当前位置: 仪器信息网 > 行业主题 > >

水和废水标准

仪器信息网水和废水标准专题为您提供2024年最新水和废水标准价格报价、厂家品牌的相关信息, 包括水和废水标准参数、型号等,不管是国产,还是进口品牌的水和废水标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水和废水标准相关的耗材配件、试剂标物,还有水和废水标准相关的最新资讯、资料,以及水和废水标准相关的解决方案。

水和废水标准相关的资讯

  • 环保部有意提高味精工业废水排放标准
    8月2日从国家环境保护部获悉,环保部有意提高味精工业废水排放标准,并要求生产企业增加污染治理方面的投入。   环保部表示,新标准实施后,味精工业废水治理工程吨废水的投资成本可控制在2500-4500元/立方米之间 综合废水处理工程直接运行费用为1.41-6.08元/立方米,都在企业的可承担范围内。   据记者了解,环保部正着手编制《味精工业废水治理工程技术规范》,参编单位有北京工商大学、山东十方环保能源股份有限公司和河南莲花味精股份有限公司。   环保部介绍称,目前国内所有味精企业均建成了废水处理设施,但由于设计、工艺、运行及管理等方面均不够规范,导致许多废水治理工程的处理效果并不理想,一些治理工程甚至无法进行正常运行、达标排放。   据《味精工业废水治理工程技术规范》编制组介绍,新标准对味精工业废水治理工程系统设计、主要工艺设备制造和验收、检测与过程控制、施工与验收及工程管理运行与维护等都提出了更严的要求。   我国是味精生产与消费大国,也是我国发酵工业中的最大污染源。环保部门的统计显示,2007年味精行业产生高浓度有机废水总量为2850万吨,年COD产生总量为142万吨,每吨味精产品产生高浓度废水15吨左右。
  • 纺织染整废水治理技术标准发布
    环境保护部公告 公告 2009年第33号 为贯彻《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范污染治理工程建设工作,现批准《纺织染整工业废水治理工程技术规范》为国家环境保护标准,并予发布。   标准名称、编号如下:   纺织染整工业废水治理工程技术规范(HJ 471-2009)   以上标准自2009年9月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   特此公告。   二○○九年六月二十三日
  • 首个电子束处理工业废水技术标准颁布 填补国际标准空白
    p   2018年3月30日,由中广核核技术发展股份有限公司(以下简称:中广核技)旗下中广核达胜加速器技术有限公司(下称中广核达胜) 联合清华大学发起并主编的《电子束处理印染和造纸工业废水技术规范》(下称技术规范)正式颁布。据了解,该技术规范是全球电子束处理工业废水应用领域的首个技术标准,填补了国际标准空白。技术规范将于2018年5月30日起正式实施。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/c3da589d-979b-44ff-af8a-ef7797091e8e.jpg" title=" a0IP-fyssmme6730460.jpg" / /p p   中广核技表示,技术规范正式颁布是继中广核达胜建成全球唯一在运示范工程、科技成果通过中国核能行业协会鉴定、中国首个产业化项目落地浙江等三个重要节点之后,我国电子束处理工业废水技术再次取得的重大进展。技术规范为行业发展树立了一个标准,将有利于推动电子束处理工业废水技术在印染和造纸行业的大规模推广应用。 /p p   据环境统计年报数据显示,2015年我国工业废水排放总量199.5亿吨,其中印染和造纸工业废水排放量占比约1/4。专家表示,印染和造纸工业废水总量大、污染物成分复杂,含有大量难以生物降解的有害物质,相比其他手段,利用电子束技术处理的废水净化程度更高,处理效果更好,还可实现废水高标准排放或中水回用。 /p p   公开资料显示,电子束处理工业废水技术除了可以深度处理印染和造纸工业废水,还可应用于化工、制药等行业废水处理,水质复杂的工业园区废水处理,以及特殊有害物质(如抗生素废水、菌渣)的无害化处理。随着技术的进步,未来还可用于医疗废水废物处理、垃圾焚烧尾气二噁英处理等领域。 /p p   作为技术规范的发起和主编单位之一,中广核达胜承担了电子束处理废水的原理和方法、装置和流程、过程控制和质量控制、运行维护和管理等核心内容的编制。目前已展开电子束处理工业废水技术的商业应用推广,正在为国内外数家大中型排污企业提供解决方案。 /p p   据悉,技术规范于2017年5月由中国核学会批准立项,2017年底完成编写工作,2018年3月获得批准和发布。中国原子能科学研究院、上海大学、苏州中核华东辐照有限公司、中国核学会以及核工业标准化研究所等单位共同参编了技术规范。 /p
  • 标准解读|一点一点看新版GB 5749—2022《生活饮用水标准》,保障国人饮水安全
    导读:近期,新版《生活饮用水标准》GB 5749-2022发布并于2023年4月1日起开始正式实施。那么,新版与2006版相比,内容上有哪些变化?我们如何应对等一系列问题,今天小编带您一起拨云见日!标准的使用范围本标准适用于各类生活饮用水水质要求。规范性引用文件规范性引用文件删除“CJ/206城市供水水质标准、SL308村镇供水单位资质要求及生活饮用水集中式供水单位卫生规范(卫生部)”3项。术语和定义增加了“出厂水”和“末梢水”的定义,同时删除“二次供水”定义,调整了“集中式供水”和“小型集中式供水”定义;将“非常规指标”修正为“扩展指标”:扩展指标定义为能反应地区生活饮用水水质特征及在一定时间内或特殊情况下水质状况的指标。指标数量调整水质指标由 GB 5749-2006 的 106 项调整到 97 项(常规指标 43 项和扩展指标 54 项)。增加了 4 项指标:高氯酸盐、乙草胺、2- 甲基异莰醇和土臭素;删除了 13 项指标:耐热大肠菌群、三氯乙醛、硫化物、氯化氰(以 CN-计)、六六六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、甲醛、1,1,1- 三氯乙烷、1,2-二氯苯和乙苯。 指标限值调整调整了 8 项指标的限值,包括硝酸盐(以 N 计)、浑浊度、高锰酸 盐指数(以 O2计)、游离氯、硼、氯乙烯、三氯乙烯和乐果。 指标项目名称调整调整了2项指标名称:耗氧量(CODMn法,以 O2计)和氨氮(以 N计)。指标分类调整调整了11 项指标的分类:一氯二溴甲烷、二氯一溴甲烷、三溴甲烷、三卤甲烷(三氯甲烷、一氯二溴甲烷、二氯一溴甲烷、三溴甲烷的总和)、二氯乙酸、三氯乙酸、氨(以N 计)、硒、四氯化碳、挥发酚类(以苯酚计)和阴离子合成洗涤剂。修正总β放射性指标评价及微囊藻毒素-LR 指标 总β放射性测定包括了40钾。本次修订明确了总β放射性扣除40钾 后仍 然大于 1 Bq/L,应进行核素分析和评价,判定能否饮用;本次修订将微囊藻毒素-LR 表达的形式调整为微囊藻毒素-LR(藻类暴发情况发生时), 使表述更有针对性。 附录 A 中水质参考指标的调整附录A(资料性)水质参考指标由原来的28项调整到55项。其中新增29项指标:钒、六六 六(总量)、对硫磷、甲基对硫磷、林丹、滴滴涕、敌百 虫、甲基硫菌灵、稻瘟灵、氟乐灵、甲霜灵、西草净、乙 酰甲胺磷、甲醛、三氯乙醛、氯化氰(以 CN-计)、亚硝 基二甲胺、碘乙酸、1,1,1-三氯乙烷、乙苯、1,2-二氯苯、 全氟辛酸、全氟辛烷磺酸、二甲基二硫醚、二甲基三硫醚、 碘化物、硫化物、铀和镭-226;删除了2项指标:2- 甲基异莰醇和土臭素;修改了 2 项指标的名称:二溴乙烯和亚硝酸盐;调整1项指标的限值:石油类(总量)。其它删除小型集中式供水和分散式供水部分水质指标及限值的暂行规定;删除涉及饮用水管理方面的内容。应对方案在生活饮用水卫生标准中,金属、类金属、无机非金属、挥发性有机物、半挥发性有机物、农药残留、卤代烃等指标是主要的检测项目,仪器涉及原子吸收、原子荧光、液相-原子荧光形态分析仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪、气质联用仪、气相色谱仪、液相色谱仪、离子色谱、紫外-可见分光光度计等。金属、类金属、无机非金属检测AA-7090型原子吸收分光光度计AA-7050原子吸收分光光度计SavantAA原子吸收分光光度计AF-7550型双道氢化物-原子荧光光度计LC-AF 7590液相色谱-原子荧光联用仪ICP-7760HP型全谱电感耦合等离子体发射光谱仪ICP-7700型电感耦合等离子发射光谱仪GBC Quantima电感耦合等离子发射光谱仪GBC Integra电感耦合等离子发射光谱仪GBC OptiMass 9600电感耦合等离子体直角加速式飞行时间质谱仪Cintra 4040 紫外-可见分光光度计IC-2800离子色谱仪有机物检测GC-4100型气相色谱仪GC-MS 3200型气相(四极)色谱质谱联用仪LC-5520型高效液相色谱仪相关解决方案解决方案|GC-MS在水质中挥发性有机污染物、挥发性卤代烃、农药等检测中的应用吹扫捕集/GC-MS联用法分析饮用水中挥发性卤代烃吹扫捕集/GC-MS联用法测定水中57种挥发性有机物饮用水中有机氯农药的GC-MS分析饮用水中有机磷农药的GC-MS分析水中溴氰菊酯的GC-MS分析饮用水中苯并(α)芘的测定GC-MS测定饮用水中塑化剂解决方案|水盲样中铅含量测定解决方案|废水砷元素测定解决方案|原子荧光法测定废水中的硒解决方案|水中钙镁离子的测定解决方案|水样中可溶性钡元素测定解决方案|自来水中三氯甲烷、四氯化碳的检测“家乡的水”-东西分析水检测公益活动圆满结束解决方案|地表水中元素的ICP-TOF-MS法测定解决方案|利用东西分析LC-5510型液相色谱仪检测自来水中的草甘膦含量利用东西分析解决方案,测定水中碳酸盐东西分析农饮水视频教程之“原子荧光检测水中的As、Hg、Se”东西分析农饮水视频教程之“原子吸收检测水中的金属元素”东西分析农饮水视频教程之“顶空-气相色谱法检测水中的三氯甲烷和四氯化碳”第一讲东西分析农饮水视频教程之“顶空-气相色谱法检测水中的三氯甲烷和四氯化碳”第二讲东西分析“IC-2800测定饮用水中的阴离子”视频教程第一讲东西分析“IC-2800测定饮用水中的阴离子”视频教程第二讲东西分析“IC-2800测定饮用水中的阴离子”视频教程第三讲东西分析“农村饮用水安全工程分析方法视频教程”上线后记东西分析在水质安全领域深耕多年,拥有丰富的行业经验及完整的生活饮用水解决方案和应用文集,欢迎您与我们联系,一起守护民众健康安全。添加“东西分析”微信公众号了解相关方案详细内容
  • 北京工业废水排放将出新标准 严查6大行业排污
    清河,一位女士在岸边看着清河桥下的排污口里排出的生活污水   &ldquo 想让北京的河水变清,还是得靠污水处理厂。&rdquo 水务系统一位官员在回答关于清河污染问题时曾这样表述。而从今年开始的三年内,北京建设污水处理设施的力度将是空前的。3年时间,全市将新建再生水厂47座,2015年前实现首都水环境明显好转。   北京市计划通过新建再生水厂47座,实现到2015年全市污水处理率达到90%以上,其中四环路以内地区污水收集率和污水处理率达到100%。今后本市污水处理费和再生水费将提高。   4月23日公布的《北京市人民政府关于印发北京市加快污水处理和再生水利用设施建设三年行动方案》(以下简称《方案》)透露了上述内容。   四环内污水三年100%处理   北京市将加快污水处理和再生水利用设施建设,三年内,本市将新建再生水厂47座,升级改造污水处理厂20座。   《方案》要求,到2015年年底前,全市污水处理率达到90%以上,其中四环路以内地区污水收集率和污水处理率达到100%,中心城区(中心城及海淀山后地区、丰台河西地区、大兴区五环路以内地区)污水处理率达到98%,新城污水处理率达到90%,实现首都水环境的明显好转。   污水处理资金政府企业共担   在上马污水处理设施的同时,北京市希望通过提高污水处理费标准、吸引社会资金以及上游区县向下游补偿等政策,为北京的污水处理建立一个可持续发展的轨道。   北京市计划逐步提高污水处理费标准和再生水价格,在污水处理费达到污水处理实际成本前,采取政府购买公共服务模式,保障排水和再生水利用设施运营成本及企业合理收益。   市政府鼓励污水处理企业以多种融资方式筹措排水和再生水设施建设资金。   市政府表示,中心城区污水处理和再生水利用设施及配套管线项目工程建设、征地资金及50%的拆迁资金,通过企业融资和市政府资金支持统筹解决,其余50%的拆迁款由区政府承担。   北京市还将探索建立水环境容量补偿机制。根据污水排放量及污水处理量等指标,由上游区县向下游区县或污水处理厂重点建设区县缴纳污水处理经济补偿费。经济补偿费主要用于污水处理厂建设及后期运营等方面。   ■ 治理重点   三年新建再生水厂47座   3年时间,全市将新建再生水厂47座,所有新建再生水厂主要出水指标一次性达到地表水Ⅳ类标准 升级改造污水处理厂20座,新增污水处理能力228万立方米/日。   全市将新建污泥无害化处理设施14处,新增无害化污泥处理能力3995吨/日。   其中今年计划新增污水处理能力11万立方米/日,计划完成清河北岸截污干线、东小口沟综合治理工程 完成清河、酒仙桥污水处理厂升级改造和东坝、垡头、五里坨污水处理厂建设以及丰台河西再生水厂建设。新建和改造污水管线86公里,新建再生水管线35公里。加快小红门和高碑店污水处理厂升级改造工程建设。批准立项并开工建设清河第二、郑王坟、定福庄、东坝、垡头、稻香湖、上庄再生水厂项目,肖家河污水处理厂升级改造工程,庞各庄污泥堆肥场改扩建项目,高碑店、郑王坟污泥干化工程。   临时治污赶走河边臭味   建设污水处理设施需要几年的时间,是不是要让老百姓再闻几年河边的臭味?政府给出了否定的答案。北京市计划通过采取现有污水处理厂深度挖潜和在城乡接合部重点村庄、居民小区及河道干支流重点排污口建设临时治污工程等措施,新增污水处理能力19万立方米/日,初步改善城区河道水环境质量。   重点对清河、凉水河、萧太后河等河道内垃圾、漂浮物等进行打捞、清理。   北京市政府将加大对临时治污工程建设运行的直接投入。市管河道所需建设和运行经费由市政府资金解决 区管河道以及村庄和小区治污工程,市政府给予建设和运行经费50%补贴。   工业废水排放将出新标准   北京市还将尽快修订出台《北京市水污染物排放标准》。加强对化工、制药、纺织、食品制造、酿造和电镀等工业废水排放监管,确保重点污染企业在2015年年底前达到新的排放标准,限期关停排放含重金属废水的小型生产企业。   建立排污源头控制机制,环保部门在办理环境影响评价审批手续时,必要时可征求水务部门意见 环境影响评价审批未通过的,发展改革、规划等部门不得批准该建设项目立项、用地。   北京市还将建立环保、水务、城管联合执法工作机制,严厉查处城乡接合部和河道两岸违法、违规排污行为。
