当前位置: 仪器信息网 > 行业主题 > >

拉曼光谱原理

仪器信息网拉曼光谱原理专题为您提供2024年最新拉曼光谱原理价格报价、厂家品牌的相关信息, 包括拉曼光谱原理参数、型号等,不管是国产,还是进口品牌的拉曼光谱原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合拉曼光谱原理相关的耗材配件、试剂标物,还有拉曼光谱原理相关的最新资讯、资料,以及拉曼光谱原理相关的解决方案。

拉曼光谱原理相关的资讯

  • 看在线拉曼光谱技术与高分子材料研究的契合点——拉曼光谱监测原理与应用在线技术交流会
    p   曾有研究报告显示,2017-2023年全球过程分析技术市场将以12.9%的年复合增长率增长,预计2023年将达到40亿美元。过程分析设备可以洞察生产线过程中的关键点、产品特性等,实现最高级别的过程质控,可称为整个生产过程的“侦查兵”。随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术市场正在不断增长。 br/ /p p   作为一类优异的在线分析设备,在线拉曼光谱,以其物质指纹谱、检测速度快、无损、多组分、多通道、运行成本低等优点正逐渐广泛地用于制药、石油化工、高分子化工、能源、精细化工、食品等领域。拉曼光谱所能提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。 /p p   其实,早在2001年,FDA就建议要重视在线拉曼光谱等过程分析技术对工艺和生产过程的应用意义。在欧美、日本、新加坡等国家,在线拉曼光谱的过程分析已经成功应用了至少近20年。就国内而言,在线拉曼光谱技术也应用了很多年,但是普及度以及认识度还不够。不过,近几年,随着国内化工、制药等领域日趋激烈的竞争形式,高校科研、制药、化工等领域对在线拉曼光谱的需求日益增多。德国耶拿公司拉曼产品经理王兰芬博士表示,在线拉曼光谱未来一定是一个新的重要发展方向,非常具有发展潜力,该市场在中国每年至少以两位数的速度在递增! /p p   作为全球知名的过程拉曼光谱供应商,凯撒光学系统公司自2016年正式携手德国耶拿分析仪器股份公司进入中国市场以来,一直保持着强劲的发展势头。据王兰芬博士介绍,凯撒拉曼年销售额基本以倍增趋势增长。据悉,目前凯撒公司的在线拉曼产品在高校科研、化工以及制药等领域都具有了一定的市场,比如中科院化学所、中国科技大学、天津大学、中科院固体物理所、中科院青岛海洋研究所等单位的重点实验室已经利用凯撒公司的拉曼光谱仪开展了科学研究 在高分子化工、煤化工以及天然气化工领域,中化泉州、广东炼化、烟台万华、中海油惠州、神华内蒙、星火有机硅等大型化工厂也已经是凯撒公司在线拉曼的用户;另外,在线拉曼在制药领域也具有良好的发展趋势等。 /p p   其中,高分子化工对在线拉曼光谱而言是一个极具潜力的大市场。王兰芬博士解释说,高分子化工市场的重要性不言而喻,一方面,高分子材料与人类生活密不可分,另一方面,高分化工已经成为化学工业的主导产业,产值占整个石油化工的近70%,高分子材料的体积产量已远远超过钢铁和其他有色金属之和。 /p p   高分子材料本身具有非常强的拉曼信号,拉曼光谱可以很好地区分同分异构体,基于此,在线拉曼光谱已经成功用于高分子合成研究、产品质量检测(高分子密度、共聚物组份分析、结晶)、聚合过程监测等。而且,在线拉曼光谱用于HDPE生产装置的工艺方法也写进了高分子著名的工艺专利商CP的工艺包中。在该工艺应用中,可以通过在线拉曼光谱实时控制反应釜中的氢气、乙烯、α-烯烃的浓度,从而控制生产出所期望的具有一定密度以及分子量的聚乙烯。例如,通过实时控制α-烯烃单体的浓度,可以调整HDPE的短支链数量,从而控制HDPE的密度。据悉,基于高密度聚乙烯HDPE的生产工艺优化,凯撒公司已经开发了杜邦、雪弗龙、埃克森美孚公司、泉州石化、广州炼化等众多实际的应用案例。 /p p   为了让更多的同行解拉曼光谱与拉曼光谱在高分子化学与化工的应用,中科院物理所刘玉龙研究员和德国耶拿公司的王兰芬博士携手于3月27日就拉曼光谱原理以及在高分子化学化工的应用进行了报告分享。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 150px height: 206px " src=" https://img1.17img.cn/17img/images/202003/uepic/58499fb6-14b1-44d3-9ddb-9abeef2cd337.jpg" title=" 微信图片_20200331114509.jpg" alt=" 微信图片_20200331114509.jpg" width=" 150" height=" 206" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 报告人:中科院物理所 刘玉龙研究员 /strong /p p style=" text-align: center " strong 报告题目:拉曼散射原理与光谱分析应用 /strong /p p   在报告中,刘玉龙研究员不仅介绍了拉曼散射基本原理与特点,而且就分析拉曼光谱的必要条件,拉曼光谱在材料中的在线分析应用等方面内容进行了详细的阐述。据刘玉龙研究员介绍,大型实验室光谱仪与现场、在线测控实用级光谱仪器或系统,将会将数字化、智能化、高灵敏、高分辨、高速度与光谱及光学成像技术巧妙结合,发展出集成化光谱分析技术,将光谱技术“进化”到既能对物质完成定性、定量分析,又可进行定位分析的新科技,满足新世纪提出的看到物质与生物组织中化学、生化成分分布图等新要求。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/4874cdac-a245-45fe-bc1d-ed6fb1e95561.jpg" title=" 微信图片_20200331114518.png" alt=" 微信图片_20200331114518.png" / /p p style=" text-align: center " strong 报告人:德国耶拿公司的拉曼产品经理王兰芬博士 /strong /p p style=" text-align: center " strong 报告题目:在线拉曼光谱在高分子化学化工中的应用 /strong /p p   王兰芬博士从高分子材料以及生产研究的目的、“RbD”设计理念讲起,介绍了拉曼光谱监测的优势,以及拉曼光谱在高分子化学化工中的应用。报告中,王兰芬博士还总结了在线拉曼光谱仪需要考虑的问题,并针对这些问题介绍了凯撒公司可以提供的在线拉曼光谱新技术及解决方案,如全谱直读的体相全息光栅新技术、轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与智能恒温设计、原位共焦采样技术、多种多样的原位探测光学元件、浸入式采样光学元件设计等。 /p
  • 中南大学拉曼光谱教学实验设备,奥谱天成ATR1200优势中标
    中南大学拉曼光谱教学实验设备,奥谱天成atr1200优势中标!   拉曼光谱是物质的指纹谱,是定性分析的良好方法。技术的发展以及实际应用需求的变化,让拉曼光谱仪逐渐成为分析测试仪器领域的佼佼者。激光拉曼光谱分析是一种非破坏性的微区分析手段,气体、液体、及各种固体样品均不需要特殊处理即可用于拉曼光谱的测定。其主要应用是对各种固体、液态、气态物质的分子组成、结构及相对含量等进行分析,实现对物质的鉴别、定性与某些流体的定量分析。因此,拉曼光谱是化学、材料、生物、信息等专业学科学生必备的技能之一。 奥谱天成是全国领先的拉曼光谱仪制造商,提供从全系列的小型拉曼光谱仪,包括多种手持式拉曼光谱仪、便携式拉曼光谱仪、显微拉曼光谱仪等,在毒品化学品、爆炸物、食品安全、生物医疗等多个领域,得到了广泛的应用。 奥谱天成针对大学教学,结合厦门大学、厦门理工学院、上海大学等多个学校的教学实践,为各高校提供了一套完整的拉曼实验教学系统。atr1200型拉曼实验教学,包含了窄线宽激光器、拉曼探头、制冷型光谱仪以及各种实验用样品、试剂,系统还提供了完整了实验讲义,非常有利于教师们开展拉曼教学工作。 实验目的1) 了解拉曼光谱,掌握拉曼光谱仪的基本原理与结构2) 了解拉曼光谱仪的适用范围及一般应用3) 掌握拉曼光谱仪的使用方法4) 学习使用拉曼光谱仪测量物质的谱线5) 了解显微拉曼光谱,并掌握测试物质组分新技术6) 利用拉曼光谱来识别不同未知物质及其判断物质的浓度实验内容1) 拉曼激光器测试实验2) 拉曼探头原理与使用实验3) 拉曼测试系统搭建实验4) 传感器制冷温度对拉曼信号的影响5) 四氯化碳拉曼光谱测量实验6) 拉曼光谱识别化学样品(测量乙醇、甲醇、工业酒精及食用白酒的拉曼光谱)7) 塑料标样拉曼光谱测量实验8) 标样数据库匹配与鉴别实验9) 对无机盐溶液浓度的定量分析
  • 微型光谱仪之拉曼检测
    1、技术简介  光照射到物质上发生弹性散射和非弹性散射。弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。拉曼效应是光子与光学支声子相互作用的结果。拉曼光谱分析法是基于印度科学家C.V. Raman所发现的拉曼散射效应,对于入射光频率不同的散射光谱进行分析,得到分子振动能级与转动能级结构,并作为分子结构和组成研究的一种分析方法,研究图谱的整体特性,可以鉴别物质。图1 C.V. Raman  散射物分子处于原来电子基态,振动能级图如下图所示。当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态,虚能级上的电子立即跃迁到下能级而发光,即为散射光。图2 散射物分子振动能级图  假设散射物分子回到初始的电子态,则有三种情况。因而散射光中既有与入射光频率相同的谱线称为瑞利线,也有与入射光频率不同的谱线称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。图3 拉曼激发原理图  拉曼光谱检测采用单色激光器照射待测样本,并用光谱仪检测该样本发出的反射拉曼散射光谱,再由计算机对样品发散光谱进行处理分析以计算该样本的组成、含量或属性。图4 拉曼检测原理图  2 、应用说明  拉曼光谱检测技术作为一种新的物质结构鉴定的分子光谱方法,在近几年里得到了非常迅速的发展。拉曼光谱可以表征材料,作为一种快速检测方法,借助检测物的“拉曼指纹图谱”,应用于鉴别,过程处理。与传统的快速现场检测方法相比,拉曼光谱方法具有无需样品前处理,无需破坏样品,检测速度快等优点。但由于拉曼技术本身具有的检测面积小、局部光功率过高等特点,使得拉曼技术在检测混合物、光敏感或热敏感样品时存在很大限制,影响了拉曼技术的实际应用范围。这就需要使用者根据实际检测物质本身的特点,衡量各项参数的平衡,来设计拉曼光谱系统,对于系统而言,选择正确的激光波长,考虑拉曼位移范围和分辨率之间平衡,选择合适的拉曼光谱仪,实现对物质的辨析。  针对特殊的样品测试选择合适的拉曼系统,基于栅格环绕扫描技术,利用其拉曼信号的高信噪比,高灵敏度、高分辨率,更低的激光能量值。将拉曼光谱检测应用在非均一性、不均匀的样品检测中 更低更平均的激光能量,避免了测试样品的损坏。基于单点聚焦技术,利用其拉曼测试系统和细微系统整合的优越性,显微聚焦和测试焦点更好地实现匹配,针对液体和粉末样品,提供不同的激光通道和瓶装测试。  安防检测:违禁品检测,毒品鉴别   基础研究:碳纳米管、石墨烯物质检测   医学诊断:临床医疗、癌症检测与诊断,药物成分分析。  食品安全:农药残留分析,添加剂检测。  3 、典型产品和配置  拉曼光谱检测配置:  1. 光谱仪:  手持式拉曼系统:栅格环绕扫描技术 小巧、手持、便携性 两节5号电池可以工作长达11小时 通过扣除背景的算法更有效地提高了测试结果与数据库的匹配。  手持式拉曼系统:栅格环绕扫描技术 可以测试瓶装等样品 激光测试聚焦可调节 激光、探头、检测器一整套解决方案,并且易使用。  高灵敏度测量的拉曼显微系统:空间光耦合技术并不需要再配置使用显微镜 单点无偏差聚焦技术 配有样品瓶测试基座,提高不同样品检测的灵活性。  3. 拉曼探头  4. 激发光源  5. 采样附件(探头支架等)  6. 光谱仪控制软件  典型配置  典型产品:高灵敏度光谱仪,激发光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 小型光谱仪违禁品检测的应用 图5 小型违禁物光谱检测设备  4.2 便携式拉曼光谱系统用于毒品鉴别   罂粟碱、伪麻黄碱图6 毒品光谱图  4.3 农药残留及非法添加剂的检测 图7 谷物农药残留光谱图  4.4 药物成分分析图8 药物成分光谱图  4.5 制药行业原辅料的检测。图9 透过无色玻璃瓶得到乙醇的拉曼图谱图10 透过棕色玻璃瓶得到苯甲醇和苯酚的拉曼图谱  4.6 碳纳米管、石墨烯等物质的检测图11 碳纳米管、石墨烯等物质光谱图(来源:海洋光学)
  • 这些研究为拉曼光谱实际应用提供新思路 ——第五届拉曼光谱网络会议报告提前看
    作为分子光谱领域最为活跃的仪器类别之一,拉曼光谱的发展一直在吸引业界的目光。一方面,科研级拉曼光谱仪性能不断提升以探索科学前沿;另一方面为了解决实际应用问题,相关仪器及解决方案也在不断提升和完善中。从实用的角度出发,拉曼光谱一直彰显着极具诱惑的发展前景,高灵敏、低成本、快速检测一直都是大家努力的方向。食品农产品、生物医药、环境、材料、石油化工、毒品……甚至是最近比较热门的无创血糖检测等相关的拓展一直都在进行中。当然,从科研走向应用的道路总是充满着挑战,比如SERS体系的可靠性、普适性,分子之间的相互作用,复杂基质的检测等,各位科研专家正在为解决这些问题不遗余力地努力着。第五届拉曼光谱网络会议(iCRS2023)期间,多位专家将现场分享,就拉曼光谱在环境、食品、消费品等多个领域的应用拓展及技术突破等展开探讨,为下一步的工作开展和应用推进提供新思路,点击报名》》》部分报告提前看:西南交通大学 范美坤教授《SERS,从单一化合物的高灵敏度分析到复杂体系的区分和识别》(点击报名 )西南交通大学范美坤教授长期从事环境监测检测技术研究,已主持承担国家级课题6项,获授权发明专利10余项,在国际期刊上发表论文80余篇,2021和2022年度两次荣登斯坦福大学发布的年度科学影响力全球前2%顶尖科学家榜单。本次会议中,范美坤教授将给大家分享《SERS,从单一化合物的高灵敏度分析到复杂体系的区分和识别》的主题报告。华中师范大学 高婷娟教授《土壤重金属与石油类污染物的界面微传感成像》(点击报名 )华中师范大学高婷娟教授研究领域涉及分子内增强拉曼散射、高灵敏快速多色拉曼成像、超容量拉曼编码,以及分子间相互作用、表界面化学反应、细胞生理过程的原位光电测量等。近三年以通讯作者在JACS、ACS Central Science、Chemical Science、Analytical Chemistry、Water Research等化学、环境类期刊发表系列研究论文。重金属和石油烃是典型土壤污染物,严重影响土壤环境质量。研究重金属与石油烃的土水界面微传感成像,有望提供土壤重金属与石油烃的现场快速检测方法,是土壤分析与污染控制领域的迫切需求。本次会议中,高婷娟教授将分享《土壤重金属与石油类污染物的界面微传感成像》主题报告。针对土壤六价铬和土壤铅的研究对象,她提出固相微传感探针的策略,这种策略集土壤六价铬和土壤铅的提取、富集、分离和后续检测于一体;针对土壤石油烃的研究对象,她采用共聚焦显微拉曼成像,观察石油烃污染的土壤地下水界面原位修复动力学过程。中国检验检疫科学研究院、工业与消费品安全研究所 席广成研究员《基于准金属纳米结构的表面增强拉曼光谱分析研究》(点击报名 )中国检科院首席专家席广成研究员,长期从事消费品安全相关研究,在Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed.,等国际期刊发表论文100余篇(其中SCI一区论文40余篇),授权发明专利12件(转化2件),制定国家标准9项,主持应对“真假珍珠粉”、“化妆品纳米粒子”等消费品重大安全事件的技术研发。本次会议中,席广成研究员将分享《基于准金属纳米结构的表面增强拉曼光谱分析研究》。表面增强拉曼光谱(SERS) 具有高灵敏和现场检测等优点,在痕量测定、真伪鉴别等领域具有广泛的应用前景,但仍然存在瓶颈问题束缚了其大规模应用。针对以上问题,席广成研究员研究团队以公共安全检测领域国家重大需求为导向,以发展 SERS 新原理和新方法为目标,开创了准金属 SERS 研究,并取得了系列成果。浙江大学刘湘江教授《柔性SERS传感器》(点击报名 )浙江大学刘湘江教授的工作围绕农业信息智能感知技术与装备的薄弱环节,聚焦研发柔性传感器,突破了作物生理信息的长期活体无损感知(茎流、叶温等)、农产品安全信息的原位快速检测(化学残留、重金属、亚硝酸盐等)的难题,在Science Advances、Advanced Science(IF=17.521)、Advanced Functional Materials、Advanced Optical Materials发表论文多篇。本次会议中,刘湘江教授将围绕《柔性SERS传感器》给大家做分享。 瑞士万通中国有限公司 产品经理 王睿《用于农残检测的表面增强技术》(点击报名 )瑞士万通中国有限公司拉曼光谱产品线产品经理王睿,从事分子光谱技术的产品开发,仪器销售和应用推广工作十余年。在农业、食品、化工、高分子等行业有丰富的产品应用开发和实测经验。从2014年入职瑞士万通中国有限公司,王睿一直负责近红外光谱和拉曼光谱产品的推广工作。 快速检测农药残留一直是政府和企业关心的应用方向。瑞士万通公司在2018年就推出了基于SERS技术的可以稳定分析农药残留的表面增强试剂和试纸。本报告王睿将介绍基于该技术的几项成熟应用,以及相关的光谱仪发展现状。为了分享拉曼光谱技术及应用的最新进展,促进各相关单位的交流与合作,仪器信息网与上海师范大学将于2023年10月24-25日联合举办第五届拉曼光谱网络会议(iCRS2023)。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/icrs2023/
