当前位置: 仪器信息网 > 行业主题 > >

磁性物质检测

仪器信息网磁性物质检测专题为您提供2024年最新磁性物质检测价格报价、厂家品牌的相关信息, 包括磁性物质检测参数、型号等,不管是国产,还是进口品牌的磁性物质检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁性物质检测相关的耗材配件、试剂标物,还有磁性物质检测相关的最新资讯、资料,以及磁性物质检测相关的解决方案。

磁性物质检测相关的论坛

  • 电测(电量参数)和磁测(磁性材料磁性能)仪表检测检定

    电学参量(电测)和磁性能参数(磁测)检测及检定《中华人民共和国计量法》第二章第九条中规定,“县级以上人民政府计量行政部门对社会公用计量标准器具,部门和企业、事业单位使用的最高计量标准器具,以及用于贸易结算、安全防护、医疗卫生、环境监测方面的列入强制检定目录的工作计量器具,实行强制检定。”,而电磁和我们日常生活息息相关,例如,单三相电能计量标准表,直流电能计量标准表,还有如火如荼的电动汽车充电桩等电学设备;相对于电学,对于磁学可能相对陌生,但对于我们生活,也是密不可分的,软磁和硬磁材料,比如我们最熟悉的电磁铁,发电机等等设备。下面我就电学和磁学各参量检测和检定分成两部分详讲。第一部分:电学参量(电测)电,熟悉又陌生的东西。熟悉是因为我们生活依赖它,离不开它,和我们生命一样重要。那为什说它陌生,因为大多数人只是使用它,并未对其深入了解。电参数主要有电压、电流、电阻,相对于直流电来说,交流电还需了解相位、谐波、频率等参数。这些参量我们通过简单的设备即可测量得出,但涉及到贸易结算,对各设备的准确度检测和检定。检测和检定机构有市级、省级、国家级的,评定等级不同。相对应的国内也有检测和检定设备的生产厂家,第二部分:磁性材料磁性能测量(软磁和硬磁)尽管电磁不分家,但磁性能参数的测量通常更加复杂甚至更加不明确,专家对磁性测量的方法也各有不同,本文主要介绍目前通用的方法。因磁性材料有软磁材料和硬磁材料之分,主要判断依据是材料的矫顽力,IEC404-1标准建议1000A/m矫顽力是区分两种材料的极限,矫顽力小于1000A/m的为软磁材料,矫顽力大于1000A/m的为硬磁材料。硬磁主要测量其矫顽力、剩磁感应强度、磁化曲线,磁滞回线,来判定硬磁材料的储能能力。以上检测鉴定方法主要参照国标和检测规程、校准规范进行,确保准确度。

  • 【原创】顺磁性物质与逆磁性物质

    我们使用的在线分析仪表中有顺磁式氧分仪,现在把顺磁性及逆磁性的概念澄清:任何物质,在外界磁场的作用下,都会被磁化,呈现出一定的磁特性。物质在外磁场中被磁化,其本身会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质被外磁场吸引;方向相反时,则被外磁场排斥。为此,把被外磁场吸引的物质称为顺磁性物质,而把会被外磁场排斥的物质称为逆磁性物质。气体介质处于磁场中也会被磁化,而且根据气体的不同也分别表现出顺磁性或逆磁性。如氧气是顺磁性气体,氢气、氮气等式逆磁性气体。

  • 【讨论】EDXRF检测磁性件时如何给样品退磁(消磁)?

    由于磁性样品在电场中将带有磁性,不论是软磁还是硬磁都一样。这样,被激发的X射线将产生偏转或偏离原来的路线而影响检测结果的准确性。一般来说退磁的方法有两种:加载高频或高温烧结。请问那位大虾知道对于不同材质的磁性元件其应该加载的频率或温度应该是多少?比如说最常见的铁氧体磁芯。

