当前位置: 仪器信息网 > 行业主题 > >

惰性气体检测

仪器信息网惰性气体检测专题为您提供2024年最新惰性气体检测价格报价、厂家品牌的相关信息, 包括惰性气体检测参数、型号等,不管是国产,还是进口品牌的惰性气体检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合惰性气体检测相关的耗材配件、试剂标物,还有惰性气体检测相关的最新资讯、资料,以及惰性气体检测相关的解决方案。

惰性气体检测相关的论坛

  • 【分享】惰性气体简介

    惰性气体又称稀有气体(rare gas),因为在地壳和大气层中含量很少,除氡外都可作为工业气体由空气分离而制得。通常具有化学惰性,但近年来已能制得氙、氪、氡的一些具有一定稳定性的化合物。  惰性气体共有六种,按照原子量递增的顺序排列,依次是氦、氖、氩、氪、氙、氡。在通常情况下,它们不与其他元素化合,而仅以单个原子的形式存在。在常温下,它们都不会液化。它们全是气体,存在于大气之中。  首先被发现的惰性气体是氩,1894年就被探测到。它也是最常见的惰性气体,占大气总量的1%。其他惰性气体几年之后才被发现,它们在地球上的含量很少。  较大的惰性气体原子,例如氡,它的最外层的电子(参与化合反应者)与原子核离得较远。因此,外层电子与原子核之间的吸引力相对来说比较弱。由于这一原因,氡是惰性气体中惰性最弱的,只要化学家创造出合适的条件,也最容易迫使氡参与化合反应。  较小的惰性气体原子,其最外层电子离原子核比较近。这些电子被抓得比较牢固,使其原子难以与其他原子发生化合反应。  事实上,化学家已经迫使原子比较大的惰性气体——氪、氙、氡,与氟和氧那样的原子进行化合,氟与氧特别喜欢接受其他原子的电子。原子更小一些的惰性气体——氦、氖、氩——已经小到惰性十足的程度,迄今为止任何化学家都无法使它们参与化合反应。  原子最小的惰性气体是氦。在所有各类元素中,它是最不喜欢参与化合反应的,也是惰性最强的元素。甚至氦原子本身之间也极不愿意结合,因而直到温度降到4K时,才能变成液态。液态氦是能够存在的温度最低的液体,它对于科学家研究低温是至关重要的。  氦在大气中只有微量的存在,不过当像铀与钍这样的放射性元素衰变时,也能生成氦。这种积聚过程发生在地下,因而在一些油井中能产生氦。这种资源很有限,不过至今尚未耗尽。  每个氦原子只有两个电子,它被氦原子核束缚得如此之紧,以至要想抓走其中的一个电子,比之任何其他原子而言,要付出更多的能量。面对这样紧的束缚,那么是否能使氦原子放弃一个电子,或与其他原子共享一个电子,从而产生化合反应呢?  为了计算电子的行为,化学家采用了一种被称为“量子力学”的数学体系,这是在20世纪20年代创立的。化学家科克把它的原理应用到对氦的研究中。比如.假设一个铍原子(有四个电子)与一个氧原子(有八个电子)进行化合反应。在化合过程中,铍原子交出两个电子给氧原子,从而使它们结合在一起。用量子力学进行计算的结果表明,铍原子中背对着氧原子的那一侧电子出现的几率非常小。  根据量子力学方程,如果一个氦原子参与进来。它就会与铍原子上电子出现几率非常小的那一侧共享两个电子,从而形成氦-铍-氧的化合物。  迄今为止,还没有其他原子化合反应能够产生俘获氦原子的条件,而且即便是氦-铍-氧,也只有在足以使空气液化的温度条件下,或许能结合在一起。现在对于化学家来说,必须对在极低温度条件下的物质进行研究,看看是否真能够通过实践证实理论,迫使氦参与化合反应,从而打垮这种惰性最强的元素!

  • 惰性气体

    请教各位:仪器用的是惰性气体,能与仪器同处一室吗?

