当前位置: 仪器信息网 > 行业主题 > >

电生理仪原理

仪器信息网电生理仪原理专题为您提供2024年最新电生理仪原理价格报价、厂家品牌的相关信息, 包括电生理仪原理参数、型号等,不管是国产,还是进口品牌的电生理仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电生理仪原理相关的耗材配件、试剂标物,还有电生理仪原理相关的最新资讯、资料,以及电生理仪原理相关的解决方案。

电生理仪原理相关的资讯

  • 1712万!河南省医学科学院电生理研究所科研仪器设备采购项目
    一、项目基本情况1、项目编号:豫财招标采购-2024-4602、项目名称:河南省医学科学院电生理研究所科研仪器设备采购项目二项目3、采购方式:公开招标4、预算金额:17,120,800.00元最高限价:17120800元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20240555-1河南省医学科学院电生理研究所科研仪器设备采购项目二项目包一315110031511002豫政采(2)20240555-2河南省医学科学院电生理研究所科研仪器设备采购项目二项目包二447970044797003豫政采(2)20240555-3河南省医学科学院电生理研究所科研仪器设备采购项目二项目包三9800009800004豫政采(2)20240555-4河南省医学科学院电生理研究所科研仪器设备采购项目二项目包四493000049300005豫政采(2)20240555-5河南省医学科学院电生理研究所科研仪器设备采购项目二项目包五358000035800005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1 采购内容:电生理研究所科研仪器设备一批(详见采购清单);5.2 交货期:国产设备合同签订后 30 日历天;进口设备合同签订后 90 日历天;5.3 交货地点:河南省医学科学院电生理研究所;5.4 质量要求:合格(符合现行国家、行业、地方相关规范要求);5.5 质保期:国产设备为三年; 进口设备为一年;5.6 供应商可同时参与多个标包投标;6、合同履行期限:至质保期结束7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2024年05月24日 至 2024年05月30日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心网站(http://www.hnggzy.net/)。3.方式:投标人需要完成信息登记及 CA 数字证书办理后,凭 CA 数字证书(CA 密钥)登录市场主体系统按网上提示自行下载招标文件及相关资料(详见http://www.hnggzy.net/公共服务-办事指南),未按规定在网上下载招标文件的,其投标将被拒绝。4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省医学科学院地址:郑州市新郑市黄海路郑州临空生物医药园联系人:郑斌联系方式:0371-612665702.采购代理机构信息(如有)名称:大成工程咨询有限公司地址:郑州市金水区经三路15号1号楼A区12层1202号联系人:杨永丽、史岩岩联系方式:0371-655859063.项目联系方式项目联系人:杨永丽、史岩岩联系方式:0371-65585906
  • 2016植物生理生态及表型技术研讨会(上海)开幕 座无虚席
    2016年11月24日,继北京会场成功举办后,2016植物生理生态及表型技术研讨会移师上海举行。会议期间的上海正遭受年度最强寒潮的蹂躏,但严寒阻挡不了求知的欲望!上海会场参会嘉宾对新知识、新技术的热情不输北京,研讨会首日,100多人的会场即座无虚席。 与北京一样,上海会场的内容包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养等。多位植物生理生态及表型研究领域的中外专家与参会嘉宾现场面对面,专家讲嘉宾听,嘉宾问专家答,频繁的互动极大的活跃了会场交流的气氛。 为了让参会嘉宾对会上讲到的新技术及应用有更深的认识,泽泉科技在会场设置了展台,展示了WALZ公司、LemnaTec公司、CID公司等公司的产品,演示了部分产品的的操作和应用技巧,吸引了大量嘉宾的关注。 11月25日还将有7场报告,亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察也将在25日进行,精彩不容错过(请见后文研讨会日程)。泽泉科技携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,欢迎随时与我们交流。 上海会场会议日程:上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-9:45 Phyto-PAM-II 藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家)9:45-10:15 从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司)10:30-12:00 气体交换光合仪基本原理、实验技巧与日常维护 (主讲人:郭峰,上海泽泉科技股份有限公司) 午餐(青松城大酒店四楼 紫罗兰厅)13:00-14:00 超高通量园艺物流与 LemnaTec 最新植物表型测量技术介绍 (主讲人:李涛,上海泽泉科技股份有限公司)14:15-15:30 CID生理生态仪器介绍、实验技巧及日常维护 (主讲人:陈彦昌,上海泽泉科技股份有限公司)15:30-17:30 植物生理仪器使用现场交流,样机演示14:00-16:00 参观行程 AgriPheno™ 植物基因型-表型-育种平台参观注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 相关信息:?2016植物生理生态及表型技术研讨会开幕 首日百人参会?2016植物生理生态及表型技术研讨会第三轮通知
  • 经典库尔特原理及其发展——颗粒表征电阻法(下)
    前文回顾:发明人库尔特的传奇人生——颗粒表征电阻法(上)一、经典库尔特原理在经典电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。通常是在一片红宝石圆片上打上直径精确控制的小孔,然后将此圆片通过粘结或烧结贴在小孔管壁上有孔的位置。由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后), 小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。图1 颗粒通过小孔时由于电阻变化而产生脉冲在测量血球细胞等生物颗粒时所用的电解质为生理盐水(0.9%氯化钠溶液),这也是人体内液体的渗透压浓度,红细胞可以在这个渗透压浓度中正常生存,浓度过低会发生红细胞的破裂,浓度过高会发生细胞的皱缩改变。在测量工业颗粒时,通常也用同样的电解质溶液,对粒度在小孔管测量下限附近的颗粒,用 4%的氯化钠溶液以增加测量灵敏度。当颗粒必须悬浮在有机溶剂内时,也可以加入适用于该有机溶液的电解质后,再用此有机 溶液内进行测量。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。测量过程中检测到的脉冲数是测量到的颗粒数,脉冲的振幅与颗粒的体积成正比,从而可以获得颗粒粒度及其分布。由于每秒钟可测量多达 1 万个颗粒,整个测量通常在数分钟内可以完成。在使用已知粒度的标准物质进行校准后,颗粒体积测量的准确度通常在 1-2%以内。通过小孔的液体体积可以通过精确的计量装置来测量,这样就能从测量体积内的颗粒计数得到很准确的颗粒数量浓度。 为了能单独测量每个颗粒,悬浮液浓度必须能保证当含颗粒液体通过小孔时,颗粒是一个一个通过小孔,否则就会将两个颗粒计为一个,体积测量也会发生错误。由于浓度太高出现的重合效应会带来两种后果:1)两个颗粒被计为一个大颗粒;2)两个本来处于单个颗粒探测阈值之下而测不到的颗粒被计为一个大颗粒。颗粒通过小孔时可有不同的途径,可以径直地通过小孔,但也可能通过非轴向的途径通过。非轴向通过时不但速度会较慢,所受的电流密度也较大,结果会产生表观较大体积的后果,也有可能将一个颗粒计成两个[1]。现代商业仪器通过脉冲图形分析可以矫正由于非轴向流动对颗粒粒度测量或计数的影响。图2 颗粒的轴向流动与非轴向流动以及产生的脉冲经典库尔特原理的粒度测量下限由区分通过小孔的颗粒产生的信号与各种背景噪声的能力所决定。测量上限由在样品烧杯中均匀悬浮颗粒的能力决定。每个小孔可用于测量直径等于 2%至 80%小孔直径范围内的颗粒,即 40:1 的动态范围。实用中的小孔直径通常为 15 µm 至 2000 µm,所测颗粒粒度的范围为 0.3 µm 至 1600 µm。如果要测量的样品粒度分布范围比任何单个小孔所能测量的范围更宽,则可以使用两个或两个以上不同小孔直径的小孔管,将样品根据小孔的直径用湿法筛分或其他分离方法分级,以免大颗粒堵住小孔,然后将用不同小孔管分别测试得到的分布重叠起来,以提供完整的颗粒分布。譬如一个粒径分布为从 0.6 µm 至 240 µm 的样品,便可以用 30 µm、140 µm、400 µm 三根小孔管来进行测量。 库尔特原理的优点在于颗粒的体积与计数是每个颗粒单独测量的,所以有极高的分辨率,可以测量极稀或极少个数颗粒的样品。由于体积是直接测量而不是如激光衍射等技术的结果是通过某个模型计算出来的,所以不受模型与实际颗粒差别的影响,结果一般也不会因颗粒形状而产生偏差。该方法的最大局限是只能测量能悬浮在水相或非水相电解质溶液中的颗粒。使用当代微电子技术,测量中的每个脉冲过程都可以打上时间标记后详细记录下来用于回放或进行详细的脉冲图形分析。如果在测量过程中,颗粒有变化(如凝聚或溶解过程,细胞的生长或死亡过程等),则可以根据不同时间的脉冲对颗粒粒度进行动态跟踪。 对于球状或长短比很接近的非球状颗粒,脉冲类似于正弦波,波峰的两侧是对称的。对很长的棒状颗粒,如果是径直地通过小孔,则有可能当大部分进入感应区后,此颗粒还有部分在感应区外,这样产生的脉冲就是平台型的,从平台的宽度可以估计出棒的长度。对所有颗粒的脉冲图形进行分析,可以分辨出样品中的不同形状的颗粒。 大部分生物与工业颗粒是非导电与非多孔性的。对于含贯通孔或盲孔的颗粒,由于孔隙中填满了电解质溶液,在颗粒通过小孔时,这些体积并没有被非导电的颗粒物质所替代而对电脉冲有所贡献,所以电感应区法测量这些颗粒时,所测到的是颗粒的固体体积,其等效球直径将小于颗粒的包络等效球直径。对于孔隙率极高的如海绵状颗粒,测出的等效球直径可以比如用激光粒度仪测出的包络等效球小好几倍。 只要所加电场的电压不是太高,通常为 10 V 至 15 V,导电颗粒譬如金属颗粒也可以用电阻法进行测量,还可以添加 0.5%的溴棕三甲铵溶液阻止表面层的形成。当在一定电流获得结果后,可以使用一半的电流和两倍的增益重复进行分析,应该得到同样的结果。否则应使用更小的电流重复该过程,直到进一步降低电流时结果不变。 在各种制造过程中,例如在制造和使用化学机械抛光浆料、食品乳液、药品、油漆和印刷碳粉时,往往在产品的大量小颗粒中混有少量的聚合物或杂质大颗粒,这些大颗粒会严重影响产品质量,需要进行对其进行粒度与数量的表征。使用库尔特原理时,如果选择检测阈值远超过小颗粒粒度的小孔管(小孔直径比小颗粒大 50 倍以上),则可以含大量小颗粒的悬浮液作为基础液体,选择适当的仪器设置与直径在大颗粒平均直径的 1.2 倍至 50 倍左右的小孔,来检测那些平均直径比小颗粒至少大 5 倍的大颗粒 [2]。 二、库尔特原理的新发展 可调电阻脉冲感应法可调电阻脉冲感应法(TRPS)是在 21 世纪初发明的,用库尔特原理测量纳米颗粒的粒度与计数。在这一方法中,一个封闭的容器中间有一片弹性热塑性聚氨酯膜,膜上面有个小孔,小孔的大小(从 300 nm 至 15 m)可根据撑着膜的装置的拉伸而变来达到测量不同粒度的样品。与经典的电阻法仪器一样,在小孔两边各有一个电极,测量由于颗粒通过小孔而产生的电流(电压) 变化。它的主要应用是测量生物纳米颗粒如病毒,这类仪器不用真空抽取液体,而是用压力将携带颗粒的液体压过小孔。压力与电压都可调节以适用于不同的样 品。由于弹性膜的特性,此小孔很难做到均匀的圆形,大小也很难控制,每次测得的在一定压力、一定小孔直径下电脉冲高度与粒度的关系,需要通过测量标准颗粒来进行标定而确定。图3 可调电阻脉冲感应法示意图当小孔上有足够的压力差时,对流是主要的液体传输机制。 由于流体流速与施加的压力下降成正比,颗粒浓度可以从脉冲频率与施加压力之间线性关系的斜率求出。但是需要用已知浓度的标准颗粒在不同压力下进行标定以得到比例系数[3]。 这个技术在给定小孔直径的检测范围下限为能导致相对电流变化 0.05%的颗粒直径。检测范围的上限为小孔孔径的一半,这样能保持较低程度的小孔阻塞。典型的圆锥形小孔的动态范围 为 5:1 至 15:1,可测量的粒径范围通常从 40 nm 至 10 µm。 此技术也可在测量颗粒度的同时测量颗粒的 zeta 电位,但是测量的准确度与精确度都还有待提高,如何排除布朗运动对电泳迁移率测量的影响也是一个难题[4]。微型化的库尔特计数仪随着库尔特原理在生物领域与纳米材料领域不断扩展的应用,出现了好几类小型化(手提式)、微型化的库尔特计数仪。这些装置主要用于生物颗粒的检测与计数,粒度不是这些应用主要关心的参数,小孔的直径都在数百微米以内。与上述使用宏观压力的方法不同的是很多这些设计使用的是微流控技术,整个装置的核心部分就是一个微芯片,携带颗粒的液体在微通道中流动,小孔是微通道中的关卡。除了需要考虑液体微流对测量带来的影响,以及可以小至 10 nm 的微纳米级电极的生产及埋入,其余的测量原理和计算与经典的库尔特计数器并无两致。这些微芯片可以使用平版印刷、玻璃蚀刻、 防蚀层清除、面板覆盖等步骤用玻璃片制作[5], 也可以使用三维打印的方式制作[6]。一些这类微流控电阻法装置已商业化。图4 微流计数仪示意图利用库尔特原理高精度快速的进行 DNA 测序近年来库尔特原理还被用于进行高精度、快速、检测误差极小的 DNA 或肽链测序。这个技术利用不同类型的纳米孔,如石墨烯形成的纳米孔或生物蛋白质分子的纳米孔,例如耻垢分枝杆菌孔蛋白 A(MspA)。当线性化的 DNA-肽复合物缓慢通过纳米孔时,由于不同碱基对所加电场中电流电压的响应不同,通过精确地测量电流的变化就可对肽链测序。由于此过程不影响肽链的完整性,如果将实验设计成由于电极极性的变化而肽链可以来 回反复地通过同一小孔,就可以反复地读取肽链中的碱基,在单氨基酸变异鉴定中的检测误差率可小于 10-6[7,8]。图5 纳米孔 DNA 测序库尔特原理的标准化 早在 2000 年,国际标准化组织就已成文了电感应区法测量颗粒分布的国际标准(ISO 13319),并得到了广泛引用。在 2007 年与 2021 年国际标准化组织又前后两次对此标准进行了修订。中国国家标委会也在 2013 年对此标准进行了采标,成为中国国家标准(GB/T 29025-2012)。参考文献【1】Berge, L.I., Jossang, T., Feder, J., Off-axis Response for Particles Passing through Long Apertures in Coulter-type Counters, Meas Sci Technol, 1990, 1(6), 471-474. 【2】Xu, R., Yang, Y., Method of Characterizing Particles, US Patent 8,395,398, 2013. 【3】Pei, Y., Vogel, R., Minelli, C., Tunable Resistive Pulse Sensing (TRPS), In Characterization of Nanoparticles, Measurement Processes for Nanoparticles, Eds. Hodoroaba, V., Unger, W.E.S., Shard, A.G., Elsevier, Amsterdam, 2020, Chpt.3.1.4, pp117-136.【4】Blundell, E.L.C.J, Vogel, R., Platt, M., Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing, Langmuir, 2016, 32(4), 1082–1090. 【5】Zhang, W., Hu, Y., Choi, G., Liang, S., Liu, M., Guan, W., Microfluidic Multiple Cross-Correlated Coulter Counter for Improved Particle Size Analysis, Sensor Actuat B: Chem, 2019, 296, 126615. 【6】Pollard, M., Hunsicker, E., Platt, M., A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics, ACS Sens, 2020, 5(8), 2578–2586. 【7】Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Nanopore DNA sequencing with MspA, P Natl Acad Sci, 107(37), 16060-16065, 2010. 【8】Brinkerhoff, H., Kang, A.S.W., Liu, J., Aksimentiev, A., Dekker, C., Multiple Rereads of Single Proteins at Single– Amino Acid Resolution Using Nanopores, Science, 374(6574), 1509-1513, 2021. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 310万!山东大学心肌细胞功能电生理分析系统采购项目