  • 【原创大赛】磁性物质含量的测定

    【原创大赛】磁性物质含量的测定

    磁性物含量测定1. 概述各种含铁矿物按其矿物组成,主要可分为四大类:磁铁矿、赤铁矿、褐铁矿和菱铁矿。磁铁矿是主要含铁矿物,其化学式为Fe3O4,其中FeO:31%, Fe2O3:69%。本方法采用磁选管法测定磁铁矿试样的磁性物含量。磁选管法的工作原理是在C行电磁铁的两极之间装有玻璃管,并作往复移动和旋摆运动。当磁选管中的试样通过磁场区时,磁性物即附着于管壁,非磁性物在机械运动中被水冲刷而排出,使磁性物与非磁性物分离。以磁性物和试样的百分比来表示磁性物含量。2. 试验主要设备:磁选仪(带磁选管),500ml烧杯,塑料桶,坩埚,烘箱,天平(精确到0.1mg),方形小磁铁等。http://ng1.17img.cn/bbsfiles/images/2013/07/201307271951_454093_1657564_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/07/201307271952_454095_1657564_3.jpg本实验的主要设备是磁选管。磁选管又名戴维斯管(Davis Tube)。它适用于选煤、矿山、冶金、地质等实验室。用来测定强磁性矿石的磁性成分含量。为矿石的分选提供参考数据。3. 操作步骤3.1 首先,检查电源是否正常,接线是否正确,水箱是否有水,玻璃管位置是否合适,手动盘车,确保设备运行正常。3.2 称取20g±20mg的样品,将试样装入一个容积为500mL的烧杯中,加入5~8mL的酒精和约400mL水,搅拌均匀,确保样品颗粒被充分地湿润。3.3 组装好全套装置后,接通电源,操作控制器,调节磁场至所需磁场强度值。磁场强度是根据磁性物磁性强弱及现场对磁性物要求来调节的。如果试样中磁性物很少或磁性物磁性较弱,则磁场强度应提高。一般将磁场强度设定在150~250mT之间。3.4 先用管夹夹紧玻璃管下端出口软管,向磁选管中加水直至距漏斗约5cm,以确保下一步骤所加磁性物悬浮于水中。3.5 将“电机启动开关”打开,此时,电机带动传动机构及玻璃管开始工作。然后将烧杯中的磁性物混合液体缓缓倒入漏斗,(玻璃管中液面不能太高,约距漏斗口处5cm,确保液体不从玻璃管上口溢出)同时打开玻璃管下部管夹,使液体缓缓流入塑料小桶中。3.6 待烧杯中磁性物混合液体全部倒入玻璃管后,再打开上面水箱的龙头,缓缓注入清水,确保磁性物悬浮于水中,而非磁性物质随水流下沉直至排出管外,磁性物颗粒在磁力作用下附着于管壁两磁极处,直至排出液体不含杂质。3.7 当排出液体不再含杂质时,停止加入清水,用管夹夹紧排水软管。将“电机启动开关”断开。电机停止工作。松开管夹。排出玻璃管内清水。3.8 断开“磁场启动开关”,当磁场显示为“0000”后,将玻璃管拆下,在玻璃管出口处放一个干净的500ml烧杯,轻轻转动玻璃管,同时用洗瓶从玻璃管上口冲刷,把磁性物从玻璃管中冲洗干净,收集到烧杯中。3.9 将装有磁性物混合液的烧杯静置约15分钟,直至磁性物沉淀,上部水澄清,慢慢倒出烧杯中的水,同时用一块强磁铁放在烧杯底部,以防止杯中磁性物有任何损失。3.10 开激磁电源,关闭螺旋夹,向磁选管中加水,打开螺旋夹,并使水流动,把第一个塑料小桶中的液体和固体慢慢加入漏斗,并使混合液通过磁选管进入第二个塑料小桶中。将第二次收集到的磁性物质和第一次的合并在一起。将磁性物质转入干燥的并已称好重量为M0的碗型坩埚中。注:

  • 磁性金属物测定仪在小麦粉样品检测的应用

    目前,应用于面粉的增白剂几乎全是过氧花苯甲酰。过氧化苯甲酰用量很少,但这种添加剂一般在制粉工艺的尾路加入,经过混合,就打包出厂了。这种十万分之几的添加比例,经过有限的搅拌,很难达到均质的程度。即在过氧化苯甲酰粉末与面粉的混合中,很容易混合不均匀,使得测试结果离散度较大。磁性金属物测定仪是粮油检测试验室最基本的仪器设备,能很好地解决这一问题。 混合均匀度是指将制定组分分散到整体物料中的程度,分散度越好,表明其混合越均匀,物料的混合均匀程度可用变异系数来衡量。根据GB/T18415-2001小麦粉中过氧化苯甲酰测定方法的规定,双试验测定值得相对相差不得大于15%。而利用对小麦粉样品进行混匀前处理的办法不会对样品的其他检测项目产生明显的影响,反而大大提高了检测的准确度,而且处理时间只有15-20min。粮油检测试验室利用磁性金属物测定仪对小麦粉样品进行混匀前处理是可行的有效的。

  • 【求助】含顺磁性物质时的标定方法

    看到一个说法,认为样品中含顺磁性物质时用外标定标的方法是不合适的,很难准确确定化学位移。是这样吗,如果有顺磁性物质在,不管是内标还是外标所受到的影响不是相同的吗?

  • 求教磷酸铁锂磁性物质是否需要扣除铁

    做磷酸铁锂磁性物质所测元素是铁铬镍锌。用的6000GS磁子,但是磁子除了吸附这四个磁性元素外是否还会吸附弱磁性的磷酸铁锂,是否需要根据磷酸铁锂的磷含量来扣除磷酸铁锂的铁含量,求得真是铁铬镍锌的元素含量?有能否确定磁子一定吸附了铁铬镍锌呢?求教大神。

  • 【求助】【核磁问题】关于核磁可以检测物质的问题

    近日在波谱分析课以及课下自学中遇到这样的一个问题,核磁所能检测的物质不能是金属或者顺磁性的,好像是说会对仪器造成损害;当时就有疑问,如果我要检测的物质是一个顺磁性的金属有机配合物,要鉴定其结构的话该用什么样的方法;此外,后来学到化学位移试剂的时候,为了得到更清晰的谱图,加入的化学位移试剂也是通过产生顺磁或者抗磁的磁场,是化合物中H的化学位移发生变化,这又该如何理解?到底核磁所能检测的物质是否有限制?

  • ICP-AES在磁性材料检测方面的应用方法

    最近公司购买了一台ICP-AES,我们公司是做磁性材料的,领导准备用它做进厂材料检测,我们的产品有钕铁硼、PrNd合金、镝铁、钆铁等稀土合金,在钕铁硼检测过程中还比较好做,但是做合金的时候由于元素含量较高,加一起都大于100%,另外具体到每中合金不清楚需要检测哪些杂质元素,请各位专家指导

  • 顺磁性物质怎么做核磁?

    做了个铜配体的化合物。质谱检测已经基本可以确定Cu接上去了,但做1HNMR时不出峰。用d6-DMSO作氘代试剂,样品可溶于氘代试剂的。做出来的图谱只有DMSO的水峰和溶剂峰。查了下文献,可能是因为Cu有顺磁性导致配体不易出峰,想问下可不可以改变核磁参数什么的使之出峰?谢谢

  • 【分享】磁性材料知识

    磁性材料: 概述:磁性是物质的基本属性之一。磁性现象是与各种形式的电荷运动相关联的,由于物质内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性。一切物质都具有磁性。自然界的按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料。磁性材料的分类,性能特点和用途: 1铁氧体磁性材料,一般是指氧化铁和其他金属氧化物的符合氧化物。他们大多具有亚铁磁性。 特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用。饱和磁化强度低,不适合高磁密度场合使用。居里温度比较低。2 铁磁性材料:指具有铁磁性的材料。例如铁镍钴及其合金, 某些稀土元素的合金。在居里温度以下,加外磁时材料具有较大的磁化强度。3 亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度。4 永磁材料:磁体被磁化厚去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大。可分为三类,金属永磁,例,铝镍钴,稀土钴,铷铁硼等。铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等。5软磁材料:容易磁化和退磁的材料。锰锌铁氧体软磁材料,其工作频率在1K-10M之间。镍锌铁氧体软磁材料,工作频率一般在1-300MHZ

  • 磁性线坠检定验收怎么做?

