当前位置: 仪器信息网 > 行业主题 > >

实时成像检测

仪器信息网实时成像检测专题为您提供2024年最新实时成像检测价格报价、厂家品牌的相关信息, 包括实时成像检测参数、型号等,不管是国产,还是进口品牌的实时成像检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合实时成像检测相关的耗材配件、试剂标物,还有实时成像检测相关的最新资讯、资料,以及实时成像检测相关的解决方案。

实时成像检测相关的资讯

  • 鉴知解决方案:光谱仪多通道检测与实时3D成像
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。北京鉴知技术有限公司总经理 王红球本次会议中,北京鉴知技术有限公司王红球总经理分享了《基于大数据自动解析的在线光谱技术》(点击 回看 )引发行业关注。会后,我们邀请北京鉴知技术有限公司向大家简单介绍他们在光谱技术及仪器研发应用方面的系列成果。1、典型仪器新品产品1,透射光谱仪:鉴知ST50S/90S/100S系列透射成像光谱仪是专门针对微弱信号检测的极致高性能光谱仪。ST50S/90S/100S系列光谱仪采用VPH体全息相位光栅,光栅衍射效率高达80%~90%,有更高的衍射效率;光路采用高数值孔径、零光学像差设计,可实现最佳的收集效率和理论极限分辨率;同时可兼容PI、ANDOR等科研级深度制冷相机,保证极佳的量子效率和暗电流噪声。产品2,OCT光谱仪:鉴知ST830E/850E系列光谱仪是光谱域OCT(SD-OCT)系统中的重要器件,决定了OCT系统的成像速度和信噪比随深度衰减程度等重要性能指标。它通过特殊的光路设计实现了波数线性的空间色散以及波数的等间隔采样。采集到的干涉光谱可以直接进行FFT无需波数重采样算法,极大降低了数据处理的复杂度,提升了系统的信噪比。此外,本产品还采用了体相位光栅(VPH),在SD-OCT系统中信噪比可以达到110dB,获得了高质量的OCT/OCTA活体生物图像。2、解决方案(1)透射光谱仪支持多通道检测,体积紧凑便携,适合低浓度样品或微弱信号的工业检测,并可用于共聚焦拉曼分析,气体探测等。(2)OCT光谱仪可用于血管造影,激光振荡,实时3D成像,眼前房成像。3、合作需求对透射光谱仪和OCT感兴趣的老师,以及有相关典型应用的科研院所和老师可以与我们联系沟通,探索合作。附北京鉴知技术有限公司简介北京鉴知技术有限公司成立于2019年,源自同方威视技术股份有限公司与清华大学共建的安检技术研究院,是一家以光谱检测技术为核心的专业公司,产品广泛应用于缉私缉毒、液体安检、食品安全、药品检测等诸多领域,致力于为客户提供更先进的产品和更快捷的物质识别方案。公司专利累计申请数达200余件,所拥有的技术获得了国家科学技术委员会科技成果鉴定证书及中国专利优秀奖,相关产品获得了国际发明展览会金奖、北京市新技术新产品证书、中国科学仪器年度优秀新品奖、朱良漪分析仪器创新奖之“创新成果奖”等。公司拥有自主知识产权的五大系列十多个型号的拉曼光谱产品,产品类型包括手持拉曼、便携拉曼、台式显微拉曼,应用方向包括液体安检、毒品检测、食品安全检测、药品原辅料筛查、制药及化工在线检测等,覆盖海关、安检、轨道交通、食药检测、实验室应用等多个领域。
  • 新型NADH荧光探针问世 实现细胞代谢实时检测与成像
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/8285de06-fab1-432b-acd4-3147494e96d5.jpg" title=" tpxw2017-08-10-03_副本.jpg" / /p p   在国家自然科学基金重大研究计划、国家杰出青年科学基金项目和面上项目的资助下,华东理工大学杨弋教授团队开发了一系列特异性检测还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的高性能遗传编码荧光探针iNap,相关研究成果以“Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism”(遗传编码的荧光探针揭示NADPH代谢的动态调节)为题于2017年6月5日以“研究长文”的形式在线发表在Nature Methods,2017年7月28日正式刊出。陶荣坤博士、赵玉政研究员和初环宇博士为共同第一作者。华东理工大学杨弋教授和中国科学技术大学刘海燕教授为文章的共同通讯作者。 /p p   烟酰胺腺嘌呤二核苷酸(NADH/NAD+)及其磷酸化形式(NADPH/NADP+),作为生物体内两对最重要的辅酶和核心代谢物,常被用作评价细胞代谢状态的关键指标,与衰老及相关疾病如癌症、糖尿病、肥胖症、心脑血管疾病、神经性退行性疾病等的发生发展密切相关。长久以来,细胞代谢的检测主要依赖酶学、色谱、质谱等,这些方法不仅破坏了细胞或生物体的完整性,更难以应用于高通量筛选。为了解决这一重要科学难题,2011年,杨弋教授团队利用合成生物学方法开发了一系列遗传编码的NADH荧光探针,实现了在活细胞及各种亚细胞结构中对NADH分子的实时动态、特异性的检测与成像(Cell Metabolism, 2011, 14, 555)。2015年,该团队又报道了可同时检测NAD+,NADH及其比率的第二代细胞代谢荧光探针NADH氧化还原比率探针(SoNar),像火眼金睛一样,可察觉到癌细胞与正常细胞的微细代谢差异(Cell Metabolism, 2015, 21, 777)。并进一步建立了细胞代谢荧光探针在单细胞、活体动物成像及高通量药物筛选方面的系统研究方法(Nature Protocols, 2016, 11, 1345)。 /p p   NADH和NADPH的荧光光谱相似,但是二者的生理功能却显著不同。NADH主要参与物质能量代谢,而NADPH主要参与合成代谢以及抗氧化,传统的自发荧光分析方法很难区分这两种小分子。该研究团队在第二代NADH荧光探针SoNar的基础上,通过对底物结合蛋白的理性设计和改造,开发了一系列高性能遗传编码荧光探针iNap,特异性检测NADPH,实现了在活体、活细胞及各种亚细胞结构中对NADPH代谢的高时空分辨检测与成像。该研究首次报道了癌细胞内不同亚细胞结构中游离的NADPH水平,发现了氧化应激时癌细胞内NADPH代谢受葡萄糖水平动态调节。研究团队也进一步发现人体内源性类固醇激素DHEA通过抑制G6PD活性和激活AMPK活性,对NADPH代谢实现双向调节作用。鉴于AMPK信号通路在衰老、糖尿病、肥胖症以及癌症中的重要角色,这一研究结果有望破解DHEA作为一种药物和膳食补充剂在这些疾病方面发挥出的有益作用。NADPH作为细胞内的还原力,在生理或病理条件下发挥重要角色。该研究报道的细胞代谢荧光探针iNap,不仅可应用于抗氧化、AMPK、脂肪酸合成等代谢途径与通路分析,也可用于衰老及相关疾病创新药物的发现。 /p
  • 北京大学120.00万元采购实时成像检测
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 北京大学医学部多材料生物三维成型检测系统招标采购项目公开招标公告 北京市-海淀区 状态:公告 更新时间: 2023-08-20 招标文件: 附件1 北京大学医学部多材料生物三维成型检测系统招标采购项目公开招标公告 项目概况 北京大学医学部多材料生物三维成型检测系统招标采购项目 招标项目的潜在投标人应在登录东方招标平台http://www.oitccas.com/注册并购买。获取招标文件,并于2023年09月11日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:OITC-G230311395 项目名称:北京大学医学部多材料生物三维成型检测系统招标采购项目 预算金额:120.0000000 万元(人民币) 最高限价(如有):120.0000000 万元(人民币) 采购需求: 包号 货物名称 数量 简要技术规格 是否允许采购进口产品 采购 预算 1 多材料生物三维成型检测系统 1套 多材料生物三维成型检测系统适用于材料科学、组织工程、再生医学、生命科学、药学等研究领域。可应用于硬骨、软骨、半月板、韧带、皮肤、神经、血管等领域的再生修复及药物筛选。 多材料生物三维成型检测系统在数字光投影生物3D打印技术的基础上,结合了多料仓多材料协同打印的技术,对多材料复杂结构的构建有着特有的优势,具有快速、准确、个性化及擅长制造复杂结构生物实体的特性。多材料生物三维成像检测系统可打印细胞、水凝胶、合成聚合物及生物陶瓷材料。最多可实现4种材料的同时打印,构建多材料复杂结构。可实现不同层及同层不同区域的光强设定,实现不同位置不同软硬程度的支架构建。可对打印后的生物支架进行无损伤、高速、宽视场检测。可分析生物支架孔隙等效直径、孔隙数目、孔隙体积、孔隙连通率,以及丝径、材料体积等。针对多孔板内类器官等三维生物组织进行自动化批量成像,并提供时序追踪分析,包括类器官体积、表面积、球度等参数。 否 120 万元 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。 具体技术要求详见招标公告所附附件(即,本招标文件第六部分)。 合同履行期限:合同签订后120天交货。 本项目( 不接受 )联合体投标。二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目不属于专门面向中小微企业、监狱企业、残疾人福利性单位采购的项目。 3.本项目的特定资格要求:1) 投标人须符合《中华人民共和国政府采购法》第二十二条的规定;(具体为供应商参加政府采购活动应当具备下列条件:(一)具有独立承担民事责任的能力;(二)具有良好的商业信誉和健全的财务会计制度;(三)具有履行合同所必需的设备和专业技术能力;(四)有依法缴纳税收和社会保障资金的良好记录;(五)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(六)法律、行政法规规定的其他条件。)2) 投标人须在中华人民共和国境内合法注册、有法人资格并符合工商局或相关行业主管部门核准的经营范围或经营许可;3) 投标人按照招标公告要求购买了招标文件;4) 投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。5) 为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;6) 投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;7) 本项目不接受联合体投标。 三、获取招标文件 时间:2023年08月20日 至 2023年08月25日,每天上午8:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外) 地点:登录东方招标平台http://www.oitccas.com/注册并购买。 方式:登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 售价:¥600.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年09月11日 09点30分(北京时间) 开标时间:2023年09月11日 09点30分(北京时间) 地点:北京市海淀区丹棱街1号互联网金融中心20层科创厅 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜1、投标文件递交地点:北京市海淀区丹棱街1号互联网金融中心20层科创厅 2、招标文件采用网上电子发售购买方式: 1)登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 2)投标人可以电汇的形式支付款、保证金(应以公司名义汇款至下述指定账号)。 开户名称:东方国际招标有限责任公司 开户行:招商银行北京西三环支行 账 号:862081657710001 3)投标人应在“东方招标”平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在“东方招标”平台上登记的电子邮箱,投标人自行下载打印。 3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途(如未标明招标编号,有可能导致投标无效)。 4、采购项目需要落实的政府采购政策: (1)政府采购促进中小企业发展 (2)政府采购支持监狱企业发展 (3)政府采购促进残疾人就业 (4)政府采购鼓励采购节能环保产品 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京大学 地址:北京市海淀区学院路38号 联系方式:凌老师; 010-82801359 2.采购代理机构信息 名 称:东方国际招标有限责任公司 地 址:北京市海淀区丹棱街1号互联网金融中心20层 联系方式:王军、郭宇涵、李雯; 010-68290508、010-68290530 3.项目联系方式 项目联系人:凌老师 电 话: 010-82801359 第六章 技术要求1395.docx × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:实时成像检测 开标时间:2023-09-11 09:30 预算金额:120.00万元 采购单位:北京大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:东方国际招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 北京大学医学部多材料生物三维成型检测系统招标采购项目公开招标公告 北京市-海淀区 状态:公告 更新时间: 2023-08-20 招标文件: 附件1 北京大学医学部多材料生物三维成型检测系统招标采购项目公开招标公告 项目概况 北京大学医学部多材料生物三维成型检测系统招标采购项目 招标项目的潜在投标人应在登录东方招标平台http://www.oitccas.com/注册并购买。获取招标文件,并于2023年09月11日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:OITC-G230311395 项目名称:北京大学医学部多材料生物三维成型检测系统招标采购项目 预算金额:120.0000000 万元(人民币) 最高限价(如有):120.0000000 万元(人民币) 采购需求: 包号 货物名称 数量 简要技术规格 是否允许采购进口产品 采购 预算 1 多材料生物三维成型检测系统 1套 多材料生物三维成型检测系统适用于材料科学、组织工程、再生医学、生命科学、药学等研究领域。可应用于硬骨、软骨、半月板、韧带、皮肤、神经、血管等领域的再生修复及药物筛选。 多材料生物三维成型检测系统在数字光投影生物3D打印技术的基础上,结合了多料仓多材料协同打印的技术,对多材料复杂结构的构建有着特有的优势,具有快速、准确、个性化及擅长制造复杂结构生物实体的特性。多材料生物三维成像检测系统可打印细胞、水凝胶、合成聚合物及生物陶瓷材料。最多可实现4种材料的同时打印,构建多材料复杂结构。可实现不同层及同层不同区域的光强设定,实现不同位置不同软硬程度的支架构建。可对打印后的生物支架进行无损伤、高速、宽视场检测。可分析生物支架孔隙等效直径、孔隙数目、孔隙体积、孔隙连通率,以及丝径、材料体积等。针对多孔板内类器官等三维生物组织进行自动化批量成像,并提供时序追踪分析,包括类器官体积、表面积、球度等参数。 否 120 万元 投标人可对其中一个包或多个包进行投标,须以包为单位对包中全部内容进行投标,不得转包、分包,评标、授标以包为单位。 具体技术要求详见招标公告所附附件(即,本招标文件第六部分)。 合同履行期限:合同签订后120天交货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目不属于专门面向中小微企业、监狱企业、残疾人福利性单位采购的项目。 3.本项目的特定资格要求:1) 投标人须符合《中华人民共和国政府采购法》第二十二条的规定;(具体为供应商参加政府采购活动应当具备下列条件:(一)具有独立承担民事责任的能力;(二)具有良好的商业信誉和健全的财务会计制度;(三)具有履行合同所必需的设备和专业技术能力;(四)有依法缴纳税收和社会保障资金的良好记录;(五)参加政府采购活动前三年内,在经营活动中没有重大违法记录;(六)法律、行政法规规定的其他条件。)2) 投标人须在中华人民共和国境内合法注册、有法人资格并符合工商局或相关行业主管部门核准的经营范围或经营许可;3) 投标人按照招标公告要求购买了招标文件;4) 投标人不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的供应商。5) 为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得参加本项目投标;6) 投标单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;7) 本项目不接受联合体投标。 三、获取招标文件 时间:2023年08月20日 至 2023年08月25日,每天上午8:00至12:00,下午13:00至17:00。(北京时间,法定节假日除外) 地点:登录东方招标平台http://www.oitccas.com/注册并购买。 方式:登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 售价:¥600.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年09月11日 09点30分(北京时间) 开标时间:2023年09月11日 09点30分(北京时间) 地点:北京市海淀区丹棱街1号互联网金融中心20层科创厅 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、投标文件递交地点:北京市海淀区丹棱街1号互联网金融中心20层科创厅 2、招标文件采用网上电子发售购买方式: 1)登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。 2)投标人可以电汇的形式支付款、保证金(应以公司名义汇款至下述指定账号)。 开户名称:东方国际招标有限责任公司 开户行:招商银行北京西三环支行 账 号:862081657710001 3)投标人应在“东方招标”平台上填写开票信息。在投标人足额缴纳标书款后,标书款电子发票将发送至投标人在“东方招标”平台上登记的电子邮箱,投标人自行下载打印。 3、以电汇方式购买招标文件和递交投标保证金的,须在电汇凭据附言栏中写明招标编号、包号及用途(如未标明招标编号,有可能导致投标无效)。 4、采购项目需要落实的政府采购政策: (1)政府采购促进中小企业发展 (2)政府采购支持监狱企业发展 (3)政府采购促进残疾人就业 (4)政府采购鼓励采购节能环保产品 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:北京大学 地址:北京市海淀区学院路38号 联系方式:凌老师; 010-82801359 2.采购代理机构信息 名 称:东方国际招标有限责任公司 地 址:北京市海淀区丹棱街1号互联网金融中心20层 联系方式:王军、郭宇涵、李雯; 010-68290508、010-68290530 3.项目联系方式 项目联系人:凌老师 电 话: 010-82801359 第六章 技术要求1395.docx
  • IVIS 视角 | 使用生物发光成像实时监测体内葡萄糖摄取