    项目编号:SDJDHF20220611-Z376/HYHA2023-0070项目名称:山东大学心肌细胞功能电生理分析系统采购预算金额:310.0000000 万元(人民币)最高限价(如有):310.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1心肌细胞功能电生理分析系统1台详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:山东大学地址:山东大学中心校区明德楼联系方式:山东大学0531-883697972.采购代理机构信息名 称:海逸恒安项目管理有限公司地址:0531-82661637联系方式:刘卿艳3.项目联系方式项目联系人:刘卿艳电话:0531-82661637山东大学心肌细胞功能电生理分析系统采购参数.pdf
  • 2016植物生理生态及表型技术研讨会开幕 首日百人参会
    2016年11月21日,由上海泽泉科技股份有限公司主办的2016植物生理生态及表型技术研讨会(北京会场)正式开幕。会期恰遇年度最强寒潮来袭,北京天寒地冻,但挡不住与会嘉宾求知的欲望与热情,开幕首日即已吸引百人参会。 本次研讨会包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养以及亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察等内容。多位植物生理生态及表型研究领域的中外专家与参会嘉宾现场面对面,学术交流气氛热烈。 报告间隙,泽泉科技样机展台很受关注,前来咨询交流的嘉宾络绎不绝。通过跟技术工程师的深入交流,结合样机的实际操作,与会嘉宾进一步的理解和消化了讲座中提到的新技术和新应用。 11月22日还将有7场报告,精彩不容错过(请见后文研讨会日程)。 泽泉科技携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,欢迎您报名参会,免费听讲座! 更多会议信息请点击:2016植物生理生态及表型技术研讨会第三轮通知。 会议时间与地点: 北京:2016年11月21日至11月22日 地点:北京市海淀区增光路55号北京紫玉饭店 上海:2016年11月24日至11月25日 地点:上海市徐汇区肇嘉浜路777号青松城大酒店 会议日程:北京紫玉饭店(玉澜楼二层多功能厅)(11月21日至11月22日)11月21日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店正门) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(紫玉饭店一层自助餐厅)11月22日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型) (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)11月23日 泽泉科技北京分公司办公地址现场答疑及仪器免费维护上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型)(主讲人:张弘,上海泽泉科技应用科学家,擅长领域:植物表型测量,分子生物学)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护 (主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析 (主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)14:00-16:00 参观行程 AgriPheno™ 植物基因型-表型-育种平台参观注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 参会二维码
  • 2016植物生理生态及表型技术研讨会主讲人公布(第三轮通知 )
    尊敬的老师: 您好! 为更好地服务全国的科研用户,为全国高校、研究所的科研工作提供技术保障,为植物科研领域研究人员更深入地了解最新的产品及测量技术,上海泽泉科技股份有限公司将于2016年11月21日至11月25日分别在北京和上海两地举办2016植物生理生态及表型技术研讨会。会议内容包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养以及亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察等。 现向全国高校、研究所科研人员发出诚挚邀请,期待您的光临!上海泽泉科技股份有限公司携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,期待与您的交流与合作。 此致 敬礼! 上海泽泉科技股份有限公司 2016年11月04日 北京:2016年11月21日至11月22日 地点:北京市海淀区增光路55号北京紫玉饭店 上海:2016年11月24日至11月25日 地点:上海市徐汇区肇嘉浜路777号青松城大酒店 ? 强强联合的魅力——WALZ不同生理测量技术的联用 ? CID生理生态测量技术的介绍和应用 ? 土壤测量技术解决方案 ? 调制叶绿素荧光和P700测量技术原理、PAM实验技巧及样机操作演示 ? 高通量植物表型技术介绍 ? 先进种子选育技术介绍 ? 气体交换光合仪原理、实验技巧、日常维护及样机操作演示 ? 根系测量技术解决方案 ? 藻类光合测量的核武器——Phyto-PAM-II介绍 ? AgriPheno™ 高通量植物基因型-表型-育种平台介绍及参观考察 北京紫玉饭店(玉澜楼二层多功能厅)(11月21日至11月22日)11月21日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店正门) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(紫玉饭店一层自助餐厅)11月22日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型) (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)11月23日 泽泉科技北京分公司办公地址现场答疑及仪器免费维护上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型)(主讲人:张弘,上海泽泉科技应用科学家,擅长领域:植物表型测量,分子生物学)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护 (主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析 (主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)14:00-16:00 参观行程 AgriPheno™ 植物基因型-表型-育种平台参观 注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 1、参会方式: 请参会人员于2016年11月20日前将参会回执(附件1)通过电子邮件发送至邮箱:qinglu.wei@zealquest.com,或传真发至021-32555117。我们将根据参会回执协助推荐住宿和安排参会事宜;扫描以下二维码,提交信息直接参会。参会二维码 2、参观考察回执:本次会议将安排于2016年11月25日下午前往位于上海浦东孙桥现代农业产业园区的AgriPheno™ 高通量植物基因型-表型-育种平台参观考察,本次考察仅限于上海会场参会人员,如您需参加,请前往上海会场参会,并在参观考察回执中填写参观人数,我们会根据您的回执租赁车辆负责接送。 3、仪器维护:本次会议期间将提供生理生态仪器的免费检测与保养,请需要仪器检测的参会人员在参会回执中注明是否携带仪器参会并填写“仪器设备维修服务单”(附件2),与参会回执一同发至会务组;如不方便随身携带仪器参会,可提前将仪器寄至我司上海总部或北京分公司,邮寄前请填写并打印“仪器设备维修服务单”随仪器寄出,并请提前与会务组联系确认。仪器维护工作如无法在会议期间全部完成,我司将在仪器全面维护完成后将其寄回。如涉及更换配件,视仪器质保情况,可能收取配件成本费用。 美国CID德国LemnaTec 德国WALZ 加拿大Conviron 北京会场会务联系人 李俊艳:tracy.li@zealquest.com 电话:010-88824075转618 传真:010-88824075 仪器邮寄地址:北京市海淀区北三环西路43号青云当代大厦1907室(100086) 上海会场会务联系人 魏庆璐:qinglu.wei@zealquest.com 电话:021-32555118转8048 传真:021-32555117 仪器邮寄地址:上海市普陀区金沙江路1038号华东师大科技园2号楼8层(200062) 附件1:2016植物生理生态及表型技术研讨会参会回执.doc 附件2:2016植物生理生态及表型技术研讨会维修服务单.doc
  • 石墨烯 “新材料之 王”竟成为神经电生理研究新选择,为什么它拥有无限潜力?
    “新材料之 王”是什么? 石墨是的一种同素异形体,质软,黑灰色,有油腻感。高定向热解石墨(highly oriented pyrolytic graphite)是指热解石墨,经高温处理使性能接近单晶石墨的一种新型石墨,简称HOPG。在2004年来自英国曼彻斯特大学的科学家们从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,把石墨片一分为二,不断重复操作,于是薄片越来越薄,最 后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。(▲三层碳原子构成的石墨结构分子示意图)在分离出单层石墨烯之前,大多数物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以,石墨烯的发现立即震撼了凝聚体物理学界。但是实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是一层甚至几层石墨烯。(▲由石墨烯构成的铅笔芯,图片取自央广网科普|习主席访英为何青睐&ldquo 奇迹材料&rdquo 石墨烯?2015-10-23) 石墨烯结构特点碳原子有4个价电子,石墨烯内部碳原子的3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻原子的pz轨道与平面成垂直方向可形成&pi 键,新形成的&pi 键呈半填满状态。形成的石墨烯为复式六角形晶格,每个元胞中有两个碳原子,每个原子与最近邻的 3个原子间形成3个&sigma 键,剩余的一个p电子垂直于石墨烯平面,与周围原子形成&pi 键。(▲石墨烯结构示意图,石墨烯的蜂窝状晶格包括两层互相透入的三角形晶格,每个子晶格A的格点都位于其他子晶格B确定的三角形中央,共同形成石墨烯的蜂窝状晶格)(▲石墨烯结构的波失空间,石墨烯的晶体结构与倒格子,所谓倒格子是与晶格空间相对应傅里叶变换出来的波矢空间,或称动量空间)(▲石墨烯能带结构图)我们可以看出在 K 和 K&rsquo 点附近,费米面附近的电子能量E与波矢 k成线性的关系,E= F|hk|v , 其中k为准粒子动量,Vf =106 m/s,为费米速度。色散关系是近似线性的,这等效于动量与能量的关系为线性,这也就表明电子的速度为常量,并不受动量与动能的影响。在这种情况下,薛定谔方程来描述粒子的运动已经无效了,我们需要运用引入了相对论效应的狄拉克方程来描述。关于石墨烯非常高的电子迁移率的原因也是由于狄拉克点的存在,由于量子隧穿效应的影响,电子有概率穿过高于自身能量的势场。石墨烯的优势有什么?由于存在这样的特殊结构,石墨烯具备了超高的载流子迁移性,也就具备了良好的导电性和极高的信噪比以及时间分辨率。所有性能都基于结构,所以,石墨烯同样还具备轻盈,高导热性,做同样的功所消耗电力少,化学反应性强,强度高,比表面积大,高弹性高硬度等特点,发热少等优点。这么多优点又如此应用广泛,难怪石墨烯被称为&ldquo 黑金&rdquo ,是&ldquo 新材料之 王&rdquo !2004年被发现,发现者2010年就获得了诺贝尔物理学奖,连我们的习大大都去参观了曼彻斯特大学的石墨烯研究所呢!在笔者看来最重要的一个特点是,单层的石墨烯近乎透明,对于应用场景的限制大大减少了。石墨烯如何制备?石墨烯之父采用的是机械剥离法,这个方法较为简便,将天然石墨块放在干净的二氧化硅SiO2上,上方用透明胶带反复剥离,从而得到石墨薄片。根据菲涅尔定律,在外部光源照射下,石墨烯与SiO2基底之间会因反射光强不同呈现光学反差,并且这种光学反差随着石墨样品厚度增加有着明显改变,借此办法来确定石墨烯是否为单层或多层。这个方法虽然简便,但不适合大规模生产。除此之外还有氧化还原法, 取向附生法, 碳化硅外延法, 赫默法以及化学气相沉积法(CVD)。CVD法简单说来就是用含碳有机气体为原料进行气相沉积制得石墨烯薄膜的方法,这也是目前科研机构制备石墨烯常用的方法。(▲化学气相沉积法CVD示意图)例如以铜Cu或镍Ni为基底,高温加热,并辅以甲烷作为碳源补充,使甲烷中的碳原子脱去氢,在基底上形成石墨烯。不同材质的基底对于碳原子溶解性不同,所以会产生&ldquo 石墨烯岛&rdquo 或&ldquo 石墨烯膜&rdquo ,通过控制气压高低可以获得单层石墨烯或多层石墨烯。 石墨烯的应用极高的信噪比和时间分辨率让石墨烯在生物电信号采集时具有极大的优势。目前的生物电传感器主要集中在膜片钳和微电极阵列,前者具备较高的空间分辨率,信噪比较好,但对生物体有损伤;后者没有损伤且可长时间记录生物体膜外信号,但是信噪比和空间分辨率相对较低。场效应晶体管是一种很好的代替微电极阵列的记录工具,利用场效应晶体管可以很好的记录小鼠大脑皮层或者海马区的神经电生理信号,也可以将其刺穿细胞膜来记录膜内电势差。这种技术信噪比较高,集成度也不错。石墨烯场效应晶体管和传统的场效应晶体管类似,但需要在石墨烯的表面做相应的修饰,使其能特异性识别某种分子或物质这样就既可以提高生物相容性和灵敏度,又能把石墨烯载流子迁移率高和载流子浓度高的特点发挥得淋漓尽致。上图为60通道石墨烯微电极阵列示意图,PI:1-&mu m-thick light-sensitive polyimide,即1微米厚光敏聚酰亚胺1,以此装置记录大鼠胚胎分离的神经细胞电生理活动。上图为石墨烯晶体管进行细胞电信号记录示意图,在柔性聚酰亚胺基底和透明基底(蓝宝石,玻璃,SiO2 /Si) 上制备了石墨烯液栅晶体管器件如上图所示,并用其记录小鼠初级海马神经元的神经信号2,因石墨烯材料透明的特点,同时结合倒置光学显微镜,观察细胞的光学特征。上图是石墨烯晶体管上培养的神经元细胞图,培养21天后的神经元进行免疫荧光染色2,DAPI(红色)和anti-Synapsin(绿色)染色,分别胞体和突触囊泡)机械剥离的石墨烯对心肌细胞电生理信号的记录3,A:在不同water gate potentias下记录的数据。蓝色、绿色和红色分别代表在 +0.05、+0.10 和 +0.15 V 下所记录。相应的灵敏度分别为 2020、398 和 2290 &mu S/V。B:所选栅极电位的代表性扩展峰值。蓝色类似于在石墨烯 FET 的 p 型器件极性处记录的结果,红色峰代表在n型器件极性处记录的结果,绿色峰代表在Gra-FET的狄拉克点附近记录的结果。上图为16通道石墨烯晶体管阵列记录HL-1细胞电生理信号4, 比例尺为100 &mu m。一个石墨烯场效应晶体管阵列中8个晶体管在数十秒(h)和数百秒(i)内同时记录电流的情况。图:细胞相容性测试,37摄氏度下,不同浓度纯石墨烯(上)和氧化石墨烯(下)处理Vero细胞后的存活率情况5。 石墨烯最 新应用研究近日,来自曼彻斯特大学的纳米医学实验室的研究者们利用利用石墨烯近乎透明的特点,监测脑缺血小鼠大脑皮层的电信号,并同时监测皮层血流灌注量变化情况,因为石墨烯近乎透明的性质,在激光成像下不会产生激光伪影(如下图所示)。(▲利用石墨烯透明的特点,监测脑缺血小鼠大脑皮层的电信号,并同时监测皮层血流灌注量变化情况,由RWD RFLSI Ⅲ激光散斑血流成像系统采集)总结石墨烯具备了许多神经电极活性材料的特性,如良好的相容性、化学稳定性、柔韧性、光学透明性和高导电性等,为更精 准的神经电生理研究提供了新的选择。识别下方二维码快来免费申请试用吧* 敬请期待下期内容,脑卒模型下的神经电生理相关特点。【参考文献】1:Du X, Wu L, Cheng J, Huang S, Cai Q, Jin Q, Zhao J. Graphene microelectrode arrays for neural activity detection. J Biol Phys. 2015 Sep 41(4):339-47.2. Veliev F, Han Z, Kalita D, Brianç on-Marjollet A, Bouchiat V, Delacour C. Recording Spikes Activity in Cultured Hippocampal Neurons Using Flexible or Transparent Graphene Transistors. Front Neurosci. 2017 11:466.3. Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010 Mar 10 10(3):1098-102.4. Hess LH, Jansen M, Maybeck V, Hauf MV, Seifert M, Stutzmann M, Sharp ID, Offenhä usser A, Garrido JA. Graphene transistor arrays for recording action potentials from electrogenic cells. Adv Mater. 2011 Nov 16 23(43):5045-9, 4968. 5. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011 Jun 3(6):2461-4.
