当前位置: 仪器信息网 > 行业主题 > >

放大镜的原理

仪器信息网放大镜的原理专题为您提供2024年最新放大镜的原理价格报价、厂家品牌的相关信息, 包括放大镜的原理参数、型号等,不管是国产,还是进口品牌的放大镜的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合放大镜的原理相关的耗材配件、试剂标物,还有放大镜的原理相关的最新资讯、资料,以及放大镜的原理相关的解决方案。

放大镜的原理相关的资讯

  • 纳米“放大镜”可将光线放大一万倍
    美国威斯康星大学麦迪逊分校的科学家日前开发出一种能将光线放大一万倍的光学设备。让人称奇的是,这种神奇的“放大镜”只有几纳米大。研究人员称,该研究有望大幅提升相机弱光拍摄性能,在提高太阳能电池的转化效率上也有很大潜力。相关论文发表在近日出版的《物理评论快报》杂志上。  光在某些方面和声音很像,可以产生共振,借助这种方式可将周围的光线放大。威斯康星大学麦迪逊分校的科学家,正是借助这一原理制造出了纳米“放大镜”。它实际上是一种纳米共振器,该设备能让光的波长变短,收集大量的光能,然后在一个非常大的区域将其散射出去。这意味着它的散射光能用于成像,能像放大镜一样,放大物体的光学尺寸。  负责此项研究的该校电子与计算机工程学助理教授余宗福(音译)说:“就像琴弦能让周围的空气发生振动,产生美妙的音乐一样,这个非常小巧的光学器件能从周围吸收光线,产生让人惊讶的强大输出。”  余宗福说,他们正在开发基于该技术的光电传感器,这样的设备将能帮助摄影师在弱光条件下拍出图像质量更好的图像。在成像领域,这样的能力要显著优于传统的玻璃和树脂镜片,因为这些传统光学材料更容易受到自身尺寸和光线方向的影响。  鉴于纳米共振器能吸收大量光线的能力,该技术在提高太阳能光电转化效率方面也具有很大潜力。由于纳米共振器具有较大的光学截面,也就是说,其发光尺寸远远要大于其自身实际物理尺寸的大小,这样所带来的一个好处是,可以摆脱在类似的系统中经常会出现的、让人头痛的发热问题,让被动散热成为可能。  研究人员称,这种纳米共振器对光散射能力显著优于之前的设备,在光传导和光传感领域开辟了一条新的途径。
  • 全航程监测海水pH值 北冰洋成全球海洋酸化“放大镜”
    p   航程12000多海里,执行我国第九次北极科学考察的“雪龙”号9月26日回到母港——位于上海的中国极地中心码头。 /p p   在本次科考中,科考队以“雪龙”号为平台,围绕海洋酸化等热点问题,进行了深入全航程监测。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/a9f1a932-2366-451c-b917-28209df4f667.jpg" title=" 工作人员取冰.jpg" alt=" 工作人员取冰.jpg" / /p p   什么是海洋酸化?在北冰洋开展海洋酸化研究有何特别意义?目前北冰洋酸化研究存在什么困难? /p p   全航程监测北冰洋海水pH值 /p p   和全球变暖“祸出同因”, 海洋酸化同样源于人类向大气过量排放的二氧化碳。 /p p   不同的是,全球变暖是由于排入大气中的二氧化碳温室效应作用,海洋酸化是溶入海水中的二氧化碳和水发生化学反应,产生大量碳酸根和氢离子,变成北冰洋“汽水”。随着溶于海水的二氧化碳不断增加,海水pH值和碳酸钙饱和度持续下降。 /p p   走航观测是本次海洋酸化研究的一个重要组成部分。正因如此,对自然资源部海洋三所助理研究员祁第来说,从上海出发,经过日本海、鄂霍次克海、白令海,直到北冰洋高纬海区,以及自北冰洋返回上海,“雪龙”号69天的航程具有特别意义。 /p p   “船开出去后,借助船体加装的高精度pH走航观测系统,每隔20分钟,我们就能获得表层海水的高时空分辨率数据,初步统计,此次北极科考获得了两千多个点的、跨越多个经纬度的北极大空间尺度的高分辨pH走航数据。”祁第告诉记者。 /p p   海洋酸化是个很缓慢的过程,如果精度不高这种变化根本看不到。祁第说,这次科考中除了pH走航系统能进行全航线监测外,还设置了40多个水文站位。水文站位采样,是将重达200多公斤的CTD放入海中进行相关作业。CTD由24个10升的采水瓶和一些测试仪器组成。每下降到一定深度,采水瓶会自动采集海水样品。船上实验室的电脑也会实时接收并显示仪器观测到的海洋数据。 /p p   祁第告诉记者,此次作业中,CTD下沉至4000多米的海底,一般需经过4个多小时,才能完成作业。尽管采样工作量大,却是获取海洋全水深酸化数据的最可靠手段。此外,水文站位的表层数据还可以和走航数据进行比对校正,确保了走航观测数据精度的可靠性。 /p p   为了解海冰覆盖下的海水酸化状况,本次考察设置了9个短期冰站和1个长期冰站。当船到达某一个冰站,工作人员将搭乘从船上放下的小艇,行至浮冰上,借助冰芯钻取及采集手段、半自动采水系统采集样品,并利用海洋环境多参数分析仪,现场分析温度和盐度。但冰站作业却是探究海冰融化驱动酸化机制的最直接办法。 /p p   酸化比太平洋或大西洋等快4倍多 /p p   1999年,经国务院批准,我国首次北极科学考察队搭乘“雪龙”号极地科学破冰船首航北冰洋。当年的科考任务中,把如今仍不被很多人所熟悉的海洋酸化研究列入其中,正是时任领队兼首席科学家陈立奇研究员主持。 /p p   上世纪80年代,作为我国最早选派到美国学习全球变化科学的学者之一,陈立奇参与了“海气实验计划”的全球计划。大量实践和研究使他敏锐地意识到,人类活动对全球变化的作用,已经接近并超过自然变化的强度和变率。 /p p   “从工业化到本世纪初,海洋平均pH下降0.1的时间,从每百年单位进入每十年。”谈及研究的初衷,陈立奇回忆,当时的推测是,在这种全球变化背景下,作为生态系统结构简单、对气候和环境变化也最敏感的地区,北冰洋会首先感应到这种酸化加速并被放大。 /p p   过去20年,北极升温幅度是全球平均升温的6.7倍。北极快速升温导致北冰洋海冰大量融化,每年夏季开阔水域超过1000万平方公里,高浓度的二氧化碳容易入侵北极海水,导致其上层水体的酸度升高。 /p p   与此同时,全球变化和北极变暖引起的北极海洋环流和大气模态异常,让北冰洋酸化雪上加霜。北冰洋海冰覆盖面积快速后退,诱发太平洋携带“腐蚀性”的酸化海水大范围入侵,这也是导致北冰洋酸化海水快速扩张的最主要原因。 /p p   如今多项研究已证明,北冰洋是全球海洋酸化“领头羊”。 /p p   “北冰洋是我们观测到的第一个如此迅速且大范围、长时间酸化加重的大洋,比在太平洋或者大西洋观测到的结果要快4倍以上。”祁第说,历经9次北极科考,基于对过去20年来所有横穿北冰洋航次数据的精细分析,结合历次我国北极科考航次的数据集成后发现,北冰洋酸化水体以每年1.5%速度快速扩张,并预估酸化水体将在本世纪中叶覆盖整个北冰洋。 /p p   组成全球观测网,用数据说话 /p p   2016年,一则新闻引发关注。在澳大利亚东部海岸绵延2300公里的“国宝”大堡礁,由于珊瑚大规模白化,已导致北部和中部区域约35%的珊瑚死亡或濒临死亡。白化现象最严重的部分珊瑚礁中,一半以上珊瑚已经死亡 剩余珊瑚中有一部分无法从白化恢复正常,死亡比例将进一步上升。 /p p   海洋酸化带来的影响打破了地理边界。 /p p   在北冰洋,翼足目类海螺是北冰洋食物链中重要的一环,是北极三文鱼和鲱鱼重要的食物。2013年发布的《北极海洋酸化评估:决策者摘要》,指出北极海洋正在酸化,并对海洋生物和渔业资源构成威胁。 /p p   祁第解释,在pH值较低的海水中,为了保护自己,这些钙化生物会长得越来越小、外壳越来越厚。作为饵料,它们的价值也会下降,这将影响渔业和水产养殖等,进而通过食物链破坏整个生态系统。 /p p   从时间横轴来看,从第三次北极考察开始,我国北极科考酸化研究安装了船载走航二氧化碳观测系统,不仅可以观测海洋吸收二氧化碳的量和潜力的变化,还可以为评估海洋酸化提供重要数据 基于中美国际合作,第四次北极科考开发的净群落生产力走航观测系统,扩展了生物过程对海洋酸化的影响研究和贡献评估。 /p p   祁第表示,当前海洋酸化演化成全球生态环境危机,尽管在北冰洋开展海洋酸化研究有着“一叶而知秋”的重要意义,但也面临重重困难,数据是一大瓶颈。 /p p   目前来自欧盟、美国、加拿大、日本和韩国等的科学家,都对北冰洋海洋酸化的研究给予了高度关注,并对北极陆架海域和南部海盆海水的酸化状况、海冰融化、生物过程、太平洋冬季水入侵影响等进行了研究。面对全球大洋研究最为匮乏的区域之一,这些国家的科研人员同样受困于高时空尺度的数据。 /p p   几年前我国提出了以北冰洋和北太平洋酸化为重点海区的观测网计划(nPAOA-ON)。“我们对北冰洋酸化的研究表明,在全球气候变化驱动下的海洋酸化没有国界,人类需要携手聚焦典型海域酸化实时监测,组成全球观测网并对酸化趋势和影响评估,采取应对和减缓措施,以构筑保障海洋生态屏障。”陈立奇说。 /p p   此次科考中,我国同样邀请了法国、美国科学家,乘坐“雪龙”号采集海洋酸化数据,就这一全球环境热点问题开展科学合作。 /p p   “就目前的研究而言,海洋酸化的损害后果仍难以评估。”但祁第可以肯定的是,要了解酸化对海洋生态系统意味着什么,需要用数据说话,开展长期监测研究。 /p
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • 固体核磁共振“超级放大镜”观察催化反应网络
    2016年,中国科学院大连化学物理研究所(以下简称大连化物所)院士包信和和研究员潘秀莲等提出的OXZEO催化技术发布于《科学》杂志。该项技术自提出以后就广受关注,并且入选了当年的“中国科学十大进展”。  近日,基于OXZEO催化剂设计概念,大连化物所院士包信和、研究员侯广进等利用固体核磁共振技术,在金属氧化物分子筛(OXZEO)双功能催化剂催化合成气转化机理研究领域取得了新进展。相应研究成果于6月23日发表在《自然-催化》上。  重要的催化过程与复杂的反应网络  催化技术在资源利用、能源转化和环境保护等诸多领域发挥着关键作用,是人类现代社会发展速度与质量的重要保证。而石油资源是当代能源和材料的核心来源。近年来,随着石油资源的日益匮乏,寻找补充性乃至替代性技术路径,以此满足现代社会发展日益旺盛的能源和材料需求尤为重要。  我国长期以来“富煤、缺油、少气”的资源结构,导致石油资源长期高度依赖进口。但是石油进口依赖国际环境,价格不可控,获取也容易受限。此外,人们对生态环境的保护意识也在不断增强,改良乃至废止高污染、高排放化工过程的呼声越来越高。但同时,生产效率又不能被牺牲,这使得催化研究领域面临很大的挑战。  针对国家的需求和能源现状,包信和从20世纪90年代回国起就全身心投入到能源小分子催化转化的科学研究中,带领团队深入的开展基础研究,聚焦“纳米限域催化”领域,一干就是二十余年。2016年,包信和与潘秀莲等在煤基合成气转化制低碳烯烃的研究中,创建了OXZEO催化过程。随着研究的不断深入,OXZEO催化概念已拓展成为碳资源转化的重要平台。  然而,OXZEO催化体系中涉及合成气经C1物种到多碳产物的转化过程,其反应网络非常复杂,包含催化剂表面众多的活化过程和复杂的多碳中间体,如何确定其活性组分和中间产物成为研究的难题,反应机理研究面临着挑战。  独特的设计思路  长期以来,基于在表界面催化及固体核磁共振谱学表征领域积累的丰富研究经验,包信和和侯广进等想到可以借助固体核磁共振方法对复杂多碳物种及其所处吸附相化学环境的原子超高分辨表征的优势,实现对OXZEO催化转化过程中催化剂表面活化多碳中间体的准确鉴别。  “在中科院和大连化物所的大力支持下,为研究团队搭建了优异的仪器平台,特别是前些年中科院的修购计划支持了包括高场800MHz固体核磁共振谱仪等的仪器装备,为催化反应机理研究提供了重要的设备保障。”侯广进说。  先进的表征技术和优秀的研究平台是团队在催化反应机理领域克难攻坚的利器。  基于对OXZEO催化过程的大量反应实践,研究团队发现,以甲醇催化转化为代表的传统C1转化反应机理并不能准确解释OXZEO催化体系中观察到的很多实验现象。为了充分论证OXZEO催化体系中包含的特殊反应路径,基于ZnAlOx金属氧化物是典型的合成气转化制甲醇催化剂,而H-ZSM-5分子筛是经典的甲醇转化制烃催化剂。于是团队提出要建立一个ZnAlOx/H-ZSM-5模型催化体系,可以说,这是一种独特的设计思路。  “如果我们可以在模型体系中观测到不同于甲醇直接转化过程报道过的中间体,并能够与OXZEO催化过程中观测到的独特反应现象相关联,”论文的第一作者纪毅说,“我们就可以说明OXZEO双功能催化概念是独特的,而我们观测到的关键中间体也对应了OXZEO催化中涉及的独特反应路径。”  研究人员利用模型催化体系,借助准原位固体核磁共振-气相色谱联用的分析检测方法,观测了从初始碳-碳键生成到稳态转化过程中,包括表面多碳羧酸盐、多碳烷氧基、BAS吸附环戊烯酮、环戊烯基碳正离子在内多种中间体的动态演化过程。检测到了数量众多、种类丰富的含氧化合物中间体物种,揭示了合成气直接转化的OXZEO过程与传统甲醇转化的重要区别,有力的解释了OXZEO合成气转化过程中烯烃及芳烃产物独特的高选择性。  接下来“向前也向后”  在上述研究的基础上,团队进一步提出和论证了一氧化碳和氢气在分子筛中也参与了含氧化合物的生成,并初步建立了OXZEO催化转化过程中C1中间体到多碳产物的反应网络和反应机理。  除了模型催化体系外,研究人员还在多种OXZEO催化剂上均观测到了关键中间体,验证了包括含氧化合物路径在内的反应机理的普适性。  但是,团队的研究工作不止于此,后续的基础研究会“向前也向后”。  “我们会进一步深入开展金属氧化物上C-O、H-H键活化以及C-H键形成的机理研究,进而拓展到其它碳资源转化领域如二氧化碳加氢等。”论文共同第一作者高攀告诉《中国科学报》。  与此同时,大家心里都有一个“梦”,就是将催化机理研究与实际反应密切结合,尽早实现OXZEO过程的工业化。  “基础研究需要一步一个脚印的积累,如果这些催化化学中基础科学问题的研究成果能够帮助应用研究学者建立一套完整的催化体系,设计出更高效的、理想化的催化剂,那我们的梦想就一定能实现。”侯广进提到。  有了前进的方向,整个团队将卯足精神,向前冲锋。侯广进对组内人员也提出了希望:“每个人都要有自己的思考,带着研究性思想去做工作,及时沟通交流,团队合作,协力攻坚,相信我们一定会取得更多、更好的研究成果。”  “作为包老师研究团队中的一个研究组,核磁共振是我们的特色也是优势,与其他几个研究组形成学科交叉、优势互补。最终目标,肯定是要从基础研究推向实际应用。”侯广进说。
  • 光学显微镜技术和应用简介
