当前位置: 仪器信息网 > 行业主题 > >

电解电导检测

仪器信息网电解电导检测专题为您提供2024年最新电解电导检测价格报价、厂家品牌的相关信息, 包括电解电导检测参数、型号等,不管是国产,还是进口品牌的电解电导检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电解电导检测相关的耗材配件、试剂标物,还有电解电导检测相关的最新资讯、资料,以及电解电导检测相关的解决方案。

电解电导检测相关的资讯

  • 制药行业如何充分利用电导率检测?
    介绍根据美国药典USP和其他各国药典要求,电导率是一项重要的质量指标,为了确保产品质量和患者安全必须对电导率进行检测。FDA和USP已将电导率、总有机碳TOC、内毒素和微生物限度确定为制药用水质量保证的四个关键指标。TOC和电导率用于确保最高水平的操作控制和过程理解。电导率检测包括不同的分析阶段,允许制药企业对其所用的水进行维护和处理,以确认其纯度及在制药应用的适用性。与TOC分析相结合时,电导率可以提供水质的完整情况,并使药企从这些检测中获得最大收益。法规美国药典USP 概述了电导率检测的三个阶段。分析人员必须从第1阶段的电导率检测开始,确保使用合适的容器进行离线或在线分析。根据USP 中提供的表格,分析人员确定电导率测定值是否通过第1阶段。如果样品未通过第1阶段电导率验收标准,则必须执行附加检测(第2阶段和第3阶段)以确定高电导率是否由于内在因素所致,例如大气中的CO2或外来离子。第2阶段电导率检测在必须采取的程序步骤中更具规范性。样品必须剧烈搅拌,同时保持25±1℃的温度,直到电导率的变化小于每5分钟0.1 µS/cm。一旦电导率读数稳定,该值不得大于2.1 µS/cm才可通过第2阶段。在第2阶段利用仪表和探头手动进行电导率检测时每个样品最多需要30分钟,不包括TOC分析。方法使用仪表和探头的传统电导率分析方法虽然符合要求,但会带来可靠性和效率方面的问题。例如,仪表和探头分析需要分析人员每次手动将一个样品引入探头中。这就会造成样品不必要地暴露于大气CO2中,导致结果超出第1阶段的限定值。考虑到样品处理和数据转化相关的问题,这种方法也缺乏自动化,并且无法获得除电导率以外的数据。此外,实验室手动检测方法可能需要分析人员数小时时间。另一种检测电导率的方法是使用带有在线电导率池的分析仪。与其他实验室方法相比,此分析方法可提高分析效率和样品可靠性。例如,一些分析仪可实现在一个样品瓶中对TOC和电导率同时进行检测。一次生成两个数据点的同时简化了取样资源。通过使用自动进样器和软件,可以最大限度地提高效率,在任何给定的时间内管理60多个样品和标准品,完成自动分析、确保数据安全、实现审计追踪和可配置的报告。通过自动同时进行第1阶段电导率和TOC检测,实验室在改进样品处理和数据管理的同时实现了极大的效率提升。电导率确认无论使用何种方法(手动仪表和探头或在线分析仪),USP和其他药典都要求进行电导池常数确认。没有明确说明浓度或频率,但必须以某种频率进行确认。许多因素都会导致电导率不稳定,原因之一就是大气中的CO2。对于低浓度的标准品,由于大气中CO2吸收和解吸等原因,标准品结果更有可能出现误报,从而导致测量值出现意外偏差。虽然高浓度的标准品无法避免CO2溶解的影响,但当使用具有更高电导率水平的标准品时,药典验收标准±2%更能说明仪器的实际性能。药典电导池常数确认旨在根据USP 和其他全球药典中规定的指南,证明电导池合适。USP 仅说明确认要求,但未规定频率或浓度。许多制药公司选择不仅进行电导池常数确认,而是使用由工艺能力决定的其他浓度和接受标准来执行方法适用性检查。这些方法适用性检查通常在接近水样的工艺范围内进行。将这些类型的检查与药典电导池常数确认区分开来很重要。监管机构不要求进行方法适用性检查,而是让用户相信他们的仪器适用于规定的方法。电导率检测的最佳操作使用带在线电导池和TOC的分析仪(如:Sievers® M9 TOC分析仪)是第1阶段电导率检测的理想选择。与电导率和TOC两用样品瓶(或DUCT样品瓶)一起使用,可提供水质检测的准确性和高效率。DUCT样品瓶是一种适合同时进行TOC和电导率检测的容器,与样品接触时不会影响TOC或电导率。使用Sievers DUCT样品瓶、瓶盖和隔垫的研究表明,在良好的取样技术情况下,在最长五天时间内对TOC或电导率都没有明显影响。使用DUCT样品瓶取样的最佳做法是使用前不要冲洗样品瓶。为避免污染,请勿触摸样品瓶、瓶盖或隔垫的内部。一次性将DUCT样品瓶完全充满,不留顶空,在往样品瓶充样时避免出现湍流。立即盖上样品瓶盖。不要重复使用DUCT样品瓶。执行正确的取样技术、方法条件以及合理的确认频率将确保TOC和电导率检测的高置信度。结论对于制药公司来说,符合USP 的最理想状态是第1阶段电导率检测。它执行起来最简单,每个样品所需的时间最少。将USP 要求的检测进行自动化,可大大节省时间,同时可提高数据可靠性和安全性。使用Sievers M9实验室TOC分析仪进行TOC和USP第1阶段电导率联合检测可以为公司节省时间和金钱,同时将质量纳入其流程。这种方法还使企业能够将资源转用于其他卓越运营和精益计划。为了与FDA过程分析技术(PAT)指南保持一致,带有第1阶段电导率分析的Sievers M9分析仪还可提供旁线(at-line)检测的便携式配置型号和在线检测配置型号,以实现最高效率。原文英文版刊登于制药杂志《American Pharmaceutical Review》2021年9月刊◆ ◆ ◆联系我们,了解更多!
  • 水质检测仪器--在线电导率分析仪
    根据生态环境部在2020年6月发布的《生态环境监测规划纲要(2020-2035年)》,规划指出“十四五”期间,国控断面数量从2050个整合增加至4000个左右。水质国控监测点的增加将带来新的水质监测仪器采购和运营需求。同时,规划中明确提到,要深化自动监测与手工监测相融合的监测体系。  研究建立以自动监测为主的地表水监测评价、考核与排名办法,与手工监测评价结果平稳衔接。而目前非国控监测点中还有很大一部分采用手工监测,因此随着监测体系的完善,非国控点水质检测的自动化水平将得到提升,地表水自动监测仪器市场需求也有望随之逐步提升。B2010在线电导率分析仪采用全新的设计理念,可实现水质电导率的在线连续监测,适用于一般工业用水、纯水电导率的监测,广泛适用于电力、化工、石油、环保、制药等行业中多种水质的测量,是一台高精度、智能化、高性能现场测量仪表。仪器特点1、192×64点阵液晶、多参数显示、内容丰富2、采用先进的嵌入式系统设计、贴片工艺技术提高了产品性能和可靠性、符合EMC设计要求3、中、英文双语可编程切换,满足不同用户需求4、全中、英文引导式操作模式、使用简单、通俗易懂5、可编程的自动或手动温度补偿方式、使用灵活、方便6、两路完全隔离的电流信号输出,可分别设定输出电流范围7、带有上、下限报警功能,可分别设定报警值8、带有标准的485数字通讯接口,可实现远距离通讯9、具有历史数据、运行、校准记录存储、查询功能,可查询100000条历史数据、1000条运行记录、100条校准记录10、防护等级高,达到IP65,可以满足各种复杂环境应用要求11、可选择多种电极常数电极,每种电极均有2个量程且量程均可自动切换,满足用户测量范围和精度要求技术参数显 示:中、英文显示,192×64点阵液晶测量范围:K=0.01: (0.000~2.000)μS/cm、(0.000~20.00)μS/cm 2个量程自动切换;K=0.1 : (0.000~20.00)μS/cm、(0.000~200.0)μS/cm;2个量程自动切换;K=1 : (0.000~200.0)μS/cm、(0.000~2000)μS/cm,2个量程自动切换;K=10 :(0.000~2000)μS/cm、(0.000~20.00)mS/cm 2个量程自动切换;最小分辨力:0.001μS/cm引用误差:±1%FS温度传感器:Pt1000温度范围:(0.0~99.9)℃温度误差:±0.5℃温度分辨率:0.1℃温度补偿范围:自动或手动(0.0~60.0)℃温度补偿系数:0.0%/℃~9.99%/℃样品条件:温度范围:(5~50)℃流量范围:不大于6升/小时环境温度:(5~45)℃环境湿度:不大于90%RH(无冷凝)电流输出:(4~20)mA(二路隔离输出)电流精度:±1%F.S电流负载:800Ω报警输出:二路报警输出、直流5A/30V或交流5A/250V。储运温度:(-20~55)℃外形尺寸:144mm×144mm×115mm开孔尺寸:139mm×139mm供电电源:交流(85~265)V、频率(45~65)Hz功 率:≤10W重 量:约1.2 kg
  • 通过同步检测TOC和电导率提高效率、降低成本
    简介总有机碳(TOC)和电导率是水质的关键属性,但手动检测这两项参数需耗时几个小时。费时的检测步骤包括检测样品、记录数据、等待复查,以及批准书面的或电子实验室数据管理系统中的记录数据。美国一家全球性的生物技术公司积极寻求能够同时检测TOC和电导率的平台,以提高效率、精简流程,并能将检测结果导出到实验室数据管理系统中。解决方案为了提高效率、降低成本,该公司评估了Sievers 分析仪生产的Sievers M9实验室型分析仪,该仪器可同步检测来自单一容器【双用途电导率和TOC样品瓶(DUCT样品瓶)】中的TOC和美国药典USP/中国药典ChP的第1阶段电导率。M9分析仪还具有样品分析时间更短、样品用量更少、能够整合实验室数据管理系统等优点。该全球性生物技术公司所采用的方法确认,是通过解释USP “药典方法验证”。公司评估了检测的三个方面,前两个方面是TOC和USP第1阶段电导率检测方法的适用性确认,此为USP 的直接要求。检测的第三个方面是验证新的Sievers DUCT取样容器的适用性,并评估容器的样品保留时间,以支持内部运行程序。在此不讨论上述检测,因为Sievers分析仪已单独进行了测试,支持DUCT样品瓶中的TOC和电导率样品的5天样品保留时间。该公司用Sievers M9实验室型分析仪进行了电导率的方法转移,并清楚证明了该方法是准确的、精确的、线性的。请参见表1中的数据。表1:电导率方法转移结果摘要分析性能特点结果运行1运行2运行3准确度(%)959591精确度(%RSD)115线性度(R2)0.99990.99990.9995套装TOC分析方法已经在当前的TOC分析仪上验证过,其使用的是相当的分析技术。因此,公司选择在Sievers新的M9实验室分析仪,与过去的900 TOC分析仪上,同时运行来自同一批次的系统适用性标准品套装。由于样品瓶类型的变化,该公司还运行了Sievers DUCT样品瓶中配制的系统适用性套装,以证明容器的可比性。所有三组系统适用性套装都满足使用Sievers M9实验室型分析仪时的85-115%合格标准。响应效率百分比表明了同时使用Sievers M9实验室型分析仪和DUCT样品瓶的适用性和可接受性。请参见图1中的数据。图1:TOC方法转换结果Sievers M9实验室型分析仪除了具有合格的分析性能,还同实验室数据管理系统相兼容,同时分析TOC和电导率。这种以电子文件格式导出TOC和USP第1阶段电导率结果的功能,去除了人工抄录数据的错误,节省了分析时间。在此例中,该公司能够将系统配置为自动填充多样品结果。结果一旦合格,实验室数据管理系统就将其录下,以待复查和批准,因此从取样到结果复查的整个工作过程完全变得无纸化。该公司估计,每天可节省约4个小时。结果经计算,该公司实现的投资回报率、投资回收期、净现值分别为:5年400%投资回报率,7个月投资回收期,约40万美元5年净现值。投资回报率的最明显的地方是,尽管整合Sievers DUCT样品瓶时增加了耗材成本,但样品数量的减少使公司大大节省了总成本。表2:样品成本摘要成本类型(每个样品)当前未来电导率耗材$2.58$15.70TOC耗材$4.83不适用总耗材成本$7.41$15.70劳动力成本(减少5分钟)$8.17$2.33维护1$0.44$0.88总成本$16.01$18.911请注意,同时进行TOC和USP第1阶段电导率检测使此数字翻倍。表3:1年数据摘要成本因素当前未来资金成本不适用$ (99,710)可变成本1$ (271,454)$ (163,234)预计节省人力不适用$72,800总成本$ (271,454)$ (190,144)总节省的成本$81,310投资回收期7个月1反映人力、维护、材料成本。上述投资回报率出自分析仪同实验室数据管理系统相整合。如果继续用手动操作而非数据管理系统,投资回收期将增加到11个月,但仍在1年以内。此例很好地证明了,使用Sievers M9实验室型分析仪来同时检测TOC和USP第1阶段电导率可以为企业节省大量时间和费用。此方法减少了实验室中检测样品的需求量,大大降低了成本,使企业能够将节省下来的资源用于其它生产和创新的地方。◆ ◆ ◆联系我们,了解更多!