  • 【仪器百科】光合作用测定仪工作原理与参数指标
    工作原理植物光合作用测定仪是一款用于检测植物叶片光合作用的实验仪器,适用于人工气候室、温室、大棚、大田等环境。该测定仪通过多项参数的测量,分析植物在不同环境条件下的光合作用情况。其工作原理主要包括以下几个方面:CO2分析:采用非扩散式红外CO2分析技术,测定空气中的CO2浓度,通过监测植物周围CO2浓度变化,计算出植物的光合作用速率。温湿度测量:利用高精度传感器,测量环境温度、环境湿度、叶室温度、叶室湿度及叶面温度,提供植物生理状态及环境条件的全面信息。光合有效辐射(PAR):通过光传感器测定植物接收到的光合有效辐射强度,了解光照对植物光合作用的影响。气体交换测量:通过测量气孔导度、蒸腾速率及胞间CO2浓度,评估植物叶片的气体交换效率和水分利用情况。通过上述测量数据,光合作用测定仪可以计算出植物的光合速率(Pn)、水分利用率(WUE)、呼吸速率(Rd)及蒸腾比(TR)等重要生理参数,为植物生长生理、光合生理及胁迫生理研究提供可靠的数据支持。了解更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C561710.html参数指标1、空气CO2浓度测量技术:非扩散式红外CO2分析测量范围:0-3000 μmol/mol (ppm)分辨率:0.0005 ppm误差:≤ 3% FS2、环境温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃3、环境湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH4、叶室温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃5、叶室湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH6、叶面温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃7、大气压力测量范围:30-110 kPa分辨率:0.01 kPa误差:≤ ±0.06 kPa8、光合有效辐射(PAR)测量范围:0-3000 μmol/(m² s)分辨率:0.001 μmol/(m² s)误差:≤ ±5 μmol/(m² s)9、光合速率(Pn)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)10、气孔导度(Gs)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)11、蒸腾速率(Tr)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)12、胞间CO2浓度(Ci)单位:μmol/mol分辨率:0.001 μmol/mol13、水分利用率(WUE)单位:μmol CO2/mol H₂ O分辨率:0.001 μmol CO2/mol H₂ O14、呼吸速率(Rd)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)15、蒸腾比(TR)单位:μmol H₂ O/mmol CO2分辨率:0.001 μmol H₂ O/mmol CO2植物光合作用测定仪的高精度和多参数测量能力,使其成为农业科研、教学、园艺、草业、林业等领域中不可或缺的重要工具。农业科研植物光合作用测定仪在农业科研中用于评估作物光合作用效率,筛选高效能品种,优化栽培技术,并研究环境变化对作物生长的影响,从而提升农业生产力。教学在教学中,该仪器为植物生理学和生态学课程提供实验平台,帮助学生理解植物光合作用原理,培养科研能力和实验技能,通过多参数测量了解植物在不同环境下的生理响应。园艺园艺领域利用该仪器监测花卉和观赏植物的光合作用,调节温室环境,优化生长状态。它还能帮助选育具观赏价值和抗逆性的品种,并评估病虫害防治效果。草业在草业中,该仪器用于评估牧草生长状况和生产力,研究不同品种的适应性和生产潜力。还可用于草地改良和生态修复,指导草地管理和保护措施。林业林业领域通过测定仪监测树木光合作用,评估森林健康状况和碳吸收能力。它提供树木生理响应数据,帮助制定森林管理策略,并研究树木对环境胁迫的适应机制,指导林木品种选育和改良。植物光合作用测定仪在以上各领域中提供重要技术支持,促进了科研进步和产业发展。
  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 泽泉科技2016植物生理生态及表型技术研讨会成功举办
    2016年11月21日至11月25日,由上海泽泉科技股份有限公司主办的“2016植物生理生态及表型技术研讨会”分别在北京和上海成功召开。来自全国各地90多家科研单位以及公司的近200位专家学者出席此次研讨会。本次会议旨在更好地服务全国的科研用户,为全国高校、研究所的科研工作提供技术保障,让植物科研领域研究人员更深入地了解最新的产品及测量技术。 北京会场 研讨会期间恰逢年度最强寒潮来袭,但严寒阻挡不了求知的欲望!北京上海两地会场,首日皆有百人与会。多位植物生理生态及表型研究领域的中外专家与参会嘉宾围绕叶绿素荧光测量技术、CID产品技术、气体交换光合仪的原理及实验技巧、植物表型测量技术等内容,进行了深入的沟通和交流。德国WALZ公司应用科学家Oliver Meyerhoff以“植物3D荧光成像技术介绍及样机演示”为题,专业地阐述了3D荧光成像技术的原理、使用技巧及最新应用。果实采后生理是目前研究热点之一,美国CID公司总裁Leonard Felix报告的“美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用”就引起了与会嘉宾的极大关注,由产品公司总裁亲自讲解不仅保证了报告的专业性、可靠性,而且更体现了泽泉科技对技术提供与售后保障的负责态度。上海慧算生物技术有限公司的张国斌博士带来的讲座“从分子到表型——高通量测序与表型关联分析”,则将与会嘉宾的目光从生理生态研究成功转移到了表型研究上,深入浅出的讲解,让基因研究与表型研究的关系变得更加直观明了。 北京会场参会嘉宾 作为东道主,泽泉科技的技术专家也实力不俗。本次研讨会上,泽泉科技技术专家带来的“CT等新技术在根系研究中的应用”,“种子选育技术”,“CONVIRON植物培养解决方案”,“调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术”,“LemnaTec最新植物表型测量技术”,“气体交换光合仪基本原理、实验技巧及日常维护”等报告内容,不仅专业,而且贴近实际,完美的解决了与会嘉宾遇到的各种科研问题。 上海会场 研讨会期间,泽泉科技在两个会场都设置了展台,不仅展示WALZ、LemnaTec、CID等公司的产品,还为与会嘉宾提供现场仪器体验、讲解与维护保养服务。不论新老客户都得其所需,疑问与困惑由公司技术与国外专程远道而来的专家讲解答疑,已购买的仪器也可以现场调试安装,泽泉科技完美的客户服务受到一致好评。 上海会场 研讨会的最后一项活动是亚洲第一个开放式高通量植物基因型-表型-育种平台——AgriPheno的参观考察。50多位老师在AgriPheno平台专业团队的带领下兴致勃勃地参观了德国LemnaTec植物表型平台(Scanalyzer 3D、HTS、PL)、植物生理生态测量平台、农业云物联网监测平台、荷兰Priva温室精准灌溉系统、专业的数据库平台、步入式培养箱和人工气候室等。一系列的参观项目引起了老师的强烈兴趣,原定的参观时间不得不一次次的延长。AgriPheno平台科研人员专业、详细的讲解获得了老师的交口称赞,许多老师表示平台这种服务模式先进化、人性化,对科研的推动具有不可或缺的价值! 与会嘉宾参观AgriPheno平台 上海会场参会嘉宾 本次研讨会受到全国科研单位老师同学的大力支持,会议获得圆满成功。通过本次植物生理生态及表型技术研讨会,泽泉科技进一步加强了与广大专家学者的合作,将一如既往的为广大客户提供优质的产品和完善的服务。
  • 新型可穿戴设备 利用电化学原理发电
    据PCWorld网站报道,目前可穿戴设备通常用于追踪锻炼和健身活动,但是,可穿戴设备可以用于为其他可穿戴设备提供电能吗?麻省理工学院的一项新研究将很快使这成为可能。  一直以来,电能都是制约可穿戴设备和其他移动设备发展的一个因素。但麻省理工学院研究人员本周宣布,他们已经发现了利用幅度很小的弯曲运动发电的方法。  PCWorld表示,他们的系统利用两层很薄的锂合金片作为电极,然后在两个电极之间夹一层浸泡有液态电解质的多孔聚合物。即使轻微的弯曲,也会在连接在两个电极间的外部电路中产生电压和电流,从而为其他设备供电。只需在一端施加很小的力,就能引起锂合金金属片弯曲,例如,把装置固定在手臂或腿上。  麻省理工学院研究人员指出,利用轻微运动发电还有其他方法,但它们利用不同原理。大多数方法利用了摩擦起电效应——例如把羊毛和气球相互摩擦,或压电效应。麻省理工学院材料科学和工程教授李举(Ju Li,音译)表示,这些传统方法存在“电阻大、弯曲刚度大、成本高”的缺陷。  麻省理工学院称,通过利用电化学原理,新技术能利用大量自然运动和活动生成电能,其中包括典型的人类活动,例如走路或锻炼。  这类设备不仅仅能低成本地批量生产,而且天生很柔韧,这使得它们与可穿戴设备更搭,在外力作用下不容易受损。  李举表示,测试设备已经证明这一系统非常稳定,在使用1500个周期后仍然能保持其性能。  PCWorld称,这一技术的其他潜在用途包括生物医学设备,或者应用在道路、桥梁、甚至是键盘中的嵌入式压力传感器。  麻省理工学院的这一成果当地时间周三发表在《Nature Communications》上。
  • 高压漏电起痕试验机的测试原理是什么?
