当前位置: 仪器信息网 > 行业主题 > >

生物量子检测

仪器信息网生物量子检测专题为您提供2024年最新生物量子检测价格报价、厂家品牌的相关信息, 包括生物量子检测参数、型号等,不管是国产,还是进口品牌的生物量子检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合生物量子检测相关的耗材配件、试剂标物,还有生物量子检测相关的最新资讯、资料,以及生物量子检测相关的解决方案。

生物量子检测相关的资讯

  • 生物量监测在微生物(细胞)培养条件优化的应用
    上一篇推文,介绍了WIGGENS的CGQ生物量在线监测系统,在微生物(细胞)效能评价/菌种筛选的应用。 本期介绍生物量监测在微生物(细胞)培养条件优化中的应用。培养基为微生物(细胞)的生长提供环境条件以及碳源,氮源,生长因子等。培养基具有通用性,但每种培养物都有特殊性。在通用培养基的基础上针对培养物的特性做适当的调整或成分添加,对目的产物的高效产出,具有重要正作用。 下图是德国法兰克福歌德大学,使用CGQ生物量监测系统对Saccharomyces cerevisiae (一种酿酒酵母)在不同碳源组分中的生长曲线。 三种碳源Glc(葡萄糖)、Gal(半乳糖)、Mal(酰胺)不同浓度对酿酒酵母的生长有着明显的影响,对迟缓期和对数期的影响显著。碳源各组分浓度不同,对酿酒酵母进入平台期的时间甚至有超过6小时的差距影响。这对注重效率的工业发酵来说,减少迟缓期的时间段,有着重要的参考意义。 下图是,在M9培养基中,通过加入不同浓度的甘油,Escherichia coli (大肠杆菌)的生长曲线 从上图大肠杆菌的生长曲线可以看出,在M9培养基中,甘油浓度是对大肠杆菌最终生长量的最大影响因素。0.4%的甘油浓度对比0.1%的甘油浓度,对数生长期有明显提升,最终得到的生物量也是低浓度甘油的4倍以上。 下图是通过培养过程的摇瓶补液,CGQ进行的实时生物量监测。 在大肠杆菌培养中,通过LIS摇瓶补液系统,在摇瓶培养过程中进行在线补入缓冲液,缓冲液对pH值进行了调节。在使用LB培养基培养大肠杆菌的过程中,对生物量的限制的最大因素不是培养基组分,而是pH值,持续的进行pH调节,可以有效的增加生物量,提高培养基的利用率。更多的CGQ生物量监测应用,请参考如下文献:[1]Tripp et al (2017):Establishing a yeast-based screening system for discovery of human GLUT5inhibitors and activators (Nature – Scientific Reports)[2]Bruder, S. &Boles, E. (2017): Improvement of the yeast based (R)-phenylacetylcarbinol productionprocess via reduction of by-product formation (Biochemical EngineeringJournal).[3]Gottardi et al. (2017):De novo biosynthesis of trans-cinnamicacidderivatives in Saccharomycescerevisiae (AppliedMicrobiology and Biotechnology).[4]Bracharz et al. (2017):The effects of TORC signal interference on lipogenesis in theoleaginous yeast Trichosporonoleaginosus (BMCBiotechnology). [5]Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories).
  • 生物量实时监测测系统– CGQ
    什么是CGQ?CGQ (Cell Growth Quantifier)系统,是一种在线实时监测摇瓶中生物量设备,通过摇瓶底部光学检测器,对培养物进行实时跟踪检测。测量时不需要将摇瓶从摇床中取出,也无需停止摇床运作,CGQ 系统通过专利的光学测量技术,自动监测生物量浓度。使用CGQ可以获取高准确率的生物生长动力学曲线。相对于传统的取样检测有着无可比拟的优势。 传统摇瓶中生物量检测方式传统的手动取样检测有诸多弊端:* 时间成本高(每个摇瓶的测量数据获得需要几分钟) * 手动测量 ,无法完成定时自动测量* 效率低(定时,手动操作,数据获取密度低) * 侵入性(因为需要取样测量,培养体积会变小,培养环境会改变) * 运行成本高 (需要耗材) * 每次测量取样,存在污染风险 CGQ工作原理CGQ通过底部的LED灯发射光线,检测器通过OD600nm波长进行生物量测定。生物量与检测器的光线检测量成正比。 CGQ光学法检测原理 位于摇瓶底部的LED发光及检测器 使用者可精确的实时监测生物量和生长曲线 CGQ在线检测产品特点:* 非侵入性(放置于培养瓶底部,不与培养基接触)* 持续性好,不会对微生物/ 细胞生长造成影响* 自动测量;节省操作时间和成本* 实时测量* 对任何偏差反应迅速* 数据采集量大* 在设定时间内对工艺过程进行详细监测* 平行反应监测* 可以同时监测最多16 个摇瓶 操作步骤简单:将检测器置于摇瓶底部,用于监测生物量。检测组件与培养液没有接触在摇瓶上,罩上黑色罩子,防止外界光线对检测的干扰数据收集器收集传感器信号,发送到CGQ数据中心,进行信息处理CGQ软件,通过数据处理,显示各个检测摇瓶的生物量适用于各种现有实验室培养系统:CGQ 系统可以用于多种科学应用:生长曲线指引的蛋白表达;培养基开发/优化;菌种筛选/比较;监测限制因素以及染菌;分析生长动力学曲线;优化培养条件;在线监测嗜热微生物等
  • 生物量监测在微生物(细胞)效能评价/菌种筛选的应用
    上一篇推文,我们介绍了WIGGENS的CGQ生物量在线监测系统监测微生物或细胞的生长阶段,本期我们介绍生物量监测对微生物(细胞)效能评价/菌种筛选的应用。 首先我们来看一篇使用CGQ系统监测生物量的已发表文献。 Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories). Bruder对酿酒酵母的高效菌株(CEN.PK2-1C)和碳源依赖性生长特性监测。 上图中生物量曲线(OD值)是CGQ系统实时在线测量。葡萄糖浓度和酒精浓度用在线生化分析仪进行实时在线监测的数据。 从上图的数据曲线中我们可以清晰的看出生物生长量与培养基中葡萄糖浓度和酒精产量三者的关联性。发酵过程希望使用的菌种是能够更高效率的将糖类等底物转化为酒精。底物与产物的效能比是对酿酒酵母菌株效能的最直接评价。 CGQ和生化分析仪的在线监测联合使用,可以对菌种的综合效能进行直观评价。 对微生物或细胞的突变体研究,是寻找高效菌种的一种有效手段。突变体与野生型的对比研究,用于对突变体进行效能评估。 上图是德国最格赖夫斯瓦尔德大学(成立于1456年),使用CGQ系统对Staphylococcus aureus(金黄葡萄球菌)野生型和突变体生物量分析。 作为菌种筛选的有力工具,CGQ系统可以对同一培养条件下,或不同培养条件下的生物量进行实时监控,根据生物量的监测数据对菌种筛选提供数据支持。 CGQ与生化分析仪同时使用,可以对多参数相关性进行综合评估,有效的拓展了应用范围,可以通过多参数变化,对微生物效能进行综合评价。更多的CGQ生物量监测应用,请参考如下文献:[1]Tripp et al (2017):Establishing a yeast-based screening system for discovery of human GLUT5inhibitors and activators (Nature – Scientific Reports)[2]Bruder, S. &Boles, E. (2017): Improvement of the yeast based (R)-phenylacetylcarbinol productionprocess via reduction of by-product formation (Biochemical EngineeringJournal).[3]Gottardi et al. (2017):De novo biosynthesis of trans-cinnamic acidderivatives in Saccharomycescerevisiae (AppliedMicrobiology and Biotechnology).[4]Bracharz et al. (2017):The effects of TORC signal interference on lipogenesis in theoleaginous yeast Trichosporonoleaginosus (BMCBiotechnology). [5]Bruder et al. (2016):Parallelised onlinebiomass monitoring in shake flasks enables efficient strain and carbon sourcedependent growth characterisation of Saccharomycescerevisia (MicrobialCell Factories).
  • 生物量自动监测系统亲情科普
    p span style=" color: rgb(0, 176, 240) " strong 什么是CGQ? /strong /span /p p CGQ (Cell Growth Quantifier)系统,是一种在线实时监测摇瓶中生物量设备,通过摇瓶底部光学检测器,对培养物进行实时跟踪检测。测量时不需要将摇瓶从摇床中取出,也无需停止摇床运作,CGQ 系统通过专利的光学测量技术,自动监测生物量浓度。使用CGQ可以获取高准确率的生物生长动力学曲线。相对于传统的取样检测有着无可比拟的优势。 /p p br/ /p p span style=" color: rgb(0, 176, 240) " strong 传统摇瓶中生物量检测方式 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/2a99060a-0161-4d06-9bcb-f970c3259735.jpg" title=" 1.jpg" / /p p br/ /p p br/ /p p span style=" color: rgb(0, 176, 240) " strong 传统的手动取样检测有诸多弊端: /strong /span /p p 时间成本高(每个摇瓶的测量数据获得需要几分钟)& nbsp /p p 手动测量 ,无法完成定时自动测量 /p p 效率低(定时,手动操作,数据获取密度低)& nbsp /p p 侵入性(因为需要取样测量,培养体积会变小,培养环境会改变)& nbsp /p p 运行成本高 (需要耗材)& nbsp /p p 每次测量取样,存在污染风险 /p p span style=" color: rgb(0, 176, 240) " strong CGQ工作原理 /strong /span /p p CGQ通过底部的LED灯发射光线,检测器通过OD600nm波长进行生物量测定。生物量与检测器的光线检测量成正比。 /p p br/ /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/e8b65411-0758-47e4-90f1-377baab362a1.jpg" style=" " title=" 2.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/7ec2c9b1-1389-4d91-b53a-12a65b6d8c6d.jpg" style=" " title=" 3.jpg" / /p p span style=" color: rgb(0, 176, 240) " strong 使用者可精确的实时监测生物量和生长曲线 /strong /span /p p span style=" color: rgb(0, 176, 240) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/e9e74d80-932b-4e6e-8bc0-5a128944277b.jpg" title=" 4.jpg" / /p p span style=" color: rgb(0, 176, 240) " strong CGQ在线检测产品特点: /strong /span /p p 非侵入性(放置于培养瓶底部,不与培养基接触) /p p 持续性好,不会对微生物/ 细胞生长造成影响 /p p 自动测量;节省操作时间和成本 /p p 实时测量 /p p 对任何偏差反应迅速 /p p 数据采集量大 /p p 在设定时间内对工艺过程进行详细监测 /p p 平行反应监测 /p p 可以同时监测最多16 个摇瓶 /p p span style=" color: rgb(0, 176, 240) " strong 操作步骤简单: /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/561b2374-a548-42cc-8ada-44b606857be9.jpg" title=" 6.jpg" / /p p span style=" color: rgb(0, 176, 240) " strong 适用于各种现有实验室培养系统: /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/6aca9de1-7c75-4c34-832a-8a7ed64836e4.jpg" style=" " title=" 7.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/bcd718f5-b9d7-4031-8f0f-467e7ed8ccf8.jpg" style=" " title=" 8.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/9a177d36-10ca-4094-9a9d-8e11140122b9.jpg" style=" " title=" 9.jpg" / /p p CGQ 系统可以用于多种科学应用:生长曲线指引的蛋白表达;培养基开发/优化;菌种筛选/比较;监测限制因素以及染菌;分析生长动力学曲线;优化培养条件;在线监测嗜热微生物等。 /p p class=" t" strong span style=" color: rgb(0, 176, 240) " 关于北京桑翌实验仪器研究所 /span /strong /p p Shinetek Instruments Research Institute 成立于2000 年,是一家集研发、生产、贸易于一体的集体所有制股份合作企业,公司为国家级高新技术企业。公司主营业务是为生命科学研发生产领域的客户提供一站式解决方案,尤其专注于生物培养设备及生物培养上下游设备的研发生产及系统集成。 /p