  • 【赛纳斯】拉曼光谱解析“雪糕刺客”真实成分
    “雪糕要尽快吃,要不然就化了!”在消费者日常生活的认知中,雪糕在常温下容易化,买回来的雪糕都会尽快食用。然而,有消费者发现,将某品牌雪糕放在31°C室温下1小时竟然还是固体状。此外,有消费者尝试用打火机测试某品牌生产的海盐椰椰雪糕。从视频中可见,某品牌雪糕产品经打火机点燃后,有黑色物体出现,而雪糕依旧维持固体状。对于某品牌雪糕不易融化问题,消费者质疑,雪糕产品是否过量使用添加剂?室温31℃都不化的雪糕 烧不化的雪糕这些“雪糕刺客”是否真的对得起它们昂贵的价格,我们可以用拉曼光谱解析下成分表,看看它们的构成是否如包装成分表里一样。赛纳斯手持式拉曼检测仪(SHINS-785-Pro)可以对食品饮料里违法添加及成分等进行快速检测,测得的拉曼谱图可与自带数据库或上传云端进行比对,并实时报告成分。基本原理拉曼光谱是通过高能量、窄线宽激光激发样品的拉曼散射信号,利用光纤光谱仪探测接收不同波数的拉曼散射信号。由于拉曼光谱本身具有高特异性,不同物质不同结构的拉曼光谱理论上并不相同,因此拉曼光谱又被称为“指纹光谱”。其由于快速、无损、准确的特点广泛运用在各个领域。解决方案赛纳斯手持式拉曼检测仪(SHINS-785-Pro)体积小,重量轻,可手持,是集智能操作为一体的检测设备,具有检测灵敏度高,检测速度快等特点,并可联网云端进行自定义模型发布,实时传输,安全稳定。 SHINS-785-ProSHINS-785-Pro快速介绍自建库:用户可根据需求自建模型库。激光功率可调节:用户可根据样品情况,自主调节激光功率。用户管理:操作软件自带权限管理,管理员可分级指定用户权限。混合物识别:可以识别混合物中是否含有某种物质。
  • 青岛能源所等发明基于拉曼组原理的益生菌单细胞质检技术
    目前市场上有大量的益生菌品牌和产品,但质量参差不齐,给消费者带来极大困扰,也阻碍了产业的健康发展。此问题的根源在于目前业界缺乏快速、准确、全面、低成本的益生菌产品质检手段。青岛能源所单细胞中心联合中国食品发酵工业研究院、青岛东海药业和青岛星赛生物科技有限公司等,开发了基于拉曼组原理的益生菌单细胞质检技术SCIVVS,为突破这一紧迫的技术瓶颈提供了全新的解决方案。该工作近日发表于iMeta杂志。 基于拉曼组原理发明益生菌单细胞质检技术SCIVVS   益生菌产品的市场规模已近千亿,但是存在大量的“鱼目混珠”现象。其重要原因是益生菌质检的方法学局限性。由于这些方法大多依赖于分离培养或元基因组测序,因此存在耗时长、成本高、难以快速测定细胞活性和代谢活力及其细胞间异质性、复合益生菌产品深度质检困难、流程繁琐、难以自动化等瓶颈性问题。这些局限性导致益生菌产品难以快速、低成本、全面、深度地进行质检,很大程度上阻碍了益生菌产业的健康发展。   针对这一产业瓶颈,青岛能源所单细胞中心张佳副研究员、任立辉高级工程师、张磊博士、公衍海助理研究员等带领的研究小组,联合中国食品发酵工业研究院、青岛东海药业和青岛星赛生物等团队,基于拉曼组原理,开发了一种名为SCIVVS(Single-Cell Identification, Viability and Vitality tests and Source-tracking)的单细胞精度益生菌质检技术体系。针对益生菌产品,SCIVVS首先不是提取总核酸或者进行平板培养,而是提取所有的细胞进行重水饲喂和单细胞拉曼光谱的高通量采集。在每一张拉曼光谱上,利用其指纹区,基于与益生菌单细胞拉曼光谱参照数据库的比对,快速完成每个细胞的种类鉴定环节。通过构建21种法定可食用益生菌的标准菌株拉曼光谱数据库,SCIVVS可实现平均高达93%的分辨准确度。同时,利用其重水利用峰(C-D峰),则可针对每个物种,量化每个细胞的活性、代谢活力等。进而可通过拉曼激活单细胞分选技术,快速获得目标种类或目标代谢活力的单细胞,从而对接下游单细胞全基因组测序或培养。   为了支撑SCIVVS,在国家重大科学仪器研制、国家重点研发计划等项目的支持下,青岛能源所和青岛星赛生物合作研制成功了单细胞拉曼光镊分选仪(RACS-Seq)、高通量流式拉曼分选仪(FlowRACS)等原创仪器产品。运用RACS-Seq,研究人员直接从纯种或复合益生菌产品出发,在5个小时之内,完成了精确到每个物种的活细胞计数、活力定量和活力异质性测量。同时,针对乳酸杆菌、双歧杆菌或链球菌等各种益生菌,均能产出高质量的单细胞基因组(覆盖度可高达99.4%),从而完成精准溯源。   对比目前的益生菌产品质检方法,SCIVVS具有快速、准确、全面、低成本、易于自动化等优势,较传统方法快20倍以上,而成本仅为传统方法的1/10,且能免培养、高精度、自动化、一站式地完成产品中每个物种的活细胞计数、活力定量、活力异质性测量和溯源,有望形成新的技术标准。在此基础上,该合作团队将基于“益生菌单细胞技术联盟(A-STEP)”,联合益生菌产业领军企业,建立一个“标准化”、“一站式”、“公益性”的技术服务体系,为实现从生产端到消费端的益生菌产品质量规范化,提供一个原创的、切实可行的解决方案。   该工作由单细胞中心徐健、中国食品发酵工业研究院姚粟、青岛东海药业崔云龙等主持完成,得到了国家自然科学基金、山东省自然科学基金和国家重点研发计划青年科学家项目等项目的支持。
  • 【拉曼学院最前线】SERS/TERS成热点 拉曼光谱未来大有可为
    如果说之前的拉曼基础知识是一道&ldquo 开胃小菜&rdquo ,那昨天我们就迎来了拉曼学院的&ldquo 正餐&rdquo 。 SERS/TERS成热点 &ldquo 借力思维&rdquo 突破检测局限 来自厦门大学的任斌教授一直从事拉曼技术的研究,他在表面增强拉曼光谱(SERS)和针尖增加拉曼光谱(TERS)技术方面有着很深的见解。他从两种技术的原理出发,介绍了它们的技术特点、仪器和实验方法,以及当前新的应用。在任教授的系统介绍后,李剑锋教授讲解了他们课题组发展的壳层隔绝纳米粒子增强拉曼光谱(SHINERS)技术,它通过在普通基底外面镀上一层铂铁等过渡金属来增强非(弱)SERS活性材料表面物种的信号,突破了常规SERS技术中金银铜基底的局限性,进一步扩大了SERS在电化学、催化等领域的应用,这种&ldquo 借力思维&rdquo 的创新精神,非常值得大家借鉴。TERS技术则非常适用于检测空间分辨率比较高的物质,王翔博士阐述了TERS当前的优势、面临的挑战以及在材料、物理等领域的应用。 国立台湾大学的王俊凯教授上一次来上海还是10年前的事,他非常珍惜此次机会,在会上与大家探讨了其课题组使用的一种特殊SERS基底制备技术(在AAO纳米通道里生长银纳米颗粒),以及它在生物、临床、食品、水分析、安全等领域的应用,该技术也引起了广泛的兴趣。 拉曼需越走越&ldquo 端&ldquo 如何从科研进入市场化 作为压轴出场的田中群院士则根据自己40年的拉曼技术研究经验,给大家总结了SERS/TERS是什么?解决什么问题?在什么时候使用TERS或SERS技术?以及SERS在食品安全、油类、水环境、毒品检测等方面的应用。此外,田院士也谈到了当前拉曼技术的瓶颈,比如有没有更好的技术来分析分子间相互作用比较弱的样品?如何提高灵敏度,达到更高的检测限? 当然,田院士也提到了未来拉曼光谱仪的发展,是不是可以从科研领域进入市场化?甚至是步入到日常的家庭生活中。他对各位学者的期许也说出了拉曼学院的心声:要大胆尝试,去挑战更多的&ldquo 不可能&rdquo 。 更多活动信息,请关注我们官方平台: 邮箱:info-sci.cn@horiba.com 新浪官方微博:HORIBA Scientific 微信二维码:
  • 学术界的福利:《拉曼光谱的生物医学应用》教材即将面世
    第三届全国生物医学拉曼光谱学术会议刚刚在上海圆满落幕。会议期间,一场小型的研讨会也如期悄然进行——这场研讨会围绕着《拉曼光谱的生物医学应用》教材而展开。《拉曼光谱的生物医学应用》教材编写研讨会现场国家把人民健康放在优先发展的战略规划,加快推进健康中国建设的举措对培养创新工科人才提出了更高要求,迫切需要教材创新。当前,拉曼光谱技术在生物医学领域的应用正处于临门一脚的关键时间点,若干相关技术在快速发展和产业化阶段。但是,我国拉曼光谱的研究自上世纪九十年代才较广泛开展,相关的中文教材仍较少,主要的教材包括1998年出版的《拉曼光谱在化学中的应用》、2005年的《拉曼光谱及其在结构生物学中的应用》和2008年的《拉曼光谱的分析与应用》等,出版年代都比较久远,内容无法涵盖快速发展的技术和应用。目前,国内尤其缺乏聚焦“拉曼光谱技术在生物医学领域的研究和应用”的教材。因此,自2022年起,上海交通大学叶坚教授开始倡导并提议编写一本《拉曼光谱的生物医学应用》教材,联合厦门大学任斌教授、上海师范大学杨海峰教授共同组建教材编写核心团队。截止目前,教材编委会有34名来自各大院校的拉曼领域知名专家学者加入。在2023年光散射会议期间,编委会已组织召开第一次线下会议,会议确定了各章节编写规范和大纲。此次召开的教材编写研讨会旨在进一步协调各章节内容,推进教材整体有序发展。3月28日晚8点,教材编写研讨会如期召开。此次会议议程分为三个部分,首先由叶坚教授介绍教材的基本情况。据叶老师介绍,本教材旨在传递最基础、最翔实、最前沿的拉曼光谱学知识,有利于研究生在理解其技术基础应用的同时、了解目前的最新国际学术前沿进展,从而拓宽基础、开阔思维、发挥专业自主性和创造潜能、优化知识结构。教材全书共13章,将系统阐述拉曼光谱的基础理论、仪器和检测方法、数据处理等方面的内容,并介绍生物医学各领域的拉曼光谱应用。这本教材面世之后,将适合从事于生物医学工程、纳米光子学、生物光子学、分析化学、应用光学等专业的相关学者、研究人员、技术人员、研究生和本科生参考使用。上海交通大学叶坚教授介绍教材的基本情况教材编委会成员林俐老师介绍教材编写规范和进度。她提到,教材撰写应该以介绍原理和方法学为主,不涉及太多应用,尤其避免写成文献综述的形式。此外,本教材已获教育部生物医学工程专业教指委十四五规划教材立项、并获交大出版社的基金支持,计划于今年完成统稿和提交出版社。随后,各章节的负责老师依次发言、介绍本章节的推进情况。教材将首先阐述“拉曼光谱的基本原理”;随后,全面介绍拉曼光谱的仪器和检测方法、非线性拉曼光谱及多种增强光谱技术、数据挖掘处理等方面的内容;在生物医学应用方面,教材将全面介绍拉曼光谱在体液、病原体和微生物、细胞、组织、活体、药物分析等各个领域的检测应用,并着重介绍获取高质量样本拉曼光谱的方法学;最后,教材还将介绍拉曼光谱与其他技术的联用、并对拉曼光谱在生物医学领域应用和发展提出展望。刘玉龙教授介绍”拉曼光谱的基本原理”章节刘国坤教授介绍“拉曼光谱中的数据挖掘”章节王平教授介绍“非线性拉曼光谱技术”章节韩晓霞教授介绍“生物分子的拉曼光谱“章节叶坚教授介绍“表面等离激元增强拉曼光谱”以及“拉曼光谱在体液检测中的应用”章节崔丽教授介绍“拉曼光谱在微生物和病原体检测中的应用”章节徐抒平教授介绍“拉曼光谱在细胞检测中的应用”章节季敏标教授介绍“拉曼光谱在组织检测中的应用”章节林俐助理教授介绍“拉曼光谱在活体检测中的应用”章节陆峰教授介绍“拉曼光谱在药物分析中的应用”章节会议最后,各章节的其他参与专家也纷纷发表看法。厦门大学吴德印教授提出可以将生物分子的光谱指认与数据挖掘相结合,提高指认的准确性;中南大学张志敏教授虽未亲临现场,他撰写的化学计量学分析部分,详细地介绍了光谱预处理、谱库检索、化学模式识别和模型评价等内容,为数据挖掘奠定了良好基础;厦门大学王翔教授表示已完成表面等离激元纳米材料模拟仿真的内容撰写,从麦克斯韦方程组的基本形式出发引导读者一步步推演;中科院的宋一之教授和付钰教授分别完成了拉曼光谱用于“抗生素药敏快速检测”和“微生物检测”的内容,是细菌拉曼检测方面的重要补充;中科院杨勇教授也将参与拉曼光谱在临床病原体和微生物检测应用的内容撰写;武汉纺织大学沈爱国教授将补充沉默区拉曼信号分子和表面增强拉曼光谱相结合的最新进展;暨南大学周海波教授参与撰写“拉曼光谱药物分析”的章节,补充药物代谢分析等相关内容;徐蔚青教授提出将推动教材仪器章节的实验设计,将其与多功能拉曼光谱教学仪器创新结合起来,促进实验与教学的联动。本次研讨会气氛热烈,讨论踊跃,不仅加深了与会者对教材基本概念的理解,也为各章节之间的内容协作奠定了坚实的基础。教材讨论环节当晚10点,教材编写研讨会在众人的热烈讨论声中落下帷幕,教材编委会专家合影留念。研讨会的成功召开不仅展现了拉曼光谱在生物医学领域的发展前景,而且影响深远,将推动该领域教材的飞速发展和创新!教材编委会专家合影留念
  • 2019年爱丁堡技术研讨会-稳态/瞬态光谱及拉曼光谱——上海首站成功举办
    为了更好的为爱丁堡用户提供服务,促进爱丁堡仪器的应用交流,天美公司于2019年10月14日在上海大学材料学院会议中心拉开了稳态瞬态光谱及拉曼光谱的巡回技术研讨会的帷幕。首站上海研讨会吸引了众多上海高校的老师和同学们参加。会议首先由天美公司华东区经理吴雪梅女士对参会的各位老师表示热烈欢迎,并介绍了天美公司三十多年的发展悠久历史以及天美公司分析产品线,使参会老师及用户更多的了解天美公司旗下产品及发展,为用户提供更好的服务。爱丁堡仪器公司是时间分辨荧光光谱仪、激光和气体传感器、激光器的世界领先制造商,并与2019年全新重磅推出拉曼光谱产品。会议期间由来自爱丁堡仪器公司的产品经理Johnny Bray先生介绍了2019年全新推出的显微共焦拉曼光谱仪RM5新品。RM5是一款紧凑型全自动显微拉曼光谱仪,可满足科研及分析工作的需求。RM5具有市场上独一无二的真共焦设计,能实现超高的光谱分辨率、空间分辨率和灵敏度。配置灵活,支持包括Mapping功能 、全自动样品台、偏振拉曼以及外置相机等多种附件和功能的实现,并且均可通过Rmancle软件直接控制(包括设置,测试及数据分析等)。同时,来自爱丁堡仪器的应用专家Stuart Thomson博士围绕着共聚焦显微拉曼光谱在科学材料领域应用的优势以及具体热点应用展开。如石墨烯材料的研究,TMD二维材料、半导体材料以及SERS等应用热点进行报告。此外,来自天美公司分析市场部的产品经理张轩先生介绍了爱丁堡稳态瞬态荧光光谱仪及高端耦合和相应的热点应用,让用户充分了解自己仪器配置的同时,还可以让大家了解到耦合不同的附件可以扩展出多种功能,用到更多热点研究当中。同时,张轩先生还介绍了瞬态吸收光谱的基本原理和应用,瞬态吸收技术与荧光技术在原理和应用上均不相同,通过详尽的介绍,使得参会老师对瞬态吸收技术以及爱丁堡LP980激光闪光光解仪均有一定的了解。会议上,与会老师积极提问,共同交流探讨。此次研讨会圆满举办,参会老师及用户对天美与爱丁堡仪器公司组织本次会议高度评价。天美公司作为全球科学仪器的知名供应商和科研工作的助手,一直致力于不断提升产品质量,为客户提供更加优质的服务。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • 拉曼光谱无创血糖检测距离实用还有多远?