    自然界中一些最基本的过程发生在微观尺度上,远远超出了我们肉眼所能看到的极限,这推动了技术的发展,使我们能够超越这个极限。早在公元4世纪,人们发现了光学透镜的基本概念,并在13世纪,人们已经在使用玻璃镜片,以提高他们的视力和放大植物和昆虫等对象以便更好地了解他们。随着时间的推移,这些简单的放大镜发展成为先进的光学系统,被称为光学显微镜,使我们能够看到和理解超越我们感知极限的微观世界。今天,光学显微镜是许多科学和技术领域的核心技术,包括生命科学、生物学、材料科学、纳米技术、工业检测、法医学等等。在这篇文章中,我们将首先探讨光学显微镜的基本工作原理。在此基础上,我们将讨论当今常用的一些更高级的光学显微镜形式,并比较它们在不同应用中的优缺点。    什么是光学显微镜?  光学显微镜用于通过提供它们如何与可见光相互作用(例如,它们的吸收、反射和散射)的放大图像来使小结构样品可见。这有助于了解样品的外观和组成,但也使我们能够看到微观世界的过程,例如物质如何跨细胞膜扩散。  显微镜的部件以及光学显微镜的工作原理  从根本上说,显微镜包括两个子系统:一个用于照亮样品的照明系统和一个成像系统,该系统产生与样品相互作用的光的放大图像,然后可以通过眼睛或使用相机系统进行观察。  早期的显微镜使用包含阳光的照明系统,阳光通过镜子收集并反射到样品上。今天,大多数显微镜使用人造光源,如灯泡、发光二极管(LED)或激光器来制造更可靠和可控的照明系统,可以根据给定的应用进行定制。在这些系统中,通常使用聚光透镜收集来自光源的光,然后在聚焦到样品上之前对其进行整形和光学过滤。塑造光线对于实现高分辨率和对比度至关重要,通常包括控制被照亮的样品区域和光线照射到它的角度。照明光的光学过滤,使用修改其光谱和偏振的光学过滤器,可用于突出样品的某些特征。图1:复合显微镜的基本构造:来自光源的光使用镜子和聚光镜聚焦到样品(物体)上。来自样品的光被物镜收集,形成中间图像,该图像由目镜再次成像并传递到眼睛,眼睛看到样品的放大图像。  成像系统收集与样品相互作用的照明光,并产生可以查看的放大图像(如上图1)。这是使用两组主要的光学元件来实现的:首先,物镜从样品中收集尽可能多的光,其次,目镜将收集的光中传递到观察者的眼睛或相机系统。成像系统还可包括诸如选择来自样品的光的某些部分的孔和滤光器之类的元件,例如仅看到已从样品散射的光,或仅看到特定颜色或波长的光。与照明系统的情况一样,这种类型的过滤对于挑出某些感兴趣的特征非常有用,这些特征在对来自样本的所有光进行成像时会保持隐藏。  总的来说,照明和成像系统在光学显微镜的性能方面起着关键作用。为了在您的应用中充分利用光学显微镜,必须充分了解基本光学显微镜的工作原理以及当今存在的变化。  简单复合显微镜  单个镜头可以用作放大镜,当它靠近镜头时,它会增加物体的外观尺寸。透过放大镜看物体,我们看到物体的放大和虚像。这种效果用于简单的显微镜,它由单个镜头组成,该镜头对夹在框架中并从下方照明的样品进行成像,如下图2所示。这种类型的显微镜通常可以实现2-6倍的放大倍率,这足以研究相对较大的样本。然而,实现更高的放大倍率和更好的图像质量需要使用更多的光学元件,这导致了复合显微镜的发展(如下图3)。图2:通过创建靠近它的物体的放大虚拟图像,将单个镜头用作放大镜。图3:左:简单显微镜。右:复合显微镜。  在复合显微镜中,从底部照射样品以观察透射光,或从顶部照射样品以观察反射光。来自样品的光由一个由两个主要透镜组组成的光学系统收集:物镜和目镜,它们各自的功率倍增,以实现比简单显微镜更高的放大倍率。物镜收集来自样品的光,通常放大倍数为40-100倍。一些复合显微镜在称为“换镜转盘(nose piece)”的旋转转台上配备多个物镜,允许用户在不同的放大倍数之间进行选择。来自物镜的图像被目镜拾取,它再次放大图像并将其传递给用户的眼睛,典型的目镜放大率为10倍。  可以用标准光学显微镜观察到的最小特征尺寸由所使用的光学波长(λ)和显微镜物镜的分辨率决定,由其孔径数值(NA)定义,最大值为NA =1空中目标。定义可区分的最小特征尺寸(r)的分辨率极限由瑞利准则给出:  r=0.61×(λ/NA)  例如,使用波长为550nm的绿光和典型NA为0.7的物镜,标准光学显微镜可以分辨低至0.61×(550nm)/0.7≈480nm的特征,这足以观察细胞(通常为10µm大小),但不足以观察较小生物的细节,例如病毒(通常为250-400nm)。要对更小的特征成像,可以使用具有更高NA和更短波长的更先进和更昂贵的物镜,但这可能不适用于所有应用。  在标准复合显微镜(如下图4a)中,样品(通常在载玻片上)被固定在一个可以手动或电子移动以获得更高精度的载物台上,照明系统位于显微镜的下部,而成像系统高于样本。然而,显微镜主体通常也可以适应特定用途。例如,立体显微镜(如下图4b)的特点是两个目镜相互成一个小角度,让用户可以看到一个略有立体感的图像。在许多生物学应用中,使用倒置显微镜设计(如下图4c),其中照明系统和成像光学器件都在样品台下方,以便于将细胞培养容器等放置在样品台上。最后,比较显微镜(如下图4d)常用于法医。图4:复合显微镜。a)标准直立显微镜指示(1)目镜,(2)物镜转台、左轮手枪或旋转鼻镜(用于固定多个物镜),(3)物镜、调焦旋钮(用于移动载物台)(4)粗调,(5)微调,(6)载物台(固定样品),(7)光源(灯或镜子),(8)光阑和聚光镜,(9)机械载物台。b)立体显微镜。c)倒置显微镜。  光学显微镜的类型  下面,我们将介绍一些当今可用的不同类型的光学显微镜技术,讨论它们的主要操作原理以及每种技术的优缺点。  亮视野显微镜  亮视野显微镜(Brightfield microscopy,BFM)是最简单的光学显微镜形式,从上方或下方照射样品,收集透射或反射的光以形成可以查看的图像。图像中的对比度和颜色是因为吸收和反射在样品区域内变化而形成的。BFM是第一种开发的光学显微镜,它使用相对简单的光学装置,使早期科学家能够研究传输中的微生物和细胞。今天,它对于相同的目的仍然非常有用,并且还广泛用于研究其他部分透明的样品,例如透射模式下的薄材料(如下图5),或反射模式下的微电子和其他小结构。图5:亮视野显微镜。左图:透射模式-在显微镜下看到的石墨(深灰色)和石墨烯(最浅灰色)薄片。在这里,图像上看到的亮度差异与石墨层的厚度成正比。右图:反射模式-SiO2表面上的石墨烯和石墨薄片,小的表面污染物也是可见的。  暗视野显微镜  暗视野显微镜是一种仅收集被样品散射的光的技术。这是通过添加阻挡照明光直接成像的孔来实现的,这样只能看到被样品散射的照明光。通过这种方式,暗场显微镜突出显示散射光的小结构(如下图6),并且对于揭示BFM中不可见的特征非常有用,而无需以任何方式修改样品。然而,由于在最终图像中看到的唯一光是被散射的光,因此暗场图像可能非常暗并且需要高照明功率,这可能会损坏样品。  图6:亮视野和暗视野成像。a)亮视野照明下的聚合物微结构。b)与a)中结构相同的暗视野图像,突出显示边缘散射和表面污染。c)与a)和b)相似的结构,被直径为100-300nm的纳米晶体覆盖。仅观察到纳米晶体散射的光,而背景光被强烈抑制。  相差显微镜  相差显微技术(Brightfield microscopy,PCM)是一种可视化由样品光路长度变化引起的光学相位变化的技术.这可以对在BFM中产生很少或没有对比度的透明样品进行成像,例如细胞(如下图7)。由于肉眼不易观察到光学相移,因此相差显微镜需要额外的光学组件,将样品引起的相移转换为最终图像中可见的亮度变化。这需要使用孔径和滤光片来操纵照明系统和成像系统。这些形状和选择性地相移来自样品的光(携带感兴趣的相位信息)和照明光,以便它们建设性地干涉眼睛或检测器以创建可见图像。图7:人类胚胎干细胞群落的相差显微图像。  微分干涉显微镜  与PCM类似,微分干涉显微镜(differential interference contrast microscopy,DICM)通过将由于样品光路长度变化引起的光学相位转换为可见对比度,从而使透明样品(例如活的未染色细胞)可视化。然而,与PCM相比,DICM可以实现更高分辨率的图像,并且减少了由PCM所需的光学器件引入的清晰度和图像伪影。在DICM ,照明光束被线性偏振器偏振,其偏振旋转,使其分裂成两个偏振光束,它们具有垂直偏振和小(通常低于1µm)间隔。穿过样品后,两束光束重新组合,从而相互干扰。这将创建一个对比度与图像成正比的图像差在两个偏振光束之间的光相位,因此命名为“差”干涉显微镜。DICM产生的图像出现与采样光束之间的位移方向相关的三维图像,这导致样品边缘具有亮区或暗区,具体取决于两者之间的光学相位差的符号(如下图8)。图8:微分干涉对比显微镜。左:DICM的原理图。右图:通过DICM成像的活体成年秀丽隐杆线虫(C.elegans)。  偏光显微镜  在偏振光显微镜中,样品用偏振光照射,光的检测也对偏振敏感。为了实现这一点,偏振器用于控制照明光偏振并将成像系统检测到的偏振限制为仅一种特定的偏振。通常,照明和检测偏振设置为垂直,以便强烈抑制不与样品相互作用的不需要的背景照明光。这种配置需要一个双折射样品,它引入了照明光偏振角的旋转,以便它可以被成像系统检测到,例如,观察晶体的双折射以及它们的厚度和折射率的变化(如下图9)。图9:偏光显微镜。橄榄石堆积物的显微照片,由具有不同双折射的晶体堆积而成。整个样品的厚度和折射率的变化会导致不同的颜色。  荧光显微镜  荧光显微镜用于对发出荧光的样品进行成像,也就是说,当用较短波长的光照射时,它们会发出长波长的光。示例包括固有荧光或已用荧光标记物标记的生物样品,以及单分子和其他纳米级荧光团。该技术采用了滤光片的组合,可阻挡短波长照明光,但让较长波长的样品荧光通过,因此最终图像仅显示样品的荧光部分(如下图10)。这允许从由许多其他非荧光颗粒组成的样品中挑出和可视化荧光颗粒或已被染料染色的感兴趣细胞的分布。同时,荧光显微镜还可以通过标记小于此限制的粒子来克服传统光学显微镜的分辨率限制。例如,可以用荧光标记标记病毒以显示其位置在生物样品的情况下,可以表达荧光蛋白,例如绿色荧光蛋白。结合各种新颖形式的样品照明,荧光显微镜的这一优势实现了“超分辨率”显微镜技术,打破了传统光学显微镜的分辨率限制。荧光显微镜的主要限制之一是光漂白,其中标记物或颗粒停止发出荧光,因为吸收照明光的过程最终会改变它们的结构,使它们不再发光。图10:荧光显微镜。左:工作原理-照明光由短通激发滤光片过滤,并由二向色镜反射到样品。来自样品的荧光通过二向色镜,并被发射滤光片额外过滤以去除图像中残留的激发光。右图:有机晶体中分子的荧光图像(晶体轮廓显示为黄色虚线)。由于来自其他分子和晶体材料的荧光,背景并不完全黑暗。  免疫荧光显微镜  免疫荧光显微镜是主要用于在微生物的细胞内的生物分子可视化的位置荧光显微镜的具体变化。在这里,用荧光标记物标记或固有荧光的抗体与感兴趣的生物分子结合,揭示它们的位置。(如下图11)图11:免疫荧光显微镜。肌动蛋白丝(紫色)、微管(黄色)和细胞核(绿色)的免疫荧光标记的两个间期细胞。  共聚焦显微镜  共聚焦显微镜是一种显微镜技术,它可以逐点成像来自样品的散射或荧光。不是一次对整个样品进行照明和成像,而是在样品区域上扫描源自点状光源的照明点,敏感检测器仅检测来自该点的光,从而产生2D图像。这种方法允许以高分辨率对弱信号样本进行成像,因为来自采样点之外的不需要的背景信号被有效抑制。在这里,所使用的波长和物镜在所有三个维度上都限制了成像光斑的大小。这允许通过将物镜移动到距样品不同的距离,在样品内的不同深度处制作2D图像。然后可以组合这些2D图像“切片”以创建样本的3D图像,这是所讨论的其他宽视场显微镜技术无法实现的,并且还允许以3D方式测量样品尺寸。这些优势的代价是无法一次性拍摄图像,而是必须逐点构建图像,这可能非常耗时并阻碍样本的实时成像(如下图12)。图12:单分子荧光的共聚焦荧光图像。小点对应于单个分子的荧光,而较大的点对应于分子簇。此处的荧光背景比简单的荧光显微镜图像弱得多,如亮点之间的暗区所见。  双光子显微镜  双光子显微镜(Two-photonmicroscopy,TPM)是荧光显微镜的一种变体,它使用双光子吸收来激发荧光,而不是单光子激发。在这里,通过吸收两个光子的组合来激发荧光,其能量大约是单个光子激发所需能量的一半。例如,在该方案中,通常由单个蓝色光子激发的荧光团可以被两个近红外光子激发。在TPM中,图像是逐点建立的,就像在共聚焦显微镜中一样,也就是说,双光子激发点在样品上扫描,样品荧光由灵敏的检测器检测。与传统荧光显微镜相比,激发和荧光能量的巨大差异导致了多重优势:首先,它允许使用更长的激发波长,在样品内散射较少,因此穿透更深,以允许在其表面下方对样品进行成像并创建3D样品图像。同时,由于激发能量低得多,光漂白大大减少,这对易碎样品很有用。激发点周围的荧光背景也大大减少,因为有效的双光子吸收仅发生在激发光束的焦点处,因此可以观察到来自样品小部分的荧光(如下图13)。  TPM的一个缺点是双光子吸收的概率远低于单光子吸收,因此需要高强度照明,如脉冲激光,才能达到实用的荧光信号强度。图13:双光子显微镜。花粉的薄光学切片,显示荧光主要来自外层。  光片显微镜  光片显微技术是荧光显微术的一种形式,其中样品被垂直于观察方向的薄“片”光照射,从而仅对样品的薄切片(通常为几微米)进行成像。通过在样品在光片中旋转的同时拍摄一系列图像,可以形成3D图像。这要求样品大部分是透明的,这就是为什么这种技术通常用于形成小型透明生物结构的3D图像,例如细胞、胚胎和生物体。(如下图14)图14:光片显微镜。左:工作原理。右:通过荧光成像用光片显微镜拍摄的小鼠大脑的荧光图像。  全内反射荧光显微镜  全内反射荧光(Totalinternal reflectionfluorescence microscopy ,TIRF)是一种荧光显微技术,可通过极薄(约100nm厚)的样品切片制作2D荧光图像。这是通过照明光的渐逝场激发样品的荧光来实现的,当它在两种不同折射率(n)的材料之间的边界处经历全内反射时就会发生这种情况。消逝场具有与照明光相同的波长,但与界面紧密结合。在TIRF显微镜中,激发光通常在载玻片(n=1.52)和样品分散的水介质(n=1.35)之间的界面处发生全内反射。渐逝场的强度随距离呈指数下降来自界面,这样在最终图像中只能观察到靠近界面的荧光团。这也导致来自切片外区域的荧光背景的强烈抑制,这允许拾取微弱的荧光信号,例如在定位单个分子时。这使得TIRF非常适用于观察参与细胞间相互作用的荧光蛋白(如下图15)的微弱信号,但也需要将样品分散在水性介质中,这可能会限制可以测量的样品类型。图15:TIRF图像显示培养的视网膜色素上皮细胞中的蛋白质荧光。每个像素对应67nm。  膨胀显微镜  膨胀显微镜背后的基本概念是增加通常需要高分辨率显微镜的样品尺寸,以便可以使用标准显微镜技术(尤其是荧光显微镜)对其进行成像。