组 15 急停装置 30 组 16 供电线路 2 项 17 智能照明 36 套 18 安装支架 2 室 19 系统调试 2 项 20 系统安装辅件 2 套 序号 名称 单位 数量 单价 1 物理准备台 张 1 2仪器柜 个 10 3 安装调试 项 1 序号 名称 单位 数量 备注 1 仪器柜 个 20 2 安装调试 项 1 序号 名称 单位 数量 备注 1 硬盘录像机 台 1 2 监视器 台 1 3 存储 块 5 4 网络摄像机 台 32 5 支架 个 32 6 交换机 台 3 7 汇聚交换机 台 1 8 弱电箱 个 3 9 PDU 个 1 10 网线 箱 6 11 水晶头 盒 2 12 电源线 盘 1 13 机柜 台 1 14 线槽 项 1 15 安装辅料 套 32 16 安装调试 点位 32 具体报价范围、采购范围及所应达到的具体要求,以招标文件中采购内容及技术要求部分的相应规定为准。7.交货地点:洪洞县大槐树中学8.交货时间:合同签订后10日内二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人名单、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单;3.与参加本次项目同一合同项下政府采购活动的其他供应商不存在单位负责人为同一人或者直接控股、管理关系;4.落实政府采购政策需满足的资格要求:本项目专门面向中小企业5.本项目的特定资格要求:无6.本项目(是/否)接受联合体投标:不允许联合体投标三、获取采购文件1.时间:2024年8月2日至2024年8月8日 23:59:59线上获取(下载):每天上午00:00-12:00,下午12:00-23:59(北京时间,双休日、法定节假日除外 )2.地点:政采云平台线上获取3.方式:政采云平台线上获取4.售价:免费备注:未按规定获取采购文件的供应商,对采购文件提起的质疑、投诉将不予受理。四、响应文件提交(上传)1.截止时间:2024年8月23日15:30:00(北京时间)2.地点:请登录政采云投标客户端投标五、响应文件开启1.时间:2024年8月23日15:30:00(北京时间)2.地点:洪洞县政府采购中心(洪洞县朝阳街1号)3.方式:登录山西省政府采购网上传投标文件。投标文件提交截止时间前未完成提交的,将拒收投标文件。开启时登录山西省政府采购网在规定时间内解密电子响应文件,解密设备及网络环境由供应商自行准备。六、公告期限:自本公告发布之日起5个工作日。七、其他补充事宜1、针对本项目的质疑需一次性提出,多次提出将不予受理。2、本项目采用电子化交易,投标人操作流程详见“山西省政府采购网-投标人政府采购项目电子交易操作指南”。3、投标人应在提交投标文件前完成CA数字证书办理。(办理事项详见“山西省政府采购网办事指南下载专区”)。4、投标人应安装“山西政府采购平台电子投标客户端”,请投标人自行前往“山西省政府采购网办事指南下载专区”获取并安装。5、技术支持热线:957636、有关本次采购项目的商务、服务、技术参数及资质要求等相关事项请与采购单位联系,采购单位负责解释答疑。八、凡对本次采购提出询问,请按以下方式联系1.采购人信息单位名称:洪洞县大槐树中学地 址:洪洞县玉峰东大街联系方式:139340706532.采购代理机构信息名 称:洪洞县政府采购中心地 址:洪洞县朝阳街1号联 系 人:郭先生联系方式:0357--62216133项目联系方式项目联系人:李先生电 话:13934070653附件信息: 洪洞县大槐树中学理化生实验室设施设备建设项目.docx 231.6K × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:仪器专用电源/高压电源 开标时间:null 预算金额:147.73万元 采购单位:洪洞县大槐树中学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:洪洞县政府采购中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 洪洞县大槐树中学公开招标洪洞县大槐树中学理化生实验室设施设备建设项目的采购公告 山西省-临汾市-洪洞县 状态:公告 更新时间: 2024-08-01 招标文件: 附件1 投标邀请 项目概况 洪洞县大槐树中学理化生实验室设施设备建设项目的潜在投标人应登录山西省政府采购信息平台(http://www.ccgp-shanxi.gov.cn/home.html)获取电子招标文件,使用投标文件编制工具编制电子投标文件,并于2024年8月23日15:30:00 (北京时间)前提交(上传)响应文件。 一、项目基本情况1.项目编号:1410242024AGK001792.项目名称: 洪洞县大槐树中学理化生实验室设施设备建设项目3.采购方式:公开招标4.预算金额:1477308元5.最高限价:1358419.44元6.采购需求: 序号 名称 数量 单位 备注 1 教师演示台 2 张 2 教师椅 2 把 3 ※实验台 56 张 4 水槽台 30 个 5 三联水龙头 30 个 6 滴水架 30 套 7 排水系统 30 套 8 实验凳 112 条 9 全智能系统控制箱 2 台 10 智能控制屏 2 套 11 app吊装控制系统 2 项 12 温湿度探测系统 2 项 13 吊装主体框架 18 套 14 顶装固定支架护罩 36 只 15 智能摇臂升降系统 30 个 16 低压电源供应模块 30 组 17 高压电源供应模块 60 组 18 485接口 30 组 19 急停装置 30 组 20 供电线路 2 项 21 智能照明 36 套 22 给水管路 2 项 23 排水管路 2项 24 安装支架 2 室 25 系统调试 2 项 26 系统安装辅件 2 套 27 万向伸缩吸风罩 60 个 28 室内通风系统 2 项 29 室外通风系统 2 项 30 风机 2 套 31 变频器 2 套 32 消音器 2 套 33 风机软连接 2 套 34 风机控制线 2 项 序号 名称 单位 数量 备注 1 化学准备台 张 1 2 水槽柜 套 1 3 水嘴 套 1 4 滴水架 套 1 5 试剂架 个 2 6 通风药品柜 个 5 7 仪器柜 个 5 8 通风系统 套 1 9 安装调试 项 1 序号 名称 单位 数量 备注 1 毒害品存储柜 个 3 2 通风橱 个 1 3 通风药品柜 个 10 4 通风系统 套 1 5 安装调试 项 1 序号 名称 单位 数量 备注 1 仪器柜 个 20 2 安装调试 项 1 序号 名称 数量 单位 备注 1 教师演示台 2 张 2 教师椅 2 把 3 ※实验台 56 张 4 水槽台 30 个 5 三联水龙头 30 个 6 滴水架 30 套 7 排水系统 30 套 8 实验凳 112 条 9 全智能系统控制箱 2 台 10 智能控制屏 2 套 11 app吊装控制系统 2 项 12 温湿度探测系统 2 项 13 吊装主体框架 18 套 14 顶装固定支架护罩 36 只 15 智能摇臂升降系统 30 个 16 低压电源供应模块 30 组 17 高压电源供应模块 60 组 18 485接口 30 组 19 急停装置 30 组 20 供电线路 2 项 21 智能照明 36 套 22 给水管路 2 项 23 排水管路 2 项 24 安装支架 2 室 25 系统调试 2 项 26 系统安装辅件 2 套 序号 名称 单位 数量 备注 1 生物准备台 张 1 2 水槽柜 套 1 3 水嘴 套 1 4 滴水架 套 1 5 试剂架 个 2 6 仪器柜 个 5 7 标本柜 个 5 8 安装调试 项 1 序号 名称 单位 数量 备注 1 仪器柜 个 20 2 安装调试 项 1 序号 名称 数量 单位 单价 1 教师演示台 2 张 2 教师椅 2 把 3 ※实验台 56 张 4 实验凳 112 条 5 全智能系统控制箱 2 台 6 智能控制屏 2 套 7 app吊装控制系统 2 项 8 温湿度探测系统 2 项 9 吊装主体框架 18 套 10 顶装固定支架护罩 36 只 11 智能摇臂升降系统 30 个 12 低压电源供应模块 30 组 13 高压电源供应模块 60 组 14 485接口 30 组 15 急停装置 30 组 16 供电线路 2 项 17 智能照明 36 套 18 安装支架 2 室 19 系统调试 2 项 20 系统安装辅件 2 套 序号 名称 单位 数量 单价 1 物理准备台 张 1 2 仪器柜 个 10 3 安装调试 项 1 序号 名称 单位 数量 备注 1 仪器柜 个 20 2 安装调试 项 1 序号 名称 单位 数量 备注 1 硬盘录像机 台 1 2 监视器 台 1 3 存储 块 5 4 网络摄像机 台 32 5 支架 个 326 交换机 台 3 7 汇聚交换机 台 1 8 弱电箱 个 3 9 PDU 个 1 10 网线 箱 6 11 水晶头 盒 2 12 电源线 盘 1 13 机柜 台 1 14 线槽 项 1 15 安装辅料 套 32 16 安装调试 点位 32 具体报价范围、采购范围及所应达到的具体要求,以招标文件中采购内容及技术要求部分的相应规定为准。7.交货地点:洪洞县大槐树中学8.交货时间:合同签订后10日内二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.未被“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)列入失信被执行人名单、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单;3.与参加本次项目同一合同项下政府采购活动的其他供应商不存在单位负责人为同一人或者直接控股、管理关系;4.落实政府采购政策需满足的资格要求:本项目专门面向中小企业5.本项目的特定资格要求:无6.本项目(是/否)接受联合体投标:不允许联合体投标三、获取采购文件1.时间:2024年8月2日至2024年8月8日 23:59:59线上获取(下载):每天上午00:00-12:00,下午12:00-23:59(北京时间,双休日、法定节假日除外 )2.地点:政采云平台线上获取3.方式:政采云平台线上获取4.售价:免费备注:未按规定获取采购文件的供应商,对采购文件提起的质疑、投诉将不予受理。四、响应文件提交(上传)1.截止时间:2024年8月23日15:30:00(北京时间)2.地点:请登录政采云投标客户端投标五、响应文件开启1.时间:2024年8月23日15:30:00(北京时间)2.地点:洪洞县政府采购中心(洪洞县朝阳街1号)3.方式:登录山西省政府采购网上传投标文件。投标文件提交截止时间前未完成提交的,将拒收投标文件。开启时登录山西省政府采购网在规定时间内解密电子响应文件,解密设备及网络环境由供应商自行准备。六、公告期限:自本公告发布之日起5个工作日。七、其他补充事宜1、针对本项目的质疑需一次性提出,多次提出将不予受理。2、本项目采用电子化交易,投标人操作流程详见“山西省政府采购网-投标人政府采购项目电子交易操作指南”。3、投标人应在提交投标文件前完成CA数字证书办理。(办理事项详见“山西省政府采购网办事指南下载专区”)。4、投标人应安装“山西政府采购平台电子投标客户端”,请投标人自行前往“山西省政府采购网办事指南下载专区”获取并安装。5、技术支持热线:957636、有关本次采购项目的商务、服务、技术参数及资质要求等相关事项请与采购单位联系,采购单位负责解释答疑。八、凡对本次采购提出询问,请按以下方式联系1.采购人信息单位名称:洪洞县大槐树中学地 址:洪洞县玉峰东大街联系方式:139340706532.采购代理机构信息名 称:洪洞县政府采购中心地 址:洪洞县朝阳街1号联 系 人:郭先生联系方式:0357--62216133项目联系方式项目联系人:李先生电 话:13934070653附件信息: 洪洞县大槐树中学理化生实验室设施设备建设项目.docx 231.6K
  • 赤峰市元宝山区第一中学685.65万元采购天平,高压灭菌器,搅拌器,生物显微镜,表面张力仪,过氧化氢...