  • 测量惰性气体的质谱采购咨询

    公司准备新上个项目,计划采购能定量测量惰性气体的质谱,主要是Ar、Xe、Kr等,而且要测出其同位素组成和丰度,检测限越低越好,各位大虾有什么推荐?给我留言也行~感谢

  • 【求助】-惰性气体保护

    我是河北保定的一个公司,现在对微波合成类的仪器比较感兴趣. 但我们目前做的化学反应主要为酚类的反应,反应过程中要进行惰性气体保护,请问有这样的微波设备吗? 最好为进口仪器

  • 【原创】直读光谱的两种光室环境----抽真空与充惰性气体

    目前直读光谱的光室环境主要有两种,一种是以ARL、OBLF等为代表的真空泵抽真空方式,另一种是以斯派克为代表的充惰性气体的方式抽真空是大多数仪器厂家使用的技术,需要真空泵,考虑密封性等,而且真空度对C、P、S等短波元素的影响很大,所以技术要求高些。因为是抽真空,内外压力差比较大,突然断电可能会导致真空泵油气倒吸等,不过现在的真空泵一般都有防油倒吸的装置了,这个可以不用担心了。还有就是怕遇到漏气的情况,要是找不到漏气点的话,真的会让人抓狂啊,呵呵斯派克的光室充惰性气体,其实是个循环的系统,以前一般充的是氮气,现在改用氩气,更方便了。充惰性气体使用起来比较省事,不用担心真空度的变化对分析结果的影响,也不要频繁地抽真空。光室循环系统,有循环泵和气体净化管,他们的氩气净化管是常有的消耗品,一般半年到一年就要重新换一根,好几千块钱一根吧,也不便宜。不过近年来随着人们对充惰性气体光学系统的重新认识与改进,有人认为这种类型的仪器在做O、N甚至是H等元素方面,有技术本身方面的优势。另外,在其他资料上看到充惰性气体的仪器冷开机的时间、预热时间要比抽真空的长些,这个我倒没注意至于问哪种方式好,只能说各有千秋吧本人水平有限,不妥之处还望各位指正

  • 批量求购或定制高温真空炉抽真空和充惰性气体全套气路装置

    批量求购或定制高温真空炉抽真空和充惰性气体全套气路装置

    1. 概述 针对目前常用的高温加热炉保护气体管路使用中存在的不便性,采用改进措施和配套装置,使得惰性气体管路的使用更方便、更安全和更直观。2. 常用保护气体管路结构 高温真空炉,如石墨加热炉和钨丝加热炉等,在工作过程中都需要惰性气体保护。常需对炉体先抽真空后充惰性气体,并使真空炉内惰性气体的气压略大于大气压,在整个升降温过程中真空炉始终处在正压状态,以避免发热体和工件氧化。保护气体管路结构如图 2-1所示。 http://ng1.17img.cn/bbsfiles/images/2017/04/201704021923_01_3384_3.png图 2-1 高温加热炉常用保护气体管路示意图3. 常用保护气体管路使用步骤 (1)使真空腔处于闭合状态,关闭所有阀门。 (2)开启真空泵和开关阀2,对高温加热炉真空腔开始抽真空。 (3)当真空腔内的真空度达到要求真空度时,一般为20Pa左右,先后开启气瓶减压阀和开关阀1,调节浮子流量计,用最小气体流量对真空腔进行充气,同时真空泵抽掉充气管路中的残存大气。 (4)按顺序先后关闭开关阀2和真空泵,调节浮子流量计增大充气流量,使真空腔内惰性气体较快速度接近大气压。 (5)当充气使得真空腔内气压达到放气阀出气压力时,调节浮子流量计到合适的最小流量,使充入的气体经过真空腔由放气阀排出,形成单向流动。 (6)保持浮子流量计调节位置不变,真空腔内始终处于恒定的正压环境,然后开始高温加热炉的升降温过程和其它试验操作。4. 问题提出 上述的高温真空炉保护气体管路在实际工程使用中存在以下问题: (1)充气管路中调节气体流速的浮子流量计真空密闭性很差,在负压状态下的充气过程中,大气会经浮子流量计进入到真空腔内。如果将充气管路和浮子流量计与真空腔一起抽真空,浮子流量计的泄漏会造成真空腔真空度始终无法达到高温加热炉腔体的真空度要求。 (2)当腔内气压达到设定正压,放气阀开始放气。但放气阀的放气过程并不直观,无法准确观察到放气现象。尽管有些单向放气阀带有放气哨音,但腔体始终处于正压放气状态,连续的放气哨音反而成为一种噪音。如果采用更复杂和准确的压力仪表来进行检测,会增加相应的成本。 5. 新型管路要求 所需求的加热炉保护气体管路如图 5 1所示。http://ng1.17img.cn/bbsfiles/images/2017/04/201704021924_01_3384_3.png 图 5-1 新型高温加热炉常用保护气体管路示意图 具体要求如下: (1)将浮子流量计改进为真空密封型的浮子流量计,便于将充气管路中的残存气体抽取干净,同时保证充气过程中的惰性气体纯度,避免外部空气渗入。如果不考虑气体流量的直观性调节,也可以增加两路充气管路,一路用开度较大的调节阀来进行快速充气,以满足较大真空腔体对快速充气的要求;另一路用开度较小的针阀控制充气,以满足较小体积真空腔体的充气要求,以避免腔体内部过压太快。 (2)将真空腔上两个放气阀更换为两个不同量程的单向限压阀,如6Psi和9Psi,其中6Psi限压阀保证只有真空腔内气压大于大气压6Psi时才能导通放气,9Psi限压阀保证只有真空腔内气压大于大气压9Psi时才能导通放气。这样配置两个不同量程单向限压阀的作用,一是将真空腔内的惰性气体正压严格控制在6~9Psi之间,二是当其中6Psi放气阀发生堵塞失效正压增加后,9Psi放气阀导通起到安全保护作用,控制真空腔内正压不至于过大。 (3)分别在两个不同量程的单向限压阀出气端连接上两个气泡式流量指示计,从两个限压阀流出的气体通过导管导入油内,以气泡形式指示出气体的流出和流量大小。 (4)如果高温真空炉内不要求有惰性气体正压形式,充入的惰性气体直接经过加热炉后直接以一个大气压压力直接排出炉外。这样可以不安装两个不同量程的单向限压阀,而是在相应接口处直接安装上两个气泡式流量指示计,或只安装上一个气泡式流量指示计而另一接口密封,这样排出的惰性气体可以通过气泡直接观察。在这种情况下,这种气泡式流量指示计就需要兼顾负压功能,即在抽真空状态过程中气泡式流量指示计自动密闭起到关闭阀门的作用,而在充惰性气体过程中当真空腔内气压接近一个大气压式自动打开排出气体并由气泡显示流量大小。6. 效果总结 改进后的管路可以更有效的消除充气管路内残留大气和浮子流量计大气泄漏所引起的真空腔内惰性气体不纯问题,惰性气体防护作用更有效。 通过改进后的高温加热炉保护气体管路,保护气体管路可以应用于有设定正压要求的高温加热炉系统,也可以应用于无正压要求的高温加热炉。 改进后的管路可以精确控制真空腔内惰性气体气压范围,提高真空腔内气压保护的安全性,可以直观的观察到真空腔内惰性气体的气压变化过程和速度,重要的是整体结构比较廉价。