这适用于保存的标本,例如生物分子、细胞、细菌和组织切片,可以使用下图16中所示的化学过程在所有维度(各向同性)均匀扩展多达50倍。扩展样本可以隔离感兴趣的个别特征通常是隐藏的,可以使它们透明,从而可以对它们的内部进行成像。图16:膨胀显微镜的样品制备。细胞首先被染色,然后连接到聚合物凝胶基质上。然后细胞结构本身被溶解(消化),使染色的部分随着凝胶各向同性地膨胀,从而使染色的结构更详细地成像。  光学显微镜中的卷积  除了使光学系统适应特定用例之外,现代光学显微镜还利用了数字图像处理,例如图像去卷积。该技术通过补偿光学系统本身固有的模糊,可以提高空间分辨率以及光学显微镜拍摄图像的定位精度。这种模糊可以在校准步骤中测量,然后可以用于对图像进行去卷积,从而减少模糊。通过将高性能光学元件与先进的图像处理相结合,数字显微镜可以突破分辨率的极限,以更深入地观察微观世界。(如下图17)图17:图像解卷积。左:原始荧光图像。右:解卷积后的图像,显示细节增加。  光学显微镜与电子显微镜  光学显微术通常使用可见光谱中的光波长,由于瑞利准则,其空间分辨率固有地限制为所用波长的大约一半(最多约为200nm)。然而,即使使用具有高NA和高级图像处理的物镜,也无法克服这一基本限制。相反,观察较小的结构需要使用较短波长的电磁辐射。这是电子显微镜的基本原理,其中使用电子而不是可见光照亮样品。电子具有比可见光短得多的相关波长,因此可以实现高达10000000倍的放大倍数,甚至可以分辨单个原子。(如下图18)  图18:同心聚合物结构中纳米晶体放大15000倍的扫描电子显微镜图像,即使是细微的细节,例如基材的孔隙,也能分辨出来。  总结与结论  光学显微镜是一种强大的工具,可用于检查各种应用中的小样本。通过调整用于特定用例的照明和成像技术,可以获得高分辨率图像,从而深入了解样品中的微观结构和过程。文中,我们讨论了各种光学显微镜技术的特点、优势和劣势,这些技术在光线照射和收集方式上有所不同。显微镜种类优点技术限制典型应用亮视野显微镜结构相对简单,光学元件很少低对比度、完全透明的物体不能直接成像,可能需要染色对彩色或染色样品和部分透明材料进行成像暗视野显微镜显示小结构和表面粗糙度,允许对未染色样品进行成像所需的高照明功率会损坏样品,只能看到散射图像特征细胞内颗粒成像,表面检测相差显微镜实现透明样品的成像复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗跟踪细胞运动,成像幼虫微分干涉对比显微镜比PCM更高的分辨率复杂的光学设置,需要的高照明功率会损坏样品,通常图像较暗活的、未染色的细胞和纳米颗粒的高分辨率成像偏光显微镜来自样品非双折射区域的强背景抑制,允许测量样品厚度和双折射需要双折射样品成像胶原蛋白,揭示晶体中的晶界荧光显微镜允许挑出样品中的单个荧光团和特定的感兴趣区域,可以克服分辨率限制需要荧光样品和灵敏的检测器,光漂白会减弱信号成像细胞成分、单分子、蛋白质免疫荧光显微镜使用抗体靶向可视化特定的生物分子大量样品制备,需要荧光样品,光漂白识别和跟踪细胞和蛋白质共聚焦显微镜低背景信号,可以创建3D图像成像速度慢,需要复杂的光学系统3D细胞成像,荧光信号较弱的成像样品,表面分析双光子显微镜样品穿透深度、背景信号低、光漂白少成像速度慢,需要复杂的光学系统和大功率照明神经科学,深层组织成像光片显微镜图像仅样品的极薄切片,可通过旋转样品创建3D图像成像速度慢,需要复杂的光学系统细胞和生物体的3D成像全内反射荧光显微镜强大的背景抑制,极精细的垂直切片成像仅限于样品的薄区域,需要复杂的光学系统,样品需要在水介质中单分子成像,成像分子运输膨胀显微镜提高标准荧光显微镜的有效分辨率需要对样品进行化学处理,不适用于活体样品生物样品的高分辨率成像  参考:  1. Rochow TG, Tucker PA. A Brief History of Microscopy. In: Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics. Springer US 1994:1-21. doi:10.1007/978-1-4899-1513-9_1  2. Smith WJ. Modern Optical Engineering: The Design of Optical Systems.
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • ​直播预告|扫描电镜的原理及制样方法
    直播预告|扫描电镜的原理及制样方法【8月13日下午14:00直播】“扫描电镜的原理及制样方法”网络研讨会莱雷科技与善时仪器联合举办导师:曾凌飞—善时仪器市场部总监【技术背景介绍】 扫描电子显微镜的英文全称为Scanning Electron Microscope,简称扫描电镜或者SEM,是一种用于放大并观察物体表面结构的电子光学仪器。扫描电镜由镜筒、电子信号的收集和处理系统、电子信号的显示和记录系统、真空系统和电源系统等组成,具有放大倍数可调范围宽、图像分辨率高和景深大等特点。该产品结构设计简洁,高低压真空设计,可调试电压,为不同样品提供更合适的检测环境。 由于扫描电镜具有观察纳米材料、材料端口分析、直接观察原始表面等特点和功能,所以越来越多受到科研人员的重视,用途日益广泛。现已被广泛用于材料科学、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害鉴定、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等。 莱雷科技与善时仪器联合举办的“扫描电镜的技术及原理”网络研讨会将于8月13日下午14:00点开播。届时莱雷科技将邀请善时仪器技术中心总监在线与您分享扫描电镜的参数选择及制样方法等内容。此次网络会议为参会者提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。微信扫描下方二维码,立即加入观看!
  • 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)
    p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 【作者按】 /span /strong 看得更远、观察得更微小是人类探索宇宙的两个面向。人眼的理论分辨极限是50微米(教科书的观点是明视距离25cm处,可分辨100微米),要想观察得更微小就需要借助显微镜。 /p p style=" text-align: justify text-indent: 2em " 显微镜的组成:光源、透镜系统以及信号接收及处理系统。光源提供一个激发样品信号的激发源(可见光、电子束),透镜系统是对该激发源以及激发样品信息的过程进行操控,信号接收、处理系统主要是对样品被激发的信息进行接收、处理形成样品放大图像。电子显微镜还可进行区域的元素及晶体结构、取向分析。 /p p style=" text-align: justify text-indent: 2em " 显微镜依据光源和透镜的类型分为:光学显微镜和电子显微镜: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 光学显微镜是以可见光为光源,采用光学玻璃透镜系统,接收及信号处理系统为人眼或一些光学探头及配套的专用软件。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 电子显微镜基本组成:三极电子枪产生的高能电子束形成光源,采用电磁透镜系统对电子束进行操控(会聚、发散、放大、缩小),信号接收、处理系统采用的是荧光屏或各类探头及配套的专用软件。 /span span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " 显微镜的成像方式主要有两类: span style=" text-indent: 2em " 散射束(电子显微镜是平行束)成像和会聚束成像。 /span /p p style=" text-align: justify text-indent: 2em " 散射束(平行束)成像: /p p style=" text-align: justify text-indent: 2em " 散射束(平行束)成像是最早期的一种成像方式。绝大部分光学显微镜以及早期透射电镜都采用这种成像模式。上世纪70年代透射电镜增加了会聚束成像模式(STEM),使分辨率达到原子级。 /p p style=" text-align: justify text-indent: 2em " 散射束成像模式是将一束散射光(电子显微镜采用平行光)打在样品上产生含有样品特征的透射光或反射光(体视镜),由透镜系统对其进行会聚、放大、成像。 /p p style=" text-align: justify text-indent: 2em " 透射电镜的成像模式类似于幻灯机。 span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/2895ab28-cb3f-4a06-8b2a-522216f19fd6.jpg" title=" 扫描电镜放大倍数和分辨率背后的陷阱.jpg" alt=" 扫描电镜放大倍数和分辨率背后的陷阱.jpg" / strong span style=" text-align: justify text-indent: 2em " 透射电镜的成像模式,节选自章效峰《显微传》 /span /strong /p p style=" text-align: justify text-indent: 2em " 散射束成像模式的成像速度快(一次同步成像),有利于显微系统的原位动态观察,但分辨能力不如会聚束成像模式。因此目前在透射电镜超高分辨观察中,获取高分辨原子像常采用聚光镜球差校正的会聚束成像模式(STEM),高分辨原位操控及动态观察常采用物镜球差校正的散射束(平行光)成像方式。 /p p style=" text-align: justify text-indent: 2em " 会聚束成像: /p p style=" text-align: justify text-indent: 2em " 该模式主要在电子显微镜中应用,因此以电子显微镜为例。 /p p style=" text-align: justify text-indent: 2em " 会聚束成像是将电子束会聚成极细的电子探针。该探针由交变磁场(扫描线圈)拖动,在样品上来回扫描,激发样品各点信息,被专用探头接收、处理形成样品放大的图像。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 扫描电镜采用的正是会聚束成像模式。该模式具有较高的分辨能力,但是成像时间较长,容易形成热损伤。 /span /p p style=" text-align: justify text-indent: 2em " 下面就扫描电镜结构组成及工作原理、放大倍数、分辨率这三部分内容进行较为详细的探讨。 /p p style=" text-align: center text-indent: 0em " strong span style=" color: rgb(0, 176, 240) " 一、扫描电镜的结构及工作原理 /span /strong /p p style=" text-align: left text-indent: 2em " strong & nbsp 1.1扫描电镜的结构组成如下图: /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/64f532a3-5eb6-49c0-9d5b-c786929a5006.jpg" title=" 扫描电镜放大倍数和分辨率背后的陷阱2.png" alt=" 扫描电镜放大倍数和分辨率背后的陷阱2.png" / /p p style=" text-align: justify text-indent: 2em " strong 1.2结构及功能简介 /strong /p p style=" text-align: justify text-indent: 2em " 整机分为:镜筒部分以及电气部分 /p p style=" text-align: justify text-indent: 2em " 1.2.1镜筒部分: /p p style=" text-align: justify text-indent: 2em " (1)光源: /p p style=" text-align: justify text-indent: 2em " 三极电子枪:产生高能电子束。热发射的束斑直径小于50um,场发射束斑直径小于10nm。 /p p style=" text-align: justify text-indent: 2em " (2)透镜系统: /p p style=" text-align: justify text-indent: 2em " 聚光镜:会聚电子枪产生的电子束。 /p p style=" text-align: justify text-indent: 2em " 物镜:会聚电子束并将其会聚在样品表面。 /p p style=" text-align: justify text-indent: 2em " 扫描线圈:产生交变磁场拖动电子束在样品表面扫描 /p p style=" text-align: justify text-indent: 2em " 消像散线圈:消除因镜筒精度原因造成磁场不均匀而产生电子束强度的各向差异。将椭圆斑校成圆斑。 /p p style=" text-align: justify text-indent: 2em " 极靴:引导、改善磁流体。形成高强度、均匀、封闭的磁场。 /p p style=" text-align: justify text-indent: 2em " (3)真空系统:各类机械泵。给电镜提供工作所需的真空环境。 /p p style=" text-align: justify text-indent: 2em " 1.2.2电气部分: /p p style=" text-align: justify text-indent: 2em " (1)工作电源:对应镜筒各部件(电子枪、各类透镜及真空泵) /p p style=" text-align: justify text-indent: 2em " (2)信号接收及处理:探头、信号放大、信号处理、显示器 /p p style=" text-align: justify text-indent: 2em " (3)功能: span style=" text-indent: 2em " 给镜筒各个部件提供工作电源,接收、处理样品产生的特征信息。 /span /p p style=" text-align: justify text-indent: 2em " 1.3工作原理 /p p style=" text-align: justify text-indent: 2em " 三极电子枪产生高能电子束,经聚光镜系统会聚后,由物镜将其会聚于样品表面,形成电子探针。该电子探针将激发样品表面的各类信息。其中背散射电子、二次电子以及特征X射线是扫描电镜成像以及进行各种分析(元素分布及含量、晶体取向、应力等)的主要信号源。 /p p style=" text-align: justify text-indent: 2em " 这些样品信息由各类探头接收,经各种专门软件分析形成样品的形貌像、成分像并进行区域元素定性、半定量、特殊样品的区域定量分析,也可对晶体样品进行区域的结构、取向、应力等分析。 /p p style=" text-align: justify text-indent: 2em " 电子束固定不动,只可获得某点的信息,想获取样品整个表面信息就必须利用扫描线圈产生的交变磁场拖动电子束在样品表面来回扫描,将样品各点信息激发出来,形成样品的整体信息进行分析处理,完成扫描电镜分析的整个工作过程。 /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(0, 176, 240) " strong 二、扫描电镜的放大倍数 /strong /span /p p style=" text-align: justify text-indent: 2em " 放大倍数是扫描电镜的重要指标之一。 /p p style=" text-align: justify text-indent: 2em " 各种显微系统由于工作原理不同,计算放大倍数的方式也不同。但是相同点都是“原始图像的大小”除以“物体的大小”。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/22a9d01d-2c48-4410-8afe-cd274e4b21a2.jpg" title=" 扫描电镜放大倍数和分辨率背后的陷阱3.png" alt=" 扫描电镜放大倍数和分辨率背后的陷阱3.png" / /p p style=" text-align: justify text-indent: 2em " 扫描电镜放大倍数的调整方式是:图像尺寸保持不变,通过改变加载在镜筒扫描线圈上的锯齿波信号幅度来调整电子束在样品上的扫描范围,从而改变扫描电镜的放大倍数。 /p p style=" text-align: justify text-indent: 2em " 早期的扫描电镜图像尺寸约定俗成为5英寸相片的长: 即2.54x5=12.7cm。但是冷场电子枪(日本人专利)的出现,欧美电镜厂商开始将计算放大倍数的图像尺寸加大,出现了几种不同的放大倍数计算方式:图像放大、屏幕放大。 /p p style=" text-align: justify text-indent: 2em " 图像放大倍数(欧美厂家又称为“宝丽来放大”):采用12.7cm边长的图像尺寸来计算放大倍数。 /p p style=" text-align: justify text-indent: 2em " 屏幕放大倍数:采用成像的屏幕尺寸来计算放大倍数,这个值非常混乱,早期是30cm近来出现27cm等几种不同尺寸。 /p p style=" text-align: justify text-indent: 2em " 这使得同一个样品、同一个位置、同样的放大倍数出现不同大小的图像。想获得统一的结果必须进行转换,要转换就必须先确定图像属于那种放大模式。 /p p style=" text-align: justify text-indent: 2em " 确定图像放大模式的方式如下: /p p style=" text-align:center" span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/5855aa20-79f5-4adc-a7be-61a35a224364.jpg" title=" 扫描电镜放大倍数和分辨率背后的陷阱4.png" alt=" 扫描电镜放大倍数和分辨率背后的陷阱4.png" / /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 屏幕放大和图像放大的转换方式如下: /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 664px height: 199px " src=" https://img1.17img.cn/17img/images/201911/uepic/15c9ff05-ea62-44af-bb4b-f0c2ed83a43e.jpg" title=" 扫描电镜放大倍数和分辨率背后的陷阱5.png" alt=" 扫描电镜放大倍数和分辨率背后的陷阱5.png" width=" 664" height=" 199" border=" 0" vspace=" 0" / span style=" text-align: justify text-indent: 2em " & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " 左图图像放大,右图屏幕放大。从图像上看,同样的样品,左图7万倍的图像比右图15万倍的图像都大。两者的等效结果如何?首先要明确这是由那种模式等效到那种模式。 /p p style=" text-align: justify text-indent: 2em " 如果图像放大等效屏幕放大(300mm),则做如下计算: /p p style=" text-align: justify text-indent: 2em " 屏幕尺寸 ÷ 图像尺寸放大倍数,即300÷ 127× 7=16.5万倍。 /p p style=" text-align: justify text-indent: 2em " 结果就是图像放大7万倍等效于屏幕放大(300mm)的16.5万倍。 /p p style=" text-align: justify text-indent: 2em " & nbsp & nbsp 欧美厂家的特朗普式退群做法给我们正确分析扫描电镜的测试结果制造了麻烦。统一放大倍数的性质将方便我们将各不同厂家扫描电镜形貌图像对应起来。掌握正确的转换方式,才能正确读取扫描电镜的图像信息,避免由于放大倍数特性不一致引起的图像假象。 /p p style=" text-align: center text-indent: 0em " strong span style=" color: rgb(0, 176, 240) " 三、分辨率 /span /strong /p p style=" text-align: justify text-indent: 2em " 电镜分辨率定义为:仪器所能分辨的两点间最小距离。 /p p style=" text-align: justify text-indent: 2em " 一直以来,分辨率被认为是显微系统最关键的性能指标,没有之一。但是扫描电镜分辨率指标由于缺乏令人信服的标样来验证,所以它又是一个最不可靠的指标。各厂家可以在这个指标上随意的发挥(现在都写到0.6nm),因为我们没有标样来验证它的正确或不正确。 /p p style=" text-align: justify text-indent: 2em " 金颗粒标样一直都被认为是验证扫描电镜分辨率的不二选择,但是它符合标样的要求吗? /p p style=" text-align: justify text-indent: 2em " 标样必须满足的三要素: /p p style=" text-align: justify text-indent: 2em " (1)明确的细节标示。样品中要有被明确标示尺寸的细节,或者样品有极为规律的结构且标明尺寸(例如:光栅等)。 /p p style=" text-align: justify text-indent: 2em " (2)稳定的性能。样品必须稳定,不能今天这样,明天那样。 /p p style=" text-align: justify text-indent: 2em " (3)可溯源。标样都有可以被追溯的源头,并被权威机构所验证。 /p p style=" text-align: justify text-indent: 2em " 金颗粒标样是一条都不满足,如何成为标样呢? /p p style=" text-align: justify text-indent: 2em " 目前流传着一个计算分辨率的软件,被某些厂家所推崇。但我认为即便它的计算方法极其科学且被大家所认可(其实被质疑点很多),那也是针对图像灰度差来计算,这个灰度差是否表示该处存在样品的细节信息?这是无法给出。就如空中楼阁般,虽然构造很完美,但没有根基,所以问题多多。 /p p style=" text-align: justify text-indent: 2em " 接下来我们看看那些小于1nm的扫描电镜分辨率指标是否可靠。我们知道扫描电镜分辨率指的是:仪器所能分辨的样品最小细节,因此分辨率的影响因素应当归结到样品信号溢出范围及溢出量、样品仓环境和接收系统的能力。 /p p style=" text-align: justify text-indent: 2em " 即便只考虑样品信号溢出范围及溢出量。影响因素也由两部分组成:激发源、样品本身的性质。 /p p style=" text-align: justify text-indent: 2em " 激发源考量的是电子束面积、强度、能量、会聚角,这些归结为电子束的发射亮度【β& #39 =电子束流强度(I)/(电子束面积*会聚角)】和加速电压。 /p p style=" text-align: justify text-indent: 2em " 样品本身性质考量的是:形态(晶态、非晶态)、平均原子序数、密度等等。 /p p style=" text-align: justify text-indent: 2em " 如果按传统观点只考虑电子束面积,分辨率又是多少呢? /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 413px " src=" https://img1.17img.cn/17img/images/201911/uepic/b305b9a4-fb2c-4bb5-a396-e37c91d49dc9.jpg" title=" 扫描电镜放大倍数和分辨率背后的陷阱6.jpg" alt=" 扫描电镜放大倍数和分辨率背后的陷阱6.jpg" width=" 500" height=" 413" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 上图是一张经典的束流和束斑对照图。我们可以看到扫描电镜的电子束最小束斑直径是:冷场电子枪(产生最小电子束斑),在加速电压30KV、束流1pA时电子束直径为1.2nm左右。按照传统观念,扫描电镜的分辨率不可能优于1.2nm,考虑二次电子信号溢出呈高斯分布,那么分辨率最多能到1nm左右。低于1nm基本无法想象。& nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 现实测试中我所观察到的最好分辨率是十二面体ZIF-8的微孔,1.5nm左右。该细节被BET(氮气吸附脱附等温曲线)法证明存在。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 664px height: 254px " src=" https://img1.17img.cn/17img/images/201911/uepic/bac223a1-e6f5-4850-984c-916f4769e899.jpg" title=" 扫描电镜放大倍数和分辨率背后的陷阱7.png" alt=" 扫描电镜放大倍数和分辨率背后的陷阱7.png" width=" 664" height=" 254" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 图中可以看到在十二面体上有许多小孔按照红箭头所示方向排列,用仪器自带测量软件测量孔的直径大致在1.5nm以下。 /p p style=" text-align: justify text-indent: 2em " 上面分析了,扫描电镜分辨率指标是一个无法被验证的不可靠指标,那么那个指标能充分反映扫描电镜分辨力? /p p style=" text-align: center text-indent: 0em " strong 电子枪的本征亮度,量纲为:A/cm2.sr.kv /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/12e0db81-8f74-4a12-a6d3-3775e64fc858.jpg" title=" 扫描电镜放大倍数和分辨率背后的陷阱8.jpg" alt=" 扫描电镜放大倍数和分辨率背后的陷阱8.jpg" / /p p style=" text-align: center text-indent: 0em " (注:图片截自国外资料,图中& quot 工作真空& quot 后的单位精确地说应为mbar,10 sup -10 /sup mbar=10 sup -8 /sup Pa) /p p style=" text-align: justify text-indent: 2em " 电子枪本征亮度反映的是电子源品质,它随电子枪的构成而固定。各类电子枪都有其明确的被检测值,因此其量化也是十分明确的。 /p p style=" text-align: justify text-indent: 2em " 本征亮度大有利于我们充分选择测试条件获得更多的样品信息。图像细节更丰富,分辨能力也更强大。当然任何因素的改变都将符合辩证法的规律,其影响是正、负两个方面。本征亮度的负面影响主要来自样品热损伤,但也有一个度。冷场电子枪的热损伤是次要因素,它带来的高分辨结果却是主要因素。 /p p style=" text-align: justify text-indent: 2em " 我对扫描电镜的认识及所形成的理论,是以我对实际操作中的经验总结为基础。