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 赤峰市元宝山区第一中学信息化及实验室设备购置招标公告 内蒙古自治区-赤峰市-元宝山区 状态:公告 更新时间: 2024-05-30 招标文件: 附件1 赤峰市元宝山区第一中学信息化及实验室设备购置招标公告 【发布时间:2024/5/30 】 项目概况 信息化及实验室设备购置招标项目的潜在投标人应在内蒙古自治区政府采购网获取招标文件,并于 2024年06月20日 09时00分 (北京时间)前递交投标文件。 一、项目基本情况 项目编号:CFZCYB-G-H-240010 项目名称:信息化及实验室设备购置 采购方式:公开招标 预算金额:6,856,500.00元 采购需求: 合同包1(信息化设备购置): 合同包预算金额:2,584,535.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 触摸式终端设备 智慧黑板 29(台) 详见采购文件 916,400.00 - 1-2 其他视频设备 视频展台 29(台) 详见采购文件 34,800.00 - 1-3 触摸式终端设备 电子班牌 52(台) 详见采购文件 145,600.00 - 1-4应用软件 班牌软件 52(套) 详见采购文件 104,000.00 - 1-5 网络存储设备 视频存储器 1(台) 详见采购文件 100,000.00 - 1-6 中型计算机 ▲一体终端设备 48(台) 详见采购文件 264,000.00 - 1-7 中型计算机 分体终端设备 10(台) 详见采购文件 75,500.00 - 1-8 中型计算机 便携式编程终端设备 10(台) 详见采购文件 79,900.00 - 1-9 应用软件 英语听说系统 2(套) 详见采购文件 330,000.00 - 1-10 信息化设备零部件 听说考试专用耳机 102(个) 详见采购文件 50,490.00 -1-11 应用软件 机房教学软件 102(点) 详见采购文件 15,300.00 - 1-12 教学、实验用桌 教师演示台 1(张) 详见采购文件 6,950.00 - 1-13 教学、实验用桌 学生实验桌 8(张) 详见采购文件 55,600.00 - 1-14 教学、实验椅凳 实验凳 48(张) 详见采购文件 6,240.00 - 1-15 其他信息化设备 科学套装个人学习版套装 10(套) 详见采购文件 3,850.00 - 1-16 其他信息化设备 科学套装 20(套) 详见采购文件 156,000.00 - 1-17 其他信息化设备 科学套装主题拓展包 20(套) 详见采购文件 65,000.00 - 1-18 其他信息化设备 央馆-科创专项赛挑战套装(含赛纸) 1(套) 详见采购文件 8,500.00 - 1-19 其他信息化设备 挑战赛项场地套装 1(套) 详见采购文件 4,500.00 - 1-20 其他信息化设备 智能探测机器人-场地套装 1(套) 详见采购文件 4,500.00 - 1-21 其他信息化设备 工程套装 10(套) 详见采购文件 34,500.00 - 1-22 其他信息化设备 智能小车主题包 10(套) 详见采购文件 26,000.00 - 1-23 其他生产辅助用电器 智能系统控制柜 1(台) 详见采购文件 12,500.00 - 1-24 其他电源设备 顶部多模块电源供应装置 9(个) 详见采购文件 5,265.00 - 1-25 其他电源设备 模块储藏装置 9(个) 详见采购文件 6,120.00 - 1-26 其他电源设备 低压电源模块 18(个) 详见采购文件 10,530.00 - 1-27 其他电源设备 高压电源模块 18(个) 详见采购文件 2,970.00 - 1-28 其他照明设备 智能照明 9(组) 详见采购文件 2,520.00 - 1-29 其他生产辅助用电器 智能升降机构 9(个) 详见采购文件 40,500.00 - 1-30 其他塑料制品、半成品及辅料 辅材辅料及安装调试 1(项) 详见采购文件 16,500.00 - 本合同包不接受联合体投标 合同履行期限:合同签订后45个日历日内交货并安装调试完毕 合同包2(实验室设备购置): 合同包预算金额:4,271,965.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 2-1 教学、实验用桌 教师演示台 9(张) 详见采购文件 62,550.00 - 2-2 教学、实验用桌 ▲学生实验桌 216(张) 详见采购文件 399,600.00 - 2-3 教学、实验椅凳 实验凳 432(条) 详见采购文件 56,160.00 -2-4 其他生产辅助用电器 (物理)全智能系统控制箱 4(台) 详见采购文件 27,200.00 - 2-5 其他生产辅助用电器 (物理)智能控制屏 4(套) 详见采购文件 18,600.00 - 2-6 其他生产辅助用电器 app吊装控制系统 12(项) 详见采购文件 26,400.00 - 2-7 其他生产辅助用电器 温湿度探测系统 12(项) 详见采购文件 15,000.00 - 2-8 其他试验仪器及装置 吊装主体框架 84(套) 详见采购文件 714,000.00 - 2-9 其他试验仪器及装置 顶装固定支架护罩 84(只) 详见采购文件 138,600.00 - 2-10 其他生产辅助用电器 (物理)智能摇臂升降系统 52(个) 详见采购文件 122,200.00 -2-11 其他无线电通信设备 电源供应模块 156(组) 详见采购文件 190,320.00 - 2-12 其他生产辅助用电器 急停装置 156(组) 详见采购文件 28,860.00 - 2-13 其他有线传输线路 实验室布线 12(项) 详见采购文件 36,000.00 - 2-14 其他照明设备 智能照明 156(套) 详见采购文件 43,680.00 - 2-15 其他塑料制品、半成品及辅料 系统安装辅件 12(项) 详见采购文件 60,000.00 - 2-16 教学、实验用桌 准备台 6(张) 详见采购文件 29,700.00 - 2-17 文件柜 仪器柜 33(个) 详见采购文件 70,950.00 - 2-18 教学、实验椅凳 教师转椅 9(把) 详见采购文件 4,410.00 - 2-19 槽 水槽柜 100(个) 详见采购文件 145,000.00 - 2-20 其他试验仪器及装置 三联水嘴 99(个) 详见采购文件 36,135.00 - 2-21 其他生产辅助用电器 (化学)全智能系统控制箱 4(台) 详见采购文件 27,200.00 - 2-22 其他生产辅助用电器 (化学)智能控制屏 4(套) 详见采购文件 18,600.00 - 2-23 其他生产辅助用电器 (化学、生物)智能摇臂升降系统 104(个) 详见采购文件 244,400.00 - 2-24 其他试验仪器及装置 (化学)自动给排水系统 52(套)详见采购文件 101,400.00 - 2-25 其他试验仪器及装置 (化学)给排水接口 52(套) 详见采购文件 50,960.00 - 2-26 其他有线传输线路 风机电缆线 4(套) 详见采购文件 2,000.00 - 2-27 其他塑料制品、半成品及辅料 万向伸缩吸风罩 100(个) 详见采购文件 37,000.00 - 2-28 排烟系统 室内外通风系统 4(项) 详见采购文件 22,000.00 - 2-29 离心式风机 风机 4(套) 详见采购文件 23,200.00 - 2-30 其他音频设备 消音器 4(套) 详见采购文件 2,200.00 - 2-31 其他有线传输线路 风机软连接4(套) 详见采购文件 1,200.00 - 2-32 其他有线传输线路 风机控制线 4(项) 详见采购文件 4,000.00 - 2-33 文件柜 毒害品储存柜 2(个) 详见采购文件 11,700.00 - 2-34 文件柜 易燃品储存柜 2(个) 详见采购文件 11,700.00 - 2-35 冲洗机 洗眼器 2(套) 详见采购文件 990.00 - 2-36 其他生产辅助用电器 (生物)智能控制屏 4(套) 详见采购文件 18,600.00 - 2-37 其他试验仪器及装置 (生物)自动给排水系统 52(套) 详见采购文件 50,960.00 - 2-38 其他试验仪器及装置(生物)给排水接口 52(套) 详见采购文件 67,600.00 - 2-39 其他生产辅助用电器 (生物)全智能系统控制箱 4(台) 详见采购文件 27,200.00 - 2-40 输送管道 给排水布管 8(项) 详见采购文件 21,200.00 - 2-41 文件柜 药品柜 2(个) 详见采购文件 4,900.00 - 2-42 文件柜 标本柜 2(个) 详见采购文件 4,900.00 - 2-43 其他试验仪器及装置 计算器 30(个) 详见采购文件 1,050.00 - 2-44 其他试验仪器及装置 钢制黑板 4(块) 详见采购文件 392.00 - 2-45 其他试验仪器及装置 打孔器 6(套) 详见采购文件 84.00 - 2-46 其他试验仪器及装置 直联泵 3(台) 详见采购文件 2,340.00 - 2-47 其他试验仪器及装置 两用气筒 2(个) 详见采购文件 76.00 - 2-48 其他试验仪器及装置 抽气筒 2(个) 详见采购文件 90.00 - 2-49 其他试验仪器及装置 打气筒 2(个) 详见采购文件 92.00 - 2-50 其他试验仪器及装置 抽气盘 2(套) 详见采购文件 270.00 - 2-51 其他试验仪器及装置 充磁器 2(台) 详见采购文件 380.00 - 2-52 其他试验仪器及装置 望远镜 2(个) 详见采购文件 190.00 - 2-53 其他试验仪器及装置 酒精喷灯 8(个) 详见采购文件 1,008.00 - 2-54 其他试验仪器及装置 透明盛液筒 2(个) 详见采购文件 88.00 - 2-55 其他试验仪器及装置 透明水槽 3(个) 详见采购文件 195.00 - 2-56 其他试验仪器及装置 方座支架 30(套) 详见采购文件 2,550.00 - 2-57 其他试验仪器及装置 三脚架 30(个) 详见采购文件 300.00 - 2-58 其他电源设备 高中学生电源 30(台) 详见采购文件 10,170.00 - 2-59其他电源设备 高中教学电源 3(台) 详见采购文件 2,400.00 - 2-60 其他试验仪器及装置 蓄电池 6(台) 详见采购文件 570.00 - 2-61 其他试验仪器及装置 调压变压器 1(台) 详见采购文件 432.00 - 2-62 其他试验仪器及装置 电池盒 30(个) 详见采购文件 480.00 - 2-63 其他电源设备 直流高压电源 3(台) 详见采购文件 2,850.00 - 2-64 其他试验仪器及装置 电子起电机 5(台) 详见采购文件 2,325.00 - 2-65 其他试验仪器及装置 教学用铅酸蓄电池充电器 2(台) 详见采购文件 1,910.00 - 2-66 其他试验仪器及装置 木直尺 60(只) 详见采购文件 1,080.00 - 2-67 其他试验仪器及装置 钢直尺 60(只) 详见采购文件 480.00 - 2-68 其他试验仪器及装置 钢直尺 60(只) 详见采购文件 900.00 - 2-69 其他试验仪器及装置 钢卷尺 20(盒) 详见采购文件 360.00 - 2-70 其他试验仪器及装置 游标卡尺 60(把) 详见采购文件 5,160.00 - 2-71 其他试验仪器及装置 物理天平 1(台) 详见采购文件 598.00 - 2-72 其他试验仪器及装置 学生天平 30(台) 详见采购文件 7,680.00 -2-73 其他试验仪器及装置 托盘天平 1(台) 详见采购文件 85.00 - 2-74 其他试验仪器及装置 托盘天平 27(台) 详见采购文件 3,375.00 - 2-75 其他试验仪器及装置 指针式体重计 1(台) 详见采购文件 539.00 - 2-76 其他试验仪器及装置 金属钩码 28(套) 详见采购文件 1,064.00 - 2-77 其他试验仪器及装置 机械停表 30(块) 详见采购文件 18,480.00 - 2-78 其他试验仪器及装置 电子停表 30(块) 详见采购文件 750.00 - 2-79 其他试验仪器及装置 电火花计时器 30(个) 详见采购文件 4,170.00 - 2-80 其他试验仪器及装置 电火花计时器 30(个) 详见采购文件 4,260.00 - 2-81 其他试验仪器及装置 电磁打点计时器 30(个) 详见采购文件 2,610.00 - 2-82 其他试验仪器及装置 数字计时器 3(台) 详见采购文件 1,017.00 - 2-83 其他试验仪器及装置 频闪光源 3(台) 详见采购文件 795.00 - 2-84 其他试验仪器及装置 红外人体表面温度快速筛检仪 3(个) 详见采购文件 741.00 - 2-85 其他试验仪器及装置 寒暑表 3(只) 详见采购文件 42.00 - 2-86 其他试验仪器及装置 条形盒测力计 60(个) 详见采购文件 480.00 -2-87 其他试验仪器及装置 条形盒测力计 60(个) 详见采购文件 480.00 - 2-88 其他试验仪器及装置 圆盘测力计 6(个) 详见采购文件 2,034.00 - 2-89 其他试验仪器及装置 拉压测力计 6(个) 详见采购文件 354.00 - 2-90 其他试验仪器及装置 双向测力计 6(个) 详见采购文件 354.00 - 2-91 其他试验仪器及装置 演示数字测力计 3(个) 详见采购文件 648.00 - 2-92 其他试验仪器及装置 学生数字测力计 30(个) 详见采购文件 6,480.00 - 2-93 其他试验仪器及装置 高中数字演示电表 6(只) 详见采购文件 5,988.00- 2-94 其他试验仪器及装置 绝缘电阻表 1(只) 详见采购文件 339.00 - 2-95 其他试验仪器及装置 多用电表 30(只) 详见采购文件 2,340.00 - 2-96 其他试验仪器及装置 多用电表 3(只) 详见采购文件 1,095.00 - 2-97 其他试验仪器及装置 交流电流表 30(只) 详见采购文件 2,280.00 - 2-98 其他试验仪器及装置 演示电流电压表 6(台) 详见采购文件 4,440.00 - 2-99 其他试验仪器及装置 演示微电流电阻表 3(台) 详见采购文件 2,220.00 - 2-100 其他试验仪器及装置 多功能电压传感器 1(只) 详见采购文件1,500.00 - 2-101 其他试验仪器及装置 多功能电流传感器 1(只) 详见采购文件 1,550.00 - 2-102 其他试验仪器及装置 多功能微电流传感器 1(只) 详见采购文件 1,650.00 - 2-103 其他试验仪器及装置 教学示波器 3(台) 详见采购文件 8,955.00 - 2-104 其他试验仪器及装置 学生示波器 30(台) 详见采购文件 73,650.00 - 2-105 其他试验仪器及装置 电阻箱 30(个) 详见采购文件 3,240.00 - 2-106 其他试验仪器及装置 电阻箱 3(个) 详见采购文件 693.00 - 2-107 其他试验仪器及装置 携式直流单双臂电桥 3(台) 详见采购文件 10,164.00 - 2-108 其他试验仪器及装置 微电流放大器 3(台) 详见采购文件 130.00 - 2-109 其他试验仪器及装置 虚拟电子测试仪器系统 3(套) 详见采购文件 2,670.00 - 2-110 其他试验仪器及装置 湿度计 3(个) 详见采购文件 108.00 - 2-111 其他试验仪器及装置 空盒气压表 3(台) 详见采购文件 1,050.00 - 2-112 其他试验仪器及装置 多功能压强传感器 1(只) 详见采购文件 1,650.00 - 2-113 其他试验仪器及装置 