  • 青海省标准化协会发布《工业废水 氯离子的测定 电位滴定法》团体标准征求意见稿
    各相关单位及专家:按照青海省标准化协会团体标准工作程序,标准起草单位已完成《工业废水 氯离子的测定 电位滴定法》团体标准征求意见稿,根据《青海省标准化协会团体标准管理办法》的要求,现在网上公开征求意见,欢迎提出宝贵意见。征求意见截止时间为2023年12月6日,请您在截止日期之前将您的意见反馈至青海省标准化协会。协会联系方式协会秘书处:刘伟朝:18297212652 韩建华:13909712796协会邮箱:qhsbzhxh@163.com 附件1:《工业废水 氯离子的测定 电位滴定法》附件2:意见反馈表.doc附件2:意见反馈表.doc工业废水氯离子的测定 电位滴定法 -.doc.pdf意见征求函.jpg
  • 铜冶炼废水、废气治理工程技术规范两项国家环境保护标准发布
    p   为规范相关行业污染防治工程建设和运行管理,近日,生态环境部批准《铜冶炼废水治理工程技术规范》和《铜冶炼废气治理工程技术规范》为国家环境保护标准,并予公布。 /p p   标准名称、编号如下。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/5a866dbe-c226-405c-9c82-2701544cf098.pdf" target=" _self" title=" 1.pdf" textvalue=" 一、《铜冶炼废水治理工程技术规范》(HJ2059-2018).pdf" 一、《铜冶炼废水治理工程技术规范》(HJ2059-2018).pdf /a /p p   本标准规定了铜冶炼废水治理工程设计、施工、验收和运行与维护的技术要求。本标准为指导性标准。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/102a578a-0b66-44eb-bbcf-d1cc69afb3df.pdf" target=" _self" title=" 2.pdf" textvalue=" 二、《铜冶炼废气治理工程技术规范》(HJ2060-2018).pdf" 二、《铜冶炼废气治理工程技术规范》(HJ2060-2018).pdf /a ; /p p   本标准规定了铜冶炼废气治理工程设计、施工、验收和运行维护等技术要求。本标准为指导性标准。本标准为首次发布。 /p p   以上标准自2019年3月1日起实施。 /p
  • 会议活动|安杰科技参展GB/T 5750-2023《生活饮用水标准检验方法》标准解读暨新技术交流会
    一、展会的精彩瞬间 2023年06月15日,安杰科技在湖北武汉光谷潮漫凯瑞国际酒店参加GB/T 5750-2023《生活饮用水标准检验方法》标准解读暨新技术交流会。此次展会,安杰科技携公司最新产品、技术和解决方案重磅出席,安杰科技应用工程师针对全自动碘元素分析仪进行宣讲,以“安杰科技助力生活饮用水的检测”为题向各位行业专家和同仁分享了如何通过仪器实现水质检测自动化流程精确性和数据可靠性;主要从全自动碘元素分析仪的检测原理、标准规范、设备特点、关键技术和人性化操作等方面与在座的行业专家和同仁进行了互动沟通。本次会议吸引了多家分析科学仪器厂家前来参展,工程师现场向参会人员展示并介绍生活饮用水检验检测相关的分析科学仪器设备。工程师们在本次展会过程中,始终保持着热情高昂的情绪,为客户耐心讲解产品、剖析市场、认真回答每一位客户的问题、仔细聆听每一位客户的需求。每一场交流、每一次洽谈都值得回味与思考。本次交流会邀请多位水质检测领域资深专家及前沿水质分析仪器制造商,共同解读生活饮用水检测新标准,旨在促进国内水质检测技术水平提升,推动水质检测过程创新应用自动化检测仪器,实现水质检测指标全覆盖,助力国内水质检测发展,保障用水安全。安杰科技的主要产品为自动光谱分析仪器、自动滴定分析仪器、电化学分析仪器、样品前处理仪器等。二、产品介绍1.APA-500 全自动高锰酸盐指数分析仪:应用于疾病预防控制、生态环境监测、水文水资源监测、城市供水监测、地质环境监测、第三方检测等水质分析。2.AJ-5700 全自动化学需氧量(COD)分析仪:应用于环保、环卫、疾控、食品、石化、化工、地表水、生活污水、工业废水等水质检测。3.AJ-3700 气相分子吸收光谱仪:应用于生态环境监测、水文水资源监测、城市排水监测、石油化工环境监测、第三方监测等水质分析。4.AJ-6100 全自动碘元素分析仪:应用于医疗、卫生、制药、疾控、食品等领域,依循现行国家标准分析方法,检测尿碘、血碘、水碘、盐碘等指标,全程自动化,测定效率高、分析速度快。5.AJ-1000 流动注射分析仪:应用于疾病预防控制、水文水资源监测、生态环境监测、城市供水监测、第三方检测等水质分析。三、展会圆满落幕6月15日,在湖北省武汉市召开的GB/T 5750-2023《生活饮用水标准检验方法》标准解读暨新技术交流会现已圆满落幕。
  • 水质无小事!废水检测清单和选型指导
    水,是生命之源,是人赖以生存的重要物质。然而随着人口膨胀和工农业的迅猛发展,人对水源的需求量激增,对水体污染逐渐加剧,水资源危机也愈演愈烈。因此,对废水的检测和处理就显得尤为重要!一、废水需要检测哪些项目呢? 废水污染物监测项目有:PH、生化需氧量、化学需氧量、总有机碳、悬浮物、氨氮、总氨、总铜、总锌、总钡、总磷、总汞、总铬、总砷、烷基汞、总银、总镍、总铍、总铅、六价铬、氰化物、氟化物、苯并芘、浑浊度、氯化物等。 然而,对于不同的企业、使用单位而言,水质检测的要求也不一样,市面上的水质检测仪多种多样,改如何选择呢?希望这篇文章能对您有所帮助!二、废水检测相关设备清单1、分光光度计 2、紫外分光光度计3、气相色谱仪 4、电感耦合等离子体质谱仪5、原子吸收分光光度计 6、电感耦合等离子体发射光谱仪7、电位滴定仪 8、电子比色检测仪9、电子比色检测仪 10、原子荧光光谱仪11、液液萃取仪 12、固相萃取仪13、高效液相色谱仪 14、酸度计15、浊度计 16、水质重金属检测仪17、废水处理系统 18、地下水导拍系统三、废水检测方法以及方法标准如下表 水质检测仪型号多种多样,有的只能检测某些参数,有的能检测上百项参数,该如何选择呢?专业的问题交由专业人士解答! 我们有专业的客户经理给您一对一选型指导,根据您使用的场景和要求、需要检测的项目,给您推荐相应的型号。有选型、报价需求的客户,欢迎直接来电沟通,或者给我们留言讨论~
  • 水和废水中的有机物监测
    总有机碳(TOC)监测是行业了解其用水或废水质量的重要工具。它有助于确定水中存在的有机物质的量,有多种用途。TOC监测还使不同行业在多方受益,包括提高安全和加强环境保护,节省成本以及更好地遵守相关法规。但是,TOC监测也可能带来技术实施和成本等方面的挑战,这取决于应用的复杂性以及采用的仪表是否适用。什么是BOD、COD和TOC?检测有机物含量采用的最传统分析技术是生物需氧量(BOD)。随着技术的发展,法规允许采用其它方法来分析有机污染,如化学需氧量(COD)和总有机碳(TOC)。尽管BOD和COD已广泛使用,但TOC已成为越来越广泛接受的替代方法。BOD是确定废水有机污染的最常见的参数之一。该方法依靠微生物通过消耗样品中的氧气来分解有机物。如果水样品中有机物含量高,会导致溶解氧消耗增大。通过测量在20℃温度条件下培养五天所消耗的氧气量,BOD试验可以间接指示有机污染。化学需氧量(COD)是用于确定废水有机污染程度的另一种方法。该试验采用化学氧化来分解水中的污染物,然后测量在该分解过程中消耗的氧气。如果氧气消耗量增大,这说明品中有机物含量增高。2-3小时的分析时间少于BOD所需的时间,但需要用到有毒试剂。多年来的技术进步引入了总有机碳(TOC)分析仪,用于直接、快速检测水中有机物含量。与通过需氧量来确定有机物含量的BOD或COD不同,TOC分析仪是直接检测和定量分析样品中的碳。TOC分析仪将有机物氧化成CO2,然后通过电导率或非色散红外检测(NDIR)来测量CO2。样品氧化所采用的不同方法包括紫外线过硫酸盐、燃烧和超临界水氧化(SCWO)。TOC可通过特定相关性转换为BOD和COD。但是,在排放法规中,也有用TOC取代BOD/COD的趋势。挑战与TOC解决方案对于行业而言,总有机碳(TOC)监测对于确保其产品和工艺安全至关重要,同时,还有助于检测样品中有机化合物的量。在TOC监测方面,如果行业无法将其应用需求与合适的TOC技术相匹配,则将会面临诸多挑战。造成这种情况的原因有很多,包括取样技术欠缺,难以检测低浓度有机化合物以及分析方法不可靠。仪器商已经开发了不同的TOC解决方案来应对这些问题,从而降低了TOC监测的复杂性和成本,如下两个实例所示。电力行业挑战:煤气化装置要求在现场的水处理能力约为5,000-6,000 GPM,目标是零工艺水排放。由于该装置采用的是再生市政水,因此其蒸汽和冷凝水的来源中有机物含量高。因此,必须监测反渗透(RO)膜上的有机物负载量,以对处理工艺进行调整并保护宝贵的资产。解决方案:最初,在实验室进行TOC分析,后来采用在线TOC分析,以监测RO预处理性能并验证其可靠性。实时监测能够可靠、有效地调整预处理混凝剂的投加量。食品饮料行业 挑战:对于大型无菌生产企业,如果出现非无菌产品,会反复造成产品损失。他们一直在使用ATP检测拭子来检测微生物污染。但是,质量问题和产品损失则表明他们需要一种新技术。为了验证设备的清洁度并确保质量和安全,他们必须确保在开始灭菌前完全清除污染物和残余产物。除改进其清洗验证工艺外,生产企业还希望降低用水量和成本。解决方案:食品饮料生产企业需采用以turbo模式运行的Sievers® M9 TOC分析仪来进行TOC分析——每4秒钟提供一个数据点,以对原位清洗(CIP)后的冲洗样品进行监测。在审核过程中,证明这些数据对设施在CIP效果和设备清洁度方面很有价值。通过目视检查确认设备很脏,但通过ATP检测拭子检查发现设备干净,但事实上并非如此。来自TOC监测的定量和全面的数据能够进一步减少不必要的CIP次数,并针对不同产品对其进行优化,从而节约用水并改进清洗工艺。碳监测通过TOC分析进行碳监测是一种重要且有用的方法,可以在水通过工业设施时对水质进行检测。通过检测可能出现的任何工艺中断,防止导致停机并造成高昂维护费用,这还是一个保护宝贵设备资产的好方法。碳监测在以下方面很有用:资产保护工艺优化质量控制满足法规要求源水水质源水污染水平会发生很大变化。水质可能受到季节变化、暴风雨径流和当地火灾等多种因素的影响,这些因素可能会造成源水被有机物污染。你的源水告诉了你哪些信息?通过对源水直接进行碳监测,以:监测基线 — 确定源水的正常TOC水平。识别发生的变化 — 市政是否改变了工厂水源?是否有暴风雨或天气事件改变了进入装置的源水的质量?采取纠正措施 — 采用实时、直接的碳数据来调整水处理工艺。确保处理装置正常运行,并调整流量以确保按照足够的比例脱除。公用工程用水水质工业设施经常需要热量来推动化学反应或工艺原材料。在许多工业装置中,使用公用工程用水来产生热量或便于热交换。热量的产生通常通过锅炉给水和冷凝水返回来实现。超纯水在锅炉中加热,然后转化为蒸汽。你的公用工程用水告诉了你哪些信息?通过对公用工程用水直接进行碳监测,以:监测基线 — 确定锅炉给水的最佳TOC含量,以满足设备保护的质量要求。确定正常的冷凝水水平。识别变化 — 快速检测由于处理低效或水源变化而导致的锅炉给水变化。无论是冷却液本身还是其它工艺流体,能够快速发现冷凝水泄漏。采取纠正措施 — 调整处理以确保锅炉给水的质量,如果被污染,则将冷凝水转移到废水收集设施或实施停车以防止污染影响产品或设备。废水处理工艺碳监测可以以多种途径用于废水处理,包括监测处理设施的废水负荷、生物处理效率或最终排放质量是否合规。你的废水告诉了你哪些信息?对废水直接进行碳监测,以:监测基线 — 定量分析原始废水中的碳负载量,以了解系统的真正养料负载量。识别变化 — 检测可能影响处理的任何变化倾向或较大波动。采取纠正措施 — 调整投加量、停留时间或进行分流,以优化处理并实现废水排放标准中规定的质量目标。对工业用水实施直接碳监测可使许多不同行业受益匪浅。TOC是控制产品质量、优化工艺、保护反渗透膜和锅炉等资产以及确保满足法规要求的绝佳工具。TOC能够为决策提供快速、准确的数据,并正在被写入世界各地更多的监管指南中。通过采用有机物监测,世界上许多不同的行业都在有效地监测用水和废水的质量。◆ ◆ ◆联系我们,了解更多!