  • 【分享】惰性气体手套箱技术特点

    惰性气体手套箱特点http://www.zhonghuida.com/imageRepository/b2399455-c5f9-40bc-a792-bd8e0c942fec.png 保持惰性气体环境,控制水氧含量〈1 PPM 气体净化系统可自动再生 PLC 控制系统,彩色触摸屏操作界面 高质量气体控制和真空组件 多种配置和尺寸系统可供选择 气体纯化装置配备可移动框架 可根据客户特殊应用定制不同手套箱系统 可集成溶剂纯化系统 技术参数http://www.zhonghuida.com/imageRepository/cba240b3-6ab9-48fb-ab60-63439ff04636.png控制系统• 采用PLC控制器,所有功能可通过彩色触摸屏操作界面设置• 采用微处理控制器带LED滚动面板操作界面• 可用脚踏开关调节箱体压力• 电源要求: 230V, 50-60Hz, 10A• 电源功率随附件不同而不同净化再生• 净化柱可再生,所有过程通过PLC或者微电子 控制系统自动进行• 再生气体: N2/H2混合气 (3-7% H2) 或者Ar/H2混合气 (3-7% ) H2)循环系统• 真空密封集成无油鼓风机• 可调风速 0-60 CFM手套箱体• 模块化面板设计• 手套箱材料 – US 304 不锈钢• 内部工艺 – 拉磨• 外表面 –灰色粉末涂层• 窗口 – 聚碳酸酯 (LEXAN), 厚度3/8”倾斜型减少反光• 照明 –前置荧光灯• 泄漏率 0.05 vol%/h (ISO 10648-2)气体净化系统• 闭路循环气体移除水和氧• 内部工作气体: N2, Ar 或者 He• 水氧含量: O21ppm, H2O1ppm• 标准配置单净化柱,可选双净化柱• 净化能力(每柱)• 氧气去除能力 – 30L (标准条件) 水分去除能力 – 1300g• 净化柱材料: US 类型304不锈钢管 件• 循环系统管件 – 铜管, KF-40• 控制系统管件 – 铜管, 3/8”直径.不锈钢 (US类型 304) 循环和控制系统管件可选• 系统泄漏率: 10-5mbar l/s阀 门• 主要阀门 – 电子-气动, KF-40• 控制阀 – 电磁阀 (螺线管) 阀门线 路• 标准系统包括一个KF40阀门集成一路电线• 包括一个供客户使用的KF40法兰• 包括一个 3/8” 防水接头锁紧螺母