    在活体成像技术中,一些新的光学探针及光调控技术的出现,拓展了该技术的应用领域。上期给大家分享了检测活性氧的探针,能够在活体水平监测局部炎症中活性氧自由基(ROS)的释放,以及基于肿瘤微环境中高ROS水平介导的自发光动力效应,实现肿瘤诊疗一体化。今天给大家分享一篇2019年发表在《Nature Methods》杂志上的文章。作者设计了一种生物发光的探针BiGluc,利用该探针即可在体内、体外实时、无创的长期监测葡萄糖的摄取。葡萄糖是大多数生物体能量的主要来源,其异常摄取与许多病理条件有关,如肿瘤、糖尿病、神經退行性疾病、非酒精性脂肪性肝炎等。到目前为止,基于18FDG的正电子发射断层成像(PET)仍然是测量葡萄糖摄取的金标准。还没有光学成像技术能够很好的检测该指标。文章中作者设计了一种可以可视化和定量葡萄糖吸收的光学探针。该探针是基于结合笼状萤光素技术与生物正交‘点击’反应,即可激活的笼状萤光素三芳基膦酯(CLP)与全氟苯基叠氮基修饰的葡萄糖(GAz4)分子之间产生的生物正交点击反应,该反应导致游离萤光素的释放,此时在萤光素酶的存在下,即可产生可量化的生物发光信号,其信号强度与葡萄糖的代谢水平相关。在活体成像中,首先是表达萤光素酶的动物注射CLP, 24小时后注射GAz4,注射后即可使用IVIS 小动物活体成像系统进行成像,如下图所示。图1. BiGluc.探针的设计策略点击查看视频:https://v.qq.com/x/page/y0897ftpwnc.html为了研究BiGluc探针在活体水平的应用,文中使用基因工程鼠FVB-luc+/+【该小鼠通过β-actin启动子广泛的表达萤光素酶】来进行评价。在三组FVB-luc+/+小鼠中,首先尾静脉注射CLP溶液,24h后分别灌胃GAz4(BiGluc组)、GAz4+d-葡萄糖(BiGluc+d-葡萄糖组)或PBS(背景组)。结果显示,d-葡萄糖(1:300 ratio with the GAz4 probe)的竞争能够对BiGluc信号进行抑制,使得信号值下降至背景值。从而成功证明BiGluc探针与天然底物存在竞争(下图a-c)。为了进一步研究BiGluc和d-葡萄糖的在体内的选择性,作者进行了胰岛素耐受性试验。高水平的胰岛素会导致GLUT4易位到细胞膜,随后组织对d-葡萄糖摄取的增加。因此实验中FVB-luc+/+小鼠静脉注射CLP,24h后注射GAz4 结合 PBS溶液(对照组)或者胰岛素,随后进行生物发光成像,结果显示胰岛素处理组小鼠的信号增加了三倍(下图d)。图2. 转基因小鼠(FVB-luc+/+)中d-葡萄糖摄取的成像和定量这些实验结果表明,BiGluc探针可以可靠地用于可视化研究活体水平d-葡萄糖的摄取,并且可以进行定量,从而也提示该探针可用于糖尿病等代谢疾病的研究。同样,该探针可用于肿瘤葡糖糖摄取的研究。葡萄糖转运蛋白,特别是GLUT1,在多种类型肿瘤发展中起着至关重要的作用。实验中使用裸鼠接种4T1-luc或4 T1-luc-GLUT1?/?细胞,肿瘤生长至体积65mm3,所有的动物注射等量的萤光素,以确保肿瘤的大小和萤光素酶的表达量相同。如前所示,进行BiGluc探针成像实验。实验结果表明,与对照组相比,4T1-luc-GLUT1?/?发光强度降低38%。同样文中还研究了BiGluc信号是否可以通过化学抑制GLUT1转运体来调节。众所周知,WZB-117是一种小分子的GLUT1可逆抑制剂,能够在不同的癌症中有效地阻止葡萄糖的摄取。结果显示WZB-117处理组,葡萄糖摄取信号减少50%(下图c,d)。同样文中比较了BiGluc 探针和18F-FDG-PET在肿瘤移植体中的应用效果。结果显示 4T1-luc-GLUT1?/-细胞对葡萄糖的摄取量降低,与BiGluc探针成像结果一致(下图e,f)。图3. 使用BiGluc和18F-FDG探针对肿瘤异种移植模型中d-葡萄糖的摄取进行成像和定量这些结果都证明了BiGluc探针在研究机体葡萄糖摄取中强大的功能。相信这项技术可以广泛应用于药物研发以及监测与葡萄糖摄取异常相关疾病的发生和进展,如癌症、糖尿病和肥胖等。此外,BiGluc技术扩大了生物发光成像技术可检测的生物分子的范围。在未来,利用新的红移萤光素-萤光素酶组合技术可以进一步提高BiGluc探针灵敏度,将进一步扩大其应用范围。文章来源https://www.nature.com/articles/s41592-019-0421-z关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 中国中医科学院针灸研究所277.90万元采购基因测序仪,实时成像检测,细胞定量分析
    详细信息 中国中医科学院针灸研究所2023年科研机构改善科研条件专项设备采购项目公开招标公告 北京市-海淀区 状态:公告 更新时间: 2023-05-19 招标文件: 附件1 中国中医科学院针灸研究所2023年科研机构改善科研条件专项设备采购项目公开招标公告 2023年05月19日 16:09 公告信息: 采购项目名称 中国中医科学院针灸研究所2023年科研机构改善科研条件专项设备采购项目 品目 货物/通用设备/仪器仪表/分析仪器/其他分析仪器,货物/通用设备/仪器仪表/光学仪器/显微镜,货物/专用设备/专用仪器仪表/生理仪器 采购单位 中国中医科学院针灸研究所 行政区域 北京市 公告时间 2023年05月19日 16:09 获取招标文件时间 2023年05月19日至2023年05月26日每日上午:9:00 至 12:00 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥600 获取招标文件的地点 北京市海淀区西三环北路21号久凌大厦南楼15层 开标时间 2023年06月09日 09:30 开标地点 北京市海淀区西三环北路21号久凌大厦南楼15层1516会议 预算金额 ¥277.900000万元(人民币) 联系人及联系方式: 项目联系人 杜雅威 项目联系电话 13810419315 采购单位 中国中医科学院针灸研究所 采购单位地址 北京市东城区东直门内南小街16号 采购单位联系方式 任老师 010-64089341 代理机构名称 中金招标有限责任公司 代理机构地址 北京市海淀区西三环北路21号久凌大厦南楼15层 代理机构联系方式 杜雅威 010-68405035 附件: 附件1 招标公告-2023改善专项 5.19.docx 项目概况 中国中医科学院针灸研究所2023年科研机构改善科研条件专项设备采购项目 招标项目的潜在投标人应在北京市海淀区西三环北路21号久凌大厦南楼15层获取招标文件,并于2023年06月09日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0773-2341GNOBHWGK1266 项目名称:中国中医科学院针灸研究所2023年科研机构改善科研条件专项设备采购项目 预算金额:277.9000000 万元(人民币) 采购需求: 包号 品目号 项目名称 设备名称 数量 (台/套) 简要技术 要求 是否接受进口产品 预算 (万元) 包总预算(万元) 备注 1 1 高分辨全光谱组织细胞蛋白成像系统 高分辨全光谱蛋白基因检测成像平台 1 用于组织切片、活体动物在体组织的荧光三维图像重建分析研究等。 是 160 277.9 核心产品 2 小动物脑立体操作系统 1 用于电生理实验中的精确定位 33 3 杂交炉 1 RNAscope手工检测实验中杂交和孵育步骤 16 4 心脑功能成像检测系统 便携式近红外光学脑成像系统 1 用于抑郁和意识障碍等病种的脑效应机制研究 62.5 5 压力控制器 1 用于膜片钳实验中的细胞封接及破膜 6.4 备注:本项目采购标的对应的《中小企业划型标准规定》所属行业为: 制造业 合同履行期限:2023年 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)鼓励节能政策:在技术、服务等指标同等条件下,优先采购属于国家公布的节能清单中产品。 (2)鼓励环保政策:在性能、技术、服务等指标同等条件下,优先采购国家公布的环保产品清单中的产品。 (3)扶持中小企业政策:评审时小型和微型企业产品享受10%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (4)本项目采购标的是否接受进口产品详见第1条 采购需求 要求。 3.本项目的特定资格要求:无 三、获取招标文件 时间:2023年05月19日 至 2023年05月26日,每天上午9:00至12:00,下午13:00至16:00。(北京时间,法定节假日除外) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层 方式:有兴趣的投标人可在采购代理所在地址(北京市海淀区西三环北路21号久凌大厦南楼15层)查询和购买招标文件。投标文件需现场购买,报名时需现场填写《购买记录表》并提供营业执照复印件一份(盖章)和标书款现金。 售价:¥600.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年06月09日 09点30分(北京时间) 开标时间:2023年06月09日 09点30分(北京时间) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层1516会议 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.评标办法和评标标准:本项目评标采用综合评分法。 2.采购代理机构银行财务信息: 开户名称:中金招标有限责任公司 开户行名称:招商银行股份有限公司北京海淀科技金融支行 账 号:86 7080 1128 10001 3.以电汇方式递交投标保证金、支付标书款请供应商在电汇凭据附言栏中写明招标编号、包号及用途。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国中医科学院针灸研究所 地址:北京市东城区东直门内南小街16号 联系方式:任老师 010-64089341 2.采购代理机构信息 名 称:中金招标有限责任公司 地 址:北京市海淀区西三环北路21号久凌大厦南楼15层 联系方式:杜雅威 010-68405035 3.项目联系方式 项目联系人:杜雅威 电 话: 13810419315 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:基因测序仪,实时成像检测,细胞定量分析 开标时间:2023-06-09 09:30 预算金额:277.90万元 采购单位:中国中医科学院针灸研究所 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中金招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中国中医科学院针灸研究所2023年科研机构改善科研条件专项设备采购项目公开招标公告 北京市-海淀区 状态:公告 更新时间: 2023-05-19 招标文件: 附件1 中国中医科学院针灸研究所2023年科研机构改善科研条件专项设备采购项目公开招标公告 2023年05月19日 16:09 公告信息: 采购项目名称 中国中医科学院针灸研究所2023年科研机构改善科研条件专项设备采购项目 品目 货物/通用设备/仪器仪表/分析仪器/其他分析仪器,货物/通用设备/仪器仪表/光学仪器/显微镜,货物/专用设备/专用仪器仪表/生理仪器 采购单位 中国中医科学院针灸研究所 行政区域 北京市 公告时间 2023年05月19日 16:09 获取招标文件时间 2023年05月19日至2023年05月26日每日上午:9:00 至 12:00 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥600 获取招标文件的地点 北京市海淀区西三环北路21号久凌大厦南楼15层 开标时间 2023年06月09日 09:30 开标地点 北京市海淀区西三环北路21号久凌大厦南楼15层1516会议 预算金额 ¥277.900000万元(人民币) 联系人及联系方式: 项目联系人 杜雅威 项目联系电话 13810419315 采购单位 中国中医科学院针灸研究所 采购单位地址 北京市东城区东直门内南小街16号 采购单位联系方式 任老师 010-64089341 代理机构名称 中金招标有限责任公司 代理机构地址 北京市海淀区西三环北路21号久凌大厦南楼15层 代理机构联系方式 杜雅威 010-68405035 附件: 附件1 招标公告-2023改善专项 5.19.docx 项目概况 中国中医科学院针灸研究所2023年科研机构改善科研条件专项设备采购项目 招标项目的潜在投标人应在北京市海淀区西三环北路21号久凌大厦南楼15层获取招标文件,并于2023年06月09日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:0773-2341GNOBHWGK1266 项目名称:中国中医科学院针灸研究所2023年科研机构改善科研条件专项设备采购项目 预算金额:277.9000000 万元(人民币) 采购需求: 包号 品目号 项目名称 设备名称 数量 (台/套) 简要技术 要求 是否接受进口产品 预算 (万元) 包总预算(万元) 备注 1 1 高分辨全光谱组织细胞蛋白成像系统 高分辨全光谱蛋白基因检测成像平台 1 用于组织切片、活体动物在体组织的荧光三维图像重建分析研究等。 是 160 277.9 核心产品 2 小动物脑立体操作系统 1 用于电生理实验中的精确定位 33 3 杂交炉 1 RNAscope手工检测实验中杂交和孵育步骤 16 4 心脑功能成像检测系统 便携式近红外光学脑成像系统 1 用于抑郁和意识障碍等病种的脑效应机制研究 62.5 5 压力控制器 1 用于膜片钳实验中的细胞封接及破膜 6.4 备注:本项目采购标的对应的《中小企业划型标准规定》所属行业为: 制造业 合同履行期限:2023年 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)鼓励节能政策:在技术、服务等指标同等条件下,优先采购属于国家公布的节能清单中产品。 (2)鼓励环保政策:在性能、技术、服务等指标同等条件下,优先采购国家公布的环保产品清单中的产品。 (3)扶持中小企业政策:评审时小型和微型企业产品享受10%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (4)本项目采购标的是否接受进口产品详见第1条 采购需求 要求。 3.本项目的特定资格要求:无 三、获取招标文件 时间:2023年05月19日 至 2023年05月26日,每天上午9:00至12:00,下午13:00至16:00。(北京时间,法定节假日除外) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层 方式:有兴趣的投标人可在采购代理所在地址(北京市海淀区西三环北路21号久凌大厦南楼15层)查询和购买招标文件。投标文件需现场购买,报名时需现场填写《购买记录表》并提供营业执照复印件一份(盖章)和标书款现金。 售价:¥600.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年06月09日 09点30分(北京时间) 开标时间:2023年06月09日 09点30分(北京时间) 地点:北京市海淀区西三环北路21号久凌大厦南楼15层1516会议 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.评标办法和评标标准:本项目评标采用综合评分法。 2.采购代理机构银行财务信息: 开户名称:中金招标有限责任公司 开户行名称:招商银行股份有限公司北京海淀科技金融支行 账 号:86 7080 1128 10001 3.以电汇方式递交投标保证金、支付标书款请供应商在电汇凭据附言栏中写明招标编号、包号及用途。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中国中医科学院针灸研究所 地址:北京市东城区东直门内南小街16号 联系方式:任老师 010-64089341 2.采购代理机构信息 名 称:中金招标有限责任公司 地 址:北京市海淀区西三环北路21号久凌大厦南楼15层 联系方式:杜雅威 010-68405035 3.项目联系方式 项目联系人:杜雅威 电 话: 13810419315
  • 葫芦岛市第四人民医院117.80万元采购实时成像检测
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 实时成像检测 开标时间: 2021-12-16 00:00 采购金额: 117.80万元 采购单位: 葫芦岛市第四人民医院 采购联系人: 赵桂秋 采购联系方式: 立即查看 招标代理机构: 葫芦岛市政务服务中心公共资源交易分中心 代理联系人: 高勇 代理联系方式: 立即查看 详细信息 葫芦岛市卫生健康委员会第四人民医院电子病历系统项目竞争性磋商公告 辽宁省-葫芦岛市-龙港区 状态:公告 更新时间:2021-12-07 招标文件: 附件1 葫芦岛市卫生健康委员会第四人民医院电子病历系统项目竞争性磋商公告 公告概要: 公告信息: 采购项目名称 葫芦岛市卫生健康委员会第四人民医院电子病历系统项目 品目 采购单位 葫芦岛市第四人民医院 行政区域 葫芦岛市 公告时间 2021年12月07日 15:30 获取采购文件时间 2021年11月24日至2021年11月30日每日上午:08:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 响应文件递交地点 葫芦岛市公共资源交易中心2楼开标三室、辽宁政府采购网(电子标网站) 响应文件开启时间 2021年12月16日 09:00 响应文件开启地点 辽宁政府采购网 预算金额 ¥117.800000万元(人民币) 联系人及联系方式: 项目联系人 高勇 项目联系电话 0429-3023831、3023833 采购单位 葫芦岛市第四人民医院 采购单位地址 葫芦岛市龙港区风顺街10号 采购单位联系方式 赵桂秋,0429-2688806 代理机构名称 葫芦岛市政务服务中心公共资源交易分中心 代理机构地址 葫芦岛市高新技术产业开发区高新5路47-1号 代理机构联系方式 0429-3023831、3023833 附件: 附件1 公告信息公告信息 公告标题: 葫芦岛市卫生健康委员会第四人民医院电子病历系统项目竞争性磋商公告 有效期: 2021-11-24 至 2021-11-30 撰写单位: 葫芦岛市政务服务中心 (葫芦岛市卫生健康委员会第四人民医院电子病历系统项目)竞争性磋商公告 项目概况 葫芦岛市卫生健康委员会第四人民医院电子病历系统项目采购项目的潜在供应商应在辽宁政府采购网获取采购文件,并于2021年12月16日 09时00分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:JH21-211400-01890 项目名称:葫芦岛市卫生健康委员会第四人民医院电子病历系统项目采购方式:竞争性磋商 包组编号:001 预算金额(元):870,000.00 最高限价(元):870,000.00 采购需求: 包组编号:001 (一)采购内容 电子病历管理服务,医技影像管理服务 (二)项目背景 医疗文书电子化书写记录与共享管理,与影像诊断信息化是医院医疗业务管理的重要支撑,在医院信息化服务中占有重要地位。当前我院的临床医生手写病历,影像业务管理服务缺失,造成医疗工作效率低,并且在数据共享、医疗安全、绩效管理等方面不足。 为了加强医疗业务管理水平、提升医疗工作安全与效率、减轻医务人员工作负担,运用信息化服务手段规范临床诊疗流程,采集、存储、处理和显示病人临床诊疗信息,积累和提供医学知识,提高医护人员工作效率,并支持临床咨询、辅助临床决策,为病人提供优质、高效的医疗服务。最终促进全院医疗效率和安全的提升,提升医保数据对接能力,满足国家公立医院高质量发展的要求,有效应对未来医院运营管理、医疗诊治、患者服务的挑战。 (三)建设目标 面向临床各业务部门,采集、汇总、存储、处理、传输及展现所有的临床诊疗资料。 有效地规范各类医疗文书记录,实现全程无纸化得操作,提高整体工作效率。 实现全部影像资料的数字化存储与归档管理,影像软阅读以及无片化的先进流程优化。 通过先进的数据仓库处理机制,存贮完整的临床数据,为医院积累丰富的电子病历资源,提高临床数据的利用价值。 提供各种数据分析处理工具,直接服务于临床、科研 提供规范的诊疗过程定义,实现诊疗过程的质量控制 提供影像设备联入服务,有效应用图像信息的储存、传输及联机方式,实现图像信息的长期安全储存。 规范诊断报告,实现图像、诊断报告信息处理的自动化,提高医院业务效率。 有效管理人力及影像设备资源,提高设备利用率和经济效益。 (四)服务项目需求功能清单 1. 2. 3. 4. 4.1 电子病历管理服务需求 系统安全管理 支持多种方式认证登陆,包含口令、指纹、UKey等。系统登录时自动完成升级。一个用户担任多种工作角色或担任多个科室职务时,可以在系统内直接切换角色,无需退出系统。 用户可根据自己需要更改登录密码。 系统操作指南,常见操作问题指南。 文档编辑管理 采用编辑器技术,操作方便、所见即所得。 结构化文本与自由文本相结合,体现结构化病历特点。 能够根据用户需要自由的添加各种简单、复杂元素,发挥辅助书写功能,提高医生病历书写效率以及操作体验。 提供医学术语词库,医学特殊符号辅助编辑。 