  • LR1601 | 评估潮沟对滨海盐沼植被空间分布及其地上生物量的影响
    盐沼是地表过湿或季节性积水、土壤盐渍化并长有盐生植物的地段。滨海盐沼以草本植物为主,沿潮间带延伸,可忍受高盐条件和因涨潮引起的周期性淹水。盐沼植被生产力高,可为许多物种提供繁殖、觅食和越冬的场所。盐沼植被地上生物量(AGB)的估算为监测盐沼生态系统时空稳定性、生产力和地上碳储量提供了有用信息。然而,以往关于AGB的估算研究主要局限于站点水平,且通常基于单一植被类型。与野外地面调查方法相比,遥感(RS)卫星成本低、速度快、范围广,在盐沼植被结构和生物物理指标的空间估计方面更具优势。其中,UAV-LiDAR数据具有较高的时空分辨率,在滨海盐沼三维结构监测中具有很大潜力。然后目前,利用UAV-LiDAR数据估算盐沼植被AGB的研究有限。为了确定滨海盐沼潮沟对植被群落空间分布及其生物量的影响, 来自复旦大学的研究团队在上海崇明东滩滨海湿地(121°54′-121°55′E,31°27′-31°28′N)进行了研究,主要目的为:(1)探索UAV-LiDAR数据估算盐沼植物AGB的潜力;(2)研究潮沟对盐沼植物群落空间格局及其地上C储量的影响。作者于2019年9月基于DJI M600平台,利用LR1601-IRIS LiDAR传感器(北京理加联合科技有限公司,北京依锐思)收集UAV-LiDAR数据。于2019年9月27日和28日获取光学图像数据。于2019年10月和2020年10月收集植被样品,测量其高度和地上生物量,同时收集土壤样品,测量其土壤含水量和土壤盐分。基于盐沼植被群落所有样本,利用线性回归模型(多元线性回归,MLR)和5个机器学习回归模型,包括广义线性模型(GLM)、梯度提升机(GBM)、人工神经网络(ANN)、基于核正则化最小二乘(KRLS)和随机森林回归(RFR) 建立预测模型。通过R2和RMSE评估模型性能。研究区和采样点位置。【结果】滨海盐沼植被AGB实测值和预测值之间的关系。(a)MLR;(b)KRLS;(c)ANN;(d)GBM;(e)RFR;(f)GLM不同盐沼群落AGB的空间分布、验证和比较。(a)利用UAV-LiDAR数据和随机森林模型进行盐沼植被AGB制图。(b)不同盐沼群落AGB平均值。(c)AGB实测值和预测值的回归拟合。(d)AGB预测值的密度分布曲线。与潮沟不同距离的盐沼AGB的比较。(a)代表整个植被群落AGB变化趋势;(b-e)分别代表PA,IC,CS和SM的AGB变化趋势。D1:0-50 m;D2:50-100 m;D3:100-150 m;D4:150-200 m。【结论】基于UAV平台收集的高分辨率图像和LiDAR数据,估算了盐沼群落的空间分布和AGB。研究表明,通过改变土壤盐分和水分条件,与潮沟的距离会对群落空间格局和盐沼植被AGB具有重要影响。研究结果证实了UAV-LiDAR数据与随机森林算法相耦合可简便有效的检测盐沼AGB。综上所述,该研究提供了一种估算盐沼地上C储量的有效方法,强调了精确估算在制定合理的科学测量进行滨海生态系统管理和保护中发挥重要作用。
  • 利用UVP原位成像技术和机器学习估算全球浮游动物生物量分布
    法国LOV(Laboratoire d'Océanographie de Villefranche-sur-Mer;索邦大学和法国国家科学研究中心的联合研究单位)实验室的科学家Laetitia等人利用UVP的水下原位观测结果,结合机器学习模型,预测了19个浮游动物类群(ESD范围为1-50mm)的全球生物量分布,并探讨了其与环境因素的关系。研究背景浮游动物存在于全球所有海洋中,它们在海洋食物网和生物地球化学循环中发挥着重要的作用,是生物碳泵的主要驱动力,并为维持鱼类群落的稳定作出了巨大贡献。但浮游动物对环境条件很敏感,因此被认为是海洋变化的哨兵。它们的分布受到海洋中物理、化学、以及生物因素的相互作用及调控。为了更好地理解浮游动物的重要性,需要对浮游动物的生物量和功能群进行全球定量评估。目前只有少数浮游动物群体的全球分布得到了很好的研究,这些群体通常使用浮游生物网采样。但还有很多浮游动物类群非常脆弱,非常容易受到浮游生物网的破坏,或者易在固定液中保存不良,导致它们的生物量和在海洋生态系统中的生态作用被低估。在这种情况下,使用非侵入式的原位成像方法对浮游动物进行研究,显得尤为必要。在众多水下原位成像系统中,只有水下颗粒物和浮游动物原位成像系统(UVP)在全球范围内被广泛应用。研究过程Laetitia等人通过对全球范围内2008年-2019年之间获得的超过3549个UVP剖面(0-500米,图1)上的466872个个体进行了分类,估计了它们的个体生物量,并使用分类特定的转换因子将其转换为生物量。然后将这些生物量与环境变量(温度、盐度、氧气等)的气候学联系起来,使用增强回归树等机器学习算法,建立了生物量与环境因素之间的关系模型,以此预测全球浮游动物的生物量。图1 本研究使用的UVP数据集地图。透明度用来说明地图上点的密度。水下颗粒物和浮游动物图像原位采集系统UVP(图2)主要用于同时研究水下的大型颗粒物(80μm)和浮游动物(700μm),并在已知水体体积下对水中颗粒物和浮游动物进行量化。UVP使用传统的照明设备和经电脑处理的光学技术,来获得浮游动物原位数字图像,图像后续可以通过EcoTaxa浮游动物数据库共享平台(图3)来进行浮游动物种类鉴定及分类。图2 水下颗粒物和浮游动物图像原位采集系统UVP。左图为本实验中使用的UVP5(目前已停产);右图为升级版本UVP6-HF,与UVP5功能相同,且重量更轻图3 EcoTaxa浮游动物数据库共享平台对浮游动物进行种类鉴定及分类研究结果结果表明,浮游动物对环境很敏感,并会对环境的变化作出反应。全球浮游动物的生物量呈现出一定的空间分布模式,生物量最高的区域位于大约60°N和55°S附近(图4),而在海洋环流附近最低。此外,预计赤道的浮游动物生物量也会增加。保守预估,全球综合浮游动物生物量最小值(0-500 m)为0.403PgC。在不同的浮游动物群体中,桡足类为最主要的群体(35.7%,主要分布在极地地区),其次为真软甲类(26.6%)和有孔虫类(16.4%,主要分布在热带辐合带)。图4 利用分类群预测的0 ~ 500m全球生物量分布图图5 在世界范围、高纬度和低纬度模式下,0-200 m(A)和200-500 m(B)深度下预测平均生物量(PgC)的条形图,从高到低排列。研究结论尽管研究取得了一些重要发现,但也存在一些限制和挑战。机器学习模型对浮游动物数据库的大小比较敏感,并且对于稀有类群的预测能力较弱。因此,在未来的研究中,需要进一步改进模型以提高对这些类群的预测能力。总而言之,本研究提供了有关全球浮游动物生物量分布的重要预测结果,并揭示了其与环境因素之间的关系。这对于深入了解浮游动物在海洋食物网和生物地球化学循环中的作用具有重要意义。随着UVP等数字成像方法的不断发展和应用,科学家们将能够更准确地估计全球浮游动物的生物量分布,并为保护海洋生态系统提供更有效的决策依据。参考文献1. Drago L, Panaï otis T, Irisson J O, et al. Global distribution of zooplankton biomass estimated by in situ imaging and machine learning[J]. Frontiers in Marine Science, 2022, 9.
  • 英国新型激光雷达系统,使超快的低光检测成为可能
    近日,英国科学家首次展示了一种新型激光雷达系统,其使用量子探测技术在水下获取3D图像。该系统拥有极高的灵敏度,即便在水下极低的光线条件下也能捕获详细信息,可用于检查水下风电场电缆和涡轮机等设备的水下结构,也可用于监测或勘测水下考古遗址,以及用于安全和防御等领域。 在水下实时获取物体的3D图像极具挑战性,因为水中的任何粒子都会散射光并使图像失真。基于量子的单光子探测技术具有极高的穿透力,即使在弱光条件下也能工作。在最新研究中,研究人员设计了一个激光雷达系统,该系统使用绿色脉冲激光源来照亮目标场景。反射的脉冲照明由单光子探测器阵列检测,这一方法使超快的低光检测成为可能,并在光子匮乏的环境(如高度衰减的水)中大幅减少测量时间。激光雷达系统通过测量飞行时间(激光从目标物体反射并返回系统接收器所需的时间)来创建图像。通过皮秒计时分辨率测量飞行时间,研究人员可以解析目标的毫米细节。最新方法还能区分目标反射的光子和水中颗粒反射的光子,使其特别适合在高度浑浊的水中进行3D成像。他们还开发了专门用于在高散射条件下成像的算法,并将其与图形处理单元硬件结合使用。在3种不同浊度水平下的实验表明,在3 m距离的受控高散射场景中,3D成像取得了成功。量子检测技术在陆地上的应用,较多见诸报道。其实这种技术在水下的应用,同样空间广阔。例如,利用它进行海底地形勘测、水下考古、海底设备检测等等。不过,将这种技术应用于水下,绝对不意味着将其直接“照搬”。以在海洋中的应用为例,需要考虑海水的腐蚀性、洋流的运动、海底光照条件等多种特殊因素。因此需要使用特殊的耐腐蚀材料,进行特殊的设计,以更加适应水下环境的应用。
  • 微生物(细胞)生长阶段时期监测
    菌种是微生物培养的前提条件。优良的菌种,是微生物高效培养的前提。无论是摇床培养还是发酵培养,优良的菌种对培养的效果都有至关重要的意义。 微生物在生长过程会经历迟缓期、对数生长期、稳定期和衰亡期。微生物在培养和传代过程中会发生变异,次生产物,细胞活力变化等。微生物在生长过程 微生物对数期生理状态相对稳定,较稳定期次生代谢物少,且生命力旺盛。对数生长期是保持菌株优良性状不退化和存活率的阶段,也是最佳菌种保存期。 如何对培养过程中的微生物处于某个生长阶段进行判断?目前较多采用的方法是取样检测。取样检测会产生培养间断,染菌风险,无法连续获取数据等制约。无法获得准确的微生物生长过程信息取样检测 WIGGENS生物生长量在线监测设备CGQ系统,可以通过外置式光学传感系统,对培养的微生物生长状况进行实时监测。数据收集器会根据光学传感器的数据值,反应微生物生长情况,准确的把握微生物的生长状态。通过显示器直接读取生长曲线,可以判断微生物在当前培养条件的所处的生长时期。摇瓶培养在线监测 | 发酵罐培养在线监测 CGQ系统实时监测生长曲线,能够让操作者及时掌握微生物生长状况。举例:在发酵中,一般要控制发酵条件时,控制在微生物生长曲线稳定期结束前,比如酸奶发酵,时间过短,微生物还处于繁殖期,发酵效果不好;发酵时间过长,微生物处于衰退期,衰退期将产生很多代谢物,使产品风味发生变化,甚至影响质保;在污水处理中,需要根据不同稳定期选择不同菌种;酿造工业中,发酵时间的选择尤为重要。生物量实时监测 CGQ系统对微生物生长状态的监测,也直接反映了微生物的生长条件变化。通过对微生物生长状态的监测,对培养基成分优化,培养条件改进,工艺流程探索等具有重要指导性作用。 CGQ系统适用于原核细胞和真核细胞培养物实时监测。
  • 有望颠覆市场!量子点在食品安全检测领域的应用进展
    2023年10月4日,瑞典皇家科学院宣布,美国麻省理工学院的蒙吉巴文迪(Moungi G. Bawendi)、美国纳米晶体科技公司的阿列克谢埃基莫夫(Alexei I. Ekimov)和美国哥伦比亚大学的路易斯布鲁斯(Louis E. Brus)荣膺2023年诺贝尔化学奖,表彰他们 “发现和合成量子点”的科学贡献。在当今的材料应用领域中,纳米科学技术发展中的多个里程碑式工作来自于量子点相关研究。量子点(Quantum dots, QDs)已经成为备受瞩目的技术革命之一。图1. 化学家Moungi Bawendi(左)、化学家Louis Brus(中)和物理学家Alexei Ekimov(右)一、量子点是什么?量子点是一类半导体纳米微晶(Semiconductor Nanocrystals),简单来说,量子点是肉眼看不到的、极其微小的无机纳米晶体,直径在2-10nm。每当受到光或电的刺激,量子点便会发出有色光线,我们所看到的光线的颜色由量子点的组成材料和大小形状决定,一般来说,通过改变量子点晶体的尺寸可以改变发光颜色。具体而言,由不同的元素组成+量子点的方式进行命名,如“碳量子点”“硅量子点”。Alexei Ekimov是发现量子点的第一人,1981年他发现用氯化铜着色的玻璃,如果氯化铜颗粒大小不一样,玻璃颜色则会不一样,颗粒越小则越蓝,证实了量子点的尺寸发光效应。一般量子点颗粒越小,会吸收长波,颗粒越大,会吸收短波。比如2nm大小的量子点,可吸收长波,显示出蓝色。8nm大小的量子点,可吸收短波,呈现出红色。二、量子点在食品安全检测领域的应用因为量子点具有可调荧光和高光稳定性等独特特性,这些特性使其在食品安全检测中比传统荧光标记物更具优势。量子点的荧光可随尺寸和组成的改变而调节,从而实现对不同目标物的特异性检测。作为迄今为止人类发现的最优秀的发光材料,量子点已在食品安全检测领域展现出巨大潜力。首先,列举一些研究的范围:(1)检测食品中的食源性致病菌。目前,已确认30余种病原微生物可导致食源性疾病,其中细菌感染引发住院和死亡的人数最多。致病性大肠杆菌是一类常见的致病菌,是我国居民腹泻的首要病原菌,更是国际公认的卫生监测指示菌。目前有报道显示碳量子点(carbon quantum dots,CQDs)可用于检测大肠杆菌。也可以用于检测金黄色葡萄球菌、牛奶中沙门氏菌等。(2)检测食品中的生物毒素。生物毒素是生物机体分泌代谢或半生物合成的、不可自复制的有毒化学物质,由生物毒素引起的食物中毒已引起各国高度重视。目前有报道显示CQDs可用于黄曲霉毒素等的检测。(3)检测食品中的农药残留。(4)检测食品中的兽药残留。(5)检测食品中的重金属离子。(6)检测食品添加剂。量子点不仅在食品安全检测领域的研究工作很多,也有已经成型的检测仪器产品:(1)量子点微球荧光定量检测仪:通过将量子点包裹进纳米级微球中,制备出新型标记材料,能够实现对目标物的精准捕捉和定量检测。量子点微球荧光定量分析仪(力德力诺,点击图片可直达)量子点微球荧光定量分析仪的检测项目检测类别检测项检测样本真菌毒素黄曲霉毒素B1粮食、饲料原料、花生、油呕吐毒素粮食、饲料原料、花生、油玉米赤霉烯酮粮食、饲料原料、花生、油赭曲霉毒素A粮食、饲料原料、花生、油兽药残留氟苯尼考鸡肉、鸡蛋、鱼肉金刚烷胺畜禽组织、禽蛋氯霉素水产组织、蜂蜜恩诺沙星畜禽和水产组织呋喃唑酮水产组织、蜂蜜呋喃它酮蜂蜜氧氟沙星畜禽和水产组织孔雀石绿水产组织磺胺总量畜禽和水产组织农药残留多菌灵果蔬吡虫啉果蔬克百威果蔬啶虫脒果蔬多效唑果蔬腐霉利果蔬灭蝇胺果蔬(2)量子点荧光定量检测仪:应用竞争抑制免疫层析的原理,通过检测线荧光定量卡中的荧光强弱程度,定量分析真菌毒素、兽药残留、瘦肉精、抗生素、动物疫病、农药残留、临床检查项目等。量子点荧光定量检测仪(深芬仪器,点击图片可直达)量子点荧光定量分析仪检测项目:(1)真菌毒素残留类(黄曲霉毒素、呕吐毒素、玉米赤霉烯酮、赭曲霉毒素A等)。(2)激素残留类(莱克多巴胺、克伦特罗、沙丁胺醇、己烯雌酚等)。(3)水产品安全类(呋喃妥因代谢、呋喃西林代谢、呋喃它酮代谢、呋喃唑酮代谢、孔雀石绿、氯霉素)。(4)抗生素残留类(磺胺、喹诺酮、喹乙醇等)。(5)其他(食品有毒有害物质、非法添加物类、水质监测等)。另有晶格创研生物技术(北京)有限公司以及江西维邦生物科技有限公司也生产量子点荧光定量快速检测产品。三、展望量子点在食品安全检测领域的应用研究探索工作还在不断推进,相信未来会不断推出新的产品。另外,量子点成像芯片的研究在2024年也有了新的突破,据报道,2024年3月,光谷实验室联合科研团队(华中科技大学实验室、温州实验室)研发的胶体量子点成像芯片(也称“视觉芯片”)已实现短波红外成像。目前,已完成小试、中试,可大面积加工,兼容12寸CMOS晶圆制备工艺,同时成本极低,有望颠覆市场。在食品检测、半导体检测等工业应用中,基于短波红外成像的机器视觉如同机器的“眼睛”,具有重要意义。联合科研团队先后突破了材料-器件-电路-集成-系统5个关键环节,突破传统工艺限制,开拓全新工艺路线,低温一体化集成,开发研制出国内首款量子点红外成像样机,售价将只有国外的1%,成本大大降低。将这种“视觉芯片”装到手机、检测器上,可以“穿透”介质,看到肉眼看不到的“真相”。参考资料:神奇的纳米发光材料.朱邦尚.澎湃新闻,2023年11月18日碳量子点及其荧光探针在食品安全检测应用中的研究进展.杨茂杰等.食品科学,2023年44卷光谷实验室颠覆性技术突破,量子点芯片成本将降低90%以上.长江日报,2024年3月7日