    近日,多家媒体就三星及苹果公司正在研发的可检测血糖的智能穿戴设备进行报道,据悉,这两家公司最新款的智能手表可能将借助光学传感器,采用拉曼光谱法进行人体血糖无损检测。消息一出,引来多方关注和议论,为此我们采访了多年从事光学无损检测相关研究的清华大学物理系联合培养博士后王成铭,请其为我们答疑解惑。王成铭博士  王成铭,物理学博士,现任北京鉴知技术有限公司光学工程师,毕业于清华大学物理系低维量子物理国家重点实验室,清华大学物理系联合培养博士后。多年从事光学相干层析成像(OCT)临床应用方向,有丰富的临床医学合作经验,就光谱方法在血糖检测中的应用做过深入研究。  仪器信息网:采用拉曼光谱法检测血糖是否可行?  王博士:方法原理是可行的,使用激发光照射皮肤后收集得到的拉曼光谱(经皮测量)可以反映出皮肤组织中的许多化学物质,例如真皮内的胶原蛋白,真皮下脂肪中的三油酸甘油酯,表皮角质层的胶质蛋白,皮肤血管中的血红蛋白,以及分布于组织液和血液中的葡萄糖等。在血糖无创检测的诸多光学方法之中,拉曼光谱法因其能检测葡萄糖的特征谱,是未来最有希望实现高精度测量血糖浓度的方法之一。拉曼经皮测量无创血糖检测示意图  Pandey, Rishikesh, et al. "Noninvasive monitoring of blood glucose with raman spectroscopy." Accounts of chemical research 50.2 (2017): 264-272. 葡萄糖分子位于皮肤真皮层中的组织液与血液中,葡萄糖的浓度可从其产生的拉曼光谱信号推断。  仪器信息网:请介绍目前拉曼光谱法检测血糖的最新研究进展?  王博士:麻省理工学院(MIT)在使用拉曼光谱测量无创血糖已研究了20多年,他们系统研究了皮肤拉曼光谱的成分、经皮血糖探测的定量化分析和矫正算法、动物血糖测量临床实验等等。去年三星和MIT研究人员在SCIENCE ADVANCES杂志上发表了最新的无创血糖检测的研究,通过对猪的活体葡萄糖钳制实验,从猪耳的拉曼信号图中直接观测到了葡萄糖的拉曼特征峰及其随血糖浓度的变化,这终结了长久以来关于拉曼光谱测量得到的是否是真实的葡萄糖浓度信号的争论,也为这项技术的应用带来一大突破。  除MIT外,还有一些公司曾经或正在尝试将拉曼血糖检测技术产品化,包括C8 Medisensors,Diramed, LLC和RSP Systems等。C8 Medisensors公司曾推出的可穿戴拉曼无创血糖检测设备  仪器信息网:拉曼光谱法检测血糖在实际应用中还有哪些问题亟待解决?  王博士:虽然利用葡萄糖的多个拉曼特征峰与皮肤组织中的其他物质信号峰的差异可做定量分析,但这一研究距离实际应用仍有一定的距离,主要有以下几个难题:  ①葡萄糖浓度低信号弱,并且有可能被其他物质的拉曼信号掩盖和干扰,如真皮层的胶原蛋白和真皮皮下脂肪的三油酸甘油酯,二者合计贡献了超过90%的皮肤拉曼光谱信号。  ②经皮测量还需要解决皮肤的荧光信号干扰,激发光功率的皮肤安全剂量限制以及皮肤表皮层黑色素对激发光和拉曼光的吸收效应等等问题,此外,不同种族之间肤色的差异,加大了这项技术的应用难度。  ③为解决以上两点问题,必然需要使用极高灵敏度的探测器,以及较长的积分时间,这给仪器尺寸及使用便利度带来挑战。  仪器信息网:据悉,目前已经有一些厂家在进行基于拉曼光谱原理的血糖仪器的研发,您认为可行性如何?有什么新的进展?  王博士:最近,有报道称三星和苹果将在其智能可穿戴设备上集成拉曼无创血糖检测技术。三星近几年和MIT研究组合作,从发表的公开学术文章看,已经进入临床实验阶段。曾有报道称苹果公司招募过C8 Medisensors公司的前员工,以此猜测苹果很有可能在继续发展可穿戴拉曼技术的路线,但具体进展不得而知。  虽然基于拉曼技术的无创血糖监测仪器在原理上是可行的,并且在过去十多年内虽然有很多拉曼血糖检测的学术文章报道,检测精度在不断提高,但尚未有成功的获得医疗器械资格的仪器出现,说明相关产品研发的难度确实较大。  仪器信息网:您对可检测血糖的智能手表这项技术的未来发展如何看待?  王博士:如上一个问题所讲,这个技术本身存在一定的技术难度,并且在可穿戴设备上集成低功耗的小型化拉曼光谱仪在工程上的难度也较大,但随着深度学习技术的飞速发展和大数据的不断积累,未来基于卷积神经网络的算法可能会替代当前拉曼葡萄糖浓度直接量化算法或者回归量化算法,使得智能穿戴设备的高精度无创血糖测量成为可能。  附:王成铭博士讲座回顾:《光学无创技术在临床检测中面临的挑战与未来》  在临床医学实践中,医疗影像(MRI、超声、CT)和病理切片对疾病的诊断起着至关重要的作用,而基于光与生物组织的散射、吸收、相干、偏振效应的光学无创方法,很有希望成为沟通影像学和病理学之间的重要桥梁。本次会议报告对光学无创方法进行概述,着重探讨其在实际临床应用中面临的困难和挑战,从发展的角度探讨技术的未来发展趋势和临床应用前景。
  • 增强基元的研究推动拉曼光谱向更深层次发展
    仪器信息网讯 2014年7月28日,由HORIBA Scientific(Jobin Yvon光谱技术)主办的2014年第一届拉曼学院在上海大学开课,来自全国各科研院所、高校的老师、学生及HORIBA拉曼产品的代理商200多位代表参加。   在第二天的课程中,&ldquo 拉曼增强&rdquo 是提到的最多的一个词:为什么要增强、增强的手段和机理、增强的应用等。   大家都知道,自1974年Fleischmann 等人第一次在吡啶吸附的粗糙银电极上观察到表面增强拉曼散射(SERS)信号以来,SERS的研究得到了快速的发展。由于SERS克服了传统拉曼光谱与生俱来的信号微弱的缺点, 可以使得拉曼强度增大几个数量级。   基底的制备在拉曼增强的研究中起到至关重要的作用,在今天的报告中,厦门大学的任斌教授从基本的原理出发详细介绍了增强基元(增强基底或者针尖)的制备方法,可以说增强基元制备方法的每一次进步和革新对拉曼增强的研究来说都起到极大的推动作用。据介绍,从最初的电化学粗糙/沉淀、真空沉淀方法,到纳米粒子的合成(单分子SERS),SERS的研究取得了突破性的进展;之后,壳层隔绝纳米粒子增强拉曼光谱(SHINERS)的研究又进一步扩大了SERS的应用对象;此外,针尖增强拉曼光谱(TERS)技术提出后也引起了大家的关注,并在基础研究领域和工业应用领域得到了广泛的应用。   为了拓展SERS在表面科学中的应用,需要从没有或者只具弱SERS效应的非金、银、铜材料表面以及光滑甚至原子级平整的单晶模型体系获得拉曼信号。为了解决该问题,就需要借助金或银强的电磁场增强效应来增强非(弱)SERS活性材料表面物中的信号,这是一种&ldquo 借力&rdquo 的思维。厦门大学李剑峰教授课题组从&ldquo 借力&rdquo 的思维出发,发展了壳层隔绝纳米粒子增强拉曼光谱(SHINERS)技术。据介绍,该项技术具有很高的灵敏度,甚至只要将合成的具有超薄二氧化硅壳的金纳米粒子直接洒在待测样品的表面就可以达到预期的实验效果。 任斌 教授 报告:表面增强拉曼光谱和针尖增强拉曼光谱-从原理,实验方法到应用 李剑锋 教授 报告:表面增强拉曼光谱:从&ldquo 借力&rdquo 思维到壳层隔绝纳米粒子增强拉曼光谱   作为一种强大的表面表征技术,TERS可以达到10nm的空间分辨率和检测灵敏度,而且可以同时得到表面的形貌信息和化学指纹信息。厦门大学的王翔博士在报告中详细介绍了针尖增强拉曼光谱的发展以及在材料、物理、化学和生命科学等领域的应用概况。   此外,国立台湾大学的王俊凯博士还介绍了基于二维表面等离基元基底的拉曼增强效应以及基于拉曼增强的快速临床微生物检测平台等相关的研究成果。(撰稿:叶建) 王翔 博士 报告:针尖增强拉曼光谱的发展和应用 王俊凯 博士 报告:(1)基于二维表面等离基元基底的拉曼增强效应 (2)基于拉曼增强的快速临床微生物检测平台
  • 赋能生物医药 拉曼光谱这些新方法/新应用极具潜力——第五届拉曼光谱网络会议报告提前看
    作为一种无创、快速、非损伤性的分析方法,拉曼光谱正逐渐成为生物医学领域中不可或缺的技术之一,在生物大分子(蛋白质、核酸等)及单细胞代谢研究,生化分析、疾病检测及诊断、药物检测及分子相互作用研究等多方面都彰显了极具诱惑的应用前景。相关论文信息显示,目前拉曼光谱分析技术已经在乙肝、登革热、阿尔茨海默症、肿瘤等疾病诊断方面进行探索。同时,拉曼光谱分析的对象,也不止是血清样本,还可以是唾液、尿液、人体分泌物甚至是活体组织等。不过,现阶段,拉曼光谱在医学领域的应用还不完善,还有很多亟待解决的问题。基于此,近年来,越来越多的专家在开展相关的课题攻关工作,为药物研发和疾病诊断等提供越来越深入的潜在方法和理论依据。第五届拉曼光谱网络会议(iCRS2023)期间,多位专家将现场分享,就拉曼光谱在生物和医学领域的应用展开探讨,点击报名》》》部分报告提前看:武汉纺织大学 沈爱国教授《高特异性SERS生物分析》(点击报名)武汉纺织大学生物工程与健康学院沈爱国教授,主要从事面向生命健康、环境和食品安全的生化传感、多光谱成像和仪器研制以及文物科技考古等领域的研究工作。先后主持1项国家重大科学仪器设备开发专项子项目,5项国家自然科学基金项目,1项中石油科技创新项目和2项国家重点实验室开放基金项目;参与1项国家自然科学基金仪器专项重点项目和1项国家重大研究计划培育项目。迄今已在Journal of the American Chemical Society, Angewandte Chemie International Edition, Advanced Functional Materials, Analytical Chemistry和Chemical Communications等杂志上发表SCI论文100余篇,他引2800余次,H因子35。特异性是复杂样品精确定量分析的先决条件。沈爱国教授的报告针对贵金属和无机半导体SERS基底的痼疾以及当前SERS检测方法鲜少商业化应用的现状,从SERS 识别或量化复杂体系中分子/分子集群的直接或间接测量的一般性原理入手,探讨标记、赋能、响应和锁定四种路径策略提高SERS生物分析的思路、原理、分子设计、材料制备和应用领域。本报告介绍的重点将聚焦响应型SERS和有机表面增强拉曼散射(OSERS)两种测量技术,它们的检测优势、具体应用场景和未来的发展趋势等。海军军医大学 陆峰教授《药物分子间相互作用研究新方法》(点击报名)海军军医大学陆峰教授,从事药物/生物的谱学研究20余年,近年致力于药物/毒物分析以及药物分子间相互作用研究的新原理、新方法、新技术、新产品等基础与应用研究。近五年主持国家科技部重大新药创制科技重大专项、国家自然科学基金、国家科技部重点研发计划、军队生物安全重点专项等10余项课题。在Anal Chem、Sensor Actuat B、中国科学等期刊发表论文90余篇,授权国家发明专利30余项。获中国发明协会发明创业奖创新一等奖、上海市科技进步三等奖、中国药学会科学技术三等奖、上海市优秀教学成果一等奖等。药物分子之间特定的相互作用既是全面了解细胞过程和潜在疾病治疗的基础,也是生物传感器检测目标分子的基础。分子相互作用研究是药学重要的研究领域之一,其研究方法也一直是国内外众多生命科学家关注的重要工具之一。本报告,重点介绍了表面增强拉曼光谱法(SERS)、生物膜干涉法(BLI)、分子动力学模拟(MD)及其协同方法,并初步应用于药物-核酸适配体、生物毒素药物-核酸适配体、siRNA-药物相互作用等研究对象。三种方法在研究分子间相互作用方面各有所长,可以发现互作表象、定量描述强度、揭示分子机制,有望成为阐明其分子机制的得力工具。吉林大学 韩晓霞教授《蛋白质拉曼光谱:从结构表征到功能探测》(点击报名)韩晓霞教授,2014年入职吉林大学超分子结构与材料国家重点实验室。迄今为止已在Nat. Rev. Methods Primers、Angew. Chem. Int. Edit.、Nano Lett.、ACS Nano等学术期刊发表论文100余篇,参与撰写英文专著4部,获省部级奖励4项,主持国家自然科学基金5项。目前研究兴趣主要集中在拉曼光谱在生命科学领域的应用研究。蛋白质是生命活动的主要承担者,研究蛋白质的结构和功能对于理解生命过程及其机理具有重要意义。快速灵敏的蛋白质鉴定和结构表征技术是蛋白质组学和生物医学迅速发展的关键。韩晓霞教授课题组以表面增强拉曼光谱(SERS)为主要研究手段,建立了一系列蛋白质标志物的检测方法,推动了SERS在生物医学领域的应用。近几年他们探索了凋亡信号通路中蛋白质–配体间的相互作用及其调控细胞凋亡的分子机制,阐明了关键调控因子在线粒体内以及线粒体–内质网互作调控细胞凋亡过程中所发挥的重要作用,为癌症靶向治疗相关的促凋亡药物的设计和筛选提供了实验方法和理论依据。上海师范大学刘新玲 副教授《表面增强拉曼光谱法检测唾液中D型氨基酸标志物》(点击报名)刘新玲,上海师范大学化学与材料科学学院教师,主要从事拉曼光谱和手性材料研究。拉曼光谱是一种分子指纹光谱分析方法,在分子检测中具有独特优势。然而,拉曼光谱法难以直接区分手性分子对映体。本研究通过引入手性选择剂,发展了几种用于手性分子识别的表面增强拉曼光谱分析方法,并用于检测唾液中D型氨基酸,通过临床唾液样本分析,发现胃癌患者中D氨基酸浓度显著高于非胃癌患者,为胃癌无创诊断提供了一种潜在方法。上海交通大学生物医学工程学院副院长 叶坚教授《Volume-active SERS nanoprobes for bright and supermultiplexed bioimaging》(点击报名)叶坚教授上,海交通大学生物工程学院副院长、上海交通大学医学院附属瑞金医院“广慈教授”、上海交通大学医学院附属仁济医院兼职研究员,国家自然科学基金委优秀青年基金获得者。目前的主要研究方向是等离激元纳米材料和拉曼光谱(表面增强拉曼光谱、缝隙增强拉曼探针)的生物医学应用。在Nature Communications、Nano Letters、ACS Nano、Small、Biomaterials等期刊上共发表论文70多篇,被引用次数近3000次,H因子为30。曾被ACS Nano期刊邀请撰写Perspective文章一篇,被邀请为Springer出版社撰写英文专著一章。本次会议中,叶坚教授的报告题目是《Volume-active SERS nanoprobes for bright and supermultiplexed bioimaging》。雷尼绍(上海)贸易有限公司 李兆芬 高级工程师《雷尼绍拉曼在生物医药领域的最新应用进展》(点击报名)李兆芬,现任雷尼绍光谱产品部应用工程师,主要负责拉曼技术在各个领域的应用开发及使用,拥有多年的拉曼光谱分析测试经验,具有丰富的理论知识及测试技巧,致力于拉曼光谱在各个领域应用解决方案开发和推广。多次协助老师在Nature,Advanced material,等期刊发表论文。显微共焦拉曼光谱系统因为其无需前处理,无损,快速,准确等优异的性能,受到各个领域科研人员的广泛关注,在生物和制药领域分析中也有其独特的优势,例如可以直接对活的细胞等进行检测,可以通过拉曼成像给出药物的工艺等。本次报告就Renishaw拉曼光谱仪在生物以及制药领域中最新的应用做简单的分享。安捷伦科技(中国)有限公司分子光谱产品工程师 裴金菊《空间位移拉曼和透射拉曼在制药上的应用》(点击报名)裴金菊,安捷伦分子光谱产品工程师,2012年毕业于武汉大学化学学院,研究生课题是拉曼等分子光谱技术新型分析方法开发,毕业后一直在国际知名的仪器公司从事分子光谱的应用开发与支持工作,2017年加入安捷伦科技,主要负责红外、紫外、拉曼等分子光谱在制药/生物制药行业的应用开发和技术支持工作。空间位移和透射拉曼均被最新中国药典收录,USP1858重点介绍药厂正在使用的三大拉曼之一——空间位移拉曼,独具直接穿透不透明外包装鉴别原辅料的功能,加速原辅料鉴别放行,解决原辅料100%鉴别最大的痛点。透射拉曼,穿透整个样品,结合化学计量学算法,无需前处理,无损、快速定量检测片剂、胶囊、粉末等样品中的活性成分含量。 蔚海光学仪器(上海)有限公司 应用主管 卢坤俊《海洋光学拉曼解决方案及应用分享》(点击报名)卢坤俊,现任海洋光学亚洲公司应用工程师主管,主要负责光谱仪相关产品的技术支持与光谱解决方案的应用开发工作,有着10年以上的环境、智能农业、化工、消费电子、半导体及生命科学领域的光谱应用背景。本报告将介绍海洋光学公司及客户合作模式,并分享了海洋光学微型光谱仪在拉曼方向的各类应用,包括生物医学、食品安全、制药、安检刑侦以及化工领域。另外,报告还将分享海洋光学在拉曼方向的解决方案模式,包括模块化拉曼、手持式拉曼、便携式拉曼、显微拉曼等。为了分享拉曼光谱技术及应用的最新进展,促进各相关单位的交流与合作,仪器信息网与上海师范大学将于2023年10月24-25日联合举办第五届拉曼光谱网络会议(iCRS2023) 。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/icrs2023/
  • 以标准“撬”市场 拉曼光谱应用拓展能否“快马加鞭”