  • 闪耀新品丨电导率检测利器—LH-DDS3M
    LH-DDS3M 型电导率测定仪是连华科技依据环境监测技术规范要求,研发的一台涵盖了电导率、电阻率、盐度、溶解性总固体、温度多项测量指标的实验室多参数仪器,仪器符合新国标 《JJG 376-2007 电导率仪》检定规程 0.5 级指标,广泛适用于医疗、环保、科研、大专院校、工矿企业,是化学分析的必备的常规分析仪器。 外观精美 操作便捷LH-DDS3M 型电导率测定仪采用5.6吋触摸式液晶显示屏,纯中文操作界面,人性化的程序设计,显示直观,操作方便。检测时特色数据稳定图标,仪器测值基本稳定时自动点亮稳定图标,显示当前测量状况。仪器还具有校准、自动/手动温度补偿、自动/手动数据保存、定时测量、时间显示、功能设置等智能功能,极大提升用户检测工作体验。 五项全能 符合国标LH-DDS3M 型电导率测定仪集①电导率COND、②电阻率RES、③盐度SAL、④溶解性总固体TDS、⑤温度五种模式为一体,根据不同应用场景可选择多模式单位如μS/cm、mS/cm,MΩcm、KΩcm 、Ωcm,mg/L、g/L,盐度单位可选ppt、‰。仪器符合国标《JJG 376-2007 电导率仪检定规程》0.5级指标,可满足国标检测的各项技术指标。 三款电极 性能强大 LH-DDS3M 型电导率测定仪根据测量范围将为客户提供三种电极常数的电极,分别为K=0.1:0.05 ~ 300μS/cm;K=1.0:10 ~ 10000μS/cm;K=10.0:10000 ~ 200000μS/cm。其中K=1电极常规备货,K=0.1和K=10用户根据自身需求另行采购。在3款电极的加持下,各检测指标测定范围为:电导率COND(0~ 200)mS/cm,电阻率RES(5Ωcm ~ 100MΩcm),盐度SAL(0 ~ 100)ppt,溶解性总固体TDS(0 ~ 100)g/L,温度(-25 ~ 125℃),测值单位可自动切换。 精益求精 细节制胜LH-DDS3M 型电导率测定仪根据用户实际应用标准,在电导率模式内置两种标准溶液模式组:中国标准、欧美标准,和一组自定义模式,满足仪器使用的多样性。每个模式可数据储存 500 组,支持数据的查阅、删除和打印,断电后数据不丢失,可配置打印传输功能,打印或传输即时测量数据及历史数据。5G“心”服务 保驾护航专业客服 采购舒心线上线下业务渠道全覆盖,专业客服团队5*8小时线上多形式服务,解决采购问题。无忧退换 使用安心30天内无理由免费退换货,仪器产品享1年免费质保服务,终身检测维护、软件升级服务。快捷响应 业务省心凡客户提出需求,公司团队立即响应,快速处理,完成客户需求后再处理后续事宜。增值服务 温暖贴心提供免费样品检测服务,仪器维修养护期间免费用户提供备用机,保障客户日常工作。创新发展 匠人匠心创新研发二十余系列水质分析仪及丰富的专业化配件、试剂,全面满足客户需求。
  • pH电导传感器为各种领域提供了重要的实时监测和控制
    pH电导传感器是一种广泛应用于工业和科学领域的传感器,用于测量溶液的酸碱度和电导率。pH电导传感器通过测量水溶液中的氢离子浓度和电导率来评估溶液的酸碱性或盐度,为各种领域提供了重要的实时监测和控制。   pH电导传感器工作原理基于溶液的电离和电导原理。首先,pH电极通过浸泡在溶液中,测量溶液中的氢离子浓度。酸性溶液中的氢离子浓度高,碱性溶液中的氢离子浓度低。然后,电导测量电极通过测量溶液中的电导率来评估溶液的盐度。盐度高的溶液具有较高的电导率,而盐度低的溶液具有较低的电导率。   该设备有多种类型和设计,但一般包括一个pH电极和一个电导测量电极。pH电极通常由玻璃电极和参比电极组成,玻璃电极通过与溶液中的氢离子发生反应产生电压信号,而参比电极为其提供一个稳定的参考电位。电导测量电极由两个电极组成,测量溶液中的电导率。   pH电导传感器广泛应用于水处理、环境监测、食品与饮料、制药、农业和化学分析等领域。在水处理中,该设备用于监测水的酸碱度和盐度,以帮助调整和控制水的处理过程。在环境监测中,该设备用于测量土壤和水体中的酸碱度和盐度,评估环境质量。在食品与饮料行业中,该设备用于监测食品和饮料的酸碱度和盐度,以确保产品质量和安全。在制药领域,该设备用于监测和调控药物制剂过程中的酸碱度和盐度。在农业领域,该设备用于土壤监测,评估土壤的酸碱度和盐度,以帮助决定适合种植的作物种类。在化学分析中,该设备用于实验室测量和分析过程中的酸碱度和盐度。   总之,pH电导传感器通过测量溶液的酸碱度和电导率来提供精确的实时监测和控制。它在许多领域都发挥着重要作用,并帮助人们评估和调整过程中的酸碱度和盐度,以确保产品质量和安全,保护环境和改善生活质量。
  • 【技术知识】电导率仪在测定时产生误差的原因
    工业电导率仪由电子单元和传感器两部分组成,对电导率仪的检定就分成两部分:用交流电阻箱对电计进行检定;用电导率标准溶液对仪器配用电导率池常数进行检定。工业在线电导率仪的检定应在检定规程要求的实验室环境条件下进行。由于交流电阻箱的温度系数很小(约为10ppm/℃),在变化±10℃的室温中,进行电计检定,也不会对0.2级的电导率仪产生任何影响,因此,对电计检定的条件并不苛刻。造成误差的关键因素1电解质溶液电导率仪的温度系数都较大是测量误差的主要因素。如电导率标准物质KCl溶液在不同浓度下的电导率的温度系数大约为2.0%/℃,可见温度影响是很大的。在进行仪器池常数检定时,应将KCl电导率溶液标准物质放在恒温装置中。2现场实验中通常不具备恒温装置,而实验室的恒温装置又不便带到现场,实验温度如不能准确控制在新规程规定的温度点,就不能得到标准溶液的电导率值,导致电导池常数Kcell的校准无法进行,而Kcell的不确定度直接影响了仪器引用误差的检定。3另外,由于没有恒温装置,对于有温度补偿测量功能的电导率仪,温度示值误差无法检定,这样,电导率仪的检定项目就可能残缺不全,影响仪器性能的评定。旧规程对于此类情况以及送检工业在线电导率仪传感器未带等现象,可以根据电计检定部分的数据进行判定,给出电计级别。而新规程要求必须对电导率仪的电计和仪器两部分进行全面检定,才能判定仪器级别。相关仪器B1010台式电导率仪是一款智能型仪器,该仪器采用人性化设计,图形菜单, 操作直观易懂,具有中英文可选,判稳等多种功能,可用于电厂、化工、冶金、环保、制药、生化、食品和自来水等溶液在实验室的测量与存储。B3010便携式电导率仪是一款高性能的便携式测量仪表,用于测量水溶液的电导率、盐度、TDS等参数,其外形简洁、重量轻、集成电路,智能程度高,使用人机对话的方式,宜于理解和操作,测量精度高,特别适用在石化、电力、饮料、制药、半导体、科研院所等行业应用。B2010在线电导率分析仪采用全新的设计理念,可实现水质电导率的在线连续监测,适用于一般工业用水、纯水电导率的监测,广泛适用于电力、化工、石油、环保、制药等行业中多种水质的测量,是一台高精度、智能化、高性能现场测量仪表。
  • 盘点:PEM制氢电解槽测试系统厂商及产品概览
    2024 年 7 月,国家标准《PEM 电解槽性能测试方法》征求意见稿发布。电解槽测试系统是氢能领域重要的检测设备之一。本标准为首次修订。国内外产品纷纷从示范向市场化产品发展,用户迅速增长。随着PEM制氢电解槽的大规模商业化进程不断推进,无论是批量生产还是研发和技术储备,电解槽的开发和生产过程中都需要进行严格的测试。为此,专业的PEM电解槽测试平台应运而生,这些平台能够监控电解槽的各项参数和运行状态,实现包括伏安特性曲线在内的性能测试、敏感性测试以及寿命评估等多项功能。以下是部分PEM制氢电解槽测试系统厂商及产品的介绍,排名不分先后。一、KEWELL科威尔科威尔技术股份有限公司是一家以测试电源为基础产品,为多行业提供测试系统及智能制造设备的综合性测试装备公司。公司目前主要产品线有测试电源、氢能测试及智能制造装备、功率半导体测试及智能制造装备等。产品主要应用于新能源发电、电动车辆、氢能、功率半导体等工业领域。由于测试电源产品运用的广泛性特点,公司产品还应用于轨道交通、汽车电子、智能制造、机电设备、航空航天、实验室认证等众多行业领域。产品:E500系列、E500-H单池高压版、单池多通道版、HETS-PEM-S系列电解槽测试等。例:E500-L单池常压版该系统运行压力最高2bar,由去离子水循环系统、氮气吹扫单元、压力调节单元、气水分离单元、气体分析预处理单元、PLC采集与控制单元、人机操作单元和安全监控单元等组成,采用公司自主开发的系统测试软件,可满足PEM电解槽的极化曲线、电化学测试、氧中氢浓度在线测试、敏感性测试、耐久性测试、产氢能耗效率、产氢质量测试和产品寿命等测试。产品功能:极化曲线测试功能、手动和自动运行模式、电池电压监测功能、氢/氧压力、温度测试功能、氧中氢浓度在线检测功能、氢/氧自动背压功能、高效汽水分离功能、水路温度、流量及压力控制功能、全自动补水功能、水路电导率监控功能等。二、北京格睿能源科技有限公司北京格睿能源科技有限公司成立于2021年,公司围绕氢能和燃料电池相关领域,以测试设备为基础产品,提供领先的高性能高可靠测试技术解决方案,为氢能行业提供“制-储-运-加-用”测试设备与数字服务。公司依托北京科技大学和清华大学氢能与燃料电池团队,经过多年技术积累,研发产品涵盖了燃料电池堆测试设备、燃料电池系统测试设备、电解槽测试设备以及关键零部件和材料测试设备等,可提供百瓦级至百千瓦级全功率范围的电解水制氢和燃料电池测试设备,并为客户提供智能化测试数据处理分析软件和测试服务。目前,产品已在国内多家高校、相关企业中得到应用,并成功开拓了海外市场。产品:100W 桌面式PEM电解槽测试台、全独立八通道 100W PEM电解槽测试台、整体式八通道 100W PEM电解槽测试台、5KW PEM电解槽测试台、500KW PEM电解槽测试台、GR-WETS-PEM-S500K 系列电解水制氢槽测试系统等。例:GR-WETS-PEM-SC100 系列电解水制氢槽测试设备在行业现有产品性能的基础上,进行了多项升级改进和优化设计。本测试设备由去离子水循环系统、氮气吹扫单元、气水分离单元、气体分析预处理单元、PLC 采集与控制单元、人机操作单元和安全监控单元等组成,采用公司自主开发的系统测试软件,可满足电解槽的极化曲线、产氢能耗效率、产氢质量测试和产品寿命等测试。产品功能:阳极进水温度控制、阳极水流量控制、夹具辅热温度控制、阳极进水温度控制、阳极水流量控制、夹具辅热温度控制、阳极出口温度测量、阴极(氢侧)自动背压、阴极产氢测量、氧中氢浓度在线切换检测、氢气流量在线切换检测等。三、大连锐格新能源大连锐格新能源科技有限公司成立于2009年,是国内最早专门从事氢能检测装备研发、设计与生产的高科技企业之一,拥有目前氢能行业最齐全的检测装备产品系列,目前产品覆盖PEMFC、PEM电解水和SOFC三大品类,主要包括燃料电池测试平台、燃料电池发动机测试系统、燃料电池系统部件测试平台、电解水设备测试平台、燃料电池及系统产线测试产品、燃料电池发动机测试实验室搭建等全系列氢能检测装备。产品:PEM(AEM)电解水制氢测试平台系列等。PEM(AEM)电解水制氢测试平台系列是针对PEM(AEM)制氢电解槽设计的一款测试平台,适用额定功率范围100W~1MW之间的PEM(AEM)制氢电解槽的性能评价。PEM(AEM)电解池测试系统可按照用户操作条件实现PEM(AEM)电解池的性能测试、敏感性测试、部件选型、寿命评估和理论基础研究等功能。通过操作软件实时控制、监测并显示PEM(AEM)电解池运行过程中的各种参数和工作状态,包括水的温度、压力、流量,电压、电流,冷却水温度、产生氢气的温度、压力、露点、纯度等参数,来实现PEM(AEM)电解池在各种不同的工况下的工作。产品功能:数据采集、存储功能:能够实时采集并存储电解槽的水流量、气体流量、温度、压力、电流、电压等信号;背压功能:氢气/氧气自动(手动)背压控制,满足常压到高压范围阴阳极均压、差压的控制功能;气体干燥功能:具备气液分离、气体冷却/干燥/过滤、气体流量精确测量;氮气自动吹扫功能:出现故障或停机时,自动氮气(高压/低压)吹扫,置换氢气管路中氢气;去离子水路控制功能:温度/流量精确调节、电解液回收、电导率在线监测、自动补水等功能;安全连锁及保护功能:软硬件多级安全保护策略和功能;电解池的性能测试(伏安特性曲线)、敏感性测试、部件选型、寿命评估功能;设备稳定性及可靠性:满足7×24小时无人值守全自动运行。四、NBT拜特NBT拜特创立于2005年,是国内新能源测试领域的开拓者,也是国内领先的新能源行业测试设备和技术服务提供商。公司主要业务涵盖锂电和氢电测试设备两大板块,凭借敏锐的市场触觉,优秀的产品品质,持续创新和迭代开发能力,为新能源行业用户提供丰富的产品组合和测试技术解决方案。产品:PE-1K/50K/500K/1MW电解制氢测试系统等。PE-1K/50K/500K/1MW电解制氢测试系统旨在为PEM电解槽制氢提供稳定测试系统,本系统由循环水系统模块、背压模块、降温除湿模块、氮气吹扫模块、PLC采集与控制模块、人机操作和安全监控模块等组成。用于检验电解槽的极化曲线、单池一致性、产氢能耗效率,产氢质量测试和产品寿命测试。产品特点:高效的水汽分离器设计,确保气体流量的精确测量具备安全自动防护操作,可选择执行降载、卸载、断路、降压、中断反应水供应等防护措施具备CV、CC、CP等多种运行模式,单池电压检测及防护,电源输出电压、电流、功率检测及防护功能全自动化无人值守操作完整的软硬件安全运行保护机制及定制化服务生成气精确流量测量,氢中氧,氧中氢在线质量分析,高压低压控制模式五、律致新能源律致是一家致力于为氢能装备、燃料电池系统及核心零部件提供开发测试和智能制造解决方案的创新型技术企业。公司目前为国家级高新技术企业、上海市“专精特新”企业、嘉定区“小巨人”企业,并荣获2021年度中国机械工业科技进步一等奖。公司在汽车、新能源及自动化领域拥有专业的能力和丰富的经验,依托上海交通大学坚实的“产学研”平台,律己达人、锐意创新、笃行致远、共赢未来,力争成为中国氢能和燃料电池领域的技术领跑者。产品:EC系列PEM电解水测试台。EC系列PEM电解水测试台是用于对PEM电解槽进行详细评估和表征的全功能设备。包括集成电源,电化学工作站,EIS阳抗测试仪,以及用于温度,压力,流速监视的实时传感器,是对电解槽进行测试,诊断和分析的理想实验室选择。产品特点高达10Mpa的背压控制解决方案可选的手动/自动背压模块电解电源最大高达1000V的电压,10000A的电解电流可靠的安全互锁装置,强制通风监测模块,使测试更安全有效选配气相色谱仪模块气体纯化模块,纯度99.999%标配阻抗测试模块,10mHz-10kHz的频率范围单节电解槽可选电化学工作站标配阴极水回收单元定制化防爆仓,使用氢更合规高效的远程监控软件,使测试效率更高六、宇科创新大连宇科创新科技有限公司(简称“宇科创新”)成立于2018年,是国家级高新技术企业、省级“专精特新”企业。目前,宇科创新已在电解水制氢测试设备方向展现出了明显优势,在主流的PEM、ALK、AEM等几种类型电解水制氢测试产品均有案例。产品功能氢气流量:PEM电解槽测试设备为500~1000Nm3/h。系统额定压力最大可达6MPa,防爆设计。电解电压及电流可个性化调整,可模拟风电或光伏发电场景。根据型号的不同,巡检节数最大支持1080节。具备氢、氧纯度检测能力。系统工作温度范围RT~90℃。内循环温度通过加热电解液升温,系统和外循环冷却系统可随时调整。对系统压力、温度、工作电流、循环水量电解液流量、气体浓度等参数进行实时监控,有异常立即报警或者停机。全流程压差自动控制。安全保护参数设置可防止用户错误输入造成该保护未保护。安全故障分级报警处理机制,每级报警值列表。具有实际产氢量质量流量在线测能力,测量精度≤1%F.S。除了上述公司外,还有一些其他企业和研究机构也在积极研发相关的测试技术和设备,为PEM制氢电解槽的性能优化和质量控制提供支持。随着氢能行业的迅速发展,专用检测设备的应用领域也在不断扩大。仪器信息网特别设立了氢能行业专用仪器的专题展示区,旨在为这些专业仪器提供一个展示平台,并希望通过此举为提升氢能使用的安全性贡献力量。
  • 电池电解液液体透射测量工具—台式色差仪
    随着科技的飞速发展,电池已经成为我们日常生活中不可或缺的能量储存好帮手!从我们的便携式电子设备,到那些酷炫的电动交通工具,都要靠电池的支持才能动起来。没错,电池可是真正的能量源头呢!然而,要说到电池的性能和稳定性,可真得多亏了电解液,它是电池的核心组件之一!电解液主要由溶剂、导电盐和添加剂组成。溶剂通常是有机溶剂,例如碳酸酯、碳酸酰、醚类等,导电盐则是决定电池电导率的关键因素。添加剂的加入可以调节电解液的性质,如粘度、化学稳定性等,以提高电池的性能。有了优秀的电解液,电池的表现就会更稳定、更强劲。这样一来,我们的电子设备就能续航更久,电动交通工具也能跑得更远。所以说,不管是充电还是输出电能,电解液功不可没啊!然而,电解液的透射性质有时候可能会遇到一些问题哦!比如,如果电解液的透明性不够好,光线就可能被挡住,影响电池内部的能量传输效率,让电池性能变差。另外,电解液对特定波长的光线吸收过多,可能引起化学反应,导致电池不稳定。而且,电解液中溶质的浓度变化也会影响光线透射的特性。那么,我们要如何解决这个透射相关的问题呢?这就需要依靠Ci7x00系列的Ci7800台式分光色差仪与Ci7860精密色差仪来帮忙!这两款仪器可谓是我们的得力助手!Ci7800台式分光色差仪,可以简单快速地测量电解液的透射率,看看它有没有足够的透明性,保证光线能顺利穿过,让电池能高效传导能量。Ci7800色彩色差仪支持多达5个反射孔径和4个透射孔径,可通过不同位置的端口来测量各种样品的色彩与外观。这项功能使得它在许多领域中都得到了广泛应用。此外,Ci7800还支持多达3个UV滤光镜来控制纺织品、塑料、油漆、涂料和纸张中的荧光增白剂。设备内置数码相机具有预览和主动目标定位功能,可保证测量区域的准确定位,并能捕获图像以备日后检索。同时,它还能检测样品上的污点、划痕或缺陷,并提供随附的测量数据以备审计,为质量控制提供了有效支持。如果我们想要更深入的了解电解液的光学特性,这时候Ci7860精密色差仪就派上用场了!它不仅可以测量透射率,还能给我们提供更多数据,包括吸收特性和反射率等等。这样一来,我们就能全方位地了解电解液的性质,发现其中的问题,进而针对性地优化电解液的配方。Ci7860精密色差仪广泛应用于多个工业领域,包括纸张、纺织物、塑料、颜料、汽车以及屏幕色彩校正等。它为这些行业提供了可靠的色彩测量和管理解决方案,帮助企业提高产品质量,降低生产成本,增强市场竞争力。有了这两款色差仪,我们可以轻松解决电解液透射相关的问题!通过优化电解液的性能,我们就能让电池表现得更稳定、更强劲,让我们的电子设备续航更久,电动交通工具跑得更远,让我们的生活更便利、更美好。同时,这些仪器的应用也推动着科技的不断发展,让能源领域取得了更大的进步。随着技术的不断创新和仪器的不断完善,相信电池的未来会变得更加出色!“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • Sievers精益实验室 | 同时检测制药用水的阶段1电导率和TOC