  • 中科院理化所量子点荧光检测病变研究获新进展
    生物传感器在医学领域也发挥着越来越大的作用。临床上用免疫传感器等生物传感器来检测体液中的各种化学成分,为医生的诊断提供依据。   在国家自然科学基金和中科院理化所青年基金项目的支持下,中科院理化所研究员唐芳琼领导的研究团队采用超声雾化法制备的水溶性碲化镉量子点,实现对乳酸脱氢酶(LDH)活性的定性定量分析。   日前,该研究成果在国际电化学与传感器领域影响因子排名第一的杂志《生物传感器与生物电子学》(Biosensors and Bioelectronics)上相继发表两篇论文。相关工作已申请两项中国发明专利。   拓展纳米材料的应用   生物传感器已应用于监测多种细菌、病毒及其毒素。生物传感器还可以用来测量乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。   乳酸脱氢酶存在于机体所有组织细胞的胞质内,并有着一定的正常范围。机体代谢异常,出现病变会引起乳酸脱氢酶含量的变化。因此,开发新型、快速、高效检测乳酸脱氢酶活性水平的方法可实现对常见的心肌炎、心肌梗塞、肾病、肝癌等疾病的早期诊断和实时调控。   “而将具有激发范围宽,发射光谱窄,荧光量子产率高,可通过调节尺寸、组成或结构来调节发射峰位,实现多色发光等优异光学特性的量子点用于开发信息容量大、响应速度快、灵敏度高、操作简便、成本低廉、便于携带的生物传感器,成为光学生物传感器研究的新热点。” 该团队成员之一、中科院理化所研究员任湘菱说。   唐芳琼领导的纳米材料可控制备与应用研究室一直致力于用价廉、可工程化的方法制备量子点并应用于生化检测,采用超声雾化法制备的水溶性碲化镉(CdTe)量子点实现对乳酸脱氢酶活性的定性定量分析。她们制备的新型生物传感器的检测范围为150~1500U/L,最低检测限达75U/L。   研究人员进而把这种方法拓展到血清中葡萄糖浓度的测定,并初步实现了对这两种物质的同时检测。她们构建的新型光学生物传感器与其他的量子点光学生物传感器(例如基于荧光能量共振转移的光学生物传感器)相比,不需要昂贵而复杂的生化分子修饰,方法简单快捷,操作易于掌握。此方法拓展了纳米材料的应用领域,为开拓生化检测分析的新途径提供了可供参考的实验和理论基础,促进了酶生物传感器的实用化发展。   “我们的目标是家庭化”   “通常用于检测乳酸脱氢酶的传感器制备过程复杂,需要一些复杂的分子,或者酶自身需要修饰,这样就需要一两天甚至更长的时间。而且需要经过专门培训的人来操作。我们这个检测体系可以用一些商品化的酶,医疗或生物制品市场可以买到的酶直接进行配制,配制过程一般只需要半个小时。”任湘菱说。   大多数人会每年进行一次体检,医生们却认为这个时间过长。不过,去医院体检是件很麻烦的事。通常要排队、挂号、检查要花上大半天时间,过几天还要再去取结果。很多人嫌麻烦,就不去体检了。   “如果我们能做到检测设备微型化,检测方法很容易掌握,而且能快速检测。自己在家隔几个月检查一下,既能发现疾病隐患,又方便了居民。” 任湘菱说,“现在家庭自己检查血压、血糖的多些,检测其他指标的比较少,主要是因为检测设备技术复杂,我们的目标就是实现体检家庭化。”   该团队用这一新技术作了血清检测,其结果和医院常用的设备对比十分吻合。   “要实现体检家庭化,还有大量的工作要做。未来我们会考虑做成试剂盒或试纸,和现在的血糖仪一样是用试纸插进去读数。”任湘菱说,“这属于光学传感器,我们主要的研究领域是生物试剂和纳米材料,因此也希望能和进行光传感、光器件研究的人合作,将比色转化成读数。”
  • 【Sievers分析仪】新视角看污水生物处理的有机物监测
    在废水处理中,细菌起着很大作用,因此确保细菌在合适的环境中获得养分非常重要。生物处理是污水处理的重要组成部分,在许多行业中被普遍采用。此二级处理工艺依靠各种细菌来分解污水中的污染物并对水进行净化,最终排放到环境中。常规生物处理系统采用活性污泥去除水中的有机污染物。但还有许多其它生物处理方法对净化污水也非常有效,包括固定床系统,如移动床生物反应器(MBBR)和膜系统,如膜生物反应器(MBR)。各种生物处理方法之间可能存在差异,但保持微生物的健康状况对于优化污水处理工艺中污染物的去除至关重要。确保将适当数量的“食物”输送给微生物,有助于维持生物处理系统的健康。一般采用“食物与微生物比”(food to microorganism)或“F:M比”参数。当F:M比太低时,“食物”不足,微生物就会“挨饿”。如果F:M太高,污水中的有机物含量高,微生物会很快变得不堪重负,导致污水中污染物的去除不充分。两种情况都会导致生物处理效率低下,因此有必要找到并保持最佳的F:M平衡,以确保充分去除污染物以符合法规排放要求。F:M比通常由两个常见的检测值确定。在F:M比参数中,F(食物)部分是有机污染物含量,一般使用生化需氧量(BOD5)来检测。5日测试用于检测当细菌分解有机物质时消耗的氧气,从而间接推断水中的碳含量。在F:M中,M(微生物)部分一般通过混合液悬浮固体(MLSS)来检测。这些检测存在一些缺陷,会导致F:M不适用于有效的工艺控制。用于量化微生物水平的MLSS检测无法区分活生物量和死生物量,这不仅使维持最佳F:M比变得非常困难,而且对于理解生物系统的整体健康情况也无法保证。为期5天的BOD检测速度太慢,无法用于工艺决策。当污水处理装置发现碳负荷不平衡时,生物质的不健康状况事实上已持续了多日。这对于污水负荷可变的处理装置尤其是个问题。此外,由于BOD5取决于细菌的使用,因此缺乏可接受的准确性和精确度,且样品中存在的有毒化合物可能会严重干扰检测结果。对生物质的“食物”进行更准确和有效的监测方法是采用总有机碳TOC分析来直接测定污水中的碳含量。与间接BOD测量不同,TOC分析仪直接检测样品中的碳含量。检测更准确,不存在BOD测试常见的干扰问题。TOC检测可以在数分钟内完成,从而使其成为用于工艺控制和处理优化的更有效工具。通过使用TOC分析来检测生物处理有机物负荷,处理装置可以确定“更真实的F:M比”。案例一美国一家大型炼油厂实施了一项为期12个月的研究,对在传统活性污泥生物处理装置中采用TOC分析来确定“真实F:M比”带来的优势进行了分析。通过使用TOC分析快速获得的准确结果,该处理装置能够快速识别有机物负荷变化并确定理想的F:M平衡。工厂认为,当处理装置在其可接受范围内运行时,去除效率非常稳定,且与典型的需氧量测试相比,TOC分析是保持F:M平衡的更有效工具。此外,TOC分析提供的连续在线数据使处理装置能够快速调整流速,并通过确保适当数量的“食物”供给,以使用F:M比,对工艺进行更有效的控制。这减少了生物处理存在的工艺紊乱,并最终节省了与不良微生物健康状况相关的时间和成本。案例二除F:M比,TOC分析已成为优化污水生物处理营养平衡的有用工具。许多处理装置要求污水中的碳含量与养分(通常为氮和磷)保持适当的平衡。美国一家大型饮料厂决定将其传统的生物处理系统升级为高流量膜生物反应器(MBR)系统。虽然这有助于降低工厂的占地面积并改善污水中有机物的去除程度,但由于新上的MBR系统流量大且工厂排放污水中糖负荷会发生变化,这就意味着需氧量测试太慢而无法确保生物处理系统的营养平衡。该工厂要求C:N:P养分平衡比为100:5:1,在增加TOC分析后,该工厂能够跟踪污水中有机物含量的变化并快速进行工艺调整。工厂操作人员能够确定碳含量并调整添加到污水中的氮,以保持最佳的养分平衡。新的工艺可以连续地脱除有机物,大大减少了工艺紊乱,每年为工厂节省数十万美元。传统上,使用生化需氧量确定废水处理是否有效。采用总有机碳TOC分析直接监测碳含量,对于尝试优化生物处理工艺的污水处理装置而言可能是一个强大的工具。与传统的需氧量测试不同,TOC分析可在几分钟内提供准确数据,使操作人员能对工艺快速做出控制决策。使用TOC数据保持有效的F:M比或C:N:P养分平衡,可以确保生物处理工艺的优化。通过TOC分析来监测生物反应器的健康状况,有助于工厂最大程度地减少工艺紊乱,有效去除污染物,获得符合法规要求的外排水。作者简介Adit Jatkar,苏伊士旗下水务技术与方案——Sievers分析仪全球产品应用专员,获得普渡大学化学学士学位,拥有分析仪器和工艺化学技术背景,并在水处理和石油化工行业有丰富的工作经验。本文原文英文版刊登于《Rocky Mountain Water》2020年9月刊。
  • 国际单位制迈入量子化时代 计量仪器准备好了吗
    p   国际单位制迈入量子化时代:全部由常数定义突破时空局限 /p p   新华网北京12月11日电(王忻)12月11日,市场监管总局在京召开国际单位制重大变革新闻发布会。总局计量司司长谢军在发布会上透露,自明年5月20日起,中国将开始使用新修订后的国际单位制。为抓住此次变革带来的历史性机遇,我国将强化计量量子化战略研究,并制定量子化时代的中国计量发展新规划(2020年-2035年)。 /p p   11月16日,第26届国际计量大会(CGPM)在法国巴黎召开,经包括中国在内的53个成员国集体表决,全票通过了关于“修订国际单位制(SI)”的1号决议。根据决议,质量单位“千克”、电流单位“安培”、温度单位“开尔文”、物质的量单位“摩尔”等4个SI基本单位的定义将由常数定义,于明年的“世界计量日”——5月20日正式生效。 /p p   据了解,加之此前对时间单位“秒”、长度单位“米”和发光强度单位“坎德拉”的重新定义,至此,国际计量单位制的7个基本单位全部实现由常数定义,是改变国际单位制采用实物计量的历史性变革。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/ea274f73-eea6-4bf7-ab07-f6b1cb476361.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p br/ /p p   国际单位制大家并不陌生,在生活中我们经常会接触到“米”、“千克”、“秒”等计量单位。国际单位制与每个人的生活都息息相关,是世界上普遍采用的计量单位制,是构成国际计量体系的基石,也是促进人类不断进步的基础性工具。这次国际单位制的成功变革,实现了国际测量体系有史以来第一次全部建立在定义常数之上,将保证SI长期稳定性和环宇通用性,也将开启任意时刻、任意地点、任意主体根据定义复现单位量值的大门。 /p p   那么,国际单位制的变革会给普通百姓的生活带来哪些变化和影响? /p p   “此次变革从表面来看,大家可能感觉不到发生的变化,就如同我们给房子换了一个更加坚固的地基,并不太会直接影响我们生活起居,但它实际上已经发生了‘脱胎换骨’的变化。”谢军表示,这次SI重新定义生效后,对于大多数科研人员以及产业发展、人们日常生产生活来说,不会直接造成大的改变,原有的测量结果仍将是连续的、稳定的。但从专业角度观察,SI的重新定义,将改变国际计量体系和现有计量格局。 /p p   他指出,SI重新定义将实现量值传递溯源链路扁平化,使量值溯源链条更短、速度更快、测量结果更准更稳 将催生新的测量原理、测量方法和测量仪器,不受环境干扰无需校准的实时测量,众多物理量、化学量和生物量的极限测量等将成为可能 重新定义和量子测量技术发展将使得计量基准可随时随地复现,精准测量,将直接促进市场公平交易、实现精准医疗、改善环保节能等,将惠及人类生产生活的方方面面。 /p p   中国计量科学研究院院长方向表示,这次国际单位制的“基石”完全建立在“常数”上,新定义用自然界恒定不变的“常数”替代了实物原器,保障了国际单位制的长期稳定性 “定义常数”不受时空和人为因素的限制,保障了国际单位制的客观通用性 新定义可在任意范围复现,保障了国际单位制的全范围准确性 新定义不受复现方法限制,保障了国际单位制的未来适用性。 /p p   “我国目前获得国际互认的校准和测量能力已跃居全球第三、亚洲第一。我国自主可控的国家时间基准、长度量子基准都跻身世界先进行列。”谢军介绍,在这次国际计量单位制重大变革中,作为国家计量院的中国计量科学研究院为SI温度基本单位开尔文的修订作出了重要贡献。我国已独立建立了基于新定义的千克复现装置,并成功研制了真空质量测量和质量标准传递装置,可以保障未来我国质量量值与国际等效一致。 /p p br/ /p
  • 文章推荐 | 量子级联激光开路分析仪检测农田氨干沉降的日变化