    对科学仪器及分析测试行业而言,标准的重要性毋庸置疑。相关标准的制修订和推行对仪器技术及分析方法的市场推广具有非常重要的意义,特别是对市场活跃度比较高的、正在发展中的仪器类别而言,标准在市场中的指导价值也愈发凸显。  作为分子光谱领域最具发展前景的仪器类别之一,拉曼光谱仪器技术以及相关应用的发展一直是大家非常关注的话题。多年以来,虽然拉曼相关的研究很多,从业群体也在不断壮大,但是由于拉曼光谱相关的仪器评价及应用标准等还不够完善,导致市场上拉曼光谱仪的技术性能和产品质量良莠不齐,相关的应用推广还存在不少困难,这也给拉曼光谱仪的生产、使用和市场推广带来了不利影响,对其进一步的推广和应用造成了一定程度的阻碍。  不过,近年来,拉曼光谱相关的标准已经得到了明显的改观,并有加速的趋势。据不完全统计,目前拉曼光谱相关的国家标准有10项,行业标准有8项,地方标准有4项。另外,一系列的团体标准也已经发布实施。  一方面,相关仪器及分析方法标准出炉,让市场有“规”可寻!  特别值得一提的是,我国首次制定的《拉曼光谱仪通用规范》(GB/T 40219-2021)将于2021年12月1日正式实施。本标准的制定将结束国内外没有拉曼光谱仪标准的历史,其发布实施不仅规范了拉曼光谱仪生产厂家的生产检验标准,使得进入市场的产品品质更有保障,促进国内拉曼光谱仪产业更健康有序的发展,同时也提高了与国际同类产品的整体竞争水平。  2020年10月9日,教育部办公厅印发的30个教育行业标准中,《JY/T 0573-2020激光拉曼光谱分析方法通则》将代替JY/T 002—1996《激光喇曼光谱分析方法通则》,当年12月1日实施,这也是该标准实施20多年来的首次修订,吸引业界很大关注。新《通则》对仪器部分以介绍通用原理为主,不涉及具体型号仪器的结构和技术指标,其中的术语、校准器具与材料、及拉曼光谱定量分析方法借鉴了美国试验与材料协会(ASTM)标准和日本工业标准(JIS)相关条款的部分内容。  此外,2018年4月15日,由福建省计量科学研究院起草的《便携式拉曼光谱快速检测仪校准规范》JJF (闽) 1085-2018正式批准发布,2018年6月15日起实施,本规范为首次制定 2015年,国家质量监督检验检疫总局还发布了《拉曼光谱仪校准规范》(JJF 1544-2015),为拉曼光谱仪的校准提供了规范准则。  以上相关标准/规范等的发布实施,让拉曼光谱仪器/分析方法有“规”可寻!拉曼相关国家标准序号标准编号标准名称发布日期实施日期1GB/T 40069-2021纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法2021-05-212021-12-012GB/T 40219-2021拉曼光谱仪通用规范2021-05-212021-12-013GB/T 39540-2020页岩气组分快速分析 激光拉曼光谱法2020-11-192021-06-014GB/T 38569-2020工业微生物菌株质量评价 拉曼光谱法2020-03-312020-03-315GB/T 37984-2019纳米技术 用于拉曼光谱校准的频移校正值2019-08-302020-03-016GB/T 36705-2018氮化镓衬底片载流子浓度的测试 拉曼光谱法2018-09-172019-06-017GB/T 36063-2018纳米技术 用于拉曼光谱校准的标准拉曼频移曲线2018-03-152018-10-018GB/T 34899-2017微机电系统(MEMS)技术 基于拉曼光谱法的微结构表面应力测试方法2017-11-012018-05-019GB/T 33252-2016纳米技术 激光共聚焦显微拉曼光谱仪性能测试2016-12-132017-07-0110GB/T 32871-2016单壁碳纳米管表征 拉曼光谱法2016-08-292017-03-01(备注:以“拉曼”为关键词搜索的不完全统计)  另一方面,一系列应用标准发布实施,推动应用深度拓展!  随着仪器技术的进步以及相关应用的深入拓展,拉曼光谱相关的应用标准近年来陆续出台。比如2021年即将实施的《纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法》规定了使用拉曼光谱测量石墨烯相关二维材料层数的方法,为利用拉曼光谱法进行机械剥离方法制备的石墨烯薄片层数测量提供科学可靠的依据以及标准的实验方法,促进拉曼光谱在纳米技术领域及石墨烯相关二维材料产业中的推广应用,并为石墨烯相关二维材料的生产和研究提供技术指导。  激光拉曼光谱法作为气相色谱法后新兴的组成分析方法,具有分析速度快的技术优势,能满足页岩气勘探开发过程中的气质快速分析需求。《页岩气组分快速分析激光拉曼光谱法》(GB/T 39540-2020)将给页岩气的快速检分析提供更为方便的检测方法。  工业菌株是工业生物技术的关键和核心,菌株的质量评价在选育和投料过程中都不可或缺,但目前菌株评价方法大都包括生物量培养累积、目标代谢物提取和检测等繁琐的过程,评价周期长,不仅不利于工业菌株的快速筛选,而且延迟了生产的投料过程。《工业微生物菌株质量评价拉曼光谱法》(GB/T 38569-2020)规定了采用拉曼光谱评价工业微生物菌株质量的标准方法和流程,适用于发酵工业和基于微生物生物制造领域工业微生物(大肠杆菌、酵母等)的质量评价。  制药领域一直是拉曼光谱“攻坚”的领域。《中国药典》于2010年版第一次以指导原则收载拉曼光谱法,2015版中国药典也将拉曼正式以检测方法列入药典附录,提高到了与红外同等的位置 2020年版四部理化分析通则再次修订。参照USP和EP,2020年版中国药典对拉曼光谱法作了一系列修订,更全面地介绍拉曼光谱法的技术,比如增加了方法适用性的表述、对不同仪器波数提出了不同的要求、反映了拉曼光谱法的最新研究和技术进展等。  2020年版中国药典进一步明确了拉曼光谱法在药学中的应用范围,如“拉曼光谱能够脱机、联机、现场或在线用于过程分析,当实用长距离光纤,适用于远距离检测” “拉曼光谱既适合于化学鉴别、结构分析和固体性质如晶型转变的快速和非破坏性检测,也能够用于假药检测和质量控制” “拉曼光谱法用于晶型鉴别时,由于一般不需要制样,可以减少或避免研磨、压片等可能造成的转晶现象。波数低至太赫兹光区的特征光谱也可以提供用于多晶型研究和晶型鉴别重要信息”等,进一步明确了拉曼光谱法的作用,有利于推动拉曼光谱法在工艺开发和药品质量控制中的应用。  除此之外,拉曼光谱技术在乳制品、果蔬、纺织、珠宝玉石、法庭科学等领域的应用也取得了一系列的进展,相关国标、行标、团标已经出炉。不过,相对于拉曼光谱仪目前的应用领域和未来亟待拓展的应用方向,相关的标准还不够,期待更多应用标准出台以助力拉曼光谱应用拓展“快马加鞭”!拉曼相关行业标准序号标准编号标准名称行业批准日期实施日期1JY/T 0573-2020激光拉曼光谱分析方法通则教育2020-09-292020-12-012SF/T 0080-2020单根纤维的比对检验 激光显微拉曼光谱法司法2020-05-292020-05-293SY/T 7433-2018天然气的组成分析 激光拉曼光谱法石油天然气2018-10-292019-03-014GA/T 823.4-2018法庭科学油漆物证的检验方法 第4部分:激光拉曼光谱法公共安全2018-06-252018-06-255SN/T 4698-2016出口果蔬中百草枯检测 拉曼光谱法出入境检验检疫2016-12-122017-07-016GA/T 1067-2013基于拉曼光谱技术的液态物品安全检查设备通用技术要求公共安全2013-05-222013-10-017SN/T 3236-2012纺织纤维鉴别试验方法 拉曼光谱法出入境检验检疫2012-10-232013-05-018SN/T 2805-2011出口液态乳中三聚氰胺快速测定 拉曼光谱法出入境检验检疫2011-02-252011-07-01(备注:以“拉曼”为关键词搜索的不完全统计)
  • 2021年拉曼光谱新品盘点:从实用出发 向多元化发展
    作为分子光谱领域最为活跃的仪器类别之一,拉曼光谱技术与应用的发展一直备受关注。而基于市场需求的推动,各大仪器厂商也在新产品新技术开发方面不断发力,这一点在仪器信息网主办的“科学仪器优秀新品”评选活动中体现得尤为明显。从2016-2021年间“科学仪器优秀新品”评选活动中拉曼光谱新品的申报情况来看,审批通过的拉曼光谱仪在当年申报光谱产品的中占比保持逐年增长的趋势,别是2018之后增长非常明显,2020、2021两个年度的拉曼产品申报占比都超过了1/3。申报仪器信息网2021年度“科学仪器优秀新品评选”活动的拉曼光谱相关新品(审批通过)共计16台,此外还有多台基于拉曼光谱原理的其他类别仪器。以下将根据申报的拉曼光谱新品进行简单盘点。特别说明,本次盘点的仪器新品仅限申报2021年度“科学仪器优秀新品评选”活动并审批通过的拉曼光谱类仪器。鉴于篇幅限制,不能面面俱到,仅根据文章需要选择部分进行综述,如未提及还请谅解。综合这些仪器新品来看,拉曼光谱仪器在科研和便携/手持仪器两个大方向上呈现了多元化的发展。科研仪器追求更高性能,便携/手持仪器致力于解决实际问题,追求更实用。在此基础上,在线仪器、专用化仪器,以及各种特殊应用条件的仪器新品也在不断涌现。更高性能助力前沿研究对拉曼光谱仪而言,科研级仪器对高性能的追求从未停止。在2021年度“科学仪器优秀新品评选”活动中,多家仪器厂商先后推出了科研级拉曼产品,这些产品在分辨率、成像、算法,以及多功能化等方面进行了创新开发。比如,北京卓立汉光仪器有限公司的全自动化拉曼光谱分析系统Finder 930,在前几代产品系统设计的经验基础上对硬件和软件上做了全方位的升级。该产品使用了卓立汉光全新一代的影像校正光谱仪,成像质量更加优秀,波长重复性和准确性更高,引入了高精度的自动化电动控制系统,可以智能控制激光切换、激光功率、共焦针孔大小,采用了全新架构的软件,兼容荧光mapping、拉曼mapping、荧光寿命成像、高光谱数据处理;奥谱天成(厦门)光电有限公司ATR8800UV科研级深紫外显微拉曼光谱成像仪集成了最多达 4 个激光器,可以实现深紫外拉曼成像,不同焦距、不同分辨率可选。其采用共聚焦光路设计,配备拉曼系统设计的高透过率紫外物镜,使得激光光斑接近衍射极限。作为极具前景的应用领域,生命科学领域的应用需求给拉曼光谱仪展现了非常广阔的发展前景,相对应的,致力于生命科学、单细胞分选等的拉曼相关仪器也得到了很大的进展。比如,青岛星赛生物科技有限公司推出了3台拉曼相关的新品:单细胞拉曼分选-测序仪 RACS-Seq、临床单细胞拉曼药敏性快检仪 CAST-R、高通量流式拉曼分选仪FlowRACS HT100等。其中,单细胞拉曼分选-测序仪 RACS-Seq获中国科学院科研装备研制专项支持,获国家基金委科学仪器基础研究项目支持,其利用“单细胞拉曼图谱”,可建立单细胞功能表征和单细胞组学分析之间的桥梁,突破“细胞功能异质性原理”、“大多微生物尚难培养”等共性科学问题与重大技术瓶颈。临床单细胞拉曼药敏性快检仪 CAST-R药敏检测时间缩短至十分之一(缩短到3小时),病原鉴定、耐药识别与机制研究“多管齐下”,获国家重大科学仪器研制项目支持。高通量流式拉曼分选仪FlowRACS HT100用独创的pDEP-RACS技术,通过周期性施加介电场确保高速流动的单细胞被精确捕获在拉曼激光位点,有效克服了高速液流中细胞拉曼信号弱的难题,确保高质量拉曼谱图的采集;另外,长春长光辰英生物科学仪器有限公司推出了共聚焦拉曼光谱仪HOOKE P300。该拉曼光谱仪针对生命科学领域开发,可与单细胞弹射分选仪结合,进行更深层次的探索。据悉,这是长光辰英研发的一款高端定制型激光共聚焦拉曼光谱仪,仪器内置独特的多维校正装置,可以保证样品光谱不受测试环境干扰,满足拉曼数据库构建对光谱稳定性的要求。仪器采用全自动数据采集,智能图像识别功能,并搭载先进的深度学习算法,可以极大提高科研效率。此外,针对一些特殊需求,或者极端条件下的应用,各大仪器公司也在开发相应的产品,以促进科研的深入拓展。比如,QUANTUM量子科学仪器贸易(北京)有限公司的低温强磁场拉曼显微镜-cryoRaman系统融合了高分辨率共焦显微镜和超灵敏光学元件,用于低温和强磁场下的显微拉曼光谱。其变温范围:1.8K-300K,磁场强度:9T, 12T, 9T-3T, 9T-1T-1T, 5T-2T-2T,可以实现在高磁场中的最低温度下进行拉曼成像,并获得高的空间、光谱和深度分辨率。细节创新让应用更落地与高性能实验室仪器相比,小型仪器,特别是便携式/手持产品往往更多的以实用为目的。而基于此,各大仪器厂家从实用性的角度出发,对仪器的定位也发生了变化。比如,赛默飞的手持拉曼分析仪 1064Defender 具有高度灵活性,允许用户根据需求对扫描配置文件和数据库进行定制,为可靠和高效决策提供明确的结果;普识纳米的小型科研型便携式显微拉曼光谱仪 SR532Pro采用一体式设计,集成了显微镜,十寸大屏幕,内置大容量锂电池,实现了小型科研拉曼在现场快检的运用。同时,该仪器采用深制冷CCD-60℃,极大提升了灵敏度;此外,普识纳米的手持式拉曼光谱仪微量检测—SERS智能处理器是为了解决毒品及前驱体等管控品检测面临的含量低(随着应用需求的发展,很多应用已经不满足于简单的拉曼检测,如何抑制荧光干扰一直是大家致力于解决的问题。其中,奥谱天成(厦门)光电有限公司的ATR3020便携式差分拉曼光谱仪采用差分拉曼技术,内置两个相邻波长的激光器,可以较好地去除荧光等各种干扰。保证准确性的前提下,可以降低光源功率的要求,提高整机可靠性和光谱容错纠错能力,通过与SERS技术结合,可以达到PPB级检测能力适合野外作业;瑞士万通推出的MIRA XTR DS手持式拉曼光谱仪,在785nm激光器的机型上通过硬件光路改善以及软件算法上的升级,将混合的荧光型号和拉曼信号的数据进行分离,并对拉曼信号进行增强处理,从而让785nm的设备能够检测到高荧光样品的拉曼信号。当然,在追求实用的同时,不少便携/手持拉曼的仪器也在性能方面向更深层次拓展。比如奥谱天成(厦门)光电有限公司的拉曼光谱仪ATR2500采用全自由空间光路技术,实现小尺寸119.2×89×35 mm的同时,检测速度、灵敏度依然提升4倍,分辨率可达3cm-1。多元化发展紧跟市场需求除了传统的科研及便携/手持仪器之外,拉曼光谱也在积极应对市场需求,向多元化发展,在线仪器、专用及多功能集成系统都在不断的发展中。作为一类非常有潜力的分析技术,拉曼已经在实际应用中显现出了非常诱人的前景,很多拉曼仪器的厂商已经开始注重在线和专用化仪器的开发。比如,湖北锐意自控系统有限公司的激光拉曼光谱气体分析仪LRGA-6000基于激光拉曼散射原理,通过对待测气体的特征拉曼散射光谱进行增强、收集、处理和识别,并对含量进行定量计算,可同时对多种气体进行在线和实时检测。在LRGA-6000的基础上,LRGA-3100通过对光路与结构进行优化处理,极大程度缩小了拉曼分析仪的外观尺寸,并且进一步对拉曼算法优化,使仪器的稳定性和抗干扰能力取得进一步提高。该仪器可同时对多种气体进行连续在线监测,更加方便于系统集成和现场安装调试工作的进行。多功能集成一直是科学仪器的一个重要发展方向,将多种检测技术集成一体,高效解决问题,实现快速检测和筛查,是很多应用场合亟需的分析手段。其中,RS1000TC 中药有害残留快检仪由北京鉴知技术有限公司与甘肃省药品检验研究院共同研发。据介绍,这是国内外首款三合一的中药现场快检设备,集成多种检测技术,可以对党参、当归、黄芪等药材中多种农药残留、二氧化硫、真菌毒素、重金属进行快速检测和筛查。前处理简单,仅需粉粹样品,无需离心等操作,30分钟内快速完成一次检测,成本低廉,可以满足2020版《中国药典》要求;普拉瑞思科学仪器(苏州)有限公司的拉曼集成生化检测仪Polaris-P90将拉曼、光电比色、胶体金、PCR四种检测方法集成一体,实现一机多能,检测项目几乎涵盖了所有的理化指标和生物类的快检项目。(了解更多拉曼市场信息,欢迎订阅《中国拉曼光谱仪市场调研报告(2021 版)》,参考链接:https://www.instrument.com.cn/survey/Report_Census.aspx?id=255。
  • 拉曼智能模块如何解决常规拉曼毒品痕量检测难题?—拉曼光谱仪痕量解决方案
    拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,根据每种分子如人类指纹一样,都有其独特的光谱指纹,可以很好的识别分子物质,当前,随着拉曼光谱技术的发展,各样式拉曼检测仪不断涌现,如便携式科研拉曼检测仪、手持式拉曼检测仪等。它们为拉曼技术的推广提供了条件。  普识纳米在现有常规拉曼技术研究的基础之上,针对不同拉曼检测仪性能不同导致的采集拉曼谱图与比对标准谱图差异大,拉曼检测仪物质识别能力不强、检测限等问题,设计并开发了通用拉曼智能识别模块,解决了拉曼谱图的自适应采集、多维度校准和多核加速技术等问题,提高了谱图识别的准确性和速度。  拉曼智能模块对常规拉曼升级包括以下几点:  (1)针对信号强度不确定性样品,设计了拉曼自动积分控制算法,通过实时评价拉曼信号的信噪比或峰强,自动控制拉曼积分时间、激光功率等参数,使得针对不同的样品,不同性能的拉曼信号采集模块都能自动获得高质量的拉曼谱图数据。  (2)为提高拉曼谱图智能识别算法的通用性和准确度,设计了多维度的拉曼谱图校准算法,在对拉曼谱图进行滤波去噪的基础上,设计了基于多物质的标定的拉曼位移校准方法和相对强度校准方法,改进了不同性能拉曼信号采集模块获得的拉曼谱图的特征信息差异,从而提高了谱图识别的准确性。  (3)基于嵌入式系统,实现了智能识别算法的并行加速。通过采用多核多线程并行处理、哈希表数据库检索方法等,提高了拉曼谱图智能识别算法的计算速度,大幅提高了智能识别模块的性能。  (4)同时还开发了基于串口通讯的通信桥,实现了基于http通讯的前后端程序在串口下的通信。 本文开发设计了微型的拉曼智能识别模块,编写了算法和控制程序,进行了实验分析和算法验证,表明了拉曼智能识别模块能适配不同性能的拉曼光谱检测模块,可以提供离线式和在线式的拉曼谱图快速识别服务。  根据以上四大方面升级,解决了不同厂家常规拉曼的数据匹配问题,结合普识纳米SERS增强技术,完美实现了常规拉曼毒品痕量检测难题。  例如第三代毒品“芬太尼”,常规拉曼是无法检测芬太尼类强荧光干扰和低浓度的两大核心问题,集合普识纳米SERS智能处理器,升级后灵敏度可达ppb级别(可以在毒贩或者吸毒人员摸过的纸币上面采样)。基于拉曼光谱SERS原理,采用独特的便携设计,具有简单、精准、高效、便携等特点。满足现场使用需求,并可根据要求支持扩容升级万条数据库,还可以随时自建谱图库,检测新出现的芬太尼。
  • 2022全球分子光谱市场68.5亿美元 拉曼增长最快
    p   日前,MARKETSANDMARKETS发布关于分子光谱的市场研究报告。报告内容显示,2016年,全球分子光谱学市场46.8亿美元,预计到2022年该市场将达到68.5亿美元,复合年增长率为6.6%。 /p p   报告分析称,整个分子光谱学市场的增长可以归因于食品安全问题的日益加剧,医药和生物技术产业的发展,分子光谱学在环境检测中的应用,以及分子光谱技术的更新等。未来几年,预计北美将占据全球分子光谱学市场的最大份额。然而,高成本的设备也可能会抑制市场在预测期间的增长。 /p p   在环境保护方面的资金投入以及科研经费的增长,比如美国和加拿大等国家,将为市场参与者提供新的机会。例如,2016年,美国年度绩效计划和预算为82.67亿美元,比前一年增加了1.27亿美元(81.39亿美元),增加的经费用于购买检测高危样品的新仪器。此外,2016年3月,加拿大国家科学技术部部长宣布投资2300万美元,支持加拿大26所大学的95个研究项目。 /p p   根据技术原理,该市场可以细分为NMR、紫外可见光谱、红外光谱、近红外光谱、色度测量光谱、拉曼光谱等。由于有机化合物结构检测方面的应用越来越多,预计NMR将在2017年的分子光谱市场中占有最大的份额。而从下图我们也可以看出,预测期间拉曼光谱的复合年增长率最高。 /p p style=" text-align: center " img width=" 500" height=" 427" title=" molecular-spectroscopy-market2.jpg" style=" width: 500px height: 427px " src=" http://img1.17img.cn/17img/images/201708/insimg/3b45d479-89aa-4c64-88e1-0ff24d2104fc.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   根据应用,该市场细分为制药领域的应用、环境检测、食品和饮料检测、生物技术和生物制药应用、学术研究等。2017年,预计制药领域的应用将占分子光谱市场的最大份额,而且预计预测期间的复合年增长率也将最高。 /p p   从地域上来看,北美占据全球市场最大份额,其次是欧洲。美国在环境检测方面越来越多的资金投入,以及对食品安全问题日益增长的关注等都是推动市场增长的主要因素。加拿大在研发和基础设施发展方面的资金投入增加也将推动市场在预测期内的增长。 /p p   2016年,全球分子光谱学市场由Bruker、Thermo Fisher、PerkinElmer和Agilent主导。2016年,这些公司占据了全球分子光谱学市场的大部分份额。这个市场的其他参与者包括Shimadzu、Danaher 、ABB、Merck、JEOL、FOSS、JASCO和HORIBA等。 /p p br/ /p
  • 拉曼光谱:保健品中非法添加药物的现场快检技术
    拉曼光谱:现场快速、准确鉴别保健品中国保健品市场规模已达全球第二,然而保健品中非法添加含有违禁药物成分的有毒有害保健品时有发生。拉曼光谱技术能对保健品中非法添加的药物进行快速筛查,是打击保健食品犯罪的利器,已经在公安部门和市场监管部门得到广泛应用,可高效辅助相关食品安全犯罪案件的侦查。本次报告主讲人司星宇博士在保健品检测方面拥有丰富的经验,她将从保健食品安全现状、光谱检测技术、应用场景等几个角度,介绍北京鉴知在拉曼光谱技术上的应用和典型案例,帮助您快速了解拉曼光谱如何能鉴别保健品中的非法添加药物。讲师简介司星宇,分析化学博士,毕业于清华大学化学系,现任北京鉴知技术有限公司应用工程师,清华大学化学系联合培养博士后。多年从事光谱、质谱等多种分析技术研究,熟悉多种分析仪器的原理及应用。大暑 免费听讲座啦!7月22日下午14:00,欢迎参加线上讲座,识别下方二维码,立即免费报名,一个小时搞懂又快又准筛查保健品非法添加药物的拉曼光谱技术!
  • 拉曼光谱技术交流会在复旦大学成功举办
    3月25日上午,HORIBA Scientific非常荣幸受邀到复旦大学举办了拉曼光谱技术的交流会。复旦大学在学生的培养中,向来注重科学研究和教学紧密结合、理论学习与实验技能训练并重,这和HORIBA Scientific近期推出的光谱学院教学理念不谋而合。 本次会议吸引了来自复旦各院系的众多师生、研究机构及从苏州远道而来的学者,大家在拉曼方面的应用范围各不相同,涉及到纳米球、石墨烯、SERS等热门领域。 HORIBA Scientific资深工程师胡恩萍博士除了给大家做了一些拉曼技术基本原理、新应用的知识普及之外,就大家感兴趣的领域一一做了详细的介绍。 《拉曼入门手册》成为抢手货  与会者们的学习热情十分高涨,纷纷索取HORIBA Scientific新推出的《拉曼光谱入门手册》。由于数量有限,很多与会者没能领到该手册。在此提醒各位师生,可通过我们的官方微信索取《拉曼光谱入门手册》电子资料,我们也会在上面同步更新其他入门手册,敬请留意。关注我们邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • 我国科学家建立力学拉曼光谱技术的理论模型和实验方法
    近日,南京大学化学化工学院徐伟高、谢代前团队与依托中国科学技术大学组建的中科院量子信息与量子科技创新研究院罗毅、复旦大学段赛等展开合作,从样品振子和局域等离激元光腔的光力学耦合作用出发,提出了力学拉曼光谱技术(mechano-Raman spectroscopy, MRS),建立了力学拉曼散射技术的理论模型和实验方法,相关成果以“Direct characterization of shear phonons in layered materials by mechano-Raman spectroscopy”为题于3月31日在线发表在《自然光子学》杂志上[Nature Photonics (2023)]。纳米尺度界面的力学相互作用携带了原子级界面结构、热传导和光电特性等关键信息,但因其电子-声子耦合效应非常有限,人们无法通过经典振动光谱学方法对其进行直接测量。以层状石墨晶体中的超低频剪切声子为例,具有原子层集体性同向运动的声子振动模式蕴含了晶体全局结构和隐藏界面的独特信息,但由于相邻层间的极化率改变量相互抵消而无法产生可探测的电偶极子辐射。如何有效地获取这一类信息,并将其应用于晶体全局结构表征、表界面相互作用和微观机械振子的测量,当前光谱学领域尚未有很好的解决办法。针对以上挑战,研究团队提出力学拉曼散射技术(图1),在入射光(hν0)激发下,等离激元光腔的极化张量受到频率为νmech机械振子的动态调制,分别产生能量等于hν0-νmech的Stokes信号和hν0+νmech的anti-Stokes信号。在层状晶体的MRS实验中,研究团队发现晶格中原子层的集体性运动可以驱动等离激元金属的周期性运动并产生非弹性散射信号。图1: MRS技术的原理与实验方法图2为3-12层石墨晶格振子的MRS信号和定量的力学耦合效应分析结果,晶格振子和等离激元金属的能量传递决定了等离激元金属的有效位移和MRS信号强度。根据MRS理论,MRS信号强度正比于等离激元金属有效位移的平方,这在16层石墨晶格振子的精确定量分析中得到了印证。图2: 不同层数晶格振子的MRS测量与力学耦合效应的定量分析在光学拉曼光谱中,粒子振动态布居数决定了anti-Stokes和Stokes信号的强度比(IaS/IS),并遵从玻色-爱因斯坦分布。相比于光学拉曼过程,MRS具有显著的无热噪声特征,这表现在:(1)IaS/IS值在整个实验温度区间(77-477 K)始终接近常数1;(2)半峰宽不随温度升高而展宽。这一特点使MRS在振动测量具有独特优势(图3)。研究团队还通过一系列复合振子实验验证了MRS的长程传播行为和隐藏界面探测能力。图3: MRS技术的无热噪声特征两位审稿人对该工作给予了高度评价:“milestone achievement in the Raman spectroscopy field(拉曼光谱领域里程碑式的成就)”;“it is a rare piece of work that represents a landmark in the field of Raman spectroscopy(拉曼光谱领域少有的标志性工作)”。全新的力学拉曼光谱技术将有望应用于晶体全局结构表征、机械振动传感和光的机械调制,并为实现从晶格振子到纳米材料的量子化能量传递等量子光学领域研究提供了新的思路。该工作得到了国家自然科学基金,江苏省自然科学基金,国家重点研发计划等项目的资助。
  • 原《激光拉曼光谱分析方法通则》实施20年迎来首修
    日前,全国教育装备标准化技术委员会印发教育行业标准《激光拉曼光谱分析方法通则》修订版的征求意见稿,实施20年的《激光喇曼光谱分析方法通则》(JY/T 002—1996)迎来首次修订。  《编制说明》中介绍到,上个世纪八十年代初,我国重点高校利用世界银行的“大学发展项目”贷款,购置了一批当时世界上最先进的测试设备,其中包括美国的Spex-1403和法国的JY-U1000激光拉曼光谱仪。这两款激光拉曼光谱仪为我国高校教学与科研发挥了重要作用,JY/T 002-1996《激光喇曼光谱分析方法通则》就是基于这两款激光拉曼光谱仪编制而成的。JY/T 002—1996《激光喇曼光谱分析方法通则》起草单位为原国家教育委员会,于1997年首次发布,1997年4月1日正式实施,主要起草人:郑思定、盛蓉生。  过去20多年来拉曼光谱技术取得了长足进步,其中最重要的进展是付里叶变换拉曼光谱术、CCD检测器和陷波滤光器等的引入使用。付里叶变换拉曼光谱仪能消除或显著降低大多数试样的荧光背景 而CCD检测器既有照相底片具备的多通道检测又保留光电倍增管易于使用的优点,使得拉曼光谱术成为快速测试技术。在21世纪的激光拉曼光谱仪商品市场,结构紧凑又使用简便的高性能激光拉曼光谱仪不断涌现,使拉曼光谱技术在各个领域的应用得到迅速发展。  早期的Spex-1403和JY-U1000型激光拉曼仪虽然具有焦长长,分辨率高(采用双光栅或叁光栅分光)等优点,但由于采用PMT单道检测器检测,光路长,采谱效率低等明显缺点,现已基本淘汰。因此,修订已使用了20年的JY/T 002-1996《激光喇曼光谱分析方法通则》已是当务之急。  新《通则》是在原国家教委JY/T 002—1996《现代分析仪器分析方法通则—激光喇曼光谱分析方法通则》的基础上,结合20年来激光拉曼光谱技术的发展情况修订而成。鉴于目前尚无拉曼光谱技术相关ISO标准或国内标准,新《通则》中的术语、校准器具与材料、及拉曼光谱定量分析方法借鉴了美国试验与材料协会(ASTM)标准和日本工业标准(JIS)相关条款的部分内容。新《通则》对仪器部分以介绍通用原理为主,不涉及具体型号仪器的结构和技术指标。  新《通则》起草单位包括武汉理工大学、中国科学技术大学、四川大学,主要起草人包括薛理辉、左健、田云飞、龚龑、吴正龙、祁琰媛、陈强、张丽艳、康燕、宋国胜、王力、邓昱、贾茹、路瑶、王梅、何琳、刘晓云。  新《通则》的技术变化:  除编辑性修改外,新《通则》的主要技术变化如下:  ——修改了标准名称及标准内容中的“喇曼”为“拉曼”;  ——限定了本标准的适用范围为普通色散型激光拉曼光谱仪的常规分析;  ——更新了本标准的引用标准;  ——删除了“波长”、“杂散光”、“波数精度”、“波数重复性”、“90° 散射”、“180° 散射”和“0° 散射”的定义;  ——修改“波数”名称为“绝对波数”(见3.4);  ——修改了“分辨率”的定义(见3.20);  ——增加了“瑞利散射”、“拉曼散射”、“相对波数”、“峰位”、“拉曼散射相对强度”、“斯托克斯拉曼散射”、“反斯托克斯拉曼散射”、“振-转拉曼散射”、“转动拉曼散射”、“电子拉曼散射”、“共振拉曼散射”、“表面增强拉曼散射”、“激光等离子线”、“色散率”、“拉曼旋光”和“宇宙射线峰或针刺噪声”等术语的定义(见3);  ——修改了分子的量子化能级示意图,增加了“光致发光”跃迁过程,明确了E=0与振动基态零点能的区别(见图1);  ——补充了“试剂与材料”部分的内容,修改标题为“校准用器具和材料”(见5);  ——修改了“双联、三联式大拉曼光谱仪”组成框图为“色散型显微拉曼光谱仪”组成框图,删除了针对特定生产厂家、特定仪器型号的“主要技术指标表”(见6);  ——针对新技术的使用调整、补充了分析步骤(见8);  ——移动原附录C“喇曼光谱定量分析”到正文“分析结果的表述”部分,并完善了定量分析的方法。(见9.3);  ——针对新技术修改了附录B“拉曼光谱仪主要组成部分若干参量”中的内容。(见附录B)。  附件:激光拉曼光谱分析方法通则(征求意见稿).doc
  • 2016年原位拉曼光谱技术最新应用交流会在京举办
    2016年3月23日,由德国耶拿分析仪器股份公司(简称:德国耶拿)和中国科学院化学研究所共同组织的“2016年原位拉曼光谱技术最新应用交流会”在京举办,来自各科研院所、高校等单位的专家、学生120余位出席本次会议,参会人员远超预期。现场照片  一直以来,德国耶拿以连续光源原子吸收等产品享誉业界,在过去的两年中又因为对布鲁克ICP-MS产品线的收购以及高灵敏度ICP-MS新产品的引起行业关注。而如今,德国耶拿又联手凯撒光学系统公司(简称:凯撒公司)在中国重磅推广拉曼产品,开启凯撒公司拉曼产品在中国发展的新的里程碑。据悉,在此之前,凯撒公司的拉曼产品在中国并没有代理商,用户也不多。  目前耶拿公司隶属于瑞士Endress+Hauser集团(E+H集团),而凯撒公司也于2013年加入E+H集团,成为德国耶拿的兄弟公司。2015年起,E+H集团委任德国耶拿全面负责凯撒公司在中国的拉曼业务。据悉,目前凯撒公司同时拥有研究型、原位分析型、过程控制型三大系列拉曼光谱仪。  经过一段时间的准备,德国耶拿近期全面开启凯撒公司拉曼产品在中国市场的推广,此次应用交流会就是其中的一个重要环节。本次会议特别邀请了中科院化学所的骆智训研究员、天津大学的郝红勋副教授等针对原位拉曼光谱的最新技术以及应用做专题报告,并就目前普遍关注的热点话题与参会代表展开讨论。中科院化学所 骆智训研究员天津大学 郝红勋副教授  骆智训研究员在报告中探讨了基于原子分子团簇的质谱与红外/拉曼光谱联用技术,详细介绍了其所在课题组在Deep-UV&IR、mMIFT-CSD(Mass-selected Multiple-lons Laminar Flow Tube and Cluster Soft-Landing Deposition)等仪器研究方面的工作进展。此外,骆智训研究员还与大家讨论了原子分子团簇研究中面临的一些问题,希望与德国耶拿的原位拉曼技术团队展开合作。  郝红勋副教授谈到,受固体化学发展的限制,目前结晶科学与技术研究仍处于半理论半艺术的阶段,晶体成核和晶体生长过程的机理及其模型仍然处于不断探索中。郝红勋副教授正在使用凯撒公司过程拉曼产品进行相关的研究,在报告中他还详细地分享了过程拉曼在晶体成核、多晶型转晶、结晶过程溶液浓度在线检测中的应用案例,并指出过程拉曼光谱技术在结晶过程机理的研究中发挥重要的作用。德国耶拿 王兰芬博士  也许很多人之前对原位拉曼光谱技术还不是很了解,在本次会议中,王兰芬博士从原位拉曼光谱基础原理讲起,普及了原位拉曼光谱技术的特点。据介绍,原位动态拉曼光谱分析相当于呈现了实验或者工业在线过程的实时“Video”,可以实时原位进行信息记录和自动分析,采样灵活,无需将样品移到样品仓,无滞后效应,可以实现无损检测,过程中无样品污染,而且采样速度快,可以达到秒级,还可以实时优化过程控制参数。  据王兰芬博士介绍,目前凯撒公司不仅拥有传统意义的原位拉曼光谱技术,还有原位动态拉曼光谱技术。基于数十年的研究经验,凯撒公司在拉曼光谱产品在传统中蕴含革新,具有光栅、探头等多项专利技术,这在本次会议中也吸引了很多参会人员提问咨询。  其中,专利的全息透射式光栅技术具有多色分光、无任何移动部分、瞬间全谱覆盖、高通光量、高分辨率等特征,赋予了凯撒拉曼光谱仪高灵敏、高准确、高效率、高稳定“四大”强劲优势。值得一提的是,透射式光栅的衍射效率超过80%(反射式光栅40%),可以轻松实现弱信号测试。除此之外,轴向光谱仪设计(90度分光)、固定式光学设计、多通道独立采集等也体现了其与众不同之处。  另外,适应性强的原位探头也是凯撒公司拉曼产品极具吸引力的原因之一。与很多厂家不同,凯撒公司不仅生产拉曼光谱仪,还自己生产探头,这就为原位拉曼探头的无限可能性提供了坚实的技术支持。据介绍,目前凯撒公司拥有专利的原位大面积采样探头技术,同时拥有原位固体液体采样探头、原位液体采样探头、原位流体化学液体采样探头、原位固体采样探头、原位气体采样探头、原位防爆液体采样探头等适应不同样品分析的产品。德国耶拿 刘宏伟先生  此外,在本次会议上,刘宏伟先生还给大家介绍了德国耶拿公司的发展历程、产品类别、技术优势等,并强调德国耶拿一直以“技术创新为核心,非凡品质为根本”,每年总收入的15-20%投资于R&D,而且有1/5的职工从事R&D工作。  在本次会议结束时,德国耶拿还安排了抽奖活动,为参会代表准备了别具特色的奖品。抽奖现场