露点测定器 3(个) 详见采购文件 135.00 - 2-114 其他试验仪器及装置量角器(圆等分器) 30(个) 详见采购文件 660.00 - 2-115 其他试验仪器及装置 惯性演示器 3(套) 详见采购文件 102.00 - 2-116 其他试验仪器及装置 摩擦计 30(套) 详见采购文件 660.00 - 2-117 其他试验仪器及装置 螺旋弹簧组 3(组) 详见采购文件 66.00 - 2-118 其他试验仪器及装置 螺旋弹簧组 30(只) 详见采购文件 570.00 - 2-119 其他试验仪器及装置 帕斯卡球 3(个) 详见采购文件 279.00 - 2-120 其他试验仪器及装置 摩擦力演示器 3(台) 详见采购文件 1,800.00 - 2-121其他试验仪器及装置 力的合成分解演示器 3(套) 详见采购文件 417.00 - 2-122 其他试验仪器及装置 支杆定滑轮和桌边夹组 13(套) 详见采购文件 1,287.00 - 2-123 其他试验仪器及装置 高中静力学演示教具 3(套) 详见采购文件 2,958.00 - 2-124 其他试验仪器及装置 高中力学演示板 3(套) 详见采购文件 2,958.00 - 2-125 其他试验仪器及装置 离心轨道 3(套) 详见采购文件 285.00 - 2-126 其他试验仪器及装置 手摇离心转台 3(台) 详见采购文件 786.00 - 2-127 其他试验仪器及装置 电动离心转台 3(台) 详见采购文件 1,800.00 -2-128 其他试验仪器及装置 毛钱管(牛顿管) 3(套) 详见采购文件 555.00 - 2-129 其他试验仪器及装置 伽利略理想斜面演示器 3(套) 详见采购文件 1,194.00 - 2-130 其他试验仪器及装置 运动合成分解演示器 3(套) 详见采购文件 1,494.00 - 2-131 其他试验仪器及装置 演示轨道小车 3(套) 详见采购文件 1,062.00 - 2-132 其他试验仪器及装置 轨道小车 30(套) 详见采购文件 5,280.00 - 2-133 其他试验仪器及装置 轨道小车 30(套) 详见采购文件 7,410.00 - 2-134 其他试验仪器及装置 演示斜面小车 3(套) 详见采购文件 555.00 -2-135 其他试验仪器及装置 斜面小车 30(套) 详见采购文件 2,850.00 - 2-136 其他试验仪器及装置 气垫导轨 30(台) 详见采购文件 20,340.00 - 2-137 其他试验仪器及装置 小型气源 30(台) 详见采购文件 12,000.00 - 2-138 其他试验仪器及装置 自由落体实验仪 30(套) 详见采购文件 14,400.00 - 2-139 其他试验仪器及装置 牛顿第二定律演示仪 3(套) 详见采购文件 1,017.00 - 2-140 其他试验仪器及装置 牛顿第二定律实验仪 30(套) 详见采购文件 10,170.00 - 2-141 其他试验仪器及装置 反冲运动演示器 3(套) 详见采购文件 369.00- 2-142 其他试验仪器及装置 超重失重演示器 3(个) 详见采购文件 1,155.00 - 2-143 其他试验仪器及装置 超重失重演示器 3(套) 详见采购文件 1,185.00 - 2-144 其他试验仪器及装置 动能势能演示器 3(台) 详见采购文件 1,662.00 - 2-145 其他试验仪器及装置 平抛竖落仪 3(个) 详见采购文件 186.00 - 2-146 其他试验仪器及装置 平抛运动实验器 30(套) 详见采购文件 4,170.00 - 2-147 其他试验仪器及装置 平抛和碰撞实验器 30(套) 详见采购文件 4,260.00 - 2-148 其他试验仪器及装置 碰撞实验器 30(台) 详见采购文件 1,680.00 - 2-149 其他试验仪器及装置 冲击摆实验器 3(台) 详见采购文件 1,200.00 - 2-150 其他试验仪器及装置 运动频闪观测仪 3(套) 详见采购文件 2,400.00 - 2-151 其他试验仪器及装置 二维空间—时间描迹仪 30(套) 详见采购文件 17,700.00 - 2-152 其他试验仪器及装置 向心力演示器 3(台) 详见采购文件 1,950.00 - 2-153 其他试验仪器及装置 向心力实验器 30(台) 详见采购文件 3,720.00 - 2-154 其他试验仪器及装置 凹凸桥演示器 3(套) 详见采购文件 1,050.00 - 2-155 其他试验仪器及装置 演示力矩盘
  • 鄂尔多斯市东胜区环境卫生事业服务中心189.95万元采购切割机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 鄂尔多斯市东胜区环境卫生事业服务中心环卫机械车辆配件及轮胎竞争性谈判公告 内蒙古自治区-鄂尔多斯市-东胜区 状态:公告 更新时间: 2023-07-04 招标文件: 附件1 鄂尔多斯市东胜区环境卫生事业服务中心环卫机械车辆配件及轮胎竞争性谈判公告 项目概况 环卫机械车辆配件及轮胎采购项目的潜在供应商应在内蒙古自治区政府采购网获取采购文件,并于 2023年07月11日 09时00分 (北京时间)前提交响应文件。 一、项目基本情况 项目编号:ESZCDSS-J-H-230062 项目名称:环卫机械车辆配件及轮胎 采购方式:竞争性谈判 预算金额:1,899,535.00元 采购需求: 合同包1(环卫机械车辆配件及轮胎): 合同包预算金额:1,899,535.00元 品目号 品目名称 采购标的 数量(单位) 技术规格、参数及要求 品目预算(元) 最高限价(元) 1-1 其他机械设备 前弓子一片 1(片) 详见采购文件 160.00 - 1-2 其他机械设备 前弓子二片 1(片) 详见采购文件 140.00 - 1-3 其他机械设备 前弓子三片 1(片) 详见采购文件 120.00 - 1-4 其他机械设备 前弓子四片 1(片) 详见采购文件 110.00 - 1-5 其他机械设备 前弓子五片 1(片) 详见采购文件 90.00 - 1-6 其他机械设备 前弓卡子 1(个) 详见采购文件 35.00 -1-7 其他机械设备 弓子套 1(个) 详见采购文件 8.00 - 1-8 其他机械设备 中心螺丝 1(个) 详见采购文件 15.00 - 1-9 其他机械设备 后弓子头片 1(片) 详见采购文件 180.00 - 1-10 其他机械设备 后弓子二片 1(片) 详见采购文件 175.00 - 1-11 其他机械设备 后弓子三片 1(片) 详见采购文件 150.00 - 1-12 其他机械设备 后弓子四片 1(片) 详见采购文件 125.00 - 1-13 其他机械设备 弓卡子 1(个) 详见采购文件 40.00 - 1-14 其他机械设备 面片240 1(个) 详见采购文件 210.00 -1-15 其他机械设备 压盘240 1(个) 详见采购文件 340.00 - 1-16 其他机械设备 分离轴承总成 1(个) 详见采购文件 80.00 - 1-17 其他机械设备 650-16钢圈 1(套) 详见采购文件 380.00 - 1-18 其他机械设备 前轮胎螺丝 1(套) 详见采购文件 45.00 - 1-19 其他机械设备 后轮胎螺丝 1(套) 详见采购文件 45.00 - 1-20 其他机械设备 刹车布 1(套) 详见采购文件 210.00 - 1-21 其他机械设备 回位簧 1(根) 详见采购文件 10.00 - 1-22 其他机械设备 方向拉杆球头 1(对) 详见采购文件 180.00 - 1-23 其他机械设备 手刹盘总成 1(套) 详见采购文件 380.00 - 1-24 其他机械设备 手刹盘锅 1(个) 详见采购文件 260.00 - 1-25 其他机械设备 取力器手柄 1(个) 详见采购文件 80.00 - 1-26 其他机械设备 手刹手柄 1(个) 详见采购文件 90.00 - 1-27 其他机械设备 手刹线 1(根) 详见采购文件 70.00 - 1-28 其他机械设备 油门线 1(根) 详见采购文件 60.00 - 1-29 其他机械设备 机油管 1(根) 详见采购文件 65.00 - 1-30 其他机械设备 挂档防尘套 1(个) 详见采购文件 165.00- 1-31 其他机械设备 挂档线 1(套) 详见采购文件 160.00 - 1-32 其他机械设备 挂档线球头 1(个) 详见采购文件 25.00 - 1-33 其他机械设备 消音器总成 1(个) 详见采购文件 280.00 - 1-34 其他机械设备 排气筒密封环 1(套) 详见采购文件 105.00 - 1-35 其他机械设备 传动十字轴 1(个) 详见采购文件 115.00 - 1-36 其他机械设备 传动螺丝 1(套) 详见采购文件 12.00 - 1-37 其他机械设备 传动总成 1(套) 详见采购文件 420.00 - 1-38 其他机械设备 挂挡机构总成 1(个) 详见采购文件 210.00 - 1-39 其他机械设备 闸箱总成 1(套) 详见采购文件 3,250.00 - 1-40 其他机械设备 一轴 1(根) 详见采购文件 100.00 - 1-41 其他机械设备 二轴 1(根) 详见采购文件 80.00 - 1-42 其他机械设备 挂挡同步器 1(套) 详见采购文件 80.00 - 1-43 其他机械设备 同步器锥齿 1(套) 详见采购文件 90.00 - 1-44 其他机械设备 同步环 1(个) 详见采购文件 32.00 - 1-45 其他机械设备 挂挡滑块 1(块) 详见采购文件 5.00 - 1-46 其他机械设备 麻花轴承 1(盘) 详见采购文件120.00 - 1-47 其他机械设备 一轴外轴承 1(盘) 详见采购文件 65.00 - 1-48 其他机械设备 一轴内轴承 1(盘) 详见采购文件 75.00 - 1-49 其他机械设备 闸箱轴承卡簧 1(盘) 详见采购文件 5.00 - 1-50 其他机械设备 衬垫 1(个) 详见采购文件 8.00 - 1-51 其他机械设备 衬套 1(个) 详见采购文件 25.00 - 1-52 其他机械设备 一档轮 1(个) 详见采购文件 85.00 - 1-53 其他机械设备 二档轮 1(个) 详见采购文件 80.00 - 1-54 其他机械设备 三档轮 1(个) 详见采购文件80.00 - 1-55 其他机械设备 四档轮 1(个) 详见采购文件 90.00 - 1-56 其他机械设备 五档轮 1(个) 详见采购文件 110.00 - 1-57 其他机械设备 倒档轮 1(个) 详见采购文件 100.00 - 1-58 其他机械设备 倒档开关 1(个) 详见采购文件 45.00 - 1-59 其他机械设备 倒档惰轮 1(个) 详见采购文件 60.00 - 1-60 其他机械设备 倒档惰轮轴 1(个) 详见采购文件 85.00 - 1-61 其他机械设备 倒档惰轮麻花轴承 1(个) 详见采购文件 120.00 - 1-62 其他机械设备 变速箱前油封 1(个) 详见采购文件 40.00 - 1-63 其他机械设备 变速箱后油封 1(个) 详见采购文件 40.00 - 1-64 其他机械设备 小闸盖总成 1(个) 详见采购文件 205.00 - 1-65 其他机械设备 闸箱胶墩 1(个) 详见采购文件 35.00 - 1-66 其他机械设备 大闸盖总成 1(个) 详见采购文件 210.00 - 1-67 其他机械设备 挂挡拨叉 1(个) 详见采购文件 50.00 - 1-68 其他机械设备 挂挡拨叉轴 1(根) 详见采购文件 85.00 - 1-69 其他机械设备 膨胀销子 1(根) 详见采购文件 8.00 - 1-70 其他机械设备 挂挡杆手柄 1(个)详见采购文件 85.00 - 1-71 其他机械设备 闸箱后凸缘 1(个) 详见采购文件 90.00 - 1-72 其他机械设备 变速箱壳 1(个) 详见采购文件 1,860.00 - 1-73 其他机械设备 一轴轴承盖 1(个) 详见采购文件 85.00 - 1-74 其他机械设备 马达齿圈 1(个) 详见采购文件 180.00 - 1-75 其他机械设备 导向轴承 1(个) 详见采购文件 90.00 - 1-76 其他机械设备 飞轮盘总成 1(个) 详见采购文件 380.00 - 1-77 其他机械设备 迈路表传感器 1(个) 详见采购文件 65.00 - 1-78 其他机械设备 空档传感器1(个) 详见采购文件 65.00 - 1-79 其他机械设备 过桥总成 1(个) 详见采购文件 185.00 - 1-80 其他机械设备 差速器总成 1(个) 详见采购文件 3,860.00 - 1-81 其他机械设备 主减速器油封 1(个) 详见采购文件 55.00 - 1-82 其他机械设备 主减速器锁母 1(个) 详见采购文件 25.00 - 1-83 其他机械设备 主减速器锁片 1(个) 详见采购文件 5.00 - 1-84 其他机械设备 主减速器凸缘 1(个) 详见采购文件 80.00 - 1-85 其他机械设备 小八字轮 1(个) 详见采购文件 320.00 - 1-86 其他机械设备大八字轮 1(个) 详见采购文件 380.00 - 1-87 其他机械设备 差速器轴承 1(盘) 详见采购文件 80.00 - 1-88 其他机械设备 小八字轮轴承 1(盘) 详见采购文件 80.00 - 1-89 其他机械设备 主减速器调整垫 1(组) 详见采购文件 8.00 - 1-90 其他机械设备 小八字调整垫 1(组) 详见采购文件 8.00 - 1-91 其他机械设备 八字轮螺丝 1(套) 详见采购文件 18.00 - 1-92 其他机械设备 差速器壳 1(个) 详见采购文件 860.00 - 1-93 其他机械设备 前桥总成 1(套) 详见采购文件 1,860.00 - 1-94 其他机械设备 后桥总成 1(套) 详见采购文件 2,100.00 - 1-95 其他机械设备 发动机总成 1(台) 详见采购文件 11,860.00 - 1-96 其他机械设备 机油泵 1(个) 详见采购文件 360.00 - 1-97 其他机械设备 机油散热器修理包 1(套) 详见采购文件 45.00 - 1-98 其他机械设备 机油散热器 1(个) 详见采购文件 275.00 - 1-99 其他机械设备 机滤 1(个) 详见采购文件 65.00 - 1-100 其他机械设备 柴滤 1(个) 详见采购文件 65.00 - 1-101 其他机械设备 反光镜 1(个) 详见采购文件 90.00 - 1-102其他机械设备 反光镜圆镜 1(个) 详见采购文件 45.00 - 1-103 其他机械设备 玻璃升降器 1(个) 详见采购文件 145.00 - 1-104 其他机械设备 玻璃升降器摇把 1(个) 详见采购文件 80.00 - 1-105 其他机械设备 玻璃升降器卡子 1(个) 详见采购文件 15.00 - 1-106 其他机械设备 车门玻璃 1(个) 详见采购文件 180.00 - 1-107 其他机械设备 车门锁块 1(块) 详见采购文件 120.00 - 1-108 其他机械设备 内扣手 1(个) 详见采购文件 55.00 - 1-109 其他机械设备 外扣手 1(个) 详见采购文件 80.00 -1-110 其他机械设备 车门内饰板 1(个) 详见采购文件 210.00 - 1-111 其他机械设备 车门板卡子 1(个) 详见采购文件 10.00 - 1-112 其他机械设备 驾驶位座椅总成 1(个) 详见采购文件 460.00 - 1-113 其他机械设备 方向盘总成 1(个) 详见采购文件 180.00 - 1-114 其他机械设备 仪表盘总成 1(个) 详见采购文件 380.00 - 1-115 其他机械设备 仪表盘灯泡 1(个) 详见采购文件 15.00 - 1-116 其他机械设备 水温感应塞 1(个) 详见采购文件 45.00 - 1-117 其他机械设备 