    氨(NH3)是大气中最重要的碱性气体。农业活动,特别是施用合成肥料后的氨挥发,是人为氨排放的主要来源之一,也是农田养分流失的重要途径。这些氮(N)负荷有利于生态系统作为初级生产的营养投入,但也会导致许多环境和公共卫生问题,如生物多样性丧失、富营养化和雾霾污染。因此,特别是在农业地区,准确定量氨挥发和沉积通量对于了解地方和区域氮预算至关重要。然而,氨通量的现场测量仍然存在巨大的不确定性和挑战。 到目前为止,涡流协方差(EC)技术,基于同时测量地面上的湍流空气运动和气体浓度,是测量生态系统和大气之间的能量和质量交换的最直接的方法。对于氨通量测量,EC比其他方法有优势,因为它可以直接量化氨发射和沉积通量,并产生代表场尺度上空间平均的时间连续数据。然而,在过去,由于缺乏快速响应(≥10Hz)和高灵敏度的氨分析仪,特别是那些可以由现场太阳能电池驱动的分析仪,EC的应用受到了严重的限制。海尔欣昕甬智测推出一种采用量子级联激光吸收光谱技术的HT8700大气氨激光开路分析仪。根据实验室和现场测试,该仪器已被证明是在各种环境条件下测量氨通量的有效工具。 HT8700大气氨激光开路分析仪开创性的开路设计用于氨气测量基于量子级联激光技术,自主研发、设计、生产了的开路分析仪,具有低功耗(太阳能供电)、高精度(亚ppbv级)、快响应(10Hz)等特点,特别适合于地面氨排放和大气氨沉降通量的涡动相关法高频自动连续监测。 本研究采用HT8700大气氨激光开路分析仪,在全球氨热点地区之一华北平原的一个典型农业站点进行了氨通量测量。该实验时间持续了5周,并在小麦季节进行。本研究的主要目的是调查该农业基地秋季氨通量的特征,并量化氨对农田的干沉积和氨挥发造成的氮损失。
  • 尖端纳米科技的互融未来——2019中科大· 牛津仪器纳米技术论坛侧记
    2019年11月6日,“2019 中科大牛津仪器纳米技术论坛”在合肥中国科学技术大学成功召开。论坛由牛津仪器与中国科学技术大学(以下简称“中科大”)联合举办,国内外学术及应用科学家共聚一堂,共同交流了纳米科技前沿成果及相关的检测手段。 中科大微尺度物质科学研究中心副主任侯中怀致欢迎辞 2018年,中科大与牛津仪器联合开展了第一届纳米技术论坛,相比于去年,今年的论坛更加聚焦应用,不仅从中科大内部邀请优秀学者作最新科技的演讲,而且从外校也邀请到了著名专家分享他们的研究成果,论坛获得了参会嘉宾们的高度赞誉。英国驻上海领事馆科技创新领事Stephen Brennan、中科大微尺度物质科学研究中心副主任侯中怀、中科大微纳研究与制造中心副主任周成刚、牛津仪器中国区总经理张鹏出席盛会并致辞。安徽大学葛炳辉教授、中国科学院合肥物质科学研究院强磁场科学中心杜海峰研究员、中国科学技术大学王鹏飞副研究员做特邀报告,分享了纳米科技结构调制、磁性纳米材料表征,以及纳米材料在生命科学、量子检测等方面的最新成果。牛津仪器的应用科学家也在会上介绍了EDS、EBSD、原子力显微镜、VR/AR光学元件等牛津产品在纳米科技领域的最新应用方案。 英国驻上海总领事馆科技创新领事Stephen Brennan谈中英科技合作 周成刚主任在接受采访时高度肯定了本届论坛,认为是牛津仪器搭建的一个很好的合作交流平台。“通过这个机会,我们可以和牛津仪器的应用科学家们一同探讨最新技术与应用难点。”周成刚说,他表示牛津仪器与中科大合作已久,2014年双方在中科大成立联合实验室,2015年开首次中科大设立“明日之星”奖学金,先后曾有18位中科大优秀学子获奖,本届论坛又有6位新星抱得奖金归。通过这些合作,不仅为牛津仪器赢得了更好的商业口碑,更让双方在先进科学、技术经验等方面实现了融合互助和共利双赢。 颁发“明日之星”证书 辩证统一中的不可或缺——纳米未来看仪器 科学仪器对于科学研究的意义是什么呢?王鹏飞研究员认为,两者是辩证统一的共生关系,科学仪器是科学研究非常重要的工具,同时也是科学技术不断迭代、积累、突破、成熟后的成果。而对于纳米科技而言,想要取得突破性的前沿成果,更是离不开仪器设备的不断创新进步。 “例如量子精密测量,就是一个很前沿的仪器研发方向。该技术的载体是金刚石里面的固态点缺陷,可以用其作为空间分辨率非常高的探针,在大气环境下完成对纳米样品的高精度测量。”王鹏飞说。这种技术可以让诸多领域的科学研究向前迈一大步,例如:在生命科学里可以把传统磁共振这种宏观的方法推进到纳米尺度;在材料学领域,可以通过新的磁场表征手段,对纳米级新材料实现结构解析;在信息学领域,可以测量纳米尺度的微波,助力微电子、晶体管的研发。 左至右第一行:周成刚主任(中科大),葛炳辉教授(安徽大学) 第二行:杜海峰教授(中科院),王鹏飞研究员(中科大) 第三行:周宏敏主任(中科大),竺仁博士(牛津仪器) 第三行:眭孟乔博士(牛津仪器),黄承扬博士(牛津仪器) 尖端科学研究都是做前人所未做,经常会有非常特殊的个性化需求,该怎样创新仪器技术,才能直击科学家的痛点呢?周成刚提出,仪器设备厂商与科研院所之间可以大力开展更多有关仪器设备性能改造和提升方面的合作。通过合理的开放共享和联合研究,将更多的先进技术和特殊特征集成到现有仪器设备上面,进而加速科学仪器的研发升级进程。 现场有奖竟答环节获奖观众 张鹏也表示,牛津仪器不仅是英国的牛津仪器,更是中国的牛津仪器,世界的牛津仪器,本次论坛是公司与中科大合作一个从点到面的里程碑,未来,将进一步加强与以中科大为首的科研院所的深度合作,为中国的科研和工业发展作出自己的贡献。 走向小、远、低、强——牛津仪器未来在中国 近两年,虽然中国制造业普遍增长乏力,但中国仍是牛津仪器业绩最好的市场,并且还在持续快速增长,目前已在牛津仪器全球业绩中占比达到约20%。大学和科学院所是牛津仪器的主要增长点,究其原因,牛津仪器中国区总经理张鹏表示,中国的发展已经进入了产能过剩阶段,而牛津仪器始终专注于尖端科研、技术和产品,因此能够在高科技领域维持强势增。 牛津仪器中国区总经理张鹏 纳米科技正是牛津仪器增长迅猛的主要领域和未来布局的重心之一。牛津仪器7大产品部门中,有5个的产品都与纳米科技相关。采访中,张鹏特别分享了牛津仪器未来在中国发展的战略目标——走向小、远、低、强。 走向小:走向微观结构,深耕微纳领域,牛津未来的产品研发和收购战略都将以此为基点展开。针对纳米研究,2019年牛津仪器升级了Aztec Live系统包括透射能谱和软件系统,实现了原位实时表征;此外还升级了可对大样品进行高精度测量的原子力显微镜。 走向远:牛津仪器的相机在中国的天文行业占有绝对优势,最新研发的大视野、高帧频、低读出噪声的sCMOS相机可以应用于太阳研究、轨道碎片追踪、天梯目标研究和系外行星搜寻。 走向低:牛津仪器的设备可以提供接近绝对零度的极低温设备,能够为量子研究和凝聚态物理提供充分的助益。走向强:牛津仪器在强磁场领域也是世界领先,结合牛津仪器的低温技术,可以高效率制备并表征二维材料和半导体材料,尤其是现在非常热门的第三代半导体材料。 除了产品升级换代,走向小、远、低、强之外,为了更好地为中国用户服务,张鹏表示,牛津仪器同时在不断升级中国的应用团队,输送更多的工程师去总部培训。现在有些业务线的应用产出率甚至高于了总部。“我们不单单是要销售极致的产品,更多地是为中国科研用户提供极致的服务,帮助客户取得突破性的科研成果。”张鹏说。 合影留念
  • 两颗“世界之首”生态环境监测科研卫星正式投入使用
    7月25日,由生态环境部牵头的大气环境监测卫星在轨投入使用,标志着全球首颗具备主动激光二氧化碳探测能力的卫星在北京正式交付。生态环境部、中国气象局、农业农村部、中国科学院等相关单位共同签署了卫星《在轨投入使用证书》。此外,由生态环境部参与研制的陆地生态系统碳监测卫星一并投入使用。作为世界首颗采用激光主动探测手段的高精度大气环境遥感卫星,大气环境监测卫星可对大气细颗粒物、污染气体、温室气体、云和气溶胶以及陆表、水体等环境要素,开展大范围、连续、动态、全天时综合监测,并首次实现了全球全天时1ppm(百万分之一)高精度二氧化碳柱浓度探测。发布的首批应用成果,包括首个高精度全球全天时二氧化碳柱浓度分布图、首个全球二氧化氮柱浓度遥感图、全球臭氧柱浓度遥感图、全球PM2.5产品分布遥感图等20余项产品。陆地生态系统碳监测卫星又称“句芒号”,是世界首颗森林碳汇主被动联合观测的遥感卫星,可探测植被生物量和植被生产力,同时满足地理测绘、灾害评估、农情遥感等需求。该卫星实现了对森林植被高度、生物量、叶绿素荧光的定量遥感探测,提升了我国和全球森林碳汇监测能力。发布的首批应用成果,包括海南岛叶绿素荧光空间连续产品、东北虎豹公园生物量反演产品、京津冀地区冬季小麦产量和夏季玉米生物量等20余项产品。两颗卫星在轨投入使用,对于推动构建现代化生态环境监测体系,动态监测我国大气污染状况,有效监测全球二氧化碳柱浓度和分布,探测植被生物量和生产力,提升全球温室气体、生物量高精度定量化遥感监测能力,支撑碳达峰碳中和、美丽中国建设等国家战略具有重要意义。
  • 促进生物检测技术成果转化——第二届新材料、新器件与生物检测系统创新论坛顺利召开
    仪器信息网讯 2016年6月4日,第二届新材料、新器件与生物检测协同创新论坛暨2016年中国生物检测监测产业技术创新战略联盟产业创新论坛,2016年北京市科技新星大师讲堂与协同创新论坛在北京顺利召开。为贯彻“将科研主体与产业主体有效衔接,促进科技成果转化”的初衷,本届论坛一方面设置了“科技讲堂”、“产业对话”、“科技创新”等环节,促进学界内部传承、交流、合作,推动学界与产业界互动、衔接 另一方面,举办了《生物检测监测联盟指向性课题》启动仪式,进一步践行论坛与联盟推动科技成果转化的初衷。会议现场  论坛开幕式由中国生物检测监测联盟秘书长周蕾主持,中国生物检测监测产业技术创新战略联盟张学记理事长、北京市科委人事教育处黄峥女士、新星代表郭维博士、山西圣点世纪科技有限公司丁晟总经理分别致辞,预祝大会圆满成功。  张学记理事长在致辞中提出本论坛的目的有二:一是为广大研究人员提供交流平台,二是为高校、研究机构与企业搭建对接的桥梁。随着科技三会的结束,国家会正式颁布一系列的文件,减少对科研人员条条框框的约束,加大对科技成果产业化的支持,我国将迎来科技创新的春天,希望与会人员以应用为导向,研究出更多满足现实需求的成果。黄峥女士对“北京市科技新星计划”做了简单介绍,认为此论坛是一个很好的平台,希望资深专家能提携帮助青年专家的成长。启动仪式  开幕式后,还举办了中国生物检测监测产业技术创新战略联盟《2016年生物检测监测联盟指向性课题》启动仪式,这是国内联盟中首次利用自有经费支持企业的科技需求,设置指向性课题,促进科技成果转化。“动物疫病诊断产品研发”课题的委托方为北京勤邦生物技术有限公司,承担方为合肥工业大学陈伟 “一氧化氮健康品国内标准的制定”课题的委托方为上海诺鼎生物科技有限公司,承担方为北京科技大学苏磊。张学记理事长和黄峥女士为双方分别授牌。  北京科技大学张学记教授  题目:从新界面新材料上的核酸传感到新器件中的定量细胞生物学  张学记教授从界面生物学检测、荧光化学传感、核酸生物传感、微流控芯片器件在精准医学中的应用等四方面介绍了其团队在生物检测方面的研究成果。其团队利用超浸润界面的富集效应实现了对痕量DNA的检测,检测限达到1.99fM 结合石墨烯氧化物的荧光猝灭与等温链替代聚合酶反应,开发了一种简便、高灵敏度、高选择性且可以实现多组分miRNA同时检测的新方法 研发的微流控芯片在细胞图案化芯片打开后,没有细胞损失,可后续挑选用于基因表达分析。  中国科学院半导体研究所周晓光研究员  题目:生物(蛋白)组学技术的发展与精准医疗  很多时候,科学的发展是因为分析技术的进步,测序技术的发展实现了高通量的基因分析,从而发展了基因组学,质谱技术的发展实现了高通量的蛋白分析,从而发展了蛋白组学。虽然基因组学被认为是精准医疗的基础,但是中国基因组学奠基人之一于军研究员认为“单一基因测序结果很难明确诊断癌症,所以基因诊断本身很难成为临床上的一个金标准”。与基因分子相比,蛋白质更能直接反应生命体的状态,故周晓光研究员认为精准医疗信息来源不能只靠基因信息,蛋白组信息的获取同样重要,应是临床医学检测技术的另一爆发点。周晓光研究员介绍了蛋白质组检测的挑战以及相应质谱技术的发展情况。  中国生物检测监测产业技术创新战略联盟周蕾秘书长题目:新技术发布—第三代POCT:电驱控速免疫层析技术 第四代POCT:电阻抗自动免疫检测系统  周蕾秘书长首先对POCT的市场进行了分析,并介绍了其团队针对目前第三代和第四代POCT技术的不足而进行技术开发的思路。第三代POCT技术要求精确定量检测,即精度更高,速度更快,以目前常用的上转发光免疫层析技术为基础,为解决400纳米UCP颗粒空间位阻大从而影响敏感性的问题而采用了小于100纳米的UCP颗粒,为解决微孔材料毛细虹吸动力小影响检测速度的问题而利用电场改变液体浸润效果,最终开发出纳米上转发光电致免疫层析技术即电控驱速免疫层析技术。第四代POCT技术要求自动定量检测,周秘书长的团队采用了将中心实验室大型全自动仪器便携化的研发思路。以全自动化学发光免疫分析仪为基础,磁颗粒免疫捕获技术继续保留,光学检测技术采用电化学检测技术代替,多人分试剂包采用微流控芯片技术代替,从而开发出电阻抗自动免疫检测系统。  南开大学尹学博教授  题目:碳点的新颖合成方法、发光机理及传感成像应用  尹学博教授介绍了其团队发展的碳点制备新方法,提出了碳点形成机理,研究了碳点的结构与发光性质的关系,实现了从细胞到胚胎、斑马鱼再到小鼠的碳点成像。  华东理工大学应轶伦博士  题目:单分子弱相互作用的纳米通道研究及仪器研制  应轶伦博士介绍了其在纳米通道单分子检测技术的研究成果,通过开发纳米通道超微电流检测仪器和开发纳米通道数据分析方法,从而实现了纳米通道高灵敏分析。  北京科技大学董海峰教授  题目:基于DNA四面体纳米结构及双链特异性内切酶的灵敏、多元的microRNA检测  董海峰教授将三维的DNA四面体探针与双链特异性核酸酶结合起来构建了一个超灵敏的、多元的光学传感器,在同一溶液中同时检测三种不同的microRNA,并使其检测限达到了aM级别,双链特异性核酸酶使其具有较好的特异性识别能力,使其能够灵敏的辨别三碱基错配以及单碱基错配,此方法能在癌症细胞培养液和裂解液中检测miRNA,表明此方法在生物医学研究和临床分析中具有应用前景。  北京大学郭少军研究员  题目:新型异质结构纳米晶分析传感技术  郭少军研究员的研究方向为新能源材料、催化和传感器件,核心思路为“新材料设计决定性质和应用”。主要研究内容是纳米晶尺寸、形状、成分和结构的精确调控,纳米晶功能的合理调控及实现新的功能,核心是增强燃料电池、锂离子电池、催化剂、传感器和光电器件的应用。此次报告主要介绍了其在纳米晶传感器方面的研究成果。北京大学赵美萍教授题目:活体动物脑区神经活性物质的在线连续监测  赵美萍教授介绍了采用微流控技术对活体小鼠脑部硫化氢含量的在线连续测量技术,认为小鼠脑部硫化氢浓度范围在30-40μ M。最后还介绍了活体细胞中APE1的荧光成像技术。清华大学李海芳副教授题目:肿瘤标志物的化学发光免疫分析  李海芳副教授的团队以酶催化化学发光为技术核心,开发了化学发光免疫分析新方法和新技术,研发了肿瘤标记物诊断试剂盒。在此研究中,改进了酶标记技术和酶催化化学发光体系,发展了微孔板磁颗粒化学发光免疫分析技术,建立了系列肿瘤标记物的CLEIA分析方法,并研制出系列试剂盒产品,证明了纳米免疫磁颗粒结合CLEIA在CTC细胞捕获和化学发光计数方面具有可行性。武汉大学林毅副教授题目:基于荧光量子点的体外检测新方法  林毅副教授主要介绍了半导体荧光量子点制备的新方法和基于荧光量子点的体外检测新方法,认为荧光量子点技术可实现高灵敏、快速的体外检测。同济大学万錒俊教授题目:新型NO供体的制备、NO控释和原位监测  万锕俊教授从新型NO供体的制备、NO的控释和镉类荧光量子点NO原位监测和近红外型荧光体系的NO原位监测三方面介绍了其团队在NO方面的研究成果。南京大学丁霖副教授题目:细胞功能分子的原位分析与质谱成像  丁霖副教授从细胞表面糖基原位检测、细胞内功能分析的原位检测、癌症在体靶向治疗与疗效监测和质谱成像分析技术四方面介绍了细胞功能分析的原位分析与质谱成像技术。华东理工大学左鹏副教授题目:纳米生物传感分析系统及在健康领域的应用  左鹏教授从纳米增强信号放大系统构建及应用、酶催化信号放大方法的构建及应用、纳米功能化微流控系统构建及应用三方面介绍了其团队在纳米生物传感分析系统的研究成果。  除此之外,北京勤邦生物技术有限公司万宇平总经理以“勤邦生物食品安全快检市场需求分析”为题,深圳三相生物传感器科技有限公司周文强CEO以“便携式电化学传感器技术在幽门螺杆菌监测上的应用”为题介绍了公司的研发需求。参会人员合影