    挑战自从1906年“纯净食品药物法案(Pure Food and Drug Act)”颁布以来,美国药典(USP,United States Pharmacopeia)和国家处方(NF,National Formulary)一直是美国食品药物管理局(FDA,United States Food and Drug Administration)的官方药典。1USP和NF要求检测四种制药用水,即超纯水(UPW)、注射用水(WFI)、血液透析用水、纯蒸汽水2。检测这四种水时,要求检测电导率、总有机碳(TOC,Total Organic Carbon)、内毒素、微生物限度(见图1),目的是为了保证产品的可靠性、有效性、安全性。如果检测结果达不到规则要求,就会产生各种后果,轻则被迫召回产品,重则危及患者的生命安全。因此企业高度重视和密切关注能够帮助达标的分析方法。图1:FDA/USP要求的制药用水检测图1中的各种USP规则都给出了具体的接受限值。如果检测结果满足限值,就能达标,但监管机构和行业组织更看重有助于企业深入了解生产工艺的定量检测,以及低于接受限值、但需要采取行动的数据限3。解决方案Sievers® M9 TOC分析仪达到并超过USP 规定的定量分析要求4,不仅可用于基本TOC限值的检测,还能够帮助企业深入了解生产工艺,并给出低于USP 接受限值、但需要采取行动的数据限。5M9分析仪在进行USP 达标所需的TOC定量检测时,还能同时检测阶段1电导率,以满足USP 要求。虽然电导率检测是较基本的检测,但其背后的理论具有相当高的技术性,必须加以了解。有关电导率检测的完整技术解释,以及M9分析仪如何帮助用户达到USP 要求,请参阅我们的白皮书“电导率、温度依赖性、和Sievers M9分析仪(Electrical Conductivity, Temperature Dependence, &Sievers M9 Analyzer)”。6技术总结上述白皮书:电导G是电阻R的倒数。电阻由欧姆定律定义为:其中R是电阻,V是施加电压,I是检测电流。当电阻单位是欧姆(Ω)时,电导率G的单位是西门子(S)。在检测电导率时,使用探针或让水流穿过电导池,检测已知电势差上的电流。电导率探针或电导池在已知电势差上使用两个或更多已知尺寸的电极。直接检测电流,然后计算电导。电导率是基于池常数的归一化电导值,而池常数取决于池尺寸。用手动检测仪和探头检测电导率的原理,同M9分析仪检测穿过电导池的样品流电导率的原理一样(见图2)。从前人们用耗时的手动检测仪和探头来检测电导率,现在用M9分析仪的电导池来检测电导率,虽然两者的技术原理相同,但后者实现了自动化检测,能快速、高效、可靠地完成达标检测。 图2:(A)手动检测仪和探头,(B)M9分析仪的电导池USP 和M9分析仪M9分析仪电导池的性能达到并超过USP 规定的所有的仪器规格和操作参数。M9分析仪通过同时检测非温度补偿样品电导率和温度,来检测阶段1电导率。M9分析仪还提供美国药典(USP)、欧洲药典(EP)、中国药典(CP)、印度药典(IP)的接受标准的列表。有关M9分析仪电导池的准确度、精确度、范围、线性等规格,请参阅表1和图3。7表1:M9分析仪电导率规格图3:M9分析仪的电导率线性USP 还规定了电导率检测的三个阶段:阶段1、阶段2、阶段3。只有阶段1可以在实验室离线或生产流程在线的运行模式下完成。阶段1也是最简单的检测,但它的合格/不合格标准最严格。“阶段1适用于在线检测,也可以在适用容器中离线进行。”- USP 对于离线的阶段1电导率检测,用户只需检测适用容器中的样品温度和原始电导率。USP 按温度索引提供了合格/不合格标准列表。如果样品未能通过阶段1电导率检测,则必须进行额外检测(即阶段2和阶段3检测),以确定过高的电导率是否出自内在因素,如大气中的CO2,或外部离子。在必要的程序步骤中,阶段2电导率检测更要求规范性。操作员必须剧烈搅拌样品,同时使样品的温度保持在25º +/-1º C,直到电导率变化小于每5分钟0.1 μS/cm。等电导率读数稳定后,检测值不得大于2.1 μS/cm,方能通过阶段2检测。用手动检测仪和探头进行阶段2电导率检测的耗时为:每个样品可花费长达30分钟。8对于制药厂来说,最理想的情况是在阶段1电导率检测中达到USP 要求,这时需要的操作最简单,检测每个样品的时间最短。实现自动化的USP 检测之后,就能节省大量时间,并提高数据的可靠性和安全性。适用容器除了考虑M9分析仪电导池的性能之外,还需考虑用于电导率检测的适用容器。USP 特别提到了“适用容器(Suitable Container)”一词,但未具体说明什么样的容器是适用的。9在容器中同时检测阶段1电导率和TOC时,要求容器对电导率或TOC没有任何显著影响。M9分析仪使用“电导率与TOC两用样品瓶(DUCT,Dual Use Conductivity and TOC)”,能够自动进行USP 和的达标检测10。DUCT样品瓶是有专利技术的涂层玻璃样品瓶,带专用瓶盖,已被证明不仅适用于电导率和TOC检测,而且优于目前业界使用的其它许多容器。11结果1111111FDA和USP将TOC和电导率定为制药用水质量保障的四个关键属性中的两个。但这两种属性参数的手动实验室检测需要耗时数小时之久。用手动检测仪和探头检测阶段2电导率所需要的时间为每样品最长30分钟,而且不包括TOC检测。如此耗时的检测过程包括:检测样品、记录数据、等待审核和批准。当自动同时检测阶段1电导率和TOC时,以后就无需再检测电导率,从而节省时间。美国的一家跨国生物技术公司采用能够同时检测TOC和电导率的方案,以提高效率、简化流程、并能将检测结果导出到实验室信息管理系统(LIMS,Laboratory Information Management System)。12这家跨国生物技术公司用M9分析仪和单个DUCT样品瓶来同时检测阶段1电导率和TOC,5年的投资回报率(ROI,Return On Investment)达400%,投资回收期仅为7个月,项目的5年净现值约为40 万美元。ROI最引人注目的地方是,尽管使用DUCT样品瓶增加了些许耗材成本,但每个样品检测的时间和样品数量都有所减少,总成本大大降低。此例很好地说明了,用户用M9实验室型TOC分析仪同时检测TOC和USP阶段1电导率,能节省大量时间和资金,并提高生产工艺质量。在此情况下,用户就能将节省下来的资源用于他处,从而提高总体生产效率。12本文只展示了用M9分析仪在实验室离线模式下检测阶段1电导率。但实验室环境并非唯一选项。按照FDA“ 过程分析技术( PAT , Process Analytical Technology)”指南的规定,用于检测阶段1电导率的M9分析仪也提供便携式配置,可用于旁线(at-line)检测;还提供在线(on-line)配置,可实现最佳工作效率。Sievers为用户的水质和清洁应用提供完善的解决方案、技术服务和支持。从仪器、标样、样品瓶,到技术服务、设备维护、技术支持,Sievers都能满足用户的一切需求。感谢您选择Sievers作为您的解决方案。◆ ◆ ◆联系我们,了解更多!参考文献1.USP and FDA Working Together to Protect Public Health, 2017. Retrieved Jan 19, 2018, from http://www.usp.org/about/public-policy/usp-fda-roles2. Water for Pharmaceutical Purposes, 2007. Retrieved Jan 19, 2018, from https://www.geinstruments.com/sites/default/files/pdf_test/reg_USP_1231_water_for_pharmaceutical_purposes.pdf3. 3. Validation of Compendial Procedures, 2007. Retrieved Jan 19, 2018, from https://www.geinstruments.com/sites/default/files/pdf_test/reg_USP_1225_validation_of_compendial_procedures.pdf.4. Sievers M-Series Performance Specifications, 300 00290, 2015. Retrieved Jan 19, 2018, from https://geinstruments.com/down-media?f_id=262.5. 5. Total Organic Carbon, 2008. Retrieved Jan 19, 2018, from https://www.geinstruments.com/down-media?f_id=1404.6. Electrical Conductivity, Temperature Dependence, & GE M9 Analyzer, 300 00322, 2016. Retrieved Jan 22, 2018, from https://geinstruments.com/down-media?f_id=42654.7. Sievers M9 TOC Analyzers, 300 00064, 2017. Retrieved Jan 19, 2018, from https://geinstruments.com/down-media?f_id=325.8. 8. Water Conductivity, 2008. Retrieved Jan 23, 2018, from https://www.geinstruments.com/down-media?f_id=1405.9. Reserve Sample Bottles for Conductivity and TOC, 300 00299, 2015. Retrieved Jan 23, 2018, from https://geinstruments.com/down-media?f_id=268.10. Selecting the Best TOC Sample Vial for Your Application, 300 00331, 2016. Retrieved Jan 23, 2018, from https://geinstruments.com/down-media?f_id=277.11. DUCT Vial Performance and Stability, 300 00297, 2015. Retrieved Jan 23, 2018, from https://geinstruments.com/down-media?f_id=266.12. Improved efficiency and lower costs using simultaneous testing for TOC and conductivity, 300 00326, 2018. Retrieved Jan 23, 2018, from https://geinstruments.com/down-media?f_id=42078.
  • 揭秘GE分析仪器专利技术:Sievers 薄膜电导率检测技术
    GE分析仪器历来重视研发,并乐意投资开发新产品与新技术。至今我们已经拥有超过30个创新技术专利。其中,Sievers总有机碳(TOC)薄膜电导率检测技术,可谓GE TOC分析仪的王牌技术。以下介绍可以让您充分了解“Sievers 薄膜电导率检测技术”到底是怎么回事?Sievers 薄膜电导率检测技术用于检测总有机碳(TOC)含量,并被证明为十分精准可靠的检测方法。不同于非分散红外检测(NDIR,non-dispersive infrared)技术,Sievers 薄膜电导率检测法能显示六个数量级的动态范围,可以防止随时间的明显数据漂移,从而极具稳定性。因此使用薄膜电导率检测技术,设备无需频繁校准,所得到的检测结果十分稳定,具有不可比拟的分析性能,能成为用户在日常工作中依赖的主要工具。◆ ◆ ◆工作原理Sievers薄膜电导率检测技术使用了选择性气体渗透薄膜,只有氧化产生的CO2能通过这层薄膜进入检测舱。当水中有机物分子含有除碳、氢、氧以外的元素,如氮、硫、磷、卤素等,在氧化时会生成相应的离子,如硝酸根、氯离子等,干扰直接电导率检测。因此相比直接电导率法,Sievers薄膜电导率检测法减少了检测中的“假正”或“假负”现象,提供了无比优异的选择性、灵敏度、稳定性、精确度和准确度。下列动画,可以让您清楚了解Sievers薄膜电导率检测技术的工作原理。(如看不清楚视频,建议登陆 http://v.qq.com/x/page/k03230zad9n.html 查看,并在观看时将清晰度调整为超清。)◆ ◆ ◆相关仪器GE Sievers M9实验室型/在线型/便携式、M5310 C实验室型/在线型/便携式,500RL在线型和860实验室型TOC分析仪均采用Sievers薄膜电导率检测技术。◆ ◆ ◆联系我们,了解更多通过以下方式联系我们800-915-9966(固话用户)0411-8366 6489(手机用户)geai.china@ge.com我们的专家将尽快与您联系!扫二维码关注“GE分析仪器”官方微信
  • 比较几种黄金检测方法:XRF VS.酸划痕试验VS.电导率测试
    如果是黄金交易商或典当行老板,就需要适当的工具来确保您提供给客户的是纯金、白银和其他贵金属。有几种方法可以用来检测黄金和其他贵金属的纯度和真伪。这些方法包括电导率测量、酸划痕试验,以及X射线荧光(XRF)检测。这篇文章将详细介绍每一种黄金检测方法,并对它们进行比较,以便您利用正确的技术帮助实现贵金属真伪判断。电导率测量电导率测量涉及到使用电子设备来测量金属的导电性。不同的金属有独特的电导率水平,所以这种方法可以用来识别某一金属类型。然而,这种方法并不总是准确的,因为一些合金和混合金属可能有类似的电导率水平。实际上,样品的温度也会影响测试结果。酸划痕试验酸划痕试验涉及到在金属的一小块区域滴上一小滴酸,并观察其反应。不同的酸被用来测试不同的金属,如用盐酸测试金,用硝酸测试银。如果金属是真的,酸不会对其表面造成明显的影响。如果金属不纯或为合金,酸会与其发生反应,金属表面会出现划痕或变色。尽管这种方法快速且容易执行,但可能得到主观的结果。此外,通常认为酸划痕试验的准确度很低。因此,酸划痕试验不能被认为是一种定量方法。XRF检测XRF检测是一种更加准确和全面的测试贵金属含量和贵金属纯度的方法。X射线荧光分析仪向金属发射X射线,测量受激电子释放的能量以确定样品的成分,并在几秒钟内提供结果。这种检测方法不仅快速简单,而且X射线荧光分析仪通常被认为是测试金属的较为可靠的方法。下表显示了X射线荧光分析仪的准确度和精度,该表将贵金属X射线荧光分析仪的检测结果(测试样品中元素的百分比)与黄金珠宝合金的认定参考标准进行了比较。XRF检测也是一种无损贵金属分析方法。换句话说,XRF检测不会对被评估的金属(而酸划痕试验可能会在金属上面留下痕迹)造成损害。为了提高灵活性,X射线荧光分析仪有坚固耐用的手持式版本,用于在现场测试金属,也有为展厅环境设计的台式版本。介绍一种检测金银珠宝的更简单的方法全新Vanta GX贵金属分析仪可满足此需求,这是一种台式X射线荧光分析仪,易于使用且价格合理。只需按下一个按钮就能证实金、银、白金、钯和其他贵金属的纯度和百分比。该分析仪还提供内容全面的成分结果,以便您能准确地为物品定价。检测多达27种化学元素,包括有害元素(铅或镉)和低价元素。有了这些可操作的检测结果,一旦出现镀金警报,我们就能很容易地识别出赝品。Vanta GX贵金属分析仪使用贵金属X射线荧光分析仪来验证贵金属,可以保证您向客户提供的是正品。您可以对产品的纯度充满信心。您的客户也可以在现场测试自己的贵金属。这对那些从其他矿场或经销商处购买贵金属的人来说特别有用。有了贵金属X射线荧光分析仪,贸易商可以对他们所销售产品的纯度充满信心。例如,如果一件物品被认为是纯金,但实际上是一种合金,卖方可能会错误地将其作为纯金定价,进而导致交易亏损。同样,如果一件物品被认为是低档次金属,但实际上是一种贵价金属,买方可能会大大低估该物品的价格,并错过一次高回报的投资机会。使用Vanta GX贵金属分析仪,黄金交易商和他们的客户可以充满信心地确定珠宝的成分,从纯金物品中识别出镀金物品,并做出明智的购买决定。
  • 中科大突破全固态锂电池电解质在性能和成本上的双重瓶颈
    全固态锂电池可以克服目前商业化锂离子电池在安全性上的严重缺陷,同时进一步提升能量密度,对新能源车和储能产业是一项颠覆性技术。但是,由于全固态锂电池的核心材料—固态电解质—难以兼顾性能和成本,目前该技术的产业化仍面临巨大阻碍。6月27日,中国科学技术大学的马骋教授报道了一种新型固态电解质,它的综合性能和目前最先进的硫化物、氯化物固态电解质相近,但成本不到后者的4%,很适合产业化应用。该成果以“A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries”为题发表在国际著名学术期刊《Nature Communications》上。为了满足实际应用的需求,全固态锂电池的固态电解质至少需要同时具备三个条件:高离子电导率(室温下超过1毫西门子每厘米),良好的可变形性(250-350兆帕下实现90%以上致密),以及足够低廉的成本(低于50美元每公斤)。但是,目前被广泛研究的氧化物、硫化物、氯化物固态电解质都无法同时满足这些条件。氧化物作为脆性陶瓷,普遍不具备可变形性。硫化物和大部分氯化物则成本高昂,至少在200美元每公斤的量级。这些材料中唯一的例外是氯化锆锂,但是它的离子电导率却远低于1毫西门子每厘米。   此次研究中,马骋教授不再聚焦于上述氧化物、硫化物、氯化物中的任何一种,而是转向氧氯化物,设计并合成了一种新型固态电解质—氧氯化锆锂。这种材料具有很强的成本优势。如果以水合氢氧化锂、氯化锂、氯化锆进行合成,它的原材料成本仅为11.6美元每公斤,很好的满足了上述50美元每公斤的要求。而如果以水合氧氯化锆、氯化锂、氯化锆进行合成,氧氯化锆锂的成本可以进一步降低到约7美元每公斤,远低于目前最具成本优势的固态电解质氯化锆锂(10.78美元每公斤),并且不到硫化物和稀土基、铟基氯化物固态电解质的4%。在具备极强成本优势的同时,氧氯化锆锂的综合性能和目前最先进的硫化物、氯化物固态电解质相当。它的室温离子电导率高达2.42毫西门子每厘米,超过了应用所需要的1毫西门子每厘米。与此同时,它良好的可变形性使材料在300兆帕压力下能达到94.2%致密,也超过应用所需要的水平(250-350兆帕下90%以上致密)。由氧氯化锆锂和高镍三元正极组成的全固态电池展示了极为优异的性能:在12分钟快速充电的条件下,该电池仍然成功的在室温稳定循环2000圈以上。   氧氯化锆锂的发现,使固态电解质在性能、成本两方面同时实现了突破,对全固态锂电池的产业化具有重大意义。审稿人认为这一发现“很有新意和原创性”,并且认为氧氯化锆锂材料“很有前景”,“有益于固态电池技术的商业化”。
  • 获嘉县公共检验检测中心1782.02万元采购高压灭菌器,血球分析仪,电导率仪,生物安全柜,离心机,凝...