水温表 1(个) 详见采购文件 115.00 - 1-118 其他机械设备 机油压力指示表 1(个) 详见采购文件 115.00 - 1-119 其他机械设备 机油感应塞 1(个) 详见采购文件 115.00 - 1-120 其他机械设备 组合开关 1(个) 详见采购文件 280.00 - 1-121 其他机械设备 转向灯开关 1(个) 详见采购文件 180.00 - 1-122 其他机械设备 大灯开关 1(个) 详见采购文件 165.00 - 1-123 其他机械设备 雨刷电机 1(个) 详见采购文件 90.00 - 1-124 其他机械设备 油门踏板 1(个) 详见采购文件 80.00 - 1-125 其他机械设备 喇叭 1(个) 详见采购文件 160.00 -1-126 其他机械设备 前挡风玻璃 1(个) 详见采购文件 320.00 - 1-127 其他机械设备 驾驶室支撑杆 1(块) 详见采购文件 195.00 - 1-128 其他机械设备 暖风电机 1(个) 详见采购文件 280.00 - 1-129 其他机械设备 刹车总泵 1(个) 详见采购文件 160.00 - 1-130 其他机械设备 离合器总成 1(个) 详见采购文件 260.00 - 1-131 其他机械设备 离合器分泵 1(个) 详见采购文件 215.00 - 1-132 其他机械设备 前刹车分泵 1(个) 详见采购文件 135.00 - 1-133 其他机械设备 离合器油壶 1(个) 详见采购文件 30.00- 1-134 其他机械设备 方向机油壶 1(个) 详见采购文件 35.00 - 1-135 其他机械设备 方向机滤芯 1(个) 详见采购文件 65.00 - 1-136 其他机械设备 方向机总成 1(个) 详见采购文件 680.00 - 1-137 其他机械设备 方向机助力泵 1(个) 详见采购文件 650.00 - 1-138 其他机械设备 方向机油封 1(个) 详见采购文件 55.00 - 1-139 其他机械设备 驾驶室减震 1(个) 详见采购文件 110.00 - 1-140 其他机械设备 方向拉杆总成 1(根) 详见采购文件 260.00 - 1-141 其他机械设备 方向拉杆卡子 1(根) 详见采购文件30.00 - 1-142 其他机械设备 发动机前胶墩 1(根) 详见采购文件 85.00 - 1-143 其他机械设备 发动机后胶墩 1(个) 详见采购文件 85.00 - 1-144 其他机械设备 大灯总成 1(个) 详见采购文件 170.00 - 1-145 其他机械设备 转向灯总成 1(个) 详见采购文件 125.00 - 1-146 其他机械设备 示宽灯 1(个) 详见采购文件 135.00 - 1-147 其他机械设备 暖风电机 1(个) 详见采购文件 280.00 - 1-148 其他机械设备 水箱总成 1(个) 详见采购文件 895.00 - 1-149 其他机械设备 水箱盖 1(个)详见采购文件 15.00 - 1-150 其他机械设备 水箱上水管 1(根) 详见采购文件 85.00 - 1-151 其他机械设备 水箱下水管 1(根) 详见采购文件 85.00 - 1-152 其他机械设备 水箱水管卡子 1(个) 详见采购文件 5.00 - 1-153 其他机械设备 水箱挡风圈 1(个) 详见采购文件 125.00 - 1-154 其他机械设备 水箱散热风扇 1(个) 详见采购文件 80.00 - 1-155 其他机械设备 曲轴信号盘 1(个) 详见采购文件 160.00 - 1-156 其他机械设备 曲轴信号盘螺丝 1(个) 详见采购文件 8.00 - 1-157 其他机械设备 风扇皮带1(根) 详见采购文件 75.00 - 1-158 其他机械设备 发电机皮带 1(根) 详见采购文件 75.00 - 1-159 其他机械设备 涨紧轮 1(个) 详见采购文件 95.00 - 1-160 其他机械设备 惰轮 1(个) 详见采购文件 70.00 - 1-161 其他机械设备 正时壳 1(个) 详见采购文件 465.00 - 1-162 其他机械设备 正时壳垫 1(个) 详见采购文件 30.00 - 1-163 其他机械设备 正时惰轮 1(个) 详见采购文件 180.00 - 1-164 其他机械设备 凸轮轴惰轮 1(个) 详见采购文件 475.00 - 1-165 其他机械设备 正时壳油封 1(个) 详见采购文件 85.00 - 1-166 其他机械设备 飞轮壳油封 1(个) 详见采购文件 85.00 - 1-167 其他机械设备 飞轮壳 1(个) 详见采购文件 425.00 - 1-168 其他机械设备 飞轮螺丝 1(个) 详见采购文件 15.00 - 1-169 其他机械设备 飞轮锁片 1(个) 详见采购文件 85.00 - 1-170 其他机械设备 油底壳 1(个) 详见采购文件 280.00 - 1-171 其他机械设备 油底壳垫 1(个) 详见采购文件 50.00 - 1-172 其他机械设备 油底壳螺丝 1(个) 详见采购文件 25.00 - 1-173 其他机械设备 手油泵 1(个) 详见采购文件 360.00 - 1-174 其他机械设备 柴滤 1(个) 详见采购文件 95.00 - 1-175 其他机械设备 发电机 1(台) 详见采购文件 560.00 - 1-176 其他机械设备 水泵 1(个) 详见采购文件 480.00 - 1-177 其他机械设备 回油管 1(组) 详见采购文件 80.00 - 1-178 其他机械设备 发动机罩盖 1(个) 详见采购文件 55.00 - 1-179 其他机械设备 罩盖垫 1(组) 详见采购文件 85.00 - 1-180 其他机械设备 马达 1(个) 详见采购文件 980.00 - 1-181 其他机械设备 机滤座 1(个) 详见采购文件 60.00 - 1-182 其他机械设备 轮葫芦头 1(个) 详见采购文件 295.00 - 1-183 其他机械设备 葫芦头油封 1(个) 详见采购文件 65.00 - 1-184 其他机械设备 刹车锅 4(个) 详见采购文件 1,680.00 - 1-185 其他机械设备 刹车蹄总成 10(对) 详见采购文件 1,650.00 - 1-186 其他机械设备 刹车蹄销子 10(根) 详见采购文件 450.00 - 1-187 其他机械设备 刹车布修理包 5(个) 详见采购文件 400.00 - 1-188 其他机械设备 刹车分泵 10(个) 详见采购文件 800.00 -1-189 其他机械设备 刹车分泵油管 5(根) 详见采购文件 400.00 - 1-190 其他机械设备 羊角轴 4(个) 详见采购文件 1,520.00 - 1-191 其他机械设备 立仁轴总成 2(套) 详见采购文件 420.00 - 1-192 其他机械设备 前轮轴承 4(盘) 详见采购文件 340.00 - 1-193 其他机械设备 前轮油封 5(个) 详见采购文件 325.00 - 1-194 其他机械设备 前轮防尘盖 2(个) 详见采购文件 50.00 - 1-195 其他机械设备 前轮锁母 2(个) 详见采购文件 80.00 - 1-196 其他机械设备 前轮锁片 5(个) 详见采购文件 40.00 - 1-197 其他机械设备 开口销子 10(根) 详见采购文件 60.00 - 1-198 其他机械设备 后轮油封 5(个) 详见采购文件 325.00 - 1-199 其他机械设备 后轮轴承 4(盘) 详见采购文件 340.00 - 1-200 其他机械设备 后轮油封座 2(个) 详见采购文件 110.00 - 1-201 其他机械设备 轮胎螺丝 50(套) 详见采购文件 2,000.00 - 1-202 其他机械设备 钢圈 4(套) 详见采购文件 2,000.00 - 1-203 其他机械设备 半轴总成 2(根) 详见采购文件 380.00 - 1-204 其他机械设备 半轴螺丝 20(个) 详见采购文件 160.00 -1-205 其他机械设备 半轴油封 5(套) 详见采购文件 75.00 - 1-206 其他机械设备 半轴螺丝锥套 20(个) 详见采购文件 160.00 - 1-207 其他机械设备 大梁卡子 8(根) 详见采购文件 520.00 - 1-208 其他机械设备 后尾灯 5(对) 详见采购文件 600.00 - 1-209 其他机械设备 前弓子前托架 4(个) 详见采购文件 600.00 - 1-210 其他机械设备 前弓子后托架 4(个) 详见采购文件 600.00 - 1-211 其他机械设备 弓子轴 5(根) 详见采购文件 150.00 - 1-212 其他机械设备 前中心螺丝 5(根) 详见采购文件 75.00 - 1-213 其他机械设备 后中心螺丝 5(根) 详见采购文件 100.00 - 1-214 其他机械设备 前弓子吊耳 5(个) 详见采购文件 500.00 - 1-215 其他机械设备 后弓子吊耳 1(个) 详见采购文件 100.00 - 1-216 其他机械设备 前弓子总成 4(架) 详见采购文件 4,800.00 - 1-217 其他机械设备 后弓子总成 4(架) 详见采购文件 5,000.00 - 1-218 其他机械设备 离合器拨叉 2(个) 详见采购文件 160.00 - 1-219 其他机械设备 离合器拨叉轴 2(根) 详见采购文件 200.00 - 1-220 其他机械设备 离合器拉杆 2(根) 详见采购文件
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 环保部门为降霾出奇招 治霾神器围着空气监测点转
    南方都市报报道了“治霾神器”可在一定程度上降低PM10的数值,即控制扬尘,但对能否降低PM2.5,即能否治理雾霾没有定论。多位专家受访时对其所谓的治霾功能持否定观点,中科院大气物理研究所研究员王跃思就直言,雾炮车就是个洒水的东西,说它能除霾不科学,原因在于大气是个超级流体,把部分污染物喷下来,很快会有其他地方的补充过来。  南都记者调查发现,尽管只能局部抑尘,但这个功能在多个城市被发挥得淋漓尽致,一些以高价购来的雾炮车,被安排在空气质量监测点附近作业,以此试图影响空气质量指数。  环保人士:数据好看但不符实  民间环保组织“好空气保卫侠”的发起人赵亮曾在石家庄、邢台、邯郸、郑州等地进行调研,发现这些地区存在空气监测点附近使用雾炮车洒水喷淋的情况。他表示,“确实会起到一些短时效果,监测点的数据会降低,因此这些地方会定时定点使用雾炮车”。  据了解,目前定量描述空气质量状况的指数是AQI(空气质量指数)。参与空气质量评价的主要污染物为细颗粒物、可吸入颗粒物、二氧化硫、二氧化氮、臭氧、一氧化碳等六项。通过洒水等方式,可降低空气中PM 10等数值,从而降低一定范围的AQI。  赵亮表示,这些数据虽然好看,但与城市真实空气质量不符,“我们发现,这些雾炮车通常都在监测点附近喷洒,很少真正开到城市里去用,所以监测数据是有偏差的”。  “我们在这些地方还看到,有1/4到1/3的监测点会设置在公园、近水环境等地方”,赵亮说,这样会导致空气质量检测出的结果比城市里实际情况更好。  环保组织公众环境研究中心主任马军告诉南都记者,近年来为了干扰空气质量监测数据,各种各样的造假手段都“发明”出来了。“最近最夸张的,是西安市 环保局长安分局主要官员用棉花堵塞空气采样器,导致数据异常。”马军说。此外,有些企业甚至会在污染源检测时直接调整检测参数,在检测设备上动手脚,影响 数据采集、传输。  至于雾炮车的所谓治霾功能,马军认为,雾炮车的问题在于范围小,“只能对局部地区的扬尘起一点作用,想要对付整个雾霾状况是不可能的。”  “监测点周边作业是受上级指令”  南都记者调查证实,在空气监测点附近使用雾炮车洒水喷淋的情况的确并不少见。  去年11月,福建媒体曾报道,有市民质疑在厦门市思明区的洪文一处空气监测点附近,常有一台雾炮车在作业。当时,就有市民质疑监测数据造假。  对此,思明区环卫处工作人员昨日告诉南都记者,雾炮车是环保局购买后交给该处使用的。而负责雾炮车作业的吴队长表示,该处有两台雾炮车,不仅在洪文 等区域作业,在地铁施工区域、拆迁工地等空气污染较重的地方也有作业。其称,“(作业是)按环保局安排的线路走”,他们只负责执行。吴队长认为,雾炮车对 抑制扬尘效果明显,至于降霾“有点作用”。  而在今年10月15日,兰州市安宁区环境保护局在官网上发出的“2016年10月14日区环保局巡查情况”,显示有以下记录:“检查监测点周边,雾炮车正作业”。  昨日,南都记者致电该局,工作人员承认,该局确有几台雾炮车,已在11月移交给区环卫局,而雾炮车作业对于降低环境监测指标“有一定作用”。工作人员称,使用雾炮车在监测点周边作业是受上级指令,由该局调度环卫局、城管执法局来实施,现时仍在进行。  影响监测数据以提升名次  12月6日,河北省邢台市政府官网发出部门动态稿《市城管执法局六项措施防治大气污染》。其中,“全面覆盖,提升效果”一节中提及,“达活泉公园环路每天湿扫2次,重污染天气增加到5次 利用湿墩布对设施进行保洁,用雾炮车对监测点周围进行降尘̷̷”  对此,南都记者昨日致电邢台市城管执法局,该局景观办一名工作人员称,凡气温在0摄氏度以上、天气允许,该局都会组织使用雾炮车对监测点周围进行降 尘,而从监测数据看,雾炮车对PM10有一定改善作用。这位工作人员还表示,邢台的大气质量此前位列全国倒数第一,而前几天降到了倒数第十,他认为这在于 “气候原因加政府措施”。  这类案例还包括福州市鼓楼区。该区环保局官网今年6月20日发出的“2015年鼓楼区环境保护大检查专项行动开展情况”提及,该区“科学调派2台雾炮车,对空气监测点位周边的路段进行喷雾作业,一周七天,每天6小时连续作业,大幅度减少了空气中的扬尘量。”  此外,今年3月,《人民日报》亦曾发出读者来信,批“空气质量监测站点做小动作”。文章称,“(作者的)朋友到某城市出差,所住旅馆附近有一个空气 质量监测站点,每隔一段时间,就有几辆雾炮车在监测点周边作业,洒水车也频繁出现。附近居民说,作业时段,监测点附近的空气质量明显改善”。文章称,这样 的“治理成效”注定无法对接公众感受。  采购潜规  业界人士解读标书:通用性少,排他性多  上月,华南某镇政府委托湖南三湘工程管理有限公司对雾炮车进行招标。南都记者从政府采购网上获得了招标通告和技术要求,并邀请了业界一位资深人士以此为例进行解读。  指定要求多项独特技术  该专家认为,对于这份标书,华南某企业的响应程度最高。根据这一标书的第1.16项,竞标雾炮的左右摆动必须由微电机驱动,该企业的雾炮符合此标准 第1.19项中,明确提出竞标雾炮具备遥控功能,而这正是华南某企业大力推广的新技术。  第4 。6项中,要求雾炮必须具备不低于40m m的消音双壁,这也符合华南某企业的特色。“就是两块板中间夹一层消音棉。”该专家质疑,雾炮的消音技术有很多,为什么唯独选用双壁消音?第4 。7项中,要求竞标方须提供中国机械工业委员会的第三方鉴定报告。该专家表示,并不知道所谓的“中国机械工业委员会”,市场上销售的雾炮,也不需要该“委 员会”提供的报告。南都记者通过检索也没有发现“中国机械工业委员会”的相关信息。  招标造假的可能性大  第4 。9项中,要求喷雾机具备“国家3C认证”,而除南方某企业以外,很少有企业取得这一认证。值得注意的是,该技术规范把雾炮称为“远程喷雾机”。据专家介 绍,华南某企业有这个名称的专利。如果其他厂家竞标成功,也要把产品名称改成“远程喷雾机”,但就有可能被起诉侵权。据了解,这场招标会将在本月14日开 标。  南都记者还曾以购买者的身份接触到另一家华南企业,亦获取了对方撰写的标书。在标书的第4 。6项中,写到风机叶片必须是钢制的,且做过动平衡测试。上述专家表示,只有大厂才会去做动平衡测试。在这些大厂中,又主要是前述两家华南企业采用钢制叶片。  该专家表示,标书的通用性要求越少,排他性要求越多,那么招标造假的可能性就越大。
  • 阿蛋学仪器 | 色谱分离的原理 So Easy !