  • 半导体所在多层石墨烯边界的拉曼光谱研究方面获进展
    单层石墨烯(SLG)因为其近弹道输运和高迁移率等独特性质以及在纳米电子和光电子器件方面所具有的潜在应用而受到了广泛的研究和关注。每个SLG样品都存在边界,且SLG与边界相关的物理性质强烈地依赖于其边界的取向。在本征SLG边界的拉曼光谱中能观察到一阶声子模-D模,而在远离边界的位置却观察不到。研究发现边界对D模的贡献存在一临界距离hc,约为3.5纳米。但D模的倍频模-2D模在本征SLG边界和远离边界处都能被观察到。因此,D模成为研究SLG的晶畴边界、边界取向和双共振拉曼散射过程的有力光谱手段。   SLG具有两种基本的边界取向:&ldquo 扶手椅&rdquo 型和&ldquo 之&rdquo 字型。与SLG不同,多层石墨烯(MLG)中每一石墨烯层都具有各自的边界以及相应的边界取向。对于实际的MLG样品,其相邻两石墨烯层的边界都存在一个对齐距离h。h可以长到数微米以上,也可短到只有几个纳米的尺度。当MLG的所有相邻两石墨烯层的h等于0时,我们称之为MLG的完美边界情况。MLG边界复杂的堆垛方式以及存在不同h和取向可显著影响其边界的输运性质、纳米带的电子结构和边界局域态的自旋极化等性质。尽管SLG边界的拉曼光谱已经被系统地研究,但由于MLG边界复杂的堆垛方式,学界对其拉曼光谱的研究还非常少。   最近,中国科学院半导体研究所博士生张昕、厉巧巧和研究员谭平恒等人,对MLG边界的拉曼散射进行了系统研究。他们首先对MLG边界进行了归类,发现N层石墨烯(NLG)的基本边界类型为NLGjE,即具有完美边界的jLG置于(N-j) LG上。因此,双层石墨烯(BLG)的边界情况可分为BLG1E+SLG1E和BLG2E两种情况。研究发现:(1)NLG1E边界与具有缺陷结构的NLG的D模峰形相似,其2D模则为NLG和(N-1)LG的2D模的叠加。(2)在激光斑所覆盖区域的多层石墨烯边界附近,相应层数石墨烯的2D模强度与其面积成正比,而相应的D模强度则与在临界距离内的对齐距离(如果h
  • 飞秒激发拉曼光谱帮助理解光伏电池发电机理
    Solarbe(索比)光伏太阳能网讯:不管你是否相信,我们并不完全了解太阳能电池的工作原理,特别是有机薄膜太阳能电池。但最近加拿大、伦敦和塞浦路斯的科学家使用激光器,将一些光线引入来帮助制造更高效的太阳能电池板。   本周早些时候,来自蒙特利尔科学与技术设施委员会、英国伦敦帝国学院和塞浦路斯大学大学的科学家在《自然传播》上发表的一份新报告中解释他们的发现:&ldquo 我们的发现对机制理解所有的太阳能转换系统方面的分子细节的发电机制非常重要。&rdquo 第一作者,蒙特利尔大学Francoise Provencher称:&ldquo 我们几十年来致力理解有机光伏分子的工作原理图这一' 圣杯' ,终于取得重大进展。&rdquo   &ldquo 我们用飞秒激发拉曼光谱,&rdquo 来自科学和技术中央激光设施理事会的Tony Park说,&ldquo 飞秒激发拉曼光谱技术是一种先进的超快激光技术,它提供了在极快的化学反应里,化学键是如何变化的细节。分子与激光脉冲相互作用时,激光提供了分子的振动信息。&rdquo   Experimental setup used to map defect densities in organic thin films. A pulsed laser beam is used to raster-scan the material of interest, which is assembled in a field-effect geometry, allowing changes in current flow to be detected. The yellow zones indicate sites at which the defect density is particularly high. (Credit: Christian Westermeier)   表征薄膜电池表面活性层结构   由此获得的信息显示了太阳能电池中的分子演化过程。他们发现了两项重点:快速分子重排和极少量分子松弛和重组。重排或响应速度非常快 - 仅300飞秒(femtosecond)。研究人员表示,一飞秒相对于一秒的概念,就象是一秒相对于370万年。   &ldquo 在这些设备中,光吸收加速了电子和带正电荷物质的形成。最终要提供电力,这两个相互吸引的粒子就必须分开,电子必须离开。如果电子不能足够快地移开,则正电荷和负电荷就会简单地再结合,结果是什么变化也没有。太阳能设备的整体效率就在于正负电荷重新组合和分离的比例。&rdquo 斯塞浦路斯大学的Sophia Hayes解释说。   &ldquo 我们的研究结果为未来理解生产高效太阳能电池的系统的差别,或者理解那些系统应该有高发电效率却并没有表现出来的原因,提供了可能的路径。更多更深入的了解什么可行,什么不可行,对将来设计更好的太阳能电池将明显有益,&ldquo 蒙特利尔大学卡洛斯· 席尔瓦,也是这项研究的资深作者进一步表示。   慕尼黑Ludwig Maximilian大学Bert Nicket领导的科学家团队首次成功地用激光激发材料对有机薄膜太阳能电池的活性层进行了功能表征,&ldquo 我们已开发出一种方法用激光对材料进行光栅扫描,聚焦的光束通过旋转衰减器调制成不同的方式。这样我们就能够直接映射分布在有机薄膜上的缺陷空间分布,这是以前从未实现过的,&ldquo Christian Westermeier解释说。   太阳能电池通过光子激发分子产生自由电子和正电空穴,来将光能转换成电能。电荷载流子被电极捕获的时间和电池的活性层详细结构有关。原子规则排列中的缺陷会捕获载流子,也减少可用电流。新的映射方法使研究人员能够检测到与激光激发缺陷局部相关的电流变化。   该研究显示,在并五苯有机半导体中,这些缺陷往往集中在一定位置上。选择并五苯来实验,因为它是目前可用于有机半导体生产的导电最好的材料,理解这些表层热电的特别之处非常有意义。是什么在这些地方产生了缺陷?可能是由于化学污染,或是分子的排列不规则?   飞秒激发拉曼光谱这种新技术,为理解有机薄膜发电的深层机理提供了新的途径。
  • 高分子表征技术专题——拉曼光谱技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!拉曼光谱技术在高分子表征研究中的应用Application of Raman Spectroscopy in the Characterization of Polymers作者:袁媛,王梦梵,曲云菲,张泽军,张建明作者机构:青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029 北京航空航天大学化学学院,北京,100191作者简介:张建明,男,1973年生. 山东省泰山学者特聘教授,博士生导师. 2003年毕业于中科院化学所并取得博士学位,师从著名的光谱学家沈德言先生. 自2009年1月起在青岛科技大学工作. 研究方向为高分子凝聚态结构及其相变行为、生物质纳米材料制备及功能复合材料构筑,已发表SCI学术论文130余篇,所发论文被引6000余次,H-指数为38,获批中国发明专利20余件. 先后获日本JSPS博后奖、德国洪堡资深学者、山东省泰山学者、山东省杰出青年、山东省自然科学二等奖及中国石化联合会青年科技突出贡献奖等荣誉或奖励.摘要拉曼光谱作为一种强大的工具,被广泛应用于聚合物结构的表征. 随着共振拉曼光谱、扫描角度拉曼光谱、高分辨率拉曼成像、极化拉曼光谱、表面增强拉曼散射等拉曼技术的迅速发展,拉曼光谱的应用范围不断扩大. 本文首先介绍了拉曼光谱设备的基本原理和组成,总结了拉曼技术的实验技巧和数据处理中需要注意的问题,讨论了红外光谱和拉曼光谱的区别,在此基础上,综述了近十年来拉曼技术在聚合物结构表征领域的最新应用和研究进展. 其应用包括以下六个方面:高分子链的构象、聚合物的聚集状态、聚合物结晶度的计算、高分子链的取向、外场作用下的结构转化、高分子共混物化学或物理成分的识别. 最后,对拉曼光谱在聚合物研究中的发展进行了展望. 希望本文能够对试图从拉曼光谱中获取聚合物结构信息的学者有所帮助.AbstractAs a powerful tool, Raman spectroscopy is widely used in the characterization of polymer structures. Along with the rapid development of Raman technology such as resonance Raman spectroscopy, scanning angle Raman spectroscopy, high-resolution Raman imaging, polarized Raman spectroscopy, and surface-enhanced Raman scattering, the application range of Raman spectroscopy has been continuously extended. In this paper, we first introduced the basic principle and the composition of the Raman equipment, and then we summarized the experimental skills of Raman technology and the issues that need attention in data processing. The difference between the infrared spcectroscopy and the Raman spectroscopy was discussed. Afterwards, we reviewed the latest applications and research progress in the fields of polymer structure characterization by using Raman technology in recent decade. The applications include the following six aspects: the macromolecular chain conformation, the aggregation state of polymers, the calculation of the polymer crystallinity, the macromolecular chain orientation, the structural transformation under the external fields, and the identification of the chemical or physical composition in polymer blends. Last, the development of Raman spectroscopy in polymer research was prospected. It is hoped that this review could be helpful for the one who tried to obtain the information about the polymer structure from Raman spectroscopy.关键词拉曼光谱  结构表征  原理  应用KeywordsRaman spectroscopy  Structure characterization  Principle  Application 拉曼散射现象是由印度科学家Raman于1928首先发现并报道的,但拉曼散射信号只相当于瑞利散射百万分之一,在拉曼散射现象被发现之初由于没有足够功率的光源而并未被广泛的应用. 近半世纪以来随着激光光源以及显微技术在拉曼光谱仪中的应用,拉曼光谱迸发出了旺盛的生命力.拉曼光谱与红外光谱同属分子振动光谱,但其原理与红外光谱截然不同. 如今拉曼光谱在高分子领域中已经有广泛的应用,包括分子链构象、取向、结晶度等方面的研究等. 本文在结合拉曼基本原理及实验技巧的基础上,总结了近年来拉曼光谱在高分子表征中的最新研究进展.1基础原理1.1光的散射当光线遇到分子时,绝大部分的光子(多于99.999%)都会发生弹性散射(即瑞利散射),瑞利散射具有与入射光相同的波长. 然而,少部分的光子(少于0.001%)会发生能量(频率)偏离的非弹性散射(即拉曼散射). 光散射过程可以用量子力学进行描述,如图1所示,当一束光照射到某体系时,体系中粒子吸收光的能量而被激发,从而发生能级跃迁过程,同时辐射出散射波. 不同的跃迁方式决定了不同的散射类型,例如(拉曼)斯托克斯散射、瑞利散射、(拉曼)反斯托克斯散射(高分子样品测试中常用的拉曼散射范围)[1~7]. 在拉曼测试过程中,经常也会出现荧光信号,与拉曼散射不同,荧光过程中粒子被激发至能量更高的电子能级而非拉曼散射中的虚态. 因此短波长比长波长激光更易产生荧光效应.Fig. 1Quantum mechanics description of Rayleigh, Raman scattering and florescence.1.2拉曼散射与拉曼光谱1.2.1拉曼散射的基本原理假设一束频率为v0的光照射在一个分子上,分子中电子会被入射光的电场激发做受迫局域运动而出现极化现象,产生电偶极矩,假设入射光电场可以表示为:式中E0为光电场的振幅,则由于分子运动所产生的偶极矩可以表示为:式中α为极化率,极化率的变化是分子的核外电子云受外部电场诱导而产生的(通过平衡位置两边的)形变而导致的.如果分子的极化电场所释放出的光与入射光频率相同,则把这种散射过程称为瑞利散射. 而如果α被分子的振动所调制(modulated),则α可以展开为关于振动简正坐标q的级数:q由以下公式得出:则有:以上公式表明在当前情况下频率为(v0±vk)的(拉曼)散射会与频率为v0的瑞利散射同时出现. 某一分子振动为拉曼散射活性的前提条件为(∂α∂q)0的值不为0,也就是说分子的极化率随分子振动而改变[8,9].如图2所示,假设频率为v0电场(入射光)可以诱导分子的偶极矩P产生同频率(v0)的振动. 如果此时分子极化率具有随时间变化的极低频的振动vm,那么经过以上2种不同频率的振动调制后的散射光将包含3种不同频率的光,分别为v0(瑞利散射)、v0+vm(反斯托克斯散射)、v0-vm(斯托克斯散射). 反之如果分子的振动不能使极化率产生低频振动,则不会有调制的出现,进而不会出现拉曼散射效应[8,10].Fig. 2Schematic representing of Rayleigh and Raman scattering: (a) the incident radiation makes the induced dipole moment of the molecule oscillate at the photon frequency (v0) (b) the molecular vibration can induce the polarizability,α,to have a frequency ofvm the result as shown in (c) is an amplitude modulated dipole moment oscillation,and three components with steady amplitudes which can emit electromagnetic radiation can be achieved as:v0 (Rayleigh component), v0+vm (Raman anti-Stokes component), and v0+vm (Raman Stokes component), as shown in (d).