与很多传统的理念有背离,不足之处希望大家能指出探讨。百花齐放、百家争鸣将帮助我们更全面的认识事物。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 参考书籍: /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日. /span span style=" text-indent: 2em " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " 《微分析物理及其应用》 丁泽军等& nbsp & nbsp & nbsp 2009年1月. span style=" text-indent: 2em " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " 《自然辩证法》& nbsp 恩格斯& nbsp 于光远等译 1984年10月. span style=" text-indent: 2em " 人民出版社& nbsp /span /p p style=" text-align: justify text-indent: 2em " 《显微传》& nbsp 章效峰 2015年10月 span style=" text-indent: 2em " .清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em color: rgb(0, 176, 240) " 作者简介: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 0, 0) " img style=" max-width: 100% max-height: 100% float: left width: 85px height: 130px " src=" https://img1.17img.cn/17img/images/201911/uepic/9735aac7-cc11-41a0-b012-437faf5b20b5.jpg" title=" 林中清.jpg" alt=" 林中清.jpg" width=" 85" height=" 130" border=" 0" vspace=" 0" / 林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 点击【 /strong /span a href=" https://www.instrument.com.cn/ykt/video/294_0.html" target=" _self" style=" text-decoration: underline color: rgb(255, 0, 0) " span style=" color: rgb(255, 0, 0) " strong 仪课通讲堂 /strong /span /a span style=" color: rgb(0, 176, 240) " strong 】学习更多扫描电镜系列课程 /strong /span /p
  • 中国科大实现了一种基于谐波辅助的光学相位放大测量
    中国科学技术大学郭光灿院士团队实现了一种基于谐波辅助的光学相位放大测量技术。该团队史保森教授、周志远副教授等人提出了一种基于谐波辅助实现光学相位放大的基本原理,并且利用级联三波混频过程初步实现了干涉仪中相对相位的4倍放大。相关研究成果以“Harmonics-assisted optical phase amplifier”为题于2022年10月27日在线发表在著名期刊《光科学与应用》上[Light: Sci. & Appl. 11, 312 (2022)]。   干涉是一种基本的光学现象,在近代物理的发展过程中发挥着举足轻重轻重的作用。无论是“以太”的验证、量子力学的构建以及引力波的探测都离不开干涉原理和技术。相位是波动光学和量子光学中一个非常重要的参数,干涉仪中光程差变化与相对相位变化一一对应。在光学精密测量中,几乎所有物理量(如位置、角度、电磁场等)的测量都可以转化为对干涉仪中相对位相变化(或者光程差变化)的测量,因此如何精确测量干涉仪的相位变化是光学科学工作者孜孜以求的目标。一个朴素的想法是通过干涉仪中相对相位放大来提升相位测量分辨率。在量子光学中,通过在干涉仪中注入多光子NOON态(粒子数与路径纠缠态)可以实现相对相位的N倍放大,然而多光子NOON态非常难制备(目前最大的N在10左右),并且随着光子数的增加测量累积时间指数上升,无法实时测量。因此,寻找新的光学相位放大原理是一个非常重要的科学问题。   史保森教授、周志远副教授研究组长期从事基于非线性效应的光学干涉现象研究。 在2014年,研究组在轨道角动量叠加态的非线性倍频研究中发现不仅轨道角动量拓扑荷加倍,而且输入轨道角动量叠加态的相对相位也会加倍[Opt. Express 22, 20298(2014)]。受此工作的启发,针对以下问题开展研究:在非线性过程中是否可以实现基于其它自由度干涉的相位加倍?这种加倍过程是否可以进行级联?研究结果对这两个问题的回答是肯定的。以三波混频中的倍频为例,在微观过程中,湮灭两个基频光子会产生一个倍频光子,基频光子所携带的相位信息被相干地传递到倍频光子中,因而导致了相位的加倍放大。将该过程进行级联和循环,原则上可以实现任意整数倍的相位放大。   基于上述原理,实验上将1560nm的脉冲激光输入一个偏振干涉仪,两个偏振模式的相位通过一个压电陶瓷控制,其输出端经过了两次偏振无关的倍频过程:第一次1560nm到780nm偏振无关的倍频通过在Sagnac干涉仪中放置一块PPKTP晶体实现,第二次780nm到390nm偏振无关倍频则通过两块正交的BBO晶体实现。通过在压电陶瓷上加载相同的驱动电压信号,我们观测到780nm和390nm光的干涉周期分别为1560nm光干涉的2倍和4倍,验证了我们提出的相位放大原理的可行性(如图1所示)。为了证明该放大原理不依赖于观测光的波长,团队设计了倍频与差频的级联过程(如图2所示),实验观测到在相同的激光波长下干涉曲线同样具有加倍的现象,这就为后续通过循环过程实现更高倍数的相位放大奠定基础。图1.级联四倍放大实验原理图。(a)相位放大实验装置,(b)相位放大实验结果,a-c分别对应基频光、二次谐波和四次谐波的干涉测量结果。图2.频率无关的相位放大实验原理图。(a)频率无关的相位放大实验装置,(b)实验结果,红色曲线为干涉仪直接 出射的基频光干涉结果,蓝色曲线为经过相位放大但光学频率没有改变的干涉结果。   该工作揭示了一种新型的光学相位放大机理并且在实验上得到了初步验证。下一步可利用强度更高的激光以及利用级联和循环结构实现更高放大倍数的演示,与此同时还将探索基于该放大原理在光学精密测量中的相关应用。该工作的共同第一作者是博士生李武振和已毕业的杨琛博士,共同通信作者是周志远副教授和史保森教授。   这项工作得到国家基金委、科技部以及中国科学技术大学的支持。
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 纳米技术携拉曼 非法添加“名侦探”——《食品安全导刊》访谈
    (原发布日期:2014/05/08) —— 访欧普图斯光纳科技刘春伟总经理 近期,《食品安全导刊》的记者对欧普图斯(苏州)光学纳米科技有限公司的刘春伟总经理进行了采访。采访过程中刘总语言生动形象,用放大镜、显微镜来解释纳米技术的特点,用声音的辨别解释复杂物质拉曼光谱特性,很多冷冰冰的科学原理有了鲜活的日常参照。采访过后,记者深有感触的认为“欧普图斯得到市场认可的原因是:科学溶于生活、科技植根民众、产品结合服务、研究结合需求”。 详细报道,请查看“食安中国网”的相关链接: http://www.cnfoodsafety.com/2014/05/51656.html
  • 【康宁线上讲座第四期】微反应技术放大、安全及投资效益
    康宁反应器技术已成功举办了六场线上会议,场场爆满。微反应技术在中国医药化工界已成热门话题。还记得吗?2月14日,化学加微信会议2月18日,化工邦千聊直播3月03日,康宁平台微信会议3月17日,康宁直播平台开播3月24日,惠和化德马兵做客康宁直播间3月26日,国药励展联合康宁畅谈微反应如何深入了解微反应技术,用微反应器开发好的工艺,顺利实施工业化生产,为客户带来效益是企业最为关注的问题。康宁的系列报告将给出您想要的答案。今天发布的是康宁反应器技术平台上的第四期直播会议。康宁以市场需求为导向,客户利益为目标。在4月07日第四期的报告中,康宁反应器技术中国区总工欧阳先生将向您详细介绍微反应技术工业化中大家关注的的工艺放大、本质安全及投资及经济效益等问题。机会难得,不要错过!?主办单位:康宁反应器技术有限公司会议时间:4月07日20:00-21:30会议形式:网络微信直播会议 会议免费,会议将以微信群或直播的形式进行。早日报名入群,限额300名,先到先得。报名方式:关注“康宁反应器技术”微信公众号打开3月30日发布的文章【康宁线上讲座第四期】微反应技术放大、安全及投资效益长按文中二维码或点击阅读原文,即可报名 嘉宾介绍欧阳秋月,毕业于天津大学精细化工专业。曾在道康宁公司担任多年的生产经理和总工,在BP 公司和中国石化担任过工程师和营运经理等职务。欧阳秋月,现任美国康宁公司反应器技术有限公司(中国区域)总工,负责反应器配套设备的选型和反应器工业化生产的应用。欧阳先生致力于化工行业20余年,参与和领导多套化工装置的设计,安装,调试和运行。 报告主题介绍《微反应技术放大、安全及投资效益》本次会议的主要议题:传统化工工艺放大的原理和存在的问题康宁微通道反应器放大原理微反应器的本质安全是指什么?如何验证微反应器的安全性?微反应器工业化生产的案例分享微反应器工业化生产经济效益分析 如何顺利成功实现微反应器工业化生产?关注康宁反应器技术微信平台,了解更多会议及案例分享!
  • 关于显微镜你所不知道的故事
    生物课上,一台显微镜、一片菜叶子加上一只青蛙或者鲫鱼,一场生物显微解剖课开场了。各自不免兴奋,显微镜是多么神奇的一个东西!它让我们能够看到流淌江水中的各种微生物,能够知晓细胞内形形色色的细胞器,能够区分出猩猩有24对染色体而人却只有23对。   这都要归功于16世纪一个叫Zacharias Jansen的荷兰人,我们不清楚他如何想到将两个镜片叠在一起并放在管子的两头,但是这个奇怪想法催生出的工具,却能够在压缩最小的时候放大3倍,拉到最长时可以放大达到10倍。他在孩童时期的嘻哈把玩,将我们带进了令人瞠目结舌的微观世界。   ▲玩出来的显微镜   很奇怪,做出显微镜的第一人不是生物学家,而是一个观星的人&mdash &mdash 现代物理学与天文学之父伽利略。1609年,在听说了这个孩子的发明后,他不仅研究明白了这些镜片在一起能够放大很多倍的原理,还制造出了一台更为精密的工具,并将其命名为occhiolino(也被称为little eye)。从此,现代意义上的显微镜走进人们的视野。   然而,显微镜真正发展成为一个学科,成为窥视微观世界的独门兵器,还是要等到17世纪六、七十年代。列文虎克,这个出生于1632年的荷兰小伙子,在稚嫩的年纪就不得不面对父亲的去世,被迫来到阿姆斯特丹的一家干货商店当学徒,在那里他接触到放大镜,产生极大的兴趣。闲暇之余,他便耐心地磨起了自己的镜片。或许是太无聊,或许是太好玩,他一生中竟然磨制了400多个透镜,放大倍数竟然可以达到300倍!利用自制的显微镜,列文虎克为我们展现了一个全新的微观世界,他第一个发现并描绘了细菌,展现了一滴水中的世界,准确地描述了红细胞,证明了马尔皮基推测的毛细血管层是真实存在的,他成为了微生物学的奠基人。   与列文虎克同期的,还有一个叫做罗伯特&bull 胡克,被称为&ldquo 伦敦的莱奥纳多&bull 达&bull 芬奇&rdquo 的英国博物学家。你说对了,&ldquo 胡克定律&rdquo 就是以他名字命名的。他不仅提出了弹性材料的胡克定律,万有引力的平方反比关系,设计了真空泵,还利用自制的显微镜发现了软木中的&ldquo 小室&rdquo ,并将&ldquo cell&rdquo 一词深深地刻进了现代人的脑海中。从此,显微镜的发展进入了快车道,出现了形式多样、拥有不同功能的各色显微镜。   ▲光学显微镜   灯泡的发明让那些狂热的显微镜粉丝们欣喜不已,终于可以在晚上也可以使用高倍镜片来触摸微观世界了。但是当他们将光源经聚光镜投射在被检样本上后,却发现在视野中除了有那些小东西,竟然还发现了灯丝的影像。直到1893年,一个叫柯勒的年轻人,发明了二次成像技术,成功地将热焦点落在了被检样本之外,不仅光线均匀了,而且也不会损伤样本。这种被称为柯勒照明的光源系统,成为了现代光学显微镜的关键部件。   显微镜的变革,也使细胞学迎来了最为辉煌的发展时期。细胞器、染色体等细胞染色方法的出现,使人们对于细胞这一生命最基本单位有了相当深入的认识。但是,染色毕竟影响甚至杀死了细胞,跟一堆死细胞玩真是太没意思了!直到20世纪二、三十年代,弗里茨&bull 泽尔尼克在研究衍射光栅的时候,发明了相差显微技术,这一情况才被彻底改变。   再后来,出现了各种形形色色的显微镜,按照设计方式的不同,有正立的、倒立的,还有解剖显微镜,按照目镜的个数,有单目镜的、双目镜的,还有直接数码相机采集图像的,有使用偏振光作光源的,还有不将光直接射入样本的暗视野显微镜,还有选定特定波长的光波照射样本,以产生荧光的荧光显微镜。   ▲瓶颈所在   十八世纪,光学显微镜的放大倍数已经可以达到1 000倍,直到现在人们也只能将其提高到1 600倍左右这个极限了。不是因为技术不够,而是因为显微镜的最大分辨率受到光源波长的限制。   光在传播途径中,如果碰到的障碍物或者小孔的尺寸远大于光的波长时,就会被反射回去或者穿透过去,可以看作是沿直线传播。但是当物体尺寸与光波差不多甚至还要小的时候,光波就会发生衍射现象并绕过去。不论我们怎样磨镜片,或者使用油镜来提高清晰度,显微镜的分辨率最多也只能达到光波长的一半。而我们肉眼通常能感知的可见光,波长范围在0.39&mu m ~0.76&mu m,即便使用0.39&mu m左右的紫外光,理想状况下,也就能达到0.2&mu m的分辨率。所以,要想提高分辨率,只能改变光源,并且改用仪器来探测放大的图像。   ▲新时代的骄子   当人们意识到用光学显微镜看不到原子般细微的物质,那么就会想法进一步提高显微镜的分辨率,别的办法行不通,那就只能寻找比光波波长还短的光源。还有哪些波的波长比光波还短?当然是电子。