    广州绿百草推出全新连载短篇小说【阿蛋学仪器】, 不定期的跟大家讲述关于学渣阿蛋在工作后不得不学习仪器知识的苦逼经历。夸张的剧情下都是以现实为原型,记得准时关注哦!夏天的风正暖暖吹过,穿过头发穿过耳朵.........话说在那天气晴朗万里无云的某个周末,正在抠着大脚丫吃着冰西瓜思考人生意义的胖##突然接到领导的一个任务。“喂。小胖呀~ 上头下了个任务,要拍一个化学知识视频,我看你一向最受学生欢迎,就随便摆弄一下吧。课题已经帮你选好了,色谱分析原理。”“额,不不不,虽然为了科学教育的发展我上刀山下火海都在所不辞,但是......”“别啰嗦,就这么定了。告诉你啊,给我做的好好的,不然你今年的考评....88”嘟嘟嘟。。。胖##现在已经无法继续好好玩耍了,学生喜欢他都是因为他风流一趟玉树临风知识渊博心地善良从不让人挂科呀~真是。。。冷冷清清凄凄惨惨戚戚呀~内心再抗拒,生活还是要继续的。胖##叫来了以前跟他一起打LOL的阿蛋,浑浑噩噩迷迷糊糊想了三天三夜的剧本,终于开拍了。( 导演和其它演员的召唤,这里就不详细说啦哈! )导演:色谱分析原理So Easy 剧组 Action!!!场景预设 ——色谱柱:为一间双门房子,一门可进,一门可出。分析的样品:胖##,高大威猛略胖。阿蛋,形象气质佳小明星(剧情需求,大家多多包涵,少吐些。)Part 1 —— 反相柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:众美女都喜欢帅哥,不断有人拉阿蛋的手并要求合影签名。胖##由于高大威猛,也有部分小萝莉喜欢,但是还是比阿蛋少,走的自然比阿蛋快。结果胖##和阿蛋的距离越来越远,出门的时候,已经分离的很好了。分离度3.0,柱效15万/m。反相柱分离注意事项:1)不可用于分离帅得离谱的人(非极性太强的物质),会造成美女互相踩伤践踏拥挤的现象,造成柱堵塞,柱压升高;心脏不好的美女会由于过于激动而休克,甚至兴奋而死,造成柱子过早老化,降低柱效。另外,还会造成吸附现象,出峰时间太久甚至不出峰。2)不可用于分离过于猥琐丑陋可怕的人(极性太强的物质),会导致美女流失,造成柱效下降,出峰时间太快,影响分离效果。不过这时有个色谱柱再生方法可以回复柱效,就说“牛掰了”的鞋正挥泪大甩卖,美女将迅速赶回,恢复柱效!Part 2 —— 正相柱分析原理屋子里有一大群男子,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:阿蛋由于太帅招人嫉妒率先被赶出来。胖##被同胞惺惺相惜,留下来吃饭唱K看电影,最后才依依不舍的含泪送别。分离度2.8,柱效13万/m。正相柱分离注意事项:并不适用于分离Gay男(无保留物质)。Part 3 —— 体积排阻色谱柱分析原理屋子里面变成了溶洞效果,溶洞里的洞有大有小,非常好玩。胖##和阿蛋从一个门进入,穿过溶洞,从另一个门出来。结果:本以为阿蛋个头小灵活,会早点爬出来,谁知是体积庞大的胖##先出来啦。因为两人一钻溶洞,便仿佛回到了童年,逮着洞就想钻。阿蛋个子小,钻来钻去玩得不亦乐乎。而胖##在意思到自己已非3岁的小胖胖后,害怕被小洞卡住而崴了,只好作罢,沿大路走了出来,扼腕叹息“时光蹉跎,青春少年已不复!”Part 4 —— 离子对色谱柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。胖##痛苦回忆:美女都喜欢帅哥,不断有人拉住阿蛋吟诗作对自拍萌萌哒,拉胖##的仅有几个发育不全的小萝莉。结果胖##和阿蛋渐行渐远。。。胖##对策:往事不堪回首,所以第二天再过这间屋子的时候,带上了他的必杀技——萌萌哒小鲜肉胖小子。结果:胖##抱着胖小子和阿蛋一起穿过屋子,美女们发现居然还有个小鲜肉,纷纷过来捏捏小脸蛋。“美女,敢吃青椒吗?” 胖小子搭配美女的功夫一点也不含糊呢。胖##色眯眯的看着围着的众美女,美其名曰为胖小子报仇,把美女的脸蛋一一捏了个编。直到胖小子微怒言 “爸比,我饿了!” ,才恋恋不舍的抱起小胖,发话 “最后再捏一遍!......” 阿蛋在门口,秒倒!Part 4 拍摄花絮 ——1)观众问:美女为什么喜欢小鲜肉抛弃阿蛋呢? 回复:现在流行小鲜肉。另外,女人总是有母爱的,这是与生俱来的本能,所以此处美女年龄要大些。呵呵。2)拍完这段以后,导演“卡”了N次。因为胖小子被捏后没有表现出天真烂漫可爱的样子,反而哭了N次,最终拍得胖小子又累又饿又痛才终被导演放行。3)Case结束时,镜头正面是胖##得意而归的表情,远端发现众美女一脸哀怨的正在揉脸,忿忿曰“死胖子,手够狠啊!̷�!”By the way, 这次拍摄的视频非常受欢迎,胖##终于又能在领导的眼皮底下好好思考人生了!想知道阿蛋后续又有怎样的遭遇?记得持续关注广州绿百草微信公众号~我们会不定期推出续集哦~关注广州绿百草微信公众号,获取更多资讯!
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 小知识—紫外检测器应用原理
    紫外检测器小知识  1、原理  紫外吸收检测器简称紫外检测器(ultraviolet ?detector,UVD),是基于溶质分子吸收紫外光的原理设计的检测器,其工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比。物理上测得物质的透光率,然后取负对数得到吸收度。  大部分常见有机物质和部分无机物质都具有紫外或可见光吸收基团,因而有较强的紫外或可见光吸收能力,因此UVD既有较高的灵敏度,也有很广泛的应用范围,是液相色谱中应用广泛的检测器。  为得到高的灵敏度,常选择被测物质能产生大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  紫外检测器的波长范围是根据连续光源(氘灯)发出的光,通过狭缝、透镜、光栅、反射镜等光路组件形成单一波长的平行光束。通过光栅的调节可得到不同波长。波长范围应该是根据光源来确定的,不同光源波长范围也不一样。  光波根据光的传播频率不一样而划分的。紫外的测量范围一般为0.0003---5.12(AUFS),常用为0.005---2.0(AUFS)。紫外光的范围一般指200-400 nm。吸收度单位AU (absorbance unit) 是相当于多少伏的电压,范围的大小应该适中较好,实际工作中一般就需要1AU左右。  2、用途  紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质。紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm 延伸。  紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测。一般当物质在200-400 nm 有紫外吸收时,考虑用紫外检测器。  3、优点  紫外吸收检测器不仅灵敏度高、噪音低、线性范围宽、有较好的选择性,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。紫外检测器对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此即使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。  不足之处在于对紫外吸收差的化合物如不含不饱和键的烃类等灵敏度很低。
  • 江苏省计量院4个声学实验室通过验收达到国内顶尖水平
    日前,江苏省计量院全消音室、半消音室、隔声室和混响室四个声学实验室经过中国计量院专家为期3天的检测,顺利通过验收,各项技术指标达到国内顶尖水平,堪称江苏最安静的地方。   全消音室在空调通风系统关闭、环境无强振动的条件下,本底噪声低于5dBA,在环境无强振动、空调通风系统运行条件下,本底噪声低于12dBA。半消音室在空调通风系统关闭、环境无强振动的条件下,本底噪声低于6dBA,在环境无强振动、空调通风系统运行条件下,本底噪声低于15dBA。另外,隔声室和混响室验收指标大大优于设计指标。   声学检测与百姓生活密切相关,这些实验室可广泛应用于空调、洗衣机、冰箱等各类家电及大中型通讯设备、工业机床的声学参数测量,喇叭、扬声器等电声元件的声学特性测量,房门、窗、墙体等各型建筑结构及各类隔声屏障的隔声量测量,各类材料的吸声量测量,及汽车NVH的相关研究等领域。
  • PM2.5的测试方法及PM2.5传感器的工作原理
    细颗粒物又称细粒、细颗粒、PM2.5。细颗粒物指环境空气中空气动力学当量直径小于等于2.5微米的颗粒物。它能较长时间悬浮于空气中,其在空气中含量浓度越高,就代表空气污染越严重。虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响。与较粗的大气颗粒物相比,PM2.5粒径小,面积大,活性强,易附带有毒、有害物质(例如,重金属、微生物等),且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。目前测量PM2.5的方法主要有以下5种:一种:红外法和浊度法红外由于光线强度不够,只能用浊度法测量。所谓浊度法,就是一边发射光线,另一边接收,空气越浑浊光线损失掉的能量就越大,由此来判定目前的空气浊度。实际上这种方法是不能够准确测量PM2.5的,甚至光线的发射、接收部分一旦被静电吸附的粉尘覆盖,就会直接导致测量不准确。这种方法做出来的传感器只能定性测量(可以测出相对多少),不能定量测量(因为数值会飘)。更何况这种方法也区分不出颗粒物的粒径来,所以凡是用这种传感器的性能都相对要差一些。第二种:激光法和粒子计数法就是激光散射,而不是直接测量浊度,这一类的传感器共同的特点就是离不开风扇(或者用泵吸),因为这种方法空气如果不流动是测量不到空气中的悬浮颗粒物的,而且通过数学模型可以大致推算出经过传感器气体的粒子大小,空气流量等,经过复杂的数学算法,最终得到比较真实的PM2.5数值,这一类传感器是激光散射,对静电吸附的灰尘免疫,当然如果用灰尘把传感器堵死了,自然也不可能测到。第三种:Beta射线法Beta射线仪是利用Beta射线衰减的原理,环境空气由采样泵吸入采样管,经过滤膜后排出,颗粒物沉淀在滤膜上,当β射线通过沉积着颗粒物的滤膜时,Beta射线的能量衰减,通过对衰减量的测定便可计算出颗粒物的浓度。Beta射线法颗粒物监测仪由PM10采样头、PM2.5切割器、样品动态加热系统、采样泵和仪器主机组成。流量为1m3/h的环境空气样品经过PM10采样头和PM2.5切割器后成为符合技术要求的颗粒物样品气体。在样品动态加热系统中,样品气体的相对湿度被调整到35%以下,样品进入仪器主机后颗粒物被收集在可以自动更换的滤膜上。在仪器中滤膜的两侧分别设置了Beta射线源和Beta射线检测器。随着样品采集的进行,在滤膜上收集的颗粒物越来越多,颗粒物质量也随之增加,此时Beta射线检测器检测到的Beta射线强度会相应地减弱。由于Beta射线检测器的输出信号能直接反应颗粒物的质量变化,仪器通过分析Beta射线检测器的颗粒物质量数值,结合相同时段内采集的样品体积,最终得出采样时段的颗粒物浓度。配置有膜动态测量系统后,仪器能准确测量在这个过程中挥发掉的颗粒物,使最终报告数据得到有效补偿,接近于真实值。第四种:微量振荡天平法微量振荡天平法是在质量传感器内使用一个振荡空心锥形管,在其振荡端安装可更换的滤膜,振荡频率取决于锥形管特征和其质量。当采样气流通过滤膜,其中的颗粒物沉积在滤膜上,滤膜的质量变化导致振荡频率的变化,通过振荡频率变化计算出沉积在滤膜上颗粒物的质量,再根据流量、现场环境温度和气压计算出该时段颗粒物标志的质量浓度。微量振荡天平法颗粒物监测仪由PM10采样头、PM2.5切割器、滤膜动态测量系统、采样泵和仪器主机组成。流量为1m3/h,环境空气样品经过PM10采样头和PM2.5切割器后,成为符合技术要求的颗粒物样品气体。样品随后进入配置有滤膜动态测量系统(FDMS)的微量振荡天平法监测仪主机,在主机中测量样品质量的微量振荡天平传感器主要部件是一支一端固定,另一端装有滤膜的空心锥形管,样品气流通过滤膜,颗粒物被收集在滤膜上。在工作时空心锥形管是处于往复振荡的状态,它的振荡频率会随着滤膜上收集的颗粒物的质量变化发生变化,仪器通过准确测量频率的变化得到采集到的颗粒物质量,然后根据收集这些颗粒物时采集的样品体积计算得出样品的浓度。5、重量法我国目前对大气颗粒物的测定主要采用重量法。其原理是分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PM10被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PM10的浓度。必须注意的是,计量颗粒物的单位ug/m3中分母的体积应该是标准状况下(0℃、101.3kPa)的体积,对实测温度、压力下的体积均应换算成标准状况下的体积。由于红外法测量PM2.5的传感器性能较差,且Beta射线法、微量振荡天平法、重量法三种方法的原理应用比较困难且价格较高,所以市面上比较多的是采用激光散射原理来测量PM2.5浓度的PM2.5传感器。 建大仁科空气质量变送器RS-PM-*-2是一款工业级通用颗粒物浓度变送器,采用激光散射测量原理,通过独有的数据双频采集技术进行筛分,得出单位体积内等效粒径的颗粒物粒子个数,并以科学独特的算法计算出单位体积内等效粒径的颗粒物质量浓度,以485 接口通过 ModBus-RTU 协议进行数据输出。可用于室外气象站、扬尘监测、图书馆、档案馆、工业厂房等需要PM2.5或 PM10浓度监测的场所。
  • 一看就懂|动图解析16种仪器原理
    p span style=" color: rgb(31, 73, 125) " strong 紫外分光光谱UV /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title=" 紫外分光光谱UV.jpeg" width=" 400" height=" 290" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 290px " / /strong /span /p p strong i 分析原理 /i /strong :吸收紫外光能量,引起分子中电子能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :相对吸收光能量随吸收光波长的变化 /p p i strong 提供的信息 /strong /i :吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 /p p style=" text-indent: 2em " 物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title=" 光线传输.gif" / br/ /p p style=" text-align: center " strong 光线传输 /strong /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title=" 光衍射.gif" / /strong /p p style=" text-align:center" strong 光衍射 /strong br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title=" 探测.gif" / br/ /p p style=" text-align: center " strong 探测 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title=" 数据输出.gif" / br/ /p p style=" text-align: center " strong 数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 红外吸收光谱法IR /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title=" 红外吸收光谱法IR.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 /p p i strong 谱图的表示方法 /strong /i :相对透射光能量随透射光频率变化 /p p strong i 提供的信息 /i /strong :峰的位置、强度和形状,提供功能团或化学键的特征振动频率 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title=" 红外光谱测试.gif" / br/ /p p style=" text-align: center " strong 红外光谱测试 /strong /p p style=" text-indent: 2em " 红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。 /p p style=" text-indent: 2em " 以下是甲醇红外光谱分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title=" 甲醇红外光谱结构分析过程1.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title=" 甲醇红外光谱结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title=" 甲醇红外光谱结构分析过程3.gif" / /p p style=" text-align:center" strong 甲醇红外光谱结构分析过程 /strong br/ /p p span style=" color: rgb(31, 73, 125) " strong 核磁共振波谱法NMR /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title=" 核磁共振波谱法NMR.jpeg" width=" 400" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 240px " / /strong /span /p p i strong 分析原理 /strong /i :在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :吸收光能量随化学位移的变化 /p p i strong 提供的信息 /strong /i :峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title=" NMR结构.gif" / br/ /p p style=" text-align: center " strong NMR结构 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title=" 进样.gif" / br/ /p p style=" text-align: center " strong 进样 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title=" 样品在磁场中.gif" / br/ /p p style=" text-align: center " strong 样品在磁场中 /strong /p p style=" text-indent: 2em " 当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style=" float:none " title=" 核磁共振及数据输出1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style=" float:none " title=" 核磁共振及数据输出2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style=" float: none width: 400px height: 225px " title=" 核磁共振及数据输出3.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 核磁共振及数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 质谱分析法MS /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title=" 质谱分析法MS.jpeg" width=" 400" height=" 282" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 282px " / /strong /span /p p strong i 分析原理 /i /strong :分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化 /p p i strong 提供的信息 /strong /i :分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 /p p i strong FT-ICR质谱仪工作过程: /strong /i /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title=" 离子产生.gif" / br/ /p p style=" text-align: center " strong 离子产生 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title=" 离子收集.gif" / br/ /p p style=" text-align: center " strong 离子收集 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title=" 离子传输.gif" / br/ /p p style=" text-align: center " strong 离子传输 /strong /p p style=" text-indent: 2em " FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style=" float:none " title=" 离子回旋运动1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style=" float:none " title=" 离子回旋运动2.gif" / /p p style=" text-align:center" strong 离子回旋运动 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title=" 傅立叶变换.gif" / br/ /p p style=" text-align: center " strong 傅立叶变换 /strong /p p span style=" color: rgb(31, 73, 125) " strong 气相色谱法GC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title=" 气相色谱法GC.jpeg" width=" 400" height=" 364" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 364px " / /strong /span /p p i strong 分析原理 /strong /i :样品中各组分在流动相和固定相之间,由于分配系数不同而分离 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :峰的保留值与组分热力学参数有关,是定性依据 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title=" 气相色谱仪检测流程.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 气相色谱仪检测流程 /strong /p p style=" text-indent: 2em " 气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title=" 注射器.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 注射器 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title=" 色谱柱.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 色谱柱 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title=" 检测器.gif" width=" 400" height=" 212" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 212px " / br/ /p p style=" text-align: center " strong 检测器 /strong /p p span style=" color: rgb(31, 73, 125) " strong 凝胶色谱法GPC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title=" 凝胶色谱法GPC.jpeg" width=" 400" height=" 298" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 298px " / /strong /span /p p i strong 分析原理 /strong /i :样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :高聚物的平均分子量及其分布 /p p style=" text-indent: 2em " 根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title=" 只依据尺寸大小分离,大组分最先被洗提出.gif" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / br/ /p p style=" text-align: center " strong 只依据尺寸大小分离,大组分最先被洗提出 /strong /p p style=" text-indent: 2em " 色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title=" 直径小于孔径的组分进入凝胶孔道.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 直径小于孔径的组分进入凝胶孔道 /strong /p p style=" text-indent: 2em " 小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title=" 依据尺寸差异,样品组分分离.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 依据尺寸差异,样品组分分离 /strong /p p style=" text-indent: 2em " 体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。 /p p span style=" color: rgb(31, 73, 125) " strong 热重法TG /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title=" 热重法TG.jpeg" width=" 400" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 268px " / /strong /span /p p i strong 分析原理 /strong /i :在控温环境中,样品重量随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品的重量分数随温度或时间的变化曲线 /p p strong i 提供的信息 /i /strong :曲线陡降处为样品失重区,平台区为样品的热稳定区 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title=" 自动进样过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 222px " / br/ /p p style=" text-align: center " strong 自动进样过程 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程2.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 热重分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 静态热-力分析TMA /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title=" 静态热-力分析TMA.png" width=" 400" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 400px " / /p p i strong 分析原理 /strong /i :样品在恒力作用下产生的形变随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品形变值随温度或时间变化曲线 /p p i strong 提供的信息 /strong /i :热转变温度和力学状态 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title=" TMA进样及分析1.gif" style=" float: none width: 400px height: 223px " width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title=" TMA进样及分析2.gif" width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 223px " / /p p style=" text-align: center " strong TMA进样及分析 /strong /p p strong span style=" color: rgb(31, 73, 125) " 透射电子显微技术TEM /span /strong /p p style=" text-align:center" strong span style=" color: rgb(31, 73, 125) " img src=" https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title=" 透射电子显微技术TEM.jpeg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /span /strong /p p i strong 分析原理 /strong /i :高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 /p p i strong 谱图的表示方法 /strong /i :质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 /p p i strong 提供的信息 /strong /i :晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title=" TEM工作图.gif" / br/ /p p style=" text-align: center " strong TEM工作图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title=" TEM成像过程.gif" / br/ /p p style=" text-align: center " strong TEM成像过程 /strong /p p style=" text-indent: 2em " STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title=" STEM分析图.gif" / br/ /p p style=" text-align: center " strong STEM分析图 /strong /p p style=" text-indent: 2em " 入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title=" EELS原理图.gif" / br/ /p p style=" text-align: center " strong EELS原理图 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描电子显微技术SEM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title=" 扫描电子显微技术SEM.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /p p i strong 分析原理 /strong /i :用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 /p p i strong 谱图的表示方法 /strong /i :背散射象、二次电子象、吸收电流象、元素的线分布和面分布等 /p p i strong 提供的信息 /strong /i :断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title=" SEM工作图.gif" / br/ /p p style=" text-align: center " strong SEM工作图 /strong /p p style=" text-indent: 2em " 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title=" 电子发射图.gif" / br/ /p p style=" text-align: center " strong 电子发射图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title=" 二次电子探测图.gif" / br/ /p p style=" text-align: center " strong 二次电子探测图 /strong /p p style=" text-indent: 2em " 二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title=" 二次电子扫描成像.jpeg" / br/ /p p style=" text-align: center " strong 二次电子扫描成像 /strong /p p style=" text-indent: 2em " 入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title=" 背散射电子探测图.gif" / br/ /p p style=" text-align: center " strong 背散射电子探测图 /strong /p p style=" text-indent: 2em " 用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title=" EBSD成像过程.gif" / br/ /p p style=" text-align: center " strong EBSD成像过程 /strong /p p span style=" color: rgb(31, 73, 125) " 原子力显微镜AFM /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title=" 原子力显微镜AFM.jpeg" width=" 400" height=" 176" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 176px " / /p p i strong 分析原理 /strong /i :将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息 /p p i strong 谱图的表示方法 /strong /i :微悬臂对应于扫描各点的位置变化 /p p i strong 提供的信息 /strong /i :样品表面形貌的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title=" AFM原理:针尖与表面原子相互作用.gif" / br/ /p p style=" text-align: center " strong AFM原理:针尖与表面原子相互作用 /strong /p p style=" text-indent: 2em " AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title=" 接触模式.gif" / br/ /p p style=" text-align: center " strong 接触模式 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描隧道显微镜STM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title=" 扫描隧道显微镜STM.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /p p i strong 分析原理 /strong /i :隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。 /p p i strong 谱图的表示方法 /strong /i :探针随样品表面形貌变化而引起隧道电流的波动 /p p i strong 提供的信息 /strong /i :软件处理后可输出三维的样品表面形貌图 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title=" 探针.gif" / br/ /p p style=" text-align: center " strong 探针 /strong /p p style=" text-indent: 2em " 隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title=" 隧道电流.gif" / br/ /p p style=" text-align: center " strong 隧道电流 /strong /p p style=" text-indent: 2em " 针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title=" 三维图像1.gif" style=" float: none " / br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style=" float:none " title=" 三维图像2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style=" float:none " title=" 三维图像3.gif" / /p p span style=" color: rgb(31, 73, 125) " strong 原子吸收光谱AAS /strong /span br/ /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title=" 原子吸收光谱AAS.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /strong /span /p p i strong 分析原理 /strong /i :通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title=" 待测试样原子化.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / br/ /p p style=" text-align: center " strong 待测试样原子化 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title=" 原子吸收及鉴定1.gif" style=" float: none width: 400px height: 222px " width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title=" 原子吸收及鉴定2.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / /p p style=" text-align: center " strong 原子吸收及鉴定 /strong /p p span style=" color: rgb(31, 73, 125) " strong 电感耦合高频等离子体ICP /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title=" 电感耦合高频等离子体ICP.jpeg" width=" 400" height=" 255" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 255px " / /strong /span /p p i strong 分析原理 /strong /i :利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title=" Icp设备构造.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong Icp设备构造 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title=" 形成激发态的原子和离子.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 形成激发态的原子和离子 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title=" 检测器检测.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 检测器检测 /strong /p p span style=" color: rgb(31, 73, 125) " strong X射线衍射XRD /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title=" X射线衍射XRD.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 /p p style=" text-indent: 2em " 满足衍射条件,可应用布拉格公式:2dsinθ=λ /p p style=" text-indent: 2em " 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title=" XRD结构.jpeg" width=" 400" height=" 421" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 421px " / /p p style=" text-indent: 2em " 以下是使用XRD确定未知晶体结构分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title=" XRD确定未知晶体结构分析过程1.gif" style=" float: none " / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title=" XRD确定未知晶体结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title=" XRD确定未知晶体结构分析过程3.gif" / /p p style=" text-align: center " strong XRD确定未知晶体结构分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 纳米颗粒追踪表征 /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title=" 纳米颗粒追踪表征.jpeg" width=" 400" height=" 261" border=" 0" hspace=" 0" vspace=" 0" style=" text-align: center width: 400px height: 261px " / /p p i strong 分析原理 /strong /i :纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title=" 不同粒径颗粒的散射光成像在CCD.gif" width=" 400" height=" 168" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 168px " / br/ /p p style=" text-align: center " strong 不同粒径颗粒的散射光成像在CCD /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title=" 实际样品测试效果.gif" width=" 400" height=" 301" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 301px " / br/ /p p style=" text-align: center " strong 实际样品测试效果 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title=" 不同技术的数据对比.jpeg" width=" 400" height=" 377" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 377px " / br/ /p p style=" text-align: center " strong 不同技术的数据对比 /strong /p
  • 一次性使用压力监测磁定位射频消融导管获批上市
    近日,国家药品监督管理局经审查,批准了上海微创电生理医疗科技股份有限公司生产的“一次性使用压力监测磁定位射频消融导管”创新产品注册申请。该产品由射频消融导管、连接尾线和尾线连接盒组成。其中导管主体包含高扭矩管身和可弯曲的头部,头部装有铂铱电极,1个头端电极和3个环形电极。该产品在医疗机构中与上海微创电生理医疗科技股份有限公司生产的三维心脏电生理标测系统和心脏射频消融仪配合使用,用于药物难治性、复发性、症状性阵发性房颤的治疗。该产品采用了基于应变片原理压力传感技术、磁场定位技术、头端多孔盐水灌注技术与三维电生理标测系统,可为房颤患者的治疗提供整体解决方案,是国产首个具有压力感知功能的心脏射频消融导管。与传统心脏类射频消融导管相比,该产品可以实时测量导管头端和心壁之间触点压力值,更好的辅助术者完成手术,有效防止术中导管与组织贴靠力过大造成蒸汽爆裂或过小引起消融不完全,可缩短医生学习曲线,达到更优的远期治疗成功率。该产品获批上市有利于该技术的临床应用推广和降低临床治疗费用,使更多房颤患者受益。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。
  • 【仪器百科】光合作用测定仪工作原理与参数指标
    工作原理植物光合作用测定仪是一款用于检测植物叶片光合作用的实验仪器,适用于人工气候室、温室、大棚、大田等环境。该测定仪通过多项参数的测量,分析植物在不同环境条件下的光合作用情况。其工作原理主要包括以下几个方面:CO2分析:采用非扩散式红外CO2分析技术,测定空气中的CO2浓度,通过监测植物周围CO2浓度变化,计算出植物的光合作用速率。温湿度测量:利用高精度传感器,测量环境温度、环境湿度、叶室温度、叶室湿度及叶面温度,提供植物生理状态及环境条件的全面信息。光合有效辐射(PAR):通过光传感器测定植物接收到的光合有效辐射强度,了解光照对植物光合作用的影响。气体交换测量:通过测量气孔导度、蒸腾速率及胞间CO2浓度,评估植物叶片的气体交换效率和水分利用情况。通过上述测量数据,光合作用测定仪可以计算出植物的光合速率(Pn)、水分利用率(WUE)、呼吸速率(Rd)及蒸腾比(TR)等重要生理参数,为植物生长生理、光合生理及胁迫生理研究提供可靠的数据支持。了解更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C561710.html参数指标1、空气CO2浓度测量技术:非扩散式红外CO2分析测量范围:0-3000 μmol/mol (ppm)分辨率:0.0005 ppm误差:≤ 3% FS2、环境温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃3、环境湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH4、叶室温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃5、叶室湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH6、叶面温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃7、大气压力测量范围:30-110 kPa分辨率:0.01 kPa误差:≤ ±0.06 kPa8、光合有效辐射(PAR)测量范围:0-3000 μmol/(m² s)分辨率:0.001 μmol/(m² s)误差:≤ ±5 μmol/(m² s)9、光合速率(Pn)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)10、气孔导度(Gs)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)11、蒸腾速率(Tr)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)12、胞间CO2浓度(Ci)单位:μmol/mol分辨率:0.001 μmol/mol13、水分利用率(WUE)单位:μmol CO2/mol H₂ O分辨率:0.001 μmol CO2/mol H₂ O14、呼吸速率(Rd)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)15、蒸腾比(TR)单位:μmol H₂ O/mmol CO2分辨率:0.001 μmol H₂ O/mmol CO2植物光合作用测定仪的高精度和多参数测量能力,使其成为农业科研、教学、园艺、草业、林业等领域中不可或缺的重要工具。农业科研植物光合作用测定仪在农业科研中用于评估作物光合作用效率,筛选高效能品种,优化栽培技术,并研究环境变化对作物生长的影响,从而提升农业生产力。教学在教学中,该仪器为植物生理学和生态学课程提供实验平台,帮助学生理解植物光合作用原理,培养科研能力和实验技能,通过多参数测量了解植物在不同环境下的生理响应。园艺园艺领域利用该仪器监测花卉和观赏植物的光合作用,调节温室环境,优化生长状态。它还能帮助选育具观赏价值和抗逆性的品种,并评估病虫害防治效果。草业在草业中,该仪器用于评估牧草生长状况和生产力,研究不同品种的适应性和生产潜力。还可用于草地改良和生态修复,指导草地管理和保护措施。林业林业领域通过测定仪监测树木光合作用,评估森林健康状况和碳吸收能力。它提供树木生理响应数据,帮助制定森林管理策略,并研究树木对环境胁迫的适应机制,指导林木品种选育和改良。植物光合作用测定仪在以上各领域中提供重要技术支持,促进了科研进步和产业发展。
  • 微生物气溶胶浓缩器工作原理怎样使用
    青岛路博的马德我不敢说我们的产品一定如何但我敢说,我们的服务一定真诚只要您有需要,我们有能力,一定让您满足 我们的产品不仅仅您看到的这条,还有许多对于环保的器材,有关环保的仪器仪表您有需要,尽管联系公司名称:青岛路博环保科技有限公司地址:青岛市城阳区金岭工业园锦宏西路与微生物气溶胶浓缩器是基于虚拟冲击浓缩法原理 ,为解决低浓度微生物气溶胶采集问题而研制的一种具有微生物气溶胶前置浓缩功能、且与标准微生物采样器配套的新型仪器,旨在提供一种高效率生物浓缩器,为微生物污染的检测和研究提供支持。 本产品符合标准《GB/T 18204.5-2013 公共场所卫生检验方法 第5部分:集中空调通风系统》和卫生行业标准《WS 394-2012 公共场所集中空调通风系统卫生规范》要求,采集集中空调送风,检测其中的嗜肺军团菌。采集流量大,使需要的粒子短时间浓缩到采样器中,避免长时间采样带来的生物活性损失,提高采样器的现场实用性。 主要技术指标:l 总气路流(50~130)L/min可调,允许误差±5%;l 接生物采样器(采样瓶)后浓缩气路流量(5~15)L/min可调,允许误差±5%;l 总气路流量及浓缩气路流量重复性误差±2%l 输入气路负载能力(接分离器):≥2KPal 浓缩气路负载能力:≥50KPal 对于3um以上生物粒子的捕集效率大于80%,理论浓缩比1:10。l 定时功能:1秒-99小时59分59秒l 双路同时采集l 流量手动调节l 备可升降云台,可根据现场情况调节采样头高度3米(或4米选配) 青岛路博建业有限公司是一家集环保科研、设计、生产、维护、销售和系统集成为一体的综合性高科技企业。我们不仅有的销售团队,还有专业的技术团队和售后服务人员,为你的购买使用提供一站式服务。为什么选路博1.路博有自己的工厂,有专业的技术团队,保证产品质量。2.路博有的销售团队和售后服务,一年质保,终身维护,可以视频教授产品使用方法或现场指导。3.厂家直销,没有中间商赚差价,保护客户利益.