提供诊断编辑功能,与标准ICD-10诊断库关联,诊断规范化操作。 提供表格编辑功能。 支持将临床数据提取到文书任意位置。 提供临床数据自动读取功能。 支持多窗口打开切换操作,用户可在多个任务之间相互切换。 支持插入音频视频资料。 不同患者内容严禁复制黏贴。 提供图片的编辑及保存功能,并可将图片插入到文书中。 支持电子签名。 保存历次修改痕迹,包括修改时间、修改者、修改IP等。 住院医生管理 ▲新增,修改,删除患者病历文书,包括:入院记录、首程、病程记录、转科、术前小结、手术记录、术后首次病程记录、死亡记录、出院记录及各种知情同意书等,并支持文书中插入视频,音频,图片,表格。具有电子病历软件著作权,提供软件著作权证书复印件。 三级医师按照职称职务等级具有不同的修改、签字权限。 支持签字审核,并对漏签文书可给出提醒。 签名不全的文书可以存有“草稿”字样水印。 提供医嘱的浏览,支持医嘱提取到文书中。 查看患者检验检查报告单,可将报告单内容提取到医疗文书中。 提供心电图报告浏览及可将报告单内容提取到医疗文书中。 为用户提供文书模版,规范用户书写习惯。 支持整洁打印、选择打印、续打。 无纸化会诊单的发送及记录 经管床医生授权,实现跨科文书的浏览及编辑功能。 无需借阅,支持再住院患者历次病历信息的查阅。 出院患者,电子病历的整理归档。 向病案室发出对已经归档的文书的修改申请。 向病案室发出已经归档的文书的借阅申请。 科室认为书写规范或特殊的病历进行标记功能,供本科及职能科室统计查看 突发情况退出系统,再次登录系统后病历文书自动恢复 科室内医生电子交接班功能 专科知识库 借阅病历水印自动提醒医师病历书写质量、医疗行为疏漏和待完成事务,包含:时效提醒、必填项、取值范围、内容合理性判断、性别判断等等质量控制。 查看会诊状态,处理会诊请求。 在该患者管床医师登录系统时,如该患者住院天数满30天且未书写对应的“阶段小结”,则给出提醒,书写文书后,提醒消失。 对用户未完成工作进行提醒如病案评分反馈、待审签文书提醒 文书提交时将所有校验缺失项目列表提示,并单击跳选到该位置 检验、检查报告的危急值提醒 将患者住院期间所有诊疗信息集成展示,形成以住院日期为时间轴,包含住院事件、病历文书、LIS、PACS影像信息等信息的web形式展示图,便于用户查看。 依托数据处理程序,整合患者检验检查数据,生成形象的波形图,并提供多项数据对比 查阅护理相关文书,权限控制,仅供浏览不能编辑。 门诊医生管理 提供门诊电子病历文书编辑 支持查看医嘱及门诊诊断 支持查看检验 支持查看检查 支持文书模版 支持病历打印 支持病历查阅 护士管理 进行入出转、转床操作,提供与HIS通过接口形式实现联动。 入院时从HIS中读取,提供维护修改功能,并医护维护双向读取。 提供批量及单个两种录入本病区在院患者体温数据的模式。异常与非法数值在线提醒。 支持续打、选项与自由录入相结合、模板提取、医嘱导入、出入量自动计算等功能。 提供各类护理监测单的录入及打印 采用编辑器技术,支持评估项自动求和、提取临床数据如医生已下诊断、主诉、生命体征等。 提供护理文书模版保存,提取使用功能。 支持护理文书的完整打印、选择打印、续打。体温单、护理记录单换页提醒打印。 编辑文书时快捷模糊查询文书 经过授权实现跨科编辑文书 查看检验报告单并支持将检验结果提取到文书中。 查看检查报告单并支持将检查结果提取到文书中。 护士便捷地查阅患者的医嘱情况并支持提取到病历文书中。 主界面右键功能增加“患者体征信息查看”,主要记录体征数据修改记录时间及修改人 医护一体实时集中浏览已完成的医疗与护理病历;支持查阅同患者历次住院病历。 出院患者,电子病历的整理归档。 向病案室发出对已经归档的文书的修改申请。 向病案室发出已经归档的文书的借阅申请。 “临时护士长”授权、权限功能 待完成事务提醒体温单录入时,提供非法数值、异常值提醒 体温单录入时异常值醒目显示 入院评估后有压疮、坠床、跌倒风险患者小卡进行特殊标识提醒功能。 对压疮、坠床、跌倒、导管评估表填写周期进行提醒 医务处/质控科管理 按照卫生部的病历书写规范要求,对各种质控指标采取参数式灵活设定,方便用户日后自主调节 以全院、科室或管床医师为单位,支持超时未完成、补录、即将超时未完成等不同类型的查询,对病历完成情况进行实时监控,并将监控结果以报表形式输出。 按照病历书写规范要求,对评分指标采取灵活设定,方便用户日后自主调节。 根据评分标准对病历进行评分,评分同时可浏览患者病历。提供院级环节质控、院级终末质控、质控追踪、发布整改通知功能。 支持多条件查询浏览病历,并提供lis、pacs、医嘱等查看。 对全院病历书写情况进行统计分析。 统计文书例数 诊断统计 提供会诊、手术、死亡、输血、抢救等统计 提供全院检验、检查危急值统计查询,是否处理状态。 对医生的模板进行审核 护理部管理 实时监控未及时完成护理数据 灵活设置各种质控参数和指标。 系统可基于此设定,在体温单录入时,给出异常数值提醒。 系统自动进行缺项检查评分,并生成报表。 支持多条件查询浏览病历,并提供lis、pacs、医嘱查看。 为护理部提供指定护士长管理功能,并根据护士长的指定,授予护士长相应的权限 可根据病区查看具体患者及其病历 病案室管理 统计各科室逾期未归档的病历 对临床科室提交的病历进行检查,合格病历正式归档,不合格的病历则退回临床科室进行修改 查阅全院病历。 登记被调阅的已归档的病历。 授权并登记临床科室提出的对已归档病历编辑修改或查阅申请。 提供病历的复印登记 病历借阅浏览提供加密码,如有外泄,通过解密可查询出IP、账号等信息 提供诊断库管理功能,可查询及维护疾病分类代码(ICD-10)、手术分类编码(ICD-9)。 系统维护管理 维护系统内的用户信息,授予不同用户不同的操作权限。 将若干操作权限组合形成一个用户组,便于授权。 新增或修改删除系统登录帐号 查看全院各电脑电子病历系统操作日志 提供病区、病床、科室、诊断码、手术码、文书类型、临时帐号等基础业务数据以及分类代码表的查询维护功能现病史、手术指证、诊断依据、鉴别诊断、操作记录等知识库维护管理。 结构化元素管理、并可根据需要制定简单、复杂元素,实现单选多选操作。 实行模板管理,并提供模板各元素属性设置,如必填项、结构排版、读取项、科室属性等。 支持各类专科的护理记录单灵活维护管理,无须研发修改代码,支持横竖版、下拉选项、不同项目单元格内换行或跨格换行、单选多选、出入量统计自动计算排版设置,录入界面提醒内容等等。 灵活配置文书属性,如使用科室、使用角色、术后病程等是否另起一页等。 用户登录系统后超时未操作锁定功能 院内系统接口服务 连接院实验室检验信息系统,读取患者检验信息。 连接院医学影像归档和通信系统,读取患者检查信息。 连接医院信息管理系统,读取患者基本信息,诊疗操作,医院基本数据等信息。 医保系统接口服务 总体要求 依据辽宁省医保局发布的《辽宁省医疗保障信息平台定点医药机构接口规范-基线版本(V1.0)》提供的两定医保实时交易、多种就诊凭证类型认证等功能,同时接口支持:本地联网结算、省内异地结算、跨省异地联网结算、医保数据交换等。 按两定医药机构顺利接入辽宁省医疗保障信息平台(简称:医保系统),根据葫芦岛市医保接口文档新要求,按时完成葫芦岛市医保的接口开发、联调测试;并按葫芦岛市医保验收要求完成验收。 联网结算系统作为医疗保障信息平台的一个子系统,主要提供了两定医保实时交易、多种就诊凭证类型认证等功能,实现本地结算、省内异地结算、跨省异地联网结算。按照国家局新接口技术标准、接入测试标准及有关要求,保证新医保系统的顺利上线。 因葫芦岛市医保中心调整不提供的接口不需要对接,新增的接口需要增加。 历史业务数据 在院患者:在院患者出院办结,再进行入院,不应重复收取起付线。如果不出院应做到兼容,可以正常结算。 本地月结:新系统上线应保证历史数据月结完成,或者在新系统完成后续对账、月结。 异地清算:新系统上线应保证历史老数据可以在新系统完成对账,清算流程。 异地审批备案:新系统上线应保证历史审批备案生效,患者可以正常使用。 新老个人编号兼容:在新系统上线期间,对于异地在院患者老个人编号能够正常进行结算。 数据贯标:新医保上线应保证生成的数据满足国家贯标要求。 接口改造要求 目录:应按照葫芦岛市医保下发的目录进行对照,保证目录编码的一致性。 就诊方式:应按照葫芦岛市医保要求,应支持社保卡、身份证、电子凭证三种结算方式进行结算。 结算流程:接口文档将门诊、住院两种结算场景交易进行拆分,按照各个流程进行开发改造。 辅助交易:增加患者结算,定点医疗机构结算的辅助交易,按省葫芦岛市医保接口文档进行开发。 按照新版接口文档标准进行开发,严格遵循接口格式和规范进行入参传入,保证交易的准确性。 按葫芦岛市医保规定的时间内完成开发和联调测试。 基础信息接口 人员基本信息获取,通过此交易获取人员信息。 医药机构信息获取,通过此交易获取医药机构基本信息。 西药中成药目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 中药饮片目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 医疗机构制剂目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 医疗服务项目目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 医用耗材目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 疾病与诊断目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 手术操作目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 门诊慢特病种目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 按病种付费病种目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 根据本地最大版本号信息获取大于本地版本的目录信息。 医保目录信息查询,根据本地最大版本号信息获取大于本地版本的目录信息。 肿瘤形态学目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 中医疾病目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 中医证候目录下载,根据本地最大版本号信息获取大于本地版本的目录信息。 医疗目录与医保目录匹配信息查询,通过此交易查询医疗目录与医保目录匹配信息。 医药机构目录匹配信息查询,通过此交易查询医药机构目录匹配信息。 医保目录限价信息查询,通过此交易查询医保目录限价信息。 医保目录先自付比例信息查询,通过此交易查询医保目录先自付比例信息。 医保服务 人员待遇享受检查,通过此交易检查人员的待遇享受情况,返回待遇信息。 门诊挂号,通过此交易进行门诊挂号。 门诊挂号撤销,通过此交易进行门诊挂号的撤销。 门诊就诊信息上传,通过此交易上传门诊就诊及诊断信息。 门诊就诊信息上传A,通过此交易上传门诊就诊及诊断信息。 门诊费用明细信息上传,通过此交易上传门诊费用明细信息。 门诊费用明细信息撤销,通过此交易撤销门诊费用明细信息。 门诊预结算,通过此交易进行门诊结算的预结算。 门诊结算,通过此交易进行门诊结算的正式结算。 门诊结算撤销,通过此交易撤销门诊结算。 住院费用明细上传,通过此交易上传住院费用明细信息。 住院费用明细撤销,通过此交易撤销住院费用明细信息。 住院预结算,通过此交易进行住院结算的预结算。 住院结算,通过此交易进行住院结算的正式结算。 住院结算撤销,通过此交易撤销住院结算。 入院办理,通过此交易进行入院登记办理。 出院办理,通过此交易进出院办理。 入院信息变更,通过此交易进行入院信息变更。 入院撤销,通过此交易进行入院撤销。 出院撤销,通过此交易进出院撤销。 转院备案,通过此交易上传转院备案信息。 转院备案,通过此交易上传转院备案信息。 转院备案撤销,通过此交易撤销上传的转院备案信息。 人员慢特病备案,通过此交易上传人员慢特病备案信息。 人员慢特病备案撤销,通过此交易撤销医保局还未处理的人员慢特病备案信息。 人员定点备案,通过此交易上传人员定点备案信息。 人员定点备案撤销,通过此交易撤销医保局还未审核的人员定点备案信息。 冲正交易,定点医药机构发起某项交易时,因网络中断或超时等原因导致无法获取接收方状态,导致多方数据不一致或已确认接收方数据多时,可通过冲正取消接收方相应数据,保持双方数据一致。 医疗机构管理 医药机构费用结算对总账,对通过此交易进行医药机构费用结算对总账。 医药机构费用结算对明细账,通过此交易,在医药机构费用结算总账不平时,进行对明细账。 目录对照上传,通过此交易上传目录对照信息。 目录对照撤销,通过此交易删除上传的目录对照信息。 科室信息上传,通过此交易上传科室信息。 批量科室信息上传,通过此交易批量上传科室信息。 科室信息变更,通过此交易变更科室信息。 科室信息撤销,通过此交易撤销科室信息。 信息查询 科室信息查询,通过此交易获取当前医疗机构的科室基本信息。 医执人员信息查询,通过此交易获取当前医药机构的医师、护士、药师人员信息。 就诊信息查询,根据人员信息获取该人员在本机构一段时间内的就诊信息。 诊断信息查询,根据就诊信息获取该人员当次就诊的诊断信息。 结算信除自身系统可以录入申请单外,支持多方式(就诊卡、医保卡、条码、二维码、手工输入等), 多系统(HIS、体检、电子病历等)获取患者电子申请单。 支持手工申请单、PACS/RIS系统生成申请单、HIS系统集成接口生成申请单等方式取得患者基本信息和检查要求。基本信息应至少包括:患者姓名,年龄、性别、申请科室等。 支持申请单数字化功能(拍摄或扫描),支持高拍仪、扫描仪等申请单扫描设备的联接,并且支持拍摄保留各种有患者病情有关的资料。 支持急诊、门诊、住院、体检、VIP等各种病人类型的登记,并支持优先级设 支持检查预约单和检查单打印。包括:检查前后注意事项,能打印增强检查或特殊检查同意书,及科室电话。 检查预约单可以按检查类型和检查项目自由配置格式和内容。 支持一次预约相同检查的多个部位。 当前预约和诊室队列资源情况查询。 可以针对设备设置停机时间。 支持检查的确认、取消和改变。 配备专门的窄纸打印机打印排队流水号和检查类型,并能打印排队信息。 查询和跟踪检查的状态,可通过时间轴方式浏览患者检查状态。 支持预约号和检查号的单独管理(每个登记系统可以分别指定不同的区段)。 能够打印预约回执单(含预约时间、检查报告领取时间、地点等)。 影像归档支持可配置的自动补登记功能,针对某些特殊病人,如急诊病人或体检病人,系统支持不登记就直接到影像设备进行检查,检查完毕进行影像归档时,根据影像数据内的PATIENT ID、PATIENT NAME、PATIENT SEX、PATIENT AGE、STUDY DATE、STUDY TIME、MODALITY等参数自动进行RIS登记,并与图像数据建立关联。 支持外院会诊登记和申请。 有对急诊、绿色通道、床边检查、特殊患者的处理。 有对整个检查过程中各种信息缺失的处理,信息完善后,有相应的信息更改措施。 提供常规检查流程与急诊流程。 患者每个检查环节都有不同的状态显示,并使用颜色或其它方式进行标示。 支持集中登记、分部门登记两种登记方式;能够进行多部位的同时登记分诊。可进行病人复诊登记。 年龄与出生日期自动计算。 放射技师管理 在检查任务列表的基础上,提供已检查确认 支持检查申请的浏览 信息确认功能:确认患者的基本信息的正确性。确认申请单的正确性。确认收费的正确性 流程确认功能:患者到检确认,检查完毕确认。对于没有MPPS的软件和MPPS实施困难的软件,提供检查完毕确认的功能,以触发下一步流程 具备叫号系统的控制功能,叫号系统能够同流程确认整合 允许未经检查登记的病人直接输入病人信息并生成诊断工作站所需的任务列表项目 胶片质量控制:可以进行加拍、补拍和重拍操作,可以对病人信息进行修改,可以对图像进行调整后归档/
  • 高光谱成像技术在果蔬品质检测中的应用
    近年来,食品安全问题备受关注,人们对果蔬品质与安全标准的要求也越来越高,已成为社会关注的热点。通常,果蔬品质包括了形状、颜色、大小和表面缺陷等外部品质与糖度、酸度、硬度、可溶性固形物含量、淀粉含量、水分和成熟度及其他营养元素的含量等内部品质,其品质好坏是其市场销量的重要因素。传统果蔬品质检测方法如化学法、高效液相色谱法、质谱分析法等通常对待测物具有破坏性,且速度慢。机器视觉和光谱技术具有快速、无损、可靠等优点,近年来广泛用于果蔬品质检测中。其中,机器视觉技术通过提取和分析果蔬形状、大小、颜色及表面缺陷等空间信息进行外部品质检测,而近红外光谱技术主要对果蔬内部品质进行检测。高光谱成像技术将图像与光谱技术相结合,可同时获取反映待测物内外部品质的光谱信息与空间信息,近几年国内外对其在果蔬品质的无损检测中进行了广泛的研究。本文将从高光谱成像技术的基本原理与其在果蔬品质无损检测中的研究与应用等方面,介绍其在该领域的最新研究进展。1、高光谱成像技术原理高光谱系统中的每个像元均可获取同一个光谱区间内几十到几百个连续的窄波段信息,并得到一条平滑而完整的光谱曲线,同时整个成像系统还可获取被测物的空间信息,实现对待测物内部成分与外观特征的同时检测,具有光谱连续与分辨率高等特点。系统获取的高光谱图像可用一段连续波段的光学图像组成的立体三维图像来表示,如图2所示。其中XY平面的二维图像表示物体的空间信息,如形状大小、缺陷等。由于物品外部变化会影响反射光谱,故形状、颜色或缺陷在某一特定的波长下图谱会有变化。λ坐标表示物体的光谱信息,将反映出待测物成分结构等内部品质。本研究应用了400-1000nm的高光谱相机,可采用杭州彩谱科技有限公司产品FS13进行相关研究。光谱范围在400-1000nm,波长分辨率优于2.5nm,可达1200个光谱通道。采集速度全谱段可达128FPS,波段选择后最高3300Hz(支持多区域波段选择)。2、果蔬外部品质的检测市场上人们对果蔬的直接感受就是其外部品质的好坏,即对颜色、新鲜度、大小、机械损伤、冻伤与腐烂等方面的判断。传统的机器视觉技术在果蔬外部品质的检测中由于精度低、操作复杂,很难区分出机械损伤、冻伤、腐烂及新鲜度等方面外部特征。高光谱成像技术恰好克服了这一缺点,能够实现全方位的无损检测,而且精度高、易于操作,近年来逐步用于果蔬外部品质的检测中。新鲜度是反映果蔬品质的重要指标。刚采摘的果蔬通常需经过储存、运输,最终到达消费者,该过程将影响其新鲜度品质。一般而言,人们对果蔬新鲜度的主观判断是不准确的。分别在失水0、10、24、48小时状态下,利用成像光谱仪采集了小白菜、菠菜、油菜、娃娃菜等四种蔬菜叶片的光谱图像并进行对比分析。其中,小白菜叶片在不同失水时间下的高光谱图像与机器视觉图像的对比分析如图3、4所示。从中可以看出,随着时间的变化两幅图中的叶片状态均有明显变化,但机器视觉图像只能看出失水状态,而高光谱图像通过分析光谱信息的变化发现,叶片在失水过程中其外观形态及内部叶绿素均有变化,叶绿素相对含量值预测模型的相关系数r=0.76,说明高光谱技术可以有效辨别蔬菜叶片的新鲜度。利用高光谱技术和ANN预测模型对苹果冻伤进行了研究,如图5所示。实验采用如图6所示过程,在400-1000 nm波段的冻伤苹果高光谱图像中选择5个主成分波段(717,751,875,960和980 nm)进行ANN模型的建立,其训练集、测试集和验证集的相关系数分别为0.93,0.91和0.92,最终实现了98%以上的识别准确率。对80个苹果样本分别采集4块尺寸为2 cm×2 cm×1.5 cm区域中的高光谱图像,利用偏最小二乘回归法来估算可溶性固形物含量反射数据与近红外光谱数据之间的关系,得到交叉验证系数为0.89,均方根误差0.55%,最后成功绘制出主要波段的高空间分辨率SSC图像,如图7所示。从图中可以看出靠近苹果边缘部分相比于中心部分有着更高的SSC值。结果表明,可用近红外高光谱成像技术测量苹果的可溶性固形物含量。3、结论随着生活水平的提升,人们对健康食品的品质要求越来越高。传统的机器视觉技术和物理化学方法在测量果蔬品质方面操作复杂、破坏性强,难以满足检测需要。高光谱成像技术融合了机器视觉、光谱和图像处理技术,产生的图像是“图谱结合”的三维数据立方体,不仅包含了待测物的空间信息特征,同时还包含了待测物的光谱信息,能够准确、快速、无损的检测出农产品的品质,并且操作简单,近年来广泛应用于果蔬品质的检测中。但是高光谱成像技术在采集和处理图像数据的过程中,受限于仪器性能和处理速度的影响,该技术现目前主要应用于基础性研究,并未广泛应用于工业的在线实时检测中。针对这些问题,为了实现果蔬品质的商业化在线检测,还需要做到如下两点:一是改进并升级高光谱成像技术的相关设备比如成像光谱仪,提升其性能并降低其生产成本,利于高光谱成像技术在果蔬品质检测中的推广;二是针对全波段的、不同品种的果蔬高光谱图像进行特征波长选取,以降低数据冗余量,减少高光谱图像的获取以及处理时间。尽管如此,随着社会发展与科学进步,高光谱成像技术将不断提升和改进,未来在农产品、食品安全领域将具有更加广阔的发展空间和应用前景。