注意,是电子,不是家里电线中220 V的电&hellip &hellip   1924年,德布罗意提出了波粒二象性的假说,根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。接着汉斯&bull 布什又开创了电磁透镜的理论。这些使人们产生了制作显微镜的新想法:为什么不用具有波动性的电子做&ldquo 光源&rdquo ,再用电磁透镜来放大呢?于是,1932年德国工程师恩斯特&bull 鲁斯卡和马克斯&bull 克诺尔制造出了第一台透视电子显微镜,这是近代电子显微镜的先导,鲁斯卡也因此获得了1986年度的诺贝尔物理奖。   电子显微镜有着与光学显微镜相似的成像原理,它的神奇之处在于用电子束代替光源,而电磁场也化身成了透镜:高速的电子束在真空通道中穿越聚光镜再透过样品,带着样品内部的结构信息投射在荧光屏板上,最终转化成可见光影像。另外,由于电子束的穿透力很弱,用于电子显微镜的标本,需要用超薄切片机制成厚50纳米左右的超薄切片,稍微厚一点,电子就可能做无用功。如果给飞奔的电子再来一马鞭,电子显微镜的放大倍数最高可达近百万倍,分辨率可以达到纳米级(10-9 m)。   用电子束代替光看起来已经是一个反常规的奇妙主意,但让人想不到的还在后面。1983年,IBM公司苏黎世实验室的两位科学家格尔德&bull 宾宁和海因里希&bull 罗雷尔,发明了扫描隧道显微镜,这是一种利用量子理论中的隧道效应探测物质表面结构的仪器。这种显微镜比电子显微镜更激进,它的出现完全抛开了传统显微镜的概念。   最神奇的是,扫描隧道显微镜没有镜头!没有镜头也敢叫&ldquo 显微镜&rdquo ?没错,这不是山寨的时候出了问题,它原原本本就是这么设计的。扫描隧道显微镜依靠&ldquo 隧道效应&rdquo 进行工作,如同一根唱针扫过一张唱片。一根有着原子般大小的探针慢慢通过被分析的物体,当探针距离物体表面很近时(大约在纳米级的距离),电子会穿过物体与探针之间的空隙,形成一股微弱的电流。如果探针与物体的距离发生变化,这股电流也会相应改变,通过测量电流我们就能知道物体表面的形状。所以,当电流经过一个原子,便能极其细致地描绘出它的轮廓,通过绘出电流量的波动,我们就可以得到单个原子的美丽图片。   电子显微镜的出现,&ldquo 神马&rdquo 细菌、病毒、DNA、蛋白质大分子、原子核、电子云啥的,都得规规矩矩老实听话,要不,来探针下现个原形?   ▲未知的微观世界   对人来说,安全电压是36 V,可是对于电子显微镜下的观测样品,其接收到的辐射剂量等同于10万吨当量的氢弹在30米远处爆炸的辐射量!当生物标本暴露于电子束中时,细胞结构和化学键将迅速崩溃,所以电子显微镜虽然精妙却无法用于活细胞的观察。   麻省理工大学Mehmet教授的研究小组提出,通过使用量子力学的测量技术可以让电子束被约束起来,在稍远的距离感应被观察的物体,一次扫描样品的一个像素,并将这些像素组合起来拼出整个样品的图像,从而避免损坏实验样品。倘若研究成功,它可以使研究人员看到分子在活体细胞内的活动,比如酶在活细胞中的功能或是DNA的复制过程,用以揭示生命和物质的基本问题。   看电影,你一定希望看到3D的画面。同样的,长期的2D显微镜成像,也让人们感到审美疲劳,于是3D图像技术如雨后春笋般发展起来。共聚焦显微镜已经能够通过移动透镜系统对一个半透明的物体进行三维扫描,通过计算机系统的辅助,对实验材料从外观到内在、从静态到动态、从形态到功能进行观察。   同时,随着数码摄影技术、信息技术和自动化技术的革新,显微镜的外观、舒适性、自动化程度以及方便性都在提高。例如近几年的大屏幕倒置显微镜,直接通过液晶显示器来观察,研究细胞结构就像在电脑上看电影,大大减轻了显微镜观察时的疲劳。
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 使用XRF鉴别黄金珠宝,安全开启“黄金”时代
    当你在珠宝市场发现了一些非常喜欢的珠宝首饰,你如何能确定这些珠宝是使用真金加工的?如果有人告诉你一副耳环是18k金的,你会选择相信吗?如果你拥有一台X射线荧光(XRF)设备,上述的问题都会迎刃而解,它能够帮你找到货真价实的宝贝!随着黄金价格的飙升,假冒黄金珠宝已经成为贵金属及珠宝行业中的一个不容忽视的问题。这些假货可能看起来、摸起来都像真货,如果不使用适当的工具进行检测,要识别假冒黄金不亚于一项艰巨的挑战。鉴别黄金珠宝的常用手段黄金珠宝可以用不同的方法进行分析和鉴别,但有些方法会损坏(甚至毁掉)它们。1、肉眼/放大镜有经验的珠宝商可以使用放大镜来鉴别一些珠宝品质和真伪,但是不能确保所有的鉴别都十分准确。2、重量/密度测量黄金是一种密度很高的金属。这个测试的原理是,把黄金珠宝放在水中,测量它能排出的液体量,然后就能确定它是否是纯金。然而,在一些合法珠宝中,黄金经常掺杂其他金属,因此这种测试不可靠。3、标记黄金珠宝有时会有识别标记,表明其纯度,如10K或14K,但这些标记可能是伪造的。4、硝酸把黄金珠宝在测试板上划痕,再把硝酸涂在标记上,看它是否会溶解。根据酸的浓度,可以测定金的纯度。然而,大多数人不希望损坏他们的珠宝或贵重物品。5、X射线荧光(XRF)一种完全无损的方法,X射线荧光分析使珠宝完好无损。便携式或台式分析仪将X射线发送到珠宝上,激发原子产生荧光,荧光被分析仪的检测器采集而确定珠宝材料的化学成分。为什么选择XRF来鉴别黄金珠宝?XRF可以无损地分析金、银和铂族金属,以及非贵金属合金金属、污染物和镀金。XRF甚至可以用来识别某些假宝石,如立方化锆、钛矿和含铅玻璃。核实珠宝的材料成分可以避免欺诈,鉴别可能有危险的物品。例如,一些材料,比如镍,会引起某些人的过敏反应。戴在身上或戴在体内(如耳环)的珠宝中如果含有某些有害物质也是极其危险的。这里小编为大家介绍两个使用奥林巴斯XRF来鉴别珠宝的实例。例1:手镯上的一些“金”叶子“金”叶子XRF检测结果元素种类%+/- 3σ金(Au)0.5630.052锌(Zn)35.650.14锇(Os)0.1930.056镍(Ni)0.1040.007铜(Cu)63.490.14结论:使用Vanta XRF分析仪分析这些“金”叶子,结果显示金(Au)含量很低,表明叶片实际上是镀金的。手镯实际上是一种镀有薄金的铜锌合金。例2:纯银耳环“纯银”耳环(宝石周围的金属)XRF检测结果元素种类%+/- 3σ锌(Zn)0.330.17铜(Cu)9.240.80镉(Cd)7.730.73银(Ag)82.71.0 “纯银”耳环柱XRF检测结果元素种类%+/- 3σ锌(Zn)4.000.52铁(Fe)1.140.53铜(Cu)0.220.16镉(Cd)20.11.1银(Ag)74.61.2结论:案例2是一个“纯银”耳环。它们被标记为925,意思是它们应该含有92.5%的银(Ag)。使用Vanta XRF分析仪来识别宝石周围的金属。结果发现:金属中只有82.7%的银,并且含有7%的镉。镉是一种剧毒物质,不应该出现在耳环中。当进一步分析佩戴在耳垂内的耳环柱时,结果显示镉含量竟然为20%!这是非常危险的,因为一些监管机构建议将镉含量限制在0.01%或更低!珠宝鉴别好帮手——XRF分析仪从上述案例中可以看出,XRF是珠宝鉴别的好帮手。奥林巴斯提供两种XRF分析设备帮助客户识别假冒珠宝--Vanta手持式XRF分析仪和便携式台式GoldXpert XRF分析仪。Vanta 手持式XRF分析仪正置于工作台上检测样品GoldXpert XRF分析仪XRF分析仪也可用于其他贵金属行业的应用,包括:现场分析金克拉百分比汽车催化剂回收金条分析XRF是贵金属纯度和细度的化学分析和测定方法,是一种广泛应用、被证明和接受的方法。XRF分析是一种多元素测试的替代方法,比火焰测试和化学测试更快、更便宜。奥林巴斯XRF分析仪同时具备易用性和便携性,可以在现场快速得到检测结果,提高客户的信心和确保经销商的可靠性。
  • 中国科大彭新华教授团队实现新型自旋量子放大技术
    中国科学技术大学中国科学院微观磁共振重点实验室彭新华教授研究组在自旋量子精密测量领域取得重要进展,首次提出和验证了Floquet自旋量子放大技术,该技术克服了以往只在单个频率处量子放大的局限性,实现了多频段极弱磁场信号的量子放大,灵敏度达到了飞特斯拉水平。相关研究成果于6月9日以“Floquet Spin Amplification”为题在线发表于著名国际学术期刊《Physical Review Letters》上[Phys. Rev. Lett. 128, 233201 (2022)],并被选为“编辑推荐(Editors’Suggestion)”文章。现代自然科学和物质文明是伴随着测量精度的不断提升而发展的。随着量子力学基础研究和科学技术的发展,通过原子、分子、自旋等物理系统可以实现微弱信号的量子增强放大。相比于基于经典电路的传统放大技术,量子增强放大受限于更低的量子噪声且具有更高的放大增益,为提升测量精度提供了强有力的研究手段,因此受到大家的广泛关注和研究。目前,量子放大技术已经在诸多测量过程发挥不可替代的作用,催生出许多革命性成果,例如微波激射器、激光器、原子钟,甚至宇宙微波背景辐射的首次发现等,诺贝尔物理学奖也曾多次授予相关领域。然而目前对量子放大精密测量技术的探索仍然有限,实现信号放大主要依赖于量子系统固有的离散能级跃,由于可调谐性的限制,量子系统固有离散跃迁频率往往无法满足放大需要的工作频率,因此限制了量子放大器的性能,如工作带宽、频率和增益等。如果能够克服以上困难,量子放大技术的性能将可以得到很大改善,对探测极弱电磁波和奇异粒子等基础物理和实际应用具有重要意义。成果示意图:(a)Floquet能级;(b)Flqouet量子自旋放大器原理图;(c)磁探测灵敏度。针对以上难题,本文研究人员提出了Floquet自旋量子放大技术,成功克服了以往探测频率范围小等限制,实现了对多个频率的极弱磁场放大。这项技术得益于该组之前提出的“自旋放大技术”[Nat.Phys. 17, 1402 (2021)]和“Floquet调制技术”[Sci. Adv. 7(8), eabe0719 (2021)],将二者有机结合,从而将量子放大技术推广到Floquet自旋系统:利用Floquet调制技术调控自旋的能级与量子态,将固有的二能级系统(如129Xe核自旋)修饰为周期性驱动Floquet系统,从而具有很多独特的性质,使得系统形成了一系列等能量间距分布的Floquet能级结构,在这些能级之间可以发生共振跃迁,因此有效拓广了磁场放大的频率范围。通过理论计算和实验研究,首次展示了Floquet系统可以实现多个频率待测磁场2个数量级的同时量子放大,测量灵敏度达到了飞特斯拉级级别。该工作首次将量子放大技术扩展到Floquet自旋系统,有望进一步推广到其他量子放大器,实现全新的一类量子放大器——“Floquet量子放大器”。彭新华研究组长期瞄准量子精密测量领域,利用量子精密测量技术来解决世界前沿科学问题。包括于2018年自主研发出超灵敏原子磁力计,并且利用该技术实现了无需磁场的新型核磁共振技术——“零磁场核磁共振”[Sci. Adv. 4(6), eaar6327 (2018)];于2019年至2020年发展新型原子磁力仪技术[Adv. Quantum Technol. 3, 2000078 (2020),Phys. Rev.Applied 11, 024005 (2019)],达到了国际领先水平的磁场探测灵敏度;通过进一步研究,于2021年实现了新型的自旋微波激射器,在低频段创造了国际最佳的磁探测灵敏度[Sci. Adv. 7(8), eabe0719 (2021)]。之后,该研究组将已发展的平台型量子精密测量技术用于寻找超越标准模型的新粒子,取得了一系列对推动学科领域发展有实质性贡献的研究成果。包括于2021年利用新型量子自旋放大器搜寻暗物质候选粒子,首次突破国际公认最强的宇宙天文学界限[Nat.Phys. 17, 1402 (2021)],以及实现了对一类超越标准模型的新相互作用的超灵敏检验,实验界限比先前的国际最好水平提升至少2个数量级[Sci. Adv. 7, eabi9535 (2021)]。中科院微观磁共振重点实验室江敏副研究员、博士研究生秦毓舒和王鑫为该文共同第一作者,彭新华教授为该文通讯作者。该研究得到了科技部、国家自然科学基金委和安徽省的资助。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.233201量子自旋放大技术论文链接:https://www.nature.com/articles/s41567-021-01392-z
  • 大规模设备更新:中等职业学校现代林业技术专业仪器设备装备规范