  • 【分享】可燃性气体检测仪产生故障分析

    可燃性气体检测仪由检测和探测两部分组成,具有检测及探测功能。可燃性气体检测仪检测部分的原理是仪器的传感器采用检测元件与固定电阻和调零电位器构成检测桥路。桥路以铂丝为载体催化元件,通电后铂丝温度上升至工作温度,空气以自然扩散方式或其它方式到达元件表面。当空气中无可燃性气体时,桥路输出为零,当空气中含有可燃性气体并扩散到检测元件上时,由于催化作用产生无焰燃烧,使检测元件温度升高,铂丝电阻增大,使桥路失去平衡,从而有一电压信号输出,这个电压的大小与可燃性气体浓度成正比,信号经放大,模数转换,通过液体显示器显示出可燃性气体的浓度。探测部分的原理是当被测可燃性气体浓度超过限定值时,经过放大的桥路输出电压与电路探测设定电压,通过电压比较器,方波发生器输出一组方波信号,控制声,光探测电路,蜂鸣器发生连续声音,发光二极管闪亮,发出探测信号。从可燃性气体检测仪原理可以看出如果出现电磁干扰会影响探测的信号,出现数据偏差;如果出现碰撞、震动从而造成设备断路会现探测失灵;如果环境过分潮湿或设备进水,也有可能会引起可燃性气体检测仪出现短路,或线路电阻值发生变化,出现探测故障。

  • 还原性气体检测器部件

    还原性气体检测器部件

    今天有台还原性气体检测器出了问题,拆开了看,有一个光电转换部件,就是图片中金黄色的哪个部件,也就是第二张照片的白色圆形的物体,不知道有没有人认识这个部件的?是光电二极管还是光电三极管,或者其他?http://ng1.17img.cn/bbsfiles/images/2017/10/2016011517202737_01_1673599_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601190858_582343_1673599_3.jpg

  • 有害气体检测

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37110.html[/url][table=100%][tr][td][size=14px]空气:空气是一种有颜色,有气味的气体。它是一种混合物。[/size][/td][/tr][tr][td][size=14px]有机气体:各种易挥发或者气态的烷烃、芳烃及其衍生物。[/size][/td][/tr][tr][td][size=14px]制冷剂:氨、氟利昂-12、氟利昂-22、R-134a、R-404A制冷剂、R-410A制冷剂、混合共沸制冷剂、碳氢制冷剂、二氧化碳等。[/size][/td][/tr][tr][td][size=14px]天然气:液化天然气、压缩天然气、液化石油气、液化煤层气等。[/size][/td][/tr][tr][td][size=14px]惰性气体:氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)和具放射性的氡(Rn)。[/size][/td][/tr][tr][td][size=14px]工业废气:排气流量、烟气温度、烟气压力、二氧化硫、氮氧化物、颗粒物、氯化氢、铬酸雾、硫酸雾、氟化物、氯气、金属、苯系物、酚类、乙醛 、丙烯醛、苯并[a]芘、硝基苯、光气、石棉、二噁英、林格曼黑度、 甲醛 、甲烷等。[/size][/td][/tr][tr][td][size=14px]活泼气体:氧气、氟气、氯气、氢气、溴气、一氧化碳、氰化氢、碘蒸汽(气态碘)、酒精蒸汽(气态乙醇)等。[/size][/td][/tr][tr][td][size=14px]液化石油气:丙烷、丁烷等。[/size][/td][/tr][tr][td][size=14px]液化天然气:甲烷。[/size][/td][/tr][tr][td][size=14px]有毒有害:二氧化硫、氟比氢、氨、三氧化硫、 氯、一氧化碳、硫化氢、氯化氢、臭氧、硫醇、有机卤化物、甲醛、二氧化氮、碳氢化合物、挥发酚、一氧化氮、苯、汞蒸汽等。[/size][/td][/tr][/table]各项检测指标[table=100%][tr][td][size=14px]纯度[/size][/td][td][size=14px]过氧化物[/size][/td][td][size=14px]总烃[/size][/td][td][size=14px]发热量[/size][/td][/tr][tr][td][size=14px]水分[/size][/td][td][size=14px]二氧化碳[/size][/td][td][size=14px]甲烷[/size][/td][td][size=14px]沃泊指数[/size][/td][/tr][tr][td][size=14px]成分含量[/size][/td][td][size=14px]密度[/size][/td][td][size=14px]未知气体[/size][/td][td][size=14px]硫化物[/size][/td][/tr][/table]有害气体检测