  • 口罩真假难辨?国仪量子面向全国质监部门免费开放电镜检测服务
    新冠肺炎疫情暴发后,口罩作为医护人员和普通百姓工作出行的必备防护用品,成为紧俏货,很多人都有尝试各种办法对口罩进行重复使用,部分地区甚至需要摇号预约才能购买到口罩。截至目前,不少药店和超市,依然存在一罩难求的局面。随着疫情在全球多个国家出现,口罩不仅在中国,在全球范围内也出现了紧缺。疫情下的“图财害命”之举假冒伪劣口罩目前,随着各地陆续复工复产,国内政府和多家企业都在紧急扩产口罩,短期看全球口罩需求仍有数十倍以上的缺口。多家口罩生产企业都表示接到的订单已爆棚,正在全力赶工。令人遗憾的是市场上口罩的质量也存在“良莠不齐”的情况,在全民万众一心打好“防疫攻坚战”的同时,甚至有一些不法商家将一些不合格或劣质三无口罩投入市场,在疫情如此严峻、影响如此之大的情况下,这无异于“图财害命”。国仪量子携手市监局助力"战疫"在此背景下,近日,国仪量子发挥产业优势,助力战疫,与无锡市监局进行合作,使用扫描电镜对一批真假口罩进行检测。电镜工程师准备测样电镜中心实验室内,研发人员对无锡市监局送检的不同种类的口罩进行测试,利用国产自主研发的扫描电镜sem3000,在电压15 kv、真空度优于5x10-3 pa的条件下拍摄口罩样品,样品选取口罩滤材部分熔喷无纺布作为对比,分析过滤层纤维大小、孔径大小等物理特性。滤材形貌特征的差异可以作为相关部门辨别口罩使用寿命和过滤性能的参考依据。sem3000扫描电镜检测结果获得认可相关新闻报道送检样品的检测数据和结果出来后,国仪量子sem产品线工程师第一时间将完成的第一阶段检测报告反馈给了无锡市监局,初步的检测结果得到了市监局的认可,经过与前期口罩样品调查情况的核对,质监部门对国仪量子电镜中心的检测内容和数据给予了充分的肯定。随后,双方商定,接下来在疫情期间,无锡市监局将继续与国仪量子进行合作,推进口罩优劣快速检测方案的研究,共同助力战疫,打击“图财害命”之举。国仪量子面向全国开放电镜中心与此同时,国仪量子决定,在疫情期间,电镜中心将面向全国质监部门免费开放,提供口罩优劣快筛解决方案,助力战疫,协助相关部门打击违法伪劣口罩生产厂商。欢迎全国相关部门联系我们,样品可寄送至无锡量子感知研究所,地址:无锡市惠山区惠山城铁站区站前路2号(客运西站往西100米), 我们将竭尽全力做好口罩样品电镜检测服务!更多检测及技术细节,欢迎继续阅读检测对象及目的利用SEM3000扫描电镜(点击查看)对比观察各个口罩样品中间过滤层的形貌特征及形态区别。口罩制样:口罩剪裁分层对样品1、2、3、4采样并剥离出第二层过滤层作样。注:样品1为不合格口罩,其余为合格正品。▲ 将样品分别剪成8 mm×8 mm左右的试样。试样制备▲ 在样品托上粘贴一块导电胶,导电胶大小应基本将样品托表面全部覆盖;▲ 用镊子压实所粘贴导电胶,将试样粘上去;▲ 将试样放入喷金仪中5 pa真空下使用pt靶20 ma喷120 s,完成喷金。样品观测█ 将试样按顺序装在样品台上,启动已经调试好的电镜;█ 开机抽真空至5x10-3 pa,加15 kv加速电压;█ 加灯丝电流,放大倍数分别调制200、1000、5000倍;█ 使用较快扫描档位进行调焦,在各倍数下,对聚光镜、物镜放大倍数进行粗调、微调;█ 在试样清晰度达到最佳后,切换慢扫档位,进行精细拍图。样品图像▼ 样品1200倍1000倍5000倍左右滑动图片查看更多▼ 样品2200倍1000倍5000倍左右滑动图片查看更多▼ 样品3200倍1000倍5000倍左右滑动图片查看更多▼ 样品4200倍1000倍5000倍左右滑动图片查看更多图像分析█ 口罩样品1,电镜照片中纤维较为稀疏,没有其他样品致密。█ 口罩样品1,电镜照片中单根纤维粗细没有其他产品均匀。特别说明:扫描电子显微镜可以用作口罩优劣的快速筛选,能够极大提高检测效率,为标准检测提供参考;部分信息及图片来源于网络。
  • 为医疗、能源、检测等行业赋能—量子精密测量产业化发展论坛成功召开
    仪器信息网讯 2021年4月21-23日,由中国仪器仪表行业协会、中国仪器仪表学会、仪器信息网联合主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网、江苏省分析测试协会、无锡量子感知研究所、城铁惠山站区管理委员会协办的2021第十五届中国科学仪器发展年会(ACCSI2021)在无锡成功举办。大会吸引科学仪器及检验检测等行业约1400位高端人士参会。近年来,“第二次量子革命”被提出,不同于“第一次量子革命”对量子现象的理解和直接利用,对微观量子世界进行被动观察和解释,“第二次量子革命”通过掌控量子效应、定制量子系统,扎根于纯粹量子效应的量子技术,以实现对量子状态进行人工制备和主动调控。量子科学很可能是21世纪促进人类文明进步的最重要基础科学。今年3月12日,在发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中首次将量子信息列到了科技前沿领域攻关的第二位,明确指出要求实现量子精密测量技术突破。面对量子科技的发展新契机,4月23日上午,第十五届中国科学仪器发展年会(ACCSI2021)召开了量子精密测量产业化发展论坛,邀请领域内的专家学者等,共同研讨量子精密测量技术及其产业化应用,以期推动量子精密测量产业化进程。(文后附视频回放链接)会议现场中国石油大学(北京)人工智能学院院长肖立志 致辞会议开始后,由中国石油大学(北京)人工智能学院院长肖立志教授致辞。致辞结束后,6位演讲嘉宾分别从不同的角度分享了自己在量子领域的相关工作,并与现场观众进行了热烈的交流讨论。现场观众提问交流报告人:国仪量子联合创始人、CEO 贺羽报告题目:国仪量子:引领量子精密测量技术产业化国仪量子秉承着“为国造仪”的理念,成立以来一直致力于量子精密测量技术赋能各行各业。报告中,贺羽介绍了量子精密测量的基本原理以及在医疗健康(例如冠心病诊断、单个癌变细胞检测、脑磁图研究)、科研检测(例如解析单分子结构、引力波探测、寻找新粒子)、能源开发(例如油气探测、探矿、电力)和工业发展(例如高精度原子钟、脑机交互、芯片电流成像)等领域的应用。国仪量子以量子精密测量技术为核心技术,为科研机构、企事业单位等提供高端装置平台、核心器件、核心技术解决方案等产品和服务。报告人:国仪量子测控事业部总经理 吴亚报告题目:量子测控系列新品在量子精密测量领域的应用量子精密测量的研究离不开测控电子学产品的支持,量子态的控制与读出都依赖高精度、高灵敏度的测控系统。针对于此,吴亚在报告介绍了一系列针对量子精密测量领域的测控解决方案,以NV色心量子精密测量应用方向为基础,介绍了量子测控产品的实际应用方法。报告人:国仪石油技术(无锡)有限公司系统工程师 孙哲报告题目:量子精密测量在地球物理探测中的应用量子精密测量是量子信息科学的重要分支之一,该种测量技术具有远超经典极限的探测精度和灵敏度。在精度方面,顺磁共振技术能够对物质中未成对的电子进行精确探测并进行定性和定量分析,具有纳米尺度的空间分辨率;在灵敏度方面,原子磁力探测技术能够探测到强度低至fT级别的弱磁场信号。报告中,孙哲表示,采用顺磁共振技术对页岩等非常规储层的岩心或岩屑进行探测时,能够精确测量其内部顺磁性离子,进而可得到其表面弛豫率等重要信息,对研究其内部孔隙结构和润湿性等方面具有重要意义。采用原子磁力计作为井下和地面通信的接收机时能够有效提升信息的传输速率、稳定性和距离,大幅度提升油气的勘探开发效率,该技术在旋转导向系统控制、生产井流量阀控制以及随钻测井信息传输等方面具有广阔的应用前景。报告人:中国科学技术大学教授 廖昭亮报告题目:新型电子信息功能材料的原子构筑和性能调控发展新材料、新结构和新原理器件已成为在后摩尔时代主要的研究方向之一,它有望突破经典半导体器件的极限,进一步推动电子信息工业的蓬勃发展。这其中一个重要的思路就是利用外延制备技术原子级构筑新型电子功能材料。通过材料的外延组合调控,人工设计制备异质结、超晶格和二维材料等人工材料,从而探索发现革命性的新材料。廖昭亮在报告中重点介绍了其团队在这一领域的一些工作,包括用于材料外延制备的激光分子束外延系统的研制,以及基于激光分子束外延系统在制备多功能耦合复杂氧化物异质结体系方面取得的一些进展。主要包括磁性材料的界面设计、电子相变的连续调控,并结合同步辐射表征方法、理论计算、高分辨微区晶体表征等先进的手段探讨界面新奇现象的物理机制。报告人:国仪量子高级应用工程师代映秋报告题目: 基于量子精密测量的科学仪器——从系综到单自旋电子顺磁共振波谱技术是一种研究含有未成对电子物质的结构、动力学以及空间分布的谱学方法,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。代映秋在报告中以顺磁共振的仪器开发和应用为主线,介绍X波段顺磁共振波谱仪的关键技术,以及基于金刚石NV色心的单自旋磁共振谱仪的实现和应用。视频回放内容嘉宾国仪量子:引领量子精密测量技术产业化国仪量子 联合创始人、CEO贺羽量子测控系列新品在量子精密测量领域的应用国仪量子 测控事业部总经理吴亚量子精密测量在地球物理探测中的应用国仪石油技术(无锡)有限公司 系统工程师孙哲新型电子信息功能材料的原子构筑和性能调控中国科学技术大学 教授廖昭亮基于量子精密测量的科学仪器——从系综到单自旋国仪量子 高级应用工程师代映秋
  • 迄今最灵敏声波探测器问世 能检测量子水平声波
    据美国物理学家组织网2月7日报道,瑞典查尔姆斯理工大学的科学家开发出迄今世界上最灵敏的新式声波探测器,能检测到量子水平的声波。该研究有望带来一种将声子和电子结合在一起的量子电路,为量子物理开辟新的研究方向。相关论文发表在最近出版的《自然物理学》上。   这种“量子麦克”探测器是一种压电耦合单电子晶体管,这种晶体管中通过电流时,一次只过一个电子。研究小组模拟了卵石投入池塘形成的涟漪,并让这种声波在微晶片的表面而不是在空气中传播。这种声波波长仅3微米,但声波传过来时,探测器能迅速感知到。   他们还在芯片表面制作了一种3毫米长的回音腔,这样即使声音在晶体上传播的速度是其在空气中的10倍,探测器也能够极灵敏地追踪声波脉冲在回音腔壁之间来回反射,由此能清晰检出声波的性质。   研究人员指出,这种表面声波探测对波峰高度只有质子直径的百分之几的声波敏感,探测灵敏度在单个声子水平,频率为932兆赫兹。如此轻微的声音遵从量子力学法则而不是经典力学法则,其性质更像是光。   “该实验是用经典声波来做的,但我们把各项准备工作就绪,却发现研究的是标准的量子声波,此前还没有人做过这样的实验。”论文第一作者、博士生马丁古斯塔夫森说。   “量子麦克”探测器能检测的声波不仅极其轻微,其频率几乎达到了1千兆赫,比一组A音高21个八度。这种音调对人类听觉而言是太高了。研究人员还指出,他们的项目将表面声波的独特性和量子电路紧密结合在一起,为研究开辟了新方向,如声子—声子的相互作用、声波结合超导量子比特研究等。
  • 昕甬智测HT8800系列多组分温室气体分析仪:量子级联激光光谱技术在气体检测领域的应用优势
    在当前时代,环境问题、气候变化以及可持续发展已经成为全球关注的焦点。在这一背景下,气体检测技术变得尤为重要,以便实时监测和控制大气中的有害气体排放,保护人类健康和生态平衡。量子级联激光光谱技术作为一种先进的光谱分析技术,在气体检测领域具有显著的应用优势,以下是一些关键的优势:1. 高精度和高灵敏度: 量子级联激光光谱技术具有极高的分辨率和灵敏度。这使得它能够探测非常低浓度的气体,甚至在远距离下也能实现精确的检测。这对于监测罕见但有害的气体排放至关重要,例如甲烷等温室气体。2. 多种气体同时监测: 量子级联激光光谱技术可以针对多种不同的气体进行监测,而无需更换设备。这种多功能性使得它适用于不同场景下的气体监测需求,从工业污染到大气组成分析。3. 非侵入性: 与传统的气体采样方法相比,量子级联激光光谱技术是一种非侵入性的技术。它不需要直接接触气体样本,避免了可能引起污染或影响结果准确性的问题。4. 实时性: 量子级联激光光谱技术具有快速的数据采集和处理能力,使其能够实时监测气体浓度变化。这对于迅速响应气体泄漏事件或污染源的变化非常重要。5. 长距离探测: 量子级联激光光谱技术能够实现长距离的气体检测,这在一些需要遥感监测的场景下特别有用,如工业区域的气体排放监测。6. 节能环保: 由于量子级联激光光谱技术能够快速、精确地完成气体检测,它可以在很大程度上减少能源和资源的浪费,从而降低环境影响。总之,量子级联激光光谱技术在气体检测领域的应用优势主要体现在高精度、高灵敏度、多功能性、实时性、长距离探测以及节能环保等方面。随着技术的不断发展,它有望在环境监测、工业安全、气候研究等领域发挥越来越重要的作用。宁波海尔欣光电科技有限公司所应用的量子级联激光光谱技术,在气体检测领域的应用优势主要体现在高精度、高灵敏度、多功能性、实时性、长距离探测以及节能环保等方面。随着技术的不断发展,它将在环境监测、工业安全、气候研究等领域发挥越来越重要的作用。9月,海尔欣光电科技有限公司旗下品牌“昕甬智测”产品HT8800系列便携式高精度温室气体分析仪于中国甘肃省兰州市顺利进行现场安装、调试。HT8800系列便携式高精度温室气体(二氧化碳、甲烷、氧化亚氮、水)分析仪由宁波海尔欣光电科技有限公司自主研发、生产和销售,为“昕甬智测”品牌国产创新产品。该系列仪器基于量子级联激光技术设计,利用气体分子在中远红外的“指纹”吸收谱,使用半导体量子级联激光器(QCL)作为光源,使激光通过独创的中红外增强型光腔,被中红外光电探测器接收透射光并提取和分析透射光谱,准确反演获得目标温室气体成分的浓度,实现对目标温室气体分子的更精确、更及时、更科学的测量。更多详情请联系我们。
  • 河湖水生态监测和健康评估有哪些“秘密武器”?