    2024年,科学仪器行业迎来大规模设备更新的“泼天富贵”。  3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》,明确到2027年,工业、农业、教育、医疗等领域设备投资规模较2023年增长25%以上。  5月25日,国家发改委、教育部联合印发《教育领域重大设备更新实施方案》。支持职业院校(含技工院校)更新符合专业教学要求及行业标准,或职业院校专业实训教学条件建设标准(职业学校专业仪器设备装备规范)的专业实训教学设备。  以下为仪器信息网整理中等职业学校现代林业技术专业仪器设备装备规范:表 2 专业技能实训仪器设备装备要求实训教学场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行 标准号备注合格示范林木种苗培育实训室1.掌握林业 主要种实调 制技能2.掌握种子 品质检验技 能3.掌握各类 种子的贮藏 4.掌握种子 检验仪器和 贮藏设备的 使用方法1种子风选 净度仪1.功率:≤160 W 2.噪声:≤60 dB台48JB/T 20052 2电子自动 数粒仪1.计数精度: ±4 粒/1000 粒 2.计数速度: ≥500 粒/3 min 3.计数容量:1~9999 粒4.用于查数种子粒数台883电子天平1.检定分度值:0.01 g 2.最大称量:500 g3.用于称量种子质量台816GB/T 264971.检定分度值:0.0001 g 2.最大称量:200 g3.用于精确称量种子质量台8164台式电热恒温 鼓风干燥箱1.控温范围:10 ℃~220 ℃2.温度波动性: ± 1 ℃ 3.控温精度: ± 1 ℃4.定时范围:1 min ~9999 min 5.用于对种子进行烘干台48GB/T 304355林木种子培养 箱1.容积: ≥32 L2.控温范围:5℃~65 ℃ 3.温度波动性: ± 1 ℃台24LY/T 1152 6人工 气候箱1.控温范围:0 ℃~50 ℃ 2.控湿范围:50%~95% RH 3.加热功率:500 W4.提供种子发芽所需的环境台247水分测定仪1.含水率精度: ±0.1% 2.称量精度: ±5 mg3.称量量程: ≥50 g4.用于测定种子含水量台488种子储藏柜1.控温范围:0 ℃~10 ℃2.控温精度: ± 1 ℃3.控湿范围:≤60% RH 4.控湿精度: ±5% RH台21.控温范围:-15 ℃~15 ℃2.控温精度: ±0.5 ℃ 3.控湿范围:≤60% RH 4.控湿精度: ±5% RH台-49冰箱1.容积: ≥180 L,以冷藏为主 2.冷藏温度:4 ℃3.冷冻温度:-18 ℃台22CAS 169 表 2 专业技能实训仪器设备装备要求(续)实训教学场所实训教学 目标仪 器 设 备序号名 称规格、主要功能和技术参数单位数量执行 标准号备注合格示范林 木 种 苗 培 育 实 训 室5.掌握林 业主要树 种种苗培 育方法10电子数显卡尺1.量程:0 mm ~150 mm 2.分辨力: ≥0.01 mm3.测量种子大小把1640GB/T 2138911视频展示台1.元件像素: ≥500 万 2.变焦: ≥10 倍3.拍摄面积: ≥300 mm×250 mm4.分辨率: ≥2592 dpi × 1944 dpi台11JY/T 036312触摸式教学多媒体一体机1.LED 液晶屏,可触摸,≥1650 mm(65 in) 2.亮度: ≥400 cd/㎡3.分辨率: ≥1920 dpi × 1080 dpi台1113其他放大镜、直尺、解剖刀、解剖针、镊子、培养皿、烧杯、量筒、方盘等森 林 植 物 实 训 室1.了解显 微镜的结 构、保养方法2.掌握显 微镜的使 用方法3.能正确 地使用显 微镜观察 植物材料 4.会制作 植物标本1双目生物 显微镜放大倍数范围 40 ×~1600 ×台840GB/T 29852双目解剖镜1. 目镜倍数: ≥8 ×2.物镜倍数:多挡可选3.瞳距调节:50 mm~80 mm台8403植物标本快 速干燥箱1.控温范围:0 ℃~95 ℃ 2.功率:600 W ~1200 W台8164恒温鼓风 干燥箱1.控温范围:10 ℃~300 ℃2.微电脑智能控制,数显温度,定时功能 3.恒温精度: ± 1 ℃台12GB/T 304355触摸式教学多媒体一体机1.LED 液晶屏,智能触摸,≥1650 mm(65 in) 2.亮度: ≥400 cd/㎡3.分辨率: ≥1920 dpi × 1080 dpi台-16植物标本不少于 100 种当地常见木本植物标本7其他载玻片、盖玻片、解剖针、培养皿、解剖刀、擦镜纸、吸水纸、镊子、枝剪、 放大镜、标本夹森 林 环 境 实 训 室1.了解相 关仪器的 结构、工 作原理、 操作与保 养方法1照度计1.测量范围:4 挡 量程(200 lx,2000 lx, 20000lx,200000 lx)2.最大误差:≤4﹪台8162风向风速表1.风速测量范围:0 m/s~30 m/s2.风向测量范围:0 °~360 ° , 16 个方位 3.用于测定风速、风向台8163干湿表1.湿度测量范围:10﹪ RH ~100﹪ RH 2.用于测定空气湿度台81.规格:甲种2.测量范围:0 °~60 ° 3.精度:≤1 °个840表 2 专业技能实训仪器设备装备要求(续)实训教学场所序号名 称规格、主要功能和技术参数单位数量/
  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 中国科大实现百公里开放大气双光梳精密光谱测量
    中国科学技术大学潘建伟、窦贤康、张强和薛向辉等组成的交叉研究团队,通过发展大功率低噪声光梳,结合时间频率传递等量子精密测量技术,在国际上首次实现百公里级的开放大气双光梳光谱测量。这一技术可应用于监测大尺度范围的地球大气温室气体和污染气体,并可以扩展到卫星和地面之间的大气双光梳光谱测量,用于全球尺度的温室气体监测和精确校准。9月12日,相关研究成果在线发表在《自然-光子学》(Nature&ensp Photonics)上。大气光谱学是研究大气化学和物理性质的关键技术,通过探讨光与大气中分子和颗粒的相互作用来研究大气问题,广泛应用于全球气候变化、碳预算评估和空气污染研究等领域。目前,大气光谱遥感使用的光栅光谱仪、外差光谱幅度计和傅里叶变换光谱仪等技术能够以不同的时间和空间分辨率提供地球大气成分的光谱学数据。然而,这些技术存在较多限制,如无法在夜间进行测量、无法同时测量多种组分等。近年来,开放大气双光梳光谱技术被证明是进行准确、连续、多气体测量的理想技术。双光梳光谱技术具有高采集速度、溯源至原子钟级别的绝对频率精度和可以同时测量多个组分等优点,在油田监测、城市车辆排放、畜牧排放测量和温室气体监测等领域应用广泛。该技术不受湍流散斑和背景噪声的影响,在原理上能够在不校准的情况下测量更长的距离,被认为是用于大气遥感的理想精密光谱工具。当前,国际上能够实现的最远的测量距离不超过20公里,只可针对工厂、牧场等小范围区域实现监测,无法应用于更大的区域如大型城市、雨林等。该团队开发出新的双基站开放大气双光梳光谱测量方案。相比于传统单基站方案,该方案无需在测量远端放置反射器,光只需要经过待测路径一次即可完成测量,从而减小了链路损耗,更适用于远距离、大尺度的测量。利用该方案,科研人员在乌鲁木齐测量得到113公里水平开放大气中水汽和二氧化碳的强度谱与相位谱。这一距离比国际上最远的测量距离高了约一个数量级。该工作创新性地融合了潘建伟、张强等前期发展的高精度自由空间时间频率传递技术且频率准确度达到10kHz,并运用自主研发的高精度反演算法,使二氧化碳反演精度在36分钟内小于0.6ppm。该研究使得双光梳光谱能够测量的大气距离从十几公里提升至一百多公里,扩大了这一技术的应用范围。同时,系统可容忍最大损耗为83dB,与中高轨星地链路损耗相当,为实现未来的星地大气双梳光谱测量奠定了基础。上述研究是量子信息科学与地球科学深度交叉融合取得的成果,基于光频梳的量子精密测量技术有望在地球科学、深空探测、环境科学和油气行业等领域得到应用。研究工作得到国家发展和改革委员会、国家自然科学基金委员会、科学技术部、中国科学院、上海市、安徽省和山东省的支持。百公里开放大气双光梳光谱测量示意图
  • 年产显微镜10000台,速迈医学项目扩建
    6月9日,某招标信息平台显示,苏州速迈医学科技股份有限公司年产手术显微镜10000台扩产项目立项。项目信息显示,该项目占地面积13333.4平方米,建筑面积48000平方米(地上40000平方米,地下8000平方米),项目建成后年产销手术显微镜10000台。该项目将于2022年10月开工,拟于2023年7月竣工。据了解,苏州速迈医疗设备有限公司(Zumax Medical Co.,Ltd)是医用光学仪器的专业制造商,江苏省高新技术企业,位于苏州高新区支英街36号(湘江路、金山路交叉口附近,公交300路、317路、游3等可达)。主要产品为手术显微镜、检眼镜、检耳镜、检影镜、医用手术头灯、手术放大镜等系列光学诊察仪器设备,其中四个产品分别获得江苏名牌产品和江苏省高新技术产品称号,企业通过英国NQA的ISO13485国际质量管理体系认证。
  • 微反应器用于研究影响迈克加成的动力学及生产放大因素
    摘要:微反应器是一种有效的工艺开发和强化的工具,但是从实验室工艺开发到放大实际生产仍然存在挑战,因为通道尺寸的改变极大的影响了传质传热过程。本文主要演示了一个放热迈克加成的完整的工艺开发过程,综合考虑了在实验室工艺开发阶段及生产放大过程中的通道尺寸,停留时间分布,反应物混合,反应热移除等关键影响因素。图1 合成3-哌啶丙酸乙酯反的反应原理图 环戊胺和丙烯酸乙酯经迈克加成反应生成3-哌啶丙酸乙酯,反应温度30-70oC,淬灭剂:乙酸的甲醇容液(乙酸体积分数:11% )。根据微反应器内部反应体积(开始混合处和加入淬灭剂处之间的反应器体积)和反应物流速计算。 图2 用于动力学研究的微反应器设计图(a)和实际管式微反应器图(b) 反应物先通过毛细管柱预热,然后通过混合器混合后再后续的不锈钢螺旋管中进行连续流动反应,反应温度由外部热浴装置控制,最后通过T型混合器加入淬灭剂终止反应,产物收集后自动进行GC分析。表1 不同尺寸通道内径传质效果比较表2 不同尺寸通道内径传热效果比较  保持反应器MR1和MR2长度相同,泵速基本相同的条件下,增大反应器通道尺寸后,净流速明显下降,MR2(0.008)相比于MR1(0.10 m/s)缩小了约10倍,径向扩散相关系数Re和Dn分别减小了4倍和2倍,轴向扩散相关系是B0变大,表明混合传质效果变差,理想的活塞流混合模式只有径向扩散,没有轴向扩散。在传热方面,大尺寸的微通道反应器MR2的比表面积和传热系数相对于明显变小,散热时间延长了9倍。   图3 ESK陶瓷SiC反应器(左)和反应板(右) 为了进一步扩大反应器通道内径进行对比,本文采用了Chemtrix公司的MR260型号的连续流动反应器,该反应器由混合板(含预热, T型混合和2.9mL的反应通道)和两个反应板(反应体积分别为16.8和33.6 mL,通道尺寸2.0×2.0 mm)组成。反应板内部通道90o折行排布(图3 右),极大增强了混合效果。MR260反应板是由3M ESK代加工生产,每个反应板都是陶瓷SiC材质,由换热层和反应层或混合层无压烧结而成,传热性能极好,生产通量最高达36L/h,可用于实际生产。 图4 ESK反应器和微反应器 MR2的产率对比图 通过对比发现,在保证较高的传热传质效率的前提下,4mL ESK流动反应器由于反应体积相对过小,产率较低外,MR2及54mL的ESK流动反应器的产率均达90%。由此证明微通道流动反应器工艺参数可一步放大,直接用于实际生产。 为了便于生产工艺的直接放大,我司还代理了Chemtrix其他型号的微通道反应器(流动反应器)。其中: 图5 Protrix微反应器 图6 Labtrix Start 微反应器 Protrix也是一款无压烧结3M ESK碳硅合金材质的模块化低通量流动合成反应器,可灵活安装1-4块SiC模块,每个模块上均设计两组体积不同的独立的流体通道,用户可根据需要灵活搭配,开发的生产条件可以直接放大到MR260或MR555进行实际生产。  玻璃材质的微通道反应器(芯片反应器)Labtrix系统,0.2-100 μL/min低通量,保留时间1.2 s-100min,也可用于快速筛选反应,研究反应动力学,教学演示等。尤其在教学演示方面,由于流动合成工艺的日趋成熟和完善,多所世界著名高校陆续将连续流动化学开展为一个单独的学科,如华盛顿大学,普度大学,赫尔大学,四川大学,中山大学等。为了便于教学,Chemtrix公司还专门为Labtrix系列配备了“Micro Reaction Technology on Organic Synthesis”教科书一本,教学方法一套及流动化学计算软件一套。  更多连续工艺设备及方案问题,请详询深圳市一正科技有限公司官网www.e-zheng.com或info@e-zheng.com参考文献:[1] Sebastian S. etc Kinetic and scale-up investigations of a Michael Addition in microreactors, Org. Process Res. Dev.,2014,18,1535-1544.
  • 微型显微镜实现放大物体新革命:可放进口袋
    据国外媒体9日报道,它和一枚50便士的硬币一样重,小到足以放到裤子口袋中,但这种开创性新型显微镜的作用可没有大打折扣。这种装置叫Foldscope,可提供2000多倍的放大效果,有望彻底改变放大物体的方式。  一种可能彻底改变物体放大方式的新型显微镜已在秘鲁亚马逊雨林进行测试。这张照片显示,几只蚂蚁在显微镜下保护一只水蜡虫。  这种装置叫Foldscope,可提供2000多倍的放大效果,它和一枚50便士的硬币一样重,小到足以放到裤子口袋中,或许会彻底改变物体放大的方式。  波梅兰茨对这种微型显微镜进行了测试。这位野外生物学家在南美洲用它拍摄到鼠尾草花的这张特写照。  波梅兰茨对这种微型显微镜进行了测试。这位野外生物学家在南美洲用它拍摄到鼠尾草花的这张特写照。  美国加利福尼亚州洛杉矶市野外生物学家波梅兰茨(照片显示)测试了微型显微镜Foldscope。  照片显示,一只蜘蛛感染冬虫夏草。这种寄生真菌取代了蜘蛛体内的组织。  在这张用手机拍摄的照片中,100美元纸币的纤维清晰可见。  波梅兰茨将微型显微镜Foldscope连接到手机上,然后拍摄到这些不同寻常的照片。  这张用微型显微镜Foldscope拍摄的照片展示了一株马利筋草的绚烂细节。美国野外生物学家艾伦-波梅兰茨对它进行了试验。他在秘鲁亚马逊雨林中停留一个月,用这种微型显微镜捕捉到一系列惊人照片。这位25岁科学家用它拍摄了一组照片,展示了一只被感染的蜘蛛和一片被虫瘿覆盖的叶子。其他照片还展示了一朵花瓣的细胞和一只未知螨虫的放大图像。  美国加利福尼亚州洛杉矶市的波梅兰茨表示:“使它成为革命性工具的是它探测致病因素或研究未知物种的方式。还有一点就是它的售价不到1美元。这使它可以得到广泛使用,或许适用于数百万人,例如孩子、医护人员和野外生物学家等。有时我们在野外根本不知道我们要观察什么,直到很晚的时候才明白这一点。”  这位科学家说:“在有些情况下,你回到实验室,想获得一些不同于野外的发现,例如收集更多信息或进行更多的观察。但微型显微镜Foldscope使你在野外就可直接研究目标,然后你可以带它们回实验室,开展更加细致的科研工作。”  波梅兰茨将微型显微镜Foldscope连接到手机上,然后拍摄到这些不同寻常的照片。该装置的尺寸是70毫米乘20毫米,重量仅0.3盎司(约合8.5克)。相比之下,一部传统显微镜却重达512盎司(约合15公斤)。  不到10分钟内,可将一张平面纸组装成微型显微镜Foldscope。使用者可用折纸方法将它制作而成。这种微型显微镜是加利福尼亚州斯坦福大学生物工程系普拉卡什实验室一个研究小组的智慧结晶。  波梅兰茨说:“微型显微镜Foldscope并不能替代可提供更高分辨率、更强大的传统显微镜。但后者有很多缺点,例如很大,又昂贵,还只能在实验室内使用。微型显微镜Foldscope被设计成一种便携式工具,可随时随地使用,让你及时近距离观察微观世界。我认为它不会取代传统显微镜,却毫无疑问,它会弥补传统显微镜的不足。大多数孩子从未用过传统显微镜,所以微型显微镜Foldscope可帮助贫穷地区的学生探索微观世界和科学。”
  • 三星堆文物的“放大大大镜”