    我这里的磁性线坠杭州计量科学研究院只出具一份检测报告,检测结果只说明线坠顶点与磁性测量面的距离54.5mm,检测依据显示是委托方技术要求,查不到设备的允许误差,也没有不确定度,不知怎么验收这个,请各位指教,谢谢。

  • 【原创】请问:在北京哪里可以检测奥氏体不锈钢中铁素体含量啊(磁性检测方法)

    谢谢,最近一直想检测奥氏体不锈钢中铁素体的含量。我知道最简单的方法,是采用磁性检测方法,在焊接中用的好像比较普遍,可是偶不知道北京哪家单位有这样的设备,有知道的兄弟给偶说一下,谢谢,或者帮偶打听一下。(金相腐蚀比较和x射线衍射也都可以检测残余铁素体含量,可是偶感觉要么不准,要么价格有点高,而且也比较麻烦:))

  • 磁性分析MA1040

    麦克默瑞提克磁性分析仪(MA - 1040)用来检测各种材料中的微量铁,包含用于电线绝缘用塑料光纤的原料高纯度玻璃的检测。它也可用于检测食品、宝石、电池材料、耐火材料、药品以及许多其他材料中的微量金属铁的含量。能够检测出含量极低的铁的含量对原料是否能加工成成品是非常重要的。技术特点· 极高的灵敏度,可最低检测到0.00001%的含磁量· MA1040磁性分析仪占地面积小,使用方便· 被美国ANSI(American National Standards Institute)引用· 磁性分析分辨率达亚ppm级 产品应用磁性分析仪(MA - 1040)用来检测各种材料中的微量铁,包含用于电线绝缘用塑料光纤的原料高纯度玻璃的检测。它也可用于检测食品、宝石、电池材料、耐火材料、药品以及许多其他材料中的微量金属铁的含量。麦克默瑞提克(上海)仪器有限公司孔径分析仪,孔径测定仪,纳米粒度仪,粒度仪,粒度粒形分析,Zeta电位,微型反应器,磁性分析

  • 【我们不一YOUNG】+水源性致病微生物检测水样前处理方法之磁性分离法

    [font=宋体][color=black][back=white]磁性分离是以磁性或可磁化的材料作为吸附剂的一种分离富集技术。大多数应用于分离的磁性材料具有超顺磁性[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]即在通常情况下没有磁力[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]在外加磁场下可表现出磁性。在没有磁场的情况下可以充分地分散在溶液中[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]与目标物结合[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]之后在外加磁场下聚集于容器一侧[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]通过弃去溶液和重复洗涤来最大限度地去除抑制物。磁性材料只是载体[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]只有对磁性纳米材料[/back][/color][/font][font='Times New Roman',serif][color=black][back=white](magnetic nanoparticles,MNPs)[/back][/color][/font][font=宋体][color=black][back=white]进行表面修饰[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]使其具有抗体、抗生素[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]([/back][/color][/font][font=宋体][color=black][back=white]万古霉素、达托霉素等[/back][/color][/font][font='Times New Roman',serif][color=black][back=white])[/back][/color][/font][font=宋体][color=black][back=white]和化合物等识别基团才能捕获目标微生物。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]1[/back][/color][/font][font=宋体][color=black][back=white]、免疫磁分离法[/back][/color][/font][font=宋体][color=black][back=white]免疫磁分离是指用抗体修饰[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]MNPs,[/back][/color][/font][font=宋体][color=black][back=white]基于抗体[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]-[/back][/color][/font][font=宋体][color=black][back=white]抗原相互作用从水体中选择性捕获目标微生物。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Guven[/back][/color][/font][font=宋体][color=black][back=white]等用[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]IgE[/back][/color][/font][font=宋体][color=black][back=white]标记的免疫磁珠分离水样中的大肠埃希氏菌[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]结合免疫分析技术进行检测[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]检出限为[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]8 CFU/mL[/back][/color][/font][font=宋体][color=black][back=white]。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Huy[/back][/color][/font][font=宋体][color=black][back=white]等用蛋白[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]A[/back][/color][/font][font=宋体][color=black][back=white]偶联壳聚糖修饰的[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Fe3O4[/back][/color][/font][font=宋体][color=black][back=white]磁性颗粒结合[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]IgG[/back][/color][/font][font=宋体][color=black][back=white]抗体从浓度低至[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]10 CFU/mL[/back][/color][/font][font=宋体][color=black][back=white]水样中分离出了霍乱弧菌。我国施行的《生活饮用水标准检验方法[/back][/color][/font][font=宋体][color=black][back=white]第[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]12[/back][/color][/font][font=宋体][color=black][back=white]部分[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]: [/back][/color][/font][font=宋体][color=black][back=white]微生物指标》[/back][/color][/font][font='Times New Roman',serif][color=black][back=white] (GB/T5750.12—2023) [/back][/color][/font][font=宋体][color=black][back=white]规定采用免疫磁分离荧光抗体法测定生活饮用水及其水源水中的贾第鞭毛虫孢囊和隐孢子虫卵囊。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Villamizar-Gallardo[/back][/color][/font][font=宋体][color=black][back=white]等使用抗轮状病毒单克隆抗体功能化氟[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]MNPs[/back][/color][/font][font=宋体][color=black][back=white]实现了对水中轮状病毒的富集。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]2[/back][/color][/font][font=宋体][color=black][back=white]、基于抗生素修饰的磁性分离法[/back][/color][/font][font=宋体][color=black][back=white]一些抗菌物质能够抗菌是因为能与致病菌表面的一些生物结构相互结合[/back][/color][/font][font='Times New Roman',serif][color=black][back=white],[/back][/color][/font][font=宋体][color=black][back=white]利用这一特点将其与磁性粒子结合可以起到捕获细菌的作用。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Meng[/back][/color][/font][font=宋体][color=black][back=white]等用万古霉素修饰的[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]MNPs[/back][/color][/font][font=宋体][color=black][back=white]捕获水、牛奶和果汁饮料中的金黄色葡萄球菌[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]结合流式细胞仪[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]检出限为[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]33 CFU/mL[/back][/color][/font][font=宋体][color=black][back=white]。[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]Ding[/back][/color][/font][font=宋体][color=black][back=white]等用抗菌肽功能化[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]MNPs[/back][/color][/font][font=宋体][color=black][back=white]在较低质量浓度下[/back][/color][/font][font='Times New Roman',serif][color=black][back=white] (0.1 mg/mL) [/back][/color][/font][font=宋体][color=black][back=white]实现了对致病性革兰氏阴性杆菌的半选择性捕获[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]在较高质量浓度下[/back][/color][/font][font='Times New Roman',serif][color=black][back=white] (0.5 mg/mL) [/back][/color][/font][font=宋体][color=black][back=white]实现了对自来水和娱乐用水中大肠埃希氏菌的高效捕获[/back][/color][/font][font='Times New Roman',serif][color=black][back=white], [/back][/color][/font][font=宋体][color=black][back=white]捕获效率大于[/back][/color][/font][font='Times New Roman',serif][color=black][back=white]97%[/back][/color][/font][font=宋体][color=black][back=white]。[/back][/color][/font]