    近年来,治水工作的重心不仅已经由水污染防治为主向“三水”统筹推进转变,而且在评价河湖健康状态时,基于理化指标的常规水质监测体系也已经开始向水生态监测转变,多地也已陆续开展了水生态评价与考核工作。基于此,水生态监测与健康评估工作的重要性日益凸显。滇池,位于云南中部,是长江上游最大的湖泊;沱江,位于四川省中部,是长江的一级支流。一河一湖,他们的水生态优劣对长江水生态维护十分重要。那么,不同水域的水生态功能情况如何,发生了哪些变化,采用哪些监测手段和健康评估方法?此次采访了昆明市高原湖泊研究院湖泊生态所工程师董晋延和四川省成都市环境保护科学研究院高级工程师欧阳莉莉。一湖一河,水生态发生了哪些变化?滇池位于昆明市,是典型的高原湖泊。“今年6月,生态环境部联合多部门印发《长江流域水生态考核指标评分细则(试行)》,其中将滇池列为长江流域水生态考核试点湖泊之一,对滇池保护理念提出了新的方向和更高的要求。”董晋延告诉记者。2012年起,滇池就已经开始开展了水生态环境的调查工作。董晋延介绍,“在水环境监测方面,我们增设了20个点位进行监测。从相关指标监测情况来看,近年来滇池COD、总磷、总氮等指标虽有波动,但整体呈现下降趋势。而且,滇池富营养化程度目前也处于轻度富营养状态。”“水生态监测方面,我们每年在滇池开展1—2次大型水生植物调查,监测水生植物的分布状态和面积。目前调查到滇池大型水生植物主要有86种。从生物量历史变化来看的话,大型水生植物生物量呈现先下降后上升的趋势。这得益于2009年开展的‘四退三还’工作,通过湖滨带生态建设使水生植物得到了一定的恢复。近3年来,浮游植物也保持在100种左右,部分水域出现喜清水物种。”相较于云南滇池,位于成都的长江上游支流沱江发生了哪些变化?欧阳莉莉介绍,“成都市开展水生态相关工作较晚,从2016年开始陆续开展了一些调查工作,2022年再次开启了沱江流域水生态调查工作。根据沱江流域成都段水文特征,综合干支流特点,结合遥感影像及实地勘察,我们选取了沱江流域16个调查点位。”欧阳莉莉总结道,从水质调查来看,沱江干流的水质整体优于沱江支流,上游支流水质优于中下游支流水质。而且,通过对比2016年水生态环境情况,可以发现湔江点位特征变化不大,均处于优良状态,毗河和沱江干流点位比2016年状态明显好转,水丝蚓等污染指示物种密度明显下降。从生境和水生生物部分来看,“河岸大部分能保持自然形态,植被覆盖率较高,渠道化较少。2022年调查结果显示,沱江流域成都段主要河流共发现底栖动物27个分类单元,发现鱼类5目11科 52 种,数量最多的鲤形目有37种。”欧阳莉莉补充道。水生态监测和健康评估用上哪些高科技?通过水生态调查,不仅可以清楚了解水生态系统的具体情况,还能为分析研判下一步的保护工作奠定基础。那么,进行水生态监测和健康评估都有哪些方法?智慧监测技术是目前能快速掌握水生态关键组分变化的创新技术。“目前,我们与中科院水生生物研究所合作,构建滇池浮游动植物图片数据库,通过开发自动识别藻类的软件,提升识别效率和鉴定能力。”董晋延介绍了智慧监测技术研发与应用方面的情况,他表示,目前滇池也投入使用了水华智能预测系统,用来进行蓝藻水华的预测预警。“红嘴鸥是昆明滇池的一张亮丽名片,基于实时视频的鸟群密度估计与种类识别技术,通过相应的摄像头和分析设备,我们也在开展鸟类自动化监测,目前智慧识别系统正在进行不断训练以提高识别的准确度。”董晋延介绍。而起步相对较晚的成都,在沱江流域进行水生态健康评估用到了哪些方法?欧阳莉莉告诉记者,水生态健康评估主要用到了两种方法。“首先是选择了基于水质、生境、底栖动物BI指数和大型底栖动物BMWP指数等的WEQIriver指数,通过现场调查、采样分析等进行评价打分。评价结果显示沱江流域成都段水生态环境质量整体是良好状态。”欧阳莉莉介绍。“ 河流RHI指数是我们用到的第二个方法。”欧阳莉莉补充道,“指数主要由以下指标体系组成:包含岸线自然状况、违规开发利用水域岸线程度等指标在内的‘盆’指标体系,包含生态流量满足程度、水质优劣程度、水体自净能力等指标在内的‘水’指标体系,包含鱼类保有指数的‘生物’指标体系以及包含公众满意度的‘社会服务功能’指标体系。”欧阳莉莉表示,通过对比两种方法的评价结果,能够综合反映水生态系统自身的基本状态以及人类活动对水生态系统的影响,科学评估河流的生态健康状态。
  • 发布微生物快速检测系统新品
    MBS微生物快速检测系统品牌:意大利MBS.SRL适合您的可移动的微生物实验室整套系统由MBS-MR主机,笔记电脑,MBS(Fitlylab)中文操作软件,VL微生物检测瓶组成检测项目• 活菌总数• 大肠菌群• 大肠杆菌• 粪大肠菌群• 肠杆菌• 金黄色葡萄球菌• 绿脓杆菌/铜绿假单胞菌• 沙门氏菌• 李斯特菌• 粪肠球菌 • 酵母菌应用范围卫生控制:• -食品(HACCP)• -厨房、工具、表面(HACCP)• -水质• -(CDC)控制、进出口检验检疫• -药品及化妆品与我们的生活息息相关,例如:l咖啡馆、餐厅l分析实验室l农产品及相关加工公司l消费者保护团体、工商管理机构等整套系统主要特点:1:食源性致病菌及菌落总数等定量检测;2: MBS砖利技术集培养皿法(特制培养基)、酶法(β-葡萄糖苷酸酶)、免 疫 法(抗原搜寻)、基因法(基因搜寻)等技术的优点于一身;3:检测速度:是传统检验方法速度的2~10倍;4:可检测固态、液态、表面、膏状、浆状样本 ;5:8个检测位都是独立作业,可满足检测不同样品不同微生物的需求.每个检测位都是独立的,可循环使用,可以自动选择控制检验项目温度;6:三光波同时检测(蓝,绿,红);7:灵敏度高达可检测到1目标微生物,即1CFU,特异性高达99.999%;8:样本检测操作简单,大部分样品可以直接加1g或者1m样品无需前处理;9:不需要人值守,自动生成检测报告储存在数据库,也可以根据需要选择创建报告另存;10:检测瓶是封闭式的检测,所有检测过程对人体无害,并可以在一般实验室环境下使用;11:可以按客户的要求设置合格值的定性分析,也可以不做限制的原样 样品的定量分析;12:检测瓶自带杀 菌功能,检测后的检测瓶经杀 菌后可按照实验室常规废弃物处理,安全无害;13:操作软件已升级为Fitlylab中文版,购买的客户可以长久免费更新;14:简单三个操作步骤,傻瓜型,无需专业操作人员 ;15:仪器便携式,可随时随地进行检测、100%定量分析;16:通过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替 法的认证, 符合ISO/IEC 17025:2005标准(检测和校准实验室能力的通用要求)的内部认证。 MBS微生物快速检测系统VL微生物快速检测瓶(MBS砖利技术)MBS-MR主机由罗马第二大学物理研究所和意大利核物理量子实验室(INFN)共同研发,VL检测瓶由罗马第三大学生物系研究所研发。MBS砖利检测技术过权威认证 ISO 16140:2003“食品和动物饲料的微生物学” 代替法的认证国家轻工业食品质量监督检测南京站验证报告MBS砖利检测技术集培养皿法(特制培养基)、酶法(β-葡萄糖苷酸酶)、免 疫法(抗原搜寻)、基因法(基因搜寻)等技术的优点于一身。对于需氧菌,以比色的形式测量通过呼吸氧化还原反应链的电子通量率,从而测量耗氧量的速度,而耗氧量的速度与存在于媒介总的菌数量成正比,对于厌氧性微生物测得内生电子的下降率也与媒介中的的菌数量成正比。(VL检测瓶内的营养物,维持目标菌的生长;选择性 药 剂,抑制非目标菌的生长;而其中的还原剂,做为递氢体,能在细胞色素C后把电子转移到菌呼吸链,而又不被氧分子氧化。如果目标菌存在,那么检测瓶中的氧化还原反应色素会根据媒质的氧化还原状态改变颜色。MBS主机通过三光波探测颜色变化,*后根据综合颜色变化的时间确定菌的含量。)MBS-MR主机8个检测位都是独立作业可满足检测不同样品不同微生物的需求.每个检测位都是独立的,可以循环使用,可以自动选择控制检验项目温度,MBS-MR主机三光波同时检测(蓝,绿,红)与简单的色度计不同的是,仪器可同时使用3种波长进行测量,避免由于菌生长或存在固体样本造成的光散射带来的干扰。MBS-MR根据时间记录红绿蓝通道的光强度微分曲线*大拐点代表颜色变化的临界点,利用临界点对应的时间计算菌的含量VL微生物快速检测瓶• 通过ISO 16140:2003认证• 直接利用VL检测瓶可以快速定性检测致病菌• VL检测瓶搭配MBS-MR机可以快速的定量检测致病菌检测步骤可以总结成以下4步:检测报告(PDF报告)食品分析(取样方法)在进行食品分析时,使用食品加工用具或者消 毒后镊子把食品样本放进瓶子里,达到实时检测污染物的目的。对于液体样品,要按要求使用一次性吸液管。表面分析(取样方法) 1,打开装有中和溶液的小瓶中的棉签2,在一个大约10平方厘米的区域擦拭3,将棉签插入检测瓶4,开始分析水分析(取样方法) 对于水分析,本产品配备了能满足各种分析需求的工具包。对所需的水样进行过滤后(如:100毫升),把过滤器放进大瓶里。不管菌附在过滤器内,还是处于自由悬浮状态,色变所需的时间几乎一样。MBS微生物快速检测系统孵育温度/检测时间快查表创新点:仪器软件及检测瓶重新升级 样品不需要前处理,直接加样,系统升级可以按客户设定合格值提前得出报告。 微生物快速检测系统
  • 2012中国环境科学学会年会:环境监测类报告
    仪器信息网讯 日前,2012中国环境科学学会学术年会在广西南宁落下帷幕(相关报道:2012中国环境科学学会学术年会隆重举行)。会上,来自各级环境监测站、科研院所的专家学者围绕环境监测相关技术作了精彩报告。仪器信息网编辑对部分报告内容进行了摘录,以飨读者。 昆明市环境监测中心 李发荣副总工 报告题目:应用荧光检测技术开展滇池蓝藻应急监测分析   李发荣副总工在报告中介绍了荧光检测技术在蓝藻应急监测中的应用,并对蓝藻荧光检测仪的适用性进行了分析。   在没有采用蓝藻检测仪时,滇池湖泊藻生物量的监测一直是采用经典的藻类技术方法,此类方法虽然经典、准确、可靠,但其速度远远赶不上藻类应急的需求,因此,蓝藻检测仪作为滇池藻类应急及日常监测主要手段,可以节省大量的人力、物力,并能及时获取湖泊不同区域蓝藻生物量数据。   如果进行湖泊蓝藻检测的同时,在每个监测点位用GPS测定对应蓝藻监测点位的地理坐标左边,拍摄监测点位蓝藻图片,采用ARCGIS技术处理所获得的滇池12个监测点位的蓝藻生物量数据,形成可视化的滇池湖泊蓝藻分布图,能非常清晰看到整个滇池不同季节、时间蓝藻分布状况及影响程度。   但蓝藻检测仪存在一定局限性。此类仪器仅对湖泊水体中具有产生蓝藻素的藻类发生荧光波长的吸收,因此不同的水体藻类的差异对蓝藻荧光检测仪的应用有一定的选择性和适用性,并不是所有水体均可用该仪器进行检测。   通常水体中多种藻类共存,其优势种只是该水体中的主要物种,实际水样中所测到的蓝藻荧光吸收峰并不像纯藻那么好,这可能是实际水体蓝藻生物监测产生较大误差的原因之一。   河北省环境监测中心站 耿炜高工 报告题目:化学需氧量在线监测仪在水质监测中的应用   耿炜高工介绍了河北省环境监测中心站采用化学需氧量在线监测仪监测地表水水质的相关情况。   由于河北部分河流水质污染程度较高,所以在地表水监测中并没有采用高锰酸盐指数监测仪器,而采用了化学需氧量(铬法)在线监测仪器来监测水质。为此,河北省环境监测中心站根据自动监测与国标方法的差异,开展了在线监测仪器数据替代手工监测数据的可行性研究。对比结果证明,在线监测数据与实验室分析数据在趋势上有一致性,自动监测仪器在地表水监测中起到了实时监控和及时预警的作用。   为进一步推动水站的自动化管理和发展,提高工作效率,2012年河北省将自主研发地表水在线监测远程质控系统和远程在线监测系统。   该系统通过增加辅助硬件以及软件反控能力,实现远程对仪器的操控,完成对仪器进行标定和比对工作,通过远程质控系统可以有效监控仪器的当前工作状态,判断自动监测数据的有效性和可靠性,并且可以初步判定仪器故障,避免人为改动仪器的行为,为水质自动监测数据准确性提供有力的保障。   广西壮族自治区环境监测中心站 廖平德副站长 报告题目:广西龙江河突发性污染事件应急监测经验及体会   廖平德副站长对今年年初广西环境监测中心站就广西龙江河突发性污染事件开展的应急监测工作,以及他参与此次应急监测的心得体会进行了介绍。   此次龙江河镉污染事故应急监测时间跨度之长,投入人力、物力之多,堪称广西环境监测历史之最,就国内而言也是少见的。此次应急监测监控河段长达350多公里,时间长达40天,定点监测断面20多个,设巡测断面70个,共获得监测数据17053个,共有23个省、市、县级监测站的515名工作人员参与,启用了自动监测车6辆,监测仪器设备240台/套。   应急监测要注意及时性、准确性、持久性。