  • 废水监测:从生化需氧量BOD/化学需氧量COD到总有机碳TOC分析的转变
    图片来源:Avatar _023/Shutterstock.com随着全球人口水平的上升,包括制药、炼油和制造在内的各个行业也在不断发展和扩张。尽管存在差异,但每一个行业都应对所产生的水污染负责,并确保水质质量。无论是市政还是工业废水,都对人类健康构成很大风险并危害环境;因此,所有废水在排放前都必须经过仔细处理和密切监测。随着公众对健康和环境保护的不断推动,废水排放法规变得越来越严格。每个国家都有自己的废水管理机构和各种排放限制,因而开发和使用了各种监测方法。快速准确识别污染物的方法对防止有害物排放到公共水源中至关重要。世界卫生组织(WHO)于1948年应运而生,旨在帮助和促进全球健康[6]。2017年,WHO开展了一项涉及100个国家和275个国家标准的废水排放质量要求的研究。该研究确定了废水中五类最常见的污染物,即化学品、营养物、有机物、病原体和固体,其中有机物是最常监测的类别[28]。有机化合物占废水污染的很大一部分,并已监测了100多年。世界上测量有机物含量最常用的分析技术是生化需氧量BOD。[43]随着技术进步,法规允许使用其他方法,例如化学需氧量COD[44]和总有机碳TOC[45]来评估有机污染物。尽管BOD被普遍使用,但为了满足合规性和过程控制的要求,从BOD/COD转向TOC是一个新的趋势。有机污染参数有机污染物是一类污染物,由于其重要性,需要在废水中进行监测。然而,因为有多种有机化合物,单独测量它们中的每一种不切实际。因此,“总和参数”的概念用于将许多具有相似质量的化合物归为一类:BOD、COD和TOC是最常用于有机污染物检测的参数。生化需氧量BOD20世纪初期,大量污水和有机物释放至泰晤士河中,从英国排至大海大约需要五天时间。当微生物分解所含的有机物时,它们也会消耗水中的溶解氧含量,危害水生生物。[1, 48]因此,1908年发明了为期五天的生化需氧量BOD5测试,作为衡量水中有机污染物的一种方法。BOD5是用于确定废水中有机污染物含量最常用的总和参数之一。该技术依赖于微生物通过消耗样品中的氧气来分解有机物。水样中的大量有机物导致溶解氧消耗更大。BOD5测试通过测量20°C下五天培养期所消耗的氧气量,提供了有机污染物的间接指示。[43]BOD测试的需氧量通常包括碳质生化需氧量CBOD和含氮生化需氧量NBOD,这是由氨或其他含氮化合物的分解而产生的。氮需求会阻碍BOD5测试,因此通常使用替代的CBOD方法,这需要添加抑制性化合物。[43]由于该测试在过去的一个世纪中得到了长久认可,BOD5参数已纳入几乎所有全球废水法规中。虽然得到广泛使用,但生化需氧量仍存在许多问题。BOD5的一个主要缺点是取样和获得结果之间需要五天时间。该测试的持续时间使BOD5无法成为用于过程控制的参数。[2, 8]当污水处理厂意识到其已经超过了污水排放限定值时,实际上其不合规的排放已经经过了几天时间。[42]BOD5测试的另一个主要缺点是它依赖于微生物的生长。因此,阻碍生物生长的化合物(包括氯、重金属、碱或酸)都会影响结果。[8, 39]BOD仅测量可自然降解的物质,但有几种微生物无法分解的有机化合物,因此BOD5无法测定水中所有有机污染物。[8]由于取决于生物生长,该测试不仅遇到精度和准确度问题[8, 42],且灵敏度较差。[42]化学需氧量COD化学需氧量COD是另一种间接方法,用于确定废水中的有机污染物含量。在该测试中使用化学氧化分解水中的污染物,然后测量在该过程中排出的氧气。与BOD5测试类似,氧气消耗量的增加通常意味着样品中存在更高含量的有机物。[3]有许多不同的COD测试方法已获批准。开放式回流法要求样品在重铬酸钾强酸中回流。由于与氧化剂短暂接触,挥发物可能无法有效氧化。当样品中挥发物含量增加时,密闭滴定回流是一种令人满意的方法,因为它们与氧化剂长时间接触。任何可以吸收可见光的物质(例如不溶性悬浮固体和带色组分)都会影响结果。[44]与BOD5相比,COD测试有一些优势。其中一大优势是缩短了测试所需时间。BOD需要五天才能获得结果,但COD通常只需几个小时。[2, 44]另一个好处是该测试不需要微生物生长进行氧化,因此产生相对可靠和可重复的结果。[2]与BOD只能测定可生物降解有机物的需氧量不同,COD氧化的更为彻底,几乎可以氧化样品中的所有有机物。因此,COD测试结果更高,也提供了对水中有机物含量更准确的评估。COD测试的主要缺点是需要使用有毒化学品,并会产生更多危废,包括银、六价铬和汞:氯化物和其他卤化物会在不添加银或汞离子的情况下严重干扰测试。吡啶和类似的芳香族化合物可能会排斥氧化并导致假的低测量结果。[44]总有机碳TOC多年来的技术进步,诞生了总有机碳TOC分析仪,它提供了一种测量水中有机物含量的直接方法。与BOD5或COD不同,BOD5或COD使用需氧量来确定有机物含量,而TOC分析仪直接测量并定量分析样品中所含的碳。[42, 44, 45]所有TOC分析仪都是将有机物氧化成CO2,然后可以使用电导法或非色散红外检测(NDIR)对其进行测量。[45]样品氧化的不同方法包括燃烧、紫外线过硫酸盐和超临界水氧化 (SCWO)。[45]与传统的需氧量测试相比,TOC分析有许多优势。BOD5只能测量可生物降解的有机物的需氧量。TOC分析仪可快速氧化所有有机化合物,以测定样品中存在的有机物。与COD测试不同,TOC分析可以识别有机碳和无机碳之间的差异,包括碳酸盐、碳酸氢盐和二氧化碳。如果样品中挥发性有机物含量降低,分析仪可以酸化并置换出无机碳以定量分析不可置换的有机碳(NPOC)。[43]分析仪还可以独立评估总碳(TC)和总无机碳(TIC)以计算总有机碳。TOC分析仪的显着优势是具有更高的灵敏度和多功能性,它可以测定低至0.03 ppb和高达50000 ppm的有机物浓度。与传统的BOD和COD实验室方法相比,TOC可在短短几分钟内产生准确的结果。TOC仪器通常有实验室和在线型号,这使得它们成为合规性和过程控制中必不可少的工具。[43]标准方法5310指出,“总有机碳TOC是总有机物含量更方便和直接的表达方式… … TOC的测量对于水处理和废物处理厂的运行至关重要”。[45]全球有机物监测法规的转变每个地区或国家的管理机构都制定了废水排放中有机污染物可接受的排放限值。BOD5自1908年开始推广使用,几乎包含在全球所有法规中。然而,随着监测技术的进步,法规也在不断发展。一些国家允许使用BOD与TOC的相关性[4]甚至声明TOC将用作最佳可用技术。[7]北美的废水法规1999年,加拿大环境保护法(CEPA,Canadian Environmental Protection Act)实施,以管理污染和废物。根据渔业法案,还通过了废水系统排放法规。[13]也称为SOR/2012-139,该文件强调了排放限值并详细说明了监测和报告所需的条件。有机污染物的当前限值在碳质BOD参数中有详细说明。[13, 34]SOR声明:“废水中碳质生化需氧物质的数量,必须根据具有硝化抑制作用的五天生化需氧量测试来确定需求量。”[34]该文件确定了25 mg/L的CBOD限值,并要求运营商必须对废水样品建立一致的CBOD,但取样频率可以根据装置规模而波动。[34]在美国,由于公众对水污染的日益关注,制定了《1972清洁水法案》。该法案授权美国环境保护署(USEPA,US Environmental Protection Agency)确定废水标准并制定污染管理计划。[17, 29]该《清洁水法案》促成了美国污染物排放消除制度(NPDES,National Pollutant Discharge Elimination System)的建立,以规范排放污染物的点源。这些许可证制度建立了有关排放限值、监测和报告的要求。[26, 27]目前,根据《清洁水法案》第304(a)(4)节,BOD5归类为常规污染物。[22]尽管排放要求可能因行业和NPDES许可的不同而不同,但《联邦法规》40 CFR 133.102详细规定了公有处理厂的污水排放限制(表1),指出“根据NPDES许可机构的选择,代替参数BOD5… … CBOD参数可被代替...”[3]开发TOC与BOD
  • 三门峡市质量管理协会征求 《黄金冶炼过程中废水检验技术规范》 等3项团体标准意见
    各有关单位:由三门峡市质量管理协会归口的《黄金冶炼过程中废水检验技术规范》、《重砂中金含量的测定》、《质量分级及“领跑者”评价要求 印制电路板用电解铜箔》团体标准,已由标准起草组完成了征求意见稿的编制,现公开征求意见。诚挚邀请各相关单位和个人对上述标准提出宝贵的意见和建议。有关意见请于2024年9月30日前通过电子邮件将征求意见表回函表(见附件4)反馈至三门峡市质量管理协会秘书处,逾期未反馈按无意见处理。协会邮箱地址:smxszlglxh@163.com。联系人:田老师联系方式:0398-2947689 13283980013附件1:黄金冶炼过程中废水检验技术规范-征求意见稿.pdf附件2:重砂中金含量的测定-征求意见稿.pdf附件3:质量分级及“领跑者”评价要求—印制板用电解铜箔-征求意见稿.pdf附件4:三门峡市质量管理协会《标准名称》征求意见回函表.docx
  • “水标准门”事件解疑(下)
    5月9日,仪器信息网转载了中国质量报文章“‘水标准门’时间解疑(上)”,对包装饮用水标准现状进行解疑。今日,该报继续发文阐述标准指标“打架”的采访与思考。以下是文章全文: “水标准门”事件解疑(下)   ——关于标准指标“打架”的采访与思考   □ 本报记者 徐建华   农夫山泉“水标准门”事件中,媒体关注的焦点在于农夫山泉包装上标明的标准(浙江地标DB33/383-2005《瓶装饮用天然水》),其中一些指标比国标GB 5749-2006《生活饮用水卫生标准》(即俗称的自来水国标)还要宽松。为何地标会“低于”国标?当不同标准中关键指标出现“打架”时,到底有没有通行的制度、做法或者“标准”来予以解决?   疑问一:地标“低于”国标有何隐情?   对比这两份标准文本会发现,浙江地标对于总砷的指标要求为≦0.05mg/L(毫克每升),镉的指标要求为≦0.01mg/L 而国标对砷的指标要求为≦0.01mg/L,镉的指标要求为≦0.005mg/L。从数字上看,地标“低于”国标属实。   从两项标准的前言中,我们可以获悉浙江地标是对2002年标准修订后发布实施,实施日期为2006年1月1日 国标GB 5479-2006是对1985年标准修订后发布实施,实施日期为2007年7月1日。正是在此次修订中,国标进行了重大“升级”,水质指标由原来的35项增加至106项,对砷、镉等指标的限值更严格了。从时间上来看,浙江地标的修订和颁布实施,都要早于国标。客观存在的时间差,是造成地标“低于”国标的重要原因。   对于为何坚持执行地标,农夫山泉公司董事长钟睒睒给出的回应是:国标GB 5479-2006《生活饮用水卫生标准》是强制性国标,是《食品安全法》明确规定的食品生产经营用水必须满足的标准,企业必须无条件执行 农夫山泉同时执行了地标DB33/383-2005《瓶装饮用天然水》和卫生安全标准国标GB 19298-2003《瓶(桶)装饮用水卫生标准》 农夫山泉还有比国标更严格的内控企业标准。瓶标上虽然只有DB33/383,但也同时执行着国标,强制性国标无需在包装上明示。   疑问二:指标“打架”怎么办?   记者通过对比现行的包装饮用水国标和地标后发现,无论是地标与国标,还是国标与国标之间,由于颁布实施的时间差,也存在一些指标“打架”现象。   例如,国标GB 17324-2003《瓶(桶)装饮用纯净水卫生标准》中,并没有镉的限定指标 标准中对于大肠菌群指标要求为≦3MPN/100ml,也比国标《生活饮用水卫生标准》“总大肠菌群不得检出”要宽松。不过在该标准中,同时规定原料用水必须符合生活饮用水卫生国标的要求,并在“规范性引用文件”中,也列出了该标准,并指出自动更新为最新标准。但是在浙江地标文本中却没有出现任何“GB 5479”的字样。   “标准是否有问题,关键看其是否合法,即是否还在有效期内、是否被废除、是否备案。凡是在有效目录或标准发布机构网站中列出的有效标准,都是可以正常使用的,都可以作为执法的依据。”中国标准化研究院一位不愿透露姓名的专家告诉记者,当某个产品执行的产品标准与相关的强制性国标在指标上产生冲突时,一定是执行强制性国标的指标要求,就高不就低。强制性国标强制性执行,这是最基本的原则和法规要求。   该专家还表示,当标准指标“打架”现象产生后,通常的做法是,修订指标偏低的标准或直接废除,由标准发布和主管部门通过公开的形式予以告知。由于标准修订有规定的流程和时间,因此,在标准修订期间,就可能出现两个标准并存的现象。但在“打架”的指标规定上,必须以要求更高的强制性标准为准。如目前包装饮用水年代最久远的国标GB 17323-1998《瓶装饮用纯净水》,在水源上提出必须符合生活饮用水卫生国标各项技术要求、在污染理化指标上提出按GB 17324《瓶(桶)装饮用纯净水卫生标准》规定执行,自动保持和这两个主要卫生国标的更新。另一个卫生国标GB 19298-2003《瓶(桶)装饮用水卫生标准》,则在2008年发布了两个修改单,将之前偏低的总砷、镉等指标修订为与生活饮用水卫生国标一致。   疑问三:“国标既出、地标废止”是否适用“水标准门”?   5月7日,浙江省卫生厅、浙江省质监局发布了对农夫山泉标准问题的详解,明确表示浙江地标仍然适用,在国家包装饮用水通用安全标准出台之前,浙江省继续按照国标地标并行、就高标准原则执行。另外,鉴于国家层面正在制定包装饮用水的通用安全标准,根据《食品安全法》及《食品安全地方标准管理办法》,浙江省不拟另行制定瓶装饮用天然水的食品安全地方标准(详见本报5月9日一版)。   记者注意到,一些媒体在报道时提出了“国标既出、地标废止”的说法。这一说法是否适用于农夫山泉“水标准门”事件呢?   《标准化法》第6条规定:对需要在全国范围内统一的技术要求,应当制定国家标准。对没有国家标准而又需要在全国某个行业范围内统一的技术要求,可以制定行业标准。在公布国家标准之后,该项行业标准即行废止。对没有国家标准和行业标准而又需要在省、自治区、直辖市范围内统一的工业产品的安全、卫生要求,可以制定地方标准。在公布国家标准或者行业标准之后,该项地方标准即行废止。   但需要强调的是,国标、行标、地标三者只存其一的前提,是其针对的是同一产品,即标准适用范围完全相同。这就意味着,当国标、行标、地标适用范围并不相同时,可以制定相应的标准,也就能解释国标、行标、地标、企标一级比一级高,国标通常是最低要求的说法。也正是因为3个标准之间关联但又不构成直接隶属关系时,才能保证在产生“矛盾”时同时共存,并且首先执行强制性标准要求、再执行非强制性标准的要求,保证最高指标要求同时被采纳,最终提升产品质量。《中国质量报》 “水标准门”事件解疑(上)请点击:http://www.instrument.com.cn/news/20130509/099883.shtml
  • “水标准门”事件解疑(上)