  • 【原创大赛】【官人按】扫描电镜不适合测磁性材料吗?——安徽大学林中清33载经验谈(11)

    [font=微软雅黑][size=16px]【作者按】一直以来的观点都认为磁性材料不适合用电子显微镜来观察。理由似乎无可辩驳:电子显微镜的关键部件,磁透镜,会将磁性材料磁化并在透镜表面形成吸附。造成的影响是电镜性能大大的下降,若情况严重,会使得电镜无法形成图像。正是基于这一缘由,许多电镜室将磁性材料拒之门外,拒绝对这类样品进行检测。[/size][/font][font=微软雅黑][size=16px]虽然我们对磁性材料十分的在意,但对磁性材料的定义却很少能说得清楚,许多过分的误杀也由此产生。[/size][/font][font=微软雅黑][size=16px]什么是磁性材料?扫描电镜的磁透镜和磁性材料之间有何关联?怎样判断测试结果是否受样品磁性的干扰?如何对磁性较强的材料进行测试?怎么避免其对镜筒的污染?所有这些问题,都将在本文中给您一一解答。[/size][/font][font=微软雅黑][b][size=18px]一、什么是磁性材料[/size][size=18px][/size][/b][/font][b][font=微软雅黑][size=16px]1.1 物质磁性的来源[/size][/font][/b][font=微软雅黑][size=16px]“磁性理论”起源于安培的“分子电流假说”:分子中存在回路电流,即分子电流,分子电流相当于一个最小的磁性单元。分子电流对外界的磁效应总和决定磁性是否对外显示。[/size][/font][font=微软雅黑][size=16px]安培理论是建立在当时分子学说体系的基础之上,现在我们知道组成物质的最基本粒子是原子,在原子学说的理论体系中,“分子电流”并不存在,故必须建立新的模型假说。[/size][/font][font=微软雅黑][size=16px]波尔在卢瑟福原子结构模型理论和普朗克量子理论的基础上,提出了被称为经典的原子模型假说(见经验谈4)。[/size][/font][font=微软雅黑][size=16px]基于原子模型假说,对物质磁性来源的解释是:物质的磁性源自物质原子中电子和原子核的磁矩。原子核的磁矩很小可以忽略,故物质的磁性取决于“电子磁矩”。电子的磁矩源自电子运动,电子的轨道运动形成“轨道磁矩”,自旋运动形成“自旋磁矩”。在充满电子的壳层中,电子的在轨运动占满了所有可能方向,各种方向的磁矩相互抵消,因此总角动量为零。我们在考虑物质磁性时只需考虑那些未填满电子的壳层,称为“磁性电子壳层”。物质对外显现磁性的状态,也取决于这个磁性电子壳层的状况。[/size][/font][b][font=微软雅黑][size=16px]1.2 磁性物质的分类[/size][/font][/b][font=微软雅黑][size=16px]物质的磁性源自原子中电子运动所形成的磁矩。任何物质都存在着电子的轨道运动和自旋运动,因此都存在着磁矩,只是依据电子填充核外电子轨道的情况按大类分为:反磁(抗磁)、顺磁、铁磁,这三大类磁性物质。[/size][/font][b][font=微软雅黑][size=16px]1.2.1 反磁性与反磁性物质[/size][/font][/b][font=微软雅黑][size=16px]反磁性也称为抗磁性。定义为:在外加磁场的作用下,电子的在轨运动会产生附加转动(Larmor进动),动量矩将发生变化,产生与外磁场相反的感生磁矩,表现出“反磁性”。应该说所有的物质进入磁场都会表现出反磁的特性,那么为啥还有反磁性物质这一分类呢?[/size][/font][font=微软雅黑][size=16px]反磁性物质:当物质的原子核外电子充满所有轨道时,无论是单质还是配合物所形成的杂化轨道,电子各向磁矩都将完全的相互抵消,因此该类物质在进入磁场后电子只表现出反磁特性。称为反磁性物质。[/size][/font][b][font=微软雅黑][size=16px]1.2.2 顺磁性物质[/size][/font][/b][font=微软雅黑][size=16px]顺磁性物质:物质的分子或原子中含有未成对电子,这些电子的磁矩在各自的原子和分子中无法完全抵消。而热扰动的影响使原子和分子间的未成对电子无序排列,造成个体磁矩的互相抵消,最终合磁矩为零,物质整体对外不显磁性。[/size][/font][font=微软雅黑][size=16px]物体进入磁场后,未成对电子将受磁场作用而趋向磁场排列,同时热扰动的作用使其趋向混乱排列,但综合结果是在磁场方向产生一个磁矩分量,对外表现出磁性,低温会使得磁矩分量加强。常温下拆除磁场后,热扰动的作用会使这些单电子重归无序排列,合磁矩归零,对外不表现磁性。[/size][/font][font=微软雅黑][size=16px]顺磁物质按照磁性强弱可粗分为:弱顺磁、顺磁、超顺磁。“弱顺磁”物质进入磁场,对外表现出的磁性极弱,需极精密设备才能测出。“超顺磁”物质靠近磁场后,表现出的磁性极强接近铁磁。普通顺磁材料的磁性介于两者之间。[/size][/font][font=微软雅黑][size=16px]顺磁物质大致包括以下几大类:过渡元素、稀土元素、还有铝、铂等金属,氮的氧化物、稀土金属的盐,玻璃,水,非惰性气体等等。[/size][/font][b][font=微软雅黑][size=16px]1.2.3 铁磁性物质[/size][/font][/b][font=微软雅黑][size=16px]相对于顺磁性物质,铁磁性物质原子核外的电子轨道上有更多未配对电子。这些未配对电子的自旋方向趋同,形成所谓的 “磁畴”。 “磁畴”可认为是同方向电子的集合,由其形成的“饱和磁矩”要远大于单电子形成的磁矩。[/size][/font][font=微软雅黑][size=16px]铁磁性物质各原子或配合物所形成的磁畴,相互之间大小和方向都不相同。如同顺磁性物质一样,在热扰动影响下这些磁畴杂乱排列,最后形成的合磁矩为零。[/size][/font][font=微软雅黑][size=16px]当铁磁物质进入磁场,这些磁畴在磁场影响下趋向沿磁场方向的趋同排列,而热扰动影响下的杂乱排列趋势相对磁场对磁畴的影响要小很多,故该物质进入磁场后表现出的合磁矩比顺磁性物质要强大得多。当外加磁场达到一定值(饱和值),移除磁场影响后,常规的热扰动无法使得这些磁畴回归无序排列状态,合磁矩保持进入磁场的强度,物质对外继续保持被磁化的状态。该现象被称为“磁滞”现象。[/size][/font][font=微软雅黑][size=16px]高温(500-600度)所形成的热扰动才会使得处于“磁滞”状态的磁畴重新回归无序排列,这就是高温消磁的缘由。一些所谓的交变磁场消磁器也能打乱磁畴的有序排列,但是效果最佳、消磁最彻底的方法,还是高温消磁。