  • 直播回放:工业危险气体泄漏的红外成像检测技术
    厂内生产、存储或运输等过程中均存在爆炸性或有毒有害气体泄漏风险,易造成安全或环境风险,带来人身伤害和经济损失。而气体往往是不可见的,用传统气体检测方式,较难快速定位泄漏位置。红外热像方式可以快速定位泄露位置,尤其是有些人员不方便到达位置的气体泄露。解决方案:便携式巡检+固定式在线检测周期性、重点排查巡检一便携式手持巡检对于包括VOCs在内的多种气体泄漏的检测或日常巡检,多采用便携式气体检测报警仪来快速分辨气体泄漏方位。日常VOCs气体/甲烷泄漏实时检测一固定式在线检测储罐区日常检测,合理规划化、区域布局,在重点区域进行点位布设检测点安装固定式气体成像型双光谱云台设备来达到实时在线检测。红外感知+可见光,监测气体泄漏及周边高温安全隐患.主要应用场景:管道系统、储罐、阀门和管道连接、泵和压缩机、反应器\蒸馏塔等装置设备检测效果:专业人员用红外VOCs检漏仪对十几米高的储罐顶部呼吸阀、泡沫发生器等VOCs易泄漏位置进行扫描探测,肉眼看不见的气体泄漏在仪器显示屏里“浓烟滚滚”,快速锁定全部泄漏点位。应用价值:变无形为有形:气体成像和扩散方向清晰可见高效定位:精准定位泄漏点可追溯:可拍照、录像,保存现场数据,用于二次排查分析应用案例一某天然气处理厂甲烷泄漏检测检测效果:主要针对各种管道、阀门、储罐等这些易发生气体泄漏的隐患部位,进行定期巡检;采用艾睿自研高灵敏度带通滤波探测器,实现气体的可视化检测。3.5寸触摸液晶屏:640x512高分辨率,高于目前市面上的制冷型气体成像仪,节省成本 Ex ic II CT4防爆等级,可以安全地应用于爆炸危险场所体积小(670g),使用便捷,用户使用体验感更好更多详情请点击查看直播回放:艾睿红外热像仪应用场景分析及案例分享
  • 【综述】红外热成像无损检测技术原理及其应用
    常规的无损检测技术如射线检测、超声波检测、磁粉检测、渗透检测等,这些方法在实践应用中都有各自的缺点及局限性。红外热成像无损检测技术是近年来应用逐渐广泛的一种新兴检测技术,广泛应用于航空航天、机械、医疗、石化等领域。与其他的无损检测技术相比,红外热成像技术的特点有:1. 测量速度快,因为红外探测器通过物体表面发射的红外辐射能来测得物体表面的温度,所以响应极快,能测得迅速变化的温度场;2. 非接触性,拍摄红外图片时,红外摄像仪与被测物体是保持一定距离的,对被测温度场没有干扰,操作安全、方便;3. 测量结果直观形象,热像图以彩色或黑白的图像形式对结果进行输出,从图上可以方便地读取各点的温度值,并且热像图中还包含有丰富的与被测物体有关的其它信息;4. 测温范围广,由于是采用辐射测温,与玻璃测温计和热电偶测温计相比,测温范围大大扩展,理论上可从绝对零度到无穷大;5. 测量精度高;6. 易于实现自动化和实时观测。红外热成像无损检测原理红外线是一种电磁波,为0.78~1000 μm,可分为近红外、中红外和远红外。任何物体只要不是绝对零度,都会因为分子的旋转和振动而发出辐射能量。红外辐射是其中一种,如果把物体看成是黑体,吸收所有的入射能量,则根据斯蒂芬-玻尔兹曼定律,在全波长范围内积分可得到黑体的总辐射度为:式中:为黑体的光谱辐射度;c1、c2为辐射常数,c1=3.7418×108 Wm-2μm4,c2=1.4388×104 μmK;σ为斯蒂芬-玻尔兹曼常数,为5.67×10-8 Wm-2K-4。实际大部分人工或天然材料都是灰体,与黑体不同,灰体材料的发射率ε≠1,灰体表面能反射一部分入射的长波(λ>3 μm)辐射,因此灰体表面的辐射由自身发射的和环境反射的两部分组成,用红外探测器可直接测量灰体发射和反射的总和Map,但无法确定各自的份额。通常假设物体表面为黑体,将Map称为表观辐射度,为便于理解,一般将其转换为人们较熟悉的温度单位,称为表观温度Tap,即:上述表观温度Tap即为红外探测器测量所得温度,在无损检测中测量距离一般较近,可以忽略大气的影响,故被测物体的表面发射率ε的取值是否准确是影响测量精度的关键因素。检测方式1. 主动式检测为了使被测物体失去热平衡,在红外热成像无损检测时为被测物体注入热量。被测物体内部温度不必达到稳定状态,内部温度不均匀时即可进行红外检测的方法即为主动式红外检测。该种检测方式是人为给试样加载热源的同时或延迟一段时间后测量表面的温度场的分布。从而确定金属、非金属、复合材料内部是否存在孔洞、裂缝等缺陷。2. 被动式检测被动式红外热成像无损检测利用周围环境的温度与物体温度差,在物体与环境进行热交换时,通过对物体表面发出的红外辐射进行检测缺陷的一种方式。这种检测方法不需要加载热源,一般应用于定性化的检测。被测物本身的温度变化就能显示内部的缺陷。它经常被应用于在线检测电子元器件和科研器件及运行中设备的质量控制。红外热成像技术在无损检测中的应用1. 材料热物性参数检测与其它的测温技术相比,红外热像仪能迅速、准确地测量大面积的温 值,且测温范围宽。因此,当需要准确测量较大范围的温度边界条件时,红外热像仪具有其它测温仪器不可比拟的优越性。哈尔滨工业大学的研究人员针对焊接温度场中材料的传热系数随温度升高而变化的情况进行了研究,证明了焊接过程热传导系数反演算法的可行性,结合红外热像法与热电偶测量了LY2铝合金固定TIG点焊过程的焊接温度场,通过计算分别获得了加热和冷却过程的热传导系数随温度变化的曲线。热传导反问题的研究,具有广泛的工程应用前景,近年来在热物性参数的识别、边界形状的识别、边界条件的识别、热源的识别等多方面已经取得了很多研究成果。在进行传热反问题研究时,采用红外热像技术测量研究对象的温度图,可以方便快捷地解决温度边界的测量问题,该方法在热传导反问题的研究中已被广泛采用。2. 结构内部损伤及材料强度的检测目前利用红外热像技术进行的结构损伤研究有混凝土内部损伤检测、混凝土火灾损伤研究、焊缝疲劳裂纹检测、碳纤维增强混凝土内部裂纹检测等,由于损伤部位的导热系数的变化,导致红外热像图中损伤位置温度异常。与常规的探伤方法如X射线、超声波等相比,红外热像技术具有不需要物理接触或耦合剂,操作简单方便、无放射性危害等优点。同济大学的研究人员采用红外热像技术对混凝土火灾损伤进行了实验研究,得出了火灾损伤混凝土红外热像的平均温升随时间的变化曲线,及混凝土红外热像的平均温升与其受火温度与强度损失之间的回归方程。将红外热像技术应用于火灾混凝土检测,在国际上尚属首创,突破了传统的检测模式,为进行混凝土的火灾损伤评价开创了一条新途径。但将该方法运用于实际工程检测中,尚有许多问题需要解决,如混凝土强度等级、碳化深度、级配、火灾类型等对检测结果的可靠性的影响,以及检测时的加热措施等。近年在光热红外技术的基础上发展的超声红外技术发挥了红外技术和超声技术的优点,该方法以超声脉冲作为激发源,当超声脉冲在试件中传播遇到裂纹等缺陷时,缺陷引起超声附加衰减而局部升温,从而利用红外热像技术可以检测出这些裂纹缺陷。南京大学的研究人员将红外热像仪与超声波发射器结合起来,用超声波发射器对有疲劳裂纹的铝合金试件进行热量输入,拍摄红外热图像,与计算机模拟计算结果进行比较,试验表明超声红外热像技术对裂纹缺陷、不均匀结构及残余应力非常敏感。3. 在建筑节能中检测的应用在建筑物节能检测方面,瑞典早在1966年就开始采用红外热像技术检测建筑物节能保温,美国、德国等许多国家的研究人员也都进行过这方面的研究工作。在我国随着对建筑节能要求的提高,建筑物的节能检测势在必行。目前我国对建筑围护结构传热系数的检测多采用建筑热工法现场测量,红外热像技术只作为辅助手段,通过检测围护结构的传热缺陷,综合评价建筑物的保温性能。目前我国红外热像技术在节能检测领域的研究尚属于起步阶段,还没有确定的指标对建筑物的红外热像图进行节能定量评价,由于建筑物立面形式和饰面材料的多样性,编制专用的图像分析与处理软件和建立墙体内外饰面材料的发射率基础数据库成为该项研究中一个重要环节。4. 在建筑物渗漏检测中的应用建筑物的渗漏有由供水管道引起的渗漏和屋顶或外墙开裂引起的雨水渗漏等,由于渗漏部位的含水率和正常部位不一样,造成在进行热传导的过程中二者温度有差异,因而可以用红外热像仪拍摄湿度异常部位墙面的红外热图像,与现场直接观察结果进行对比分析,可以找出渗漏源的位置。结语红外热像技术在无损检测中的应用前景非常广泛,相应的研究工作也取得了初步的研究成果,并逐步地从定性研究走向定量研究,但总体来说在目前尚属起步阶段,能应用于实际工程中的研究成果不多,且多属一些定性的结论,缺乏相应的操作规范。因此,应加强定量研究工作,提高对红外热像图的处理能力。
  • 如何高效环保检测气体泄漏?Komatsu公司坚定选择FLIR声学成像仪
    日本的Komatsu,是一家以工程机械及矿山机械制造为主的企业,他们一直致力于开发新动力源,比如2008年将世界上第一台混合动力液压挖掘机推向市场。2010年启动了以减少生产现场制造过程中的二氧化碳的项目,目前正在制定进一步减少二氧化碳排放的举措。本期我们采访了Komatsu郡山工厂生产部生产工程科的Ogata先生,详细了解了检测和修复空气泄漏的具体方法。Ogata先生声学成像技术:限制少、效率高 Komatsu一直在推动减少二氧化碳排放的举措,“以郡山工厂为例,该工厂约6%的电力能源来自太阳能,公司的可重复使用能源比例普遍在增加。在转向使用可重复能源的同时,我们也在进行节能活动。一直以来,我们都在做检测和修复空气泄漏的工作 ,随着选择了FLIR Si2声学成像仪,这项节能活动变得更加高效。”Ogata先生说。“按照以往惯例,只有在生产线停止和非常安静的时段里,我们会用耳朵来寻找厂房里的空气泄漏,并且需要在生产线关闭的几小时内完成所有设备检查。一般由两三个人组成的团队进行检查,但为了不影响生产,所以他们必须在节假日工作,因此每年的检查时间限制在四天左右。“FLIR Si2声学成像仪的引入让我们感到非常惊喜,它让总检查时间减少到不足50%,而这些工作一个人就可以完成。此外,我们还可以随时进行检查,不受时间限制,因此我们现在可以根据操作负载随时进行检查。”Ogata先生说到。检测方法比较作业时间(按小时)作业人数优势FLIR声学成像仪3h1人无论设备的运行状态如何,都可以进行检查。听觉8h3人检查必须在节假日内完成,或在生产线停止的其他日子内完成。多方对比之后,选择FLIR Si2“正是在研究针对空气泄漏检测的新方法时,我们才了解到FLIR Si2声学成像仪。我们了解到,用它检查设备中的气体泄漏可以在嘈杂的环境中进行,任何人都可以进行检查并获得相同的准确结果,而且用户还可以在屏幕上实时查看泄漏率(升/分或CFM)和成本损失估算,这对于日常检测来说,非常有用且有必要。”Ogata先生表示。Ogata先生在认可FLIR Si2声学成像仪的同时,还与其他产品进行了比较。“新产品的推出总是伴随着成本问题。当我们研究声学成像仪时,将FLIR Si2与市场上的其他产品进行了比较。我们评估了它们是否能在嘈杂的环境中正确检测空气泄漏,是否能单手处理,是否能实时显示成本等。综合各项指标之后,我们决定选择FLIR Si2声学成像仪。当我们实际计算选择声学成像仪前后的成本时,用事实证明,仅在去年我们就能够减少约200万日元的成本。由于最近电价大幅上涨,我们对FLIR Si2非常满意,它的投资回报率非常高。”Komatsu检测空气泄漏的方式已经通过Si2进行了升级,Ogata先生还期待着进一步的发展。FLIR Si2:操作简单,功能强悍“有了FLIR Si2,任何人都可以轻松检测空气泄漏。此外,该声学成像仪还可以应用于安全检测,如检查是否存在焊接气体泄漏等。我认为,购买这款产品之后,一定要充分发挥它的巨大功能!”Ogata先生表示。FLIR Si2声学成像仪非常轻便易用,支持单手操作,仅需少量培训即可上手,让企业可以优化工时,大大降低了培训成本。其可以对工业气体泄漏进行更加精准地量化,不仅为压缩空气、甲烷、天然气、氨气、氢气、氦气和氩气等提供泄漏检测,还可检测到泄漏率更小的泄漏问题,检测效果更好,检测距离更远,更方便用户查找维修并确定维修优先级,最大限度提高投资回报。FLIR Si2声学成像仪针对工业气体泄漏的问题能够帮助专业维护、制造和工程人员精准定位故障点大大提升检测人员的工作效率关于这款产品的更多详细信息可点击“阅读原文”领取资料您可直接拨打官方客服电话一对一咨询哦~
  • PerkinElmer最新推出先进试剂、成像系统和检测系统
    圣迭戈,2009 年 12 月 4 日(美国商业新闻)- 专注于提高人类健康及其生存环境安全的全球领先公司 PerkinElmer. Inc.,今天在美国细胞生物学会 2009 年会上宣布推出多种旨在提高生命科学研究的速度与效率的新工具。这些新产品具有更高的灵敏度、精确度和易用性,可以在癌症、炎症和神经退变性疾病等几种病症的研究过程中,获得更加精确的病理结果。   “PerkinElmer 素有参加美国细胞生物学会年会的传统,今年我们将在会上推出各种细胞信号传导解决方案”,PerkinElmer 生物研发业务总裁 Richard M. Eglen 博士说。“今年我们推出了几种用于研究细胞通路的新工具,包括多种新颖的细胞和生物化学检测工具、3D 活细胞成像工具、创新性数据管理软件以及全新的超灵敏度发光微孔板检测仪。这些工具能够帮助科学工作者提高研究的速度和效率。”   PerkinElmer 在美国细胞生物学会年会(1121 号展台)展示的新技术包括: - 22 种全新的 AlphaScreen® SureFire® 检测 - 可通过“无需洗涤”细胞激酶和信号传导通路试剂盒来检测内源细胞激酶。 - 24 种全新的 AlphaLISA® “无需洗涤”免疫测定试剂盒 - 可检测生物标志物,包括用于检测“非人类”靶点的四种全新小鼠专用试剂盒。 - 18 种全新的 已制备 GPCR 冷冻细胞系 - 将该公司针对多种主要病症的经过验证的细胞系产品线扩展到 64 种以上。 - 7 种全新的 LANCE® Ultra TR-FRET 检测产品 - 使能够检测的激酶数增加到 300 多种。 - 12 种全新的 3H 和 125I 放射性配体 - 将我们的系列产品增加到 1,000 多种 NEN® 放射性化学试剂。 - 全新的 neoliteTM 报告基因检测 - 能够提高灵敏度并延长发光检测时间。 - 全新的 TSATM 增强型生物素试剂盒 - 将组织化学检测和细胞化学检测的灵敏度增加 10 到 20 倍。 - 全新的 Volocity® 5.3 - 支持实时 3D 成像,可在采集过程中显示经过充分渲染的 3D 结果。Volocity Acquisition 改进了硬件控制并新增了一些用于实验设计的选项,其功能和灵活性都得到了增强。 - 全新的 EnSpireTM 多标记微孔板检测仪具有超灵敏度的发光和温度控制功能 – 此装置经济实用,能够提供高性能的检测和方便易用的软件,适用于任何规模的实验室。 - JANUS® 自动化工作站 - 一个自动化液体处理平台,它所提供的通量、微孔板容量和动态体积范围都能够满足您当前和未来的应用需求。它易于使用,灵活性强,可满足各种应用需求。 - MicroBeta2 TM 微孔板检测仪 - 将液体闪烁计数的可靠性和发光检测与微孔板检测仪的简易性相结合,从而节省时间和消耗品并减少浪费。 - UltraVIEW® VoX 3D 活细胞成像系统 - 唯一的能够提供从图像采集到分析的整合型的3D 转碟系统,可针对多种应用分析。 - OperettaTM 紧凑型高内涵筛选系统 – 首个具有全部工作流设计用户界面的高内涵筛选 (HCS) 系统。 - ColumbusTM 图像数据管理系统 - 作为此高容量图像数据管理和分析解决方案的最新版本,可使用户更快地在图像与数据管理之间实现互连,并且由于完全受 Web 支持,无需安装软件即可使用。 PerkinElmer 在年会上的活动包括: PerkinElmer 的参展商展示:“在具体环境中的细胞” 12 月 7 日周一,上午 7 时到 9 时,会议中心 11 A/B 室 让我们一起探讨 PerkinElmer 产品与应用的相关知识、专业技术以及持续的创新,它们将促进细胞信号传导和转导研究不断取得新进展。期间将有一系列的短片演示,向您简要介绍针对“一应俱全”细胞生物学研究未来发展的领先解决方案。 3D 活细胞成像研讨会 12 月 7 日周一,下午 4 时,Omni San Diego Hotel 酒店,B 沙龙 在嘉宾科学家和 PerkinElmer 成像专家进行一系列简短的说明性介绍的过程中,探讨活细胞成像,并分析 3D 图像采集和分析的优点。此次研讨会将讨论和展示一些解决当今细胞成像和分析领域难题的新技术。 超越 ELISA 研讨会 12 月 7 日周一,下午 4:00 到 7:45,Omni San Diego Hotel 酒店,A 沙龙 快来参加!了解领先的研究人员是如何发现新技术对生物标记物和细胞激酶分析产生影响的。在这具有开拓意义的研讨会中,嘉宾将直接从同行那里了解改变他们研究方式的先进方法。 有关 PerkinElmer 在此次年会上所有活动的详细信息,请访问http://www.perkinelmer.com/ASCB2009。 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类及环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有 8,400 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com.cn 或致电 1-877-PKI-NYSE。
  • 便携式miRNA实时荧光定量检测仪
    成果名称 便携式miRNA实时荧光定量检测仪 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 常规的高通量筛选方法多是基于96 或384孔板进行,具有成本高、使用不方便等缺点,大大制约了该技术的应用。自2006年起,席建忠实验室一直致力于新型筛选技术的研发。在自然基金、国家973以及教育部项目的资助下,通过与两期基金获批人工学院黄岩谊特聘研究员合作,席建忠课题组近期开发一款新型的自组装细胞芯片。该芯片的使用大大提高大规模筛选的效率,相关成果发表在Nature Communications上。但是,在图像采集和数据处理方面,绝大部分现有高内涵设备仍然不能满足需求。处理一张含有64个点阵的细胞芯片,则需要一小时的拍照时间和一小时的数据处理时间,因此非常耗时耗力。 为了进一步提高数据处理效率,2009年席建忠特聘研究员申请获得了第二期北京大学仪器创制与关键技术研发项目的资助,开发出一套适合于细胞芯片快速成像的配套装置以及数据处理的软件。利用这套装置和软件,可以在20分钟内自动完成一张64个点阵芯片的图像采集,并且在5分钟内完成所有实验数据的处理工作,大大缩短实验时间,提高工作效率。
  • 细胞分泌物的实时纳米等离子体成像 ——新的纳米等离子体成像系统允许对单细胞分泌物进行时空监测