    5月6日,农夫山泉在北京召开新闻发布会,公开回应农夫山泉“标准门”。此前,京华时报指责农夫山泉执行标准低于国标,农夫山泉则称,“京华时报无知”。那么,中国饮用水的标准状况究竟是什么状况?中国质量报发文,用一张图清晰的呈现了各种水依照的标准,以下是文章全文:   “水标准门”事件解疑(上)   ——关于现行包装饮用水标准现状的采访与思考   编者按   农夫山泉“水标准门”再一次将媒体和大众的目光聚焦到了“标准”,这一影响着人们生活方方面面却往往被忽视的焦点。虽然目前事件并未平息,但可以预见的是,它将进一步提升社会各界对于标准的关注度,未来将会有更多与“标准”密切关联的经济热点事件出现。   关注本身是好事,但要是没有专业知识和冷静态度,关注就有可能滋生误解以及不必要的冲突。作为质量领域的专业媒体,本报有责任对此次事件中大众关心的与标准相关的疑问进行探讨。我们力求从专业的视角解疑释惑。   今明两天,本报将用两篇报道来探讨两个大家最为关心的问题:一是目前我国包装饮用水标准究竟是什么状况?二是一旦出现了标准“打架”的情况应该怎么办?希望我们的报道能对读者有所启示。   制图王楠   □ 本报记者 徐建华   农夫山泉“水标准门”事件爆发以来,社会各界对于包装饮用水标准给予了高度关注,随之也产生了不少疑问,甚至是误解。本报记者通过查询资料和咨询专家,试图拨开标准迷雾,解答大家的疑问。   疑问一:同为包装饮用水,为何执行不同标准?   目前市场上的包装饮用水品牌众多,名称更是眼花缭乱,有纯净水、矿泉水、矿物质水、天然水、山泉水、冰川水,等等。在标准方面,以产品包装上的标注来看,主要执行3种标准:一种是国家标准(GB),如蓝涧饮用天然矿泉水执行的是GB 8537 一种是地方标准(DB),如农夫山泉饮用天然水执行的是DB 33/383 一种是企业标准(QB),如可口可乐冰露饮用矿物质水执行企标Q/14A0605S。   中国饮料工业协会相关负责人表示,包装饮用水指采用瓶、桶包装的饮用水。国标GB 10789《饮料通则》根据水的来源、加工方式等特点,将包装饮用水分为6类:饮用天然矿泉水、饮用纯净水、饮用天然泉水、其他天然饮用水、饮用矿物质水、其他包装饮用水。   按照《标准化法》的规定,我国标准体系分为国家标准、行业标准、地方标准和企业标准4个层级。对于适用范围完全相同的产品,国标、行标、地标只能有一个,即如果有国标,行标、地标自动废除 没有国标有行标,地标自动废除 没有国标、行标,可以制定地标或者企标。如果没有国标、行标、地标,应当制定企标,并在相应的政府部门备案,通常情况下,企标大多涉及企业的商业机密,不会对外公开。无论是否有国标、行标、地标,都鼓励企业制定企标,但企标必须高于相应的国标、行标和地标。   2009年6月1日实施的《食品安全法》规定,国务院卫生行政部门应当对现行的食用农产品质量安全标准、食品卫生标准、食品质量标准和有关食品的行业标准中强制执行的标准予以整合,统一公布为食品安全国家标准。在食品安全国家标准公布前,食品生产经营者应当按照现行食用农产品质量安全标准、食品卫生标准、食品质量标准和有关食品的行业标准生产经营食品。由于食品标准整合工作量非常大,目前很多食品领域都存在食品质量标准与食品卫生(安全)标准并存的现象。而我国包装饮用水的有关标准都是在《食品安全法》颁布实施前制定的,各种层级、类型的标准数量自然也会多一些。   疑问二:现行的包装饮用水到底有多少项标准?   综合国家标准委官网的国标查询数据系统、国家卫生和计划生育委员会及中国饮料工业协会官网提供的数据,记者发现,目前我国与包装饮用水相关的标准是国标5个(4个直接相关、1个间接相关)、地标11个、企标具体数量不详。其中4个国标中,两个是产品标准、两个是卫生标准。(具体见右图)   对照目前我国的包装饮用水标准,在食品卫生标准方面,两个标准分别是GB 17324-2003《瓶(桶)装饮用纯净水卫生标准》和GB 19298-2003《瓶(桶)装饮用水卫生标准》,《瓶(桶)装饮用水卫生标准》在标准文本里明确指出:本标准不适用于饮用天然矿泉水和瓶(桶)装饮用纯净水,适用于经过滤、灭菌等工艺处理并装在密封的容器中可直接饮用的水。   在食品质量标准方面,两个标准分别是GB 8537-2008《饮用天然矿泉水》和GB 17323-1998《瓶装饮用纯净水》。   根据包装饮用水的6大产品分类,从卫生标准来看,两个国家标准(GB17324、GB19298)加上1个起到卫生标准作用的产品标准GB 8537《饮用天然矿泉水》,就实现了所有类别产品的全覆盖,也构成了包装饮用水整个质量安全的根基。需要说明的是,与包装饮用水间接相关的还有国家卫生标准GB 5749-2006《生活饮用水卫生标准》,即大家俗称的自来水标准,该标准是适用于一切饮用水的卫生标准,因此包装饮用水首先必须满足这个标准。《食品安全法》也明确规定,食品生产经营用水应符合生活饮用水卫生标准。从产品标准来看,目前除饮用天然矿泉水、饮用纯净水之外,其余4个类别的产品并无国标。   目前已经公布的11个地方标准中,主要是针对其他4大类的产品标准,其中在《食品安全法》颁布之后出台的地标,则已经按照要求变更为食品安全标准。如广东省食品安全地方标准DBS44/001-2011《饮用天然山泉水》。   中国农业大学食品科学与营养工程学院副教授、博士生导师朱毅认为,国家对不同种类饮用水颁布对应标准,饮用天然矿泉水和饮用纯净水都有了国标。纯净水和矿物质水都应该是采用符合《生活饮用水卫生标准》的水为水源。其他没有国标的,企业只要自律,也是可以在现行标准中为自己归类的,即使不能做到弘扬特色和异质性,至少不逾矩、不违规,守好饮用水的本分。“需要单独拿出来说说,以免生出歧义的是饮用天然矿泉水,这不单单是水,还是国家矿产资源,国土资源部核发的‘采矿许可证’是必备之物,目前国内颁发的证书并不多。”   按照我国的标准体系,只要不是无标生产的产品,都有可以执行的产品标准,最低也必须是企业标准。因此消费者无需担心自己购买的包装饮用水没有标准。而且所有的卫生标准都是强制性国标,市场上销售的每一种包装饮用水,都必须符合这些强制性国标的要求,否则就构成违法行为。   疑问三:包装饮用水标准何时统一?   虽然国标中的包装饮用水只有6类,市场上的产品名称则远远是这个数字的数倍。记者采访中发现,出现这种情况的重要原因,是不少厂家一方面在水源上做起了文章,于是就有冰川水、山泉水、天然水等众多产品 另一方面在功能上做起了文章,于是就出现了弱碱性水、小分子水等噱头产品。加上目前产品标准没有实现所有该类产品的全覆盖,也就有了标准“山头林立”的现状。   - 统一包装饮用水标准,成为众多人士的呼声。目前,这项工作已经得到了主管部门的回应。国家卫计委正在加紧对《瓶装饮用纯净水》、《瓶(桶)装饮用纯净水卫生标准》、《瓶(桶)装饮用水卫生标准》等标准进行清理,将整合公布新的包装饮用水食品安全国家标准。这已经在国家食品安全风险评估中心网站和“食品安全国家标准”新浪官方微博公开征求意见。《中国质量报》 “水标准门”解疑(下),请点击:http://www.instrument.com.cn/news/20130510/099956.shtml
  • 【瑞士步琦】水和废水中凯氏氮的测定
    水和废水中凯氏氮的测定自然界氮素蕴藏量丰富,以三种形态存在:分子氮 N2,占大气的 78%;有机氮化合物 无机氮化合物。其中水体中的氮主要包括有机氮和无机氮两大类,其总量称为总氮(英文缩写为 TN)。 氮在水体中会发生转化。随着时日的延长,有机氮很不稳定,容易在微生物的作用下,分解成无机氮(在无氧的条件下,分解为氨氮 在有氧的条件下,先分解为氨氮,再分解为亚硝酸盐氮与硝酸盐氮),并不断减少。目前,国标针对水质中氮的分析主要分总氮、氨氮、硝态氮、凯氏氮4个方面。在水处理领域,一般认为总氮=总凯氏氮+硝氮+亚硝氮,凯氏氮=有机氮+氨氮。以下举部分标准:HJ 636—2012 水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法GB 11891-1989 水质 凯氏氮的测定HJ537- 2009 水质 氨氮的测定 蒸馏-中和滴定法硝酸盐氮的测定方法有离子选择电极法、酚二磺酸分光光度法、镉柱还原法、紫外分光光度法、戴氏合金换元法、离子色谱法、紫外法。戴氏合金换元法适用于污染严重并带深色水样。在本研究中,通过测试在不同浓度的尿素溶液中氮的回收率,对水样品中进行 TKN 以及检测限(LOD)和定量限(LOQ)的测定。1设备快速消解仪 K-439 (1154392000)尾气吸收仪 K-415 (114152331)MultiKjel K-365 (11K36531210)样品管 300mL (037377)消化棒 (043087)分析天平(accuracy ± 0.1 mg)2试剂与材料试剂:浓硫酸 96%, VWR (85546.320)BUCHI 凯氏定氮片(11057980)NaOH 32 %, VWR (9913.9010)2% 硼酸 pH 4.65 with Sher 指示剂和 3g/L KCl硫酸 0.1mol/L, VWR (30145.297)尿素, 试剂纯度 99.7%, Merck (1.08487.000)100-1000µ L 微量移液吸管去离子水安全操作请参考所有相应的 MSDS!样品:尿素原液1:~ 0.5 mg N/mL模拟地表水中 TKN 浓度尿素原液2:~ 1.5 mgN /mL模拟废水中 TKN 浓度3实验步骤3.1 消解方法在 300mL 的样品管中用移液管吸出所需的样品体积(本例中为尿素原液)(表1)加入 1 片催化剂和 8mL 硫酸,并沿样品管壁小心地插入消化棒,以帮助提高硫酸的沸点。同时准备空白样品,只加试剂不加样品。将尾气吸收仪 K-415 连接到 K-439 吸收酸雾。将抽吸模块安装到样品管上,进行消解。(根据表2)将带样品的机架插入冷却位置,开始预热步骤。预热完成后,将样品架移至消解位置,按照 表2 所列参数开始消解。待样品消化完毕后在冷却位置冷却。表1:样品的重量样品体积 [mL]蒸馏水稀释 [mL]TKN 浓度 ppm尿素溶液10.22000.5尿素溶液10.42001.0尿素溶液212560.0表2:K-439 标准消化的温度梯度步骤温度 [°C]预热预热250135024902490125冷却–35注释:本应用说明中的消化时间保持在所需时间以上,可以根据应用进行调整,在较低的回收率上可以进一步提高。3.2 蒸馏滴定根据下列参数进行蒸馏和滴定。表3:MultiKjel 蒸馏滴定的参数反应监测OffH2O 体积50mLNaOH 体积40mLReaction 时间5s蒸汽等级固定时间蒸汽功率100%水平检测Off蒸馏时间180s蒸馏搅拌速度5滴定类型硼酸滴定H3BO3 体积60mL (2%)滴定搅拌速度8滴定开始时间180s样品管排空30s接收瓶排空30sEco 滴定仪方法BUCHI BlankBUCHI Sample标准滴定液H2SO4 0.01 mol/L传感器类型Potentiometric (pH)Endpoint pH4.653.3 计算结果是按氮的百分比计算的。用公式(1)(2)(3)计算结果。wN:氮的重量分数V样品:样品消耗滴定酸的体积 [mL]VBlank:空白消耗滴定酸的平均体积[mL]z:摩尔系数(1 for HCl, 2 for H2SO4)c:滴定液浓度[mol/L]f:滴定系数(商业溶液一般为1.000 参照产品合格证)MN:氮的分子量(14.007 g/mol)m样品:样品质量 [g]1000:转化因子[mL to L]%N:氮的重量百分比P:对照品尿素的纯度[%]4结果4.1 测定检测限(LOD)和定量限(LOQ) “空白法”测定检测限(LOD)和定量限(LOQ)[4]。用 200mL 去离子水样品、1 片钛片和 8mL 硫酸测定 10 个空白。根据 表2 和 表3 所列参数对进行了整理和确定,结果如 表4 所示。表4:空白测定结果(300mL 样管中去离子水体积 200mL)_V空白 [mL]平均 [mL]SD [mL]RSD [%]10.4080.4120.0122.92220.44330.40740.40650.40160.42670.40880.43590.40090.421采用公式(3)计算检测限(LOD)ᶲ n α: factor 3.0 取决于空白数(n=10)和显著性水平(α=0.01)SD: 空白测定的标准偏差(SD=0.012 ml) [4]根据 LOD 可计算定量限(LOQ),见式(4)。4.2 样品中 TKN 回收率样品体积为 25mL 和 200mL 的尿素溶液的 TKN 测定和回收率结果如 表7-9 所示。表5:在 300mL 样管中,总样本量为 200mL 的尿素溶液中 TKN (0.5 ppm)的回收率结果(n=6)。平均空白体积(VBlank) 是 0.413mL (n=6, RSD= 1.739%).表6:在300mL样管中,总样本量为200ml的尿素溶液中TKN (1ppm)的回收率结果(n=6)。平均空白体积(VBlank) 是 0.412mL (n=6, RSD= 1.320%).表7:在 300mL 样管中,总样本量为 25mL 的尿素溶液中 TKN (60ppm)的回收率(n=6)。平均空白体积(VBlank) 是 0.392mL (n=6, RSD= 2.00%).6结论使用 MultiKjel K-365 测定水中总凯氏定氮(TKN)提供了可靠和可重复的结果。尿素原液回收率高,标准偏差小。对于 200mL 的样品体积,氮含量 LOD 为 0.036mg /L, LOQ为 0.108mg/L 。最大准确度模式和 AutoDist 模式,这些特性为操作人员提供了灵活性,而不影响测定的准确性和精度。在蒸馏后无需手动进行滴定,实现了流程的自动化。
  • 广东省科学技术实验室联合会公开征集团体标准《实验室废水排入城镇下水道水质标准》参编单位
    各有关单位:为满足市场需要,促进数字经济协同发展,更好地发挥标准的引领作用,充分体现标准的广泛性和前瞻性,现针对已立项的团体标准《实验室废水排入城镇下水道水质标准》向社会公开征集参编单位,欢迎与立项标准有关的高等院校、科研机构、相关企业、使用单位等参加该项标准的编制工作。相关事项通知如下:一、参与条件(一)本领域单位,具有标准化工作基础,重视标准化工作,具备一定行业影响力;(二)参与单位要具有标准编制人员,编制人员具有较高技术水平和高度责任心;(三)自愿承担标准编制工作所需的资金、技术和人力支持。二、参编单位享有的权利(一)参与标准编制,将在标准前言署名单位名称和起草人姓名;(二)标准发布后,将免费获取所参与编制的正式标准文本一份;(三)标准编制后,将优先享有参与本标准修订的权利;(四)参与标准修订,优先获得本会相关服务。三、申请方式请有意向参与标准编制工作的单位与我会秘书处联系。填写《团体标准参编单位申请书》(见附件)并加盖公章,发送至邮箱:gdlfmail@163.com。联系人:郑绍珍、蓝曼馥 电话:18928978172,020-87680206 电子邮箱:gdlfmail@163.com 地址:广州市越秀区豪贤路88号 广东省科学技术实验室联合会2024年8月1日2 关于征集团体标准《实验室废水排入城镇下水道水质标准》参编单位的通知.pdf附件:团体标准起参编申请书.doc
  • 新版纯水标准GB/T 33087-2016《仪器分析用高纯水规格及试验方法》的解读