[/size][/font][font=微软雅黑][size=16px]“磁滞”现象最先在铁器上被发现,故该磁特性被称为“铁磁性”。过渡族金属及其合金和化合物都具有这种特性。[/size][/font][font=微软雅黑][size=16px]综上所述,物质的磁性来自它们原子核外电子的运动,严格来说所有的物质都带有磁性。依据物质进入磁场后对外所表现出来的磁性可分为:反磁、顺磁以及铁磁性材料。顺磁性材料依据磁性强弱可粗分为弱顺磁、顺磁、超顺磁。[/size][/font][font=微软雅黑][size=16px]反磁或弱顺磁材料进入磁场,对外不表现出磁性或表现出的磁性极其微弱(只有精密仪器才能测得);顺磁及超顺磁性材料进入磁场后会表现出较强的磁性;铁磁性材料不仅进入磁场表现出强磁性,离开磁场后还具有强烈的磁滞现象。[/size][/font][font=微软雅黑][size=16px][/size][/font][font=微软雅黑][size=18px][b]二、电镜对磁性材料的影响[/b][/size][/font][font=微软雅黑][size=16px]电子显微镜的光源是高能电子束,对电子束进行会聚的最佳方案是采用电磁透镜。因此在电镜中充满着各种磁场,不可避免会对进入磁场的那些易被磁化的样品产生影响。[/size][/font][font=微软雅黑][size=16px]扫描电镜对样品产生磁影响的主要部件是物镜。不同类型的物镜对样品的磁影响不同。扫描电镜物镜类型分为三类:外透镜、内透镜、半内透镜。下面将分别加以探讨。[/size][/font][b][font=微软雅黑][size=16px]2.1 外透镜物镜[/size][/font][/b][font=微软雅黑][size=16px]物镜磁场被封闭在物镜内部,样品置于物镜的外围,物镜的磁场对样品产生的影响极其微弱或基本不产生影响。[/size][/font][font=微软雅黑] [/font][align=center][img=1.png]https://img1.17img.cn/17img/images/202008/uepic/8410991c-d00d-4266-b0b6-1091eb88c9ab.jpg[/img][/align][font=微软雅黑][size=16px]从上图可见,外透镜物镜模式,磁场影响不到样品,样品可以极度靠近物镜观察。但由于磁场的封闭,使得进入物镜的样品表面电子信息减少,不利于镜筒内探头对其接收。对观察表面信息较弱的样品,成像质量不如其它透镜模式。[/size][/font][b][font=微软雅黑][size=16px]2.2内透镜物镜[/size][/font][/b][font=微软雅黑][size=16px]样品置于物镜磁场中,物镜磁场对样品磁影响极大。[/size][/font][font=微软雅黑][/font][align=center][img=2.png]https://img1.17img.cn/17img/images/202008/uepic/36bc7008-2663-4aa7-91a8-e46dd75a471c.jpg[/img][/align][font=微软雅黑][size=16px]如上图,样品置于磁场中。物镜磁场将电子束激发并溢出样品的电子信息基本都收集到探头。探头接收到更为充足的样品信息,故成像质量优异,特别适合弱信号样品形成高分辨像。缺点是:样品尺寸不可过大。对样品的磁性质限制大,只允许对反磁性或磁性极弱的弱顺磁样品进行测试。[/size][/font][b][font=微软雅黑][size=16px]2.3半内透镜物镜[/size][/font][/b][font=微软雅黑][size=16px]物镜对样品仓泄漏部分磁场,样品在靠近物镜时(WD≤2mm)进入磁场,受到磁场的强烈影响。但随着工作距离加大,其受磁场的影响逐渐减弱,远离物镜时(WD≥7mm)受磁场影响极小,WD 8mm以后基本不受磁场的影响。[/size][/font][font=微软雅黑][size=16px]以上WD是指样品上最高点到物镜下平面的距离。[/size][/font][align=center][img=3.png]https://img1.17img.cn/17img/images/202008/uepic/aa3a5112-d480-4bb6-a699-15e1a7a9c536.jpg[/img][/align][font=微软雅黑][size=16px]该透镜模式被目前绝大多数追求高分辨性能的扫描电镜所采用。特点是:镜筒内探头对样品电子信息的接收能力介于外透镜和内透镜模式之间;对样品的检测尺寸、磁特性的限制不大;有利于对绝大部分样品进行高分辨观察。[/size][/font][font=微软雅黑][size=16px]高分辨扫描电镜为了帮助镜筒内探头获取更多的二次电子,基本上都采用半内透镜物镜设计,其优势在于兼顾面较为广泛。顺磁性、铁磁性样品只要保持一定工作距离且本身不带有磁性,测试效果与反磁性物质没有区别。[/size][/font][font=微软雅黑][size=16px][/size][/font][font=宋体, SimSun][size=18px][b]三、如何判断样品的磁性[/b][/size][/font][font=微软雅黑][size=16px]如何评判样品磁性的强弱是否适合进行扫描电镜检测。[/size][/font][font=微软雅黑][size=16px]许多实验室都依据样品名称或采用磁铁对样品进行测试。[/size][/font][font=微软雅黑][size=16px]1. 依据名称:把磁性样品等同于铁、钴、镍,并扩展为含[/size][/font][font=微软雅黑][size=16px] 铁、钴、镍的所有材料。[/size][/font][font=微软雅黑][size=16px]2.利用磁铁:只要磁铁可以吸引,就被认为是磁性样品。[/size][/font][font=微软雅黑][size=16px]凡符合以上所罗列的样品,统统列为扫描电镜的禁测样品。实践证明,这种判断方式简单粗暴,错误百出。[/size][/font][font=微软雅黑][size=16px]通过前面的介绍我们知道,材料按磁性区分为反磁性、顺磁性、铁磁性物质。弱顺磁、反磁性物质进入磁场不会受到磁场影响,顺磁、超顺磁、铁磁性材料进入磁场会被磁化。一旦离开磁场,顺磁、超顺磁物质恢复原状,而铁磁性物质会表现出强烈的磁滞现象。[/size][/font][font=微软雅黑][size=16px]依据样品的磁特性和物镜的分类,样品磁特性对电镜测试的影响首先要考虑以下两种情况:[color=#00b0f0][b]样品本身带磁或不带磁[/b][/color]。