    • Inara Aguiar来自生物纳米光子系统实验室(BIOS)、EPFL和日内瓦大学的研究人员开发了一种光学成像方法,可以在空间和时间上提供细胞分泌物的四维视图。通过将单个细胞放入纳米结构镀金芯片的微孔中,并在芯片表面诱导一种称为等离子体共振的现象,他们可以在分泌物产生时绘制分泌物的图谱。这项研究发表在《自然生物医学工程》(Nature Biomedical Engineering )杂志上,详细介绍了细胞的功能和交流方式,有助于药物开发和基础研究。芯片上的单个单元。(图片来源:BIOS EPFL)细胞分泌物(即蛋白质、抗体和神经递质)在免疫反应、代谢和细胞之间的交流中起着至关重要的作用。了解细胞分泌物的过程对开发疾病治疗至关重要;然而,现有的方法只能量化分泌物,而不能提供其产生机制的任何细节。BIOS负责人Hatice Altug表示:“我们工作的一个关键方面是,它使我们能够以高通量的方式单独筛选细胞。对许多细胞平均反应的集体测量并不能反映它们的异质性……在生物学中,从免疫反应到癌症细胞,一切都是异质性的。这就是为什么癌症如此难以治疗。”筛选细胞分泌物该方法包括一个1cm2的纳米等离子体芯片,由数百万个小孔和数百个用于单个细胞的腔室组成;该芯片由覆盖有薄聚合物网的纳米结构金基底组成。用细胞培养基填充腔室以在测量过程中保持细胞存活。Saeid Ansaryan说:“我们仪器的美妙之处在于,分布在整个表面的纳米孔将每个点都转化为传感元件。这使我们能够观察释放蛋白质的空间模式,而不考虑细胞的位置。”使用这种新方法,可以评估两个重要的细胞过程,细胞分裂和死亡。此外,还对分泌精细抗体的人类供体B细胞进行了研究。研究小组可以看到两种形式的细胞死亡过程中的细胞分泌,细胞凋亡和坏死。在后者中,内容以不对称的方式释放,产生了图像指纹——这是科学家首次能够在单细胞水平上捕捉到细胞特征。由于测量是在营养丰富的细胞培养基中进行的,因此与其他成像技术一样,它不需要有毒的荧光标记,并且所研究的细胞可以很容易地回收。根据作者的说法,“该系统的多功能性和性能及其与粘附细胞和非粘附细胞的兼容性表明,它可以为全面了解单细胞分泌行为铺平道路,应用范围从基础研究到药物发现和个性化细胞治疗。”原始出版物:Ansaryan, S., Liu, YC., Li, X., et al.: High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat. Biomed. Eng. (2023) DOI: 10.1038/s41551-023-01017-1作者简介Inara AguiarInara是一位拥有无机化学博士学位的科学编辑和作家。在获得计算化学博士后后,她开始在化学、工程、生物工程和生物化学领域担任科学编辑。她一直在几家科学出版商担任技术作家/编辑,最近加入威利分析科学公司,担任自由职业内容创作者。本文来源:Real-time nanoplasmonic imaging of cell secretions——New nanoplasmonic imaging system allows spatiotemporal monitoring of single-cell secretions。Microscopy Light Microscopy ,13 April 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 喜讯:2000千多台FLIR热成像检测器将在德国汉堡安装使用
    喜讯:2000千多台FLIR热成像检测器将在德国汉堡安装使用德国汉堡是2021年智能交通世界大会(ITS World Congress)的主办城市,为此全城都在进行着积极的准备工作。最近汉堡市宣布将在路口交通信号灯和路灯上安装2000多台菲力尔红外热成像检测器,这些检测器用于采集实时的交通数据。依托红外技术,采集车辆和行人数据在德国交通部的支持下,汉堡市成为智能交通和物流方案的示范城市和实验田,并且在为承办ITS行业全球盛会而做着各项准备工作。这些新安装的红外热成像检测器将覆盖整个城市,安装后将改善城市的交通控制并有利于长期规划。作为交通量自动记录项目的一部分,这些新装的设备将在420个路口采集机动车数据。此外,在40根路灯杆上安装的菲力尔红外热成像检测器将用于采集自行车数据,这是“汉堡Radverkehrsz?hlnetz”项目 (汉堡自行车流量统计网)的一部分。所有这些数据都可以在汉堡交通数据平台上查看。这两个项目都是德国联邦议会智能交通战略计划的一部分,并且从德国联邦交通与数字基础设施部的“清新空气”紧急项目中获得1240万欧元(约1400万美金)的资助。收集数据同时注重隐私采用的热成像技术仅采集监控地点的车流量、车型等数据,不会采集如人脸或车牌等私人信息。在2019年底前,居民、政府部门、企业、研究或学术机构都可以在LGV (Landesbetriebs Geoinformation und Vermessung)城市数据平台上获取这些数据。 作为交通量自动记录项目的一部分,420个路口中的85个已经在每个路口安装了2-8台红外热成像检测器。城市规划者可以利用这些丰富的数据来预测交通、仿真未来发展、协调道路施工和控制实时交通。警察总队、交通门户、导航系统供应商和app开发者都可以获取这些数据。红外热成像检测器助力ITS世界大会汉堡市自行车流量统计网将记录自行车专用道和其他重要路口的自行车数据。在这40个点位的红外热成像检测器可以为用户提供一份“全景图”,首批检测器已于近期安装。机动车和自行车监控系统仅仅是汉堡议会60个ITS战略项目中的两项,这些都是在为2021年10月份的智能交通世界大会蓄力。Christian Pfromm,汉堡市首席数字官说:“这些准确实时的交通数据会使得交通控制系统更准确。此外还有利于改善道路管理和协调道路施工。对我们的环境和当地居民都是有益的。红外热成像技术帮助我们实现技术需求的同时又保护个人隐私。人民对我们来说是所有数字化工作的中心。”
  • 动态光谱成像:化工安全监测的“火眼金睛”
    历时近3年,完成“看见并定位”气体泄漏的创新之举,丰富安全预警监测手段… … 在前不久落幕的全国大学生课外学术科技作品“挑战杯”上,由南京大学电子科学与工程学院教授曹汛带领的科研团队,凭借项目“化工气体泄漏智能眼——光谱视频相机及预警系统”荣获主体赛道一等奖。指导老师曹汛年轻有为,他不仅是最年轻的国家科技三大奖一等奖完成人之一、“80后”国家重大仪器项目负责人,还是今年“中国青年五四奖章”获得者。“从实验室阶段的技术路径调研、原理验证与光学系统搭建,到样机阶段设计完善硬件、进行算法研发,最后对系统进行测试与优化,历时近3年。最终,在曹汛老师的悉心指导下,团队成员们攻坚克难,完成了‘看见并定位’气体泄漏的创新之举。”信息与通信工程专业博一学生周凯来是南大计算成像实验室成员之一,从研究生阶段便跟着曹汛从事光谱成像领域的科学研究。“永远保持兴趣和热爱,凡事只要热爱,就不会觉得太苦闷。”这是曹汛对学生最常说的话。也正是凭着自己对科研的热爱,为了攻克动态光谱成像“卡脖子”难题,他甘坐“冷板凳”,始终保持专注,钻研处于空白地带的动态高光谱成像技术,推动光谱成像由“静”至“动”跨越,引领动态高光谱成像国际科技前沿。这项研究成果不仅得到诺贝尔奖得主的积极关注和引用,还被多个国际权威机构评价为该领域数十年以来的“革命性进展”。对于普通大众来说,动态光谱成像是个完全陌生的新名词,然而在化工企业领域,这项技术却扮演着化工安全监测“智能眼”的重要角色。气体泄漏是化工企业火灾爆炸事故的基本原因之一,传统监测技术存在易受环境影响、监测范围小、报警滞后等问题,新兴的光谱视频监测技术也面临着被国外所垄断的困境。气体监测最大的困难在于要监测的泄漏气体看不见、摸不着,形状在不断变化,也没有清晰的边界和颜色特征,所以比传统目标的监测难度大大增加。“经过不断试验打磨,我们针对常见的化工泄漏气体,专门设计了光谱智能预警监控系统,实现气体泄漏的快速感知、实时监测与及时预警,优先防范和化解化工生产和环境污染的重大危险源。”在很长一段时间里,曹汛和团队成员马不停蹄,跑遍了全国上百个化工生产园区,“目前该系统已成功应用于全国10余个省市的大型化工园区和重点企业,大大降低了各类化工安全生产重大事故的发生。”在课题组成员眼里,曹汛是他们的“科研领路人”,而在曹汛的科研探索道路上,也有一位令他印象深刻的“人生导师”——南大校友、“两弹一星”元勋程开甲院士。“作为南京大学的一名教师,程院士第一次踏入罗布泊后,把一生中最好的20多年时光献给了茫茫戈壁,为科研倾注了全部的心血和才智。如何做一个纯粹的青年科技工作者,在所在领域作出成绩,程院士就是最好的榜样。”曹汛说,除了科研,他最喜欢做的事便是和学生们一起,未来还将带领他们将个人发展与国家需求相结合,在科研领域继续“追光之旅”。
  • 北京中医药大学在中药质量NIR实时检测研究领域取得重要进展
    中药产品质量控制问题仍是制约中药现代化、国际化的主要瓶颈问题。在十一五重大新药创制科技重大专项(2010ZX09502-002、2011ZX09201-201-24)、国家自然科学基金(81303218)、国家博士点基金(20130013120006)、北京市科技计划重点项目(D0205004040111、H040230130610、H040230130710、H030230170130)等项目的资助下,北京中医药大学乔延江教授课题组在中药质量NIR实时检测研究领域开展了较为深入的研究工作,取得了一系列重要进展。   中药质量NIR实时检测(RTD)关键技术   以中药质量稳定均一性为基础,以传感/谱学/成像联用技术、多变量信息技术、实时检测共性技术为支撑:   创建了中药质量NIR实时检测的多变量误差理论(J Pharmaceut. Biomed. 2013, 77:16-20),创建了新的中药质量NIR实时检测多变量检测限计算方法(Bioresour. Technol., 137, 2013, 394 &ndash 399.)。使中药NIR实时检测的多变量检测限由1000ppm降低到10ppm,实现了NIR从常量分析扩展到微量分析的目的。   创建了中药质量NIR实时检测模型可靠性评价方法,首次建立了中药质量NIR模型准确性轮廓方法验证方法(J Pharmaceut. Biomed. 2012, 62, 1-6 Talanta. 2013, 30 248-254.) 针对NIR实时检测模型泛化能力差的缺陷,采用正交回归将光谱变异分解,辨识质量变异相关信息,实现了模型在不同生产批次间和仪器间的传递(J. Chemometr., 2013 27 (11): 406) 采用简单区间计算识别变异光谱信息,提高了NIR模型更新能力(Anal. Chim. Acta, 2012, 720, 22-28.),以上系统解决了NIR实时检测模型可靠性问题。   搭载了自主知识产权的在线预处理系统与方法(专利号:ZL201020568372.1),建立了中药质量NIR实时检测共性技术, 构建了从原料药、中间体、过程单元,到成品系统性NIR实时检测方法(Talanta. 2015, 132 175&ndash 181.),包括贵细中药原料真伪的NIR实时评价技术和固体制剂成品的NIR成像评价技术,全面保证了中药生产过程质量稳定可控。
  • 蔡司Lattice Lightsheet 7:对活细胞实现无损、高清、实时多维度成像
    蔡司推出全新Lattice Light Sheet晶格层光显微镜 随着蔡司Lattice Lightsheet 7的发布,蔡司在生命科学研究领域提供了一个用户友好、便捷使用的晶格层光显微镜。蔡司Lattice Lightsheet 7是基于Ernst H.K. Stelzer教授在德国海德堡欧洲分子生物学实验室,以及诺贝尔奖获得者Eric Betzig教授在美国霍华德休斯医学研究所Janelia研究园区对于光片技术开创性的研究成果。Eric Betzig教授对光进行结构化调制,使光片更薄,更长。蔡司Lattice Lightsheet 7具有非常低的光毒性,从而能长时间以亚细胞分辨率观察细胞及微小生物体的3D动态过程。配置以环境温控系统以及稳定的光学设计,蔡司Lattice Lightsheet 7能帮助研究人员连续观察活体样本数小时,甚至数天。Lattice light sheet 晶格层光显微镜在各类活细胞成像应用中具有出色的表现,因为它能够提供实时快速的多维度成像,以及具有出色的低光损伤。然而,在这之前,这个系统只能由专家使用。”蔡司产品经理Klaus Weisshart说道。“因为这个技术对于系统校准的要求极高,需要物理学家才能完成。同时,样品装配以及安放也并非易事。蔡司Lattice Lightsheet 7通过巧妙的技术克服了这些障碍。现在,生物学家即使没有深入了解其背后的物理知识,也可以轻松上手使用这个系统。”高度自动化的系统校准和对准蔡司Lattice Lightsheet 7具有特殊结构的光片,即sinc3光束。系统的校准能在几分钟之内自动完成。它还可以灵活、便捷地设置不同规格的光片。因此,能快速、简单地获取最适合样品的光片。蔡司Lattice lightsheet光片是通过空间光调制器(SLM)高效完成;因此,用户只需要设置激光功率即可。蔡司Lattice Lightsheet 7设计紧凑,体积小巧,可以在任何实验室中找到安装空间。该系统的真正核心是其核心光学器件。 “由于我们考虑到需要适配于标准的细胞培养皿和多孔板,因此我们将RIKEN,现为京都大学细胞材料综合研究所的Yuichi Taniguchi教授关于倒置成像的想法付诸实现。”蔡司3D成像解决方案应用工程师Kirsten Elgass解释道。照明和检测光学器件的光路类似于传统的光片成像,并且与样品盖玻片表面成一定的倾斜角。这一切得以实现需要归功于特殊设计的优异光学部件。现在蔡司Lattice Lightsheet 7可以达到每秒3个体积的采集速度,并且可以获得290 nm x 290 nm x 450 nm的分辨率。借助蔡司Lattice Lightsheet 7,生命科学研究人员可以尽享多维度成像的乐趣。 蔡司拥有来自EMBLEM的共享专利权。蔡司还与HHMI Janelia Research Campus,Lattice Light LLC以及RIKEN签订了独家专利许可协议。
  • AZtecLive 实时化学成像——如影随形
    新版AZtecLive简介AZtecLive真正的实时化学成像,新版更新后,元素面分布图及叠加图如影随形,移动更加流畅,元素配色自动鲜明,特征突出。以往我们使用SEM做显微分析时,通常的工作流程是先扫描电子图像——找到某位置停留——调节聚焦、亮度对比度等参数——采集能谱,进行点或面分析。若非理想位置,还需多次反复以上过程才可找到合适采集区做更多详细分析。在反复求索、重复工作中浪费过多时间及精力。自2017年牛津仪器推出AZtecLive实时化学成像系统后,很多从业人员已然改变了工作习惯,直接通过AZtecLive浏览样品,在同时获得的元素面分布图中寻找合适的采集区域,极大地提高了工作效率,尤其检测BSE下衬度也很接近的样品,仅通过电子图像难以找到合适的采集区域,而通过实时获得的元素分布图即可清晰辨别。如今2021年, AZtecLive新版焕然一新,推出 ColourHiQ——优化实时化学成像的新技术,可以自动快速分析并同时显示电子图像、元素面分布图及叠加图,为能谱分析提供全新解决方案。如图1所示。图1 AZtecLive检测3D打印粉末,真正实时显示谱图、元素面分布图,同时元素叠加图与电子图像如影随形,如需对任意位置感兴趣,稍加停留即可收集更多信号,立刻保存完成元素分析ColourHiQ技术主要包括:1. 数据处理优化算法2. AutoLayer智能叠加图3. 和峰修正数据处理优化算法主要通过数据通讯技术升级,实现数据并行处理,极大地缩短脉冲处理器及成像系统间的通信时间,有效提高帧速率,使元素X射线信号响应及发生尽量接近于二次电子图像或背散射图像,实现二者同步展现。图2 脉冲处理器-图像电子元件-处理引擎及软件算法更新优化单元AutoLayer技术经算法分析每个元素的分布位置,并自动赋予差异更大或近似的颜色并选择合适的元素叠加至电子图像上,获得颜色更加绚丽、特征更加突出的叠加图。具体来讲,系统会自动选择分布图中突出的元素赋予红色(Hue = 0),之后其他元素与之相比,分布位置类似则自动赋予相同或相近的颜色,分布差异大者着以对比色,且噪音更低的元素分布图将优先选入叠加图中。经算法自动优化颜色选择后,叠加图更加直观易读,美轮美奂。图3 AutoLayer自动为元素选择合适颜色并叠加至电子图像,使叠加图颜色更加鲜明,特征突出和峰修正技术和峰是指当2个或2个以上信号同时到达晶体阳极时,如系统无法区分,则会在谱图中看到众多莫名其妙的谱峰或本不存在的元素标识,会对样品分析造成较大的误判。当计数率较高时,该问题尤为明显。而牛津仪器优化的和峰修正方法可以对静态样品进行和峰修正,同时在样品移动过程中,也可以对实时采集到的谱峰进行和峰修正。进一步优化的和峰修正方法,对样品移动过程中遇到复杂相区域时,也可以对其进行和峰修正,具体方法是首先对成分相同区域的谱图逐一进行修正,之后合并至完整区域谱图后,再进行自动识别元素,此时在实时化学成像中即可看到修正后的效果,元素识别更准确。图4 多相区域做普通和峰修正(左);实时化学成像中进行动态及多相 混合的和峰修正,结果更准确(右)经过ColourHiQ算法优化,AZtecLive实时化学成像功能进一步加强,自动获得更加流畅的图像、元素分布图,更重要的是可以通过元素叠加图做样品扫描、倍数调整,在感兴趣位置略加停留累计更多信号,获得高质量元素分布图,即刻保存。从开机到完成样品分析,也许就是几分钟的事。如下展示更多案例,AZtecLive适合多种样品或应用需要,尤其对导电性不佳、束流敏感型样品更可快速获得足够多信号实现元素分析,减小样品损伤。图5 更多AZtecLive实时化学成像案例,地质样品(左),半导体器件样品(右)
  • 如何利用高光谱成像仪展开河流湖泊水质污染问题的检测
    一、水质监测需求 “地表水水质监测现状的分析与对策, 绿色科技,2019(10)”中提出我国拥有28124亿m3水资源,其中地表水占96.4%,另“中国生态环境状况公报2019”中指出1931个地表水水质断面中,劣V类水质比例为3.4%。对于中国水污染的困境,国家先后制定了《水十条》、《重点流域 水污染防治规划(2016-2020年)》。 以上表明,我国河流、湖泊众多,然而伴随经济的高速发展,人类活动的增强,河流、湖泊水质污染问题日益严重,已经成为制约城市可持续发展的关键因素,因此有必要利用高新技术手段展开河流、湖泊水质污染问题研究,及时、快速的提供河流、湖泊的水质状况,保障人们正常的生产生活。 常规水质监测的痛点问题: 非原位监测,需要进行取样; 实时性差,自动监测站约4小时一次数据,人工分析时间更长 ;监测区域有限, 无法实现大范围区域性监测。 高光谱遥感由于其高精度、全谱段、信息量大等特点被广泛应用于遥感水质监测,大大提高了水质参数的估测精度。同时,该技术具备非接触式原位监测,无需取样;准实时测量,数据更新快;实现大范围区域性监测等优势。伴随着遥感技术的不断进步,水质监测已由定性描述转向定量分析,可监测的水质参数逐渐增加,反演精度也不断提高,在水资源的保护、规划和可持续发展方面发挥了重大作用。 二、数据采集设备 数据采集的设备为杭州高谱成像技术有限公司自主研发的无人机载高光谱成像系统(HY-9010),设备实景图,如下图。系统参数,见下表。系统核心部件采用自研大靶面高光谱相机及高稳云台,集成高清相机、高精度POS模块、地面站模块及数据采集与控制系统,实现高光谱数据、高清可见光数据及GPS数据同步采集,小型地面站模块搭配远程智控系统,实现系统状态监测及远程控制,极大程度上提高作业效率和使用便利性。 系统主要指标序号指标参数1光谱相机光谱范围400-1000nm2光谱相机光谱分辨率优于2.8nm3光谱相机IFOV0.71mrad@f=35mm 4光谱相机空间通道数4805光谱相机光谱通道数3006光谱相机视场宽度15.6°@f=35mm7光谱相机镜头焦距35mm8可见光相机分辨率1500万像素9RTK定位精度10cm10POS采集模式硬件同步触发11地面站控制模式远程智控 三、飞行概况 四、数据分析未经处理的原始高光谱数据如下图所示,可以看出图像清晰,光谱信噪比符合数据处理要求。 根据水质参数模型反演得到的水质分布结果,下图截取部分河道反演快示 五、数据对比 现场组织专业水质取样检测公司对监测河道进行选点取样,经过一周的数据处理,得出“表一”所列数据; 通过对单点检测数据的分析,对监测河道进行建模反演得出“表二”所列数据,可以看出,数据反演与实测数据匹配精度多达80%,精度较高,能够满足检测需求。 测试利用无人机高光谱技术,根据采样点测定值,建立指数模型,在水面上空获取水体的高光谱影像,通过在线反演可实时观察水环境的水质参数总氮、总磷、叶绿素a、悬浮物、浊度的变化,为城市河流的水质监测提供了全新的数据来源和技术手段,同时也为湖泊、河流的水环境保护及治理提供了依据。表一、现场水样单点检测数据采样日期2021/6/5采样位置叶绿素a悬浮物总磷(以P计)总氮(N计)氨氮高锰酸盐指数点位155200.663.671.456点位231140.483.872.423.9点位326120.483.882.453.9 表二、无人机载高光谱建模反演数据点位编号叶绿素aChla(ug/L)总悬浮物Tss(mg/L)总磷TP(mg/L)总氮TN(mg/L)氨氮NH3-N(mg/L)高锰酸盐指数CODmn(mg/L) 1架次1100%99.75%100.00%100.00%100.00%98.33% 架次297.48%62.95%96.97%98.37%92.41%90.00%2架次1100%94.43%97.92%100.00%99.17%96.92% 架次257.58%98%87.50%89.41%90.91%95.90%3架次1100%60.8%97.92%99.74%99.18%98.72% 架次291.38%93.33%79.17%93.81%86.12%98.97%