    高压漏电起痕试验机的测试原理是什么?实验原理:漏电起痕试验是在固体绝缘材料表面上,在规定尺寸(2mm×5mm) 的铂电极之间,-施加某一电压并定时(30s)定高度(35mm)滴下规定液滴体积的导电液体(0.1%NH 4CL),用以评价固体绝缘材料表面在电场和潮湿或污染介质联合作用下的耐漏电性能,测定其相比电痕化指数(CT1) 和耐电痕化指数(PT1) 。主要配件 序号型号产地1箱体(可选不锈钢箱体)宝钢A3钢板,喷塑2变压器浙江二变3调压器正泰4继电器及底座正泰5漏电保护器正泰6按钮正泰7计时器欧姆龙8短路电流智能表上海9温控器日本欧姆龙10导线上海启帆11计数器欧姆龙12无线控制器上海埃微自主研发13电磁阀亚德克在操作过程中要注意的事项:1、在操作过程中,人员应该注意个人防护,避免漏电受伤或被溶液沾染到口、眼部位造成伤害2、输入电源AC220±2%。3、排气管应通出窗外。4、在对样品进行时,请勿打开仓门,待试验完之后或当实验失效产生火烟时,先打开风扇排除烟雾后,再打开仓门进行作业。5、实验前须确认设备是否在计量有效期内,如超期则不能进行实验6、电源应用有地线的三极插座,保证接地可靠。主要技术指标:1) 空气环境:0~40°C;2) 相对湿度:≤80%;3) 无明显振动及腐蚀性气体的场所;4) 工作电压:AC220V±2% 50HZ±1%,1KVA;5) 试验电压:100~600V连续可调数显,电压表显示值误差:1.5%,显示值为:r.m.s;6) 延时电路:试验回路在(0.5±10%)A(r.m.s)或更大电流时延时(2±10%)S后动作;电极:a: 5㎜×2㎜矩形铂金电极和黄铜电极各一对;b: 电极尺寸要求:(5±0.1)㎜×(2±0.1)㎜×(≥12)㎜,其中一端凿尖角度为(30±2)°(即试验端呈30°±2°斜角),凿尖平面宽度为0.01㎜~0.1㎜;c: 电极间所成角度为60°±5°,间距为(4±0.1㎜);d: 对样品压力为:1.00N±0.05N;7) 滴液系统:a: (30±5)秒(开启滴液时间28S+开启滴液持续时间2S)自动计数、数显(可预置),50滴时间:(24.5±2)min b: 滴液针嘴到样品表面高度:35㎜±5㎜(附一个量规作测量参考) c: 滴液重量:20滴:0.380g~0.489g 50滴:0.997g~1.147g 8) 短路电流:两电极短路时的电流可调至(1±0.1)A,数显±1%,电流表显示值为有效值(r.m.s) 9) 仪器外形尺寸(宽*高*深)1100*1150*550㎜(0.5立方);700*385*1000㎜(0.1立方);10) 箱体由1.2厚的304不锈钢板制成,可订制0.75立方;11) 样品支撑平板:厚度≥4㎜的玻璃;12) 针嘴外径:A溶液:0.9㎜~1.2㎜B溶液: 0.9㎜~3.45㎜13) 滴液大小根据滴液系统而定;14) 风速:0.2M/S。产品特点:1、 本仪器支持5路试样同时进行试验,每路都有独立的控制系统进行控制2、 本仪器核心控制系统由西门子PLC控制,通过光电隔离方式进行采集电压和电流,有效解决抗干扰问题使数据采集保持稳定3、 本仪器显示部分是9寸触摸屏,操作方便,数据显示直观,能够实时显示每个试样的泄露电流4、 可以自由设定泄露电流数值,当实验中的电流超过设定电流值时,能够提示报警,并切断高压电源,并不影响其它试样继续做试验5、 滴液流量大小可根据实际需求自由设定6、 通过手动旋钮顺时针调到指定试验电压。7、 可以手动自由设定试验时间8、 本仪器具有排风和照明功能漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》是按GB4207、IEC60112等标准要求设计制造的专用检测仪器,适用于对电工电子产品、家用电器的固体绝缘材料及其产品模拟在潮湿条件下相比漏电起痕指数和耐漏电起痕指数的测定,具有简便、准确、可靠、实用等特点。满足标准:GB/T6553-2003 及 IEC60587:1984《评定在严酷环境条件下使用的电气绝缘材料耐电痕化和蚀损的试验方法》GB_T3048.7-2007电线电缆电性能试验方法_第07部分:耐电痕试验漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》
  • 三位科学家获2013年诺贝尔生理学或医学奖
    James E. Rothman Randy W. Schekman Thomas C. Sü dhof   北京时间10月7日下午5点30分,2013年诺贝尔生理学或医学奖揭晓,美国、德国3位科学家James E. Rothman, Randy W. Schekman和Thomas C. Sü dhof获奖。获奖理由是&ldquo 发现细胞内的主要运输系统&mdash &mdash 囊泡运输的调节机制&rdquo 。   James E. Rothman于1950年出生于美国麻省Haverhill,1976年从哈佛医学院获得博士学位,曾在MIT做过博后。1978年他进入斯坦福大学,开始了对细胞囊泡的研究。他曾任职的研究机构还包括普林斯顿大学、纪念斯隆-凯特灵癌症研究所和哥伦比亚大学。2008年,他加入耶鲁大学,目前为该校教授和细胞生物学系主席。   Randy W. Schekman于1948年出生于美国明尼苏达州St Paul,曾就学于加州大学洛杉矶分校和斯坦福大学,1974年从斯坦福大学获得博士学位,导师为1959年诺奖得主Arthur Kornberg,所在院系正是几年后Rothman加入的系。1976年,Schekman加入加州大学伯克利分校,目前为该校分子与细胞生物学系教授。他同时也是霍华德&bull 休斯医学研究院研究人员。   Thomas C. Sü dhof于1955年出生于德国Gö ttingen,他曾就学于哥廷根大学,1982年从该校获得MD学位并于同年获得该校神经化学博士学位。1983年,他加入美国德州大学西南医学中心,作为Michael Brown和Joseph Goldstein的博后(二人于1985年获得诺贝尔生理学或医学奖)。Sü dhof于1991年成为霍华德&bull 休斯医学研究院研究人员,2008年成为斯坦福大学分子与细胞生理学教授。   2013年诺贝尔生理学或医学奖授予了三位解开细胞如何组织其运输系统之谜的科学家。每个细胞如同一座工厂,制造和输出着各类分子比如胰岛素产生后释放到血液中,而被称为神经传递素的化学信号则通过一个神经细胞传递到另外一个神经细胞。这些分子都被运输到细胞周围的被称为囊泡的小&ldquo 包裹&rdquo 中。这次获奖的三位科学家解开了调控运输物在正确时间投递到细胞中正确位置的分子原理。   Randy Schekman发现了囊泡传输所需的一组基因 James Rothman阐明了囊泡是如何与目标融合并传递的蛋白质机器 Thomas Sü dhof则揭示了信号是如何引导囊泡精确释放被运输物的。   通过研究,Rothman, Schekman和Sü dhof揭开了细胞物质运输和投递的精确控制系统的面纱。该系统的失调会带来有害影响,并可导致诸如神经学疾病、糖尿病和免疫学疾病等的发生。   物质是如何传递到细胞内   对于一个庞大且繁忙的港口,需要一套运行体制保证正确的货物在正确的时间运送到正确的地点。细胞,有着被称为细胞器的不同&ldquo 隔间&rdquo ,也面临着类似问题:细胞产生分子物质如荷尔蒙、神经传递素、细胞因子、酶等,然后将这些物质在正确的时间里传送到细胞中其他地方或者细胞外。时间和地点决定一切。囊泡体积微小、呈泡状,外面包裹着膜,或在细胞器之间来回运输物质、或与细胞外膜融合将物质释放在外。这一过程十分重要,因为该过程可在有递质的条件下触发神经活动,或在有荷尔蒙的条件下控制代谢。囊泡又如何知道何时何地&ldquo 发货&rdquo 呢?   &ldquo 交通堵塞&rdquo 揭示遗传控制   Randy Schekman醉心于研究细胞如何组织其运输系统,他在上个世纪70年代决定利用酵母菌作为模型系统来从遗传原理上研究该系统。通过遗传筛查,他发现酵母菌的运输机制有缺陷,其运输系统很差劲,囊泡在细胞的特定区域堆积。他发现导致这种&ldquo 堵塞&rdquo 的原因是遗传的,便继续研究,试图找到变异的基因。Schekman发现三类基因能够控制细胞运输系统的不同方面,从而为了解细胞囊泡运输的精密调控机制提供一种新认识。   精确&ldquo 停靠&rdquo   James Rothman同样着迷于研究细胞运输系统的本质。当Rothman在上个世纪80至90年代研究哺乳动物细胞内的囊泡运输时,他发现一种蛋白复合物能让囊泡进入并融合目标膜。在融合过程中,囊泡上的蛋白质与目标膜如同拉链一般相互结合。这样的蛋白质数量很多且只以特定方式结合,如此使得运输物质能够投递到精确位置。同样的原理也在细胞内运行着,当囊泡与细胞外膜结合时便释放其内容物。   后来人们发现,Schekman在酵母菌中发现的基因一部分可编码Rothman在哺乳动物中找到的那些蛋白,从而揭开了这种运输系统的古老进化起源。他们一同绘制出了这种细胞运输机制的关键部分。   时机就是一切   Thomas Sü dhof对于脑中的神经细胞如何相互交流很感兴趣。信号分子&mdash &mdash 神经递质从囊泡中释放,通过Rothman和Schekman发现的机制,与神经细胞的外膜融合。不过,只有当神经细胞向其&ldquo 邻居&rdquo 发信号时,这些囊泡才被&ldquo 允许&rdquo 释放其内容物。这种控制方式为何如此精确?已知的是,钙离子参与其中,在1990年代,Sü dhof在神经细胞中搜索钙敏感蛋白。他鉴别出这种分子机制,即响应钙离子流入,指导临近蛋白快速将囊泡绑定至神经细胞外膜。&ldquo 拉链&rdquo 开启,信号物质释放出来。Sü dhof的发现解释了短暂的精确如何实现,以及囊泡内容物如何按指令释放。   囊泡运输有助理解疾病过程   三位诺奖得主发现了细胞生理学的一个基础性过程。这些发现对于我们理解&ldquo 货物&rdquo 如何以完美的时机和精确性在细胞内外进行转运具有重大的影响。在从酵母到人类的众多有机体中,囊泡运输和融合采用的是相同的原理。这一系统对于众多的生理学过程极为重要,在这些生理学过程中,囊泡融合必须被控制,包括在脑中发信号以及释放荷尔蒙和免疫因子。缺陷性囊泡运输发生于许多疾病中,包括大量神经性和免疫性疾病,以及糖尿病。若是没有这一奇妙的精确组织,细胞将会堕入混乱的深渊。
  • 细数近12年诺贝尔生理学或医学奖
    p   诺贝尔奖是根据诺贝尔遗嘱所设基金提供的奖项(1969年起由5个奖项增加到6个),每年由4个机构 (瑞典3个,挪威1个)评选。1901年12月10日即诺贝尔逝世5周年时首次颁发。诺贝尔在其遗瞩中规定,该奖应授予在物理学、化学、生理学或医学、文学与和平领域内“在前一年中对人类作出最大贡献的人”。 /p p   诺贝尔生理医学奖的评选由瑞典的医科大学卡罗琳学院(也叫做卡罗琳斯卡医学院)负责。根据诺贝尔基金会的相关章程,评选由卡罗琳医学院诺贝尔大会(Nobel Assembly)负责,大会由50名选举出来的卡罗琳医学院名教授组成。 /p p style=" text-indent: 2em " span style=" text-indent: 2em " 小编为大家盘点了生理学或医学自2007年来诺贝尔奖的获奖情况,供读者阅览、思考。 /span /p p style=" text-indent: 2em text-align: center " strong style=" color: rgb(0, 112, 192) text-indent: 2em " 2018& nbsp 免疫调节治疗癌症 /strong br/ /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/1a18bb9f-f362-4adb-a3a5-9edf28be128d.jpg" title=" 2018nuo.png" alt=" 2018nuo.png" width=" 283" height=" 212" style=" text-align: center width: 283px height: 212px " / /p p style=" text-indent: 2em " 美国的詹姆斯艾利森(James Allison)与日本的本庶佑(Tasuku Honjo) ,以表彰他们“发现负性免疫调节治疗癌症的疗法方面的贡献”。 br/ /p p   艾利森被认为是分离出T细胞抗原(T-cell antigen)复合物蛋白的第一人,他同时发现,如果可以暂时抑制T细胞表面表达的CTLA-4这一免疫系统“分子刹车”的活性,就能提高免疫系统对肿瘤细胞的攻击性,从而缩小肿瘤的体积。他对T细胞发育和激活,以及及免疫系统“刹车”的卓越研究,为癌症治疗开创了全新的免疫治疗思路——释放免疫系统自身的能力来攻击肿瘤。 /p p   本庶教授建立了免疫球蛋白类型转换的基本概念框架,他提出了一个解释抗体基因在模式转换中变化的模型。1992年,本庶首先鉴定PD-1为活化T淋巴细胞上的诱导型基因,这一发现为PD-1阻断建立癌症免疫治疗原理做出了重大贡献,曾在2013年被《Science》评为年度十大科学突破之首。 /p p style=" text-align: center " strong style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 112, 192) " 2017 发现控制昼夜节律的分子机制 /span /strong /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/d67d767e-d3b5-496e-8dfc-5607e5389ea1.jpg" title=" 2017诺贝尔奖.jpg" alt=" 2017诺贝尔奖.jpg" style=" text-align: center width: 288px height: 293px " width=" 288" height=" 293" / /p p style=" text-indent: 2em " 2017年诺贝尔生理学或医学奖授予杰弗理· 霍尔(Jeffrey C Hall)、迈克尔· 罗斯巴希(Michael Rosbash)、迈克尔· 杨(Michael W Young)。 br/ /p p   三位科学家的获奖理由是:发现控制昼夜节律的分子机制。 /p p style=" text-indent: 2em " 研究人员对生物钟进行了深入研究,阐明了其内在工作机制,相关的研究发现解释了植物、动物以及人类如何适应自身的昼夜规律,一边能够和地球的旋转同步。研究人员以果蝇作为模式动物,分离到了一种能够控制动物日常正常生物节律的特殊基因,这种基因能够编码一种特殊的蛋白,此种蛋白在夜间积累、白天降解;此外他们还发现了一种额外的蛋白组分,同时还阐明了指导细胞内部自我维持时钟(self-sustaining clockwork)的特殊机制。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2016& nbsp 细胞自噬 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/6e3c6a0e-c088-486e-af4a-39c0d4ba0c64.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-indent: 2em " 2016年的诺贝尔生理学或医学奖授予了日本科学家大隅良典(Yoshinori Ohsumi),获奖理由是“发现了细胞自噬机制。” br/ /p p   尽管人类认知自体吞噬过程已经超过50年了,但自20世纪90年代研究者大隅良典发现自噬作用后,其在生理学和医学研究中的关键角色和作用才被发现。自噬能够消灭外来入侵的细菌和病毒,对胚胎发育和细胞分化也很关键,自噬基因的突变会引发多种疾病发生。 br/ /p p   这项成果目前在产业方面的应用前景主要包括:帕金森疾病、2型糖尿病、癌症及衰老等领域。相关研究正在紧密展开中,以期开发相关标靶自噬药物治疗多种疾病。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2015& nbsp 寄生虫疾病 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/598b0719-3bc6-4743-b54c-3cbac2d13026.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " 2015年的诺贝尔生理学或医学奖授予了爱尔兰科学家威廉· 坎贝尔、日本科学家大村智和中国药学家屠呦呦。 /p p   这其中,一半共同授予威廉· 坎贝尔和大村智,以表彰他们发现针对蛔虫感染的新疗法(伊维菌素和阿维菌素的发现) 另一半则授予屠呦呦,以表彰她发现针对疟疾的新疗法(青蒿素的发现)。 br/ /p p   如今,伊维菌素广泛被用于牛、羊、马、猪的胃肠道线虫、肺线虫和寄生节肢动物,犬的肠道线虫,耳螨、疥螨、心丝虫和微丝蚴以及家禽胃肠线虫和体外寄生虫的预防和治疗 阿维菌素则被广泛作为农用或兽用杀菌、杀虫、杀螨剂 青篙素被开发成治疗肿瘤、黑热病、红斑狼疮等疾病的衍生新药,并正在探索其治疗艾滋病、恶性肿瘤、利氏曼、血吸虫、涤虫、弓形虫等疾病以及戒毒的新用途。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2014& nbsp 大脑GPS /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/df0d7258-2e18-480e-af30-a01a2ab8f43a.