    p   新型高灵敏度质谱检测仪器的需求: br/ /p p   随着实验室仪器设备升级,高效液相色谱(HPLC)和超高效液相色谱(UHPLC)、液相色谱质谱连用(LC-MS)、离子色谱(IC)、电感耦合等离子体发射光谱(ICP-AES)以及电感耦合等离子体质谱(ICP-MS)等精密分析仪器已广泛应用于各行业分析检测实验室中。 /p p   ◆在国家相关政策与资金的大力支持下,分析检测与检验行业得到了快速的发展。一大批先进的精密分析仪器迅速装配到各行业各级分析实验室中,逐渐成为分析检测领域的主力军。 /p p   ◆然而只依赖精密仪器并不能解决问题,还需完善与仪器相配套的标准方法、试剂、技术人员和操作规范等重要因素,才能真正提高各类实验室的分析检测技术能力。 /p p   ◆因此,全面完善方法和试剂的标准是一项非常重要的工作。 /p p   先进分析仪器的应用对实验用高纯水的质量提出了更高的要求,针对精密分析仪器实验用水的规定和技术指标尚无标准可依。 /p p   水作为实验室中最常用的工具,却往往容易被忽视其重要性。 /p p   ◆蒸馏水、去离子水等在几十年前已普遍适用于各类实验室,如今仪器分析用一级水、二级水和三级水已成为实验室常见的分级用水方式。然而由于人们过于频繁地使用水,往往容易忽视其重要性。 /p p   ◆关注度不足以及实验用水意识的淡薄,导致在国内出现非常奇特的现象:许多实验室使用瓶装饮用水(如娃哈哈、屈臣氏和乐百氏等饮用水)作为实验用水,应用于高效液相色谱和质谱等仪器分析实验中。 /p p   ◆瓶装饮用水并不是化学试剂,无可靠性和溯源性,使用此类水将存在潜在的严重影响和极大的风险。产生此类状况的一个重要原因是实验用水标准的滞后和匮乏。 /p p   现有标准已不能满足先进仪器分析实验的需求以及现代实验室质量控制和管理的趋势,需要新制定符合实际情况,与国外先进标准相符的仪器分析用高纯水标准。 /p p   因此新版纯水标准GB/T 33087-2016《仪器分析用高纯水规格及试验方法》在2017年5月正式发布 /p p   ◆本标准项目立足于国内实验室发展的实际情况和趋势,深入分析和参考国内外先进标准规范,制订满足精密仪器分析用高纯水标准。 /p p   ◆本标准所指高纯水主要是在仪器分析过程中所用的空白水。 /p p   ◆为发展迅速的实验室分析技术提供可靠有效的用水标准依据。 /p p   ◆为实验室高纯水质量控制与管理提供技术支持和指导。 /p p   而目前2008年发布的实验室用水国家标准GB/T6682是国内目前应用最为广泛的标准,该标准修改采用ISO3696《分析实验室用水规格和试验方法》。新版纯水标准GB/T 6682-2008《分析实验室用水规格和试验方法》GB/T 33087-2016《仪器分析用高纯水规格及试验方法》则是GB/T6682《分析实验室用水规格和试验方法》的延续和发展。 /p p    strong 1.两个标准对于水的定义不同 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 18%" p style=" text-align:center " strong 标准编号 /strong /p /td td width=" 13%" p style=" text-align:center " strong 级别 /strong /p /td td width=" 68%" p style=" text-align:center " strong 适用范围 /strong /p /td /tr tr td width=" 18%" rowspan=" 3" p strong GB/T6682-2008 /strong /p /td td width=" 13%" p 一级水 /p /td td width=" 68%" p 用于有严格要求的分析试验,包括对颗粒有要求的试验。如高效液相色谱分析用水。 br/ & nbsp & nbsp & nbsp 可用二级水经过石英设备蒸馏或离子交换混合床处理后,再经0.2μm微孔滤膜来制取。 /p /td /tr tr td width=" 13%" p 二级水 /p /td td width=" 68%" p 无机痕量分析等试验,如原子吸收光谱分析用水。 br/ & nbsp & nbsp & nbsp 可用多次蒸馏或离子交换等方法制取 /p /td /tr tr td width=" 13%" p 三级水 /p /td td width=" 68%" p 用于一般化学分析试验 br/ & nbsp & nbsp & nbsp 可用蒸馏或离子交换等方法制取。 /p /td /tr tr td width=" 18%" rowspan=" 4" p strong GB/T 33087-2016 /strong /p /td td width=" 13%" p 高纯水 /p /td td width=" 68%" p 将无机电离杂质、有机物、颗粒、可溶气体等污染物均去除最低程度的水 /p /td /tr tr td width=" 13%" p 仪器分析用高纯水 /p /td td width=" 68%" p 仪器分析中,为降低空白信号所用的高纯水。 /p /td /tr tr td width=" 13%" p 在线监测 /p /td td width=" 68%" p 在联机的生产过程或实验中,按照预先制定的方案持续或重复观察、测量、评估被测量以获得数据。 /p /td /tr tr td width=" 13%" p 背景等效浓度 /p /td td width=" 68%" p 与背景信号强度相当的等效浓度值,用于表征噪声的本底强度。 /p /td /tr /tbody /table p    strong 2.对于水的污染物参数要求不同 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 100%" colspan=" 4" p style=" text-align:center " strong GB/T 6682-2008 /strong /p /td /tr tr td width=" 42%" p strong 名称 /strong /p /td td width=" 21%" p 一级 /p /td td width=" 19%" p 二级 /p /td td width=" 16%" p 三级 /p /td /tr tr td width=" 42%" p strong pH /strong strong 值范围(25 /strong strong ℃) /strong /p /td td width=" 21%" p / /p /td td width=" 19%" p / /p /td td width=" 16%" p 5.0~7.5 /p /td /tr tr td width=" 42%" p strong 电导率(25 /strong strong ℃)/ /strong strong (mS/m /strong strong ) /strong /p /td td width=" 21%" p ≤0.01 /p /td td width=" 19%" p ≤0.10 /p /td td width=" 16%" p ≤0.50 /p /td /tr tr td width=" 42%" p strong 可氧化物质含量(以O /strong strong 计)/ /strong strong (mg/L /strong strong ) /strong /p /td td width=" 21%" p / /p /td td width=" 19%" p ≤0.08 /p /td td width=" 16%" p ≤0.4 /p /td /tr tr td width=" 42%" p strong 吸光度(254nm /strong strong ,1cm /strong strong 光程) /strong /p /td td width=" 21%" p ≤0.001 /p /td td width=" 19%" p ≤0.01 /p /td td width=" 16%" p / /p /td /tr tr td width=" 42%" p strong 蒸发残渣(105 /strong strong ℃± 2 /strong strong ℃)含量/ /strong strong (mg/L /strong strong ) /strong /p /td td width=" 21%" p / /p /td td width=" 19%" p ≤1.0 /p /td td width=" 16%" p ≤2.0 /p /td /tr tr td width=" 42%" p strong 可溶性硅(SIO2 /strong strong 计)/ /strong strong (mg/L /strong strong ) /strong /p /td td width=" 21%" p ≤0.01 /p /td td width=" 19%" p ≤0.02 /p /td td width=" 16%" p / /p /td /tr /tbody /table p br/ /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 100%" colspan=" 2" p style=" text-align:center " strong GB/T 33087-2016 /strong /p /td /tr tr td width=" 43%" p strong 名称 /strong /p /td td width=" 56%" p 规格 /p /td /tr tr td width=" 43%" p strong 电阻率(25 /strong strong ℃)/(M /strong strong Ω˙cm /strong strong ) /strong /p /td td width=" 56%" p ≥18 /p /td /tr tr td width=" 43%" p strong 总有机碳(TOC /strong strong )/μg/L /strong /p /td td width=" 56%" p ≤50 /p /td /tr tr td width=" 43%" p strong 钠离子/μg/L /strong /p /td td width=" 56%" p ≤1 /p /td /tr tr td width=" 43%" p strong 氯离子/μg/L /strong /p /td td width=" 56%" p ≤1 /p /td /tr tr td width=" 43%" p strong 硅/μg/L /strong /p /td td width=" 56%" p ≤10 /p /td /tr tr td width=" 43%" p strong 细菌总数/CFU/mL /strong /p /td td width=" 56%" p 合格 /p /td /tr /tbody /table p   strong  3.取样与储存要求不同 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 16%" valign=" top" p style=" text-align:center " strong 标准号 /strong /p /td td width=" 26%" valign=" top" p style=" text-align:center " strong 容器要求 /strong /p /td td width=" 24%" valign=" top" p style=" text-align:center " strong 取样 /strong /p /td td width=" 32%" valign=" top" p style=" text-align:center " strong 储存 /strong /p /td /tr tr td width=" 16%" valign=" top" p strong GB/T 6682-2008 /strong /p /td td width=" 26%" valign=" top" p 各级用水均使用 strong 密闭的、专用聚乙烯 /strong 容器。三级水也可使用密闭、专用的玻璃容器。 br/ & nbsp & nbsp & nbsp 新容器在使用前需要用盐酸溶液(质量分数为20%)浸泡2d~3d,再用待测水反复冲洗,并注满待测水浸泡6h以上。 /p /td td width=" 24%" valign=" top" p 至少应取3L代表性水样。取样前用待测水反复清洗容器,取样时要避免沾污。水样应注满容器。 strong /strong /p /td td width=" 32%" valign=" top" p 各级用水在贮存期间,其沾污的主要来源是容器可溶成分的溶解、空气中二氧化碳和其他杂质。因此, strong 一级水可不贮存 /strong ,使用前制备。 strong 二级水、三级水 /strong 可适量制备,分别贮存在 strong 预先经同级水清洗过 /strong 的相应容器中。 br/ & nbsp & nbsp & nbsp 各级用水在运输过程中应避免沾污。 /p /td /tr tr td width=" 16%" valign=" top" p strong GB/T 33087-2016 /strong /p /td td width=" 26%" valign=" top" p 用于测定钠离子、氯离子及硅时,器具材质应为 strong 含氟塑料或低溶出的聚乙烯塑料 /strong 。用于总有机碳测定时,应使用带有 strong 磨口塞得低溶出玻璃器具 /strong ,用于细菌总数测定时应使用预先灭菌处理的具塞玻璃器具。 /p /td td width=" 24%" valign=" top" p 取样环境应符合GB/T30301-2013中第7章的规定。( strong 测定洁净室和洁净台的悬浮粒子数,0.5 /strong strong μm /strong strong 粒径的粒子数宜在3.5 /strong strong × 105 /strong strong 个/m3 /strong strong 以下。 /strong ) br/ & nbsp & nbsp & nbsp 取样应使用干净、密闭、专用的器具,取样前应运行水系统10min-30min,并用水样反复清洗器具,水样应注满容器,取样完成后应及时密闭容器并放入洁净的塑料密封袋保存。 /p /td td width=" 32%" valign=" top" p 制取样品后,应 strong 尽量缩短存放 /strong 时间。如需储存,应 strong 冷藏避光 /strong ,使用前平衡至室温。 strong /strong /p /td /tr /tbody /table p strong   4.检验方法不同 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/3e85d5b0-17d8-4d78-b6b6-2d1aea07d50c.jpg" style=" float:none " title=" 未标题-1.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/9d56bc5e-6be5-4a75-b054-f9912bc50627.jpg" style=" float:none " title=" 1.jpg" / /p p   GB/T 33087-2016由默克Milli-Q& reg 纯水、中国计量院、上海计量院共同起草,Milli-Q作为实验室纯水领域的领导品牌,致力于让专业用户能用上更为优质的纯水。 /p p   总体而言,GB/T 33087-2016《仪器分析用高纯水规格及试验方法》这个标准无论是对于电阻率、TOC、微生物,还是对于部分重点的离子(钠、氯、硅),都有明确的指标,因此对水中污染物的衡量较为客观。更加有利于大家面对高分辨率、低检出限的分析仪器时,选择合适级别的纯水。 /p p br/ /p