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 获嘉县公共检验检测中心能力提升项目招标公告 河南省-新乡市-获嘉县 状态:公告 更新时间: 2022-09-03 中小微企业融资申请 项目概况 获嘉县公共检验检测中心能力提升建设项目招标项目的潜在投标人应在新乡市公共资源交易管理中心网获取招标文件,并于2022年09月26日09时30分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:获财招标采购【2022】48号 2、项目名称:获嘉县公共检验检测中心能力提升建设项目 3、采购方式:公开招标 4、预算金额:17,820,157.00元 最高限价:17820157元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 获财招标采购【2022】48号-1 获嘉县公共检验检测中心能力提升项目(一标段) 3000000 3000000 2 获财招标采购【2022】48号-10 获嘉县公共检验检测中心能力提升项目(十标段) 982360.1 982360.1 3 获财招标采购【2022】48号-11 获嘉县公共检验检测中心能力提升项目(十一标段) 1437796.9 1437796.9 4 获财招标采购【2022】48号-2 获嘉县公共检验检测中心能力提升项目(二标段) 2340000 2340000 5 获财招标采购【2022】48号-3 获嘉县公共检验检测中心能力提升项目(三标段) 2050000 2050000 6 获财招标采购【2022】48号-4 获嘉县公共检验检测中心能力提升项目(四标段) 2010000 2010000 7 获财招标采购【2022】48号-5 获嘉县公共检验检测中心能力提升项目(五标段) 700000 700000 8 获财招标采购【2022】48号-6 获嘉县公共检验检测中心能力提升项目(六标段) 2300000 2300000 9 获财招标采购【2022】48号-7 获嘉县公共检验检测中心能力提升项目(七标段) 1750000 1750000 10 获财招标采购【2022】48号-8 获嘉县公共检验检测中心能力提升项目(八标段) 530000 530000 11 获财招标采购【2022】48号-9 获嘉县公共检验检测中心能力提升项目(九标段) 720000720000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 一标段为:液相色谱-质谱联用仪1台、快速溶剂萃取仪1台;二标段为:电感耦合等离子体质谱仪(ICP-MS)1台、气相色谱仪(FPD/ECD)1台、高通量真空平行浓缩仪1台、凝胶色谱仪1台;三标段为:气相色谱-质谱联用仪(串杆)1台、离子色谱仪1台;四标段为:液相色谱仪(示差+二极管阵列)1台、柱后双衍生装置(配岛津液相色谱仪)1台、液相-原子荧光联用仪1台、微波消解仪1台、顶空进样器(原有安捷伦气相色谱仪FID、ECD增加) 1台、卡尔费休水分测定仪(容量法)1台、索式抽提仪(脂肪测定仪)1台、电位滴定仪1台、二氧化硫测定仪1台;五标段为:光化学衍生装置(配安捷伦液相色谱仪)1台、氮吹仪2台、乳脂离心机1台、超净工作台1台、生物安全柜1台、立式蒸汽灭菌器2台、生化培养箱2台、霉菌培养箱1台、超低温冰箱1台、菌落计数器1台、移动紫外消毒车1台、离子体空气消毒机2台、拍击式均质器1台、旋涡混匀器2台、不锈钢三联过滤器1台、无油真空泵1台、微波炉1台、光波炉2台、高速台式离心机1台、高速冷冻离心机1台、气流烘干器4台、电导率仪1台、氟离子活度计1台、散射式浑浊度仪1台、万用电炉1台、水循环真空泵1台、瓶口分液器4台、磁性金属物测定仪1台、移液器6台、小麦硬度指数测定仪1台、面包体积测定仪1台、二氧化碳测定仪(压力表的分度值为0.02MPa)1台、罗维朋比色计1台、极性组分测定仪1台、降落数值测定仪1台、粉质仪1台、高速破壁机2台、一般组织捣碎机4台、车载冰箱4台、车载培养箱2台、平板4台、蓝牙打印机4台、微型电子天平1台、组织捣碎机1台、小型离心机1台、小型水浴锅1台、智能一体化食品安全分析仪1台;六标段为:气相色谱-质谱联用仪(串杆)1台、差式扫描量热仪1台、固化机1台、流挂仪1台、试验漏斗1台、抗泛碱试验仪1台、裂纹试验机1台、试验机夹具及裁刀机1台、透水性测试仪1台、刮板细度计1台、鲜映性测定仪1台、闪点测试仪1台、雾度计1台、隔热性能测试仪1台、邵氏硬度计1台、抗压模具1台、初始流动度1台、抗滑仪1台、砂浆收缩仪1台、维卡仪1台、抗压强度试膜1台、防静电实验室1台、色差计1台、氟含量测试1台、接触角测量仪以及紫外照射装置1台、稠度唧筒1台;七标段为:医用多参数监护仪检定装置1台、医用注射泵和输液泵分析仪1台、婴儿培养箱校准装置1台、心脏除颤器分析仪1台、高频电刀校准装置1台、医用 X 辐射源检定装置 (诊断)1台、医用诊断螺旋计算机断层摄影装置(CT)X射线辐射源检定装置1台、医用诊断全景牙科X射线辐射射源检定装置1台、医用乳腺X射线辐射源射源检定装置1台、医用数字摄影(CR、DR)系统X射线辐射源射源检定装置1台、医用诊断数字减影血管造影(DSA)系统X射线辐射源射源检定装置1台、影像类测量仪器检定装置1台、酶标分析仪检定装置1台、血细胞分析仪检定装置5台、生化分析仪检定装置5台、电解质分析仪检定装置5台、尿液分析仪校准设备5台、糖化血红蛋白分析仪校准装置5台;八标段为:透射式烟度计检定装置1套、机动车发动机转速测量仪校准装置1套、汽车排放气体测试仪检定装置1套、机动车前照灯检测仪检定装置1套、摩托车轮偏检滑板式汽车侧滑检验台检定装置1套、平板式制动检验台检定装置1套、滚筒反力式制动检验台检定装置1套、机动车检测专用轴(轮)重仪检定装置1套、机动车方向盘转向力-转向角检测仪1套、汽车制动操纵力计三合一检定装置1套、汽车排气污染物检测底盘测功机校准装置1套、逆反射标志标准板1套、汽车外廓尺寸检测仪校准装置1套、汽车用透光率计校准装置1套、汽油车简易瞬态工况法用流量分析仪校准装置1套、便携式制动性能测试仪校准装置(动静态)1套、汽车底盘测功机检定装置1套、轮胎花纹深度尺检定装置1套、柴、汽油车排放气体测试仪检定装置1套、非接触式汽车速度计校准装置1套;九标段为:秒表检定仪1套、钢卷尺标准装置(含测深钢卷尺零位检定器)1套、三等标准金属线纹尺标准装置(含工具显微镜)1套、温湿度检定箱1套、精密露点仪1套、万分之一电子天平1台、千分之一电子天平1台、百分之一电子天平1台、偏光应力仪1台、砝码1套、无线温度记录器9个、无线压力记录器1个、数据采集平台1个、标准气体稀释装置1套、气体标准物质(8L)27瓶、零点气体(8L)10瓶、流量控制器5个、秒表2个、绝缘电阻表2个、绝缘强度测试仪3个、铜双级减压阀4支、不锈钢恒流阀4支、标定罩1套、钢瓶移动固定架2个、便携式冰箱(温度可调)2台;十标段为(实验室改造):本标段为检测中心一、二、三层(部分房间)的装饰装修、给排水、电气等工程的改造(不包含专业消防工程)。十一标段为(实验室设备、污水处理和暖通设备):本标段为检测中心一、二、三层(部分房间)的实验室设备、污水处理和暖通设备的采购及安装。详见招标文件第五章招标项目采购需求; 6、合同履行期限:合同签订后60日历天内完工 7、本项目是否接受联合体投标:否 8、是否接受进口产品:否 9、是否为只面向中小企业采购:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 本项目落实节约能源、保护环境、扶持不发达地区和少数民族地区、促进小微企业、监狱企业及残疾人福利企业发展等相关政府采购政策; 3、本项目的特定资格要求 一标段至九标段及十一标段申请人的资格要求:3.1供应商必须具有有效的营业执照,具有良好的社会信誉,并在人员、设备、安全、技术等方面具有相应的能力;3.2供应商须具有良好的商业信誉和健全的财务会计制度(提供2019-2021年度经会计师事务所出具的财务审计报告或其基本开户银行出具的资信证明,不足三年的须提供现有年度的审计报告或其基本开户银行出具的资信证明,新成立企业提供现有月份的资产负债表、损益表、现金流量表);3.3供应商须提供开标前近六个月(其中任意一个月)依法缴纳税收和社会保障资金的良好记录;3.4供应商须提供参加政府采购活动前三年内,在经营活动中没有重大违法记录声明;3.5供应商须提供无行贿犯罪记录承诺函(承诺对象包括:投标企业、法定代表人),并对其真实性负责,若承诺不实,造成的后果由投标人自行负责;3.6法定代表人为同一个人的两个以及两个以上法人,母公司、全资子公司以及其控股公司或者存在管理关系的不同单位,都不得在同一标段或者未划分标段的同一采购项目(提供 “国家企业信用信息公示系统”中公示的公司信息、股东或投资人信息网页截图);3.7执行《关于在招标投标活动中对失信被执行人实施联合惩戒的通知》法(2016)285号文件和财库[2016]125号关于在政府采购活动中查询及使用信用记录有关问题的通知:对列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单的企业,拒绝参与本项目招标投标活动。须提供招标公告发布之日起至开标时间前在“信用中国网”查询的失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单的查询截图并加盖电子签章;“中国政府采购网”查询的政府采购严重违法失信行为记录名单的查询截图并加盖电子签章,凡有不良记录的, 拒绝参与本项目招标投标活动;十标段申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目落实节约能源、保护环境、扶持不发达地区和少数民族地区、促进小微企业、监狱企业及残疾人福利企业发展等相关政府采购政策;3.本项目的特定资格要求:3.1供应商必须具有有效的营业执照,具备建筑装修装饰工程专业承包贰级及以上资质;具备有效期内安全生产许可证,并在人员、设备、资金等方面具有相应的施工能力;3.2拟派项目经理具备建筑工程专业注册建造师贰级及以上资格,具有有效的安全生产考核合格证书,且未担任其他在建工程项目的项目经理(提供在本单位2021年5月以来连续缴纳12个月的社保证明);3.3技术负责人要求:投标人拟派项目技术负责人须具有建筑工程专业中级及以上职称(提供在本单位2021年5月以来连续缴纳12个月的社保证明);3.4法定代表人为同一个人的两个以及两个以上法人,母公司、全资子公司以及其控股公司或者存在管理关系的不同单位,都不得在同一标段或者未划分标段的同一采购项目(提供 “国家企业信用信息公示系统”中公示的公司信息、股东或投资人信息网页截图);3.5供应商须具有良好的商业信誉和健全的财务会计制度(提供2019-2021年度经会计师事务所出具的财务审计报告或其基本开户银行出具的资信证明,不足三年的须提供现有年度的审计报告或其基本开户银行出具的资信证明,新成立企业提供现有月份的资产负债表、损益表、现金流量表);3.6供应商须具有依法缴纳税收和社会保障资金的良好记录(提供开标前近六个月(其中任意一个月)依法缴纳税收和社会保障资金的证明,依法免税企业应提供相关证明文件);3.7供应商须提供参加政府采购活动前三年内,在经营活动中没有重大违法记录声明;3.8供应商须提供无行贿犯罪记录承诺函(承诺对象包括:投标企业、法定代表人),并对其真实性负责,若承诺不实,造成的后果由投标人自行负责;3.9执行《关于在招标投标活动中对失信被执行人实施联合惩戒的通知》法(2016)285号文件和财库[2016]125号关于在政府采购活动中查询及使用信用记录有关问题的通知:对列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单的企业,拒绝参与本项目招标投标活动。须提供招标公告发布之日起至开标时间前在“信用中国网”查询的失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单的查询截图并加盖电子签章;“中国政府采购网”查询的政府采购严重违法失信行为记录名单的查询截图并加盖电子签章,凡有不良记录的, 拒绝参与本项目招标投标活动;注:允许投标人投报多个标段,但只能中一个标段。若一个投标人同时在两个及两个以上标段同时排名第一,按标段的先后顺序确定推荐该企业作为中标候选人,在其他标段中不再作为中标候选人推荐,只显示综合得分,则其他标段按得分由高到低顺延本标段其他投标人为第一中标候选人。 三、获取招标文件 1.时间:2022年09月05日 至 2022年09月09日,每天上午08:00至12:00,下午12:00至19:00(北京时间,法定节假日除外。) 2.地点:新乡市公共资源交易管理中心网 3.方式:投标供应商须注册成为新乡市公共资源交易管理中心网站会员并取得 CA 密钥,凭 CA 密钥登陆 会员专区并按网上提示自行下载招标文件(.xxzf 格式)及资料(详见新乡市公共资源交易管理中心网站)。 4.售价:0元 四、投标截止时间及地点 1.时间:2022年09月26日09时30分(北京时间) 2.地点:获嘉县公共资源交易中心第二开标室(地址:获嘉县振兴路与北干道交叉口东南角,获嘉县市民中心五楼)。 五、开标时间及地点 1.时间:2022年09月26日09时30分(北京时间) 2.地点:获嘉县公共资源交易中心第二开标室(地址:获嘉县振兴路与北干道交叉口东南角,获嘉县市民中心五楼)。 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》《中国招标投标公共服务平台》、《河南省电子招标投标公共服务平台》、《新乡市政府采购网》、《新乡市公共资源交易管理中心》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 1、本项目采用“远程不见面”开标方式,远程开标,投标供应商无需到公共资源交易管理中心现场参加开标会议,无需到达现场提交原件资料。投标供应商应当在投标截止时间前,登录远程开标大厅,在线准时参加开标活动,并在规定时间内进行文件解密。各潜在投标供应商因加密电子投标文件未能成功上传,其投标将被拒绝。投标供应商需在开标截止时间后30分钟内完成解密,否则造成的一切后果由投标供应商自行负责。不见面开标服务的具体事宜请查阅新乡市公共资源交易管理中心网站“网上办事大厅”的《不见面开标手册》。2、获取招标文件后,投标人请到新乡市公共资源交易管理中心网站下载最新版本的投标文件制作工具安装包,并使用安装后的最新版本投标文件制作工具查看招标文件和制作电子投标文件。并于提交投标文件截止时间前提交投标文件。加密电子投标文件须在新乡市公共资源交易管理中心电子交易平台中加密上传,上传时必须得到电脑“上传成功”的确认回复后方为上传成功。特别提示:投标供应商应在投标文件中如实准确的填写投标人授权委托人的联系电话,开标当天请务必保证电话保持畅通。 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:获嘉县公共检验检测中心 地址:获嘉县中山路 联系人:赵焕征 联系方式:15937372007 2.采购代理机构信息(如有) 名称:中科高盛咨询集团有限公司 地址:郑州市金水区龙湖大厦1709 联系人:张娜 联系方式:15565616899 3.项目联系方式 项目联系人:张娜 联系方式:15565616899 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:高压灭菌器,血球分析仪,电导率仪,生物安全柜,离心机,凝胶色谱仪,微波消解仪,抽提萃取,离子色谱仪,核酸蛋白分析,盖勃离心机,真空泵,色谱检测器,液相色谱仪,超低温冰箱,食品安全检测,培养箱,气质联用仪,原子荧光光谱,量热仪,浓缩仪,均质器,氮吹仪,ICP-AES,Zeta电位仪,天平,顶空进样器,细胞计数器,比色计,超净工作台,气体流量计,瓶口分配器,气体稀释仪,微波水分测定,接触角测量仪,匀浆机,气相色谱仪,硬度计,快速溶剂萃取,ICP-MS,闪点仪,红外水份测定,菌落计数器,卡氏水分测定 开标时间:2022-09-26 09:30 预算金额:1782.02万元 采购单位:获嘉县公共检验检测中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中科高盛咨询集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 获嘉县公共检验检测中心能力提升项目招标公告 河南省-新乡市-获嘉县 状态:公告 更新时间: 2022-09-03 中小微企业融资申请 项目概况 获嘉县公共检验检测中心能力提升建设项目招标项目的潜在投标人应在新乡市公共资源交易管理中心网获取招标文件,并于2022年09月26日09时30分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:获财招标采购【2022】48号 2、项目名称:获嘉县公共检验检测中心能力提升建设项目 3、采购方式:公开招标 4、预算金额:17,820,157.00元 最高限价:17820157元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 获财招标采购【2022】48号-1 获嘉县公共检验检测中心能力提升项目(一标段) 3000000 3000000 2 获财招标采购【2022】48号-10 获嘉县公共检验检测中心能力提升项目(十标段) 982360.1 982360.1 3 获财招标采购【2022】48号-11 获嘉县公共检验检测中心能力提升项目(十一标段) 1437796.9 1437796.9 4 获财招标采购【2022】48号-2 获嘉县公共检验检测中心能力提升项目(二标段) 2340000 2340000 5 获财招标采购【2022】48号-3 获嘉县公共检验检测中心能力提升项目(三标段) 2050000 2050000 6 获财招标采购【2022】48号-4 获嘉县公共检验检测中心能力提升项目(四标段) 2010000 2010000 7 获财招标采购【2022】48号-5 获嘉县公共检验检测中心能力提升项目(五标段) 700000 700000 8 获财招标采购【2022】48号-6 获嘉县公共检验检测中心能力提升项目(六标段) 2300000 2300000 9 获财招标采购【2022】48号-7 获嘉县公共检验检测中心能力提升项目(七标段) 1750000 1750000 10 获财招标采购【2022】48号-8 获嘉县公共检验检测中心能力提升项目(八标段) 530000 530000 11 获财招标采购【2022】48号-9 获嘉县公共检验检测中心能力提升项目(九标段) 720000 720000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 一标段为:液相色谱-质谱联用仪1台、快速溶剂萃取仪1台;二标段为:电感耦合等离子体质谱仪(ICP-MS)1台、气相色谱仪(FPD/ECD)1台、高通量真空平行浓缩仪1台、凝胶色谱仪1台;三标段为:气相色谱-质谱联用仪(串杆)1台、离子色谱仪1台;四标段为:液相色谱仪(示差+二极管阵列)1台、柱后
  • 材料晶格研究加速新型锂离子电池电解质发展