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-indent: 2em " 2014年的诺贝尔生理学或医学奖授予了美国及挪威三位科学家约翰· 欧基夫、迈-布里特· 莫泽和爱德华· 莫索尔获奖。获奖理由是“发现构成大脑定位系统的细胞”。他们发现,大鼠海马区形成的回路在大脑中构成了一个广泛的定位系统——大脑GPS。 /p p   这一研究促进了脑成像系统的进展,以及阿尔茨海默症等神经疾病的治疗提供了新思路,为理解记忆、思考、计划等认知过程,开辟了新的途径。 br/ /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2013& nbsp 细胞囊泡运输调控机制 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/02549e22-d115-4faf-9c5d-20ad6bf124e8.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-indent: 2em " 2013年的诺贝尔生理学或医学奖授予了美国科学家詹姆斯-E. 罗斯曼和兰迪- W. 谢克曼、德国科学家托马斯- C. 苏德霍夫,以表彰他们发现细胞内部囊泡运输调控机制。 /p p   该研究揭示了“囊泡”周围细胞货物如何在正确的时间被运送到正确的细胞靶点。如果没有囊泡这个精确而奇妙的组织,细胞会陷入一片混乱,患者的囊泡转运都出现缺陷,从而会导致上述疾病。 br/ /p p   目前,该研究被运用于神经系统疾病、糖尿病、免疫疾病等疾病的病程生理调控。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2012& nbsp 体细胞重编程技术 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f57529db-f511-4336-8bfa-23f7a8416efb.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-indent: 2em " 2012年的诺贝尔生理学或医学奖授予了英国科学家约翰· 格登和日本医学教授山中伸弥,以表彰他们在“体细胞重编程技术”领域做出的革命性贡献。其中,山中伸弥利用基因技术,通过对小鼠的成熟细胞重编程,诱导成功具有分化能力的诱导多能干细胞。 /p p   这项技术的价值在于建立长期稳定传代的患者特异细胞系,用以进行个体化药物筛选 以及将从患者体细胞获得的干细胞作为细胞治疗的材料,在疾病模拟、药物筛选和细胞治疗中有着巨大的应用前景,被人们视为细胞疗法的新希望。 br/ /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2011& nbsp 免疫系统激活的关键原理 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7d7870f0-8d78-4bc0-831a-0834976a593a.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-indent: 2em " 2011年的诺贝尔生理学或医学奖一半归于布鲁斯· 巴特勒和朱尔斯· 霍夫曼,理由是“先天免疫激活方面的发现” 另一半归于拉尔夫· 斯坦曼,理由是“发现树枝状细胞及其在获得性免疫中的作用”。 /p p   免疫系统是人体和动物健康“防线”,用以抵御细菌和其他微生物。他们发现了免疫系统激活的关键原理,从而彻底革新了我们对免疫系统的认识,为驱使人体自身细胞和免疫进程来阻止传染病、自体免疫紊乱、过敏、癌症和器官移植排异提供了可能性,例如癌症治疗疫苗的开发。 span style=" text-align: center "    /span /p p style=" text-align: center " strong style=" text-align: center " span style=" color: rgb(0, 112, 192) " 2010& nbsp 试管婴儿技术 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0158c112-8ec9-4f2b-8e88-67b73d0a95ef.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-indent: 2em " 2010年的诺贝尔生理学或医学奖授予了被誉为“试管婴儿之父”的英国科学家罗伯特· 爱德华兹,因其“在试管受精技术方面的发展”。 br/ /p p   罗伯特· 爱德华兹让治疗不育症成为可能,全球超过10%的夫妇因此获益匪浅。1978年7月25日,世界上第一例试管婴儿的诞生,就是对爱德华兹的不懈努力的最好表彰。他的贡献代表着现代医学史上的又一座里程碑。 br/ /p p   如今,试管婴儿技术不断创新,从一代试管婴儿、二代试管婴儿迈向三代试管婴儿,造福千万家庭。 strong style=" text-align: center " span style=" color: rgb(0, 112, 192) "   /span /strong /p p style=" text-align: center " strong style=" text-align: center " span style=" color: rgb(0, 112, 192) " 2009& nbsp 端粒和端粒酶保护染色体 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/b471b1ce-986d-44fc-b4ea-213850889547.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-indent: 2em " 2009年的诺贝尔生理学或医学奖授予了美国加利福尼亚旧金山大学的伊丽莎白· 布莱克本、美国巴尔的摩约翰· 霍普金医学院的卡罗尔-格雷德、美国哈佛医学院的杰克· 绍斯塔克,以表彰他们发现了端粒和端粒酶保护染色体的机理。 /p p   他们解决了生物学的一个重大问题:在细胞分裂时染色体如何完整地自我复制以及染色体如何受到保护以免于退化。解决办法存在于染色体末端—端粒,以及形成端粒的酶—端粒酶。 br/ /p p   这项细胞基本机制的发现,提高了人们对于细胞的理解的深度,阐明了疾病机制,有助于新兴治疗措施的发展,尤其是在抗衰老和抗癌方面的疗法开发。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 2008& nbsp HPV和HIV病毒的发现 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e894ec77-8930-4cd8-9298-fba357252691.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-indent: 2em " 2008年的诺贝尔生理学或医学奖授予了发现给发现宫颈癌的人乳头状瘤病毒(HPV)的德国科学家Harald zur Hausen以及发现艾滋病病毒(HIV)的法国科学家Franç oise Barré -Sinoussi和Luc Montagnier。 /p p   HPV病毒的发现是进行疫苗研究的基础,为人类攻克宫颈癌提供了更为明确的“靶点”,如今科学家们在这一基础上研制出宫颈癌疫苗,这不仅是为全球女性送上的一份“科学礼物”,也对今后人类防治其他癌症具有重要借鉴意义。目前,全球共有3种HPV疫苗上市,分别是二价、四价和九价。 br/ /p p   正是因为HIV病毒的发现,才开发出了用于诊断艾滋病的血液检查新方法和试剂,并开发出抗HIV病毒的药物,进而极大延长了艾滋病患者的生存期。 span style=" text-align: center "   /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong style=" text-align: center " 2007& nbsp 利用胚胎干细胞引入“基因打靶”技术 /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/580a1953-7a57-4e88-aaad-c721aa058162.jpg" title=" 10.png" alt=" 10.png" / /p p style=" text-indent: 2em " 2007年的诺贝尔生理学或医学奖授予了在“小鼠基因打靶”技术研究的三位科学家,美国犹他大学Eccles人类遗传学研究所科学家Mario R. Capecchi 、美国北卡罗来纳州大学教会山分校医学院教授Oliver Smithies 与英国科学家卡迪夫大学卡迪夫生命科学学院Martin J. Evans因在胚胎干细胞和哺乳动物的DNA重组方面的开创性成绩而获奖。 /p p   这项在老鼠身上进行的“基因打靶”技术,极大地影响了人类对疾病的认识,已被广泛应用在几乎所有生物医学领域。 br/ /p p   科学家几乎能实现所有小鼠基因的敲除,构建许多不同类型的人类疾病小鼠模型,为心血管疾病、糖尿病、癌症、囊肿性纤维化等疾病的对症下药提供了证据。 /p p   以上就是2007年来诺贝尔生理学或医学奖在临床应用中的进展。明年它将会花落谁家呢?让我们拭目以待。 /p
  • 2011年诺贝尔生理学或医学奖揭晓
    Bruce A. Beutler   Jules A. Hoffmann   Ralph M. Steinman   北京时间10月3日下午5点30分,2011年诺贝尔生理学或医学奖揭晓,美国、法国、加拿大三位科学家因在免疫学方面的发现获奖。其中一半的奖金归于Bruce A. Beutler和Jules A. Hoffmann,获奖理由是“先天免疫激活方面的发现”;另一半奖金归于Ralph M. Steinman,获奖理由是“发现树突状细胞及其在获得性免疫中的作用”。   今年的诺奖得主发现了免疫系统激活的关键原理,从而彻底革新了我们对免疫系统的认识。   免疫应答作为一种能帮助人类与其它动物抵御细菌及其它微生物的生理过程,长久以来,科学家们一直在寻找它的“守护者”。Bruce Beutler和Jules Hoffmann发现了能识别微生物并激活先天性免疫的受体蛋白质,从而揭示了身体免疫应答过程的第一步。Ralph Steinman则发现了免疫系统中的树突状细胞,以及其可激活并控制获得性免疫的功能,从而完成身体免疫应答过程的下一步,即将微生物清除出体内。   三位诺奖得主的发现揭示了免疫应答中的先天性免疫和获得性免疫是如何被激活,从而让我们对疾病机理有了一个新的见解。他们的工作为传染病、癌症以及炎症的防治开辟了新的道路。   Bruce A. Beutler,美国公民。1957年出生于美国芝加哥。1981年从芝加哥大学获得医学博士学位。曾在洛克菲勒大学和德州大学工作,其间发现了LPS受体。自2000年开始,他担任斯克里普斯研究所遗传学和免疫学教授。   Jules A. Hoffmann,法国公民。1941年出生于卢森堡公国。就读于法国斯特拉斯堡大学,1969年获得博士学位。在德国马尔堡大学做完博士后之后,他返回了斯特拉斯堡,于1974年至2009年一直主持一个研究实验室。他曾担任斯特拉斯堡分子细胞生物学研究所所长,2007年至2008年曾担任法国国家科学院院长。   Ralph M. Steinman,1943年出生于加拿大蒙特利尔。在麦吉尔大学学习生物学和化学。1968年从哈佛医学院获得医学博士学位。自1970年开始他一直在洛克菲勒大学工作,1988年开始成为免疫学教授,并担任免疫学和免疫疾病中心主任。
  • 2018泽泉植物生理生态及表型育种研讨会圆满成功
    2018年4月12-13日和4月19-20日,由上海泽泉科技股份有限公司主办的2018泽泉植物生理生态及表型育种研讨会分别在北京和成都胜利召开。来自北京林业大学、中科院植物所、中国农业大学、北京市植物园、天津师范大学、山西农业大学、河北农业大学、衡水学院、山西农科院、毕节市中药研究所、成都大学、成都理工大学、成都中医药大学、贵州省烟草科学研究院、黑龙江大学、辽宁师范大学、绵阳师范学院、南充市农科院、青海大学、山西省农科院、石河子大学、四川农业大学、四川省农科院、四川省原子能研究院、四川师范大学、西南科技大学、西南民族大学、云南农业大学、云南省热带作物科学研究所、中科院成都生物所、中国热带农业科学院品资所、中科院成都山地所等50多家科研单位和科技公司的近200位专家学者参加了此次研讨会。本次会议旨在更好地服务全国科研用户,促进植物表型育种、生理生态领域的研究,整合有效资源,同时促进相关研究设施和平台的建设。 北京会场,4月12-13日成都会场,4月19-20日来自中科院植物所、中科院地理所、中科院遗传所、中医科学院中药研究所、四川农业大学、四川省农科院、九宇金泰的多位专家学者围绕植物生理生态、植物表型、种子质量分析、农业物联网等内容作了主题报告,与参会嘉宾进行了深入的沟通和交流。 中科院植物所吴芳芳老师《近地面遥感在农林生态中的应用》中科院地理所寇亮老师《氮沉降对根系动态过程的影响》中医科学院中药研究所孙伟老师《基于质谱成像的分子可视化技术及其在植物组织空间代谢组学研究中的应用》中科院遗传所胡伟娟老师《Imaging-based phenotyping to dissect complex traits in crops》北京九宇金泰周旭珍老师《智能化数字植物平台》四川农业大学吴楠老师《Biomonitoring heavy metal contaminations by chlorophyllfluorescence parameters in mosses》四川省农业科学院王建辉老师《留树保鲜柑橘品质分子调控研究》德国WALZ公司Oliver Meyerhoff博士《WALZ devices and technique overview 2018》作为本次研讨会主办方,泽泉科技也展示了不俗的实力。泽泉科技技术专家带来的 “光合荧光联用技术及其应用”,“植物表型分析最新技术与应用介绍”,“花粉活性与种子质量分析解决方案”,“植物培养解决方案”,“植物叶片和根系功能属性研究:方法追溯”、“调制叶绿素荧光和P700的原理及应用”等报告内容,不仅专业,而且贴近实际,完美的解决了与会老师遇到的各种科研问题。 泽泉科技技术专家讲座本次研讨会第二天,北京会场和成都会场都安排了全天的分组讨论,以加强知识消化与沟通交流。"调制叶绿素荧光及P700的原理及应用","光合仪测量光合作用,光响应曲线,CO2响应曲线","根系监测系统使用技巧及根系分析软件操作演示"等3个讨论组分次同时进行,与会嘉宾根据自己的需求自行选择轮流参加。每个讨论组主讲人专业、详细的讲解获得了老师的交口称赞,许多老师表示研讨会这种新颖的交流模式对加深技术原理及应用的理解非常管用。 分组讨论现场2018泽泉植物生理生态及表型育种研讨会受到全国科研单位老师同学的大力支持,获得圆满成功,上海泽泉科技股份有限公司在此表示衷心的感谢!通过研讨会,泽泉科技进一步加强了与广大专家学者的合作,我们将一如既往的为广大客户提供优质的产品和完善的服务。
  • 即插即用可定制 多器官芯片演绎人体原理
    美国哥伦比亚大学工程系和医学中心的一组研究人员报告说,他们已经开发出一种多器官芯片形式的人体生理模型,该芯片由经过工程改造的人体心脏、骨骼、肝脏和皮肤组成,通过循环免疫细胞的血管流动,以重现相互依赖的器官功能。研究人员创造的这种即插即用的多器官芯片,大小与显微镜载玻片相当,可为患者定制。由于疾病进展和对治疗的反应因人而异,因此这种芯片最终将为每位患者提供个性化的治疗。这项研究刊载于4月27日出版的《自然生物医学工程》杂志上。灵感来自人体工程组织已成为疾病建模和在人体环境中测试药物疗效和安全性的关键组成部分。研究人员面临的一个主要挑战,是如何使用多种可进行生理交流的工程组织来模拟身体功能和全身性疾病,就像它们在体内所做的那样。然而,必须为每个工程组织提供自己的环境,以便特定的组织表型可维持数周至数月,符合生物学和生物医学研究的要求。使挑战变得更为复杂的是,必须将组织模块连接在一起以促进它们的生理交流,这是对涉及多个器官系统的建模所必需的。从人体的工作原理中汲取灵感,研究团队构建了一个人体组织芯片系统,在该系统中,他们通过循环血管流动将成熟的心脏、肝脏、骨骼和皮肤组织模块连接起来,让相互依赖的器官能够像在人类的身体里。研究人员之所以选择这些组织,是因为它们具有明显不同的胚胎起源、结构和功能特性,并且受到癌症治疗药物的影响。“在保持其个体表型的同时提供组织之间的交流一直是一项重大挑战,”该研究的主要作者、哥伦比亚大学干细胞和组织工程实验室副研究科学家凯西罗纳德森-博查得说,“因为我们专注于使用源自患者的组织模型,我们必须单独使每个组织成熟,以便它以模仿患者身上的反应方式发挥作用,我们不想在连接多个组织时牺牲这种先进的功能。在体内,每个器官都维持着自己的环境,同时通过携带循环细胞和生物活性因子的血管流动,与其他器官相互作用。因此,我们选择通过血管循环连接组织,同时保留维持其生物保真度所必需的每个单独的组织生态位,模仿我们的器官在体内连接的方式。”组织模块可维持一个月以上研究团队创建了组织模块,每个模块都在优化的环境中,并通过选择性渗透的内皮屏障将它们与常见的血管流分开。个体组织环境能够跨越内皮屏障并通过血管循环进行交流。研究人员还将产生巨噬细胞的单核细胞引入血管循环,因为它们在指导组织对损伤、疾病疗效的反应方面发挥着重要作用。所有组织均来自同一系人类诱导多能干细胞,从少量血液样本中获得,以证明个体化、患者特异性研究的能力。而且,为了证明该模型可用于长期研究,该团队将已经生长和成熟4到6周的组织在通过血管灌注连接后又维持了4周。研究人员还证明了该模型如何用于研究人类环境中的重要疾病,并检查抗癌药物的副作用。他们研究了多柔比星(一种广泛使用的抗癌药物)对心脏、肝脏、骨骼、皮肤和脉管系统的影响。他们表明,测试效果概括了使用相同药物进行癌症治疗的临床研究报告的效果。使用该模型研究抗癌药物该团队同时开发了一种新的多器官芯片计算模型,用于对药物的吸收、分布、代谢和分泌进行数学模拟。该模型正确地预测了阿霉素代谢成阿霉素醇并扩散到芯片中。在未来其他药物的药代动力学和药效学研究中,多器官芯片与计算方法的结合为临床前到临床外推提供了改进的基础,同时改进了药物开发流程。研究人员称,新技术能识别出一些心脏毒性的早期分子标志物,这是限制药物广泛使用的主要因素。最值得注意的是,多器官芯片准确地预测了心脏毒性和心肌病,这通常需要临床医生减少阿霉素的治疗剂量,甚至停止治疗。研究小组目前正在使用这种芯片的变体进行研究,所有这些都在个体化的患者特定环境中进行。如乳腺癌转移、前列腺癌转移、白血病、辐射对人体组织的影响、新冠病毒对多器官的影响、缺血对心脏和大脑的影响,以及药物的安全性和有效性。研究团队还在为学术和临床实验室开发一种用户友好的标准化芯片,以帮助充分利用其推进生物和医学研究的潜力。研究人员说:“我们对这种方法的潜力感到兴奋。它专为研究与损伤或疾病相关的全身性疾病而设计,将使我们能够保持工程人体组织的生物学特性及其交流。一次一个病人,从炎症到癌症。”