  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 浅析电化学型气体传感器的工作原理和检测方法
    p   要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 /p p strong 1.电化学型气体传感器的结构 /strong /p p   电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 /p p   电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。 /p p strong 2.电传感器工作原理 /strong /p p   电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。 /p p strong 表1 各种电化学式气体传感器的比较 /strong /p table cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr class=" firstRow" td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 种类 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 现象 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 传感器材料 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 特点 /span /strong /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 恒电位电解式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 气体扩散电极,电解质水溶液 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 通过改变气体电极,电解质水溶液,电极电位等可测量CO、H sub 2 /sub S、HO sub 2 /sub 、SO sub 2 /sub 、HCl等 /span /p /td /tr tr td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子电极式 /span /strong /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电极电位变化 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子选择电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量NH sub 3 /sub 、HCN、H sub 2 /sub S、SO sub 2 /sub 、CO sub 2 /sub 等气体 /span /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电量式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量Cl sub 2 /sub 、NH sub 3 /sub 、H sub 2 /sub S等 /span /p /td /tr tr td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质式 /span /strong /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 测定电解质浓度差产生的电势 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 适合低浓度测量,需要基准气体,耗电,可测量CO sub 2 /sub sub 、 /sub NO sub 2 /sub 、H sub 2 /sub S等 /span /p /td /tr /tbody /table p 表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。 /p p 2.1 恒电位电解式气体传感器 /p p   恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示: /p p     I=(nfADC)/ σ /p p   式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。 /p p   在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。 /p p   自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、N sub x /sub O sub Y /sub (氮氧化物)、H sub 2 /sub S检测仪器等产品。这些气体传感器灵敏度是不同的,一般是H sub 2 /sub S& gt NO& gt NO sub b /sub & gt Sq& gt CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。 /p p   以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如H sub 2 /sub S、NO、NO sub b /sub 、Sq、HCl、Cl sub 2 /sub 、PH sub 3 /sub 等,还能检测血液中的氧浓度。 /p p 2.2离子电极式气体传感器 /p p   离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。 /p p   现以检测NH sub 3 /sub 传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NH sub 4 /sub sup + /sup ,同时水也微弱离解,生成氢离子H sup + /sup ,而NH4 sup + /sup 与H sup + /sup 保持平衡。将传感器侵入NH sub 3 /sub 中,NH sub 3 /sub 将通过隔膜向内部渗透,NH sub 3 /sub 增加,而H sup + /sup 减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NH sub 3 /sub 浓度。除NH sub 3 /sub 外,这种传感器海能检测HCN(氰化氢)、H sub 2 /sub S、Sq、C0 sub 2 /sub 等气体。 /p p   离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。 /p p 2.3电量式气体传感器 /p p   电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。 /p p   现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成H sup + /sup ,在两铂电极间加上适当电压,电流开始流动,后因H sup + /sup 反应产生了H sub 2 /sub ,电极间发生极化,发生反应,其结果,电极部分的H sub 2 /sub 被极化解除,从而产生电流。该电流与H sub 2 /sub 浓度成正比,所以检测该电流就能检测Cl sub 2 /sub 浓度。除Cl sub 2 /sub 外,这种方式的传感器还可以检测NH sub 2 /sub 、H sub 2 /sub S等气体。 /p p strong 3.传感器的检测 /strong /p p   电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NO sub 2 /sub 、O sub 2 /sub 、SO sub 2 /sub 等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。 /p p   综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。 /p
  • 光照度传感器的工作原理是什么?使用时应注意什么呢?
    光照度传感器是一种常用的检测装置,在多个行业中都有一定的应用。在很多地方我们都会看到光控开关这种设备,比如大街上的路灯、各个自动化气象站以及农业大棚里面,但当我们看到这种有个小球的盒子的时候,虽然知道这是光照度传感器,但是对于它还是不太了解,今天我们来了解一下光照度传感器。光照度传感器的工作原理光照度传感器采用热点效应原理,最主要是使用了对弱光性有较高反应的探测部件,这些感应原件其实就像相机的感光矩阵一样,内部有绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层,热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐射度成正比。透过滤光片的可见光照射到进口光敏二极管,光敏二极管根据可见光照度大小转换成电信号,然后电信号会进入传感器的处理器系统,从而输出需要得到的二进制信号。当然,光照度传感器还有很多种分类,有的分类甚至对上面介绍的结构进行了优化,尤其是为了减小温度的影响,光照度传感器还应用了温度补偿线路,这样很大程度上提高了光照度传感器的灵敏度和探测能力。光照度传感器的使用方法光照度传感器应安装在四周空旷,感应面以上没有任何障碍物的地方。将传感器调整好水平位置,然后将其牢牢固定,将传感器牢固地固定在安装架上,以减少断裂或在有风天发生间歇中断现象。壁挂型光照度传感器安装方式:首先在墙面钻孔,然后将膨胀塞放入孔中,将自攻螺丝旋进膨胀塞中。百叶盒型光照度传感器安装方式:百叶盒型光照度传感器一般应用在室外气象站中,可通过托片或折弯板直接安装在气象站横梁上。宽电压电源输入,10-30V均可。485信号接线时注意A/B条线不能接反,总线上多台设备间地址不能冲突。光照度传感器使用注意事项1.一定要先检查下包装是不是完好无损的,然后去核对变送器的型号和规格是不是跟所购买的的产品一样;如果有问题一定要尽快与卖家联系。2.使用光照度传感器的时候一定不能有外压力冲压光检测传感器,避免压力冲压下测量元件受损影响光照度传感器的使用或导致光照度传感器发生异常或压坏遮光膜产生漏水现象。一定要避免在高温高压环境下使用光照度传感器。3.用户在使用光照度传感器的时候禁止自己拆卸传感器,更加不能触碰传感器膜片,以免造成光照度传感器的损坏。4.使用光照度传感器之前一定要确认电源输出电压是不是正确;电源的正、负以及产品的正、负接线方式,保证被测范围在光照度传感器相应量程内并详细阅读产品说明书或咨询卖方。5.安装光照度传感器的时候,一定要保证受光面的清洁并置于被测面。6.严禁光照度传感器的壳体被刀或其他锋利的金属连接线及物体划伤,磕伤,砰伤,造成变送器进水损坏。
  • 苹果天线设计实验室首度曝光
    苹果17日在加州总部举行了iPhone 4新闻发布会,以回应最近被媒体热炒的iPhone 4信号门事件。新闻发布会结束后,苹果邀请数名记者和知名博客作者参观了它的天线设计实验室,介绍了它的无线电频率测试设备,首次对外公开其无线产品如 iPhone和iPad的设计过程。苹果高级工程师和天线专家鲁宾卡巴莱罗(Ruben Caballero)带领大约10名记者和博客作者参观了苹果的定制无线测试实验室。苹果无线测试实验室由数个消音室组成,用于检测每一款产品在不同环境 下的频率。            苹果天线设计实验室   在新闻发布会上,乔布斯强调iPhone 4的信号接收问题是手机产品中的一个普遍问题,他还特别列举了黑莓9000、宏达电Droid Eris和三星I8000等三款手机,声称它们也存在不同程度的信号接收问题。另外,乔布斯承认iPhone 4之前使用的信号强度算法是错误的,从而让iPhone 4的信号衰减问题看起来比实际情况更为严重。   在苹果内部,天线设计实验室被称作黑色实验室,因为它是一个比较隐秘的部门,甚至连苹果的部分员工也不知道它的存在。 苹果之所以对外公开该实验室的存在,主要是为了表明苹果在天线设计和无线测试上是非常认真的。   苹果营销副总裁菲尔希勒(Phil Schiller)称:“这是当今世界上最先进的射频研究实验室。 没有它,我们就不可能进行产品设计。”   每一个测试消音室都排满了蓝色金字塔形状的聚苯乙烯泡沫,那些泡沫可以吸收无线电频率辐射。 消音室中间还有一个机械臂,可以握持住iPad和iPhone等各种便携设备进行360度旋转,研究人员可以利用一款分析软件(具有讽刺意味的是,这款分析软件是在Windows XP系统上运行的)来检测每一款设备的无线电活动。 卡巴莱罗说,每一款设备都至少要在实验室中进行24小时的检测。   在另一个测试项目中,苹果还让人拿着设备在消音室内部坐30分钟,然后利用专业软件来分析设备的无线性能以及评估设备与人体的相互影响。 某些测试项目中还用到了模拟人头、手和脚的人造道具。   苹果的测试实验室看上去与Celecom的手机辐射测试实验室很相似。 无线产品厂商必须得到独立实验室的检测认证,独立实验室对无线厂商的各种产品进行检测,看它们是否符合联邦通讯委员会制定的可接受辐射标准的规定。   与众不同的是,苹果为了便于控制产品的设计和设计修改,建造了自己的实验室。 每一款样机在被确定成为苹果的正式产品之前,都需经过反复测试。 (当然,拥有自己的实验室还有助于苹果更好地保密。)   卡巴莱罗说,在iPhone 4成为正式产品之前,它的样机一共经过了大约两年时间的各种测试,然后苹果才确定最终的设计方案。   卡巴莱罗说:“天线设计可不是小事。”他回忆说,过去的天线只有一个单一的频率。   在参观的过程中,苹果向记者们展示了一辆装满了人造手的小货车,每一个人造手中都拿着一部iPhone 4手机。   苹果Mac电脑硬件高级副总裁鲍勃曼斯菲尔德(Bob Mansfield)说:“为了做好世界上最有挑战性的设计工作,我们必须这么做。”
  • 色度测定仪工作原理及仪器维护
    工作原理仪器使用 220V、100W,色温为 2750±50K 的内磨砂乳壳灯泡为标准光源。光源光经由乳白色玻璃片和日光滤色 33 玻璃片滤色后,所得到的标准光的光谱特性类似于自然光。标准光经由平面反射镜,棱镜组成二条平行光束,其大小形状完全相同,分别均匀地照射在标准色盘的颜色玻璃片上和比色管的试样上。标准色盘上有 26个 Ø14光孔,其中 25顺序装有(1~25)色号的标准颜色玻璃片,第 26孔为空白,色盘安装在仪器右侧由手轮转动。试验时用于选择正确的标准颜色。比色管为内径 Ø32毫米,高(120~130)mm的无色平底玻璃管。比色管由仪器顶部的小盖位置放入。观察目镜由凹镜和分隔栅组成,在目镜中可同时看到二个半圆色,其左边的为试样颜色。其右边的为标准色颜色,光学目镜具有光线调节和调焦能力,使用方便。仪器的维护1,光学目镜系统,已经调焦和光线调节正确,使用时不宜多动,如需调整需专业人士调整,或返修厂家。2,标准颜色玻璃片每隔半年,须用 SH/T0168规定的标定比色液作校验一次如发现色片颜色与相当色号的比色液颜色相差达一个色号时,应更换新的色盘或送请制造厂重新标定。3,请勿随意拆卸目镜。4,目镜表面附着脏物,影响观察,客户只能做简单处理,将目镜从仪器上取下,倒放在干净的平台上,用洁净的洗耳球,轻吹目镜表面,如问题未解决,必须返厂处理,或请专业人员进行清理。相关仪器ENDBT-0168石油产品色度测定仪符合SH/T0168-92标准,可与GB6540的16个色号相对应,适用于测定润滑油及其他石油产品的颜色。测定时将欲测定的石油产品试样注入比色管内,然后与标准色片相比较就可以确定其色度色号。仪器特点1、仪器由标准色盘、观察光学镜头、光源、比色管组成2、采用磨砂乳壳灯泡为发光源3、光源经滤色后能分别均匀照射在标准色盘的颜色玻璃片和比色管4、光学目镜具有光线调节和调焦能力,使用方便技术参数比色管内径:Φ32mm 高:120~130mm环境温度:5℃~40℃相对湿度:≤85%电源电压:交流220V±10% 50Hz±10%功率消耗:
  • 旋转蒸发器的原理和利与弊
    一,旋转蒸发仪的工作原理通过电子控制,使烧瓶在最适合速度下,恒速旋转以增大蒸发面积。通过真空泵使蒸发烧瓶处于负压状态。蒸发烧瓶在旋转同时置于水浴锅中恒温加热,瓶内溶液在负压下在旋转烧瓶内进行加热扩散蒸发。旋转蒸发器系统可以密封减压至 400~600毫米汞柱;用加热浴加热蒸馏瓶中的溶剂,加热温度可接近该溶剂的沸点;同时还可进行旋转,速度为50~160转/分,使溶剂形成薄膜,增大蒸发面积。此外,在高效冷却器作用下,可将热蒸气迅速液化,加快蒸发速率。二,旋转蒸发仪的利与弊旋转蒸发仪存在如下优点:⒈所有IKA艾卡的旋转蒸发仪都内置了一个升降马达,该装置可以在断电的时候自动将烧瓶提升到加热锅以上的位置。⒉由于液体样品和蒸发瓶间的向心力和摩擦力的作用,液体样品在蒸发瓶内表面形成一层液体薄膜,受热面积大;⒊样品的旋转所产生的作用力有效抑制样品的沸腾。综上特征以及其便利的特点,使现代化的旋转蒸发仪可用于快速、温和地对绝大多数样品进行蒸馏,即使是没有操作经验的操作者也能完成。推荐使用太康生物科技产品。旋转蒸发仪应用中最大的弊端是某些样品的沸腾,例如乙醇和水,将导致实验者收集样品的损失。操作时,通常可以在蒸馏过程的混匀阶段时通过小心的调节真空泵的工作强度或者加热锅的温度防止沸腾。或者也可以通过向样品中加入防沸颗粒。对于特别难以蒸馏的样品,包括易产生泡沫的样品,也可以对旋转蒸发仪配置特殊的冷凝管。三,旋转蒸发仪的使用方法⒈高低调节:手动升降,转动机柱上面手轮,顺转为上升,逆转为下降.电动升降,手触上升键主机上升,手触下降键主机下降.⒉冷凝器上有两个外接头是接冷却水用的,一头接进水,另一头接出水,一般接自来水,冷凝水温度越低效果越好.上端口装抽真空接头,接真空泵皮管抽真空用的.⒊开机前先将调速旋钮左旋到最小,按下电源开关指示灯亮,然后慢慢往右旋至所需要的转速,一般大蒸发瓶用中,低速,粘度大的溶液用较低转速.烧瓶是标准接口24号,随机附500ml,1000ml两种烧瓶,溶液量一般不超过50%为适宜.⒋使用时,应先减压,再开动电机转动蒸馏烧瓶,结束时,因先停电动机,再通大气,以防蒸馏烧瓶在转动中脱落。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 高压漏电起痕试验机的测试原理是什么?