[/size][/font][font=微软雅黑][size=16px]A) 样品本身带磁:所有电镜都会受到影响。吸附污染镜筒、扰乱电子束影响测试结果,这些都是样品带磁的直接后果。可采用铁制品(薄铁片、大头针)来检测样品是否带磁。[/size][/font][font=微软雅黑][size=16px]B) 样品本身不带磁性:[/size][/font][font=微软雅黑][size=16px]1. 物镜采用内透镜模式,测试时需检测样品是否为顺[/size][/font][font=微软雅黑][size=16px]磁材料。用磁铁,如磁铁能吸引该样品,则不可测。 [/size][/font][font=微软雅黑][size=16px]2. 物镜是半内透镜模式,大工作距离(WD8mm)测试 [/size][/font][font=微软雅黑][size=16px]无限制,小工作距离测试,则需如上检测其顺磁性。[/size][/font][font=微软雅黑][size=16px]3. 外透镜物镜模式,理论上不受工作距离影响。[/size][/font][font=微软雅黑][size=16px]其次,[b][color=#00b0f0]样品的合磁矩会随着物体体积的改变而发生变化,体积越小合磁矩越微弱[/color][/b]。这是量变到质变的关系,因此对于外透镜和半内透镜模式设计的扫描电镜,可采用以下的方式对测试样品进行筛选,并选用与之相匹配的样品处理方式。[/size][/font][font=微软雅黑][size=16px]a. 直径在两、三百纳米以下的小颗粒,合磁矩总量极其微弱,一般不会对测试工作产生太大的影响。充分的分散、采用稍大一些的工作距离,即可放心测试。[/size][/font][font=微软雅黑][size=16px]这类小颗粒材料的堆积体容易使得合磁矩增加,松散的堆积与基底结合不牢,易受电子束轰击溅射并吸附在镜筒上。达一定值,会对仪器性能产生影响,特别是磁性稍强一些的纳米颗粒。故制样时,应极力避免堆积体的形成。[/size][/font][font=微软雅黑][size=16px]b. 微米级别颗粒所形成的合磁矩就应当引起重视。充分的固定和远离镜筒(WD8mm)是保证样品测试的关键。[/size][/font][font=微软雅黑][size=16px]个人体会是绝大部分情况:合磁矩较大的样品,所需观察的表面细节都较大,采用样品仓探头在大工作距离(15mm)下观察,获取的样品信息将会更加充分。[/size][/font][font=微软雅黑][size=16px]固定、分散好样品,控制好工作距离,只要样品本身不带磁(铁片试),进行SEM测试基本都不会有问题。[/size][/font][font=微软雅黑][size=16px][/size][/font][b][font=微软雅黑][size=18px]四、如何对磁性较强的样品进行SEM测试[/size][/font][/b][font=微软雅黑][size=16px]对磁性较强的样品应当排除采用内透镜物镜设计的扫描电镜对其进行测试。下面的讨论主要针对外透镜和半内透镜。[/size][/font][b][font=微软雅黑][size=16px]4.1外透镜物镜模式[/size][/font][/b][font=微软雅黑][size=16px]采用这类物镜模式的扫面电镜。无论物质具有铁磁或是顺磁特性,只要未被磁化,理论上可以在任何位置进行测试。[/size][/font][font=微软雅黑][size=16px]但是样品最好能被充分固定,特别是粉末样品,更要保证每一个颗粒都有很好的固定。否则小工作距离观察,粉末颗粒在电子束轰击下,也容易溅射进镜筒对磁场产生干扰。[/size][/font][b][font=微软雅黑][size=16px]4.2半内透镜物镜模式[/size][/font][/b][font=微软雅黑][size=16px]这类物镜模式由于有部分磁场外泄,因此样品必须远离物镜观察。具体工作距离依据样品合磁矩大小的不同而不同,一般来说大于8mm工作距离是比较安全的。其他操作和外透镜模式基本相同,只是固定必须更为加强。[/size][/font][font=微软雅黑][size=16px]对于大型块状物体建议使用夹持台,以保证测试的安全。[/size][/font][font=微软雅黑][size=16px]如果发现有像散消除不掉的现象,基本说明样品被磁化,可通过高温或消磁器进行消磁处理来排除磁场干扰。[/size][/font][font=微软雅黑][size=16px]铁磁性、顺磁性物质的细节一般都在几十纳米以上,大工作距离下采用样品仓探头观察,将呈现更为丰富的样品信息。[/size][/font][font=微软雅黑][size=16px]前面的文章已经探讨过,小工作距离、镜筒探头组合,适合观察松软样品的几纳米细节信息,拥有这种特性及细节的样品,基本都是反磁或弱顺磁样品,漏磁对其不产生影响。[/size][/font][font=微软雅黑][size=16px][/size][/font][font=微软雅黑][size=18px][b]五、半内透镜物镜测试强磁性样品的实例[/b][/size][/font][align=center][img=4.png]https://img1.17img.cn/17img/images/202008/uepic/916e6529-9bb5-49a2-b8d3-57f48734f16e.jpg[/img][/align][align=center][img=5.png]https://img1.17img.cn/17img/images/202008/uepic/7674d57d-40c8-42c8-bfaf-3d270d6d42b4.jpg[/img][/align][align=center][img=6.png]https://img1.17img.cn/17img/images/202008/uepic/ca2e06fc-9f45-4296-a1b1-717ac9a0af50.jpg[/img][/align][align=center][img=7.png]https://img1.17img.cn/17img/images/202008/uepic/868c5744-d43f-4cdd-acae-e6012c5ba6b5.jpg[/img][/align][font=微软雅黑][size=16px][/size][/font][align=center][img=8.png]https://img1.17img.cn/17img/images/202008/uepic/978c64de-0c97-4b8d-9e4e-5a032c4cacd7.jpg[/img][/align][align=center][img=9.png]https://img1.17img.cn/17img/images/202008/uepic/0ee817bf-2352-4e19-92dd-37e18e7d0f0e.jpg[/img][/align][font=微软雅黑][size=16px][/size][/font][b][font=微软雅黑][size=18px]六、总结[/size][/font][/b][font=微软雅黑][size=16px]物质的磁性主要来自于核外电子的在轨运动,因此所有物质都具有一定磁性。