  • 中国学者解读2012年度诺贝尔生理学或医学奖
    10月8日,英国和日本科学家共同分享了2012年度诺贝尔生理学或医学奖。   79岁的约翰戈登爵士,50岁的山中伸弥,相差40多年时间,他们的工作共同 “发现成熟细胞能够通过再编程而具有多能性”。   诺贝尔奖委员会认为,他们精彩的成果完全颠覆了人们对发育的传统观念,关于细胞命运调控和发育的教科书内容已经被重新改写。   逆转细胞发育的程序   《中国科学报》记者第一时间拨通了中科院动物所研究员周琪的电话,他已获知两位科学家获奖,并对诺贝尔奖委员会的评价表示高度赞同。   中国科学院生物物理研究所研究员王江云认为,获奖的研究工作破除了以往认为胚胎发育及细胞分化不可逆的概念,完成了在体细胞中转入基因并将其转化为干细胞的重大突破,为实现干细胞治疗及体外器官培养铺平了道路。   “细胞命运是否可以改变,是一个很古老的命题。”周琪说。   早在戈登研究前很多年,科学家就已经证明了植物细胞的全能性 1938年,德国科学家Spemann提出了细胞核移植的概念和设想 后来,戈登分别发表于1962年和1966年的工作创造性地回答了Spemann的问题,证明细胞可以通过细胞核移植改变命运,生命可以重新启动 而哺乳动物体细胞核移植的首次成功,则是大家熟悉的1997年发表的克隆羊“多利”的工作。   相对于细胞核移植的烦琐和复杂,周琪认为,2006 年山中伸弥仅用4个基因就让细胞变成多能干细胞的工作,显得更为神奇。   随之,小鼠、人等不同物种iPS细胞(诱导多能干细胞)的成功已经反复证明了细胞命运是可以通过基因调节转换的。   “今后,也许能实现人体的器官像汽车零件一样可以更换。”王江云对《中国科学报》记者说。周琪也相信,细胞核移植和iPS两项成果的获奖,将会进一步推动该领域新的诊断和治疗方法的产生。   不过,“干细胞离治疗还有距离。山中发明的方法虽有所突破,但迄今尚未证明是否最后能用于人体治疗。”北京大学生命科学学院院长饶毅在接受《中国科学报》记者采访时表示。   周琪也强调,将细胞核移植和iPS等技术应用于人类为时尚早。   “干细胞研究还处于实验室研究阶段,这一领域面临的挑战和问题依然很多。”王江云举例说,如诱导生成干细胞的效率需要进一步提高,干细胞的质量控制需要有更好的标准等。   “这些问题需要各国科学家的共同努力和合作来解决。”周琪说。   中国迈开赶超步伐   2009年,周琪首次利用iPS细胞,通过四倍体囊胚注射得到存活并具有繁殖能力的小鼠,从而在世界上第一次证明了iPS细胞的全能性。   “中国不论在细胞核移植领域还是iPS领域均已经具备了较强的实力,并且已经取得了一些成就。”作为国际干细胞组织(ISCF)中国代表,周琪肯定了中国科学家在iPS细胞领域的工作。   而王江云认为,我国干细胞的研究水平在世界上相对处于较高水平。他特别提到,在中国科学院战略性先导专项“干细胞与再生医学”的支持下,干细胞研究呈现出良好势头。   2011年,中国在iPS领域发表的论文数量仅逊于美国和日本,居于世界第三位 但在干细胞领域发表论文的总数量已经超过日本跃居世界第二。   “论文数量可以反映我们的进步,但差距仍是巨大的。”周琪认为,尤为突出的问题是原始创新能力不足,开展开拓性工作的信心不够。继续重视基础研究,强调原创性工作,仍是需要长期坚持的方针。   三人未能同行   记者发现,这两位获奖者位列饶毅所写“值得获诺贝尔生理学或医学奖的工作及科学家”名单之中。   2002年,饶毅的名单中就有戈登和“多利羊之父”英国罗斯林研究所教授Ian Wilmut,2010年他又在这项工作中加入了山中伸弥的名字。   但最终获奖者却少了Wilmut。“非常遗憾,Wilmut并没能共享这一奖项。”周琪这样对记者说。   不过,饶毅对戈登本人的印象良好。他在美国做博士后期间的指导老师,就是戈登的学生。   “他是典型的,但现在越来越少的绅士科学家。”饶毅说,他做科学做得很优雅。很长时间以来,戈登的工作都被发育生物学界所推崇。   在饶毅印象中,日本获得的诺贝尔生理学或医学奖寥寥无几,尽管日本曾在生命科学领域作出过多个重要发现。实际上,在获得诺奖的19位日本人中,除了山中伸弥,只有利根川进在25年前因“发现抗体多样性的遗传学原理”而获生理学或医学奖。
  • 【好书推荐】薄膜晶体管液晶显示(TFT LCD)技术原理与应用
    内容简介  薄膜晶体管液晶显示产业在中国取得了迅猛的发展,每年吸引着大量的人才进入该产业。本书基于作者在薄膜晶体管液晶显示器领域的开发实践与理解,并结合液晶显示技术的最新发展动态,首先介绍了光的偏振性及液晶基本特点,然后依次介绍了主流的广视角液晶显示技术的光学特点与补偿技术、薄膜晶体管器件的SPICE模型、液晶取向技术、液晶面板与电路驱动的常见不良与解析,最后介绍了新兴的低蓝光显示技术、电竞显示技术、量子点显示技术、Mini LED和Micro LED技术及触控技术的原理与应用。作者简介  邵喜斌博士从20世纪90年代初即从事液晶显示技术的研究工作,先后承担多项国家863计划项目,研究领域涉及液晶显示技术、a-Si 及p-Si TFT技术、OLED技术和电子纸显示技术,在国内外发表学术论文100多篇,获得专利授权150余项,其中海外专利40余项。曾获中国科学院科技进步二等奖、吉林省科技进步一等奖、北京市科技进步一等奖。目录封面版权信息内容简介序前言第1章 偏振光学基础与应用1.1 光的偏振性1.1.1 自然光与部分偏振光1.1.2 偏振光1.2 光偏振态的表示方法1.2.1 三角函数表示法1.2.2 庞加莱球图示法1.3 各向异性介质中光传播的偏振性1.3.1 反射光与折射光的偏振性1.3.2 晶体的双折射1.3.3 单轴晶体中的折射率1.4 相位片1.4.1 相位片的定义1.4.2 相位片在偏光片系统中1.4.3 相位片的特点1.4.4 相位片的分类1.4.5 相位片的制备与应用1.5 波片1.5.1 快轴与慢轴1.5.2 λ/4波片1.5.3 λ/2波片1.5.4 λ波片1.5.5 光波在金属表面的反射1.5.6 波片的应用参考文献第2章 液晶基本特点与应用2.1 液晶发展简史2.1.1 液晶的发现2.1.2 理论研究2.1.3 应用研究2.2 液晶分类2.2.1 热致液晶2.2.2 溶致液晶2.3 液晶特性2.3.1 光学各向异性2.3.2 电学各向异性2.3.3 力学特性2.3.4 黏度2.3.5 电阻率2.4 液晶分子合成与性能2.4.1 单体的合成2.4.2 混合液晶2.4.3 单体液晶分子结构与性能关系2.5 混合液晶材料参数及对显示性能的影响2.5.1 工作温度范围的影响2.5.2 黏度的影响2.5.3 折射率各向异性的影响2.5.4 介电各向异性的影响2.5.5 弹性常数的影响2.5.6 电阻率的影响2.6 液晶的应用2.6.1 显示领域应用2.6.2 非显示领域应用参考文献第3章 广视角液晶显示技术3.1 显示模式概述3.2 TN模式3.2.1 显示原理3.2.2 视角特性3.2.3 视角改善3.2.4 响应时间影响因素与改善3.3 VA模式3.3.1 显示原理3.3.2 视角特性3.3.3 视角改善3.4 IPS与FFS模式3.4.1 显示原理3.4.2 视角特性3.5 偏光片视角补偿技术3.5.1 偏振矢量的庞加莱球表示方法3.5.2 VA模式的漏光补偿方法3.5.3 IPS模式的漏光补偿方法3.6 响应时间3.6.1 开态与关态响应时间特性3.6.2 灰阶之间的响应时间特性3.7 对比度参考文献第4章 薄膜晶体管器件SPICE模型4.1 MOSFET器件模型4.1.1 器件结构4.1.2 MOSFET器件电流特性4.1.3 MOSFET器件SPICE模型4.2 氢化非晶硅薄膜晶体管器件模型4.2.1 a-Si:H理论基础4.2.2 a-Si:H TFT器件电流特性4.2.3 a-Si:H TFT器件SPICE模型4.3 LTPS TFT器件模型4.3.1 LTPS理论基础4.3.2 LTPS TFT器件电流特性4.3.3 LTPS TFT器件SPICE模型4.4 IGZO TFT器件模型4.4.1 IGZO理论基础4.4.2 IGZO TFT器件电流特性4.4.3 IGZO TFT器件SPICE模型4.5 薄膜晶体管的应力老化效应参考文献第5章 液晶取向技术原理与应用5.1 聚酰亚胺5.1.1 分子特点5.1.2 聚酰亚胺的性能5.1.3 聚酰亚胺的合成5.1.4 聚酰亚胺的分类5.1.5 取向剂的特点5.2 取向层制作工艺5.2.1 涂布工艺5.2.2 热固化5.3 摩擦取向5.3.1 工艺特点5.3.2 摩擦强度定义5.3.3 摩擦取向机理5.3.4 预倾角机理5.3.5 PI结构对VHR和预倾角的影响5.3.6 摩擦取向的常见不良5.4 光控取向5.4.1 取向原理5.4.2 光控取向的光源特点与影响参考文献第6章 面板驱动原理与常见不良解析6.1 液晶面板驱动概述6.1.1 像素结构与等效电容6.1.2 像素阵列的电路驱动结构6.1.3极性反转驱动方式6.1.4 电容耦合效应6.1.5 驱动电压的均方根6.2 串扰6.2.1 定义与测试方法6.2.2 垂直串扰6.2.3 水平串扰6.3 闪烁6.3.1 定义与测试方法6.3.2 引起闪烁的因素6.4 残像6.4.1 定义与测试方法6.4.2 引起残像的因素参考文献第7章 电路驱动原理与常见不良解析7.1 液晶模组驱动电路概述7.1.1 行扫描驱动电路7.1.2 列扫描驱动电路7.1.3 电源管理电路7.2 眼图7.2.1 差分信号7.2.2 如何认识眼图7.2.3 眼图质量改善7.3 电磁兼容性7.3.1 EMI简介7.3.2 EMI测试7.3.3 模组中的EMI及改善措施7.4 ESD与EOS防护7.4.1 ESD与EOS产生机理7.4.2 防护措施7.4.3 ESD防护性能测试7.4.4 EOS防护性能测试7.5 开关机时序7.5.1 驱动模块的电源连接方式7.5.2 电路模块的时序7.5.3 电源开关机时序7.5.4 时序不匹配的显示不良举例7.6 驱动补偿技术7.6.1 过驱动技术7.6.2 行过驱动技术参考文献第8章 低蓝光显示技术8.1 视觉的生理基础8.1.1 人眼的生理结构8.1.2 感光原理说明8.1.3 光谱介绍8.2 蓝光对健康的影响8.2.1 光谱各波段光作用人眼部位8.2.2 蓝光对人体的影响8.3 LCD产品如何防护蓝光伤害8.3.1 LCD基本显示原理8.3.2 低蓝光方案介绍8.3.3 低蓝光显示器产品参考文献第9章 电竞显示技术9.1 电竞游戏应用瓶颈9.1.1 画面拖影9.1.2 画面卡顿和撕裂9.2 电竞显示器的性能优势9.2.1 高刷新率9.2.2 快速响应时间9.3 画面撕裂与卡顿的解决方案9.4 电竞显示器认证标准9.4.1 AMD Free-Sync标准9.4.2 NVIDA G-Sync标准参考文献第10章 量子点材料特点与显示应用10.1 引言10.2 量子点材料基本特点10.2.1 量子点材料独特效应10.2.2 量子点材料发光特性10.3 量子点材料分类与合成10.3.1 Ⅱ-Ⅵ族量子点材料10.3.2 Ⅲ-Ⅴ族量子点材料10.3.3 钙钛矿量子点材料10.3.4 其他量子点材料10.4 量子点显示技术10.4.1 光致发光量子点显示技术10.4.2 电致发光量子点显示技术参考文献第11章 Mini LED和Micro LED原理与显示应用11.1 概述11.2 LED发光原理11.2.1 器件特点11.2.2 器件电极的接触方式11.2.3 器件光谱特点11.3 LED直显应用特点11.3.1 尺寸效应11.3.2 外量子效应11.3.3 温度效应11.4 巨量转移技术11.4.1 PDMS弹性印章转移技术11.4.2 静电吸附转移技术参考文献第12章 触控技术原理与应用12.1 触控技术分类12.1.1 从技术原理上分类12.1.2 从显示集成方式上分类12.1.3 从电极材料上分类12.2 触控技术原理介绍12.2.1 电阻触控技术12.2.2光学触控技术12.2.3 表面声波触控技术12.2.4 电磁共振触控技术12.2.5 电容触控技术12.3 投射电容触控技术12.3.1 互容触控技术12.3.2 自容触控技术12.3.3 FIC触控技术12.4 FIC触控的驱动原理12.4.1 电路驱动系统架构12.4.2 FIC触控屏的两种驱动方式12.4.3 触控通信协议12.4.4 触控性能指标参考文献附录A MOSFET的Level 1模型参数附录B a-Si:H TFT的Level 35模型参数附录C LTPS TFT的Level 36模型参数附录D IGZO TFT的Level 301模型参数(完善中)反侵权盗版声明封底
  • 高效液相色谱(HPLC)的基本原理和系统组成
    高效液相色谱(HPLC)是色谱法的一个重要分支,其应用范围广泛,对样品的适用性广,且不受分析对象的挥发性和热稳定性的限制。 几乎所有的化合物,包括高沸点、极性、离子化合物和大分子物质都可以用高效液相色谱法进行分析测定,从而弥补了气相色谱法的缺点。 目前已知的有机化合物中,约20%可以通过气相色谱法进行分析,而80%需要通过高效液相色谱法进行分析。 高效液相色谱法具有分离效率高、分析速度快、检测灵敏度好等特点,可以分析分离高沸点且不能汽化的热不稳定生理活性物质。 分离与分析技术在该领域的重要应用。基本原理色谱法的分离原理是:溶于流动相中的各组分经过固定相时,由于与固定相(stationphase)发生作用(吸附、分配、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。又称为色层法、层析法。高效液相色谱法以经典的液相色谱为基础,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有颗粒极细的高效固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。系统组成HPLC 系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。此外,还可根据需要配置梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型HPLC 仪还备有自动馏分收集装置。
  • 诺德泰科携DN2000杜马斯定氮仪参加2016年全国青年作物栽培与生理学术研讨会
    10月26-28日,由中国作物学会主办、中国作物学会栽培专业委员会及农业部作物生理生态与耕作学科群协办、山东农业大学承办的2016年全国青年作物栽培与生理学术研讨会在山东省泰安市召开。学科群首席专家中国工程院院士于振文,中国工程院院士张洪程,中国作物学会秘书长杜鹃,以及来自全国21个省区科研院所和高校的260余位专家、学者和研究生参加会议。会议以“作物可持续生产与现代农业”为主题,分作物高产高效协同的理论与技术、作物节本增效耕作的理论与技术、作物抗逆稳产及对环境适应机制、作物轻简化生产的原理与技术等4个子专题进行交流研讨。张洪程院士、中国农业大学陈阜教授、中国农业科学院作物所赵明研究员、山东农业大学贺明荣教授和南京农业大学程涛教授分别作专题报告;另有28位科研人员及博士研究生作学术报告,内容涵盖我国目前作物生理生态与栽培耕作学科的研究热点、研究进展以及未来的发展方向。氮元素是作物生长所需要的大量元素之一,是作物生长过程中的重要元素。氮元素在作物体内的转移现象是非常有趣:作物生长前期和中期,氮元素存在于茎叶中;等作物结实以后就大部分进入果实中去。所以说作物籽实中含氮元素一半是从茎叶储存并转移而来的,其余部分是籽实形成当时根系从土壤中吸收的。作物前期和中期生长好坏对氮元素的吸收,直接影响作物的产量。因此,氮元素的含量测定是农作物研究最重要的基础数据。作为国产杜马斯定氮仪的先行者,诺德泰科推出了DN2000杜马斯定氮仪,和传统的凯氏定氮相比,DN2000的优势可以用“多快好省”来概括:多:60位全自动进样器,分析样品更多快:分析速度从几小时降为几分钟好:无需腐蚀性和污染环境的化学试剂省:更低的安装要求和运行费用其突出的特点引起了众多青年学者的极大兴趣,纷纷就感兴趣的内容和我们的与会人员展开了热烈讨论,相关人员也就大家关心的问题积极予以解答,并虚心听取了各位专家的意见和建议。这些意见和建议也将激励我们做出更优秀的产品,为农作物栽培等领域的研究献上一份绵薄之力。
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 重磅!华中科技大学等再发《Nature》,研发出“颅内生理信号监测黑科技”!