    p   研究人员表示,分析和设计新离子导体的新方法为可充电电池提供了关键部件。新方法的应用可能会加速高能锂电池以及其他能量存储和传输装置(如燃料电池)的发展。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/3477e76a-b550-4f8f-87c2-f756b0769936.jpg" title=" 201803300842364192.png" / /p p   该图揭示了意向电池电解质材料Li 3 PO 4的晶格结构。 研究人员发现,声波能够穿过固体材料,通过声音振动可以揭示离子带电荷的原子或分子如何通过晶格移动 ,以及它们如何在电池中实际的工作原理。在该图中,氧原子显示为红色,紫色金字塔形状为磷酸盐(PO4)分子。 橙色和绿色的球体是锂的离子。 /p p   新方法依赖于对振动通过锂离子导体晶格方式的理解。新方法与抑制离子迁移的方式相关联。这提供了一种方法来发现具有增强离子迁移性的新材料,允许快速充电和放电。同时,该方法还可以降低材料与电池电极的反应性,材料与电池电极的反应会缩短电池的使用寿命。更好的离子迁移率和低反应性这两个特性——往往是相互排斥的。 /p p   这个新概念是由W.M领导的一个团队开发的。该团队包括Keck能源教授Yang Shao-Horn,研究生Sokseiha Muy,最近毕业的年仅17岁的博士John Bachman,研究科学家Livia Giordano以及麻省理工学院,橡树岭国家实验室以及东京和慕尼黑的其他9所院校人员。他们的研究结果在 Energy and Environmental Science杂志上报道。 /p p   Shao-Horn说,新的设计原则已经有五年的时间了。最初的想法始于她和她的团队用来了解和控制催化水分解,并将其应用于离子传导 - 这一过程不仅是可充电电池的核心,而且也是其他应用的技术关键,如在燃料电池和海水淡化系统中的应用。当带有负电荷的电子从电池的一极流向另一极(从而为装置提供电力)时,正离子以另一种方式流过电解质或夹在这些极之间,以完成流动。 /p p   典型地,电解质以液体形式存在时,溶解在有机液体中的锂盐是当今锂离子电池中常见的电解质。但该物质易燃,有时会导致这些电池着火。通过新方法寻找一个可靠的材料来取代锂盐将消除这个问题。 /p p   Shao-Horn说,存在多种有前景的固体离子导体,在与锂离子电池的正极和负极接触相比都具有不稳定性的特点。因此,寻找既具有高离子电导率又具有稳定性的新的固体离子导体是至关重要的。但是,通过对许多不同的结构族和成分进行分类,找到最有前途的结构无疑是一项大海捞针的工作。这就是新的设计原则的用武之地。 /p p   我们的想法是寻找离子电导率与液体相当的材料,但必须具有固体的长期稳定性。Shao-Horn说研究人员被问到“基本原则是什么”,“在一般的结构层次上,是什么设计原则来控制所需属性的”。研究人员回应理论分析和实验测量相结合的方法现在已经有了一些结果。 /p p   该论文的第一作者Muy说:“我们意识到有很多材料可以被发现,但是没有理解或者共同的原则让我们能够合理化发现过程。我们想出了一个可以封装我们的理解并预测哪些材料将处于最佳状态的想法。” /p p   Shao-Horn 说,关键是要观察这些固体材料的晶格性质。这决定了诸如热波和声子之类的振动是如何通过材料的。这种观察结构的新方法最终证明能够准确地预测材料的实际性能。一旦你知道了某物质的振动频率,你就可以用它来预测新的化学性质或解释实验结果。 /p p   研究人员观察到使用该模型确定的晶格特性与锂离子导体材料的导电性之间具有良好的相关性。她说,“我们做了一些实验来实验性地支持这个想法”,并发现结果非常吻合。 /p p   他们特别发现,锂的振动频率本身可以通过调整晶格结构、使用化学取代或掺杂剂来微妙地改变原子的结构排列来进行微调。 /p p   研究人员表示这个新概念现在可以提供一个强大的工具,用于开发新的性能更好的材料,从而可以大幅度提高可存储在给定尺寸或重量的电池中的功率量,并提高安全性。他们已经用这个新方法筛选出了一些新的材料。而且这些技术还可以适用于分析其他电化学过程的材料,如固体氧化物燃料电池,基于膜的脱盐系统或产生氧气的反应。 /p p   该团队包括麻省理工学院的张浩勋, Douglas Abernathy,Dipanshu Bansal和Oak Ridge的Olivier Delaire 东京工业大学的Santoshi Hori和Ryoji Kanno 以及宝马集团位于慕尼黑的研究电池技术公司的Filippo Maglia,Saskia Lupart和Peter Lamp。这项工作得到了宝马,国家科学基金会和美国能源部的支持。 /p p   文章来自azonano网站,原文题目为Design principles could point to better electrolytes for next-generation lithium batteries /p p br/ /p
  • 技术创新|台式电导率仪--实验室检测仪全新推荐
    “十四五”时期,随着“碳达峰、碳中和”战略以及污水资源化政策的提出,国家大力推动低碳绿色循环可再生的发展路径,这将给追求减污降碳、节能降耗的环保企业提供更广阔的舞台。同时,在国家高质量发展、补短板强弱项提质增效的大背景下,环境治理的薄弱环节亟待补齐,比如水环境质量达标、水务行业的精细化、智慧化发展程度。 台式电导率仪采用嵌入式系统设计,集信号采集、数据处理、显示功能与一体,智能化程度高,测量精确,操作方便;用于测量水溶液导电能力的强弱,从而间接判断溶液中离子含量的多少或水质的好坏等,广泛应用于电力、石油化工、食品品饮料、造纸等行业,也可以用于高等院校、科研机构等进行教学或科学研究。 仪器特点1、192×64点阵液晶中文或英文、多参数显示、内容丰富、易于理解。2、采用嵌入式系统设计,速度最快、精度高便于功能扩展。3、采用微电子技术,全部贴片(SMT)工艺,实现低功耗,提高了性价比和可靠性。4、增强型塑料外壳,防水设计,稳重坚固。5、增强型塑料外壳,美观坚固。6、关键参数密码保护,防止非操作人员对本机误操作,保证仪器的基本性能。7、简单的人性化键盘设计,操作快速、通俗易懂。8、补偿温度自动测量或手动输入。9、具有测量数据、运行、校准记录存储、查询功能。技术参数显 示:192×64点阵液晶,可选择显示中文或英文量 程:K=0.01:(0.000~2.000)μS/cm、(0.000~20.00)μS/cm,2个量程自动切换 K=0.1:(0.000~20.00)μS/cm、(0.000~200.0)μS/cm,2个量程自动切换 K=1:(0.000~200.0)μS/cm、(0.000~2000)μS/cm,2个量程自动切换 K=10: (0.000~2000)μS/cm、(0.000~20.00)mS/cm,2个量程自动切换最小分辨率:0.001μs/cm基本误差:±1%F.S读数响应时间:≤10秒温度传感器: Pt1000测温范围:( 0.0~99.9)℃测温精度: ±0.5℃温度分辨率: 0.1℃温度补偿系数:( 0.00~9.99)%/℃补偿参考温度: 25℃水样温度:(5~60)℃环境温度:(5~45)℃环境条件:湿度≤90%RH(无冷凝)储运温度:(-25~55)℃供电电源:交流(85~265) V、频率(45~65)Hz功 率:≤5W外形尺寸:205mm×210 mm×80mm(长×宽×高)重 量:1.5kg
  • 上海硅酸盐所发展出基于层状结构电解质的固态氟离子电池
    固态氟离子电池(SSFIBs)是一种阴离子穿梭驱动、无碱金属的新兴储能体系,具有成本低、安全性好、能量密度大等潜在优势。相比于传统的阳离子穿梭电池(如碱金属离子电池、多价阳离子电池等),氟离子电池可避免负极枝晶生长以及多价离子迁移缓慢等问题,还具有潜在的高体积能量密度(理论达5000 Wh/L),但这一体系面临着高导氟离子电解质缺乏以及低温下(150 ℃)表现出10-4 S/cm的高离子电导率,导致对应SSFIBs的可逆循环需要高温维持,限制了其应用场景。近年来出现的CsPbF3系列钙钛矿、MSnF4(M=Ba, Pb)等氟化物在室温下便可表现出较高的离子电导率,尤其在Sn(II)基氟化物中,Sn(II)的孤电子效应可诱导氟位缺陷或无序的形成,并伴随着静电排斥效应,利于氟离子的体相传输。然而,已报道的基于Sn(II)基电解质的SSFIBs由于潜在的体相分解或者界面衰退,即便在弱电流密度(KSn2F5固态电解质的合成与结构KSn2F5的离子-电子导电性能KSn2F5的离子-电子导电性能KSn2F5基对称电池的界面动力学分析准固态氟离子电池的构架和电化学性能CuF2正极放电和充电态的形貌和物相分析
  • 【前沿快讯】刀片式研磨机用于全固态电解质前驱体的制备
    全固态锂离子电池因为采用固体电解质,不含易燃、易挥发组分,彻底消除因漏液引发的电池冒烟、起火等安全隐患,被称为最安全的电池体系。固体电解质是全固态锂离子电池的核心部件,硫化物固体电解质因为高离子电导率、合适的电化学窗口以及较好的力学性能而受到广泛关注。目前,制备含硫固体电解质的方法一般采用振动球磨法长时间球磨混合前驱体原料后,再高温煅烧而获得。深圳大学田冰冰教授团队首次报道了一种创新的制备含硫固体电解质的方法:采用刀片式研磨机高速混合前驱体原料,仅需不到5分钟,即可进入煅烧步骤制得含硫固体电解质。通过此法制得的硫化物固体电解质离子电导率高达20 mS cm-1,组装成固态电池后测得在0.1C电流密度下,比容量达到165 mA h g-1,同时,具有良好的倍率性能和循环寿命。如下为文献[1]中提到的刀片式研磨机高速混合与传统球磨方法的优势对比:制备方法传统球磨高速研磨混合设备行星式球磨机高速刀片式研磨机混合方式球磨刀片研磨最大处理量50g500g转速180/360rpm10000-25000rpm耗时重复次数1-2h10-20次25s6次煅烧条件取10-20g置于密封石英管中460-555℃×16h取100-300g置于氧化铝坩埚中460-555℃×16h显然,采用高速刀片式研磨机混合前驱体,处理量增大了近十倍,且缩短了研磨时间,大大提高了制备效率。IKA Multidrive control研磨机是一款采用了德国先进制造工艺的高速刀片式研磨机,可满足各种需要高速研磨或高速混合的应用场景。 关于IKAIKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场领导者。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、恒温培养箱/烘箱、移液器、研磨机、旋转蒸发仪、加热板、恒温循环器、粘度计、量热仪、生物反应器、化学合成釜、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与全球知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。 艾卡(广州)仪器设备有限公司是IKA 集团于2000年设立的全资子公司,主要负责为中国和蒙古国提供产品、技术和服务支持。
  • 上海市环境保护产业协会立项团体标准《地表水水质指标(pH值、水温、溶解氧、电导率、浊度、氨氮及COD)传感器法自动监测系统技术要求及检测方法》
    各有关单位:根据《上海市环境保护产业协会团体标准管理办法》的有关规定,由上海市环境监测中心等单位申请的团体标准《地表水水质指标(pH值、水温、溶解氧、电导率、浊度、氨氮及COD)传感器法自动监测系统技术要求及检测方法》,经我会组织专家评审,符合立项条件,现批准立项。请起草单位按照协会管理办法有关要求,严格把控标准质量关,切实提高标准制订的质量和水平,增强标准的适用性和实效性,按期完成各阶段工作任务。如有单位或个人对该标准项目存在异议,请在公示之日起10日内将意见以书面形式反馈至我会秘书处,逾期视作无意见。联系方式:侯 隽 19512392335邮箱:houjunshaepi@163.com上海市环境保护产业协会2024年7月11日立项的通知-地表水水质指标(pH值、水温、溶解氧、电导率、浊度、氨氮及COD)传感器法自动监测系统技术要求及检测方法.pdf
  • 丽江市质量技术监督综合检测中心122.66万元采购天平,微生物采样器,气相色谱仪,电导率仪
    详细信息 YNLB-LJ20230516:丽江市质量技术监督综合检测中心丽江质检中心2023年上半年检验检测能力提升项目公开招标公告 云南省-丽江市-古城区 状态:公告 更新时间: 2023-05-15 丽江市质量技术监督综合检测中心丽江质检中心2023年上半年检验检测能力提升项目公开招标公告 2023-05-15 公告概要 公告信息: 采购项目名称 丽江质检中心2023年上半年检验检测能力提升项目 采购单位 丽江市质量技术监督综合检测中心 行政区域 丽江市 公告时间 2023-05-15 获取招标文件时间 2023-05-15 17:00:09至2023-05-22 18:00:09每日上午:08:00至12:00 下午:14:00至18:00(北京时间,法定节假日除外) 招标文件售价 ¥600 获取招标文件的地点 云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼203室 开标时间 2023-06-05 14:30:09 开标地点 云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼开标室 预算金额 ¥122.66万元(人民币) 联系人及联系方式: 项目联系人 王易文 项目联系电话 19308884105 采购单位 丽江市质量技术监督综合检测中心 采购单位地址 丽江市古城区太和路138号 采购单位联系方式 武鸿雁 15969427203 代理机构名称 云南蓝本招标咨询有限公司 代理机构地址 云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼 代理机构联系方式 19308884105 公开招标公告 项目概况 丽江质检中心2023年上半年检验检测能力提升项目招标项目的潜在投标人应在云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼203室获取招标文件,并于2023-06-05 14:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:YNLB-LJ20230516 项目名称:丽江质检中心2023年上半年检验检测能力提升项目 预算金额(万元):122.66 最高限价(万元):122.66 采购需求:采购智能数字压力校验仪1套、X射线机多功能质量检测仪1套(允许进口)、智能测力仪1台、电子天平1套(允许进口)、高精度镜面露点仪1套(允许进口)、电导率仪交流电阻箱1套、移液器校准装置1套(允许进口)、气相色谱仪1套、浮游菌采样器1台 合同履行期限:国产设备45日历天,进口设备60日历 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无,本项目非专门面向中小企业采购项目。;(1)丽江质检中心2023年上半年检验检测能力提升项目:小微企业价格扣除优惠比例:10%、 3.本项目的特定资格要求:3.1供应商如果是代理商或经销商,且所投产品为进口产品的,必须具有制造商或产品中国总代理的授权书。3.2单位负责人为同一人或者存在直接控股、管理关系的不同申请人,不得参加同一项目的政府采购活动。3.3投标人未被列入失信被执行人、重大税收违法案件当事人、政府采购严重违法失信行为记录名单的投标人(以在“信用中国”网站(www.creditchina.gov.cn)查询的信用记录截图为准);未被列入政府采购严重违法失信行为记录名单的投标人。(以在中国政府采购网(www.ccgp.gov.cn)查询的信用记录截图为准) 三、获取招标文件 时间:2023-05-15 17:00至2023-05-22 18:00,每天上午08:00至12:00,下午14:00至18:00(北京时间,法定节假日除外) 地点:云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼203室 方式:现场获取,携带①营业执照副本或正本(复印件加盖公章)、②法定代表人身份证明书原件及③法定代表人授权委托书原件(法定代表人出场时不需提交)到指定地点报名登记并缴费后获取采购文件。 售价(元):600 四、提交投标文件截止时间、开标时间和地点 2023-06-05 14:30(北京时间) 地点:云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼开标室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 是否需要缴纳投标保证金:是 (YNLB-LJ20230516)丽江质检中心2023年上半年检验检测能力提升项目: 保证金金额:12000(元) 保证金缴纳方式:支票、汇票、本票、保函、支票、汇票、本票、保函、银行转账、电汇等非现金方式 保证金缴纳截止时间:2023-06-05 14:30 其他:1.具备《政府采购法》第二十二条的条件,并且不属于《政府采购法》第十二条规定的回避情形。1.1具有独立承担民事责任的能力;(提供营业执照复印件)1.2有良好的商业信誉和健全的财务会计制度;(提供2020年度至本项目投标文件提交截止时间前任意一年经会计师事务所或审计机构审计的审计报告及财务报表(包括资产负债表、利润表、现金流量表)及财务情况说明书(附注)或公司内部完整的财务报表或开标日期前3个月内由银行开具的资信证明文件或资金证明文件,成立不满1年的公司提供自成立以来公司内部完整的财务报表(包括资产负债表、利润表、现金流量表)或开标日期前3个月内由银行开具的资信证明文件或资金证明文件。)1.3具有履行合同所必需的设备和专业技术能力;(投标人自行承诺)1.4有依法缴纳税收和社会保障资金的良好记录;(2022年6月至投标文件提交截止时间(税款所属时期)任意连续3个月的税务局税收通用缴款书复印件或银行电子缴税(费)凭证或税务局出具纳税情况的相关证明;2022年6月至投标文件提交截止时间(费款所属时期)任意连续3个月的社会保险费缴款书复印件或银行电子缴税(费)凭证或社保管理部门出具的有效的缴款证明。(成立未满3个月的提供成立以来的税收和社会保障资金缴纳凭证或相关情况说明;依法免税或不需要缴纳社会保障资金的投标人,应提供相应文件证明其依法免税或不需要缴纳社会保障资金。)1.5投标人参加政府采购活动前三年内,在经营活动中没有重大违法记录的书面声明函;(投标人自行承诺) 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:丽江市质量技术监督综合检测中心 地址:丽江市古城区太和路138号 联系方式:武鸿雁 15969427203 2.采购代理机构信息 名 称:云南蓝本招标咨询有限公司 地址:云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼 联系方式:19308884105 3.