  • 面对瓶装水标准之争,应坚信市场力量
    近期,围绕瓶装水标准乱象的治理,出现两种不同意见,一种是认为“市场是解决瓶装水标准乱象的最佳方式”,另一种则认为“整治瓶装水标准乱象靠市场力量远远不够”。   两种意见争论的焦点在于,市场究竟是不是解决瓶装水标准争议的可靠力量?回答这一问题,笔者认为必须对相关概念正本清源,一则有必要澄清,瓶装水标准之争应归属为“乱象”抑或是“竞争”,二则瓶装水标准之争究竟是“市场失灵”的表现,还是“市场不完善”的结果,其实质在于究竟应如何认识“市场”。   首先,关于瓶装水的水质标准,当事各方各执一词。一方认为自身的生产满足了地方、国家乃至国际的有关标准,产品是合格而安全的 另一方则披露该生产厂家沿用的是某地方标准,而该地方标准的部分指标要求低于国家标准,因而其所生产的产品是不合格的。双方争论的核心其实就是地方标准与国家标准之争。当然,从相关的法律明文规定来看,国家标准显然有优先权,遵循国家标准无疑更符合法理。   但在笔者看来,标准之争根本算不上“乱象”,消费者实则无需过度反应,因为,即便该瓶装水企业的生产遵循的仅是地方标准,而有违“国标优先”的法理,但那又如何呢?   从消费者的角度来看,真正判断瓶装水生产及消费安全与否的标准有两条,一则,地方标准下生产的瓶装水是否有碍于健康和安全,二则,国家标准对于企业生产究竟是强制性的还是参照性的。有关前者,至少到目前为止,还没有证据表明执行地方标准会带来健康和安全上的问题。至于后者,人们一般引用《瓶(桶)装饮用水卫生标准》(GB19298-2003),但值得留意的是,在该标准的第一段文本中,便明确列示“本标准不适用于饮用天然矿泉水和瓶(桶)装饮用纯净水。”这意味着,国家有关瓶(桶)装饮用水的卫生标准对于该瓶装水生产企业而言或许仅具参照意义,而不具强制性,其产品也不在沿用该标准进行控制的范围之内。   如果标准问题基本上是一个伪命题,那么,热炒瓶装水标准的意义何在呢?事实上,与其把这个争论看成是“乱象”,还不如说是一场席卷生产和消费各方的深度“竞争战”。   第一种可能的竞争是瓶装水生产企业间的竞争,这并非旧闻,也无需否认。市场经济中,如果企业间不竞争,那么又何来效率和优化?当然,竞争的方式通常体现为“价格战”,但有时也会体现为“标准战”,不符合标准的潜台词其实就是,你的产品不合格或者不够格 既然产品有瑕疵,那么就应该退出市场,或者提高成本改进工艺。就此而言,标准战最终仍是冲市场竞争而去。   第二种可能的竞争是发生在瓶装水生产企业与替代性产品生产企业之间。瓶装水标准并非管辖某一家企业,而是所有的同类企业。所以,如果说在执行标准上有问题的话,那么这样的指控实则可以击垮一批企业,形成市场空缺,最后可以从市场份额的空缺中受益的并非某一个企业,而是一批生产瓶装水替代产品的企业,譬如各种饮品。   最后一种可能的竞争是发生在瓶装水生产企业与消费者之间。他们之间一般是通过博弈来获得竞争的效果,一般而言,在竞争程度较高的行业里,消费者往往具有较强的博弈实力,反之,在垄断程度较高的行业,生产者的博弈实力则相对较强。就本次瓶装水标准讨论而言,企业之所以显得疲于应付,就在于这是一个竞争性相对较高的行业,消费者可以凭借优势地位对企业施加压力,以提高相关生产标准的透明度。   在确立市场经济体制二十余年后,我们理应对这样或那样的市场竞争形式具有更强的包容心,而不是直接地将价格比拼、标准争论乃至重复建设等现象简单为归纳为“市场失灵”的表现。虽然从表面上看来,各种竞争会使市场活动比计划条件下的按部就班来得更加活跃,甚至杂乱,但就其对资源配置的有效性而言,诸如标准之类的争论显然会达到“理越辩越明”、竞争越来越充分,以及各种社会经济资源配置效率越来越高的结果。   反过来,如果有关瓶装水标准的争论持续下去,其结果或是在部门干预下悄然终结,或者各方私下达成和解而无疾而终,而不是朝着更加透明而公开的方向发展,那么,这只能说明目前我们的瓶装水市场的竞争仍不够充分,尤其是在有关保护竞争的法治建设上不够完善。毕竟,在市场经济学研究的鼻祖亚当斯密看来,市场竞争主体本身的确有着“丑恶的一面”,唯有法律才能抑制“丑恶一面”的极度膨胀,从而为市场各方的竞争创造更加公平的环境。   就此而言,笔者建议,法院不妨接受某瓶装水企业的诉讼请求,让双方打一场真正的“没有指示指导”的官司,从而彰显市场仍是一种可靠的力量,来平息当下的瓶装水标准之争。   ( 李志青  作者系复旦大学经济学院讲师、环境经济研究中心副主任 )
  • “十二五”工业废水治理投资需求超1200亿元
    据中国水网最新发布的《中国水业市场研究报告(2012版)——中国水业政策与市场分析》(以下简称《报告》)研究数据显示,“十二五”期间,工业废水治理领域投资需求将超过1200亿。   “十二五”期间,工业废水治理成为水污染治理中备受关注的领域,据国家统计局数据显示,2010年全国工业废水排放总量为237.47亿吨,占全国废水排放总量的38.47%。工业废水排放的达标率为95.3%,比2005年提高4.1个百分点。从排放标准来看,不仅常规污染物面临着进一步削减,氨氮的总量控制也被提上了议事日程。   随着我国工业化和城市化水平的不断发展,工业废水待处理将持续增加的同时,水质排放标准也将越来越严格,环保监管政策也将进一步加强。在此背景下,工业废水处理市场对投资的需求将进一步加大。   《报告》分析认为,“十一五”期间,全国工业废水治理实现总投资821亿元,约占全国环境污染治理投资总额的3.8%。根据“十二五”环保规划,“十二五”期间全社会环保投资需求约3.4万亿元,如果按相同比例估算,则2011年至2015年全国工业废水治理领域的投资需求将达1292亿元。
  • 湖南省生态环境厅关于公开征求《工业废水高氯酸盐污染物排放标准》《水质 高氯酸盐的测定 离子色谱法》意见的通知
    各有关单位:根据地方标准制修订项目计划,我厅组织编制了湖南省地方标准《工业废水高氯酸盐污染物排放标准》(征求意见稿)、《水质 高氯酸盐的测定 离子色谱法》(征求意见稿)。为确保标准的科学性和适用性,现公开征求意见。各机关团体、企事业单位和个人均可提出意见和建议,有关意见请书面反馈至我厅(电子文档同时发送至邮箱),并注明联系方式。征求意见截止时间2023年9月1日。?联系人:左莉娜、钟宇电 ?话:0731-85698179、18874256340邮 ?箱:zln85698179@163.com湖南省生态环境厅2023年8月1日相关附件: 附件2.《工业废水高氯酸盐污染物排放标准》(征求意见稿)编制说明.docx 下载相关附件: 附件1.工业废水高氯酸盐污染物排放标准(征求意见稿).docx 下载相关附件: 附件3.水质 高氯酸盐的测定 离子色谱法(征求意见稿).doc 下载相关附件: 附件4.《水质 高氯酸盐的测定 离子色谱法》(征求意见稿)编制说明.docx 下载
  • TOC分析仪用于废水监测
    概要废水泛指使用过的水,其中会包含有人类排泄物、食品废渣、油污、肥皂和化学物等。所有制造业及市政废水厂都必须符合国家及当地地区的相关规定,以美国为例,美国国家环境保护局(USEPA)颁布清洁水法CWA(Clean Water Act)。为了确保排放的污水符合CWA法案,企业必须具备由EPA或EPA授权代理审核批文的国家污水排放控制系统NPDES(National Pollutant Discharge Elimination System)。只有企业能确保每天排放的污染物低于CWA设置的最低限值,才有可能获得此批文。限值根据当地权威单位的规定,或者经处理废水所排入的支流情况而互不相同。为使成本最小化,必须对废水处理过程最优化。为帮助实现优化,很多工厂使用总有机碳(TOC)监测来确保水质,同时显著降低费用。处理过程废水处理厂的处理过程必须同时满足国家及当地地区的规章制度。在生产过程或废水处理厂中,一旦净水补给时的水被污染或者不经处理就被排放,会对人体健康或者环境造成不良影响。水处理的最终目的在于确保排放的水质中污染物的含量符合规定,或者废水能被处理成可再回收使用的水质。此时的处理及净化过程同时包含物理和化学处理。净化水的第一步是去除可疑的固体杂质,第二步是化学处理以确保危险化学成本或细菌最小程度地被排放至环境。如果处理的过程未被适当地控制住,可能会对公司造成一定的影响。未被正确处理的水会对其接触物料产生损伤,例如输送管道或储水罐。未被有效处理的水还可能造成工厂的停产,废水水流的导流,或再返工处理。这些后果都会带来不必要及昂贵的费用。为什么要使用TOC来优化处理过程?对于废水流或负载水在源头就开始进行TOC检测,可以作为基线读数,这样水处理厂就知道处理前原始的有机物含量。确定水中大致的总有机碳含量,可以推算出需要多少量的化学药剂及过滤过程来进行处理。被排出的水或者处理后的净水再次进行TOC检测,通过对排出水的监控,处理工厂可以知道化学给药否有效。处理工厂还可以渐渐地减少或调整化学药剂的使用,实时比较其对出水质量的影响。EPA(美国国家环境保护局)确定了五类污染物必须受到控制,包括耗氧性物质、病原体、营养物、无机物及合成有机化合物、热量。所有这些污染物都会影响生态系统并对水质产生负面影响。这其中可以通过TOC监测的污染物是耗氧性物质。过去,很多公司通过一个需要耗时5天的BOD(生物需氧量)测试或需要耗时2个小时的COD(化学需氧量)来对耗氧性物质进行监控。目前TOC设备的优势及便利性渐渐体现,EPA已经允许使用TOC对耗氧性物质进行监控。TOC的分析过程仅需几分钟即可完成,相比之前的几个小时甚至几天,速度有很大的提升。EPA 40 CFR,取样及测试程序,133.104章节中提到“可以用TOC方法取代BOD5,只要BOD:COD或者BOD:TOC的长期关联性能被证实。”1当需要快速确定废水流的组成时,TOC的快速检测时间就是很大的优势。一但TOC数值显示排放水符合规定,立刻就能节约水处理成本。相反,如果由于未知的工艺污染,最初测出的废水TOC值开始上升,处理工厂可以立刻同步进行TOC分析,校正化学给药量。这种“实时”纠正,能帮助终端客户避免因排放不合格的废水而造成违规及不必要的成本。2009年因违反EPA2制定的CWA(Clean Water Act)而遭受罚款的案例马萨诸塞州的某公司“因排放受污染的雨水,面临高达$157,500的罚款处罚”。阿拉斯加州的某公司“因被指控违反CWA法,最终与USEPA达成了$30,600的罚款处理”。俄勒冈州的某公司位置在“联邦CWA法案禁止建厂的湿地上,被勒令立即搬迁,否则将因违反CWA而面临每天高达$32,500的民事罚款”。EPA向某德克萨斯州的公司颁布了一项行政诉讼和$157,500的民事罚款,“因为其违反了CWA法案”。爱达荷州的某公司“同意支付$47,700的罚金,以解除其因违反CWA法案而受到的USEPA的指控”。加利福尼亚的某公司被罚“$15,000,因为向与附近小河相通的雨水道排放了受污水的雨道排放了受污水的雨水,违反了CWA法案”。波多黎各某公司接到了“USEPA的$137,500的罚款指控,并勒令他们立即停止频繁的污水和工业废水排放”。向上滑动查看更多案例真实案例图1:废水处理厂的流程示意图(点击查看大图)图1显示了如何在整个水处理过程中多点使用TOC分析:点1:监控总有机碳(TOC),以深入了解澄清步骤,保护设备资产并管理您的进水有机负荷点2:监控TOC,通过TOC∶COD相关性优化生物处理和控制工艺过程点3:监控TOC以进行法规监测,符合排放标准并避免高额罚款点4:监控TOC以优化三级处理点5:监控TOC以符合回用标准若在此流程中不使用TOC检测控制,费用可能会很高而且可能会导致因不合规产生的违法费用。Sievers® InnovOx实验室TOC分析仪使工厂可以监控他们的处理过程,确保他们的处理设施是合法合规的,同时还可以优化化学处理。优化包括避免废水的处理不足或过度处理。若不考虑废水在处理过程中的停留时间,能够根据实时的情况对废水进行化学给药可以帮助企业最优化成本,最大化利润。Sievers InnovOx实验室/在线TOC分析仪Sievers InnovOx方法论Sievers分析仪在TOC分析方法上有了创新性的突破,为极其困难的样品提供了稳定的分析仪。InnovOx使用了高效率的超临界氧化(SCWO)技术,能够连续检测几百个废水样品而无需校准、无需系统维护并不需要更换备件。Sievers InnovOx的运行原理基于化学湿法氧化技术,通过在样品中加入酸剂及氧化剂进行氧化。无机碳通过吹扫被去除,样品在高温下通过过硫酸盐被氧化,生成的二氧化碳通过非色散红外光度计进行测定。InnovOx会提高样品的温度,并加入试剂确保充分氧化,并把液体水样转换成超临界水。一旦进入这一状态,超临界水氧化(SCWO)现象便会发生。这一创新技术可以使氧化效率达到99%,因此检测精确度和准确度极高。Sievers InnovOx还能在每个检测结束后自动清除有问题的样品基体污染。因此,在仪器内部例如反应器、管路或者阀门内都不会有盐分或氧化副产物的累积问题。结论InnovOx TOC实验室及在线分析仪能够对废水进行非常准确、精确及快速的检测。若水厂能够在处理之前和之后都对水质有清晰了解,那么优势就是,能够提高处理效率并最小化风险,最重要的还在于保证合规。对分析仪器的投资能够很快在处理过程优化中收回成本,也降低了违反规范的风险。参考文献1.EPA, CFR 40 Section 133.104 Sampling and Test Procedures, pg. 548, 7-1-07 Edition.EPA, 40 CFR,133.104章,取样及检测规程,548页,7-1-07版2.Environmental Protection Agency. www.EPA.org (accessed March 2009).环境保护局,www.EPA.org (2009年3月)◆ ◆ ◆联系我们,了解更多!
  • HMA-TNi 在电子厂排口废水监测中的应用
    HMA-TNi 在电子厂排口废水监测中的应用哈希公司 近几年来,国内电子行业发展迅猛,随之而来的是生产过程中产生了大量的有毒有害废水,包括酸碱废水、含氟废水、金属废水、有机废水、氰化物废水等。这些废水必须经过处理达标后才能排放。目前,电子行业仍没有针对性的污染物排放标准发布,其执行的标准仍为《污染物综合排放标准》,但是,电子厂对废水排放有严格的内控指标。电子厂除了监控 COD、氨氮等常规指标外,也非常重视镍、铜等重金属污染物的监控。 深圳某电子厂于 2016 年采购了一台 HMA 总镍分析仪,用于排口废水总镍的监测,测试数据通过仪表自带的 RS485 通讯传输至 PLC,实时上传至当地环保局。仪表从企业正常生产后开始运行,测量数据稳定,目前已通过验收。主要仪器:HMA 总镍分析仪、CYQ 预处理器,如图 1 所示。HMA 总镍分析仪与 CYQ 预处理器联动,按设定时间定时启动采样泵抽取水样。CYQ 预处理器的作用是自清洗进样管路和提供连续的流速稳定的水样,确保仪表正常运行,减少维护量。初次安装调试时,运维人员采用仪表自动校准功能进行校准,然后测量标液,结果偏差在±3% F.S.之内。该电子厂废水总镍的内控排放标准为HMA 总镍分析仪采用丁二酮肟比色法,测量稳定性较好,与实验室方法比对具有较好的一致性,满足电子厂排口废水监测要求;HMA 总镍分析仪的试剂配方公开,每月更换一次试剂,运行期间维护量较低,有效降低了企业的运行成本。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取小米电动牙刷哦!