    8号坑新发现——或为现今最大日前,8号坑又有新发现,出土了可能是目前中国最大石磬的残片,还有将近60件尺寸、形态各异的金叶,以及完整保存下来的丝绸实物残留。三星堆8号坑陆续发现石磬残片,可拼接成一件石磬,石磬长1米,宽52厘米,厚度4厘米,表面打磨平整。或为中国目前发现最大的一件石磬。除石磬残片外,8号坑还陆续出土近60件金叶。据介绍,金叶呈脉状纹式,顶端有孔,可用于悬挂。因为8号坑出土的神树枝杈较多,有考古人员推测金叶是悬挂在枝杈上的叶子,但也有人推测,这些文物呈鱼的形状。具体是叶子还是鱼形金饰片,还有待进一步论证,可以确定的是,它们应该是挂在神树上的饰物。另外,一件青铜残片上附着的丝绸实物残留,经纬组织非常明显,表层有一层类似于涂层的附着物,尺寸为1.8×0.8厘米,是目前三星堆发现的最明显也是最大面积的丝绸残留物。考古队人员介绍,将会对其表面的涂层以及它的显微结构做进一步分析,利用显微CT、高光谱,对它的材质以及形貌做进一步的判断。4号坑外的应急保护室经过不断的探测、挖掘,6个三星堆祭祀坑已提取出土象牙、青铜器、金器、玉石器等重要文物534件及残破文物碎片近2000件。为在考古中实现文物的保护,此次三星堆考古首创了探方工作舱,用于现场发掘工作的舱内四面“透明玻璃”看似平平无奇,里面却配备了如小型变频环境控制系统、高压微雾加湿系统、采集系统和全视频记录系统等功能各异的考古操作系统和装备。考古工作人员会利用便携式的x射线荧光仪进行现场无损检测,以获取文物的元素组成,并且通过文物的元素组成来推断大概是什么材质的文物。而在发掘现场4号坑外的左前方,还有一排充满科技元素的文保工作“小屋”。“这是应急保护平台,设有应急检测分析室、有机质文物应急保护室、无机质文物应急保护室、微痕文物应急保护室等。”四川省文物考古研究院文物保护中心考古工作人员李思凡说。目前三星堆的文物处在应急保护阶段。在应急监测分析室内,放置有现场检测分析的便携式小型仪器,若是考古工作人员想要了解出土文物的材质或是获取更多的信息,就会在此进行检测。此外,针对不同材质的文物,考古工作人员会在不同的文物应急保护室里,分别进行保护处理。同时,考古工作人员还会利用超景深三维显微系统,对出土文物进行显微观察。“由于部分文物的表面不平,利用普通的显微镜放大倍数后,只能聚焦到某一个高度的文物表面。而超景深三维显微系统的三维合成功能,可将一定高度范围内的文物形貌合成一个三维的模型。”考古人员这样说。
  • 超灵敏磁强计可将信号功率放大64%
    德国弗劳恩霍夫应用固体物理研究所(IAF)发布公告称,该所研究人员在基于金刚石氮—空位(NV)中心的超灵敏激光阈值磁强计研究中取得重要进展,可通过受激发射实现64%的信号功率放大,并显示出创纪录的33%的超高对比度。该研究将为进一步开发用于室温和现有背景场下的高灵敏度磁场传感器铺平道路。相关成果发表在近日的《科学进展》杂志上。金刚石中的NV中心是由一个氮原子和一个碳空位组成的原子系统。在被绿色激光照射时,会激发出红光。由于这些原子级NV中心的光度取决于外部磁场的强度,因此它们可用于高空间分辨率的微磁场测量。研究人员成功制造出具有高密度NV中心的金刚石,进而研发高精细的NV激光腔,首次通过实验验证了激光阈值磁强计的理论原理。IAF研究人员扬杰斯克博士解释说:“由于其材料特性,具有高密度NV中心的金刚石在用作激光介质时可显著提高测量精度。”杰斯克团队通过CVD(化学气相沉积)工艺在金刚石生长中实现了高水平的氮掺杂,并使用电子束和热处理,在后处理中使NV密度增加了20—70倍。在表征过程中,他们优化了3个关键因素:高NV密度、通过高通量辐照实现取代氮的高转化率和高电荷稳定性,从而成功生产出具有高密度NV中心的高质量CVD金刚石。此前,NV中心已被用于量子磁传感,但信号一直是自发发射而不是受激发射或激光输出。现在,IAF的研究人员不仅通过受激发射实现了64%的信号功率增加,还创造了一项纪录:与磁场相关的发射显示出33%的对比度和毫瓦(mW)范围内的最大输出功率。
  • 显微镜放大千倍的北京霾颗粒吓人(图)
    3月23-27日,北京连续雾霾,污染不断加重,在27日,AQI指数长时间维持在400上下。空气中细小的霾颗粒到底是什么样子呢?网友@张超_摇光通过显微镜将霾颗粒放大1000倍后,发现他们形状各异,有复合体,有生物颗粒,有矿物质的,看上去触目惊心。   微博原文:&ldquo 给戴口罩的人们,给在户外奔忙的人们:这是今天一天收集的的北京雾霾颗粒,有复合体,有生物颗粒,有矿物质的,各种各样。显微镜1000倍(目视)拍摄,最后一张是250倍拍摄。&rdquo
  • 我国首次在国际上实现百公里开放大气双光梳精密光谱测量
    根据中国科学院官网信息,中国科学技术大学潘建伟、窦贤康、张强和薛向辉等组成的交叉研究团队,通过发展大功率低噪声光梳,结合时间频率传递等量子精密测量技术,在国际上首次实现百公里级的开放大气双光梳光谱测量。这一技术可应用于监测大尺度范围的地球大气温室气体和污染气体,并可以扩展到卫星和地面之间的大气双光梳光谱测量,用于全球尺度的温室气体监测和精确校准。9月12日,相关研究成果在线发表在《自然-光子学》(Nature Photonics)上。资料显示,大气光谱学是研究大气化学和物理性质的关键技术,通过探讨光与大气中分子和颗粒的相互作用来研究大气问题,广泛应用于全球气候变化、碳预算评估和空气污染研究等领域。目前,大气光谱遥感使用的光栅光谱仪、外差光谱幅度计和傅里叶变换光谱仪等技术能够以不同的时间和空间分辨率提供地球大气成分的光谱学数据。然而,这些技术存在较多限制,如无法在夜间进行测量、无法同时测量多种组分等。近年来,开放大气双光梳光谱技术被证明是进行准确、连续、多气体测量的理想技术。双光梳光谱技术具有高采集速度、溯源至原子钟级别的绝对频率精度和可以同时测量多个组分等优点,在油田监测、城市车辆排放、畜牧排放测量和温室气体监测等领域应用广泛。该技术不受湍流散斑和背景噪声的影响,在原理上能够在不校准的情况下测量更长的距离,被认为是用于大气遥感的理想精密光谱工具。当前,国际上能够实现的最远的测量距离不超过20公里,只可针对工厂、牧场等小范围区域实现监测,无法应用于更大的区域如大型城市、雨林等。该团队开发出新的双基站开放大气双光梳光谱测量方案。相比于传统单基站方案,该方案无需在测量远端放置反射器,光只需要经过待测路径一次即可完成测量,从而减小了链路损耗,更适用于远距离、大尺度的测量。利用该方案,科研人员在乌鲁木齐测量得到113公里水平开放大气中水汽和二氧化碳的强度谱与相位谱。这一距离比国际上最远的测量距离高了约一个数量级。该工作创新性地融合了潘建伟、张强等前期发展的高精度自由空间时间频率传递技术且频率准确度达到10kHz,并运用自主研发的高精度反演算法,使二氧化碳反演精度在36分钟内小于0.6ppm。该研究使得双光梳光谱能够测量的大气距离从十几公里提升至一百多公里,扩大了这一技术的应用范围。同时,系统可容忍最大损耗为83dB,与中高轨星地链路损耗相当,为实现未来的星地大气双梳光谱测量奠定了基础。据悉,上述研究是量子信息科学与地球科学深度交叉融合取得的成果,基于光频梳的量子精密测量技术有望在地球科学、深空探测、环境科学和油气行业等领域得到应用。
  • 仪器检测人机大战 机器人“晶晶”完胜
    p style=" text-align: center " img title=" A15_5526438_kmgwhy_1471361493065_s.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/411c0a57-2465-473e-b248-724c8a7b513a.jpg" / /p p style=" text-align: center " 检测员与“晶晶”紧张对决中 /p p & nbsp & nbsp & nbsp & nbsp 昨日,广州供电局自主研发的“晶晶”亮相,与三个选手比赛检验电表,机器人“晶晶”完胜,快了近一半时间。 /p p   昨日,人机大战仪器检测,机器人完胜三人。上午9时40分,广州供电局有限公司“POWER X”杯计量仪表校验“人机大战”比赛在广州供电局电力试验研究院火热开战。比赛参赛的一方是广东省计量行业挑选出的优秀的国家计量检定员,另一方是电力试验研究院理化部研发的仪表校验机器人“晶晶”。各位选手的检定对象是一只0.5级带有反光镜的指针式直流伏安表,校验项目是直流电压150V全检量程。三位参赛选手在放大镜下紧张地比对,“晶晶”则显得淡定很多。按照程序一步一步。9分22秒后,“晶晶”率先完成了比赛。十几分钟后,三位选手才相继完成比赛。 /p p   “完整的校验一只这样的仪表需要近60分钟,一个计量检定员连续忙活一天也就能校验5台仪表,而且因视觉疲劳还会产生读取误差。”广州供电局项目负责人介绍说。从2014年至今,整整历时3年,在15位技术人员经历无数次的讨论、改进、调试、校验后,零差错的“晶晶”终于诞生了,一天就能校验24台仪表。 br/ /p
  • 北京怀柔科学城:多项大科学装置稳步推进 已取得一批重要科研成果
    作为综合性国家科学中心的承载区——北京怀柔科学城目前正在加速建设。先期布局的五大科学装置稳步推进,部分装置2024年有望投入正式运行。我国首台高能同步辐射光源建筑主体完成在北京怀柔科学城,我国首台高能同步辐射光源的建筑主体已经完成建设,其内部正在进行科学仪器的安装和调试。可发射比太阳亮1万亿倍的光 用途广高能同步辐射光源是世界上亮度最高的第四代同步辐射光源之一。从空中看,这个建筑就像一个放大镜,特别的是,这个放大镜可以发射比太阳亮1万亿倍的光。通俗讲,亮度越高意味着看得更清楚,在这里可以更深层次地解析物质微观结构和演化机制,提升我国国家发展战略与前沿基础科学技术领域的原始创新能力。与此同时,多模态跨尺度生物医学成像设施、子午工程二期等国家大科学装置,都将努力在2024年完成国家验收并投入正式运行。国内外科学家的国际化公共服务中心——城市客厅的建设目前也已进入收尾阶段,即将亮相。集极低温 强磁场 超高压 超快光场于一体人们对物理世界极限的探寻从未停止。如果说,高能同步辐射光源项目是在追求地球上最亮的光,那与它相邻的“中国科学院物理研究所综合极端条件实验装置”追求的则是地球上最低的温度、最高的压力、最强的磁场和最快的光场,帮助我们进行前沿科学研究。可用于材料合成 量子调控等前沿研究“综合极端条件实验装置”是国家十二五重大科技基础设施项目,集极低温、强磁场、超高压、超快光场等极端条件于一体。利用这些极端条件,可以开展材料合成、物性表征、量子调控、超快过程等物质科学的前沿研究。“综合极端条件实验装置”项目自2017年9月30日开工建设,是怀柔科学城第一个开工的国家重大科技基础设施。目前,已经进入试运行阶段,并向国内外用户开放申请,已经取得一批重要的科研成果。从生物分子到人体的全尺度都可“拍照”在北京怀柔科学城中,我国首创的生物医学领域的大科学工程——多模态跨尺度生物医学成像设施已经投入试运行。目前,设备陆续进场,整体布局日益完善,将可提供从生物分子到人体的全尺度多模态成像能力。多模态跨尺度生物医学成像设施是全球首个多模态、全尺度、全景式、一体化的生物医学成像技术集群大型设施,也是由我国科学家首创的生物医学成像领域的大科学工程。主要建设内容包括四大装置,即多模态医学成像装置、多模态活体细胞成像装置、多模态高分辨分子成像装置、全尺度图像数据整合装置,提供从生物分子到人体的全尺度多模态成像能力。用于支撑脑科学 肿瘤等疾病的研究多模态跨尺度生物医学成像设施面向生物医学的基础科研和临床研究需求,用于支撑脑科学、肿瘤、心血管疾病等生物医学问题研究。目前,多模态跨尺度生物医学成像设施的二期建设内容,分子影像与医学诊疗探针创新平台正在加速推进。建成后,将助力成像设施全功能运行和技术转化,全景式研究和解析生物医学重大科学问题。打造“虚拟地球” 可研究全球气候变化作为国家先期在怀柔科学城布局的五大科学装置之一——我国自主研发的首个地球系统数值模拟装置已完成国家验收,并正式对外开放使用。这一装置将为全球气候变化、环境保护等重大问题提供科学支撑。地球系统数值模拟装置又称“地球模拟实验室”,是我国首个具有完全自主知识产权的地球系统数值模拟平台。它通过集成大气圈、水圈、冰冻圈、岩石圈和生物圈等多个地球系统圈层的数值模拟软件,构建了一个综合性的研究平台。地球系统数值模拟装置不仅可以广泛应用于气候变化研究、环境监测与评估和自然灾害预测等领域。在当下最为紧迫的气候变化应对与碳中和领域中,该系统还能够全方位关注全球生态和生物地球化学过程及其与气候系统的相互作用,并在此基础上建立起“生态—气温—二氧化碳浓度—碳排放量”的清晰关系,对温室气体核算、未来升温预估提供有力的模拟支撑,助力碳达峰、碳中和愿景目标的实现。
  • 舜宇恒平仪器参加发酵过程优化与放大技术学术交流会
    共享发酵尾气质谱分析和生物过程解决方案——舜宇恒平仪器参加发酵过程优化与放大技术学术交流会 2014年1月7日~10日,由国家生化工程技术研究中心(上海)、上海国强生化工程装备有限公司、上海市微生物学会、上海生物过程工程专业技术服务平台等联合主办的2013-2014年度全国发酵过程优化与放大技术学术交流会在上海隆重举行,近70余位来自全国各地的发酵同行参加了此次会议。此次学术交流会上,多位具有丰富应用实践经验的生物工程专家分别就发酵过程优化与放大技术、微生物菌种高通量筛选装置与技术、发酵新型装备和传感器技术等生物过程相关的多方面技术做了精彩报告。 舜宇恒平仪器携高精度尾气质谱仪及生物过程解决方案参加了此次会议,与国内生物工程专家和发酵同行进行了深入的交流。会议上,黄晓晶博士和刘朋先生就SHP8400PMS尾气质谱仪在生物过程中的应用做了现场汇报,介绍了质谱技术原理、尾气监测在生物发酵中的应用,以及发酵尾气分析方案和客户案例。SHP8400PMS过程质谱仪自2010年起应用于生物发酵尾气监测,在实际应用中认真听取客户的反馈意见,在多位发酵行业专家指导下,不断改进、完善整套发酵尾气分析方案,目前已有多家客户在节约补料成本、提高产品效价等方面取得明显效果。 生物技术与生物工程一直是舜宇恒平仪器重点关注的应用领域,除了尾气质谱分析系统外,从菌种构建到产品生产,都有相关产品贯穿其中。基于创新的生物过程检测与应用技术,致力于向生物领域的客户提供完整的行业多参数检测解决方案、先进仪器和卓越服务。黄晓晶博士介绍尾气质谱应用概况|刘朋先生介绍尾气质谱方案参会者认真聆听关于上海舜宇恒平科学仪器有限公司上海舜宇恒平科学仪器有限公司,是上海市高新技术企业,上海市创新型企业,上海质谱仪器工程技术研究中心依托单位。专业致力于各类科学仪器的研发、制造和销售。公司承诺向顾客提供更合适的产品,更广阔的选择空间。现已形成生物检测、通用分析、在线分析、精密称重、专用仪器五大类共计一百多个品种的数字化、智能化产品,建立了与顾客零距离的营销网络,客户遍及海内外。联系方式:上海舜宇恒平科学仪器有限公司地址:上海市虹漕路456号8号楼5~6楼电话:021-64959872http://www.hengping.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制