项目联系方式 项目联系人:王易文 电 话:19308884105 (注:如下载的文件后缀为“.ZCZBJ”,请在网站首页办事指南栏目中下载“.ZCZBJ文件查看工具”) 文件类别 文件名称 上传时间 操作 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:天平,微生物采样器,气相色谱仪,电导率仪 开标时间:2023-06-05 14:30 预算金额:122.66万元 采购单位:丽江市质量技术监督综合检测中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:云南蓝本招标咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 YNLB-LJ20230516:丽江市质量技术监督综合检测中心丽江质检中心2023年上半年检验检测能力提升项目公开招标公告 云南省-丽江市-古城区 状态:公告 更新时间: 2023-05-15 丽江市质量技术监督综合检测中心丽江质检中心2023年上半年检验检测能力提升项目公开招标公告 2023-05-15 公告概要 公告信息: 采购项目名称 丽江质检中心2023年上半年检验检测能力提升项目 采购单位 丽江市质量技术监督综合检测中心 行政区域 丽江市 公告时间 2023-05-15 获取招标文件时间 2023-05-15 17:00:09至2023-05-22 18:00:09每日上午:08:00至12:00 下午:14:00至18:00(北京时间,法定节假日除外) 招标文件售价 ¥600 获取招标文件的地点 云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼203室 开标时间 2023-06-05 14:30:09 开标地点 云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼开标室 预算金额 ¥122.66万元(人民币) 联系人及联系方式: 项目联系人 王易文 项目联系电话 19308884105 采购单位 丽江市质量技术监督综合检测中心 采购单位地址 丽江市古城区太和路138号 采购单位联系方式 武鸿雁 15969427203 代理机构名称 云南蓝本招标咨询有限公司 代理机构地址 云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼 代理机构联系方式 19308884105 公开招标公告 项目概况 丽江质检中心2023年上半年检验检测能力提升项目招标项目的潜在投标人应在云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼203室获取招标文件,并于2023-06-05 14:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:YNLB-LJ20230516 项目名称:丽江质检中心2023年上半年检验检测能力提升项目 预算金额(万元):122.66 最高限价(万元):122.66 采购需求:采购智能数字压力校验仪1套、X射线机多功能质量检测仪1套(允许进口)、智能测力仪1台、电子天平1套(允许进口)、高精度镜面露点仪1套(允许进口)、电导率仪交流电阻箱1套、移液器校准装置1套(允许进口)、气相色谱仪1套、浮游菌采样器1台 合同履行期限:国产设备45日历天,进口设备60日历 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无,本项目非专门面向中小企业采购项目。;(1)丽江质检中心2023年上半年检验检测能力提升项目:小微企业价格扣除优惠比例:10%、 3.本项目的特定资格要求:3.1供应商如果是代理商或经销商,且所投产品为进口产品的,必须具有制造商或产品中国总代理的授权书。3.2单位负责人为同一人或者存在直接控股、管理关系的不同申请人,不得参加同一项目的政府采购活动。3.3投标人未被列入失信被执行人、重大税收违法案件当事人、政府采购严重违法失信行为记录名单的投标人(以在“信用中国”网站(www.creditchina.gov.cn)查询的信用记录截图为准);未被列入政府采购严重违法失信行为记录名单的投标人。(以在中国政府采购网(www.ccgp.gov.cn)查询的信用记录截图为准) 三、获取招标文件 时间:2023-05-15 17:00至2023-05-22 18:00,每天上午08:00至12:00,下午14:00至18:00(北京时间,法定节假日除外) 地点:云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼203室 方式:现场获取,携带①营业执照副本或正本(复印件加盖公章)、②法定代表人身份证明书原件及③法定代表人授权委托书原件(法定代表人出场时不需提交)到指定地点报名登记并缴费后获取采购文件。 售价(元):600 四、提交投标文件截止时间、开标时间和地点 2023-06-05 14:30(北京时间) 地点:云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼开标室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 是否需要缴纳投标保证金:是 (YNLB-LJ20230516)丽江质检中心2023年上半年检验检测能力提升项目: 保证金金额:12000(元) 保证金缴纳方式:支票、汇票、本票、保函、支票、汇票、本票、保函、银行转账、电汇等非现金方式 保证金缴纳截止时间:2023-06-05 14:30 其他:1.具备《政府采购法》第二十二条的条件,并且不属于《政府采购法》第十二条规定的回避情形。1.1具有独立承担民事责任的能力;(提供营业执照复印件)1.2有良好的商业信誉和健全的财务会计制度;(提供2020年度至本项目投标文件提交截止时间前任意一年经会计师事务所或审计机构审计的审计报告及财务报表(包括资产负债表、利润表、现金流量表)及财务情况说明书(附注)或公司内部完整的财务报表或开标日期前3个月内由银行开具的资信证明文件或资金证明文件,成立不满1年的公司提供自成立以来公司内部完整的财务报表(包括资产负债表、利润表、现金流量表)或开标日期前3个月内由银行开具的资信证明文件或资金证明文件。)1.3具有履行合同所必需的设备和专业技术能力;(投标人自行承诺)1.4有依法缴纳税收和社会保障资金的良好记录;(2022年6月至投标文件提交截止时间(税款所属时期)任意连续3个月的税务局税收通用缴款书复印件或银行电子缴税(费)凭证或税务局出具纳税情况的相关证明;2022年6月至投标文件提交截止时间(费款所属时期)任意连续3个月的社会保险费缴款书复印件或银行电子缴税(费)凭证或社保管理部门出具的有效的缴款证明。(成立未满3个月的提供成立以来的税收和社会保障资金缴纳凭证或相关情况说明;依法免税或不需要缴纳社会保障资金的投标人,应提供相应文件证明其依法免税或不需要缴纳社会保障资金。)1.5投标人参加政府采购活动前三年内,在经营活动中没有重大违法记录的书面声明函;(投标人自行承诺) 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:丽江市质量技术监督综合检测中心 地址:丽江市古城区太和路138号 联系方式:武鸿雁 15969427203 2.采购代理机构信息 名 称:云南蓝本招标咨询有限公司 地址:云南省丽江市古城区西安街道民主路红太阳广场旁玉水坊商业中心D1栋二楼 联系方式:19308884105 3.项目联系方式 项目联系人:王易文 电 话:19308884105 (注:如下载的文件后缀为“.ZCZBJ”,请在网站首页办事指南栏目中下载“.ZCZBJ文件查看工具”) 文件类别 文件名称 上传时间 操作
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。
  • Nature Nanotechnology:冷冻电镜对固体-聚合物电解质界面表征
    固态锂金属电池在电动汽车应用中越来越受欢迎,因为它们用更安全的固态电解质代替易燃液体电解质,这种电解质还提供更高的能量密度和更好的抗锂枝晶形成的能力。固体聚合物电解质 (SPE) 因其可调节的机械性能和易于制造而成为极具前景的候选材料;然而,它们对锂金属的电化学不稳定性、中等的电导率和对Li/SPE中间相知之甚少阻碍了在实际电池中的广泛应用。特别是,与SPE相关的低库仑效率(CE)的起源仍然难以捉摸,因为关于它是否源于不利的界面反应或锂枝晶生长和死锂形成的争论仍在继续。在这项工作中,我们使用最先进的冷冻电镜成像和光谱技术来表征界面的结构和化学性质,和基于聚丙烯酸酯的SPE。与传统知识相反,我们发现由于沉积的锂枝晶与聚丙烯酸骨架和丁二腈增塑剂之间的持续反应,没有形成保护性界面。由于反应引起的体积变化,在锂枝晶内部形成了大量具有应力-腐蚀-开裂行为的裂纹。在此观察的基础上,我们利用液体电解质的知识引入添加剂工程,并证明使用氟代碳酸亚乙酯可以有效地保护Li表面免受腐蚀,从而产生致密堆积的Li0具有保形和稳定的固体电解质界面膜的圆顶。由于 1.01 mS cm-1的高室温离子电导率、0.57 的高迁移数和稳定的锂-电解质界面,这种改进的 SPE 提供了99%的优异锂电镀/剥离 CE 和 1,800 小时的稳定循环在 Li||Li 对称电池中(0.2 mA cm -2 , 1 mAh cm-2)。这种改进的阴极稳定性以及高阳极稳定性使得 Li||LiFePO4的循环寿命达到创纪录的 2,000 次循环,Li||LiCoO2全电池的循环寿命达到 400 次。使用基线 SN-SPE 电镀的含锂枝晶的 3D 形态和化学性质a、b、低温 HAADF-STEM 图像 ( a ) 和基于 HAADF-STEM 图像的低温断层扫描获得的代表性细丝的3D 重建 ( b )。c , a中细丝的 3D 横截面分析。d,来自不同区域的几种细丝的 EDS 图。结果表明,O、C、N、S 和 F 分布在整个灯丝的所有位置。e,灯丝的 EELS。在光谱中识别出 C、N 和 O 物种。a , b , 低温 HAADF-STEM 图像和 EDS 图:比例尺,指定区域的 3 μm ( a ) 和 4 μm ( b )。O、C、N、S和F在圆顶表面的富集表明形成了致密且均匀的SEI。c,镶嵌SEI的低温原子分辨率TEM图像,该镶嵌SEI由具有不同晶体取向的密集排列的纳米级域组成。(红色圆圈表示晶畴,红线表示晶格平面的取向。)d,SEI 内的 Li2O 纳米晶体的原子结构。晶面的晶格间距。纳米晶体由线和箭头表示。插图显示了盒装区域的快速傅里叶变换。FEC-SPE 衍生的 SEI 的化学成分和电化学性能溅射时间为 0 分钟和 10 分钟的 FEC-SPE 衍生 SEI 的a – c、 F 1 s ( a )、O 1 s ( b ) 和 C 1 s ( c ) XPS 光谱。LiF、Li 2 O和Li 2 CO 3被确定为SEI组分。d、e、XPS 定量分析源自 FEC-SPE ( d ) 和 SN-SPE ( e ) 的 SEI。FEC-SPE 衍生的 SEI 表现出更高的 F 含量和更高的 S 含量。F, 在 50 °C 下用原始锂金属测试的 FEC-SPE 的临界电流密度。Li||SPE||Li对称电池在升压电流密度下循环,在3.2 mA cm -2之前没有发生短路。充放电时间固定为0.5小时。g,在 PNNL 协议下测试的锂剥离/电镀 CE。h,在0.1 mA cm -2、0.1 mAh cm -2和室温下循环Li||FEC-SPE||Li电池时的EIS演变。在循环 18 小时后实现了低且恒定的电荷转移电阻。制备的 SPE 在大面积容量条件下的 Li 沉积形态和电化学行为采用不同正极材料、面积容量和 N/P 比的 FEC-SPE 基全电池的室温性能a,Li||FEC-SPE||LFP 电池在 0.5C 下的循环稳定性。LFP 的面积质量负载为2 mg cm -2。b,Li||FEC-SPE||LFP 电池在 0.5C 循环下第 1、500、1000、1500 和 2000 次循环的充放电曲线。c – e,长期循环稳定性 ( c )、充放电曲线 ( d ) 和Li||FEC-SPE||LiCoO 2电池在 22 °C 下的倍率性能 ( e )。LiCoO 2面积负载为~5 mg cm -2。f,具有有限Li阳极(2 mAh cm -2)和LiCoO 2的低N/P比电池性能阴极(~5 mg cm -2)。电池在 22°C 和 0.5C 下循环。g ,具有商业高负载LiFePO4和NMC811阴极的FEC-SPE基固态电池在低N/P比条件下的循环性能。电池在 0.2C 和 22°C 下以 5 mAh cm -2的 Li作为阳极进行循环结论在这项工作中,我们发现了 Li 负极的降解机制。我们发现,由于缺乏稳定的 SEI,Li 负极会由于副反应和体积变化引起的应力腐蚀而降解。通过使用冷冻电镜成像和光谱技术,我们彻底研究了固体聚合物电解质和Li 负极之间的固体-电解质界面的结构和化学性质。以此表征为指导,我们通过增材工程成功开发了一种新型 SPE 来控制 SEI 的形成,并最终证明了新型 FEC-SPE 在全电池中的应用,实现了长循环寿命( 2,000 次循环)、高电流密度和高面积容量。我们发现,固体聚合物电解质中的 FEC 添加剂可产生主要包含无定形 F 相关物质的富 F SEI,这最终可以在提高 Li 0负极的可逆性方面发挥重要作用。这项工作还为固体聚合物电解质提供了一种设计策略,即通过添加剂工程控制 SEI。论文信息论文题目:Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries通讯作者:Ruoqian Lin,Xiao-Qing Yang ,Kang Xu & Huolin L. Xin通讯单位:美国纽约州厄普顿布鲁克海文国家实验室化学部,美国陆军研究实验室,美国加州大学尔湾分校
  • OPTON微观世界 | 第41期 扫描电镜观察不同电解液温度下纯铜粉末表面形貌变化
    背景介绍铜粉是粉末冶金中基础原料之一。也是我国大量生产和消费的有色金属粉末,在现在工业生产中起着不可替代的作用,由于铜及其粉末具有良好的导电导热性能,耐腐蚀性能,表面光洁和无磁性等特点。因而被广泛应用于摩擦材料,金刚石工具,电碳制品,含油轴承,电触头材料,导电材料,机械零件等行业。铜粉的制备方法主要有电解法,雾化法,氧化还原法等。本实验采用电解法制备纯铜粉末,电解液采用0.06mol/L硫酸铜溶液和0.2mol/L硫酸,用铜或者不锈钢做阴极,铜做阳极。制取铜粉的基本工艺:本实验通过改变电解液温度来研究铜粉表面形貌变化。采用ZEISS的Sigma500型号电镜拍摄并观察其表面形貌,对比图片如图1: 图1 不同电解液温度铜粉形貌结果表明:电解法制备的铜粉比表面积大,结晶粉末一般为树枝状,压制性较好。图a1、a2,b1、b2,c1、c2三组图片,电解液温度分别为15°、30°、45°,为了观察整体铜粉形貌以及局部形貌,每组都是在2000X,5000X进行拍摄,通过对比三组图片,能够看出提高电解液温度,扩散速度增加,晶粒长大速度也增大,树枝晶逐渐变大变粗。
  • 国标在手-消毒副产物检测不用愁!
    国标在手-消毒副产物检测不用愁!关注我们,更多干货和惊喜好礼上周五(2020.4.24),生态环境部标准《HJ 1050-2019 水质 氯酸盐,亚氯酸盐,溴酸盐,二氯乙酸和三氯乙酸的测定 离子色谱法》已经开始实施啦。消毒副产物(DBPs)的监测,正式从生活饮用水、矿泉水,扩展到环境地表水,地下水,生活污水和工业废水领域。这一系列标准方法,为水质中DBPs的全方位监测提供了技术支撑,为中国大地提供了全方位的水质安全保障。新冠病毒来袭,勤洗手、戴口罩、定时通风和消毒,成了老幼皆知、妇孺共守的日常习惯。“宅在家里消消毒,买菜回来消消毒,出入小区消消毒。”一场疫情,让消毒剂成了普通人大战新冠病毒的必备武器。但也有人担心,大量使用的消毒剂作为生活废水排放是否会引发健康风险?如何保证饮用水的安全引起了大家的广泛关注。其实对于饮用水问题,大家不用如此焦虑,无论是废水还是饮用水的排放,我国都有严格的卫生标准和规范。众所周知,无论取自何处的源水,都有被病毒,细菌和寄生虫卵等多种微生物污染的可能。为了防止通过饮水传染疾病,对饮水进行化学消毒是国际上公认和普遍采取的消毒工艺。 飞飞:国内水质采用何种消毒方式?赛老师:化学消毒方式(氯剂、二氧化氯和臭氧消毒)是主流消毒方式。 飞飞:消毒副产物是什么?如何产生的呢?赛老师:采用化学消毒工艺时,消毒剂不可避免的会与饮用水中的一些天然有机物或者无机物反应生成不同消毒副产物(DBPs)。 飞飞:DBPs主要包括哪些物质?有什么危害?赛老师:DBPs主要是三卤甲烷,卤代乙酸和卤氧化物等,大多具有较强的致癌性、致突变和致畸性。溴酸盐被国际癌症研究机构认定为2B级潜在致癌物质。 飞飞:DBPs有什么监测手段?赛老师:可采用GC、HPLC、IC进行监测。其中极性较强的卤代乙酸和卤氧化物,采用IC法具有操作简便、灵敏度高、选择性强等优势。 国标中消毒副产物限量多少? 高“三致”危害,必然有严格的限量规定。《GB 8537-2018食品国家安全标准 饮用天然矿泉水》将溴酸盐含量限定为10ppb。《GB 5749-2006生活饮用水卫生标准》对居民饮用水中卤氧化物和卤代乙酸进行了严格限定。 DBPszui大允许浓度BrO3-10ppbDACC50ppbTACC100ppbClO2-0.7ppmClO3-0.7ppm国标中的消毒副产物检测方法对于卤氧化物的测定,《GB/T 5750-2006》《GB/T 8538-2016》以及正式实施的《HJ 1050-2019》均推荐抑制电导-离子色谱法;对于卤代乙酸的测定,《GB/T 5750-2006》推荐衍生化气相色谱法,正式实施的《HJ 1050-2019》推荐与卤氧化物同时一次进样完成分离测定。 赛默飞消毒副产物监测方案方案壹抑制型电导-离子色谱法测定水中亚氯酸盐,氯酸盐,溴酸盐,二氯乙酸和三氯乙酸常规7种阴离子和5种消毒副产物分离色谱图优势赛默飞-抑制电导-离子色谱法(IC-CD)测定卤氧化物和卤代乙酸,具有以下优势:1. 样品无需前处理,过滤后即可上机测试;2. 无需柱前或柱后衍生化操作,直接测定;3.特色高选择性离子交换色谱柱(IonPac AS27),提供强极性离子形态和价态的差异化分离;4.特色高容量离子交换色谱柱(IonPac AS27),提供高样品基质兼容能力,兼容生活污水及工业废水等复杂基质;5.水质中5种消毒副产物的检出限可达0.43-1.53ppb;6.满足HJ 1050-2019 、GB/T 5750.10-2006、GB/T 8538-2016的检测要求;Thermo Scientific™ Dionex™ Integrion 离子色谱仪“只加水”离子色谱仪原理图淋洗液自动发生器(Eluent Generator,EG)原理图电解抑制器原理图赛默飞Integrion高压离子色谱只加水技术,提供简单、方便、高效和高灵敏度的分析选择。方案贰 离子色谱-质谱法(IC-MS)测定水中卤代乙酸和卤氧化物 质谱利用质荷比进行化合物的定性筛选,是理想特异性检测器,离子色谱串联质谱法(IC-MS/MS)比抑制电导-离子色谱法具有更高的选择性、灵敏度和更少的假阳性。对于消毒副产物的检出限,IC-MSMS法可低至0.01-0.27ppb。赛默飞IC-MSMS方案,除满足碘乙酸、二氯乙酸、三氯乙酸及卤氧化物等热门DBPs的定性定量监测外,还可扩展完成所有氯代和溴代卤乙酸的分析测定。碘乙酸,二氯乙酸,三氯乙酸和卤氧化物9种卤代乙酸优势赛默飞提供du家的离子色谱和质谱自由平台,在IC-MSMS联用方面具有独特的技术优势:1.离子交换分离端兼顾抑制电导-离子色谱法所有技术优势;2.联用接口——在线电解抑制器,持续稳定的在线脱盐,无需修改IC分离方法,完美对接质谱;3.质谱检测器的HESI II离子源探针盐耐受能力强,稳定性好;4.质谱检测器平台提供单杆质谱、三重四极杆质谱以及高分辨质谱等完整质谱选项;5.Chromeleon 变色龙统一软件操作平台,实现离子色谱和质谱的同时控制。离子色谱串联质谱(IC-MSMS)抑制器脱盐原理图总结从抑制电导-离子色谱法到高端的离子色谱串联质谱(IC-MSMS),赛默飞提供了水质中卤代乙酸和卤氧化物的完整分析解决方案。消毒剂使用Tips:1. 按照说明书,合理使用消毒剂,避免和减少消毒剂的滥用。2. 各类消毒剂应单独使用,不要混合使用。3. 消毒产品只能用在说明书标识的对象上,不可超范围使用。4. 严格按照说明书浓度配制消毒剂,保证说明书最少消毒时间。5月7日赛默飞将云集国内外大咖 携HPIC高压离子色谱助您加速启程 探索离子世界扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 锐意干货∣超低排放烟气成分监测技术汇总