  • 深度︱光伏电站热成像检测解决方案
    从2004年的0.063GW到2014年的26.84GW,10年400多倍的增长速率让全球见证了光伏发电的中国速度。截至2015年底,我国光伏发电累计装机容量4318万千瓦,成为全球光伏发电装机容量最大的国家。然而,“前景向好、难题不断”。看似有强势吸引力的光伏电站建设企业,一面怀揣着坐拥高收益甚至完成平价上网终极使命的美好愿景,一面在动辄上百亿的投资资金面前备受折磨。这些问题的症结都指向同一个核心词汇——质量。案例一:2015年5月26日,位于美国亚利桑那州的苹果公司Mesa数据中心发生火灾,这让科技巨人最看中的“绿色面子工程”却被烧得满目疮痍。初步调查发现,起火点可能是苹果工厂屋顶大楼上的光伏组件。这些安装在苹果公司Mesa工厂屋顶上的光伏组件可向当地1.4万户家庭供应电力。不幸的是,这场大火让美国最为知名的光伏巨头FirstSolar公司“躺枪”,引起火灾的太阳能电池板,正是占据全球薄膜太阳能产销第一的FirstSolar公司。案例二:2015年6月26日,中山长虹项目一名施工人员在连接组件阵列时被直流电电死,据了解,是组串的端子没接汇流箱就放屋顶上了,广东这几天暴雨,端子进水,施工人员碰到后发生了该事故。这是一些令人触目惊心的事故,以上列举的只是光伏事故的冰山一角,近年来,仅国内电站产生问题的例子就达116个,而且,这个数字依然高企不下。哪些因素导致安全问题?光伏电站质量和安全问题依然层出不穷。那么,到底有哪些因素导致了“问题”的出现?我们的研究团队走访了大量的光伏电站,发现光伏电站主要面临的安全问题分为组件和逆变器两大部分。第一,组件的安全问题主要来自接线盒和热斑效应。不起眼的接线盒是引起很多组件自燃的“元凶”,接线盒市场较为混乱和无序。劣质连接器由于内部粗糙不平,接触点较少,使电阻过高引燃接线盒,进而烧毁组件背板引起组件碎裂。在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电池。第二,逆变器和运维漏洞百出。传统集中式方案,每个逆变器100多组串正负极并联在一起,当任意的组串正极和负极漏电,1000V的直流高压,触电将无可避免。传统电站采用熔丝设计增加了直流节点,电站即使使用熔丝,也不能有效地保护组件;而且在过载电流情况下,熔丝还会因熔断慢,发热高,引发着火风险。逆变器厂家很多、质量参差不齐,导致逆变器监测数据不准确,逆变器或者直流汇流箱数据采样精度不够,造成故障信息判断不准确、不及时,故障恢复时间长、损失大。国家发改委能源研究所研究员王斯成说:“电站在运行一段时间后存在着大量问题,而电站质量直接影响到电站的收益,这也是为什么目前银行对投资电站有顾虑的重要原因。然而目前电站开发商对这一问题却没有足够重视,这对行业来说是伤害。”FLIR的解决方案——红外热像仪质量保证流程对于太阳能电池板极具重要。电池板的正常运行是高效发电、长期使用寿命和高投资回报率的必要条件。为了确保正常运行,在生产过程中和电池板安装后,都需要一种快速、简易又可靠的太阳能电池板性能检查方法。FLIR 工程师说,使用热像仪进行太阳能电池板检查有着若干优势。异常现象能够清楚地显示在清晰的热图像上,并且与其他大部分方法不同的是,热像仪能够用于对已经安装好的太阳能电池板在运行期间进行检查,最后,热像仪还可在短时间内检查大片区域。在研发领域,热像仪已经是用于太阳能电池和电池板检查的成熟工具。对于这些复杂的测量,配备制冷式探测器的高性能热像仪通常用于受控实验室条件下。但热像仪的太阳能电池板检查用途并不仅限于研究领域。非制冷式热像仪目前正越来越多地应用于太阳能电池板安装前的质量管理,以及安装后的常规预测性维护检查。使用热像仪可以探测到潜在问题区域,并在问题或故障真正出现前予以修复。但并非每一种热像仪都适合太阳能电池检查,需要遵循一些规则和指导方针,以便实施有效检查,确保得出正确的结论。热像仪检查太阳能电池板规程在研制和生产阶段,太阳能电池是靠通电或使用闪光灯来激活。这确保了充分的热对比度,用于精确热成像测量。但这种方法不能用于实地检查太阳能电池板,因此操作员必须确保有足够的太阳能。为了在实地检查太阳能电池时获得充分的热对比度,需要500 W/m2以上的太阳辐照度。要获得最大值结果,建议准备好700 W/m2太阳辐照度。太阳辐照度以kW/m2为单位,描述了一个表面的瞬间入射能量,该能量可用日射强度计(用于测量全球太阳辐照度)或太阳热量计(用于测量直接太阳辐照度)进行测量。太阳辐照度主要取决于位置和局部天气。较低的室外温度也可提高热对比度。您需要哪一种类型的热像仪?用于预测性维护检查的便携式热像仪通常搭载有灵敏度为8–14μm波段的非制冷微量热型探测器。但在这个波段内是无法穿透玻璃的。从电池板正面检查太阳能电池时,热像仪探测到的是玻璃表面的热量分布,但只能间接探测玻璃下方电池的热量分布。因此太阳能电池板玻璃表面的可测量和可视温差比较微弱。为了使这些温差可见,用于检查的热像仪需要具备≤0.08K的热灵敏度。为了清晰显现热图像中的微弱温差,热像仪还应能够手动调节电平和跨度。自动模式(左图)和手动模式(右图)下带电平和跨度值的热图像。光伏组件一般安装在具有高度反射性的铝制框架上,这种框架在热图像上会显示为冷区,因为它能反射天空中散发的热辐射。在实践中,这意味着热像仪记录到的框架温度远低于0°C。由于热像仪的直方图均衡自动适配最大和最小测温值,许多细微的热异常不会立即显现。为了获得高对比度热图像,需要不断对电平和跨度进行手动调节。未经DDE处理的热图像(左图)和经过DDE处理的热图像(右图)。所谓的DDE(数字细节增强)功能提供了解决方式。DDE能够自动优化高动态范围场景下的图像对比度,热图像不再需要进行手动调节。因此具备DDE功能的热像仪非常适用于快速精确的太阳能电池板检查。实用功能热像仪的另一个实用功能是为热图像添加GPS数据标记。这可以帮助在大片区域,如太阳能电厂中轻松定位有问题的模块,并将热图像与设备进行关联,例如在报告中。 热像仪应该配备内置数码相机镜头,以便将相关可见光图像(数码照片)与相应的热图像一起保存。所谓的叠加模式可将热图像与可见光图像相互叠加,也颇为实用。声音和文本注释可连同热图像一起保存在热像仪中,有利于报告编写。热像仪放置:考虑热反射和辐射系数虽然玻璃在8–14μm波段的辐射系数为0.85–0.90,但玻璃表面的测温并不容易。玻璃热反射如同镜面反射,这意味着不同温度的周边物体在热图像上能够清晰呈现。在最糟糕的情形中,这会导致成像失实(假“热点”)和测量误差。热像检查中的建议视场角(绿色)和应避免的视场角(红色)。为了避免热像仪和操作员的玻璃热反射,热像仪不应垂直对准被检查的模块。但辐射系数在热像仪垂直时达到最大,热像检查中的建议视场角(绿色)和应避免的视场角(红色)。并随着热像仪角度的增加而减小。5–60°的视场角是一个较好的平衡点(0°为垂直)。为避免得出错误结论,检查太阳能电池板时,您需要以正确角度握持热像仪。使用KLIR P660红外热像仪从空中拍摄太阳能电厂获得的热图像。远距离检查测量期间并非总能轻易获得合适的视场角。在多数情况下,使用三脚架能够解决问题。在较为不利的条件下,可能需要使用移动作业平台或者甚至乘坐直升机飞到太阳能电池上方。在这种情况下,距离目标较远可能是一个优势,因为可以一次性检查一大片区域。为了保证热图像的质量,用于远距离检查的热像仪至少应具备320×240像素、最好是640×480像素的图像分辨率。热像仪还应配备有互换镜头,以便操作员能够更换长焦镜头,进行远距离检查,比如从直升机上。但是建议长焦镜头仅用于图像分辨率高的热像仪。使用长焦镜头进行远距离测量的低分辨率热像仪无法探测到指示太阳能电池板故障的细微热量细节。从不同视角进行检查使用FLIR P660红外热像仪拍摄的太阳能电池板背面热图像,它的对应可见图像如右图所示。在多数情况下,已安装的光伏组件也可用热像仪从组件后方进行检查。这种方式可以将太阳和云朵的干扰性热反射减至最小。此外,从组件后部获得的温度可能比较高,因为是直接测量电池,而不是透过玻璃表面进行测量。周围环境和测量条件应选择晴朗天气进行热像检查,因为云朵会降低太阳辐照度,并产生热反射干扰。但只要所用的热像仪足够灵敏,即便是在阴天也可以获得有用的图像。安静的环境也比较有利,因为太阳能电池板表面的任何气流都会造成传递性冷却,从而降低热梯度。空气温度越低,潜在热对比度就越高。建议在清晨进行热像检查。这幅热图像展示了大片高温区域。由于缺乏更多信息,无法看清这是热异常还是遮蔽/热反射。另一种提高热对比度的方法是断开电池负载,以断开电流,使热量仅仅依靠太阳辐照度产生。然后接上负载,在电池的发热阶段进行检查。 但在正常情况下,系统检查应在标准运行条件下,即负载状态下进行。取决于电池和问题或故障的类型,在无负载或短路条件下的测量结果可提供额外的信息。测量误差产生测量误差的主要原因是热像仪放置不当和周围环境与测量条件欠佳。典型的测量误差原因有:视场角过窄太阳辐照度随着时间推移而改变(例如由于云层变化所致)热反射(如太阳、云朵、周围更高的建筑、测量装备等)局部遮蔽(如周围建筑或其他构筑物的遮蔽)热图像提供的信息热图像提供的信息如果太阳能电池板的某些部位温度高于其他部位,温暖区域会清晰显现在热图像上。取决于形状和位置,这些热点和热区域能够指示出不同的故障。如果整个组件的温度都高于往常,这可能表明存在互连问题。如果单个电池或电池组显示为一个热点或温度较高的“拼接图案”,通常是旁路二极管故障、内部短路或电池错配所致。这些红点显示温度一直高于其他组件的组件,表明存在连接故障。在一个太阳能电池内的这个热点表明该电池内部存在物理损伤。遮蔽和电池裂缝在热图像上显示为热点或多边形斑块。电池或电池局部温度升高表明电池发生故障或存在遮蔽。应比较负载、无负载和短路条件下获得的热图像。将从模块正面和背面拍摄的热图像进行比较,也可以得到有价值的信息。常见模块故障列表当然,为了准确识别故障,出现异常的模块还应进行电学测试和目视检查。结论光伏系统热像检查可迅速定位电池和模块的潜在缺陷,并迅速探测出电气互连问题。检查是在正常运行条件下进行,不需要关闭系统。为了获得信息量较大的准确热图像,必须遵循某些条件和测量程序:应使用合适的热像仪和配件;需要充足的太阳辐照度(至少500W/m2,最好是700W/m2以上);视场角应在安全范围(5°至60°之间)避免遮蔽和热反射热像仪主要用于查找故障。对检测到的异常现象进行分类和评估需要对太阳能技术、被检查系统和附加的电气测量值有透彻的了解。适当的文件材料当然也必不可少,并应包含所有检查条件、附加测量值和其他相关信息。使用热像仪进行检测(先是用于安装期间的质量控制,紧接着是常规检查)可促进全面、简单地监控系统状态。这将有助于保持太阳能电池板的功能及延长其使用寿命。因此,使用热像仪检测太阳能电池板将显著提升运营公司的投资回报率。近日,菲力尔与北极星太阳能光伏网联合推出有关光伏电站热成像检测解决方案的专题,您可以点击“阅读原文”提前知晓更多信息,另外下期文章小编会为你带来国外光伏电站是如何应用红外热像仪的案例,敬请关注。
  • 浅谈红外热成像技术在行人和非机动车检测方面的应用
    基于红外热成像技术的交通传感器现如今,国内外的交管部门已经对基于红外热成像的交通传感器有所了解,也对利用传感器对路口的行人检测颇感兴趣。热成像传感器即利用道路上行人、非机动车产生的不同温度信号呈现出热图像,从而实现存在检测功能。热成像技术的优势在于不需用借助道路上的任何光源即可正常工作,并且不会因太阳直射而无法成像。因此无论明暗,热成像技术的传感器都可提供全天候24小时不间断的行人与非机动车检测。当行人或非机动车进入该区域后,与热像传感器连接的智能软件将会触发检测并将信号传输至交通信号控制机。此外,智能分析软件也使得红外热成像技术如虎添翼。热成像探测区将会自动识别检测目标,当行人或非机动车进入该区域后,与热像传感器连接的智能软件将会触发检测并将信号传输至交通信号控制机。行人检测传感器在十字路口的应用(带有信号系统的十字路口)通过对十字路口行人的存在检测,热成像传感器可对交通信号灯或警示灯进行管理。传感器将会通过触点闭合或TCP/IP把信息传输到交通信号控制机,使得交通信号灯和警示系统更加灵活,确保行人在交通环境中更加安全。同时,信号灯和警示灯的自适应可避免行人和司机不必要的等待。因此,无论十字路口是否安装信号灯,安装传感器对行人、机动车司机都将受益。当行人检测传感器检测到路口没有行人等待通过时,传感器会将视频信号自动发给信号控制机,安排机动车的通过,从而提升30%的车流通行率。包括中国在内的很多国家,行人可通过按下行人通行按钮,快速通过马路,但据调查,在道路畅通时段,高达70%的行人在按下申请行人按钮后,信号灯并没有变为绿灯时便通过马路,这意味着在信号灯变绿时,已无行人等待,从而造成机动车无谓的等待,并因此产生高达3倍的二氧化碳排放。通过行人检测传感器,当检测到路口没有行人时,传感器会将视频信号自动发给信号控制机,安排机动车的通过,从而提升30%的车流通行率。行人检测传感器可以根据实际需要延长绿灯通行时间,安排行人安全通过。众所周知,在信号灯为绿灯时,行人可以通行,机动车停驶;在黄灯时,机动车仍旧停驶,给出适当的时间让行人继续通过。但如遇特殊情况,如残障人士在过马路时,需要延长通行时间,行人检测传感器便可将行人存在检测的信号传输至交通信号系统,从而延长黄灯的时间,保证行人的安全。此外,如果传感器在检测到无行人过马路时,通过传感信号,黄灯也可缩短,提升道路运行的效率。学校、体育馆、商业中心、大型商场等设施周边的十字路口往往无法准确预估每天不断变化的人流量,预设的时间配比无法满足一天中不同时段的真实情况。试比较体育场附近一条道路在临近足球赛时与日常时的人流量,显然这是完全不同的交通情况。行人传感器可为想要过马路的行人提供优先权,而不与只有一位行人时更适合车流的固定信号方案发生冲突。在市政建筑相关机构在规划人行横道、非机动行驶车道时,借由内容详实且真实无误的数据尤为重要。载入行人传感器的数据,行人流量情况将清晰呈现在眼前。因为行人传感器不仅可以分辨行人、机动车、或非机动车,还可以储存交通实时数据,记录道路基本车流状况。传感器在无信号系统路口的应用在车祸发生时,司机驾驶的速度决定了车祸的严重程度,而在发生车祸那一刻,司机反映时间与刹车快慢也会对车祸联系紧密。反应时间由诸多因素影响:注意力不集中、恶劣天气、低能见度、醉酒驾驶等等。此外,也可能是私家车、卡车或停靠的巴士挡住了司机或行人的视线,等到司机发现行人时已为时已晚。研究表明,在由行人、非机动车激活的情况下才会开始闪烁的动态警示灯更为有效 ,从而增强司机的意识,使得其反应速度更快、放慢车速。在没有信号系统的路口路段,传统频闪警示灯是不二的选择,它可提醒司机在道路前方穿过的行人与非机动车,提醒司机及时减速。尽管如此,传统频闪信号灯的作用通常被忽视,这是因为司机往往并没因为频闪警示灯改变驾驶行为。研究表明,在由行人、非机动车激活的情况下才会开始闪烁的动态警示灯更为有效 ,增强司机的意识,使得其反应速度更快、放慢车速。行人传感器可激活闪光灯标或公路LED警示灯,因而能够防止交通事故,并且减少司机和行人间危险避让的次数:即一方或双方需要进行停止或转向动作,以避免碰撞。产品推荐TrafiOne – 智慧城市传感器FLIR TrafiOne是一款全方位的交通监控和交通信号自适应控制的探测传感器。TrafiOne外形紧凑,配备的热成像与WI-FI追踪技术,可为用户提供在十字路口与城市环境中机动车、非机动车和行人的高清数据。??ThermiCam - 全球首款一体化交通控制热传感器??ThermiCam是首款适用于机动车、非机动车和行人检测的一体化红外热像仪和检测器设备。ThermiCam在不需要光照的条件下,能够探测到大范围内机动车、骑行者和行人的热量,因而能够在黑夜以及最恶劣的天气条件下提供可靠的交通探测结果。应用在ThermiCam中的算法已拥有20多年的成熟应用经验。
  • 【飒特红外】推出红外热成像VOCs气体泄漏检测仪V88T
    VOCs治理迫在眉睫VOCs是什么东西?居然比PM2.5还厉害?最新的科学研究发现,VOCs是如今空气污染中最主要的物质——可吸入颗粒物PM2.5和臭氧O3的前体物,也是造成雾霾天气和臭氧污染的重要元凶。1. VOCs的定义在我国,国家标准GB/T 18883-2002 《室内空气质量标准》中对总挥发性有机化合物(Total Valatile Organic Compounds TVOC)的定义是:利用Tenax GC和Tenax TA采样,非极性色谱柱(极性指数小于10)进行分析,保留时间在正己烷和正十六烷之间的挥发性有机化合物。2. VOCs的分类VOCs种类繁多,常见的VOCs有100多种,按化学结构不同,VOCs可分为八类:烷类,芳香烃类,烯类,卤烃类,酯类,醛类,酮类,其他。其主要成分有烃类,卤代烃,氧烃和氮烃,它包括苯系物、有机氯化物、氟利昂系列、有机酮、胺、醇、醚、酯、酸和石油烃化合物等。3. VOCs的来源典型的VOCs排放源可分为人为排放源(包括固定源与移动源)和自然排放源(包括生物源与非生物源)两类,其中以人为排放源为主。VOCs排放行业众多,各行业涵盖范围广,共包括33个行业部门,86个细分行业,115个子排放源。4. VOCs的危害VOCs是无形中的环境杀手,对环境有较大危害,对水体、土壤和大气可造成污染。它亦是人体健康的阻击者,VOCs对人体健康的影响主要是刺激眼睛和呼吸道引发急性或慢性中毒,导致神经痉挛,甚至昏迷、死亡。若VOCs长期通过吸入或皮肤接触大量进入人体内,人体的神经系统会受到严重侵害。当居室中VOCs浓度超过一定浓度时,在短时间内人们会感到头疼、恶心、呕吐、四肢乏力,严重时会抽搐、昏迷、记忆力减退。5. VOCs治理政策环保部、发改委等6部门2017年印发《“十三五”挥发性有机物污染防治工作方案》。《工作方案》要求,到2020年,建立健全以改善环境空气质量为核心的VOCs污染防治管理体系,那么在《工作方案》中,环保部对VOCs做出了哪些治理措施呢?《工作方案》中,提出了5点要求。一是加大产业结构调整力度。加快推进“散乱污”企业综合整治,严格建设项目环境准入,实施工业企业错峰生产。二是实施工业源VOCs污染防治。全面实施石化行业达标排放,加快推进化工行业 VOCs综合治理,加大工业涂装VOCs治理力度,深入推进包装印刷行业VOCs综合治理,因地制宜推进其他工业行业 VOCs 综合治理。三是深入推进交通源VOCs污染防治。统筹推进机动车VOCs综合治理,全面加强油品储运销油气回收治理。四是有序开展生活源农业源VOCs污染防治。推进建筑装饰行业 VOCs 综合治理,推动汽修行业 VOCs治理,开展其他生活源 VOCs治理,积极推进农业农村源VOCs污染防治。五是建立健全VOCs管理体系。加快标准体系建设,建立健全监测体系,实施排污许可制度,加强统计与调查,加强监督执法,完善经济政策。VOCs治理难度和解决方案众所周知,气体检测热像仪可以帮助您快速、安全地“看到”数百种不可见气体,但并非所有类型的气体都可以通过光学气体成像(OGI)进行可视化。它的工作原理是测量通过一定体积气体的红外辐射。每种气体都有自己的光谱吸收特性,许多气体化合物会吸收一些红外能量,但只能在一定的窄波长范围内吸收。在这个非常狭窄的波长范围内,针对特定气体,OGI热像仪可以被此特定气体阻止的能量到达红外(IR)热像仪,从而可视化气体羽流(通常看起来像烟云)存在的位置,而这片云就是气体吸收该波长能量的地方。作为一家专注于红外热成像技术应用达33年之久的高科技企业,广州飒特红外股份有限公司,推出了集“气体检漏”和“红外测温”为一体的为“多种气体精准检漏”而生的红外气体探测仪V88T。该热像仪搭载二类超晶格制冷型探测器,工作温度在150K,具有超强的灵敏度,能精准探测细微的温度差异,避免遗漏可能的隐患点。在安卓系统的支持下,V88T可以OTA在线升级,让设备常用常新——用户可在机身设置内自主选择是否在线更新系统,让设备时刻保持最佳状态。同时,V88T还带有多种气体图像模式,微小的泄漏量也能被探测、捕捉。氨气探测试验红外气体探测仪V88T还通过了ATEX认证,配备了5.5寸OLED高清电容触摸屏,确保专业人员能更安全、更高效地完成工作。支持超远距离检测与激光定点测温,录制带有温度数据的红外视频。飒特红外V88T不仅能实现气体泄漏的可视化,还能快速检测工业生产与废气治理设备的“高温热点隐患”,赋能企业安全高效生产,一站式满足天然气、石油化工等工业企业的多种场景应用需求。管道连接法兰及接缝漏热情况评估值得一提的是,红外热成像技术除了应用在VOCs工业废气治理领域之外,在环保执法领域也发挥着重要的功能和作用。在面对不法企业夜间偷排污染气体的治理难题时,执法人员可使用红外气体探测仪V88T,开展常态化的空气质量检测与监督,现场拍摄废气偷排证据,为环境执法人员精准高效执法、判别气体类型及气体污染情况,提供有效的画面数据与技术支撑。飒特红外全新高端红外气体探测仪V88T产品优势• 气体可视化:将不可见的有毒气体可视化,快速定性和定位VOCs的泄漏源头;• 精细化泄漏检测:载有VOCs物料的设备、管线组件的密封点往往数量多,泄露气体量微小。光学气体热像仪使用高灵敏度的探测器,可以在安全距离内进行快速扫描,捕捉泄露气体的痕迹;• 远距离扫描:可实现远距离泄漏检测,解决不便到达的密封点泄漏检测工作,让泄漏检测工作变得高效便捷的同时,也保障工作人员的人身安全;• 防爆认证:设备具备防爆认证,轻松应对危险区域内的检测要求;• 非接触测温:非接触测温功能,快速查找泵和电机、管道和阀门等设备的异常热点;• 不停机检测:检测时无需关闭系统或接触设备,不影响企业生产;• 预测性维护:帮助企业建立设备预测性维护体系,保障生产安全,防患于未然;• 规避风险:帮助企业避免违反法规、减少罚款和收入损失;• 符合环境法规:满足环境监察取证要求,督促企业遵守环境法规;• 既响应国家的VOCs环保法规政策,又增强企业的生产安全。应用场景炼油厂、炼化厂、农药厂、化学处理厂、危化品停车场、危化品储罐区天然气企业、海上石油平台、天然气场站、天然气井场、天然气储存设施、天然气输送管道、天然气压缩机站、生物气发电厂、天然气发电厂、环保执法机构、LDAR检测服务公司。专家预计,气体泄漏检测可为工业领域节约7000万元能源损失。未来,红外热成像技术将在气体泄漏检测、电力测温以及其他民用工业领域得到更广泛的研发和应用,为中国的工业建设、经济发展和人民的安全、健康保驾护航。飒特红外33年专注红外测温作为中国首家工业红外热像仪研制生产企业,“飒特红外”创下中国第一台民用工业检测型红外热像仪、第一座现代化红外热像仪研发生产基地等八项行业第一,以“飒特红外”企业标准为蓝本起草的《工业检测型红外热像仪》国家标准自2006年起实施。作为国内最早“走出去”的红外检测厂商之一,2008年飒特红外就已登陆欧洲,目前实现欧盟本地化生产,向全球60多个国家和地区输出,位居欧洲市场前三强。飒特红外被评为中国专精特新“小巨人”目前,飒特红外旗下应用于工业测温、电力系统、安防监控、消防救援、科学研究等全行业产品矩阵,经过33年发展,旗下产品畅销海内外,覆盖日本、美国、法国等全球100多个国家与地区,客户包含中国电网、华为等很多世界500强公司,用户口碑及市场反馈良好。