    当前,临床上监测颅内压等关键生理指标的技术,通常需要通过外科手术将有线传感器植入患者颅内。这种方法存在一定风险,如术后感染和并发症等。尽管现有的无线电子传感器能够在一定程度上降低这些风险,但由于它们的体积较大(例如,传统电子元件的截面积往往超过1平方厘米),因此不适合通过微创注射方式植入。此外,由于无线电子传感器不能在体内自然降解,患者还需要进行二次手术来移除它们。因此,在临床实践中,这些无线传感器也面临着许多挑战。华中科技大学臧剑锋教授、姜晓兵教授以及新加坡南洋理工大学陈晓东教授团队携手合作,研发出一种创新型可注射超声凝胶传感器。该传感器有望克服传统有线传感器存在的感染风险和术后并发症等问题,同时避免现有无线电子传感器体积过大、无法体内降解等临床应用挑战。相关研究成果以"Injectable ultrasonic sensor for wireless monitoring of intracranial signals"为题在线发表于《Nature》杂志。传感器结构与制备:这种名为"超声超凝胶"的传感器是由双网络交联的水凝胶基质和内部周期性排列的空气孔道组成,体积仅为2×2×2mm³ 。这种可注射传感器是研究团队采用摩方精密面投影微立体光刻(PμSL)3D打印技术(nanoArch® S140,精度:10 μm)加工模具后,经水凝胶翻模制备而成。经过计算机模拟结构优化,该特殊结构在8-10MHz频段具有声学带隙,对入射超声波有很强的反射能力。图1. 可注射、可降解的超凝胶超声传感器设计原理。(a)基于超声反射的超凝胶无线颅内生理传感器示意图。(b)超凝胶样品及穿刺针照片,比例尺2 mm。(c)超凝胶结构显微镜照片,比例尺500 μm。(d)照片显示超凝胶浸泡在37度的PBS溶液中一个月后开始降解。(e)超凝胶工作原理示意图。(f)变形导致超凝胶反射峰值频率偏移示意图。(g)超凝胶能带结构图。(h, i)带隙中心频率随晶格常数(h)及占空比(i)变化曲线图。(j, k)超凝胶变形前后声场(仿真)分布。多功能凝胶传感器:研究团队设计了三种功能凝胶传感器用于检测不同参数。压力凝胶采用双交联聚乙烯醇/羧甲基纤维素凝胶,灵敏度可达5.7 kHz/mmHg,分辨率0.1 mmHg;温度凝胶由温敏性聚乙烯醇/聚丙烯酰胺凝胶构成,温度检测范围28-43℃,分辨率0.1℃,灵敏度80kHz/℃;pH凝胶则利用质子化聚乙烯醇/壳聚糖凝胶,可检测pH 2-8的范围,分辨率0.5 pH单位,灵敏度256 kHz/pH单位。这些凝胶均采用生物相容性且可降解材料制成,注射入体约1个月后可自然降解,无需再次开颅取出。同步读取与算法:研究团队提出了同步读取多个凝胶传感器的新方法。通过检测各个凝胶的反射频率变化,结合先进算法,可高效分离压力、温度、pH等多种因素的耦合影响,实现对复杂生理环境的全面监测。图2. 超凝胶超声传感器体外测试表征。(a)温度及pH响应超凝胶示意图。(b)超凝胶及纯水凝胶照片(顶部)与超声图像(底部),比例尺2 mm。(c)超凝胶结构显微镜照片,比例尺500 μm。(c, d)超凝胶与纯水凝胶超声反射信号时域对比(c)与频域对比(d)。(e)压力超凝胶与商用压差计压力测试对比。(f)压力超凝胶校准曲线。(g) 温度超凝胶与商用温度计温度测试对比。(h) 温度超凝胶校准曲线。(i) pH超凝胶与商用温度计温度测试对比。(j) pH超凝胶校准曲线。(k) 压力超凝胶反映临近血管模型内流速。动物实验结果:在大鼠和猪的动物实验中,这一凝胶传感系统展现出媲美商用有线临床设备的检测精度,且在耗能、无热效应等方面表现出极大优势。值得一提的是,在实验猪体内,它甚至能检测到微小的呼吸引起的颅内压力细微波动(约1 mmHg),而同步植入的有线压力传感器则无法监测到如此精细的变化。图3. 活体大鼠传感实验及生物相容性表征。(a)实验装置配置照片。(b)超凝胶植入在大鼠颅内的磁共振图像,比例尺2 mm。(c)大鼠佩戴外部超声探头照片。(d)超凝胶与临床有线颅内压探头测试大鼠颅内压力变化曲线。(e, f) 超凝胶与商用有线温度探头测试大鼠颅内温度变化曲线。(g)超凝胶24天内多次监测大鼠颅内压变化。(h) H&E染色脑组织切片照片显示超凝胶降解过程。(i) 免疫荧光染色照片显示超凝胶存续期间炎症情况。图4.实验猪无线颅内压原位监测。(a)实验方案配置示意图。(b)超凝胶及临床有线颅内压探头植入后猪头部照片。(c) 猪腰椎穿刺位置照片。(d)超声图像照片显示超凝胶植入猪颅内位置。(e) 超凝胶、商用压差计以及临床颅内压探头测量猪颅内压随腰椎注射生理盐水变化曲线。(f)体积测试管液面高度照片显示猪颅内压随呼吸起伏。(h) 超凝胶、商用压差计以及临床颅内压探头测量猪颅内压随呼吸变化曲线。临床颅内压探头难以测量微小颅内压变化。总结:该研究提出了一种创新型的植入式无线传感技术,该技术基于超凝胶材料变形所引发的超声波频移效应,能够精确地监测颅内各种生理参数,如颅内压、温度、pH值以及血液流速等。相较于目前市场上的植入式传感器,超凝胶传感器在尺寸、多参数分离监测能力以及可生物降解特性上展现出明显优势。这项技术不仅有望应用于颅内生理参数的监测,还能够扩展至人体其他部位的无创检测,从而为多种疾病的预防和治疗提供了新的技术支持。这种微型且可自然降解的传感器通过微创注射即可使用,大幅提升了患者的就诊便捷性,并为智能医疗健康领域的发展注入了新的活力。
  • 原生态有限公司成功参加2016年全国青年作物栽培与生理学术研讨会
    由中国作物学会主办,农业部作物生理生态与耕作学科群及中国作物学会栽培专业委员会协办,山东农业大学与中国农业科学院作物科学研究所共同承办的“2016年全国青年作物栽培与生理学术研讨会”于2016年10月26-28日在山东省泰安市顺利召开。原生态有限公司(即北京普瑞亿科科技有限公司)应邀参加了此次大会,主要展示了G4301便携式CO2 CH4 H2O分析仪、G2201-i CO2 CH4同位素分析仪、G2508 CO2 CH4 N2O NH3 H2O分析仪、超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)、CRS-1000/B土壤含水量测量系统、环境气象监测等多款仪器,同时也将稳定同位素分析和元素分析服务展示给与会专家学者。本次会议以“作物可持续生产与现代农业”为主题,围绕作物高产高效协同的理论与技术、作物节本增效耕作的理论与技术、作物抗逆稳产及对环境适应机制和作物轻简化生产的原理与技术等四个专题,与会专家学者深入探讨了作物生理生态与栽培耕作学科的发展方向与研究重点。我公司高度重视此次会议,公司总经理张光辉先生亲自带队前往,由销售主管张学涛和销售工程师李锦桥进行现场讲解。在我公司的展台前,不断有与会专家学者领取产品资料,咨询仪器性能、操作使用等相关问题,并留下仪器使用需求和购买意向。值得一提的是,新一代超轻便、电池供电的温室气体分析仪——Picarro G430便携式CO2 CH4 H2O分析仪在展会上相当吸睛。其兼顾了便携性以及测量所需的高精度和灵敏度,整体设计结实耐用,重量轻至11.3Kg,稳定功率为25W;其采样系统和内部整合的气体泵,可用于土壤的气室开发式或闭路式测量,并具备其他野外使用的扩展功能。该设备采用近红外激光,通过高精度传感器进行特定识别,用单一的时间变量进行浓度分析,测量有效路径可达5km。高精度测量腔室只有35ml,并配备高精度温度和压力控制系统,确保仪器在不断变化的环境条件下获得超高的精确度、准确性和超低的漂移。通过参加此次全国青年作物栽培与生理学术研讨会,促进了我公司与科研学者的深入交流,加强了与同领域科研机构和大学的对接,进一步提升了我公司在生态学相关领域的影响力,也为推动作物生理生态与栽培耕作学科的创新发展提供了新思路。关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际厂商签订代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • 现在!2019年诺贝尔生理学或医学奖揭晓!