依据物质进入磁场后对外表现出的磁特性可将物质分为:反磁性、顺磁性、铁磁性这三类。[/size][/font][font=微软雅黑][size=16px]反磁性物质由于核外不存在未成对电子,无论是否进入磁场,其合磁矩都为零,对外不表现出磁性。[/size][/font][font=微软雅黑][size=16px]顺磁性物质核外存在未成对电子,故具有一定的个体磁矩。热扰动的影响使得原子或分子间未成对电子排列杂乱,个体磁矩互相抵消,最终合磁矩为零,对外不表现磁性。当这类物质进入磁场,未成对电子受磁场的影响,克服热扰动的束缚而按磁场方向趋同排列,合磁矩不为零,将对外表现出磁性。由于合磁矩较弱,离开磁场后热扰动会使得这些未成对电子重归无序,磁性也随之消失。依据磁性的强弱,顺磁性物质可分为:弱顺磁、顺磁、超顺磁。[/size][/font][font=微软雅黑][size=16px]铁磁性物质的原子核外存在多个方向一致的未成对电子,形成“磁畴”。磁畴的合磁矩要远强于单个未成对电子,因此在离开磁场后,常温下,热扰动无法使这些磁畴重归无序,对外表现出所谓“磁滞”现象。该现象最先出现在铁器上,故被称为“铁磁性”。500度以上的高温,热扰动会使得磁畴重归无序,磁滞现象随即消失,这就是所谓的“高温消磁”。[/size][/font][font=微软雅黑][size=16px]扫描电镜的物镜有三种模式:外透镜、内透镜、半内透镜。[/size][/font][font=微软雅黑][size=16px]外透镜模式:物镜磁场封闭在透镜中不对外泄露,因此样品受磁场影响极小。缺点是镜筒内探头获取的样品信息较少,不利于形成样品的高分辨形貌像。[/size][/font][font=微软雅黑][size=16px]内透镜模式:样品置入物镜磁场,受磁场影响极大。优点是镜筒内探头获取样品信息充分,有利于高分辨像的形成。[/size][/font][font=微软雅黑][size=16px]该物镜模式对样品的限制极大。体积大小是一方面,更关键在于对样品磁性质的限制,故应用面不大,市占率不高。[/size][/font][font=微软雅黑][size=16px]半内透镜模式:物镜对样品仓泄漏部分磁场,小工作距离时样品进入物镜泄漏的磁场,大工作距离样品远离物镜磁场。该透镜模式兼顾了外透镜和内透镜模式的优、缺点。[/size][/font][font=微软雅黑][size=16px]目前外透镜及半内透镜模式是高分辨扫描电镜的两类主力机型。主流的观点认为: 外透镜模式适合磁性材料观察,半内透镜模式适合样品的高分辨观察。[/size][/font][font=微软雅黑][size=16px]通过对物质的磁性及物镜类型的仔细剖析发现,这种观念显得过于简单和偏颇。其存在的根源是基于两个错误概念:[/size][/font][font=微软雅黑][size=16px]1. 小工作距离才能获得高分辨像,并引伸为是进行扫描 电镜高分辨测试的基本选择。[/size][/font][font=微软雅黑][size=16px]2. 磁性材料才有磁性,且一定会被半内透镜物镜所磁化。[/size][/font][font=微软雅黑][size=16px]在样品的测试工作中,常常发现实际情况却是如下表现。[/size][/font][font=微软雅黑][size=16px]样品被磁化:无论哪种物镜模式都不会获得满意的结果。电子束都会被干扰,也都有可能被吸到物镜中去。[/size][/font][font=微软雅黑][size=16px]样品未被磁化:理论上外透镜物镜模式对样品进行测试可不受限制;半内透镜物镜模式,样品需在大工作距离下测试。[/size][/font][font=微软雅黑][size=16px]工作距离和图像分辨力之间并非是一种单调的变化关系。需要获取的样品表面信息细节大于20纳米,采用大工作距离、样品仓探头组合反而有更高的图像分辨力。[/size][/font][font=微软雅黑][size=16px]顺磁性、铁磁性物质的表面细节都较粗,在大工作距离下测试,获得的结果更充分,细节分辨更优异。因此这类样品更适合在大工作距离下采用样品仓探头来观察。[/size][/font][font=微软雅黑][size=16px]近几篇文章都在反复且充分的展示这样的结果:大工作距离测试对于扫描电镜来说极为关键。它不仅能给我们带来更多的样品信息,还充分扩展了应对疑难样品的操作空间。[/size][/font][font=微软雅黑][size=16px]特别是对于磁性较强的样品,扫描电镜在大工作距离测试时的分辨能力越强大,获取的样品表面信息就越充分。[/size][/font][b][font=微软雅黑][size=16px]参考书籍:[/size][/font][/b][font=微软雅黑][size=16px]《扫描电镜与能谱仪分析技术》张大同2009年2月1日[/size][/font][font=微软雅黑][size=16px]华南理工出版社[/size][/font][font=微软雅黑][size=16px]《微分析物理及其应用》 丁泽军等 2009年1月[/size][/font][font=微软雅黑][size=16px]中科大出版社[/size][/font][font=微软雅黑][size=16px]《自然辩证法》 恩格斯 于光远等译 1984年10月[/size][/font][font=微软雅黑][size=16px]人民出版社 [/size][/font][font=微软雅黑][size=16px]《显微传》 章效峰 2015年10月[/size][/font][font=微软雅黑][size=16px] 清华大学出版社[/size][/font][font=微软雅黑][size=16px]日立S-4800冷场发射扫描电镜操作基础和应用介绍[/size][/font][font=微软雅黑][size=16px]北京天美高新科学仪器有限公司 高敞 2013年6月[/size][/font]