  • 【综述】红外热成像技术在FRP复合材料无损检测应用中的研究现状与进展
    引言红外热成像是具有非接触、检测面积大、检测结果直观等突出优势的新兴无损检测技术,近年来被广泛应用于金属、非金属、纤维增强复合材料以及热障涂层等的无损检测与评价。碳纤维增强复合材料(CFRP)与玻璃纤维增强复合材料(GFRP)是目前发展最为成熟、已被广泛应用于航空航天、船舶、交通运载和风力发电等领域的结构复合材料。然而,它们的层状以及非均匀微观结构使得它们在生产和使用过程中极易萌生和发展为多种类型的缺陷,如涂层脱粘、界面分层等,极大地降低了复合材料/涂层结构件的使用性能与寿命,严重时甚至酿成灾难性事故。热障涂层作为一种陶瓷层可沉积在基体材料的表面,对基体材料起到隔热保护的作用,目前已被广泛用作航空发动机、聚变反应堆、火箭喷管等高端装备的高温热防护部件。图1 某航空发动机及其涡轮叶片热障涂层结构示意图为控制FRP复合材料/涂层结构的质量,确保高端装备的安全可靠运行和低维护成本,开发先进的无损检测与评价方法或技术对其进行高效、可靠地检测与评价是非常必要的。目前比较有代表性的无损检测与评价技术有射线检测、超声检测、磁粉检测、渗透检测和电磁检测等。但这些方法各有所长,也有其各自的局限性。例如,超声法中耦合剂的使用会致使检测表面受到污染;电磁法虽易于实现自动化检测,但仅适用于非铁磁性材料,且多用于检测近表面缺陷信息。红外热波成像技术由于具有非接触、快速、检测面积大、检测结果直观等优点,非常适合于复合材料/涂层结构的在线检测与缺陷表征,近年来得到人们的重视和广泛关注。01 红外热波成像技术任何高于绝对零度的物体都会向周围环境发出电磁热辐射,根据Stefan-Boltzmann定律,其大小除与材料种类、形貌和内部结构等本身特性有关外,还与波长和环境温度有关,而红外热波成像技术即是利用红外热像仪通过遥测材料表面温度场,从而实现对材料结构特性和物理力学性能的无损检测与评价。根据被测对象是否需要施加外部热激励,该技术可分为主动式与被动式,其中主动式红外热波无损检测技术由于具有更高的热对比度与检测分辨率,近年来受到极大的关注。主动式红外热波检测技术是利用外界热源对待测试件进行热激励,同时利用红外热像仪记录其表面温度场的演化历程,并通过对所获得的热波信号进行特征提取分析,以达到检测材料表面损伤和内部缺陷的目的。根据外激励热源的不同,该技术又可被分为光激励红外热成像、超声红外热成像与电涡流红外热成像等。图2总结了目前主动式红外热波成像检测技术中的主要分类依据及分类结果。图2 主动式红外热成像检测技术的主要分类依据及结果虽然红外热成像无损检测技术种类众多,但由于所检测对象琳琅满目,且结构与物理特性比较复杂,因此在实际应用中需结合检测对象本身特性,选择一种相对合适且高效的主动式红外热波成像无损检测方法,从而达到对待测对象进行高分辨率、高精度、快速可靠检测与评价的目的。光激励红外热成像是主动红外热成像中一种相对高效的无损检测方法,由于其非接触、非破坏、检测时间短、检测面积大、易于实施等突出优点,在热障涂层结构、纤维增强复合材料无损检测与评价中备受关注。在该方法中,当外激励光源入射到待测试件时,基于光热转换效应所产生的热波扩散并与内部界面或缺陷相互作用,同时,利用红外热像仪远程记录待测试件表面的瞬态热响应,即红外热图像序列。然后,借助先进的后处理算法对所获取的热图像序列进行综合分析,从而实现待测试件的无损检测与定量表征。图3为光激励热成像技术原理和目前常用光激励红外热成像检测系统。图3 光热无损检测原理及典型闪光灯激励热成像检测系统此外,根据热激励形式的不同,红外热成像技术又可被分为红外脉冲热成像、红外锁相热成像与红外热波雷达成像,这也是根据红外热成像发展历程、目前最为常用的分类方法之一。红外脉冲热成像技术检测效率高,但其探测深度通常较浅,无法满足对材料深层缺陷高分辨率检测的要求;且其检测结果易受表面加热不均匀、表面反射率及发射率不均等影响,瞬时高能量脉冲也易使材料表面产生热损伤。为克服红外脉冲热成像技术的局限性,红外锁相热成像技术应运而生,但由于该技术在单一调制频率热激励下仅能探测与其热扩散长度相对应深度的内部缺陷,因此对FRP复合材料或热障涂层类结构内不同深度或不同铺层界面的缺陷,需选择不同调制频率对待测试件进行激励,因此,该方法检测时间仍相对较长且易出现漏检。红外热波雷达是一种新兴的无损检测技术,具有红外脉冲热成像与红外锁相热成像技术所无法比拟的突出优势,如高分辨率、高检测效率、大探测深度等,近年来备受关注。表1总结了红外脉冲热成像、红外锁相热成像以及红外热波雷达成像这3种技术的优缺点及适用范围。02 FRP复合材料光激励红外热成像无损检测研究现状2.1 红外脉冲热成像检测技术红外脉冲热成像技术是发展最早且目前应用最为广泛的一种红外热波无损检测技术,该技术是使用高能光源(如激光、卤素灯、闪光灯)对待测试件进行非常短时间(通常几毫秒)的脉冲激励加热,由于内部界面或缺陷的热阻效应会对待测试件表面温度场产生差异,然后,利用红外热像仪同步记录这种温度差异,并借助于先进的后处理算法可实现对待测试件内部界面或缺陷的无损检测与评价。红外脉冲热波检测技术检测速度快,且对厚度较小的试件具有较好的检测结果,但其探测深度非常有限,不适用于检测大厚度构件。此外,该技术还易受表面加热不均、表面发射率不均等影响,瞬时高能量脉冲也易使试件表面产生热损伤。FRP复合材料的强各向异性和显著内部界面效应,极易使得其产生界面分层等类型缺陷,极大影响FRP复合材料结构或装备的使用性能。[英国巴斯大学Almond等]对CFRP复合材料裂纹状缺陷的边缘效应进行了研究,并提出了一种瞬态热成像法测量缺陷尺寸的方法。[加拿大拉瓦尔大学Maldague等]提出了一种将脉冲热成像与调制热成像技术相结合的红外脉冲相位热成像检测技术,该技术基于傅里叶变换可获得能无损表征CFRP复合材料的相位图像,因此克服了脉冲热成像技术对表面加热均匀性的限制。[意大利学者Ludwig等]研究了红外脉冲热成像检测技术中的热损失与三维热扩散对缺陷尺寸测量的影响。[加拿大拉瓦尔大学Maldague等]为了克服脉冲热成像技术的局限性,提出了双脉冲激励热成像检测技术,并表明该技术可进一步增强热对比度。[加拿大学者Meola等]利用脉冲热成像法对GFRP复合材料的低速冲击损伤进行了无损检测。[英国巴斯大学Almond等]又通过解析法研究了脉冲热成像技术的缺陷检测极限与缺陷径深比、激励能量以及缺陷深度都密切相关。[伊朗桂兰大学Azizinasab等]还提出了一种使用局部参考像素矢量来处理脉冲热成像检测结果的瞬态响应相位提取方法,实现了CFRP复合材料缺陷检测和深度预测。此外,为增强FRP复合材料缺陷检测效果,许多集成先进特征提取方法的脉冲热成像检测技术也被提出,例如主成分热成像、矩阵分解热成像、正交多项式分解热成像和低秩稀疏主成分热成像。国内的哈尔滨工业大学、电子科技大学、湖南大学、东南大学、火箭军工程大学、首都师范大学、南京诺威尔光电系统有限公司等科研单位也对FRP复合材料红外脉冲热成像无损检测技术开展了大量研究工作,并取得了丰硕的研究成果。[首都师范大学]研究了GFRP复合材料脉冲热成像检测的热图像序列的分割与三维可视化,并提出了一种基于局部极小值的图像分割算法。[北京航空航天大学]对FRP复合材料次表面缺陷红外脉冲热成像无损检测的检测概率进行了深入研究,并分析了阈值、特征信息提取算法等对检测概率的影响。此外,国内研究学者还提出集成了稀疏主成分分析、矩阵分解基算法、流形学习[30]和快速随机稀疏主成分分析等算法的红外脉冲热成像检测技术。2.2 红外锁相热成像检测技术红外锁相热成像技术是20世纪90年代初发展起来的一种新型数字化无损检测技术,该技术是利用单频正弦调制的热激励源对待测试件进行加热,然后,待测试件内部将也产生一个呈周期性变化的温度场,由于缺陷区与无缺陷区处的表面温度场存在差异,因此采用锁相算法可对表面温度场进行幅值与相位提取,最终实现对材料表面损伤或内部缺陷进行无损检测与评价。红外锁相热成像检测技术的探测范围要大于红外脉冲热成像检测技术,此外,通过降低激励频率大小可增大探测深度。英国华威大学和意大利那不勒斯大学等研究学者较早地将红外锁相热成像技术用于CFRP航空件缺陷检测,并证实了该技术与瞬态热成像与超声C扫描无损检测技术相比,更适于CFRP航空件表面冲击损伤的快速无损检测。[Pickering等]研究了同等激发能量下,红外脉冲热成像和红外锁相热成像对CFRP复合材料分层缺陷的检测能力。[Montanini等]证实了红外锁相热成像技术也可用于厚GFRP复合材料的无损检测,并深入研究了与缺陷几何形状和深度相关的检测极限问题。[Lahiri等]发现随着GFRP复合材料缺陷深度增加,利用红外锁相热成像技术所获得的相位对比度增大,而热对比度却减小。[Oliveira等]提出了一种融合光学锁相热成像和光学方脉冲剪切成像的CFRP复合材料冲击损伤高效表征方法。国内哈尔滨工业大学、浙江大学和东南大学等科研人员也对FRP复合材料红外锁相热成像检测开展了较多有价值的研究工作。[哈尔滨工业大学]对CFRP复合材料分层缺陷的大小和深度以及热物性的无损检测与定量评价,开展了系统的理论与实验研究,并提出了多种先进特征增强算法来提高其内部分层缺陷的可视性。[浙江大学]使用红外锁相热成像无损检测CFRP复合材料分层缺陷,并利用深度学习对测量过程中的传感器噪声、背景干扰等进行有效去除,显著提高了CFRP复合材料次表面缺陷无损检测与定征的精度。[东南大学]针对CFRP复合材料分层缺陷红外锁相热成像无损检测中所存在的热成像数据缺失以及低帧率导致的低分辨率问题,提出了基于低秩张量填充的热成像检测技术,不仅可有效解决红外锁相热成像数据高度缺失问题,还可显著提高常用红外热像仪的帧频率。2.3 红外热波雷达成像检测技术近年来,红外热波雷达成像技术因检测效率高和灵敏度高以及不易对材料产生热损伤而受到越来越多的关注,并开始应用于FRP复合材料的无损检测与评价。红外热波雷达成像技术具有红外脉冲热成像技术与红外锁相热成像技术所无法比拟的优势,但由于被用于FRP复合材料无损检测与评价的时间并不长,尚存在一定的局限性。例如,由于通常采用较低调制频率激励源去探测较深范围的内部缺陷信息,随之而来的是热扩散长度的增大,致使检测分辨率降低;另外,为提高检测信号的信噪比,通常采用增加热流激励强度的方法来解决,但在检测重要目标构件时,为防止对检测对象的热损伤,这种方法并不适合。[加拿大多伦多大学Mandelis教授]与[印度理工大学Mulaveesala教授]首先将线性调频雷达探测技术引入到红外热成像检测技术中,提出了脉冲压缩热成像或热波雷达无损检测技术。为显著提高探测热波信号的信噪比与灵敏度,随后提出了热相干层析成像和截断相关光热相干层析成像技术,截断相关光热相干层析成像技术的具体原理如图4所示。图4 截断相关光热相干层析成像检测技术原理:(a) 截断相关光热相干层析成像数学实施;(b) 激光诱导热成像系统框图印度理工学院与印度塔帕尔工程技术大学等科研人员还将脉冲压缩热成像与红外脉冲热成像等其他检测技术在检测FRP复合材料次表面缺陷时的检测性能进行了对比,并分析了各种技术的优势所在。为增强FRP复合材料分层缺陷检测,[比利时根特大学]也提出了离散频率相位调制波形的热波雷达技术,并证明了该技术具有更高的深度分辨率。国内的科研人员也对脉冲压缩热成像或热波雷达开展了较多的研究工作,并取得了重要的创新研究成果。[哈尔滨工业大学]较早地将红外热波雷达成像技术拓展到CFRP复合材料铺向和分层缺陷的无损检测与评价,并对热波雷达检测技术的特征提取方法也开展了深入研究。[湖南大学]和[电子科技大学]还分别用感应红外热成像/热波雷达检测技术和参考脉冲压缩热成像检测技术对CFRP复合材料分层缺陷检测,并取得了较为满意的检测效果。[东南大学]也提出了正交频率相位调制波形的热波雷达检测技术,可有效增强CFRP复合材料分层缺陷的检测效果。03 热障涂层红外热波成像无损检测研究现状关于热障涂层红外热波检测技术的研究始于20世纪80年代,伴随着信息电子与计算机技术的快速发展,近年来在航空和先进装备等领域受到极大关注。在目前的热障涂层红外热成像无损检测中,仍以光激励红外热成像检测技术为主,这仍然是由于光激励红外热成像技术具有非接触、快速、检测面积大、检测结果直观等突出优点,非常适合于热障涂层结构性能与健康状况的在线检测与表征。根据激励热源生热机理的不同,除光激励红外热成像检测技术外,其他无损检测方法还包括:超声热成像、振动热成像和涡流热成像。3.1 红外脉冲热成像检测技术针对热障涂层红外脉冲热成像无损检测,国外专家学者较早地开展了相关研究,并取得了较多的研究成果。[Cielo等]利用红外脉冲热成像技术无损检测热障涂层,研究表明当光学穿透深度远小于而加热区域远大于涂层实际厚度时,该技术可有效表征热障涂层热物性和表面涂层厚度。[Liu等]提出了可无损检测热障涂层内部裂纹和厚度不均匀性的稳态热流激励热成像技术,可实现直径远小于1mm的裂纹检测。[Shepard等]利用红外脉冲热成像技术对热障涂层厚度和脱粘缺陷进行无损检测,并结合先进后处理方法提高了时空域分辨率和信噪比。[Marinetti与Cernuschi等]利用红外脉冲热成像技术结合机器学习和相位特征提取方法,系统地研究了热障涂层结构中的表面涂层厚度变化、脱粘缺陷以及涂层过厚与粘附/脱粘缺陷的区分问题。[Bison与Cernuschi等]为无损评价热障涂层老化程度以及完整性,利用红外脉冲热成像技术检测了热障涂层面内与深度方向热扩散率以及孔隙率。此外,利用红外脉冲热成像检测技术还可监测热障涂层损伤演化历程以及寿命评估,且热障涂层粘结界面处粗糙度形貌、深度以及基底强度等对其损伤演化也有重要影响。[Ptaszek等]还研究了热障涂层表面非均匀及红外透光性等对其光热无损检测的影响。[Mezghani等]利用激光激励红外脉冲热成像技术无损检测了表面涂层厚度变化。[Unnikrishnakurup等]利用红外脉冲热成像技术和太赫兹时域谱技术同时对不均匀涂层厚度进行测量,并获得了对热障涂层厚度估计小于10.3%的平均相对误差。虽然我国关于热障涂层红外脉冲热成像无损检测的研究起步较晚,但仍取得了重要研究成果。[北京航空航天大学]利用红外脉冲热成像技术,通过使用有限元数值模拟与热成像检测实验方法,对存在脱粘缺陷和厚度不均匀时热障涂层表面温度场以及热障涂层的厚度与疲劳特性进行了较为深入的研究。[北京航空材料研究院]利用闪光灯激励红外脉冲热成像技术不仅检测出直径小于0.5mm的脱粘缺陷,还识别出了肉眼无法观察到的微裂纹。近来,关于热障涂层激光扫描热成像技术的无损检测与评价研究也开始出现,[北京理工大学]和[南京理工大学]利用线型激光扫描热成像技术实现了对热障涂层脱粘缺陷以及20~150μm厚薄涂层的高精度无损检测与评价。为了检测热障涂层表面微小裂纹,[北京理工大学]还开发了一种将线型激光快速扫描模式与点激光精细扫描模式相结合的激光多模式扫描热成像检测技术,实现了仅9.5μm宽表面微小裂纹的高效检测。3.2 红外锁相热成像检测技术不同于热障涂层红外脉冲热成像无损检测研究,国内专家学者较早地开展了热障涂层红外锁相热成像无损检测的研究,而国外对此的研究还很少。[火箭军工程大学]利用红外锁相热成像技术对涂层厚度进行检测,并表明该技术可实现对涂层厚度的快速检测,且检测精度可达到95%。[哈尔滨工业大学]利用红外锁相热成像检测技术和热波信号相关提取算法对热障涂层脱粘缺陷进行检测,并研究了光源功率、分析周期数和激励频率大小等对检测结果的影响。[哈尔滨工业大学]随后利用激光激励红外锁相热成像技术高精度地量化了SiC涂层碳/碳复合材料的薄涂层厚度分布的均匀性。[上海交通大学]针对热障涂层内部裂纹缺陷的快速无损检测与评价,也提出了一种基于多阈值分割和堆叠受限玻尔兹曼机算法的红外热成像无损检测技术。此外,[韩国国立公州大学Shrestha和Kim]利用红外脉冲热成像技术和红外锁相热成像技术对热障涂层表面不均匀涂层厚度进行了无损检测与评价,并开展了有限元数值模拟与热成像检测实验分析了各种技术的优势所在。3.3 红外热波雷达成像检测技术红外热波雷达成像作为一种新兴的无损检测技术,其高信噪比、大探测范围等突出优势更利于热障涂层次表面脱粘缺陷的高精度无损检测。而目前关于热障涂层红外热波雷达成像无损检测与评价的研究还鲜有报道,目前仅有国内的哈尔滨工业大学和东南大学针对热障涂层红外热波雷达成像无损检测开展了相关的理论与热成像检测实验研究工作。[哈尔滨工业大学]利用红外热波雷达成像技术对热障涂层脱粘缺陷进行检测,该技术利用线性调频信号调制光源强度,并引入了互相关和线性调频锁相提取算法,研究表明该技术可实现热障涂层脱粘缺陷的有效检测。[东南大学]基于Green函数法,对热障涂层光热传播理论进行了较为深入的研究,并提出了一种先进非线性调频波形的脉冲压缩热成像检测技术,可实现热障涂层次表面脱粘缺陷的高信噪比、大探测深度的高分辨率检测。结语本文介绍了红外热成像技术在FRP复合材料和热障涂层无损检测应用中的研究现状和进展,通过文献调研和相关研究结果分析,可发现,由于FRP复合材料和热障涂层的复杂结构特性,使得传统的无损检测技术无法较好地实现高效可靠的无损检测与评价。作为新兴的无损检测技术,红外热波雷达成像技术由于具有高分辨率、大探测深度、检测结果直观等突出优点,为FRP复合材料和热障涂层的高精度无损检测与评价提供了新契机。此外,在对FRP复合材料和热障涂层红外热成像无损检测进行研究的过程中,笔者也发现,红外热成像无损检测技术的发展还面临着一些主要瓶颈制约问题,也促使红外热成像检测技术须向多样化、智能化、集成化和多源信息融合方向发展,呈现出以下发展趋势:1) 多样化传统无损检测方法和红外热成像等新型无损检测技术都有其各自的优缺点及适用范围,随着检测对象的多样化和检测要求的多元化,所需要的检测手段也呈现多样化发展的趋势,具体体现在:①热激励源由卤素灯、超声和电磁等向半导体激光器、相控阵超声等其他热激励形式发展;②随着计算机和电子信息技术的快速发展,传统的红外脉冲热成像和红外锁相热成像向着新兴的先进激励波形脉冲压缩热成像或热波雷达成像检测技术方向发展。2) 智能化近年来人工智能技术的快速发展使得基于深度学习模型的红外目标识别与跟踪方法取得了巨大进步,这无疑为红外热成像无损检测技术的进一步发展提供了很好的发展契机。深度学习方法的高识别率特点使其在红外目标特征识别、红外图像分割与分类方面性能优异,在精度和实时性方面,甚至远远赶超传统检测方法。人工智能赋能红外热成像检测技术,有望取代人工判断,推动红外热成像无损检测技术向着智能化检测方向发展。3) 集成化红外热成像检测系统通常需要激励热源、红外热像仪、光路等调节装置、固定装置等模块,体积较大、结构较为复杂,且仍需人工或仪器自动采样。为满足实际无损检测应用中原位测量及低能耗的需求,红外热成像检测技术需逐步向小型集成化方向发展,最终实现无损检测现场的便携式携带和操作。4) 多源信息融合发展多源多模态热成像数据能比单一热成像数据提供更多的关键信息,此外,在信息呈现和表达上,多来源、多模态红外热成像数据还增加了无损检测结果的鲁棒性。因此当检测要求较高时,常常需要采用优势互补、多种检测方法相结合的方式,通过多源多模态热成像数据的融合与集成,最终提供优质、高效、安全、可靠的无损检测解决方案。因此,红外热成像技术也需向多源信息融合方向发展。