  • UNEP:废水是一种被低估且不该被浪费的资源
    2015年8月26日联合国环境规划署(UNEP)发布题为《规范调整污水处理的良好实践:法律、政策和标准》(GoodPractices for Regulating Wastewater Treatment: Legislation, Policies andStandards)的报告。该报告详细介绍了阿根廷、芬兰和新加坡将废水高效处理并取得经济收益的案例,证明了污水处理是一个可靠的投资项目,同时表明了污水处理不仅有益于人类健康,而且已延伸到林业灌溉、工业、沼气、家庭用水、热能、电力以及肥料等各个领域。美国每年在废水处理上的投资高达300亿美元。例如,在北美有75%的废水经过处理,而处理过的废水只有3%被重复利用,然而在低收入国家只有8%的废水经过处理。报告以墨尔本为例说明了废水利用的状况,其最大的废水处理设施同时是一个受湿地拉姆萨公约保护的自然保护区。墨尔本通过一个超一万公顷的泻湖系统利用自然过程每天处理超过一半的城市废水,大约5000万立方米。这个处理系统的副产物是沼气,它可以被收集起来用于发电,这将有助于减少温室气体排放、减缓气候变化等。这项研究也展示了如何利用法律影响水质及其可用性。例如,177个国家的宪法明确规定人类享有健康环境的权利,也已经促进了阿根廷的马坦萨-里亚丘埃洛河流域水质的净化。流经阿根廷首都布宜诺斯艾利斯的河流正在被未经处理的生活废水和来自3000多家工厂(占国家GDP的24%)的工业废水所污染,使得儿童死亡率比相邻的省份高达2倍之多。阿根廷最高法院下令建立一个多部门参与的公民社会监督委员会,这个委员会已经确保清除了河流内的7万吨垃圾和24.3万立方米的垃圾代谢产物。报告也探索了不同类型废水处理措施的可能性。例如,芬兰的联合动力协作系统,城市依赖工厂提供自给自足的热能和自身所需的50%的电力,然后他们在偏远的农村建立合作企业来处理工厂产生的废水。约旦的As-Samra工厂,可以提供农业生产用水和提供95%自给自足的沼气。目前,新加坡40%的淡水资源靠进口,他们也正在寻找水质处理的创新解决方案,以达到在2060年实现用水独立的目标。经过两年多的试验,现在新加坡已经建立了4家水回收工厂,每天处理54.72万立方米的废水。本报告发布在斯德哥尔摩举办的世界水资源周活动上,同时也是对河流、湖泊和湿地水质恶化而引起的生物多样性减少三分之一所做出的及时反应。牛艺博 编译. UNEP报告称废水是一种被低估且不该被浪费的资源. 资源环境科学动态监测快报, 2015, (18):1.原文题目:Good Practices for RegulatingWastewater Treatment: Legislation, Policies and Standards
  • “农药废水低排放技术开发”重点项目课题申请指南
    国家高技术研究发展计划(863计划)新材料技术领域 “农药废水低排放技术开发”重点项目 课题申请指南 一、指南说明 农药废水是非常典型的难降解有机废水,处理难度大,对生态环境的危害严重,已成为环保治理的重点和难点。研究开发农药废水低排放技术对于农药工业可持续发展具有十分重要的意义。 本项目拟通过农药骨干品种清洁生产技术开发和废水预处理技术、深度处理技术以及综合治理集成技术开发,为农药行业实现清洁生产、减少废水排放提供技术支撑,提升农药行业废水处理技术水平,满足农药行业节能减排的迫切需求,为农药行业实现可持续发展奠定基础。 本项目拟支持草甘膦、百草枯、菊酯类农药、阿维菌素、吡虫啉、氯代吡啶类除草剂、毒死蜱等骨干农药品种清洁生产与废水低排放技术开发。项目国拨经费控制数5000万元,执行期为2008年12月到2010年12月。 二、指南内容 课题一、草甘膦废水低排放及母液回收利用技术开发 研究目标: 针对草甘膦原药生产中存在的废水排放量大的问题,开发草甘膦及其重要中间体亚氨基二乙腈和双甘膦的清洁生产工艺及废水低排放成套技术,并在20000吨/年以上草甘膦原药生产装置上进行集成应用。 主要研究内容: 通过反应器、催化剂等的创新提高亚氨基二乙腈的反应收率,研究开发亚氨基二乙腈母液回收利用及废水处理技术;优化双甘膦合成工艺,脱除双甘膦废水中的盐和甲醛,实现双甘膦废水循环利用;开发草甘膦母液的无害化、减量化技术;集成草甘膦废水综合处理技术并应用于20000吨/年以上规模的原药生产装置。 主要考核指标: (1) 草甘膦吨产品废水产生量减少50%,降低到11吨以下。 (2) 草甘膦吨产品末端废水排放量减少80%,不高于18吨(COD≤100mg/l)。 (3) 草甘膦吨产品COD排放量不高于1.8公斤。 (4) 草甘膦吨产品废水处理成本降低40%,不高于500元。 说明:本课题国拨经费控制数1150万元,配套经费与国拨经费的比例应不低于1:1。本课题牵头申请单位必须是国内草甘膦原药生产企业,鼓励产学研合作。 课题二、百草枯废水资源化成套技术开发 研究目标: 开发百草枯清洁生产工艺和废水资源化成套技术,应用在2000吨/年以上原药生产装置上。 主要研究内容: 通过催化剂及工艺条件的优化提高百草枯反应总收率,分离回收废水中残量百草枯、氰根离子和氨,实现中水回用和残液高效焚烧处理。 主要考核指标: (1) 百草枯吨产品工艺废水产生量减少50%,不大于3吨。 (2) 废水中氰根离子去除率≥95%。 (3) 焚烧炉排放尾气符合国家GB18484-2001《危险废弃物焚烧污染物控制标准》一级排放标准,处理每吨废水耗燃料油100kg以下,焚烧炉使用寿命不低于10年。 (4) 百草枯吨产品废水处理成本降低50%,不高于1500元。 说明:本课题国拨经费控制数1000万元,配套经费与国拨经费的比例应不低于1:1。本课题牵头申请单位必须是国内百草枯原药生产企业,鼓励产学研合作。 课题三、菊酯类农药废水综合治理技术开发 研究目标: 开发菊酯类农药的清洁生产工艺和废水综合治理技术,并在3000吨/年以上菊酯类农药生产装置上获得应用。 主要研究内容: 优化菊酯类农药反应工艺,回收废水中的有效成分,有效集成活性污泥生物系统及其它废水深度处理技术,应用于3000吨/年以上菊酯类农药生产装置上。 主要考核指标: (1) 菊酯类农药吨产品废水产生量减少50%,不高于20吨。 (2) 菊酯类农药吨产品末端废水排放量减少95%,不高于20吨。 (3) 菊酯类农药吨产品COD排放量减少95%,不高于2公斤。 (4) 菊酯类农药吨产品废水处理成本降低20%,不高于2600元。 (5) 回收中间体异戊烯醇生产废水中的醋酸钠,回收率大于90%。 (6) 环化工艺产生的废水中N,N-二甲基乙酰胺(DMA)回收率大于80%,环化废水处理后DMA含量小于0.5%。 说明:本课题国拨经费控制数800万元,配套经费与国拨经费的比例应不低于1:1。课题牵头申请单位必须是国内菊酯类农药原药生产企业,鼓励产学研合作。 课题四、阿维菌素新工艺及废水低排放技术开发 研究目标: 针对阿维菌素生产废水排放量大的问题,提高阿维菌素发酵效价,开发阿维菌素废水的催化氧化预处理技术、废水深度处理及回用技术,在80吨/年以上原药生产装置上进行集成应用。 主要研究内容: 开发阿维菌素菌种基因改造、诱变育种以及多尺度发酵等创新技术,提高提取收率,开发废水双膜处理及回用技术,开发废渣成肥应用技术。 主要考核指标: (1) 阿维菌素吨产品废水产生量减少50%,不高于400吨。 (2) 阿维菌素吨产品末端废水排放量减少50%,不高于360吨。 (3) 阿维菌素吨产品COD排放量减少80%,不高于30公斤。 (4) 阿维菌素吨产品废水处理成本降低45%,不高于5300元。 (5) 阿维菌素的平均效价达7000μg/ml。 (6) 发酵废渣灭活后制备的有机肥料达到国家相关标准。 说明:本课题国拨经费控制数500万元,配套经费与国拨经费的比例不低于1:1。课题牵头申请单位必须是国内阿维菌素原药生产企业,鼓励产学研合作。 课题五、吡虫啉创新工艺研究与废水治理技术开发 研究目标: 针对吡虫啉原药生产废水排放量大的问题,开发吡虫啉创新生产工艺和废水综合处理技术,在5000吨/年以上原药生产装置上进行集成应用。 主要研究内容: 优化催化剂和反应工艺条件,提高反应总收率,综合回收利用废水中的二甲基甲酰胺(DMF),集成废水催化氧化预处理技术和双膜生物反应器等深度处理技术,应用于5000吨/年以上原药生产装置。 主要考核指标: (1) 吡虫啉吨产品废水产生量减少65%,不高于10吨。 (2) 吡虫啉吨产品末端废水排放量减少85%,不高于100吨。 (3) 吡虫啉吨产品COD排放量减少85%,不高于10公斤。 (4) 吡虫啉吨产品废水处理成本降低55%,不高于1200元。 (5) DMF综合回收利用率80%以上。 说明:本课题国拨经费控制数600万元,配套经费与国拨经费的比例应不低于1:1。课题牵头申请单位必须是国内吡虫啉原药生产企业,鼓励产学研合作。 课题六、氯代吡啶类除草剂废水综合治理与低排放技术 研究目标: 开发氯代吡啶类除草剂的创新生产工艺和废水综合处理技术,在2000吨/年以上原药生产装置上集成应用。 主要研究内容: 开发专用催化剂,改变反应溶剂,提高反应总收率;研究开发废水物理—化学相结合的综合处理技术,开发高氨氮废水中氨的回收利用技术。 主要考核指标: (1) 氯代吡啶类除草剂吨产品废水产生量减少60%,不高于12吨。 (2) 氯代吡啶类除草剂吨产品末端废水排放量减少70%,不高于30吨。 (3) 氯代吡啶类除草剂吨产品COD排放量减少80%,不高于3公斤。 (4) 氯代吡啶类除草剂吨产品废水处理成本降低50%,不高于3000元。 说明:本课题国拨经费控制数500万元,配套经费与国拨经费的比例应不低于1:1。要求企业和研究单位联合申请,课题牵头申请单位必须是国内氯代吡啶类除草剂生产企业。 课题七、毒死蜱清洁生产与废水低排放技术开发 研究目标: 开发毒死蜱的清洁生产工艺及废水综合处理技术,集成应用于5000吨/年以上原药生产装置。 主要研究内容: 研究提高原子利用率的新合成方法和高效催化剂,提高毒死蜱及其中间体乙基氯化物、三氯吡啶酚钠的反应收率,开发副产物单质硫的回收利用技术、废水综合治理技术和废水回用技术。 主要考核指标: (1) 毒死蜱吨产品废水产生量减少50%,不高于30吨。 (2) 毒死蜱吨产品末端废水排放量减少50%,不高于30吨。 (3) 毒死蜱吨产品COD排放量减少80%,不高于3公斤。 (4) 毒死蜱吨产品废水处理成本降低60%,不高于900元。 (5) 回收的单质硫含量大于95%。 说明:本课题国拨经费控制数450万元,配套经费与国拨经费的比例应不低于1:1。要求企业和研究单位联合申请,课题牵头申请单位必须是国内毒死蜱原药生产企业。 三、注意事项 1、本项目申请者应根据申请指南的规定和要求,按研究课题进行申请。 2、课题申请者应根据申请指南提出的研究课题、主要研究内容和研究目标、主要考核指标等要求,编写《国家高技术研究发展计划(863计划)项目课题申请书》。 3、课题必须由法人(单位)提出申请,申请单位与协作单位不得超过5家,并确定申请课题的依托单位和课题负责人。 4、课题依托单位应符合的基本条件:在中华人民共和国境内登记注册一年以上、过去两年内在申请和承担国家科技计划项目中没有不良信用记录的企事业法人单位,包括:大学、科研机构等事业法人;中方控股的企业法人。 5、课题负责人应符合的基本条件: (1)具有中华人民共和国国籍; (2)年龄在55岁(含)以下(按指南发布之日计算); (3)具有高级职称或已获得博士学位; (4)每年(含跨年度连续)离职或出国的时间不超过6个月; (5)过去三年内在申请和承担国家科技计划项目中没有不良信用记录。 6、课题负责人及主要参加人员不得违反以下限项申请的规定: 为保证科研人员能够高质量地开展研究工作,国家科技计划实行限制申请及承担课题数量规定。每人同期只能主持1项国家主要科技计划(包括863计划、973计划、支撑计划)课题,作为主要参加人员同期参与承担的国家主要科技计划课题数(含负责主持的课题数)不得超过2项。申请者应按照上述要求进行申请,且在同一批发布的申请指南中只能申请1项863计划课题或项目。 7、申请者提出的申请经费不得高于申请指南规定的经费控制额,并应按照申请指南的要求提供相应的配套经费,否则不予受理。 8、申请者要遵守科学道德,以严谨的科学作风和实事求是的科学精神填写项目申请书,保证项目申请书的真实性,避免出现夸大和不准确的内容。同时,不得将研究内容相同或者近似的项目进行重复申请。863计划对申请者在申报过程中进行信用记录,对于故意在课题申请中提供虚假资料、信息的,一经查实,记入信用档案,并对单位在两年内取消其申报863计划资格、对个人在三年内取消其申报863计划资格。 9、申请程序和要求:课题申请采取网上集中申报。申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn。有关申请的程序、要求和其他注意事项详见《“十一五”国家高技术研究发展计划(863计划)申请指南》。 10、课题申请受理的截止日期为2008年12月12日17时。 11、咨询联系人及联系方式 联系人: 卞曙光 010-88372105 蒋志君 010-68338919 电子邮件: jeanbsg@htrdc.com 863计划新材料技术领域办公室     二〇〇八年十月二十三日
  • 《水和废水监测分析方法(第四版)》再版工作启动
    2015年4月16日,中国环境监测总站在北京组织召开了《水和废水监测分析方法(第四版)》再版工作启动会。黑龙江省环境保护厅、江苏、安徽、北京、河南省环境监测中心(站)和常州市环境监测中心的相关人员参加了会议。   会上成立了《水和废水监测分析方法(第四版)》再版编委会,中国环境监测总站刘廷良副总工担任主编。会议就再版的定位、篇章设计、结构调整和编写方式进行了讨论并形成一致意见。   《水和废水监测分析方法(第四版)》再版将进一步总结凝练国内外的监测分析方法,为读者提供一本具有实用性、科学性和先进性重要参考书和工具书。
  • 工业废水集中治 园区管理助力减排常态化 l
    p   工业废水一直是水处理领域“难啃的硬骨头”,近年来,园区模式为集中科学管制工业污水带来了契机。为了不留隐患,工业集聚区污水治理重在监管,智慧转型也有望成为常态,走一条工业废水治理的长效之路。 /p p   工业废水集中治 园区管理助力减排常态化 /p p   来自环境保护部的消息显示,截至2018年1月底,全国已有2205家工业集聚区全面完成了污水集中处理设施建设,2148家完成自动在线监控装置安装。据悉,京津冀、长三角、珠三角等是重点区域,目前已经基本完成任务。 /p p   当然,环保部相关负责人也明确,工业集聚区的水污染防治工作仍将继续强化和落实,完成“水十条”任务只是硬性标准之一,也只是开始。业内相关人士更是指出,工业废水,作为最难“啃”的水处理“硬骨头”之一,长效治理必不可少。 /p p   而从目前我国工业污水治理的进程来看,工业集聚区的形成有利于统筹管控工业污水排放,并且对工业污水处理进行科学统筹规划。这也是为什么,近年来,不少工业园区相继落成,分散的企业开始向工业园区聚集,污水治理也在总量和质量上获得阶段性进展。 /p p   总体而言,全国各地都在鼓励重污染企业搬迁入园,工业集聚区发展形态初成。但是,这也是存在先决条件的,即:坚守底线,不留隐患。进入工业园区并不意味着排污不受限,反而更看中节能减排的集约化管理效应。 /p p   因此,工业集聚区水污染治理如何管好是关键。环保部水环境管理司相关负责人表示,“园内工业废水和生活污水要应纳尽纳,一滴不能漏,杜绝偷排、漏排等情况发生。”那么,工业园区水处理将如何过关斩将呢? /p p   首先,环保监管绷紧弦。按照环保部的规划,工业集聚区将逐步实现“一园一档”,推进数据化、信息化步伐。同时,中央环保督查的目标也会继续指向工业园区的绿色发展,肃清超标排放、违规操作、设施缺位等问题。 /p p   其次,智慧转型加速。一个生态园区,一个智慧园区,二者之间的契合点值得推敲。监管重在施压,转型志在求变,更多人开始相信,“生态智慧型”将成为工业聚集区的未来选项。水污染治理自然不例外,高效、便捷,360度无死角,24小时全天候,全覆盖采集,智能化解析,这是清洁生产下的大势。 /p p   再者,关系网统筹维系。纵观工业集聚区关系网,污水处理总避不开园区管理部、污水处理企业和污水处理厂三方。例如,管理部门要把好环评关,企业要把好生产制造关,处理厂要把好工艺关,如此才能做好园区内部的工业污水治理工作。 /p p   总结起来一句话,自觉是基础,监管是手段,责任是动力,实效是核心,工业集聚区污水治理正是要兼顾这几点。截至目前,全国各地都针对工业集聚区污水展开了重点监管,诸如广西、江苏、吉林、四川等地频频传来捷报,示范试点快速建立,新老工业园区齐步治污。 /p p   工业污水成分复杂,治理难度大,“散乱污”更是严重阻碍了水污染治理进程。有鉴于此,依托污水处理厂,集中高效治水的园区模式有了用武之地。紧接着,管好工业集聚区污水治理就成为了重中之重。 /p