  • 放射性物质检查系统

    放射性物质检查系统

    放射性物质检查系统是一种专门用于放射性恐怖活动和放射性物质非法转移的新型安检系统。该系统采用非常稳定和可靠的探测材料,对放射性物质探测灵敏度高,具有结构轻巧,便于安装、携带,检测信息能经过有线或无线进行网络传输,实现远程控制与监测,是保护社会和公众免受放射性危害的理想检查系统。特点:1.系统结构简单,安装方便2.灵敏度高,对放射源方位有较好辨别能力应用范围: *机场、海关口岸*车站、码头*体育和会议场馆等用于监测和检查行人、行李等是否携带放射性物质*CIAE1108A型:与危险品检查通道相配合用于行李、手提箱的检测;*CIAE1108B型:与金属探测安检门配合用于非金属包壳的放射性物品检测。

  • 【讨论】是否磁性金属粒子不能做NMR?

    我们知道,NMR测量的是原子核对于射频辐射的吸收,这种吸收只有在高磁场中才能产生。但,对于Fe,Co,Ni这样的顺磁性粒子,他们一般有很强的磁性,并且绝大部分贡献是外层电子贡献的磁性,所以外层电子对于核的磁性是不是有很大影响呢?是不是这样的粒子不可能检测NMR?

  • 请问测量物质磁性的技术有统称吗

    RT,听说测量磁性的技术有[font=Arial, &][size=16px][color=#333333]squid, agm, vsm等等,还分ac磁化率和dc磁化测量云云,那么它有类似于XRD、SEM这类的统称吗?[/color][/size][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制