  • 国内首次实施缪子成像技术对大型文物古迹开展探测
    西安是我国著名的历史文化名城,西安古城墙凝聚着我国古代劳动人民的智慧,对研究中国古代社会的城市建设、历史、军事和建筑艺术等方面具有很高价值。数百年的屹立使得西安古城墙出现了部分坍塌、沉陷等现象,而且很多病害的关键病灶在墙体内部,对探测勘探手段提出了重大挑战。深入了解古城墙的内部结构,有针对性地对其展开修复,成为文物保护工作者以及科技工作者面前的重要课题。在常规物探方法中,或需要对目标物进行破坏勘探,或很难穿透目标物,或精度不够,让大型目标物内部探测成为一个困扰多年的难题。新型、环保、安全的宇宙射线缪子成像技术提供了一种全新解决方案。缪子是自然界的基本粒子之一,我们周围空间中的缪子主要来自宇宙初级射线与大气相互作用后的次级产物。近日,兰州大学核科学与技术学院、稀有同位素前沿科学中心带领团队来到古都西安,专程为西安古城墙做了一次基于宇宙射线缪子的健康“CT”体检。团队选择了城墙的58号马面区域作为探测目标,共设置了六个测量点,多角度采集缪子数据。反演结果清晰地展示了在马面墙内部分区域明显的密度异常体。与此同时,在成像结果中发现的一个低密度区域,经确认为马面的配电室(未被事先告知);缪子成像技术将其位置、形状、大小清晰地呈现出来,获得了盲测的有效验证。团队对西安古城墙的探测是国内首次实施的缪子成像技术对大型文物古迹的实验研究,研究成果对大型文物古迹考古与保护、助力中华文明探源工程具有重要意义。图:缪子成像探测仪器在西安城墙现场的实验布局。1-6号位置针对58号马面,A、B位置为空测位置。图:西安城墙内部成像成果图宇宙射线缪子存在于自然界,具有极强的穿透能力,在大型文物古迹考古与保护、矿藏勘探、冰川科考、滑坡监测等领域有着广泛的潜在应用前景。经过长期积累与研究,刘志毅教授团队通过多学科的交叉合作成功研发出宇宙射线缪子CORMIS成像系统,为有效解决特定大型目标物的内部成像难题提供了重要技术装备。该项目得到了国家自然科学基金委、兰州大学、甘肃省科技厅、甘肃省地矿局、甘肃省自然资源厅、西安城墙管理委员等单位的大力支持。目前相关成果以精选(featured)和封面(cover)文章刊发在应用物理经典杂志《Journal of Applied Physics》上,硕士研究生刘国睿、博士研究生罗旭佳同学为共同第一作者,刘军涛副教授为第一通讯作者。同时,AIP科学之光(Scilight)也对该成果作为亮点工作进行了重点宣传报道。扩展阅读:《Journal of Applied Physics》:https://doi.org/10.1063/5.0123337Scilight:https://doi.org/10.1063/10.0016773
  • VOCs及甲烷泄漏检测红外热成像仪(OGI)及探测器工程技术中心在焜腾红外揭牌成立
    近日,VOCs及甲烷泄漏检测红外热成像仪(OGI)及探测器工程技术中心(以下简称“技术中心”)在嘉兴经济技术开发区科创标杆企业——浙江焜腾红外技术股份有限公司(以下简称“焜腾红外”)正式挂牌成立,技术中心揭牌仪式在嘉兴长三角高层次人才创新园隆重举行。该技术中心专门设在浙江焜腾红外技术股份有限公司企业内,利用焜腾红外的技术平台进行技术研发和创新,基于焜腾红外的核心芯片技术,探索新的有毒有害及温室气体排放监测的技术监测手段。同时,焜腾红外董事长詹健龙先生担任该技术中心主任。揭牌仪式上,中国石油化工技术装备专业委员会理事、专委会秘书长丁武先生与浙江焜腾红外技术股份有限公司董事长总经理詹健龙共同为技术中心揭牌。技术中心揭牌该技术中心设在焜腾红外具有深远的意义,焜腾红外将通过积极创新和实践,与各行业共同推进并提高我国的VOCs及甲烷泄漏探测技术在环保和工业领域HSE(健康、安全和环境)中的应用创新发展,并拓展VOCs及甲烷泄漏探测技术在电力、煤矿、天然气储运、农业等各个行业的应用,为全面提升新质生产力、为国家双碳战略作出贡献。下一步,焜腾红外将进一步勇于创新,大胆试点,联合产学研各个领域的专家学者一起合作、一起探讨并实践这一新技术在各行各业中的应用,用科学创新提升运营管理水平。焜腾红外董事长詹健龙发表主旨演讲揭牌仪式上,浙江焜腾红外技术股份有限公司董事长詹健龙先生为广大来宾献上了主题为【制冷红外热成像芯片技术在石油石化行业VOCs及甲烷泄漏监测中的应用】的精彩主旨演讲。特邀嘉宾中国工业环保促进会副秘书长兼化工委员会主任李小平先生、华东理工大学资源与环境工程学院党委书记修光利教授、中石化(大连)石油化工研究院有限公司环保所副所长陈中涛先生等专家学者也分别围绕“双碳”背景下VOCs污染防治新要求、挥发性有机物监管政策进展和监测检测技术发展、VOCs及异味无组织排放监控、预警与溯源等主题进行了精彩的发言。目前,焜腾红外自主研发和生产的制冷型中波、长波气体泄漏探测器可有效监测到一氧化碳、二氧化碳、甲烷、乙烯、氨气、六氟化硫等400多种VOCs气体。焜腾红外自主研发生产的中波标准款(550 g)、小型款(350 g)、微型款(260 g)等不同规格的制冷红外气体泄漏探测器,波段在3.2-3.5 μm、4.2-4.4 μm、4.5-4.7 μm,像元间距为320*256(30 μm)640*512(15 μm),NETD≤15 mk@25℃;制冷型长波标准款及小型款红外热成像气体泄漏检测仪,波段在10.3-10.7 μm和7-10.7 μm,像元间距为320*256(30 μm)640*512(15 μm),NETD达25 mk@25℃;中波、长波气体泄漏探测器均采用高端制冷型高工作温度(HOT)二类超晶格(T2SL)红外探测器,以图像形式快速发现甲烷、一氧化氮、二氧化硫、乙烯、六氟化硫、氨气等气体的泄漏,适用于开放空间的泄漏检测,能远距离、大范围快速筛查电力、石化、化工生产储运装置的泄漏,并能精准定位泄漏或排放源头,极大提升泄漏检测的效率,具有视频录制、拍照和语音录制功能,便于监督执法现场取证。焜腾红外的气体泄漏检测热像仪、气云成像遥测仪、在线式VOCs红外气体泄漏可视化监测系统等系列产品均已上线,探测终端内采用高灵敏度高工作温度T2SL中波制冷红外焦平面探测器,通过有线网络可实时观测VOCs气体泄漏状态的双光图像,系统适用于工业领域VOCs气体泄漏的实时在线检测,例如炼油厂、海上油气开采平台、天然气存储运输场所、化工化工业、生物气体厂、发电站、农业等。焜腾红外的机载式VOCs气体泄漏可视化巡检系统,搭载了先进的自主量产制造的小型化高工作温度T2SL探测器,可对甲烷等400多种挥发性有机物VOCs的泄漏进行检测,快速实时捕捉到VOCs类气体的泄漏。红外热成像仪(OGI)及探测器在各行各业的广泛应用另据悉,7月31日国新办举行的新闻发布会上,财政部副部长王东伟表示:随着我国经济转向高质量发展阶段,亟需改革环境保护税,将挥发性有机物(VOCs)纳入征收范围。这一改革将进一步促进全社会、各行业对于VOCs污染防治的共同关注。焜腾红外紧跟国家政策导向和社会发展趋势,本次技术中心成立后,焜腾红外将充分用好这个技术平台,广泛联合产学研和应用领域各路专家学者,共同推进国产化有毒有害及温室气体排放监测手段和解决方案,进一步促进VOCs及甲烷泄漏检测红外热成像技术的研发、探讨与应用,提升红外热成像技术与探测器工程技术的研发生产能力与综合应用实力,为国家双碳战略助力,为各个行业的安全生产和生态环境保护事业做出不懈的贡献!焜腾红外是国内仅有的几家集生产与研发制冷型红外热成像芯片、探测器组件及激光芯片于一体的国家高新技术企业、国家级专精特新"小巨人"企业,始终坚持立足自主研发制冷型红外芯片技术,聚焦我国在红外芯片核心器件领域的"卡脖子"问题,突破核心关键技术,专注于红外热成像技术在VOCs工业废气治理领域的应用。为实现高端进口装备国产替代,振兴民族工业和能源行业绿色低碳发展作出了新的贡献。焜腾红外现已完全掌握高工作温度(HOT)制冷型二类超晶格(T2SL)光学气体成像红外探测器这一核心技术并真正实现量产。该技术通过了浙江科技评估和成果转化中心的科技成果鉴定:攻克了T2SL材料外延生长、器件结构设计、芯片制备工艺及探测器规模化工艺等方面“卡脖子”关键技术,在Ⅱ类超晶格材料结构的优化设计、器件制备、高真空封装处于国内领先水平,其中120K高温工作制冷探测器技术属国内首创,填补了国内空白。
  • 我国首台可移动式中子成像检测仪问世 弥补无损检测不足
    p   记者7月17日从中国工程物理研究院核物理与化学研究所获悉,我国首台可移动式中子成像检测仪日前由该所研制成功。这种能够在集装箱货车中运输的中子检测设备,可实现待检对象的现场或在线检测,未来在我国航空航天领域重大装备制造中将发挥重要作用。 /p p   可用于裂痕探测、材料性能分析等领域的中子成像检测,由于弥补了X射线等其他无损检测方式的不足,正广泛用于重大装备制造领域。但由于传统的中子成像检测设备自身体积较大,难以对大型、超大型装备进行现场检测。 /p p   在国家重大科学仪器设备开发专项支持下,中物院核物理与化学研究所龚建研究员率领团队研发的可移动式中子成像检测仪,由小型加速器中子源、准直屏蔽系统、样品承载系统、成像系统、控制系统、数据采集处理系统及氚净化处理系统等组成。设备长6米,占地面积20平方米,仅一个房间大小 总重3.5吨,可以装在一到两辆集装箱货车中运输。对核心的小型加速器中子源,研究团队采用整体小型化和集成化设计思路,对离子源、高压电源及加速管等关键部件进行了特殊设计、验证和研制,满足了中子成像检测对加速器中子源小型化和高产额的应用需求。 /p p   “该仪器的成功研制,带动了高产额小型加速器设计制造、中子探测技术,及航空发动机空心涡轮叶片、航天火工品的检测技术进步,打破了国外对这种广泛用于核能、航空航天等高端领域特种检测设备的封锁。”研究团队相关负责人表示,目前该设备已在航空发动机空心涡轮叶片残余型芯检测及航天火工品系列产品质量检测中得到了成功应用。 /p
  • 2021年食品所首席专家团队在食品安全可视化、高灵敏、实时、高效检测方向取得新突破
    食品安全事关国计民生,食品安全检测技术是保证食品安全的重要手段。由于食品基质复杂、有害成分含量低、风险因素多变,传统的食品安全检测技术难以满足日益增长的新需求,面对新挑战,中国检验检疫科学研究院食品所张峰首席专家团队在食品安全可视化、高灵敏、实时、高效检测方向取得新突破。   在食品安全可视化检测方向,团队在质谱成像研究领域取得新突破。液相色谱等传统检测技术可获得食品中有害物的平均含量,却无法获得其空间分布信息,无法实现可视化。光学成像和显微成像等传统成像技术空间分辨率低、灵敏度低、干扰高,难以准确定量。团队应用显微成像-基质辅助激光解吸电离质谱成像技术获得食品组织高分辨率空间分布及原位含量信息,创建新型“暴露曲线”模型,揭示了食品内源性有害物的代谢变化规律,实现了食品外源性污染物的污染程度评价。图1 显微成像-基质辅助激光解吸电离质谱成像图及“暴露曲线”模型 在食品安全高灵敏检测方向,团队在检测新材料研发领域取得新突破。由于食品基质复杂,有害物含量低,需要高效的富集净化材料实现高灵敏检测,但传统吸附材料制备条件苛刻、吸附容量低,难以实现有效富集与净化。团队在70 ℃温和条件下研制出新型磁性多孔有机材料Fe3O4@COF (BAPTPDA-Dt)、Fe3O4@TAPB-Tp和Fe3O4@PDA@UPOPs,键合了脲类等多种官能团,赋予其丰富的疏水性及亲水性,使其吸附能力大大提升。其中,新材料Fe3O4@TAPB-Tp用于牛奶中玉米赤霉烯酮富集净化,所建立的高效液相色谱-串联质谱法的定量限可达0.012 μg/kg,与《食品安全国家标准 食品中玉米赤霉烯酮的测定》(GB 5009.209-2016)规定的方法定量限4 μg/kg相比,灵敏度提高了数百倍。这些新材料实现了制备条件温和、吸附容量高等技术突破,检测灵敏度从ppb向ppt级跨越,实现食品中多种痕量有害物的高灵敏检测。图2 Fe3O4@TAPB-Tp材料合成路线(A)和检测流程(B)图 在食品安全实时检测方向,团队在质谱关键元件研发领域取得新突破。目前对食品安全检测效率的要求日益提高,光谱技术能满足实时检测需求,但结构信息少,难以满足准确定性定量要求。传统敞开式电喷雾离子源质谱可直接进样并定量分析,满足实时检测需求,但其选择性不足、灵敏度低,难以应用于复杂食品基质的分析。团队将高选择性吸附材料与敞开式质谱离子源相结合,研发出一系列分离、电离一体化高选择性敞开式质谱离子源,明显提高了其选择性。其中将亲水性分子印迹聚合材料集成于敞开式质谱离子源,用于蜜蜂中磺胺类药物的检测,检测速度≤1分钟,方法定量限可达0.3 μg/kg,与《蜂蜜中16种磺胺残留量的测定方法 液相色谱-串联质谱法》(GB/T 18932.17-2003)制定的方法定量限2.0 μg/kg相比,灵敏度提高近10倍,检测速度由几十分钟缩短至几十秒,检测灵敏度从ppb向sub-ppb级跨越,实现了食品中磺胺类药物的实时、灵敏检测。图3 亲水性分子印迹聚合材料制备流程图图4 所研发的新型敞开式质谱离子源 在食品安全高效检测方向,团队将食品组学拓展到未知风险判定新领域。食品安全的未知风险因子判定非常困难,几乎没有成熟技术。团队将智能质谱手术刀与组学技术相结合,开发了新型全息鉴别技术,获得反复冻融肉和过度加热肉的特征标志物,检测速度由几十分钟缩短至几秒钟,实现了过度加工食品中风险因子的高效判别。图5 新型全息鉴别技术流程图综上,2021年团队在食品安全可视化、高灵敏、实时、高效检测方向取得系列突破。研发了新型富集材料3种;申请发明专利24件,其中授权6件;制订食品安全国家标准2项,行业标准2项,食品补充检验方法3项,食品快速检测方法5项;获批国家二级标准物质 2 个;在国内外期刊发表学术论文41篇,其中SCI/EI期刊收录论文24篇,包括SCI Ⅰ区TOP期刊《Analytical Chemistry》(IF = 6.986)、《Environmental Pollution》(IF = 8.071)、《Journal of Agricultural and Food Chemistry》(IF = 5.279)等。
  • 激光差动共焦成像与检测仪器重大专项启动
    3月28日上午,国家重大科学仪器设备开发专项&ldquo 激光差动共焦扫描成像与检测仪器研发及其应用研究&rdquo 项目2013年度工作会在北京理工大学召开。   科技部条财司孙增奇处长、工信部科技司王锐副调研员,杨柯巍主管、金国藩院士、李天初院士、周立伟院士、项目监理组和&ldquo 两组一委&rdquo (项目总体组、项目技术组和项目用户委员会)22位专家以及项目牵头承担单位北京理工大学机关及学院领导等共计40余人参加了会议。   项目总体组成员代表北京理工大学科研院高新部张瑜部长代表学校致欢迎辞,工业与信息化部王锐副调研员、科技部条财司孙增奇处长、项目技术专家组组长金国藩院士、项目用户委员会组长北京交通大学理学院院长冯其波教授、监理组组长北京工业大学科技处处长石照耀教授分别作了讲话。   项目技术专家组组长金国藩院士主持了进展汇报会议,项目负责人赵维谦教授向与会领导专家汇报了项目的总体工作情况及我校承担的研制任务的年度进展情况,清华大学张书练教授、中国科学院物理研究所刘玉龙研究员分别汇报了其承担的研制任务的进展情况。   汇报结束后,与会专家现场考察了我校光电学院赵维谦教授项目组的实验室。现场询问了项目组研发的激光差动共焦干涉元件参数测量仪器、激光差动共焦曲率半径及焦距测量仪器、激光径向偏振光差动共焦显微仪器和激光差动共焦拉曼光谱成像仪器的研究状况,观看了项目组研发的关键部件&mdash &mdash 回馈激光干涉仪、余气回收式高精度气体润滑直线运动系统、高精度气体润滑回转运动系统、高精度气体润滑调倾/调心工作台和高分辨力大承载气体润滑四维调整工作台等,与会专家对研究成果的创新性及研究进展给予了高度评价。   现场考察结束后,专家组对项目组进行了质询。会专家一致认为:国家重大科学仪器设备开发项目&ldquo 激光差动共焦扫描成像与检测仪器研发及其应用研究&rdquo 2013年度工作进展良好、实施效果显著,按计划全面完成了项目任务书所提出的研究工作,并希望项目组在后续的研究工作中,继续加强推进仪器的可靠性、产品化、软件、外观设计和知识产权保护等工作,提升仪器产品的竞争力。   最后,项目负责人赵维谦教授代表项目组对与会领导、专家的莅临指导表示感谢,并表示会高度重视专家的建议,在今后项目的研发过程中进一步增强仪器产品化设计意识。
  • 大米外观品质检测仪如何成像
    大米外观品质检测仪如何成像,大米外观品质检测仪的成像过程主要依赖于先进的图像采集和处理技术。以下是其成像的基本步骤:高分辨率图像采集:首先,检测仪会利用高性能的摄像设备(如高分辨率摄像头)来捕捉大米样品的图像。这些摄像头能够捕捉到每一粒大米的微小细节,确保获取到的图像具有足够高的分辨率。图像预处理:在获取到原始图像后,检测仪会进行一系列的图像预处理操作。这些操作可能包括去噪、增强对比度、调整亮度等,以消除图像中的干扰因素,提高图像的质量。图像分割与特征提取:接着,检测仪会使用计算机图像处理算法来对预处理后的图像进行分割和特征提取。通过图像分割,检测仪能够将粘连的大米和种粒分开,实现自动分类分析。同时,通过特征提取,检测仪能够提取出大米的关键特征,如形状、大小、颜色等。图像重建与显示:最后,检测仪会根据提取到的特征信息,对大米样品进行图像重建和显示。这个过程可能包括生成分析标记图、排列图和测量图等,以便用户直观地查看和分析大米的外观品质。需要注意的是,不同品牌和型号的大米外观品质检测仪在成像技术和算法上可能存在差异。但总体来说,它们都采用了类似的图像采集和处理技术,以确保能够准确、快速地评估大米的外观品质。
  • 应用分享 | 近红外二区荧光成像技术用于血管靶向光动力治疗的深层组织成像和动态监测
    论文摘要△图1 论文部分截图。血管靶向光动力治疗(V-PDT)是治疗血管相关疾病的一种有效手段,但是目前对深层血管在V-PDT过程中形貌及功能变化的实时、高分辨可视化监测依然是一个重大挑战。近红外二区 (NIR-II) 荧光成像具有背景干扰低、分辨率高及穿透深度深等优点,近年来被广泛应用于深层组织成像及血管相关变化的动态监测。应用报道近期,中科院理化技术研究所开发了一种明亮、高稳定的聚集诱导发射(AIE)荧光团(PTPE3 NP),用于V-PDT期间超过1300nm窗口的血管功能障碍的动态荧光成像。△图2 PTPE3纳米粒子对多尺度血管系统的近红外二区荧光体内成像。PTPE3 NP具有高亮度和高分辨率,不仅可以获得全身和局部血管系统(后肢、肠系膜和肿瘤)的高清晰度图像,而且可以实现跟踪血液循环过程的高速视频成像;由于NP血液循环时间长以及良好的光/化学稳定性,在V-PDT过程中shou次通过荧光成像成功显示肠系膜和肿瘤血管功能障碍。此外,可以实时监测血流速度的降低以用于精准评估V-PDT的疗效。目前,这篇论文已在《Biomaterials》进行了发布,想要查看完整英文版全文的读者,可以复制下方链接获取。https://linkinghub.elsevier.com/retrieve/pii/S0142961223001382△图3 论文部分截图。值得一提的是,论文中拍摄的近红外二区荧光图像所使用的设备为北京睿光科技有限责任公司自主研发的NirVivo-Pro近红外二区小动物活体荧光成像系统。产品推荐NirVivo-Pro 活体荧光成像系统是北京睿光科技自主研发的一款专门用于近红外二区的光学成像系统。该系统可实现高质量荧光图像的采集及图像处理,实时地观察基因在活体动物体内的表达、肿瘤的发生、生长、转移及药物的治疗效果,对同一个动物进行时间、环境、发展和治疗影响跟踪,可用于生命科学、医学研究及药物开发等应用领域。产品特点:采用-80℃科学级红外相机,曝光可达5分钟;支持电动切换显微成像和宽视野成像镜头;多路光纤匀化照明,支持多种波长激光器;自主知识产权软件,支持自动曝光,自动对焦;
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制