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/989e775b-7990-4242-b4da-dbc9cae4427a.jpg" title=" WeChat Screenshot_20191007180339.png" alt=" WeChat Screenshot_20191007180339.png" / /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 483px height: 370px " src=" https://img1.17img.cn/17img/images/201910/uepic/701107bc-4a9e-4e91-a80b-e3f2ef725475.jpg" title=" 1111.jpg" alt=" 1111.jpg" width=" 483" height=" 370" / /p p style=" text-align: justify text-indent: 2em " 北京时间10月7日下午,三位科学家获得2019年诺贝尔生理学或医学奖。 /p p style=" text-align: justify text-indent: 2em " 三位获奖者分别是哈佛医学院达纳-法伯癌症研究所的威廉· 凯林( William G. Kaelin, Jr.),牛津大学和弗朗西斯· 克里克研究所的彼得· 拉特克利夫( Peter J. Ratcliffe) 以及美国约翰霍普金斯大学医学院的格雷格· 塞门扎(Gregg L. Semenza)。 /p p style=" text-align: justify text-indent: 2em " strong 获奖理由:表彰他们在理解细胞感知和适应氧气变化机制中的贡献。 /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong “生物体感受氧气浓度的信号识别系统是生命最基本的功能,然而学界对此却所知甚少。三位科学家阐明了人类和大多数动物细胞在分子水平上感受氧气含量的基本原理,揭示了其中重要的信号机制,为贫血、心血管疾病、黄斑退行性病变以及肿瘤等多种疾病开辟了新的临床治疗途径。& nbsp /strong /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 氧气是众多生化代谢途径的电子受体,科学界对氧感应和氧稳态调控的研究开始于促红细胞生成素(erythropoietin, EPO)。当氧气缺乏时,肾脏分泌 EPO刺激骨髓生成新的红细胞。比如当我们在高海拔地区活动时,由于缺氧,人体的新陈代谢发生变化,开始生长出新的血管,制造新的红细胞。这几位科学家们做的正是找出这种身体反应背后的基因表达。他们发现这个反应的“开关”是一种蛋白质,叫做缺氧诱导因子 (Hypoxia-inducible factors, HIF),但其功能远不止开关那么简单。” /strong /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong HIF 控制着人体和大多数动物细胞对氧气变化的复杂又精确的反应,上述三位诺奖科学家揭示了通过调控 HIF 通路从而达到治疗目的存在巨大的潜力, /strong /span /p p style=" text-align: justify text-indent: 2em " 说起诺贝尔生理学或医学奖,笔者不得不提我国青蒿素提取发明人屠呦呦,她于2015年12月10日,被授予诺贝尔生理学或医学奖。在我国70周年国庆前夕,屠呦呦刚刚被习近平主席授予了“共和国勋章”。 /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 笔者带大家回顾一下近年来诺贝尔生理学或医学奖获奖情况: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2018年,美国免疫学家詹姆斯?艾利森与日本生物学家本庶佑,凭借他们发现负性免疫调节治疗癌症的疗法方面的贡献”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2017年,三名美国科学家杰弗里?霍尔、迈克尔?罗斯巴什和迈克尔?扬,凭借他们在研究生物钟运行的分子机制方面的成就获奖。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2016年,日本科学家大隅良典凭借在细胞自噬机制研究中取得的成就获奖。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2015年,中国女药学家屠呦呦,以及爱尔兰科学家威廉?坎贝尔和日本科学家大村智,凭借他们在寄生虫疾病治疗研究方面取得的成就获奖。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 2014年,拥有美国和英国国籍的科学家约翰?奥基夫以及两位挪威科学家梅-布里特?莫泽和爱德华?莫泽,凭借他们发现大脑定位系统细胞的研究获奖。 /span /p p style=" text-align: justify text-indent: 2em " 其他奖项也将在当地时间10月8日-14日相继公布。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/836e9d90-f0eb-4c31-ab63-d263c84edaee.jpg" title=" WeChat Screenshot_20191007180054.png" alt=" WeChat Screenshot_20191007180054.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/4270ab83-b440-4f87-bb69-208923149274.jpg" title=" 69751-hero-tablet-2x.jpg" alt=" 69751-hero-tablet-2x.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/a698ba4e-9411-413b-840f-82ba0857ed1b.jpg" title=" 企业微信截图_20190914192607.png" alt=" 企业微信截图_20190914192607.png" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/b649e7e3-097e-4097-a981-9b0a52004929.jpg" title=" 2e25b9b6-d0c8-4dda-8b8d-af6ff29795e8.jpg" alt=" 2e25b9b6-d0c8-4dda-8b8d-af6ff29795e8.jpg" / /p
  • 中药研发科学化、现代化——屠呦呦获诺贝尔生理学或医学奖为中医药发展迎来新的契机
    2015年10月5日,瑞典斯德哥尔摩,诺贝尔委员会举办新闻发布会,宣布2015年诺贝尔生理学或医学奖得主。中国药学家屠呦呦,爱尔兰科学家威廉坎贝尔、日本科学家大村智分享该奖项。图1 2015诺贝尔生理学或医学奖得主 至此,屠呦呦成为首位获得诺贝尔科学类奖项的中国科学家、首位获得诺贝尔生理医学奖的华人科学家。屠呦呦发现的对抗疟疾的神药青蒿素也引起举世瞩目。 青蒿素的发现表明,中医药是一个伟大的宝库,有宝贵的财富,需要我们去发现、挖掘和研究。而屠呦呦此次因其发现青蒿素的突出贡献获得诺贝尔奖也为中药发展迎来新的契机。图2 中国药学家屠呦呦肖像照和其工作描述图  创腾科技作为国内资深的生命科学信息提供商,基于数据库、分子模拟与分子设计平台Discovery Studio以及强大的信息整合和流程定制的科学平台Pipeline Pilot,能够为中药研发的科学化和现代化助上一臂之力。 中药化合物数据信息的提供 中药化学数据库 (Traditional Chinese Medicines Database , TCMdb)是创腾科技有限公司和中国科学院过程工程研究所联合开发的综合性中药数据库,是支持新药研发和中药现代化研究的有力工具。 TCMdb目前收集了化合物23033种,每种化合物下列12项数据:唯一代码、CAS登录号、中文名称、英文名称、别名、分子式、分子量、二维结构式、植物来源、药理活性(即药理模型实验结果,近8000多种化合物有此数据)、物理化学性质(晶体形态、熔点、沸点、旋光度等,14000多种化合物有此数据)和参考文献。TCMdb涉及到的中药药用植物有6735种,使用的参考文献有5507篇。图3 TCMdb数据库中收集的青蒿素信息 中国天然产物数据库(Chinese Natural Product Database,CNPD)是创腾科技有限公司和中国科学院上海药物研究所联合开发的综合性天然产物数据库。CNPD收集、整理、分析了从中国国产的植物中分离鉴定出的天然产物的物理性质、生物活性剂化学结构等信息,为中国的新药、天然产物及相关领域的研究与开发工作提供了一个不可多得的好工具。 CNPD目前共收集了五万七千多个天然产物,涵盖天然产物的三十七个类别,有70%的分子是类药性分子。同时CNPD还收集了天然产物相关的各类信息,主要包括:天然产物的二维分子结构及三维分子结构;天然产物的名称、分子式、分子量、熔点、旋光度等理化性质、天然产物的CAS号;天然产物的生物活性信息及其参考文献;天然产物的自然来源及其参考文献;原植物或其同属重要在中国传统医药中的应用等。图4 CNPD数据库中收集的青蒿素信息 特定靶标中药的虚筛 针对特定的药物靶标,筛选新的活性化合物是药物科研工作者和各大制药公司奋斗的目标。获得先导化合物的一个重要来源就是天然产物。我国在天然产物的药物发现研究中做出了杰出的贡献,典型的例子就是抗疟药物青蒿素。但是要收集这些天然产物需要大量的经费和时间,随着计算机在药物发现中逐渐发展成为不可缺少的手段,在计算机上利用软件针对某靶标从中药化学数据库或者天然产物数据库中用虚拟筛选(virtual screening,VS)方法搜寻活性化合物,继而集中提取几个至几十个化合物进行药理筛选,是发现新型先导化合物结构的一种经典且高效的途径。 Discovery Studio (简称DS),作为权威的药物设计与模拟平台,通过高质量的图形界面、经多年验证的科学算法以及集成的环境,为科研工作者提供了易用高效的药物设计与优化工具。 对于中药的虚拟筛选,DS可以提供多种不同的虚筛方法: 以靶标结构为基础,通过分子对接技术和片段设计技术,模拟中药数据库与靶标分子间相互作用,从而虚拟筛选出潜在活性分子 以已知同一靶标的活性化合物为基础,通过构建药效团模型并以此作为检索模式来筛选潜在活性化合物 联合不同模拟技术进行虚拟筛选。 针对上述每种虚拟筛选策略,DS都能提供多种算法以供研究者根据不同的研究体系进行选择,同时对于活性的评价也提供多种打分函数。结合TCMD和CNPD,DS为中药的虚拟筛选提供有力的保证。图5 中药的虚拟筛选示意图 中药的成药性评价 中药成药性评价方面,Discovery Studio提供专业的类药性评价工具和ADME/T性质预测工具,可快速、准确预测化合物相关的各项成药性指标。 类药性评价工具。主要包含两种常用半经验方法,类药五规则和veber规则,从氢键供体、氢键受体、分子量、LogP等方面来进行类药性的判定; ADME/T 性质预测工具。提供多种ADMET性质预测模型,可以对中药的吸收、代谢、分布、排泄、毒性等性质进行预测。 化合物的水溶性 血脑屏障穿透性 人细胞色素P450 2D6抑制性 肝毒性 人肠吸收性质 血浆蛋白结合能 潜在发育毒性(Developmental Toxicity Potential,DTP) 致突变型(Mutagenicity(Ames test)) 啮齿动物致癌性(Rodent Carcinogenicity)包括 NTP及FDA 数据集 大鼠长期口服最低毒副反应水平(Rat Chronic Oral Lowest Observed Adverse Effect Level, LOAEL) 皮肤致敏性(Skin Sensitization (GPMT)) 皮肤刺激性(Skin Irritancy ) 大鼠口服LD50(Rat Oral LD50 ) 大鼠最大耐受剂量(Maximum Tolerated Dosage) 黑头呆鱼LC50(Fathead Minnow LC50 ) 大型溞EC50(Daphnia Magna EC50 ) VlogP 眼刺激性(Ocular Irritation) 大鼠吸入LC50(Inhalational LC50) 好养生物降解性能(Aerobic Biodegradability)图6 青蒿素的ADMET Descriptors预测结果图7 青蒿素的TOPKAT预测结果 中药靶向原理、有效成分的预测中药的现代化,应该是真正理解其有效成分、药效机理、靶向原理,知其然并知其所以然。图8 青蒿素潜在靶标的预测示意图 对于未知靶标的中药有效成分,可以基于如下三种方法进行反向找靶,从而预测其作用机制。 药效团模型搜索( Compound Profiling )Discovery Studio为研究者提供基于受体或基于受体-配体相互作用构建代表受体活性口袋化学和几何信息的药效团模型的算法。 图 9 基于受体 - 配体复合物产生药效团 基于药效团模型来搜索潜在靶标的方法,就是将中药有效成分与多个代表各靶标蛋白的药效团模型相互匹配,最终按照匹配打分的高低来判定潜在作用靶标。Discovery Studio中包含目前市场上最大的受体-配体复合物药效团数据库 PharmaDB,该数据库是基于scPDB(2012)中7028个复合物晶体结构构建的,共含117423个药效团模型,并且这些模型已根据不同的靶标类型进行了分类。Discovery Studio中自带的流程Ligand Profiler可自动实现多个分子和多个药效团模型的快速匹配并进行匹配度打分排序。因此,结合PharmaDB,Discovery Studio可以快速有效且全面地进行靶标搜寻、中草药有效成分的确定以及毒副作用评价。图 10 基于药效团模型的反向找靶示意图,“对号”代表命中的模型 反向分子对接( Target Fishing ) 传统的分子对接方法可以帮助科研工作者预测靶标分子与待研化合物的相互作用模式,并借助打分函数评价分子的构效关系。然而,借助计算流程编辑与管理平台Pipeline Pilot以及分子模拟平台Discovery Studio中的分子对接算法、打分函数,创腾科技为国内医药研究者提供基于分子对接方法的化合物反向找靶策略。图 11 基于分子对接的化合物反向找靶计算流程图整个设计思路分为三个步骤:1. 读取用户的小分子结构 读入的文件格式可能不同:sdf、mol、mol2、skc等 实现读入小分子的二维/三维结构转化,结构标准化,加氢,结构优化等2. 反向对接及打分(等于多个正向对接) 遍历蛋白数据库文件,获得每个蛋白的文件路径和结合位点 LibDock参数自动设置和填写(图示流程整合了DS中的LibDock对接模块,如需要,也可替换其它对接程序) 自动循环,使小分子与每个蛋白受体对接 打分、筛选和排序3 结果报表输出 柱状图显示靶标打分和最终排序 对接结构和打分情况 图 12 基于 DS+PP 反向找靶流程的结果示意 其中,靶标可来源于scPDB数据库(http://bioinfo-pharma.u-strasbg.fr/scPDB ),该数据库收集了标准PDB数据库中含有药物结合位点的蛋白,可根据配体、蛋白、结合方式为特征进行搜索。 基于 小 分子相似性分析 (Ligand Similarity Search) Discovery Studio为研究者提供基于分子指纹的分子结构相似性搜索,即DS可以计算中药活性成分与已包含化合物生物活性以及靶标注释的化合物数据库中小分子化合物的Tanimoto系数等,从而进行相似性评价,进而预测其潜在靶标。如果输入的分子能够在数据库中搜索到它本身,则可以获得其已知靶标;如果输入的分子能够在数据库中搜索到与其相似的化合物,则根据与其结构相似的分子靶标可推测输入分子的靶标信息。图13 根据同已有靶标分子相似性的分析进行未知分子靶标的预测流程示意图
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 2017泽泉植物表型育种及生理生态研讨会第一轮通知
    上海泽泉科技股份有限公司多年来秉承推进中国生态环境改善、农业兴国的理念,服务涉及植物表型育种,植物生理生态,水文水利,农业工程等领域的科研和技术支持。为更好地服务全国科研用户,促进植物表型育种、生理生态领域的研究,整合有效资源,同时促进相关研究设施和平台的建设,上海泽泉科技股份有限公司将于2017年12月7日至12月9日在上海举办2017泽泉植物表型育种及生理生态研讨会。 研讨会内容包括植物表型与分子育种、植物生理生态环境研究、农业物联网等。邀请的演讲嘉宾有国家重点高校、科研院所,植物遗传育种、基因表型等领域专家;世界先进植物生理生态、植物培养等仪器制造商科学家团队;泽泉公司资深科研技术团队。结合讲座内容,会议期间将安排实地参观考察,亚洲第一个开放式高通量植物基因型-表型-育种服务平台——AgriPheno™ 。另外,为了感谢广大客户长久以来的支持和合作,本次研讨会特别设置,生理生态设备的免费检测与保养服务。 上海泽泉科技股份有限公司现向各单位植物研究、农业建设领域科研人员发出诚挚邀请,欢迎您出席本次会议与参会者交流领域内的科研进展,期待您的光临。 一、主办单位:上海泽泉科技股份有限公司 二、会议时间与地点时间:2017年12月7日至12月9日,7日早上报道,7日全天研讨会,8日上午研讨会,下午参观,9日离会地点:上海青松城大酒店(黄山厅),上海市徐汇区肇嘉浜路777号 三、会议主题主题1. 植物表型与分子育种主题2. 植物生理生态环境研究主题3. 农业物联网 四、参会须知1、参会回执:请参会人员于10月31日前回传参会回执,我们将根据参会回执协助推荐住宿和安排参会事宜。2、参观考察回执:本次会议将安排于2017年12月8日下午前往位于上海浦东孙桥现代农业产业园区的AgriPheno™ 高通量植物基因型-表型-育种平台参观考察,如您需参加,请在参观考察回执中填写参观人数,我们会根据您的回执租赁车辆负责接送。 3、会议费用:参会免费。交通、食宿自理。会议期间提供工作午餐。 4、仪器维护:本次会议期间将提供生理生态仪器的免费检测与保养,请需要仪器检测的参会人员在参会回执中注明是否携带仪器参会并填写“仪器设备维修服务单”,与参会回执一同发至会务组;如不方便随身携带仪器参会,可提前将仪器寄至我司上海总部,邮寄前请填写并打印“仪器设备维修服务单”随仪器寄出,并请提前与会务组联系确认。仪器维护工作如无法在会议期间全部完成,我司将在仪器全面维护完成后将其寄回。如涉及更换配件,视仪器质保情况,可能收取配件成本费用。 五、会务组联系人徐静萍 六、会议日程12月7日8:00-8:30现场注册、报到8:30-12:00研讨会12:00-13:30午餐13:30-17:30研讨会12月8日9:00-12:00研讨会12:00-13:30午餐13:30-17:30高通量植物基因型-表型-育种服务平台AgriPheno™ 参观或者会议室生理生态设备的免费检测与保养12月9日离会
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • 2011诺贝尔生理学奖得主被前同事质疑
    12月16日,《科学》网站发表文章称,2011年诺贝尔生理学或医学奖得主之一、法国科学家Jules Hoffmann受到其实验室前研究人员Bruno Lemaitre的质疑。   Lemaitre上周建立了一个网站(www.behinddiscoveries.com) 他在上面声称,自己上世纪90年代在Hoffmann实验室工作的时候,正是Hoffmann获诺奖的成果完成的时候,而且事实上是他完成了所有研究工作,他是1996年体现该成果的《细胞》文章的第一作者。Hoffmann本人当时对此工作几乎没有兴趣,但是当工作的重要性显现的时候,Hoffmann就声称这全是他自己的成果。   Science Insider于16日联系Hoffmann,Hoffmann拒绝对此评论,因为他觉得“不会感到一点内疚”。   今年诺贝尔生理学或医学奖公布以来已经受到诸多质疑,包括在公布之前就已经逝世的 Ralph Steinman是否应该继续获奖 另外,26位免疫学家上个月致信《自然》称今年诺奖没有适当考虑Charles A. Janeway Jr. 和Ruslan Medzhitov的贡献。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制