事故发生后,要及时赶赴现场开展监测,及时捕捉污染带 成立数据报告组,及时收集、审核、发送数据,确保污染处置及时性和有效性。并及时调整监测方案,实时掌握污染全局。   在保证应急监测及时性的同时,也要对监测质量进行把控。须动态调控质控措施,现场监测数据要与卫生、检验检疫、水利、自来水公司等部门的检测数据比对,并同时在取水断面采用3种仪器同时分析,以确保监测数据的准确可信。此外,便携式重金属测定仪、自动监测车等高效的监测仪器,可以降低监测难度,有利于开展持久战。 环境保护部卫星环境应用中心 赵少华高工 报告题目:环境卫星其遥感监测业务运行介绍   赵少华高工在报告中介绍到:环境卫星遥感监测技术为环境监测天地一体化的重要技术,其应用领域得以不断拓展,在环境监测、环境监察、环境应急、生态保护、核安全监管、环评等方面得以应用,比如对太湖、巢湖、滇池等大型水体水华进行监测预警,对珠三角城市群气溶胶光学厚度进行监测等。   近三年,环保部卫星环境应用中心共上报环境遥感监测快报、应用专报等各类报告1200多期,为环境管理提供了有效技术支持和信息服务。由于遥感监测成本很高,目前该项技术仅在环境保护部卫星环境应用中心等少数几个单位得以应用。该中心与中国环境监测总站、青海环保厅、宁波环保局等监测机构站积极配合,在环境监测天-空-地一体化环境监测体系建设方面做出了积极探索。 中国地质调查局水文地质环境地质调查中心 张敏博士 报告题目:首钢土壤与地下水污染调查与风险评价案例分析   张敏博士在报告中详细介绍了其在首钢土壤与地下水污染调查及风险评价相关工作中运用的采样布点、样品采集、现场测量等技术。   在技术方法方面,张敏博士对基于X荧光原理的便携式重金属测试仪器的适用性进行了分析。他的研究结果表明:对于铅、铁、锌三个元素,便携式重金属检测仪的分析结果与实验室分析结果呈现显著相关关系(相关系数大于0.95),此时几乎可以把便携式仪器的分析结果作为定量分析的结果 对于锰、铜、铬三种元素,两者分析结果呈现较显著相关关系(相关系数大于0.70-0.80),便携式仪器的分析结果可作为采样布点和测试项目筛选的依据 而对于砷而言,两者分析结果无相关性(相关系数小于0.4),不适宜使用便携式仪器进行测量。   广西壮族自治区监测中心 陈洋工程师   报告题目:广西环境监管与预警信息系统应急指挥子系统   陈洋先生介绍到:广西环境监管与预警信息系统以业务数据仓库为中心,基于二维GIS、三维GIS平台,建设一个“GIS平台+环境质量自动监测+污染源在线监控”的全方位环境预警网络,并建立了应急指挥电子沙盘。该系统可以对环境质量超标、污染源超标进行预警,可以对污染物的扩散进行预测,并能协助环境监测部门实施应急管理与应急环境监测的指挥调度。
  • 1536 万元!北京市水利自动化研究所发布100套量子点光谱水质检测仪单一来源公告
    2月24日,北京市水利自动化研究所发布《北京市水利自动化研究所采购基于量子点光谱传感技术的“水环境侦察兵”项目(设备扩增)项目单一来源公告》。公告称,北京市水利自动化研究所拟采购100套由芯视界(北京)科技有限公司开发的第四代量子点光谱水质检测仪芯禹系列地表水监测终端QW-S024P0,预算金额达1536 万元。据了解,由芯视界(北京)科技有限公司开发的第四代量子点光谱水质检测仪芯禹系列地表水监测终端QW-S024P0,能够满足采购方所有技术要求。其水质监测设备将传统光谱仪缩小到手机摄像头大小,具有微小(低于5千克)、便携、超低功耗(小于1瓦,可连续运行4-5个月)、无二次污染、运行维护成本低(具备自清洁功能、无需专业人员维护)等特点。该设备具有目前在用的水质监测设备不具备的特点,可满足北京市水环境智能监测需求,起到“水环境侦察兵”的作用。以下为公告详情:北京市水利自动化研究所采购基于量子点光谱传感技术的“水环境侦察兵”项目(设备扩增)项目单一来源公告一、项目信息采购人:北京市水利自动化研究所项目名称:基于量子点光谱传感技术的“水环境侦察兵”项目(设备扩增)拟采购的货物或服务的说明: 当前,北京市水环境监管手段智能化水平有待提高,水质监测站点覆盖广度及数据有限,各级河长及水务管理和执法人员主要采用人工拉网式巡查的方式排查河道污染源,人力投入巨大,难以做到全天候连续、全覆盖,且容易存在巡查时不排、巡查过后偷排、捕捉排污事件有效性不高等问题,不能满足精细化管理需求的状况。为了达到规范要求和地表水质实时在线监测的实际需要,此项目主要内容是为北京市水务扩增购置水质在线监测设备,提高对北京市地表水环境质量监测能力。本项目拟采购100套实时水质自动在线监测设备(终端设备—量子点光谱水质检测仪)。本项目为扩增项目,拟采用升级版量子点光谱水质检测仪,功能进一步优化。应增加相关监测指标和功能,包括:太阳能供电、设备状态自动监测及报警、在线升级、自主清洁、北斗定位、4G数据传输等。拟采购的货物或服务的预算金额:1536 万元(人民币)采用单一来源采购方式的原因及说明:1.由芯视界(北京)科技有限公司开发的第四代量子点光谱水质检测仪芯禹系列地表水监测终端QW-S024P0,能够满足采购方所有技术要求。其水质监测设备将传统光谱仪缩小到手机摄像头大小,具有微小(低于5千克)、便携、超低功耗(小于1瓦,可连续运行4-5个月)、无二次污染、运行维护成本低(具备自清洁功能、无需专业人员维护)等特点。该设备具有目前在用的水质监测设备不具备的特点,可满足北京市水环境智能监测需求,起到“水环境侦察兵”的作用。2.该设备应用的量子点光谱仪技术,经教育部科技查新工作站查新,无相同或类似的文献报道。详见附件1《科技查新报告》(报告编号:2020-0468)。由基于量子点光谱传感技术的水质监测设备与开发的软件系统共同组成水环境原位实时在线监测系统,经中国科学院文献情报中心查新,无相同或类似研究。详见附件2《科技查新报告》(报告编号:2019-1491)。3.该设备采用的6项技术均获得实用新型专利,专利权人均为芯视界(北京)科技有限公司,专利如下:(1)适用四季变化的水体检测装置,专利号:ZL 2018 2 2208474.1(见附件3);(2)适应复杂水体环境的水体检测装置,专利号:ZL 2018 2 2208448.9(见附件4);(3)一种光谱型水质检测装置,专利号:ZL 2018 2 2208941.0(见附件5);(4)水质监测系统,专利号:ZL 2018 2 0131962.4(见附件6);(5)光谱检测装置,专利号:ZL 2019 2 2452792.7(见附件7);(6)清洁装置和水质监测设备,专利号:ZL 2019 2 2452795.0(见附件8)。综上所述,该项目符合《中华人民共和国政府采购法》第三十一条第一款“符合只能从唯一供应商处采购的货物或者服务,可以依照本法采用单一来源方式采购”规定的情形,拟采用单一来源方式从芯视界(北京)科技有限公司采购。二、拟定供应商信息名称:芯视界(北京)科技有限公司; 地址:北京市海淀区成府路45号中关村智造大街A座三层303三、公示期限 2021-02-25 00:00至 2021-03-04 00:00四、其他补充事宜:本公示同时在中国政府采购网、北京市政府采购网、北京市水务局网站发布。五、联系方式1.采购人联 系 人:贾陆璐联系地址:北京市海淀区翠微路甲3号联系电话:010-566958482.财政部门联 系 人:北京市财政局采购处联系地址:北京市通州区承安路3号联系电话:010-555924053.采购代理机构联 系 人:北京江河润泽工程管理咨询有限公司联系电话:010-53105841附件:1、专家论证意见及专家姓名、工作单位、职称;(1) 专业人员签到表.pdf(2) 单一来源公示及专家论证意见.pdf2、评审专家和代理机构分别出具的招标文件无歧视性条款、招标过程未受质疑相关意见材料;3、其他附件;(1) 附件1-8:科技查新报告、实用新型专利证书.pdf需要采购的产品或服务清单:序号设备名称单位数量1终端设备---量子点光谱水质检测仪套100专业人员签到表.pdf附件1-8:科技查新报告、实用新型专利证书.pdf单一来源公示及专家论证意见.pdf
  • 应用案例 | 基于4.5 μm量子级联激光器的开放光路 N2O气体检测系统研究
    近日,来自山东师范大学的研究团队发表了《基于4.5 μm量子级联激光器的开放光路N2O气体检测系统研究》的研究成果。项目背景温室气体(Greenhouse Gas,GHG)的温室效应引发全球变暖和气候变化,这使得全球生态环境面临着很大的威胁。一氧化二氮(N2O)是全球六大GHG之一,相较于人们熟知的二氧化碳(CO2),N2O含量相对较低,但其全球变暖潜能值(Global Warming Potential, GWP)却是CO2的310倍左右,此外,它对臭氧(O3)也有一定的破坏作用。因此,有效探测大气中的N2O含量及其浓度变化趋势是至关重要的。N2O气体分子的吸收谱带主要集中在中红外区域,需要选用中红外光源对N2O气体进行探测。近年来,随着波长可调谐、可室温工作的量子级联激光器(Quantum Cascade Laser, QCL)的研发技术日益成熟,将其与激光吸收光谱技术相结合,可以实现对气体的高分辨率、高灵敏度探测,被广泛应用于气体遥感探测领域。目前,结合激光吸收光谱技术及紧凑型多通道气室(MGC),可实现对气体分子的快速响应,并达到较低的检测限,但系统为封闭式光学路径,限制了在户外环境中持续检测的便携性、实际适用性和空间覆盖范围。因此,开放式光学路径的设计,对于户外大范围环境中气体浓度的实时检测是十分必要的。系统搭建宁波海尔欣光电科技有限公司为该项目提供了HPQCL-Q&trade 标准量子级联激光发射头、QC750-Touch&trade 量子级联激光屏显驱动器、HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器。HPQCL-Q&trade 标准量子级联激光发射头其波数的可调谐范围是 2203.7 cm-1~2204.1 cm-1,最大输出光功率可达 50 mW。 为了充分发挥 QCL 的波长可调谐特性,结合激光器驱动,对QCL 的工作温度以及电流进行设置,进而得到系统中所需要的激光器发射中心波长。QC750-Touch&trade 量子级联激光屏显驱动器结合触摸屏的显示功能,极大的方便了用户进行操作。 通过激光驱动器对注入激光器的电流进行更改,分析发射波数与驱动电流的相关性,调节驱动电流大小,分析在300 mA至360 mA的电流变化范围内,激光器波数随驱动电流变化的响应曲线。可以得到,随着电流逐渐增大,激光器的波数是逐渐减小的,对应的输出波长是逐渐增大的,其响应曲线可以表示为:y = -0.0271x + 2212.972。 同理,对激光器发射波数与温度的相关性进行分析,对温度进行调节,使激光器在30 °C至45 °C之间工作,分析激光器中心波数随温度变化的响应曲线。可以得到,随着温度逐渐升高,激光器的波数是逐渐减小的,对应的输出波长是逐渐增大的,其响应曲线可以表示为:y = -0.1716x + 2210.216。 综上所述,根据所选用的N2O吸收谱线波数为2203.7333cm-1,因此,所对应的QCL 中心电流和工作温度应分别设置为330 mA和36.0 °C。 HPPD-M-B 前置放大制冷一体型碲镉汞(MCT)光电探测器的感光面积为1×1 mm2,探测范围较为广泛,可达到 2μm-14μm,完全满足本系统探测的需求。由于探测器接收到的回波信号较为微弱,在对数据进行处理前,需要对信号进行放大,而该型号的探测器内部设计有前置放大器,以便后续可直接进行谐波解调和浓度反演等数据处理,同时也对系统的设计进行了简化。结论与创新点:使用该检测系统对大气中 N2O 浓度进行实时检测是可行的。(1) 选用QCL作为发射光源。QCL 具有波长调谐范围广、输出功率较高、并且可以在室温条件下工作的卓越性能。选取最优谱线位置为 2203.73 cm-1,能有效避免其他气体的干扰,实现对N2O气体分子的高灵敏度检测。(2) 为了避免MGC在远程或户外的大范围环境检测研究中的限制性,选用离轴抛物面反射镜和角反射镜,搭建了开放式光学路径的N2O气体检测系统。将大部分光学元件安装在一个光学平台上,实现了系统的紧凑、便携特性,并满足开放式、大范围环境监测的需求。(3) 经验证,当积分时间为1s时,N2O检测限为1.1 ppb,当积分时间延长至95 s时,系统达到最低检测限为0.14 ppb。结合实验结果,表征了系统的高精确度、高灵敏度、低检测限的性能,并且完全满足对大气环境中N2O浓度测量的标准。参考文献:张玉容,赵曰峰《基于4.5 μm量子级联激光器的开放光路 N2O气体检测系统研究》
  • 上海交大团队成果为高灵敏度分子检测和生物成像提供新材料