    “十三五”开局以来,国内逐步开始了燃煤电厂超低排放改造的战略布局,随着超低排放改造的实施,烟气水分含量增大,烟气特性发生了较大改变,对烟气成分监测的精确性提出了更高要求。因此,分析对比各种烟气监测技术的性能特点与实用价值,提出适用于超低排放改造的在线烟气成分监测技术,为燃煤电厂烟气监测系统的选型提供参考,对“十三五”燃煤电厂超低排放改造具有重要的指导意义。 据《煤电节能减排升级与改造行动计划(2014-2020年)》改造后烟气中二氧化硫、氮氧化物排放的限值执行标准分别为35mg/m3、50 mg/m3。因此,国内烟气成分监测设备必须满足烟气中二氧化硫、氮氧化物的低量程测定需求。下面介绍几种烟气成分监测技术,分析总结适用于超低排放烟气成分的在线监测技术,以供大家选型。1 二氧化硫监测技术 常见的二氧化硫单一组分检测方法包括:碘量法、溶液电导率法、定电位电解法以及紫外荧光法等。其中紫外荧光法较适用于烟气中氮氧化物体积浓度的连续在线监测。1.1碘量法 碘量法是在采样前把淀粉指示剂加入碘标准溶液中,采用过程中生成硫酸根离子与碘发生反应,使溶液由颜色变成无色,达到反应终点。通过控制吸收液的温度和控制气体介质中二氧化硫、吸收液中碘的反应时间(3~6min)以及采样气体流量,防止电挥发损失,保证测量结果的准确性,此种方法又称为直接碘量法。另外采样器是利用间接碘量法,利用溶液吸收二氧化硫,然后加淀粉指示剂,最后由碘标准溶液滴定至蓝色终点。该检测方法检测下限为0.01umol/mol。1.2 溶液电导率法 溶液电导率法是利用溶液在温度恒定时,有与其浓度相对应的电导率。当该种溶液吸收气体或与气体发生反应时,其电导率发生变化,测出电导率从而求出气体浓度。检测二氧化硫所用的溶液为硫酸酸性双氧水溶液或碘溶液,吸收气体介质中的二氧化硫,二氧化硫被双氧水或碘氧化成硫酸,然后由标准电极(铂电板)和工作电极测出溶液增加的电导率从而求出二氧化硫的浓度。1.3 定电位电解法 采用该检测方法的仪器核心是二氧化硫传感器,当待测气体介质进入传感器气室,通过渗透膜进入电解槽,使在电解液中被扩散吸收的二氧化硫在规定的氧化电位下进行定电位电解,根据电解电流求出二氧化硫浓度。当工作电极达到规定的电位时,被电解质吸收的二氧化碳发生氧化反应,产生电解电流,在一定范围内其大小与二氧化硫浓度成正比。1.4 紫外荧光法 紫外荧光法适用于SO2浓度在线监测,根据物质分子吸收光谱和荧光光谱能级跃迁机理,采用zn灯照射SO2气体分子,使其吸收波长为190mm-230mm的紫外光成为激发态分子SO2*,由于SO2*不稳定,会瞬间返回基态,发射出波长为330nm的特征荧光。在低湿度条件下,浓度在0~143mgm3范围内时,特征荧光的强度与SO2浓度成线性关系,即可通过检测荧光强度计算SO2浓度。这种方法可长距离输送气体介质,不用加热保温,易于维护、管理。1.5 小结 碘量法检测准确度高,但操作复杂,硫化氢等还原性物质对其测定结果影响较大,分析样品的时间相对较长,不适用于连续在线监测;溶液电导率法设备费用较低,易于推广,但抗干扰性能较差,需经常标定,长期使用易出现误差且不易于维护;定电位电解法在湿法操作上维护管理方便,但像所有电化学传感器一样,电解传感器的输出信号随着时间的推移会逐渐衰降或“老化”,使用年限一般为1-2年,需要经常更换。因此,这三种检测方法均较适用于二氧化硫浓度的短期检测。而紫外荧光法具有操作简单、精度较高、抗干扰强、分析速度快等特点,是检测烟气中二氧化硫浓度的理想仪器,可广泛应用于电力、石油、化工、环保等具有燃煤锅炉的排污现场,能够过对污染源的排放情况进行有效的连续在线监测。2 氮氧化物监测技术 常见的氮氧化物单一组分检测方法包括:盐酸萘乙二胺比色法、激光诱导荧光法、原电池库仑滴定法、压电石传感器、气体敏感元件传感器以及化学发光法等。其中化学发光法较适用于烟气中氮氧化物体积浓度的连续在线监测。2.1 盐酸萘乙二胺比色法 用冰醋酸,对氨基苯磺酸和盐酸萘乙二胺配成吸收液,当气体通过吸收液时,其中的二氧化氮被吸收并转变成亚硝酸和硝酸,亚硝酸又与对氨基苯磺酸发生重氮化反应,此反应再与盐酸萘乙二胺耦合成玫瑰红色的偶氮染料,反应最终产物在540nm出的吸收光度与其浓度成正比,因此可用分光度法进行测定。最低检出浓度(以NO2计)为0.025mg/m3。2.2 激光诱导荧光法 用特定波长的激光束,激发NO2(或NO)分子到较高能级成为激发态分子,激发态分子NO2*(或NO*)跃迁回基态时会以光子发射的形式释放能量成为荧光。荧光强度与其浓度成正比,可由光强判定其浓度。该方法属于光学法,可实现较低的检测极限,可达3-17ppb。2.3 原电池库仑滴定法 库仑池中有两个电极,一是活性炭阳极,二是铂网阴极,池内充0.1mol/l磷酸盐缓冲溶液(pH=7)和0.3mol/l碘化钾溶液。当进入库伦池的样气中含有NO2时,则与电解液中的i-反应,将其氧化成I2,而生成的I2又立即在铂网阴极上还原为I-,便产生微小电流。如果电流效率达100%,则在一定条件下,微电流大小与样气中NO2浓度成正比。最低检测出浓度(以NO2计)为0.03mg/m3。2.4 气体敏感元件传感器 利用n型金属氧化物半导体(如ZnO,SnO2等)的电导率对环境变化十分敏感的特性,以SnO2为基体材料,采用厚膜工艺研制成的NOx气敏元件具有良好的物理性,化学性稳定,灵敏度高,最低检出浓度为0.1ppm。2.5 化学发光法 在一定条件下,NO与过量的O3发生反应,产生激发态的NO2。激发态NO2跃迁返回基态时,会产生波长为900nm的近红外荧光。在浓度较低情况下,NO与O3充分反应发出的光强度与NO浓度成正比,光电转换器吸收光子产生光电流,光电流强度与NO浓度成线性关系,即可通过检测化学发光强度计算NO浓度。为得到NO2的浓度,可把NO2预先转化为NO。其检测极限和灵敏度都可达到1ppb以下。2.6 小结 盐酸萘乙二胺比色法是一种传统的化学检测方法,不能实现连续在线分析,只能采样测量。激光诱导荧光法,响应速度快,灵敏度高,可实现很低的检测极限,但系数过于复杂和精密,造价太高。原电池库仑滴定法响应时间变长,连续运行能力差,不适宜连续在线监测。气体敏感元件传感器具有较好的稳定性,选择性,灵敏度高,成本较低,但随着使用时间的推移,响应时间变长,灵敏度降低,元件属于易消耗品,一般只能使用1-2年,需要经常更换。化学发光法测量精度与灵敏度高,响应时间短,线性范围宽,稳定可靠,是目前主流的氮氧化物测定方法之一,可实现氮氧化物体积浓度的连续在线监测。3 二氧化硫/氮氧化物多组分监测技术 目前光谱吸收法目前国内应用最为广泛的烟气多组分监测技术,其中非分光红外吸收光谱法应用较多,还包括少部分非分光紫外吸收光谱法,又称差分吸收光谱法。这类技术是基于朗伯-比尔(Lambert-Beer)吸收定律的光谱吸收技术,其基本分析原理是:当光通过待测气体时,气体分子会吸收特定波长的光,可通过测定光被介质吸收的辐射强度计算出气体浓度。这两种监测技术均可实现对烟气中二氧化硫、氮氧化物多组分的连续在线监测。3.1 非分光红外吸收光谱法 非分光红外吸收光谱法(ndir)是目前国内应用最为广泛的烟气成分在线监测技术。该监测技术是基于被测介质对红外光有选择性吸收而建立的一种分析方法,属于分子吸收光谱分析法。红外光线通过检测气室后,通过测定被气体吸收部分波长后的红外辐射强度来测量被测气体的浓度。该气体分析方法具有如下特点: 1)可测量多组分气体,除单原子的惰性气体和具有对称结构无极性的双原子分子外; 2)测量范围宽,上限可达100%,下限可达几个ppm的浓度,当采取一定措施后,甚至可以进行ppb级的分析; 3)测量精度高,一般都在±2%fs; 4)响应时间快,一般在10s以内; 5)选择性好,特别适合对多组分烟气气体中某一待测组分的测量,而且当烟气中一种或多种组分浓度发生变化时,并不影响对待测组分的测量。3.2 非分光紫外吸收光谱法 非分光紫外吸收光谱法(DOAS)是一种光谱监测技术,其基本原理是利用空气中气体分子的窄带吸收特性来鉴别气体成分,并根据窄带吸收强度来推演气体浓度。DOAS基于朗伯-比尔定律,将气体的吸收截面分为随波长的慢变化部分和快变化部分。通过多项式拟合高通滤波方法去除光谱中的慢变化部分,剩下的则由于分子的窄带吸收造成的光源衰减。由于基于朗伯-比尔定律具有线性性质,烟气中气体的吸收可看做是线性叠加,故可采用最小二乘拟合方法,用气体标准差分吸收截面对测量得到的差分吸收光谱进行拟合,反演出烟气中气体的浓度。 该气体分析方法具有:高灵敏度,可实现多组分实时在线监测;机械、电子部件较简单、无气路、维护简便;开放式光程测量方法,无需采样,高精度非接触测量;适用于活性较大的物质测量等特点,十分适宜烟气中二氧化硫、氮氧化物等多组分气体浓度的连续在线监测。3.3 小结 由于排烟环境及烟气成分复杂,传统非分光红外吸收光谱法对烟气成分的检测结果极易受环境温度、水分含量、hc等因素干扰,从而无法实现对二氧化硫、氮氧化物低浓度的准确测量,因此必须对传统红外吸收光谱法进行技术创新升级,排除温度、水分、HC等因素对其检测结果的影响,才可实现烟气成分的低量程检测。如新款烟气分析仪(低量程在线型)Gasboard-3000plus在传统红外吸收光谱气体分析技术的基础上,将微流红外吸收光谱气体分析技术与隔半气室设计相结合,并采用整体恒温、水分调节、hc干扰减除、自动调零等装置,可实现红外光谱吸收法对超低排放烟气成分的实时在线监测。微流红外技术+隔半气室设计原理图 非分光紫外吸收光谱法灵敏度高、检测下限低、选择性好,较适用于超低排放烟气多组分的实时在线监测,如紫外烟气分析仪(超低量程)Gasboard-3000UV基于国际紫外差分光谱吸收气体分析技术,采用独特的算法,长光程多次回返气体室,检测下限达到1mg/m3,抗干扰能力强,测量精度高,同样可满足超低排放烟气监测市场的需要。烟气分析仪(低量程在线型)gasboard-3000plus4 总结 可用于测量烟气中二氧化硫、氮氧化物的监测技术有很多,但如果是在符合HJ/T76(按超低排放限值计算,二氧化硫和氮氧化物量程应不大于175mg/m3和250mg/m3)标准条件下,对烟气单一组分的浓度进行测定,测量二氧化硫浓度可考虑采用紫外荧光法,测量氮氧化物浓度可考虑使用化学发光法;此外,红外/紫外吸收光谱气体分析技术用于对烟气单一组分的测量也十分适宜。如果是对烟气多组分的浓度进行测定,那么升级版的非分光红外吸收光谱法与非分光紫外吸收光谱法均可作为超低排放烟气在线监测技术的选型参考。(来源:微信公众号@工业过程气体监测技术)
  • 水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色氢能愿景
    在全球能源结构转型与环境保护的双重驱动下,氢能以其清洁、高效的特性,正稳步迈向未来能源体系的核心位置。水电解制氢技术,作为氢能制备的关键路径,通过电解作用将水资源转化为氢能,不仅原料广泛可得,且产物纯净,实现了零排放的绿色生产。然而,在这一转化过程中,氢气的品质控制,尤其是含水量的精确管理,成为了确保氢能应用效能、延长产业链设备寿命及满足高端市场需求的关键挑战。水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色氢能愿景尽管水电解原理上追求水分子完全分解为氢氧的理想状态,实际操作中却难以避免地受到电解槽密封效能、电解质纯净度及操作条件波动等因素的影响,导致产出的氢气中混杂有少量水分。这些残留水分若未能妥善清除,将对氢气的后续利用构成显著障碍:水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色氢能愿景损害氢气纯度:在燃料电池驱动、精细化工合成等高端领域,氢气纯度至关重要。水分作为杂质,会直接影响氢气在这些领域的应用效果,降低产品整体性能。加速设备老化:在氢能系统的储存、运输、加注等关键环节,水分容易引发金属部件的腐蚀,缩短设备的使用寿命,增加维护成本。水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色潜藏安全风险:在高压工作环境下,水分可能凝结成冰晶,阻塞管道系统;而在燃料电池内部,过量水分则可能导致电极淹没,影响电化学反应效率,甚至引发系统故障。鉴于此,对水电解制氢工艺中的氢气进行严格的含水量测试,不仅是对氢气品质的基本保障,更是氢能系统安全、稳定运行的必要条件。通过这一举措,可以有效控制水分含量,提升氢气纯度,为氢能产业的可持续发展奠定坚实基础。水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色针对这一挑战,英国肖氏SHAW匠心打造的在线露点仪SUPER-DEW3凭借其稳定的性能与前沿技术,脱颖而出成为水电解制氢工艺中含水量检测的首选工具。作为DIN风格的专业面板安装设备,在线露点仪SUPER-DEW3与Shaw传感器完美融合,其背光五位数七段LED显示屏不仅清晰醒目,还支持多种工程单位切换,灵活应对不同测试需求。操作界面上,在线露点仪SUPER-DEW3以简洁直观著称,四键薄膜键盘设计让用户轻松上手,通过简单操作即可快速访问并调整湿度水平。自动电位计功能实现了传感器的自动校准,简化了繁琐的校准流程,降低了人为操作误差。同时,该仪器内置的用户可控安全系统,为设备的安全稳定运行提供了坚实保障。在警报与通讯方面,英国肖氏SHAW在线露点仪SUPER-DEW3同样表现出色。其配备的双向警报装置支持上升或下降边缘触发,结合视觉LED指示与切换继电器功能,能够即时远程反馈异常状况,确保问题得到迅速处理。RS485通讯接口的加入,则让实时监控工艺变化与仪器状态成为可能,极大提升了生产管理的便捷性与设备维护的效率。水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色性能方面,在线露点仪SUPER-DEW3其高较精度、分辨率及重复性的特性,确保了测试结果的准确无误。无论是温度范围还是采样流量的适应性,都能轻松满足各种复杂工艺条件下的测试需求。此外,316不锈钢探头与50微米不锈钢过滤器的结合,不仅提升了设备的耐腐蚀性与耐高温能力,还有效防止了杂质侵入,保障了传感器的长期稳定运行。IP54级别的防水设计,则让在线露点仪SUPER-DEW3能够在恶劣的工业环境中游刃有余。英国肖氏SHAW在线露点仪SUPER-DEW3以其全面的技术优势、便捷的操作体验、强大的警报与通讯功能以及稳定的耐用性,在水电解制氢工艺中含水量检测领域展现出了非凡的实力与价值。它不仅是提升氢气品质、保障氢能系统安全运行的得力助手,更是推动氢能产业高质量发展的关键力量。水电解制氢新时代:SUPER-DEW3在线露点仪树立含水量检测标杆,共筑绿色氢能愿景、请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ ,英肖仪器仪表(上海)有限公司是进口露点仪品牌英国肖氏SHAW总代理、SUPER-DEW3在线露点仪代表处、露点仪变送器SDT-EX、防爆露点仪、肖氏SHAW露点仪售后服务保障。英国Alphasense传感器、英国Alphasense阿尔法传感器、氧传感器O2-A2、一氧化碳传感器CO-B4、二氧化硫传感器SO2-B4、一氧化氮传感器NO-B4、氯化氢传感器HCL-A1、光离子传感器、PID传感器、VOC传感器请致电英肖仪器仪表(上海)有限公司获取进口传感器详细资料。
  • 一步法升华硅原子制备高电导率的SiC电池材料
    研究背景:碳化硅(SiC)的晶格特点有利于自身脱锂和嵌锂,已经成为研发能量密度高、充电快,功率密度大和寿命长的高性能锂电池负极材料的热点。然而,碳化硅存在电子电导率低,离子内部扩散慢,以及表面易形成致锂钝化的固体电解质界面(SEI)膜等缺陷,会造成电池循环性能与库伦效率的降低。为了解决这些问题,大多数研究组采用了表面石墨化、构建壳状结构等方法,希望改进SiC电极的缺陷,提高锂电比容量和循环性能。相比而言,基于界面工程研究可通过表/界面化学键的构筑,解决SiC电导率低和离子内部扩散效率低的问题。近期,广州大学王家海教授团队联合香港科技大学邵敏华教授团队,在国际知名期刊Nano-Micro Letter(影响因子:26.6)上发表题为“High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage”的研究工作。王家海教授和邵敏华教授为共同通讯作者,广州大学为第一单位。工作亮点该工作原位构建外延氮掺杂石墨烯包覆SiC纳米颗粒,利用氮掺杂石墨烯与SiC表面Si-C间的相互作用,构筑利于电荷转移的通道,增强电池的倍率性能和循环性能。结合第一性原理分析,表面Si-C化学键的存在提高了该复合结构的导电性,促进电荷迁移,进一步降低锂离子迁移能垒,调控电荷分布,提升电池的倍率和循环性能。全电池性能测试结果显示其良好的实际应用前景。本研究利用表面构筑增强电极材料导电性及锂离子存储性能,提供了一种纳米结构表面调控的设计方式。文章链接:https://doi.org/10.1007/s40820-023-01175-6王家海教授课题组招聘博士后因目前研究工作需要,现面向国内外公开招收博士后多名,应聘者年龄原则上不超过35岁,应具有熟练的实验技术手段,可独立开展科研工作, 具有较强的中英文写作与交流能力,对科研工作热情,做事态度积极主动,有责任感,有服务意识和团队合作精神,具备良好的敬业精神和职业道德。作为第一作者在相关专业领域一区期刊发表SCI论文二篇及以上。年薪36万元起(含五险一金单位部分),其中A类博士后44万元起(含五险一金单位部分)。如未租住学校住房,可享受2.4万元/年的租房补贴,广州市博士后科研项目资助20万元。出站后待遇:拿到博士后基金且结题者,可申请广州市青年后备人才,住房补贴100万(不限名额),家庭生活费用30万。未成年子女可由博士后基地协助联系就近入托、就学,享受优质的子女教育资源及良好的医疗服务。应聘者可先发送“简历+研究背景概述”至课题组负责人王家海教授,联系方式:jiahaiwang@gzhu.edu.cn。电话:18816801579。
  • 2023年离子色谱新品盘点:自主DIY搭建多场景离子检测平台