  • 氧气传感器KGZ-NGL在机载惰性气体发生系统中的应用

    氧气传感器广泛用于航空OBIGGS (On-Board Inert Gas Generating System) 机载惰性气体发生系统,以防止燃料箱顶部空间中的燃料和蒸汽燃烧。[url=http://news.isweek.cn/wp-content/uploads/2019/01/20190116104947.png][img=20190116104947,324,164]http://news.isweek.cn/wp-content/uploads/2019/01/20190116104947.png[/img][/url]特别是在航空领域,[url=https://www.isweek.cn/category_146.html]氧气传感器[/url]具有重要且关键的作用,因为它们用于将氧气水平保持在接近零的水平,以消除爆炸的风险。 航空仍然是最安全的运输方式之一,因为工程师采取一切必要的预防措施来消除机械故障的风险,例如油箱爆炸。飞行安全是飞机制造商最关心的问题之一。 多年来,波音和空客等制造商及其供应商一直在研究有效的方法,以最大限度地降低各类飞机油箱爆炸的风险。 而这,是在引入机载惰性气体发生系统(OBIGGS)之后实现的。[url=http://news.isweek.cn/wp-content/uploads/2019/01/20190116105001.png][img=20190116105001,510,47]http://news.isweek.cn/wp-content/uploads/2019/01/20190116105001.png[/img][/url]SST的高可靠性氧气传感器是所有主要商用和民用飞机中OBIGGS控制的核心。 这篇博文将探讨在机载惰性气体发生系统中使用的氧气传感器。[b]什么是OBIGGS?[/b]正如上面的内容所提到的,惰性系统通过将容器顶部空间中的氧气的含量限制在燃料燃烧阈值以下来降低燃料箱中燃烧的可能性。 这是通过基于分子量不同,将供应的空气分配成氮气和氧气来实现的。 然后,富氮气体可以循环到燃料箱的顶部空间中,该顶部空间被连续送入氮气以减轻燃料蒸汽可燃性的风险。军用飞机已经广泛配备了几十年的惰化系统,因为在战斗情况下燃烧的风险要高得多。 由于额外的成本和重量要求,商用飞机已经限制了动态惰化系统的使用,所以,飞机制造商越来越多地转向高分辨率气体传感器以消除潜在的灾难性燃料箱燃烧的风险。[b]惰性系统专用氧气传感器[/b]氧化锆氧传感器是世界上一些最大的飞机制造商开发OBIGGS技术的核心。 这些新型气体传感器采用高强度,耐腐蚀的不锈钢外壳,可在恶劣条件下安装。 它们可以承受巨大高度的高压,并且可以抵抗危险蒸气和液体的化学侵蚀。这些气体传感器被用于OBIGGS部件的空气分离模块中,以确保进入的氮气适合于将燃料箱的氧含量维持在燃料的燃烧阈值以下。 此时的氧含量通常在9-12%的范围内。通过使用液氮,海伦惰化,氮气惰化燃油系统等方法来实现。美国联邦航空管理局(FAA)规定,民用级别的 OBIGGS 系统要保证油箱含氧量小于 12%。由于航空级别的传感器要求很高,目前普通类型的传感器都无法满足要求,特别是在复杂环境条件下,目前只有氧化锆传感器能满足要求;SST 公司开发的氧化锆传感器,采用固体动态氧测量原理,全不锈钢设计,精度高,完全满足测量需求;特别为客户设计的能承受 30g 加速度的氧化锆探头,更是体现了该系列传感器在航空复杂条件下的卓越性能。SST的法兰型氧化锆传感器KGZ-NGL适用于OBIGGS应用,温度范围为-100 to 250°C。 该气体传感器能够测量氧气浓度范围是0.1% - 100%。波音和空中客车公司都使用该气体传感器来构建OBIGGS技术,以供美国联邦航空管理局(FAA)考虑作为惰化系统的新标准。[url=http://news.isweek.cn/wp-content/uploads/2019/01/KGZ-NGL.png][img=KGZ-NGL,300,300]http://news.isweek.cn/wp-content/uploads/2019/01/KGZ-NGL-300x300.png[/img][/url]KGZ-NGL[b]SST气体传感器[/b]SST专注于气体传感器研发和制造,适用于尖端应用和恶劣条件。 我们的[url=https://www.isweek.cn/2258.html]氧化锆氧传感器[/url]KGZ-NGL对于空气分离模块在燃料箱惰化中的性能至关重要,可确保整个运输过程中的安全条件。[b]ISweek工采网[/b]作为SST 在亚太地区的销售平台,提供SST全线产品。