    近日,上海交通大学生物医学工程学院“青年千人计划”获得者叶坚特别研究员和古宏晨教授共同指导博士生林俐等人组成的研究团队在新型表面增强拉曼纳米探针的制备与机理研究方面连续取得突破性进展,研究成果先后发表在材料学领域权威期刊《Nano Letters》(SCI IF = 13.592)和化学领域权威期刊《Chemical Communications》(SCI IF = 6.834)上。  荧光探针是一类在紫外-可见-近红外区有特征荧光的分子,它们就像黑夜中的灯塔为科研工作者照亮了从微观到宏观各个层次上丰富多彩的生命现象,例如细胞凋亡。目前荧光探针已被广泛应用于分子检测和生物成像。然而传统的荧光探针存在稳定性差、容易发生荧光漂白、谱峰宽容易重叠、容易受到背景荧光的干扰等缺陷。与之相比,基于表面增强拉曼光谱的纳米探针具有信号强且稳定、谱峰窄、不易漂白、特异性好等优点。因此,越来越多的研究者将目光投向这一领域。  拉曼光谱是一种散射光谱,与分子键的振动和转动有关,因此它可以作为分子鉴别的手段。传统的拉曼散射光信号较弱,但如果将分子吸附在纳米材料上,其拉曼光谱信号可以获得高达一百万倍以上的增强,这一现象称为表面增强拉曼效应。制备一个合适的纳米材料是获得高性能表面增强拉曼纳米探针的关键,也是材料领域研究人员的关注点之一。  该团队通过实验和理论上对核壳纳米探针的等离激元耦合效应的研究,发现传统的理论模型已经无法预测具有亚纳米缝隙核壳探针的近场和远场光学属性,需要引入量子效应和电荷转移效应来修正。此外,亚纳米缝隙核壳探针的表面增强拉曼光谱结果也表明在这种窄缝隙中有较强的电荷转移作用。该研究表明亚纳米尺度下材料的光学属性可能与传统理论所预期的完全不同,因此将可能进一步引导产生适用于该尺度的新理论,推动新型的量子等离激元纳米结构和表面增强拉曼纳米探针的发展。这项工作与美国莱斯大学的Peter Nordlander教授、西班牙国家材料物理中心的Javier Aizpurua教授和法国巴黎南大学的Andrei G. Borisov教授进行了合作。相关研究成果以林俐为共同第一作者,叶坚为共同通讯作者近期发表于《Nano Letters》(2015, 15, 6419-6428)。  另外,该团队还进一步制备出具有亚纳米缝隙多层核壳结构的表面增强拉曼纳米探针,通过调节外壳的数量,实现纳米探针拉曼光谱强度的调控 通过替换缝隙中的拉曼分子,实现纳米探针拉曼光谱峰位的调控。这项技术使得表面增强拉曼纳米探针的性能得到大幅度的提高,有望在高灵敏度的多指标分子检测和快速的多组分生物成像领域得到广泛应用。相关研究成果以林俐为第一作者,古宏晨和叶坚为共同通讯作者近期发表于《Chemical Communications》(DOI: 10.1039/C5CC06599B)。  该项研究工作得到了国家青年千人资助计划、国家自然科学基金和上海市自然科学基金的支持。
  • 青海省首次开展三江源区典型植被光谱监测
    8月9日至14日,青海省环境监测中心联合环境保护部卫星环境应用中心首次开展三江源区典型植被光谱监测工作。   此项监测工作突出传统监测与现代监测技术的结合,监测内容包括植被样点的典型植被的光谱信息以及植被群落结构、盖度、频度、地面生物量等。植被光谱信息的测定是地面监测与遥感监测相互结合的重要连接点,对提高土地利用与覆被监测、定量遥感监测、生态模型等工作的精度具有重要意义。   通过光谱监测,可初步掌握三江源区典型植被的光谱信息,结合遥感监测信息可以为三江源区生态状况评价提供科学的数据支持。
  • 我国科学家提出一种新的量子传感范式为十纳米以下芯片的缺陷检测提供技术支撑
    日前,中国科学技术大学中国科学院微观磁共振重点实验室杜江峰院士、王亚教授等人在量子精密测量领域取得重要进展,提出基于信号关联的新量子传感范式,实现对金刚石内点缺陷的高精度成像,并实时观测了点缺陷的电荷动力学。相关研究成果近日在线发表于《自然光子学》。此次工作中,研究团队提出了一种新的量子传感范式,即利用多个量子传感器之间的信号关联,提升对复杂对象的解析能力和重构精度。研究团队基于自主发展的氮-空位色心制备技术,可控制备出相距约200纳米的三个氮-空位色心作为量子传感系统,通过对随机电场探测展示了这种新的量子传感范式。金刚石是一种性能优异的宽禁带半导体材料,材料中点缺陷的电荷动力学会带来随机的电场噪声。研究团队成功对微米范围内16个点缺陷进行了定位,定位精度最高达到1.7纳米。基于这种关联分辨和精确定位的能力,他们还实现了对每个点缺陷电荷动力学的原位实时探测,为研究体材料内部点缺陷的性质提供了新的方法。研究人员介绍,这一成果展示了基于量子技术的超高灵敏度缺陷探测,甚至在一千亿个正常原子中出现一个缺陷也能探测到。这要比目前最灵敏方法的探测极限提升两个数量级以上,有望为当前十纳米以下芯片中的缺陷检测提供一种强有力的技术手段。
  • 即时检验POCT进入“i”时代
    POCT不仅仅是试纸条加上配套仪器,更是患者身边或所在地使用的基于物理量、化学量和生物量技术体内外检测试剂、仪器和设备,是生物、纳米、计算机等多技术融合的产物。作为技术驱动型产物,目前,POCT产品正向着第五代自动化、信息化、智能化技术平台发展。  iPhone、iWatch、iPad等i系列电子产品已被人们熟知,试想一下,如果即时检测(POCT)也插上“i”翅膀,会变成什么样呢?  或许在不久的将来,血检报告不仅立等可取,还能在家庭、飞机、高铁等任意场所完成,机器随即就会吐出一张报告单。患者还可通过POCT设备作其他检测,并将相关数据同步上传至云平台,线下医师通过平台判读检测数据,快速帮助患者诊断。  “随着方法学的叠加,检测功能的整合,器官系统的逐步完善,POCT从昨天的金标定性到今天的荧光定量,再到明天的iPOCT(智慧POCT),将开创检验医学新型诊断技术发展的新局面。”首都医科大学附属北京天坛医院实验诊断中心主任康熙雄曾表示。  从检验科到床旁  体外诊断如今已成为医疗行业中快速崛起的朝阳产业,那么在体外诊断的众多细分领域中,增长最快的板块又是谁?齐鲁证券日前发布的调研报告给出答案:POCT。  POCT即在病人身边实现的快速诊断。调研报告显示,我国潜在的POCT产品市场广阔,年增长率保持在20%~30%,远超世界7%~8%年增长水平,同时也超过我国体外诊断行业16%~20%的增速。  POCT的快速增长不无道理,“POCT可快速获取结果,大大缩短样本周转时间,而且仪器小型便捷,仅需微量标本即可低成本完成检测。”日前在2015(第四届)POCT产业发展论坛上,军事医学科学院微生物流行病研究所研究员杨瑞馥指出,POCT的特点决定了其应用场所极其广泛,未来将占据体外诊断市场的半壁江山。  事实上,传统诊断中大量时间被浪费在样本运送、前处理、组织、标记、录入、分发等方面,核心反应及分析时间占比极低。与之相比,POCT进行了步骤精简,仅保留了诊断最核心的“采样—分析—质控—输出”步骤,极大缩短了诊断时间,为患者在最佳时间就诊获得便利。  “POCT不仅仅是试纸条加上配套仪器,更是患者身边或所在地使用的基于物理量、化学量和生物量技术体内外检测试剂、仪器和设备,是生物、纳米、计算机等多技术融合的产物。”北京中生金域诊断技术有限公司总经理王加义补充道。  作为技术驱动型产物,目前,POCT产品已经从第一代定性试纸条检测、第二代半定量色板卡比色或仪器阅读、第三代全定量手工加仪器操作、第四代全自动仪器,向着第五代自动化、信息化、智能化技术平台发展。  与此同时,POCT检测范围也从最初的检测血糖、妊娠扩展到血凝状态、心肌损伤、酸碱平衡、感染性疾病和治疗药物浓度等,应用技术也涵盖了干化学技术、免疫层析技术、生物传感技术、远红外分光光度技术、生物芯片技术及多技术的交叉应用等。  iPOCT应运而生  近年来,信息化、智能化、大数据、“互联网+”等元素不断融入到各行各业,POCT也不例外,iPOCT的概念应运而生。  首次提出iPOCT概念的上海奥普生物医药有限公司(以下简称奥普生物)董事长徐建新表示,i指的是intelligent,iPOCT即为智慧POCT,融入精准化、自动化和云端化的POCT仪器的发展和应用称之为“iPOCT”。  “未来POCT将呈双轨制发展,一方面小的产品越来越迷你,进入终端、家庭及每个人生活的点点滴滴 另一方面,根据不同的项目,POCT的平台一定会走向精准化、自动化和云端化。”徐建新说。  基于基因芯片、蛋白质芯片和芯片实验室等生物芯片技术的快速发展,POCT目前已经能够逐步实现高通量、多靶向检测,而在通信技术逐步成熟的基础上,POCT正在向远程数据中心等方向发展。  奥普生物高级总监杨宏表示,相比于大型的全自动检测仪器,POCT产品更加有利于和移动信息技术相结合,实现移动装备式的检测。未来,POCT产品能够在便捷快速检测分析的同时,整合远程数据终端和医疗资源进行最佳治疗,从而构建真正的大健康体系。  在康熙雄看来,人体信息采集系统根本上促成了以互联网、大数据、大诊断为核心的现代诊断学新格局,以人为中心的POCT检测技术将在今后的医学诊断中发挥重要作用。  “随着更加适宜的定量化、互联互通互用体系、可保障的质量体系、规范化程序化管理的逐步完善,POCT将为精准医学的发展提供重要的诊断依据。”康熙雄说。  杨宏也持类似观点:“精准化、自动化和云端化元素的涌入,POCT仪器检测的准确度、便捷功能、数据化发生了质的提升。未来,iPOCT将在个性化治疗方面与精准医疗形成技术衔接与支撑,并推动精准医疗理念落地。”  “i”时代的技术趋势  借助海量身体数据收集、筛选和后台分类分析,健康数据的应用离我们并不遥远。未来,iPOCT如何既做到短时间反馈,又做到与复杂技术和大型检验设备的测定结果一致?  在杨宏看来,首先,iPOCT的检测标准要进一步向大型分析仪器靠拢,尤其要求检测结果变异系数(CV)控制在5%~10%,另外,质控品、标准品也要具备溯源性。  而在自动化方面,iPOCT要实现无需样品手工前处理,加样、加液也无须手工动作,且标本可连续操作的自动化系统每小时通量将在100人份以上。  另外,基于云端大数据的质量管理服务系统,iPOCT将真正实现远程监护和质量控制,并实现后台大数据在PC端与手机App端打通,建立未来移动医疗的信息传递基础。  那么,哪些具体技术能支撑起iPOCT新时代?  杨宏表示,均相化技术将是POCT发展的主流趋势,液相试剂的广泛应用是大势所趋,即液相试剂代替固相膜反应 其次还要重视发展微流控、荧光、化学发光、磁免疫、量子点等具备高灵敏度、反应迅速的新技术 另外,分子与POCT的结合也将成为一大趋势,分子POCT、微阵列蛋白芯片技术会得到较好发展。  除此之外,徐建新认为,平台联机化是未来POCT重要的应用场景,例如CRP+血常规平台联机就是整个临床的需求。另外,Panel联检化已经发展了很多年,未来还将会继续深化,并结合大数据,产生更好的协同和放大效应。O2O互联网的云端化管理也将是iPOCT的主流,云端质控管理将成为重要的大数据突破口。  王加义则补充道,精准结构、精准反应、精准测量共同构成了精准化iPOCT系统,不久的将来,精准结构的重点是基于微纳机电MEMS/NEMS和3D打印技术的精准结构制造技术 精准反应则趋向于基于微纳流控技术的精准探测反应控制技术 精准测量重点任务则为基于微纳光学分子成像的测量技术等。
  • 中科天融公司昌平区空气质量子站自动监测建设政府采购项目顺利验收
    2016年3月15日,昌平区环保局主持召开了“昌平区空气质量子站自动监测建设政府采购项目”验收评审会,建设单位昌平区环保局及专家组在现场勘验各个监测站点后,形成统一意见,认为我公司承建的空气质量监测子站满足招标文件要求,并严格依照合同执行,一致同意该项目通过验收。   “昌平区空气质量子站自动监测建设政府采购”项目,共设有三个空气质量监测站点,分别为:草莓园站、昌平区环保局站、阳坊站。  同时,项目设置建设中心平台,用以接收以上三个空气监测子站的监测数据,进行数据分析与展示,为环境空气质量评估提供科学依据。中心站置于昌平环保局内机房,设置远程访问端口,可通过互联网对平台进行访问,实时查看三站的数据状态,进行站点管理。  同时,监测子站设有报警系统,具有全面报警功能,如:查询功能、定时布防撤防、应用手机卡实现无线网络连接,分区布防,智能学习配件等;报警系统内置GSM卡模块,当主机发生报警时会自动拨打远程报警号码通知相关人员。   本项目是我公司在北京市辖区内承建的首个空气质量监测站项目,具有里程碑的意义。通过本项目中与专家组的深入沟通,公司项目组人员学习和总结了诸多宝贵经验,为公司后期实施同类项目打下了良好的基础。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制