    2023年是国产离子色谱40周年。《生活饮用水标准检验方法》2023版新标将离子色谱纳入高氯酸盐、甘草膦、一氯乙酸、一溴乙酸等化合物的标准检测方法。苏州市计量测试学会发布的团体标准规定采用离子色谱法测定人唾液中葡萄糖的浓度。......一系列相关标准的颁布意味着离子色谱在水/废水、食品、石油化工、环境空气等领域的应用将更加广泛,离子色谱的市场规模将进一步增长。编辑对2023年发布的离子色谱新品进行盘点,数据主要统计自本网报道或公开信息,如有遗漏、错误欢迎在留言区补充。据仪器信息网统计,2023年中国市场共推出6台离子色谱新品,主要涉及4家厂商(以下厂商按照品牌简称首字母排序),包括谱临晟1台、盛瀚3台,赛默飞1台和皖仪1台。(1)谱临晟IC-50IC-50 超级离子分析系统包含一套全PEEK流路的MSS-2多功能样品处理系统、一套高压离子色谱仪、一套柱后衍生系统、一套高通量自动进样器、一套色谱工作站,以及与AFS 和ICPMS联机的接口等。IC-50离子色谱仪在常规的离子色谱仪的基础上,新增设一个四元比例阀和混合器,可实现多种流动相梯度;还可以选配不同类型的检测器,电导检测器、电化学检测器和紫外检测器。产品可与前处理产品MSS-2多功能样品处理系统联用组成在线前处理系统,或者与MSS-2多功能样品处理系统配合构成二维色谱,可以实现海洋、食品、环境、地质、饮用水、农残等领域的高基体复杂样品测试。(2)盛瀚 CIC-D120+ CIC-D160+ CIC-D260CIC-D120+采用全PEEK流路系统,搭配气液分离器,进一步保证流路中气泡的去除。PEEK材质具有极高的酸碱耐受性、极低的离子溶出,PEEK色谱柱在强酸碱淋洗液、强酸碱样品、痕量离子、重金属离子检测等方面表现出更好的稳定性,基线噪声更低,具有明显优势。采用自动量程技术替代传统电导检测器,一次进样即可完成相差4 个数量级浓度的多种离子检测,即ppb级和ppm级浓度离子的同时检测。此产品采用内置循环式立体恒温柱温箱技术,采用变频控制循环风立体加热模式,加热效果均匀;智能程序控制升温和保温,效率优先兼顾功耗;拥有高强度簧片式柱卡,兼容更多型号色谱柱。此产品拥有强大的色谱分析系统,自主研发的氢氧根体系阴离子色谱柱、碳酸盐体系阴离子色谱柱、阳离子色谱柱,低容量到高容量全系列多款色谱柱可选,满足阴阳离子、消毒副产物、糖、氰根、碘离子、小分子有机酸等的分析;色谱柱兼具实监测检测功能,实时反馈耗材应用情况;全方位安全保障系统采用压力报警、漏液报警、淋洗液液位监控等多种手段,确保仪器异常时及时反馈到使用人员。CIC-D160+在智能化软件方面进一步升级,包括自动量程技术、耗材监控功能、安全保障系统等。色谱柱和抑制器等关键耗材部件进行实时监控,对产品的使用次数和周期实时记录。新更换耗材可自动识别,鉴别新产品的型号和编号,同时根据需求复制成熟的测试方法使用。除以上技术优化外,仪器还开发了免试剂技术,日常操作只需加水,即可根据设置自动产生所需浓度淋洗液,实现梯度洗脱。CIC-D260核心部件均由盛瀚自主设计开发,其余部件均实现国产化。产品采用双通道设计,一次进样可实现阴阳离子同时检测;除传统的CD检测器外,还可以与ECD、UV、DAD、ICP-OES、AFS、MS等检测器联用,应用场景广泛。高压色谱泵采用全新设计的串联式双柱塞泵,最大耐压可达42MPa,最大流量可达10ml/min,压力脉动低于1%;高压进样阀寿命可达10万次以上;进样采用CLICK进样模式,摒弃注射器,点击按键即可完成进样。(3)赛默飞Dionex Inuvion离子色谱系统有三种配置:Dionex Inuvion Core离子色谱系统、Dionex Inuvion离子色谱系统和具有免试剂(RFIC)的Inuvion离子色谱系统。Dionex Inuvion Core可以升级到Dionex Inuvion(带RFIC)。Dionex Inuvion离子色谱系统可以根据用户需求选择配件(电解抑制和自动电解淋洗液发生器等),利用多款4μm填料色谱柱和化学试剂加快分析速度并提高结果质量。(4)皖仪IC6600IC6600系列多功能离子色谱仪采用全新的模块化设计,配制灵活,功能全面,操作简便。可通过配置电导检测器、安培检测器、紫外检测器,实现对常规阴、阳离子及氰根、碘离子、糖、小分子有机酸、六价铬(铬酸雾)、过渡金属等所有与离子色谱相关项目的检测。进样器可实现一针进样阴阳离子同时分析;一机多能,满足客户常规检测的同时,可升级柱后衍生、在线富集、在线基体消除等功能。其高灵活系统,能应对潜在的挑战以及高级应用场景。IC6600是一款环境友好,免试剂型离子色谱,采用“只加水”模式的淋洗液发生器,可在线产生氢氧根、碳酸根、甲烷磺酸多种类型淋洗液,降低成本,减少污染。自主开发的色谱工作站功能强大, 数字信号接入,最大可四通道同时采集;软件可以实现系统部件的有效集成和控制,对皖仪提供色谱类产品可无缝式增加,可以轻松的实现多维色谱(柱切换)及多种仪器联用等功能。如今,离子色谱应用越来越广泛,今年推出的新产品更加注重多场景应用,根据客户需求进行检测器、色谱柱的配备;还可以搭配其他科研仪器进行联用。不仅如此,离子色谱新产品还大力推进智能化软硬件设计,自动进样器、自动量程技术、多离子同时检测技术等均有效提高产品的自动化和检测效率,更好的为仪器使用者服务。
  • 疫情期间,青岛埃仑通用助力贵州基越检测公司
    青岛埃仑通用科技有限公司作为一家有责任,有担当的环保生产企业,为了打赢疫情保卫战,积极准备,快速复产,为疾控、第三方等行业及时提供设备保障和技术支持,调配相关设备并有针对性地投放市场,保障设备供给调配,维护设备平稳运行。 贵州基越检测有限责任公司位于被中国气象学会授予“中国避暑之都”称号的贵阳,贵州省贵阳市乌当区高新路中段阳晨总部基地,于2015年06月26日在乌当区市场监督管理局注册成立,在公司发展壮大的5年里,始终为客户提供好的产品和技术支持、健全的售后服务,这次为了应对疫情,在本身已经配备大批进口仪器的前提下,又经过多方比对,购进了一台青岛埃仑通用的YC7000型高端离子色谱仪,该型离子色谱仪是我公司针对国内中高端市场所研发出的一款全新型离子色谱,采用较高技术的控温TP检测器,拥有卓越的温度稳定性,采用抗信号、抗干扰新型材料外壳屏蔽,拥有更低、更稳定的基线。不仅如此,内置的智能芯片还储存标准谱图,可直接用于软件验证和培训。 该款仪器配有三种不同进样模式,手动进样、电动进样、自动进样,三者之间可自由切换,给用户提供自动化、人性化的仪器应用体验。同时可选配不同的检测器电导检测器、紫外检测器、电化学检测器,应用领域更为广泛,可用于固废垃圾、电解电镀行业、核工业、污水处理、环境监测、食品药品、水文地质、卫生防疫等。 主要技术优势: 1、主机采用高清彩色触摸屏,实时显示参数、压力、流速范围并实现全面操作,功能化模块设计,可根据用户的不同检测需求选择不同的检测器。 2、采用专利技术淋洗液预处理装置和在线自动气液分离装置,可实现自动进行淋洗液脱气和流路冲洗,免却人工维护.具有一键冲洗及超压自动报警自行停泵自我保护功能。 3、具有多种专利技术,低背景电导,低噪声和基线稳定,不用换酸,在线自动再生,不间断使用,操作简单,寿命长,同时把抑制器和电导池结合一体,有效缩短管路,减小了流路,从而提高了检测的灵敏度和精度。 4、具有开机前自动预热功能,无需开机等待,基线自动校准和整定。 5、采用国际先进在线流路优化系统,可实现对PPb级别的低浓度样品进行痕量级检测。具有常规检测和高精检测两种检测模式。 6、柱恒温系统,进口温度传感器,电磁干扰小,升温速快,具有温度自动整定功能。7、离子色谱系统控制软件及分析应用软件,结果可与Microsoft Excel、Word等软件共享;数据谱图可与Photoshop、CorelDRAW等图像软件共享。配备性能优异的24位的模数转换装置,提供高分辨率高灵敏度的检测。具有数据处理自动套用格式功能:可编制分析方式、色谱图积分及分析报告,具有仪器相关数据与运行状况溯源功能,方便故障排查。 关于埃仑青岛埃仑通用科技有限公司,位于美丽的海滨城市、帆船之都---青岛李沧,1993年成立的青岛高科技工业园易通仪器研究所是国内最早生产离子色谱仪的厂家之一,青岛埃仑继承和发展了青岛易通研究所的技术,是以研发、制造、销售和售后服务为一体的高新技术企业,是离子色谱仪知名品牌,产品涵盖离子色谱仪、红外分光测油仪、COD消解仪、降雨降尘采样器、大气颗粒物采样器、烟尘烟气测试仪、紫外吸收监测系统等。
  • 疾病防治专栏 | 人体体液中钙、镁、氟、磷离子的检测
    疾控防治专栏人体体液中钙、镁、氟、磷离子的检测引言人体内的液体由水及溶解在水中的无机盐、有机物一起构成,统称体液。水是体液中的主要成分,也是人体内含量最多的物质。体液广泛分布于机体细胞内外,细胞内液是物质代谢的主要部位,细胞外液则是机体各细胞生存的内环境。保持体液容量、分布和组成的动态平衡,是保证细胞正常代谢、维持各种器官生理功能的必需条件。体液中主要的电解质有 Na+、K+、Ca2+、Mg2+、Cl-、HCO3-、HPO42-和 SO42-,以及一些有机酸和蛋白质等。监控人体体液中电解质对疾控防治工作有重要指导意义。泌尿系统结石是泌尿外科常见的疾病之一,发病率及复发率高,其中以磷酸钙、磷酸铵镁和草酸钙结石为主。尿液内磷酸盐、草酸盐等浓度增大时,晶体物质即可析出沉淀形成尿路结石。有研究指出,尿氟水平可作为反映人体氟摄入情况的重要指标,以及作为地方性氟中毒的病区判定和防治效果评价。本文小编为大家介绍离子色谱检测人体体液中氟、磷酸盐、镁、钙的方法。皖仪科技应用方案 仪器设备 ---------------------------------------------------离子色谱仪,配有电导检测器淋洗液发生器:氢氧根型、甲磺酸型自动进样器样品前处理---------------------------------------------将样品稀释一定倍数后,经超滤后进样分析。色谱条件-----------------------------------------------1.阴离子测试色谱条件2.阳离子测试色谱条件测试结果----------------------------------------------- 阴离子标曲测试谱图 1.线性校准曲线2.样品测试谱图 阳离子标曲测试谱图 1.线性校准曲线2.样品测试谱图阳离子的测试中,Na+、NH4+的分离度一直是大家关注的重点,合适的色谱柱、合适的色谱条件对测试结果至关重要,下面看看咱们本次测试的分离度信息,所有离子的分离度都完全满足测试需求的哦。 进样信息 总结以上就是小编对人体体液中离子的测试结果了,可以看出,所有离子的线性均大于0.995,线性良好,氟离子在0.0025mg/L时峰形明显,完全满足检出限需求,阳离子的测试也是表现优异,选择离子色谱仪进行人体体液中阴阳离子的测定,方法简单,一次进样可做多种组分分析。皖仪科技 中国高端色谱标杆品牌
  • 晋中市综合检验检测中心330.00万元采购ICP-AES,Zeta电位仪,天平,电导率仪,密度计,离...
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 晋中市综合检验检测中心竞争性磋商药品化妆品检测设备采购项目的采购公告 山西省-晋中市-榆次区 状态:公告 更新时间: 2023-05-29 招标文件: 附件1 项目概况 药品化妆品检测设备采购项目采购项目的潜在供应商应在政采云平台线上获取获取采购文件,并于2023年06月09日 08:30(北京时间)前提交响应文件。 一、项目基本情况 项目编号:1407992023ACS00038 项目名称:药品化妆品检测设备采购项目 采购方式:竞争性磋商 预算金额(元):3300000 最高限价(元):/,/,/ 采购需求: 本项目为晋中市综合检验检测中心药品化妆品检测设备采购,本项目共分为三包;具体内容详见磋商文件。 第一包: 序号 名称 数量 单位 金额/元 备注 1 电感耦合等离子体质谱仪 1 台(套) 1500000 原装进口 第二包: 序号 名称 数量 单位 金额/元 备注 1 气相色谱质谱联用仪 1 台(套) 1500000 原装进口 第三包: 序号 名称 数量 单位 金额/元 备注 1 全自动永停滴定仪 1 台(套) 30000 2 全自动卡尔费休水份测定仪 1 台(套) 35000 3 全自动电位滴定仪 1 台(套) 30000 4 台式电导率仪 1 台(套) 5000 5 精密酸度计 1 台(套) 5000 6 超声波中药处理机 1 台(套) 10000 7 高速离心机 1 台(套) 20000 8 电子天平(万分之一) 2 台(套) 10000 9 电子天平(千分之一) 2 台(套) 10000 10 全自动密度计(U型管式密度计) 1 台(套) 25000 11 不间断电源(UPS) 3 台(套) 120000 合同履行期限:签订合同后3个月内完成供货。 合同履约期限:包 1、2、3,签订合同后3个月内完成供货 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:包1、2:无。 包3:第三包专门面向小微企业。 3.本项目的特定资格要求:【包1、2、3】 如投标人所提供的产品为进口产品,须提供进口产品授权书。 三、获取采购文件 时间:2023年05月29日18:00至2023年06月05日18:00(北京时间,法定节假日除外) 地点:政采云平台线上获取 方式:在线获取 售价(元):0 四、响应文件提交 截止时间:2023年06月09日 08:30(北京时间) 地点:请登录政采云投标客户端投标 五、响应文件开启 开启时间:2023年06月09日 08:30(北京时间) 地点:山西省晋中市榆次区晋中市榆次区顺城东街103号榆次四中对面山西天邦工程项目管理有限公司开标室 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 1、本项目采用电子化交易:电子化交易流程操作指南 山西省政府采购网办事指南下载专区”获取;2、供应商应在提交响应文件前完成CA数字证书办理。(办理事项详见“山西省政府采购网办事指南下载专区”);3、供应商应安装“山西政府采购平台电子投标客户端”,请供应商自行前往“山西省政府采购网办事指南下载专区”获取并安装;4、如有疑问,可致电技术支持热线:95763;5、根据山西省财政厅关于政府采购供应商注册登记有关事项的通知,参加本项目投标的供应商须在山西省政府采购网办理供应商入驻;6、针对本项目的质疑需一次性提出,多次提出将不予受理。 八、凡对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称:晋中市综合检验检测中心 地 址:晋中市榆次区龙湖大街468号晋中市综合检验检测中心 联系方式:0354-3077012 2.采购代理机构信息 名 称:山西天邦工程项目管理有限公司 地 址:晋中市榆次区顺城东街103号榆次四中对面水司宿舍内东二楼 联系方式:0354-3208929 3.项目联系方式 项目联系人:武诗敏 电 话:0354-3208929 附件信息: SXTB磋字[2023]018-1号药品化妆品检测设备采购项目5.29终.doc458.8K × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:ICP-AES,Zeta电位仪,天平,电导率仪,密度计,离心机,自动电位滴定,PH计,气相色谱仪,ICP-MS,红外水份测定,气质联用仪,卡氏水分测定 开标时间:2023-06-09 08:30 预算金额:330.00万元 采购单位:晋中市综合检验检测中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山西天邦工程项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 晋中市综合检验检测中心竞争性磋商药品化妆品检测设备采购项目的采购公告 山西省-晋中市-榆次区 状态:公告 更新时间: 2023-05-29 招标文件: 附件1 项目概况 药品化妆品检测设备采购项目采购项目的潜在供应商应在政采云平台线上获取获取采购文件,并于2023年06月09日 08:30(北京时间)前提交响应文件。 一、项目基本情况 项目编号:1407992023ACS00038 项目名称:药品化妆品检测设备采购项目 采购方式:竞争性磋商 预算金额(元):3300000 最高限价(元):/,/,/ 采购需求: 本项目为晋中市综合检验检测中心药品化妆品检测设备采购,本项目共分为三包;具体内容详见磋商文件。 第一包: 序号 名称 数量 单位 金额/元 备注 1 电感耦合等离子体质谱仪 1 台(套) 1500000 原装进口 第二包: 序号 名称 数量 单位 金额/元 备注 1 气相色谱质谱联用仪 1 台(套) 1500000 原装进口 第三包: 序号 名称 数量 单位 金额/元 备注 1 全自动永停滴定仪 1 台(套) 30000 2 全自动卡尔费休水份测定仪 1 台(套) 35000 3 全自动电位滴定仪 1 台(套) 30000 4 台式电导率仪 1 台(套) 5000 5 精密酸度计 1 台(套) 5000 6 超声波中药处理机 1 台(套) 100007 高速离心机 1 台(套) 20000 8 电子天平(万分之一) 2 台(套) 10000 9 电子天平(千分之一) 2 台(套) 10000 10 全自动密度计(U型管式密度计) 1 台(套) 25000 11 不间断电源(UPS) 3 台(套) 120000 合同履行期限:签订合同后3个月内完成供货。 合同履约期限:包 1、2、3,签订合同后3个月内完成供货 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:包1、2:无。 包3:第三包专门面向小微企业。 3.本项目的特定资格要求:【包1、2、3】 如投标人所提供的产品为进口产品,须提供进口产品授权书。 三、获取采购文件 时间:2023年05月29日18:00至2023年06月05日18:00(北京时间,法定节假日除外) 地点:政采云平台线上获取 方式:在线获取 售价(元):0 四、响应文件提交 截止时间:2023年06月09日 08:30(北京时间) 地点:请登录政采云投标客户端投标 五、响应文件开启 开启时间:2023年06月09日 08:30(北京时间) 地点:山西省晋中市榆次区晋中市榆次区顺城东街103号榆次四中对面山西天邦工程项目管理有限公司开标室 六、公告期限 自本公告发布之日起5个工作日。 七、其他补充事宜 1、本项目采用电子化交易:电子化交易流程操作指南 山西省政府采购网办事指南下载专区”获取;2、供应商应在提交响应文件前完成CA数字证书办理。(办理事项详见“山西省政府采购网办事指南下载专区”);3、供应商应安装“山西政府采购平台电子投标客户端”,请供应商自行前往“山西省政府采购网办事指南下载专区”获取并安装;4、如有疑问,可致电技术支持热线:95763;5、根据山西省财政厅关于政府采购供应商注册登记有关事项的通知,参加本项目投标的供应商须在山西省政府采购网办理供应商入驻;6、针对本项目的质疑需一次性提出,多次提出将不予受理。 八、凡对本次招标提出询问,请按以下方式联系 1.采购人信息 名 称:晋中市综合检验检测中心 地 址:晋中市榆次区龙湖大街468号晋中市综合检验检测中心 联系方式:0354-3077012 2.采购代理机构信息 名 称:山西天邦工程项目管理有限公司 地 址:晋中市榆次区顺城东街103号榆次四中对面水司宿舍内东二楼 联系方式:0354-3208929 3.项目联系方式 项目联系人:武诗敏 电 话:0354-3208929 附件信息: SXTB磋字[2023]018-1号药品化妆品检测设备采购项目5.29终.doc458.8K
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制