  • 可燃气体检测仪故障原因及解决方法

    综合可燃气体检测仪产生的故障原因,不排除两点:施工过程不规范和维护保养方面没有做到位。二者都有是导致可燃气体检测仪产生故障的可能性因素。施工过程不规范会在使用过程中使可燃性气体检测仪探测故障。如可燃性气体检测仪未设在设备易于泄漏可燃气体附近,或安装时与排气扇相邻设置,泄漏的可燃气体无法充分扩散到可燃性气体检测仪附近,从而使泄漏险情无法及时被可燃性气体检测仪探知。 于住宅内可燃性气体检测仪应安装在厨房内的燃气管道、灶具附近,当住户使用的是天然气,燃气探测器吸顶棚安装距顶棚300mm以内的地方;当住户使用的是液化石油气,燃气探测器应安装在距地面300mm以内地方。可燃性气体检测仪如不可靠接地,不能消除电磁干扰,必将影响电压,出现探测数据不准的故障。 所以可燃性气体检测仪施工过程中应可靠接地。可燃性气体检测仪及接线端子设于易遭受碰撞或易进水处,造成电器线路断路或短路。焊接必须用无腐蚀的助焊剂,不然接头处腐蚀脱开或增加线路电阻,影响正常探测。探测器勿掉落或抛落于地。施工完后应进行调试,保证可燃气体报警器处于正常工作状态。 对可燃性气体检测仪的维护保养也很重要。由于可燃性气体检测仪工作环境较为恶劣,有许多安装在室外,经常会遭受各种灰尘和污染性气体的袭击,可燃性气体检测仪要检知可燃气体信息,必须使得探测器和检测环境沟通,所以环境中的各种污染性气体和积尘进入探测器是无法避免的,其对探测器造成的工作条件的损坏是客观的存在,如果不注重维护保养,将使可燃气体报警器探测受阻从而导致误差或不探测的情况出现。因而定期对可燃性气体检测仪进行清洗、维护保养是防止发生故障的一个重要工作。 另外要注意的事项是,接地应定期检测,接地达不到标准要求,或根本未接地,也会使可燃性气体检测仪易受电磁干扰,造成故障。防止元件老化起的。从可靠性考虑,同时实践业已证明,可燃性气体检测仪服役期超过10年的系统由元件老化引起的故障趋于增加,因此服役期超过使用规定要求的,应及时更换。

  • 【求助】色谱高手们看看我现在现有设备能不能检测惰性气体啊,万分感谢啊

    中涉及到氙气的浓度检测,具体的气体是70%左右纯氙气和30%的纯氧气混合,实验环境中气体含量会变化,想找时间点抽测浓度及变化,学校实验室仪器的老师也没做过,也不确定能不能做,十分着急 先谢谢各位大侠了 一个关系较好使用比较方便的设备是 安捷伦6820 载气是氮气,有FID氢离子火焰和ECD两种检测器,柱子老师说是非极性柱子具体不知道,进样口老师说的意思是让我买个微量注射器,具体也没见过,[b][u]这样的仪器条件能检测氙气浓度百分比吗? 如果可以需要我再买什么东西吗?[/u][/b]小课题没太多钱 ~:(另外还有两个机器 实在不行也能托人用用 一个是热电非尼根的 一个是5975

  • 【求助】卡式水分仪检测气体中的水分,在通完气体后检测固体物质稳定性就不好了

    现用卡式水分仪检测检测水分,先检测固体中的水分,结果还算比较稳定,现在需要测试气体中的水分,同样体积的气体设定的流速不一样,检测结果相差很大,上千个ppm,这是什么原因啊?在检测完气体后检测固体,和以前同样的条件检测结果稳定性却相差很大,这是什么原因啊?难道我们的KF试剂不能检测气体中的水分?我们的气体是惰性气体,其水分含量也是很低的

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制