    高压漏电起痕试验机的测试原理是什么?实验原理:漏电起痕试验是在固体绝缘材料表面上,在规定尺寸(2mm×5mm) 的铂电极之间,-施加某一电压并定时(30s)定高度(35mm)滴下规定液滴体积的导电液体(0.1%NH 4CL),用以评价固体绝缘材料表面在电场和潮湿或污染介质联合作用下的耐漏电性能,测定其相比电痕化指数(CT1) 和耐电痕化指数(PT1) 。主要配件 序号型号产地1箱体(可选不锈钢箱体)宝钢A3钢板,喷塑2变压器浙江二变3调压器正泰4继电器及底座正泰5漏电保护器正泰6按钮正泰7计时器欧姆龙8短路电流智能表上海9温控器日本欧姆龙10导线上海启帆11计数器欧姆龙12无线控制器上海埃微自主研发13电磁阀亚德克在操作过程中要注意的事项:1、在操作过程中,人员应该注意个人防护,避免漏电受伤或被溶液沾染到口、眼部位造成伤害2、输入电源AC220±2%。3、排气管应通出窗外。4、在对样品进行时,请勿打开仓门,待试验完之后或当实验失效产生火烟时,先打开风扇排除烟雾后,再打开仓门进行作业。5、实验前须确认设备是否在计量有效期内,如超期则不能进行实验6、电源应用有地线的三极插座,保证接地可靠。主要技术指标:1) 空气环境:0~40°C;2) 相对湿度:≤80%;3) 无明显振动及腐蚀性气体的场所;4) 工作电压:AC220V±2% 50HZ±1%,1KVA;5) 试验电压:100~600V连续可调数显,电压表显示值误差:1.5%,显示值为:r.m.s;6) 延时电路:试验回路在(0.5±10%)A(r.m.s)或更大电流时延时(2±10%)S后动作;电极:a: 5㎜×2㎜矩形铂金电极和黄铜电极各一对;b: 电极尺寸要求:(5±0.1)㎜×(2±0.1)㎜×(≥12)㎜,其中一端凿尖角度为(30±2)°(即试验端呈30°±2°斜角),凿尖平面宽度为0.01㎜~0.1㎜;c: 电极间所成角度为60°±5°,间距为(4±0.1㎜);d: 对样品压力为:1.00N±0.05N;7) 滴液系统:a: (30±5)秒(开启滴液时间28S+开启滴液持续时间2S)自动计数、数显(可预置),50滴时间:(24.5±2)min b: 滴液针嘴到样品表面高度:35㎜±5㎜(附一个量规作测量参考) c: 滴液重量:20滴:0.380g~0.489g 50滴:0.997g~1.147g 8) 短路电流:两电极短路时的电流可调至(1±0.1)A,数显±1%,电流表显示值为有效值(r.m.s) 9) 仪器外形尺寸(宽*高*深)1100*1150*550㎜(0.5立方);700*385*1000㎜(0.1立方);10) 箱体由1.2厚的304不锈钢板制成,可订制0.75立方;11) 样品支撑平板:厚度≥4㎜的玻璃;12) 针嘴外径:A溶液:0.9㎜~1.2㎜B溶液: 0.9㎜~3.45㎜13) 滴液大小根据滴液系统而定;14) 风速:0.2M/S。产品特点:1、 本仪器支持5路试样同时进行试验,每路都有独立的控制系统进行控制2、 本仪器核心控制系统由西门子PLC控制,通过光电隔离方式进行采集电压和电流,有效解决抗干扰问题使数据采集保持稳定3、 本仪器显示部分是9寸触摸屏,操作方便,数据显示直观,能够实时显示每个试样的泄露电流4、 可以自由设定泄露电流数值,当实验中的电流超过设定电流值时,能够提示报警,并切断高压电源,并不影响其它试样继续做试验5、 滴液流量大小可根据实际需求自由设定6、 通过手动旋钮顺时针调到指定试验电压。7、 可以手动自由设定试验时间8、 本仪器具有排风和照明功能漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》是按GB4207、IEC60112等标准要求设计制造的专用检测仪器,适用于对电工电子产品、家用电器的固体绝缘材料及其产品模拟在潮湿条件下相比漏电起痕指数和耐漏电起痕指数的测定,具有简便、准确、可靠、实用等特点。满足标准:GB/T6553-2003 及 IEC60587:1984《评定在严酷环境条件下使用的电气绝缘材料耐电痕化和蚀损的试验方法》GB_T3048.7-2007电线电缆电性能试验方法_第07部分:耐电痕试验漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》
  • 别慌!气溶胶监测有它——MH1200-W型 空气微生物采样器
    2020年2月8日,上海举行了疫情防控工作发布会,宣布新型冠状病毒可以通过气溶胶传播。什么是气溶胶? 气溶胶指的是气体中液体或固体颗粒的悬浮物,尺寸直径在0.001~100微米之间,可以长时间在空气中漂浮。天上的云、雾、尘埃、工业和运输过程产生的烟、采矿或食物加工中形成的固体粉尘、人造的烟雾等实际上都属于气溶胶。气溶胶传播实际上就是附着在气溶胶上的微生物(细菌、病毒等)传播。 青岛明华电子积极响应疫情防控需求,将“MH1200-W型空气微生物采样器”赠与疫情一线,为疫情防控工作提供坚实的设备保障! MH1200-W型空气微生物采样器可以采集空气微生物、环境空气颗粒物(TSP/PM10/PM2.5)、环境空气氟化物。执行标准GMP 《药品食品生产质量管理规范》ISO 14698-1/2 《洁净室及相关控制环境的生物污染控制》GB/T 16293-2010 《医院工业洁净室(区)浮游菌的测试方法》JJG 943-2011 《总悬浮颗粒物采样器检定规程》产品优势1、八级安德森切割器 01234567F配置国际通用安德森二级、六级、八级切割器,采样流量28.3L/min,实现微生物专用采样2、采样流量跨度大(10~120)L/min可设置空气微生物采样流量(28.3L/min),小流量(16.7L/min、50L/min),中流量(100L/min)采样3、高负载15KP采用进口风机,负载能力强4、低噪音≤62dB(A)特殊风机消音结构,噪音柔和5、响应快、精度高采用电子流量计,恒流采样,流量响应快,控制精度高6、防雨防雪仪器具有防雨雪功能,避免无人值守时突降雨雪造成仪器损坏7、OLED自发光宽温屏幕采用OLED自发光宽温屏幕,寒冷环境下可正常工作
  • TA仪器2018年度巨献——流变学原理与前沿应用大师课程
    本次为期两天的流变大师课程旨在为化学家,石油工程师,生物医学研究者,药剂师以及材料工程师介绍流变基础理论知识,操作原理及在实际问题中的应用。课程将涵盖流变现象里的分子及微观结构基础包括聚合物,悬浮体,表面活性剂及生物高聚物网络。我们很荣幸地邀请到了大师中的大师-世界流变学权威、界面流变创始人gerald g. fuller院士、全球权威期刊polymer engineering and science编委、以及美国工程院院士christopher macosko教授亲自来到中国开授此次大师课程。同时,两位杰出的青年流变学家也将参与大师课程的部分授课内容。在此次大师课程中,两位世界级顶尖流变学家将从梳理基于聚合物、胶体、自组装表面活性剂、生物大分子凝胶等流变现象入手,使得参加课程者通过学习典型实际案例掌握流变学基本原理、定量表征技术、实验数据提炼和分析方法。 大师课程授课时间与地点:时间: 2018年4月9日-10日地点:上海市新园华美达广场酒店b楼3层兴园厅(上海市漕宝路509号b楼3层) 日程安排2018年4月9日(周一) 8:00学员登记8:30流变学介绍:主要现象,材料性能christopher macosko 院士9:30线性黏弹性amy shen 教授茶歇11:00线性黏弹性微观结构基础gerald g fuller 院士午餐13:00线性黏弹性课堂实践乔秀颖 博士13:30般粘性流体christopher macosko 院士14:30剪切流变仪christopher macosko 院士课间休息16:00剪切变稀,剪切增稠的微观结构基础gerald g fuller 院士17:00休会 2018年4月10日(周二)8:30非线性黏弹性christopher macosko 院士9:30拉伸流变仪gerald g fuller 院士茶歇11:00非线性现象的微观结构基础gerald g fuller 院士午餐及教员答疑13:00应力,絮凝悬浮体christopher macosko 院士14:00界面流变学gerald g fuller 院士课间休息15:30凝胶及实例分析christopher macosko 院士gerald g fuller 院士16:30微流变测量amy shen 教授17:30课程结束 授课专家(排名不分先后) gerald fuller, 斯坦福大学化学工程系fletcher jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。fuller教授曾获得流变学会宾汉奖章,并且是国家工程学院的院士。christopher w. macosko, 明尼苏达大学化学工程与材料科学系教授,国家工程学院院士。组织教学并著有广为使用的流变学教材。曾协助一些商用流变仪及大量测试方法的开发。他的团队目前致力于聚合物共混物,聚合物纳米复合材料及反应体系的流变学研究。曾获aiche及spe的奖项及流变学会宾汉奖章。 amy shen,日本冲绳科学技术研究所微流体/生物流体/纳流体部门教授,2014 年就职于日本之前曾于华盛顿大学担任机械工程系教员。shen教授的研究主要聚焦于复杂流体的微流体,粘弹性及小尺度惯性弹性的不稳定性,这些研究在纳米技术及生物技术方面得到应用。amy shen最近还被流变学学会选为学术委员。2003年荣获ralph e. powe junior faculty enhancement award奖项,2007年获得国家自然科学基金奖,2013获得富布莱特学者奖。 乔秀颖, 上海交通大学材料科学与工程学院副研究员,中国科学院长春应用化学研究所博士,曾于斯坦福大学,美国阿克伦大学,德国马克斯普朗克胶体与界面研究所进行博士后及国际合作研究项目。目前的研究方向包括智能及功能性高分子复合材料及纳米复合材料,聚合物融体流变学,悬浮体及表面活性剂。曾获得洪堡经验研究学者成员奖,并发表了70多篇文章及10多篇授权专利。 大师课程参加对象及相关费用1. 免费开放给拥有ta流变仪的高校及研究院所学生,研究生及以上学历(每个实验室2人免费名额)2. 企业界听众,酌收800元/2天华美达酒店自助午餐及茶歇费用。3. 课程人数:由于课程内容需要,仅限100名参会者。席位有限, 先到先得!
  • 第15期线上讲座:泵与比例阀的结构原理与常见故障
    答疑解惑时间:2009年7月8日---7月24日 热烈欢迎pandora98先生光临仪器论坛进行讲座!   在4月份我们刚在液相色谱与液质联用版面联合举办第12期的线上讲座---剖析液相色谱仪和液质联用仪,而今液相色谱版面又迎来了新一期在线讲座。   本期讲座我们邀请了pandora98先生就泵与比例阀的结构和工作原理以及常见故障展开一期专题讲座。本期讲座共分两章,第一章是对泵的单向阀、泵的比例阀、泵的梯度系统等的结构及工作原理进行详细阐述 第二章就对泵的单向阀漏液、泵的比例阀漏液、二元泵的问题等常见故障进行详细的解剖,并介绍自己的维修的经验及心得体会。   本次的线上讲座将开展16天(2009年7月8日---24日)。这次讲座以某一款仪器为例,主要讲解泵、泵的单向阀、比例阀的知识,重点介绍泵与比例阀的常见故障及pandora98老师的维修经验、心得。希望大家珍惜此次交流机会,共同参与探索液相色谱泵的奥妙之处,有利于提高液相色谱的操作能力。   再次感谢pandora98先生提供的丰富的讲座,也感谢pandora98先生与大家一起交流心得和经验。pandora98先生从事色谱分析工作多年,有丰富的实践经验,欢迎大家就液相色谱仪器泵的单向阀、比例阀的的问题前来提问,也欢迎液相色谱方面的高手前来与pandora98先生一起交流切磋。 第15期线上讲座泵与比例阀的结构原理与常见故障 线上导览论坛线上活动导览
  • 《污水处理在线监测仪器原理与应用(第二版)》最新出版
    近年来,我国的城市污水处理设施建设发展迅速,大中型污水处理厂已有3000余座,中小城镇的污水处理厂建设方兴未艾。这些污水处理厂的运行将获得巨大的环境效益,同时也将产生巨大的能耗和物耗。从实现国家节能减排和可持续发展的目标出发,发展污水处理的节能降耗技术具有重大的意义。污水处理厂达标运行和节能降耗技术的发展,必然会推动控制技术和在线监测仪器的广泛应用。 《污水处理在线监测仪器原理与应用(第二版)》介绍了污水处理中常用的在线监测仪器及其基本原理,内容包括测量仪表的基本知识、污水处理的常用监测指标、污水处理在线监测仪器、数据采集与通信、仪器仪表的日常维护与管理和在线监测仪器的应用及实例。在此基础上,根据国内外最新发展,增加了溶解氧的荧光检测技术、COD的光谱检测技术、基于人工嗅觉原理的氨氮检测技术、生物毒性检测和管网的液位检测等新技术,先进实用,是国内少有的详细介绍污水处理在线分析监测仪器的专业著作。 《污水处理在线监测仪器原理与应用(第二版)》作者清华大学环境学院施汉昌教授长期以来从事污水处理系统的优化运行和仪器化、污水生物处理反应动力学和生物传感器的研究,积累了大量研究成果和丰富的经验。本书正是施教授长期以来从事废水生物处理和传感器技术研究的研究成果和经验的总结,具有实用性、可操作性和指导性。 《污水处理在线监测仪器原理与应用(第二版)》于2013年11月出版,书号:9787122182852。点击查看购买链接
  • 博纳艾杰尔科技样品前处理仪器原理及操作培训班开讲啦!
    2016年9月21——23日,博纳艾杰尔科技样品前处理原理及操作培训班正式开讲啦!本次培训为期三天,课程包含样品前处理仪器讲解和上机操作两部分,涉及仪器原理,操作技巧,方法建立,故障排除等内容。为了保证效果,培训以小班形式进行,每期人数不超过10人。来自各地的多名客户参加了本次培训班。授课期间由博纳艾杰尔科技的应用工程师及仪器产品经理分别为大家讲解了样品前处理原理、方法开发及前处理仪器的相关介绍并现场实际操作练习了“果蔬中农残检测方法(spe、quechers方法)”“动物源性食品中兽残检测”。23日,第一期的样品前处理仪器原理及操作培训班已正式结束,课程的设置及讲师们的讲解获得了客户们的一致好评!27-29日,第二期培训班即将与您见面,欢迎您的到来!博纳艾杰尔客户培训中心讲师在为培训人员实地介绍操作
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制