  • 耶拿:污水废水的监测还需进一步与时俱进
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(79, 129, 189) " 中国面临严重的水污染问题,污水废水治理也一直是水环境治理最重要的组成部分。近几年在政策支持下,污水处理行业发展态势较好,污水处理能力持续增强。污水废水包括医疗污水、工业废水、生活废水等。从污水处理基础设施建设情况来看,污水处理厂数量和城市排水管道长度都在逐年递增。随着新冠肺炎疫情中病毒存在通过粪便和污水传播的可能,对污水废水处理提出了更高的要求。而对污水废水水质的监测检测则成为污水废水处理的基础和保障。为了帮助相关用户学习、了解污水废水水质监测最新技术及相关仪器在其中发挥的作用等内容,仪器信息网特别策划了“污水废水水质监测”专题并邀请德国耶拿北京技术应用支持中心主管崔贺谈谈她对中国污水废水水质监测现状的看法。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/80806491-e7be-48ec-855d-33696a631865.jpg" title=" 耶拿崔贺_320.jpg" alt=" 耶拿崔贺_320.jpg" / /p p style=" text-align: center " strong 德国耶拿北京技术应用支持中心主管 崔贺 /strong /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:崔主管,您好。据您了解,我国污水废水排放和治理现状呈现怎样的特点?对于我国污水废水监测检测采用的现行标准/方法您认为有哪些需要改进和完善的地方? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 崔贺: /span /strong 我国水资源较为紧张,随着我国城市化、工业化进程的加速,全国废水的排放量也逐年增加,导致自然水体不断恶化,水资源污染形势仍十分严峻。水体污染、水资源短缺已经成为我国经济社会实现可持续发展的严重制约因素。近几年,国家对环保行业的重视程度和支持力度不断提升,污水处理行业也得到了快速发展。环保要求已经是各个企业抓的与安全生产同等重要的事情。各个工厂在环保方面投入巨大,重点企业已实现某些指标与环保局实时联动。说明我国在环保领域在下功夫认真管理。 /p p   对污水废水的监测标准最好能够与时俱进,例如我国污水重要的监测指标是COD,化学需氧量。但由于COD方法操作复杂、耗时耗力、同时还有试剂污染,很多外国国家在保留COD测量的同时,也认可TOC指标作为替代指标,这种监测方法避免了上述问题并且能准确快速测定指标。还有总氮的测量,国内还没有使用总氮分析仪测定水质的标准,这在未来可以进一步地完善。 /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:新冠病毒可以通过粪便和污水传播的情况无疑对包括医疗污水在内的污水废水监测检测能力提出了更高的要求。目前,相关水质监测的技术现状怎么样,相关水质监测的难点在哪?除了新冠病毒检测,污水废水水质监测中还有哪些项目值得关注? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 崔贺: /span /strong 生态环境部针对新冠疫情在2020年2月1日就发布了《关于做好新型冠状病毒感染的肺炎疫情医疗污水和城镇污水监管工作的通知》及《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》(环办水体函[2020]52号),要求各地加强对医疗污水消毒情况的监督检查,严禁未经消毒处理或处理未达标的医疗污水排放。要求严格按照《医疗机构水污染物排放标准》的规定,对相关处理设施排出口和单位污水外排口开展水质监测和评价。 /p p   加强对医院污水处理设施的监管刻不容缓,培训消毒人员掌握正确的消毒剂投加量是关键所在。人工采样点位的选择必须符合技术规范的要求。建议将医疗废水排放监测制度化、程序化和规范化。通过采取加强医疗废水日常监督监测、超标处罚等措施,提高污水处理设施运行效能,同时还应完善必要的医疗废水应急处理能力。 /p p   《医疗机构水污染物排放标准》有明确的指标限量要求和检测方法,个人觉得有些项目的检测方法可以与时俱进,比如有些项目可以采取更为便捷的分析仪器方法替代传统的理化分析方法,无论从效率上还是准确度上都会得到明显改善和提高。 /p p   除了应急事件针对性检测以外,某些特定行业的废水污染也要留意。例如造纸和印染行业污废水中的有机卤化物就是很重要的污染来源,但现在还没有受到足够的重视。 /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:耶拿公司在污水废水水质监测方面有哪些仪器产品或产品组合?相比于同类产品,贵公司产品有哪些优势? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 崔贺: /span /strong 耶拿公司目前的主要生产销售总有机碳(TOC)/总氮(TN)分析仪,有机卤素化合物(AOX)分析仪,碳、硫、氮、氯等元素(C、S、N、Cl)分析仪 电感耦合等离子体发射质谱仪(ICP-MS)、电感耦合等离子体发射光谱仪(ICP-OES)、原子吸收光谱仪(AAS)和紫外/可见(UV/VIS)分光光度计和生化分析仪器等,同时代理拉曼产品。 /p p   在废水检测方面,耶拿的multi N/C 3100 TOC总有机碳/总氮分析仪基于多项创新的专利,可以对水质TC,TOC,NPOC,TIC,POC等多项参数进行快捷准确的测量。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C123103.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0958169b-2dce-47a2-bb2a-538ebebfaa22.jpg" title=" 耶拿 multi3100 TOC分析仪.jpg" alt=" 耶拿 multi3100 TOC分析仪.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C123103.htm" target=" _blank" span style=" font-family: arial, helvetica, sans-serif " strong 耶拿 multi N/C 3100 TOC总有机碳/总氮分析仪 /strong /span /a /p p   AOX总有机卤素分析仪可进行水质总有机卤素的测试。其中,multi X 2500总有机卤素分析仪能检测AOX/EOX/POX等多项指标,更可以配置特殊的TX和TOC分析模块,实现更多综合指标的分析。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C72801.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/38aad804-cc97-4288-bbc3-f4cce58d03bd.jpg" title=" 耶拿multi X2500总有机卤素分析仪360.jpg" alt=" 耶拿multi X2500总有机卤素分析仪360.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C72801.htm" target=" _blank" span style=" font-family: arial, helvetica, sans-serif " strong 耶拿 multi X& reg 2500总有机卤素分析仪 /strong /span /a /p p   光谱类仪器AAS,ICP-OES可进行水质重金属的测试,质谱ICP-MS可以进行水质痕量金属元素的分析以及和液相色谱联用的形态分析。耶拿的PQ9000高分辨率ICP-OES采用原装的卡尔蔡司光学系统,保证了160nm-900nm波长连续全覆盖和优于0.0004nm的波长准确度。独有的0.003nm高光学分辨率能显著提高信背比并改善BEC(背景相当浓度)。此外,耶拿的拉曼产品可监测有机污染物和微生物等。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C189859.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c4ecbd06-4cdd-460b-943b-61608f22bd3e.jpg" title=" 耶拿PQ9000 ICP-OES_330.jpg" alt=" 耶拿PQ9000 ICP-OES_330.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C189859.htm" target=" _blank" strong 耶拿 PQ9000 高分辨率ICP-OES /strong /a /p p    strong span style=" color: rgb(192, 0, 0) " 仪器信息网:贵公司在污水废水水质监测方面可以提供哪些解决方案? /span /strong /p p    strong span style=" color: rgb(31, 73, 125) " 崔贺: /span /strong 目前,耶拿公司可提供多种水质中重金属的检测监测方案,如污水中 Cu, Ni, Fe的测定 ICP法测试工业废水中P、S元素 原子吸收光谱法测定环境水中的Zn元素等。以及针对废水中TOC/TN/AOX的检测解决方案,如印染废水中TOC和TN含量的测定 生态修复废水中TOC的测定等。 /p
  • 国家皮革行业废水检测实验室有望本月获批准
    松山湖一检测机构申报的国家皮革行业废水检测实验室有望本月获批,成为广东省首家皮革行业第三方检测实验室。   今年,CTC鞋业皮具专业技术中心耗资300多万元,从法国引进皮革行业废水检测设备,并申报国家皮革行业废水检测实验室,建成后可为东莞乃至珠三角地区皮革制造业企业提供排放检测服务。   CTC鞋业皮具专业技术中心中国区市场营销经理朱汝胜:“在这个月底的话,会经过国家实验室的审核,至此以后我们将会成为广东省内第一家对皮革行业废水进行分析的实验室,通过对废水进行分析将会有效提高我们对于皮革行业废水污染进行有效的控制。”   据了解,法国CTC鞋业皮具专业技术中心是松山湖一家中小科技企业,2009年以来一直致力为东莞和珠三角鞋企、皮革厂商和贸易商提供专业的检测认证服务,先后与华坚集团等龙头企业、机构建立合作关系,已累计辐射企业超过500家。
  • 网络讲座:采用创新的分光光度法进行废水检测
    废水分析是监测工业排污或市政排污对环境影响的重要手段。常见的高频检测参数包括COD、BOD等。与传统标准方法相比,创新的分光光度法可以缩短分析时间、减少有毒废液排放,并有效简化了废水检测的过程,让操作更简单。演讲时间:2021年4月29日13:00-14:00演讲嘉宾:Gunter Decker本次讲座我们特别邀请了默克生命科学的高级经理Gunter Decker先生。Gunter是光度法方面的资深应用专家,拥有35年环境分析经验,负责光度计产品管理20余年。他将向大家全面介绍采用默克多参数水质分析仪的创新分光光度法在废水检测中的应用。 讲座内容:l 创新快速分光光度法与传统标准方法的差异l 如何采用默克多参数水质分析仪进行创新的分光光度法检测l 如何减少有毒废液排放l 采用默克多参数水质分析仪进行创新的分光光度法检测是如何大大简化日常检测工作的 点此报名https://primetime.bluejeans.com/a2m/register/brtfcsxa 欢迎但不限于以下行业的朋友报名参加:l 有废水检测需求的工业/市政/政府/环境实验室l 所有采用分光光度法进行检测的实验室管理者及实验员
  • 金陵论道 | 精细化工领域的废水监控与处理
    初春的南京,天高云淡远黛青,在美丽的玄武湖畔,今年的精细化工废水、废气处理技术交流会于3月15-16日如期举办。早上8点30分,200余人的会场已经坐无虚席,听众从全国各地专程赶到南京,参与到本届会议中,期待从两天的会议中有所收获。- 中国化工企业管理协会医药专委会副主任何志斌先生对到场的各位嘉宾表示欢迎,并致开幕辞。- 《流程工业》杂志编辑胡静女士介绍了拥有百年历史的弗戈媒体集团及根植中国19年的《流程工业》杂志。- 来自国家环境保护制药废水污染控制工程技术中心的任立人先生,在开幕演讲中,为现场听众详细介绍了目前制药行业污水处理的现状和问题、污染物排放标准、水污染控制技术、企业污染综合预防思路及未来制药废水处理的技术展望。- 北京化工大学传质与分离工程研究中心主任李群生教授介绍了高效分离技术的原理及其在精细化工废气、废水处理中的工业应用。◆ ◆ ◆GE Sievers 总有机碳TOC分析仪在化工废水处理中的应用本次会议特设了展台,方便在场听众随时与知名供应商进行技术交流。GE分析仪器在现场展示了Sievers InnovOx 实验室型总有机碳TOC分析仪。在石油化工行业有机物监控方面,Sievers InnovOx TOC分析仪是GE分析仪器的王牌产品,在检测工艺过程水和废水中的TOC时,突破性地体现出优良的可靠性,并能分析各种复杂的水样。采用专利的超临界水氧化技术(SCWO),InnovOx TOC分析仪十分耐用,能分析大批量的水样。在线使用可以连续检测水样中的有机物浓度,适用于监测各种排入或排出的水流,从蒸汽冷凝水到污水,测量浓度范围极广。具体应用如下:- 蒸汽冷凝水有机物泄漏监测- 冷却水原水污染监测- 热交换器泄漏监测- 生物污水处理厂前后有机物监测及优化- 废水排放监测,COD/BOD相互关系- 高盐海水和卤水有机物监测其优势在于:- 可靠性强:超临界水氧化技术,反应器自清洁,检测器设计简单,无复杂部件- 维护和操作成本低:6个月标定有效期,无需昂贵催化剂及石英管,仅需便宜的化学试剂以及每月半小时的推荐预防性维护- 应用范围广:不限制水样成分,高盐水样及复杂水样可直接进样,无需预处理及稀释,也不会增加仪器维护频率- 测量模式多:多种测量模式, 包括 TOC (TC-IC) 或NPOC- 多流路:最多可同时监测5路水样,仪器内部完成切换,方便布置下列视频,介绍了超临界水氧化技术(SCWO)的工作原理和InnovOx TOC分析仪的优势。如您对有机物监测有任何问题,欢迎与我们联系!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制