由于诱导分子偶极矩P与电场E均为矢量,且一般情况下两者方向不同,因而连接这2个物理量的极化率α可以用一个二阶张量来表达,则P=αE可以表示为其中,x,y,z为分子在笛卡尔坐标系中的坐标. 极化率为对称的二阶张量矩阵,包含了6个独立的元素,αxx、αyy、αzz、αxy、αyz、αxz. 上式的意义为,例如沿x方向电场Ex诱导了沿y方向的偶极矩Py,则可表示为Py=αxyEx. 此式在通过偏振拉曼研究分子对称性时具有重要意义[9].1.2.2拉曼活性的判据如上所述,非弹性散射源于在平衡位置附近分子的极化率关于简正坐标q的导数不为0,这一关系为小分子的拉曼散射提供了“选择定律”的基础. 以对称双原子分子的对称伸缩振动(symmetric stretching vibration)为例,如图3(a)所示,当两原子的位置无限接近时,体系电子密度分布类似于单一原子的电子密度;而当两原子的位置无限远离时,体系电子密度分布近似于2个独立的单原子的电子密度. 因此对于双原子分子的对称振动,其极化率沿简正坐标方向成单调增长模式,因此其在平衡位置导数不为0,为拉曼活性振动. 而对于分子偶极矩,对称伸缩振动过程中其正负电荷中心并没有产生位移,所以偶极矩没有发生变化,因此为红外非活性振动. 例如氧气与氮气分子的对称伸缩振动只能使用拉曼光谱进行研究,因为在红外谱图中不会出现吸收峰.Fig. 3The derivatives of polarizability (red) and dipole moment (blue) are schematically depicted for the normal modes of a two (a) and a three (b) atomic molecule. Based on these intuitive considerations,conclusions on the IR and Raman activityof the modes can be drawn.线性三原子分子比双原子分子稍显复杂,例如二氧化碳分子. 对于其对称伸缩振动,如图3(a)所示,极化率的变化类似于双原子分子的对称伸缩振动,为拉曼光谱活性,红外光谱非活性. 对于非对称伸缩振动(antisymmetric stretching vibra-tion)以及变角振动(bending vibration) (图3(b)),极化率在平衡位置两边的变化虽不为0,但是其变化是关于平衡位置对称的. 因此极化率在平衡位置周围变化可以认为是简谐的,也就是说(∂α∂q)q0=0,因此非对称伸缩振动与变角振动均为拉曼非活性;而偶极矩在平衡位置两侧的方向是反转的,因此(∂μ∂q)q0≠0,表现为红外活性[11].2实验技巧为了得到更丰富的样品信息,我们希望拉曼光谱在准确的基础上具有尽可能高的信噪比(signal-noise ratio,SNR). 关于拉曼散射的强度IR一般有如下关系式:其中,v和I0为入射激光的频率及强度;N为参与散射过程的分子数量;(∂α∂q)2是与分子结构有关的参数.上式表明,使用短波长激光并增加激光能量密度的同时增加样品量可以增强拉曼散射信号(注:拉曼光谱位移不随入射波长的变化而改变). 但在实际的测试过程中,不同类型的样品需要根据其自身的特点选择与其匹配的波长的激光以及激光能量,不能为了增强拉曼信号就去用短波长激光去测试所有样品,很多高分子样品在短波长激光下可能没有拉曼信号或者拉曼散射被很强的荧光信号所淹没.2.1样品制备2.1.1固态样品相对于无机样品,有机高分子样品的拉曼信号相对较弱(一部分原因是由于高分子样品中存在大量的无序结构). 对于高分子粉末或膜样品,一般需要保证沿光的入射方向有一定的厚度并同时使其表面尽量平整,以便于显微镜的聚焦. 对于透明样品,可将其放置于铝箔上进行测试(因为金属一般都有增强拉曼信号的作用,用铁片作为基底同样有着很好的效果). 或者,由于拉曼接收的是散射光,太薄的透明样品极易被激光穿透从而打到基底上,因此为了得到更好的拉曼信号,制样时要尽可能增大薄膜厚度. 另外由于激光一般都是偏振的,因此对于取向样品,例如纤维,需首先确定入射光的偏振方向,之后再确定样品的(某一)取向轴与入射光偏振方向平行(或垂直),再开始测试,这样才能得到正确的结构信息.2.1.2液态样品由于拉曼可以聚焦到几十微米下检测一定深度的样品信号,无需担心盖玻片和毛细管对拉曼信号的影响,因此高分子液态样品的拉曼测试相对于红外测试比较便捷,可以直接进行测试. 一般可以使用凹面载玻片或者金属制液体样品槽承载液体样品. 测试时可先将激光聚焦于液体表面,然后将样品平台沿激光方向上抬,使激光聚焦于液体样品内部,这样可以得到较好的光谱. 如果液体易挥发,可以使用盖玻片将样品封闭于容器内或将液体封入毛细管内.2.2设备调试2.2.1拉曼装置的构成随着拉曼仪器的发展,如今在一般情况下,背散射模式,也就是入射激光与散射激光平行,已经足够应对大部分高分子样品的测试需求. 对于一些特殊情况,例如取向或单晶样品的偏振拉曼测试,需要使用到90°入射的模式,也就是入射光路方向与散射光路方向为90°,原因可以参考上节极化率的二阶张量公式.以雷尼绍(Renishaw,UK) inVia型拉曼光谱仪为例,如图4所示,拉曼装置一般包括入射激光光源、入射光路系统(包括扩束器)、显微镜及样品台系统、滤波器、衍射光栅及CCD检测器. 在实际测试过程中,我们需要选择合适的入射光波长及显微镜物镜.Fig. 4Schematic diagram of the Raman instrument.当今市场上主要的拉曼仪器根据应用的场景可分为手持型、便携型以及桌面型拉曼光谱仪. 手持型拉曼光谱仪集成性很高,小巧轻便,操作非常简单,几乎可以在各种需要的地点、时间对从原材料到成品进行鉴定分析. 便携型拉曼光谱仪集成性相对较高,并具有一定的扩展性,可作为小型移动实验室使用. 桌面型拉曼光谱仪体积较大且不可移动,如图4中示意图即为桌面型拉曼光谱仪,但这类光谱仪具有极强的扩展性,几乎可以变更从入射激光光源、入射光路、样品平台至光栅等所有组成部分,从而可以为不同样品以及不同条件的测试创造可能.2.2.2激光波长的选择激光波长与能量密度成反比,使用短波长激光可以得到较强的拉曼散射信号,例如532 nm要比785 nm激光的拉曼散射强度强. 但对于高分子样品来说使用532 nm激光产生荧光干扰的可能性也会增加. 所以在一些情况下可以选择785 nm的光源. 如前所述,样品产生的拉曼位移不会随激发光源的波长改变而改变,因此只要可以避开荧光效应可以自由选择激光波长. 需要注意,虽然拉曼位移不随激光波长而改变,但使用同一物镜下,不同波长可以到达的空间分辨率不同. 例如,物镜的数值孔径(NA)为0.9,532 nm激光的空间分辨率可达0.72 μm,而在同样条件下使用785 nm激光时,空间分辨率仅为1.1 μm.另一种情况,如果样品内的分子振动与入射激光可以产生共振效应,那么可以以此来选择入射激光波长,则可以得到较强的拉曼散射信号.2.2.3显微镜的选择通常显微镜的物镜上会标注2个参数,分别为放大倍数(5×、10×、20× 等)与数值孔径(numerical aperture,NA,是与镜头光通量有关的参数,一般为0.05~0.95). 一般放大倍数与数值孔径成正相关关系,而数值孔径决定空间分辨率,有如下公式 [12]:其中,R为最大空间分辨率. 在实际测试时需要注意激光能量会随光斑尺寸(空间分辨率)变化,更高的空间分辨率意味着激光密度会更大,此时需要注意样品可能会被激光热解. 对于高分子样品来说,一般要先从低激光功率测试开始尝试,如果此时拉曼散射信号很弱,则少量增加激光功率,但同时要注意观察样品是否被热解,如此反复尝试直到找到最适宜测试的激光强度.2.2.4Ne灯校准一般除用单晶硅对拉曼位移进行校准,另外使用内置的Ne灯也可以达到校准的效果. 一般在测试样品时与Ne灯同时使用,则所得到的拉曼谱图中同时包括样品与Ne灯的峰,由于Ne灯的拉曼峰位置已确定,因此可用于校正样品的峰位置.2.2.5测试参数设置在确定适宜样品的激光波长及显微镜倍数的前提下,为了提高信噪比,可以首先在不损伤样品的前提下尽量提高入射激光的强度,其次适当延长曝光时间(有效的提高散射信号强度),同时也可以增加循环(cycling)测试的次数(有效降低噪音的影响). 但需要注意曝光时间不宜过长,因为过长会导致检测器的饱和,例如当同时需要较强与较弱的拉曼散射峰时,较弱的散射峰由于信噪比较低而难以使用时,可以固定曝光时间并增加循环测试次数来降低最终谱图中噪音的Koenig J L.Spectroscopy of Polymers.Netherlands:Elsevier,1999.207-252.doi:10.1016/b978-044410031-3/50005-03Chalmers J,Griffiths P.Handbook of Vibrational Spectroscopy, 5 volumes set.New Jersey:John Wiley & Sons,2002.1-174Sasic S,Ozaki Y. Raman,Infrared, andNear-Infrared Chemical Imaging.New Jersey: John Wiley & Sons,2011.1-215Schrader B.Infrared and Raman Spectroscopy: Methods and Applications.New Jersey:John Wiley & Sons,2008.7-616
  • 年终盘点:拉曼光谱技术与市场新动向
    p   虽然,拉曼光谱已经具有八九十年的发展历史了,但其实为人们熟悉也没有太长的时间。曾几何时,拉曼光谱仪是一款非常高端的仪器,体积非常庞大,价格也曾高不可及,一度被认为是科学家和学术研究者才可以使用的仪器。即使现在回忆起那个阶段,很多专家还在感慨,当时觉得拉曼光谱仪太专业了,就算有钱也不敢买。 /p p   而现在,随着仪器技术的发展,仪器体积越做越小,操作越来越简单,当然价格也已经有所下降,很多单位已经可以负担得起了,同时其应用范围也在不断地拓展。可以说,这个曾经只局限于少数人的光谱技术,已经从它的学术限制中解放了出来,而且发展速度越来越快。 /p p   新产品、新标准、新应用...拉曼光谱在过去的一年中表现得尤为活跃。鉴于此,仪器信息网编辑特别为大家盘点一下近期拉曼光谱领域的新动向。 /p p span style=" color: rgb(255, 0, 0) "    strong 拉曼光谱仪已成为分子光谱中发展最快的一类仪器 /strong /span /p p   1928年印度物理学家拉曼(Raman)首次在实验中观察到拉曼散射光,因此荣获了1930年的诺贝尔物理学奖 虽然1928年到1945年之间,拉曼光谱在物质结构的研究中发挥了重要的作用,但由于信号弱等问题,在之后的十几年中几乎止步不前 直到上世纪60年代,激光技术的出现显著增强了拉曼信号,重新为拉曼技术的研究注入了新的活力 而1974年,Fleischmann 等人第一次在吡啶吸附的粗糙银电极上观察到表面增强拉曼(SERS)信号,之后掀起了拉曼研究的新热潮... /p p   材料领域一直以来都是拉曼的“主战场”。说是“主战场”,是因为材料科学是拉曼最“老”的一个应用领域,同时也是研究得相对最成熟的一个领域。而且材料领域的研究对拉曼光谱分析手段的依赖程度也比较高,很多专家反映,现在拉曼已经成为材料科学研究领域必不可少的分析手段了。 /p p   而现阶段,SERS是拉曼光谱研究领域当之无愧的热点,国内外皆如此。据悉,仅就“表面增强”一个关键词搜索,每年发表的相关学术论文已经达到2000多篇。对中国来说,80年代初就开始了SERS的相关研究工作,近几年踏入这个领域的研究人员几乎呈指数增长。而仪器信息网编辑在2015年也特别留意了一些课题组的研究动向,汇总了部分课题组在拉曼光谱方面的研究成果《 a title=" " href=" http://www.instrument.com.cn/news/subject/201002/?SubjectID=437" target=" _self" 拉曼最新研究成果盘点 /a 》。从中我们也可以发现,“表面增强”几乎渗透到了每一个课题组的研究工作中。 /p p style=" text-align: center " a title=" " href=" http://www.instrument.com.cn/news/subject/201002/?SubjectID=437" target=" _self" img width=" 500" height=" 104" title=" 3504c48e-67cf-4cb2-bbe9-bcd88fe35fed.jpg" style=" width: 500px height: 104px " src=" http://img1.17img.cn/17img/images/201601/insimg/f285efe3-e7d1-4480-b6cf-7feafa6688a3.jpg" border=" 0" vspace=" 0" hspace=" 0" / /a /p p   “增长速度快”几乎是所有人对拉曼光谱市场的共同的评价,Grand View Research最新研究报告显示,2014年,拉曼光谱市场价值超过1.3亿美元,显示高潜力的增长,预计到2022年之间复合年增长率将超过8.5%( a title=" " href=" http://www.instrument.com.cn/news/20151022/175369.shtml" target=" _self" 更多 /a )。同时,一份Transparency Market Research (TMR)的有关全球过程光谱的市场研究报告显示2012年在全球过程光谱学市场中,拉曼光谱占据了17.1%的市场份额,并预测拉曼光谱增长速度最快。其中特别强调,由于拉曼光谱无损的特点,在分析过程中对产品的化学结构不会产生影响,因此在制药、食品和农业等领域的应用越来越广泛,有望呈现指数增长( a title=" " href=" http://www.instrument.com.cn/news/20151021/175195.shtml" target=" _self" 更多 /a )。而在《光谱分析技术及仪器的现状和发展》(BCEIA 30年看光谱分析仪器发展)中也明确指出拉曼光谱无疑是分子光谱类仪器中发展最快的一类仪器。 /p p   对中国来说,虽然相关研究起步晚于欧美国家,但是近年来也得到了很大的发展。Ramdane BENFERHAT博士(HORIBA第一届拉曼学院,2014年)接受仪器信息网采访时就曾经谈到,“目前从销售额方面来说,中国拉曼光谱仪市场每年增长速率为4-8%,从台数上来说每年增长10-20%。根据现在的情况估计,中国市场每年拉曼光谱仪的销售量为200台左右(不包括手持式产品等),5年之后预计每年的市场销售台数将达到800-1000台。”( a title=" " href=" http://www.instrument.com.cn/news/20140806/138293.shtml" target=" _self" 更多 /a )其实,这一点从仪器信息网专场的数据也可以略见端倪,据统计,2015年,激光拉曼光谱仪器专场PV提升7.5%,留言量增长4%。 /p p strong   span style=" color: rgb(255, 0, 0) "  科研成果逐渐“落地” /span /strong /p p   近年来,在拉曼光谱相关仪器方面的研究也取得了系列进展,其中在BCEIA2015的“国家重大科学仪器设备开发专项阶段性成果”专区中,《等离激元增强拉曼光谱(PERS)仪器研发与应用》和《便携式薄层色谱━拉曼光谱联用仪及其药品快检支撑系统》两个国家重大仪器专项分别展出了最新的成果。 /p p   厦门大学为牵头单位的《等离激元增强拉曼光谱(PERS)仪器研发与应用》专项展出了LE-1增强模块、SE-1增强模块、便携式食品安全现场快速检测系统、便携式环境重金属现场快速检测系统、便携式化学涉恐危险品现场快速检测系统、便携式毒品现场快速检测系统及TERS针尖等产品。据介绍,该项目的部分增强模块已经在销售,便携仪器正在进行认证。 /p p style=" text-align: center " img width=" 600" height=" 339" title=" 2015111194325975.jpg" style=" width: 600px height: 339px " src=" http://img1.17img.cn/17img/images/201601/insimg/79694c9a-44b7-4e14-90a5-a25edcfcb266.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   2012年的国家重大仪器专项《便携式薄层色谱━拉曼光谱联用仪及其药品快检支撑系统》由中国人民解放军第二军医大学牵头承担,陆峰博士为项目牵头单位负责人,上海科哲生化科技有限公司承担薄层色谱仪器开发与产业化的主体工作,上海仪电分析仪器公司也承担产业化任务。该项目将薄层色谱与拉曼光谱技术有机结合,成功研制出世界首台高性能、全自动薄层色谱-拉曼光谱联用仪。同时依靠多策略、全流程、可视化的网络药品快检支撑系统,将为我国药品,乃至食品、化妆品等复杂体系的分析提供一种新的解决方案。而且根据最新消息, a title=" " href=" http://www.instrument.com.cn/news/20151110/176970.shtml" target=" _self" 继2015年10月份在BCEIA 2015展出后,国内自主研发的首台便携式薄层色谱-拉曼光谱联用仪经政府招标采购的方式,2016年1月6日正式列装山东省食品药品检验研究院。 /a /p p style=" text-align: center " img width=" 500" height=" 376" title=" IMG_63001.jpg" style=" width: 500px height: 376px " src=" http://img1.17img.cn/17img/images/201601/insimg/dcfa713e-4f91-4b86-bca4-7535a12f2297.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   此外,继2013年首台“活体单细胞拉曼分选仪”(简称RACS)样机在中科院青岛能源所验收之后(该项目在青岛能源所山东省能源生物遗传资源重点实验室徐健研究员和青岛能源所兼职研究员、英国谢菲尔德大学黄巍副教授主持下,由中国科学院青岛生物能源与过程研究所功能基因组团队与北京惟馨雨生物科技公司联合攻关完成),2015年,中国科学院青岛生物能源与过程研究所单细胞研究中心在基于微流控的单细胞拉曼流式分选技术研究中又取得新进展,由研究员徐健和马波领导的研究团队开发了一种基于阵列介电单细胞捕获/释放的快速拉曼识别技术,首次建立起基于介电单细胞捕获/释放的单细胞拉曼流式分选原理和装置,为下一步发展高通量拉曼流式细胞分选仪器奠定了原理和关键技术基础。 /p p   相关新闻: a title=" " href=" http://www.instrument.com.cn/news/20150706/166127.shtml" target=" _self" 当细胞遇上拉曼 会碰撞出什么样的火花——访牛津大学副教授黄巍博士 /a /p p    a title=" " href=" http://www.instrument.com.cn/news/20150209/153562.shtml" target=" _self" 青岛能源所单细胞拉曼流式分选技术研究获进展 /a /p p span style=" color: rgb(255, 0, 0) "    strong 由科研到应用 分析型仪器增长明显 /strong /span /p p   过去很长一段时间,拉曼光谱仪被认为是高端仪器,几乎仅限于学术研究。而随着激光器、CCD检测器等技术的发展,仪器体积越来越小,操作越来越简单,同时也越来越多地应用到各领域中去。总体来说,目前拉曼光谱仪在向科研型和分析型两个方面发展,一方面向高端研究方向发展 另一方面,向药品检测、食品安全等领域渗透,这一点在便携/手持拉曼方面表现的特别明显。 /p p   在高端产品方面,拉曼光谱仪慢慢走向成熟,同时在超低波数、透射拉曼、拉曼光镊技术、TERS等方面取得了系列进展,使科学家在新材料(如低维纳米材料)、药物API分析、化妆品、生命科学领域的研究中获得前所未有的信息,同时也推动了拉曼技术在这些领域中的应用。当然,对高端拉曼来说,一些光学元器件的性能还需要继续提升, a title=" " href=" http://www.instrument.com.cn/news/20150514/160611.shtml" target=" _self" 据中科院半导体所谭平恒研究员介绍,满足普遍实验需求的拉曼滤光片已经扩展到近紫外波段,如氦镉激光器的325nm,但是拉曼滤光片在紫外和深紫外波段的性能仍然受到镀膜技术的显著影响。另外,反射率高达99%以上的大面积高性能的平面和球面反射镜因为镀膜技术限制还没有被应用到拉曼光谱仪上。一旦这些仪器元器件能制备得更好,拉曼光谱仪的整体性能还会有突飞猛进的进步。 /a /p p   相对于高端产品,分析型拉曼光谱仪器的增长更为明显,近几年拉曼光谱仪在应用市场方面的拓展就很好地阐述了这一发展趋势。几年之前,拉曼光谱仪只应用在材料科学领域,但现在化学、催化、刑侦、地质领域、艺术、生命科学、材料科学等各个领域,甚至有一些QC领域也已经开始使用拉曼光谱仪了。可以说,拉曼光谱仪现在的应用市场已经发生了翻天覆地的改变,这一点在相关的学术会议中体现的尤为明显。 /p p   此外,一些单位也已经开始关注拉曼光谱仪和不同仪器的联用技术,这无疑为仪器的应用开拓了新的发展方向。除了国家重大仪器专项《便携式薄层色谱━拉曼光谱联用仪及其药品快检支撑系统》的项目外,很多厂商也在进行相关方法的开发,如布鲁克的AFM和雷尼绍的拉曼光谱仪联用 在Pittcon 2015上美国ATS公司(Acu Tech Scientific Inc)还展出了最新的拉曼产品AcuScan 1500,据介绍,该产品将Raman与HPLC相结合,既可以实现定性也可以实现定量分析。 /p p style=" text-align: center " img title=" 201531212509.jpg" src=" http://img1.17img.cn/17img/images/201601/noimg/29904f61-6e8c-4cab-9c30-0212d2643560.jpg" / /p p   span style=" color: rgb(255, 0, 0) "   strong 仪器新品“层出不穷” 便携/手持拉曼引领行业热点 /strong /span /p p   随着技术的发展以及实际应用需求的变化,小型化已经成为分析仪器的发展潮流之一,这一点在拉曼光谱仪领域表现的尤其活跃,可以“拿出去”、应用到各行各业的便携拉曼光谱仪的需求增长日益明显。 /p p   正是看好了这样的市场商机,很多厂商都已经开始了相关产品的布局,如赛默飞、必达泰克、海洋光学、日本理学、TSI等已经在这个领域耕耘多年,2015年,布鲁克、岛津、瑞士万通等很多厂商也纷纷迈入这个行业,带来了新的产品和技术。 /p p   其中,赛默飞推出了 a title=" " href=" http://www.instrument.com.cn/netshow/C240656.htm" target=" _self" Gemini手持式红外/拉曼二合一分析仪 /a ,将拉曼和FTIR 技术结合在单台仪器上,实现拉曼和红外的互相验证和补充 针对荧光干扰这个技术瓶颈,布鲁克推出了基于SSETM(连续移频激发)专利技术的 a title=" " href=" http://www.instrument.com.cn/netshow/C233077.htm" target=" _self" BRAVO便携拉曼光谱仪 /a 而为了满足现场快速检测日益增长的需求,岛津推出了 a title=" " href=" http://www.instrument.com.cn/netshow/C243248.htm" target=" _self" RM-3000便携拉曼光谱仪 /a 此外,日本理学推出了采用1064nm波长激光的 a title=" " href=" http://www.instrument.com.cn/news/20151214/180024.shtml" target=" _self" Progeny ResQ手持式拉曼光谱仪 /a 必达泰克推出了 a title=" " href=" http://www.instrument.com.cn/netshow/C226395.htm" target=" _self" 深致冷超高速智能便携拉曼光谱仪i-Rman Pro /a 美国BioTools公司推出了全球首创的 a title=" " href=" http://www.instrument.com.cn/news/20150313/155233.shtml" target=" _self" u-Raman便携式显微拉曼分子光谱成像系统和u-BioRaman便携式生物分子显微拉曼分子光谱成像系统 /a (该款产品由手性振动光谱先驱Prof. L.A. Nafie教授带领的专家团队研发而成)。 /p p   值得一提的是,赛默飞的Gemini手持式红外/拉曼二合一分析仪和日本理学的Progeny ResQ两款仪器还荣获了2015年R& amp D 100大奖。 /p p   便携/手持拉曼光谱仪由于使用方便,价格便宜而受到不少单位的青睐。通过对中国政府采购网上有关便携/手持式拉曼光谱仪的不完全统计,发现制药等领域对该类仪器的采购最多,公安部门的安全检测等也在选购相关的仪器 a title=" " href=" http://www.instrument.com.cn/news/20151202/179035.shtml" target=" _self" (哪些单位在采购便携/手持式拉曼光谱仪?)。 /a 不过,相比于大型共聚焦拉曼仪器,便携/手持式拉曼仪器的灵敏度等还有一定的局限性,其应用还受到一定程度的限制。因为在实际应用中,不仅要求检测快速,而且重复性要非常好。此外,仪器硬件、软件等方面的集成还需要进一步加强。 br/ /p p   总体来说,虽然便携/手持拉曼光谱仪这个市场还比较年轻,只有10多年的发展历程,但现在已经“如火如荼”。很多专家和厂商都表示,一旦某个应用领域得到突破,其市场应用前景将不可限量,现有的市场需求很容易就会翻番。 /p p style=" text-align: center " a title=" " href=" http://www.instrument.com.cn/zt/portableraman" target=" _self" img width=" 500" height=" 91" title=" SH100000_banner_350.jpg" style=" width: 500px height: 91px " src=" http://img1.17img.cn/17img/images/201601/noimg/caab8f59-5c5a-4713-ac42-3755a2f73eac.jpg" border=" 0" vspace=" 0" hspace=" 0" / /a /p p   span style=" color: rgb(255, 0, 0) " strong  “标准先行”已经起步 /strong /span /p p   对于仪器方法的推广来说,标准显得格外重要。标准先行,不仅可以促进应用市场的拓展,还可以引导产品技术的发展。在一定程度上,拉曼光谱相关标准的滞后也在一定程度上限制了该类仪器的推广应用,不过现在情况已经有了一定的改观,相关的标准制定工作也在加紧进行中。 /p p   其中,2015年8月份,国家质检总局发布了拉曼光谱仪校准规范(JJF1544-2015),由中国计量科学研究院和山东省计量科学研究院起草制定,2015年11月15日实施 2015版中国药典也将拉曼正式以检测方法列入药典附录,提高到了与红外同等的位置 在中国仪器仪表学会标准化工作委员会(SCIS)制定的团体标准中,其中一项就是《激光拉曼技术玉石矿物检测仪器》 2015年12月30日,福建省质监局在福州组织召开了由福建计量院、厦门大学、厦门市普识纳米科技有限公司共同起草的福建省地方标准《便携式拉曼光谱快速检测仪》专家审定会,与会专家一致通过了对该标准的审定 而鉴于目前标准制定工作的进展和需要,中国仪器仪表学会特成立激光拉曼技术相关仪器仪表的“中国仪器仪表学会标准化工作委员会激光拉曼专业技术委员会”(2016年1月4日)。 /p p   对厂商来说,在方法开发等方面的工作也在如火如荼的进行着,其中赛默飞联合深圳市疾病预防控制中心,基于正常油脂和废弃油脂拉曼谱图特有的差异性,建立了快速筛查地沟油的新方法。据悉,该方法已经通过了认证。 /p p strong   span style=" color: rgb(255, 0, 0) "  新的应用已经在路上... /span /strong /p p   从2000年左右的碳管,到现在的石墨烯研究,拉曼光谱技术的发展与新兴材料的研究密不可分。由于拉曼光谱具有不需要大量样品制备工作等优势,其应用领域甚至已经超过了红外,并正在开拓新的应用方向,比如制药、生命科学、爆炸物安全检测、毒品、文物研究等各个方面。而且在一些国际型的学术会议中,如第24届国际拉曼光谱学大会 (24th ICORS)、第十八届全国光散射学术会议(18th National Conference on Light Scattering)以及由HORIBA科学仪器事业部与厦门大学固体表面物理化学国家重点实验室共同主办的第三届国际拉曼前沿技术高端论坛(RamanFest)(2015年)等,这些热点已经得到了非常明显的体现。 /p p   在这里要特别提到的是,拉曼光谱仪在生物和医学领域的应用也逐渐崭露头角。特别在癌症的早期诊断和拉曼辅助手术方面已经为大家勾画了美好的蓝图,其中后者在德国的研究比较多,或许未来内科医生要和分析化学家、仪器工程师一起工作了。当然,这些现在还都处在实验阶段,也许它还不会很快来临,或者距离还比较遥远,可是已经给大家呈现了一个值得期待的有发展潜力的应用方向。 /p p   对我国来说,拉曼光谱在生命科学方面的应用相比国外要晚一些,但现在也已经有不少课题组踏入了这个领域。当然,实际研究过程中还存在不少问题,比如很多做化学的人不了解代谢的机理,亦或做生物的人很难解析拉曼谱图等。尽管如此,拉曼光谱在生命科学中的应用依然“魅力无限”。 br/ /p
  • 上海交大团队用拉曼光谱助力分子定量检测
    )4月17日,国际顶级期刊Nature(《自然》)在线发表了题为“Digital colloid-enhanced Raman spectroscopy by single-molecule counting”(通过单分子计数进行数字胶体增强拉曼光谱定量检测)的研究论文。该研究针对表面增强拉曼光谱领域内定量的挑战,系统阐述了基于数字胶体增强拉曼光谱(digital colloid-enhanced Raman spectroscopy, dCERS)的定量技术。基于单分子计数,dCERS成功实现了超低浓度目标分子的可靠定量检测,为表面增强拉曼光谱技术的普遍应用奠定了重要基础。本文的第一作者为上海交通大学生物医学工程学院致远荣誉计划博士研究生毕心缘,通讯作者为叶坚教授。作为资深作者,邵志峰教授在基本概念、数据解析以及文章的凝练、修改等方面做出了关键贡献。Daniel M. Czajkowsky教授也对数据的物理原理与文章修改做出了重要贡献。上海交通大学是论文的唯一完成单位和通讯单位。图为论文发表截图。本文图片均由受访团队提供拉曼散射(Raman scattering)是Chandrasekhara Venkata Raman于1928年发现的一种指纹式的、具有分子结构特异性的非弹性散射光谱,并获得了1930年颁发的诺贝尔物理学奖。通过拉曼谱峰可以直接判断对应的分子结构,进而识别具体的分子的类型。该技术具有无需标记的优势,使其在物理、化学、生物、地质、医学、国防和公共安全等各个领域均具有重要的应用价值。拉曼信号通常比较弱,因此增强其信号就变得非常有必要。表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)源于1974年英国南安普敦大学化学系Martin Fleischmann等人的一个重要实验。1997年SERS迎来了里程碑的事件——单分子SERS检测的实现。自此,SERS技术被认为有希望使得拉曼光谱第二次获得诺贝尔奖。屏幕截图 2024-04-18 112443但是,随着SERS研究的不断深入,人们发现在低浓度检测时,拉曼信号强度存在极大的不可重复性。因此,具有单分子检测的灵敏度并不意味着超灵敏定量的实现。换言之,获得更高的增强因子只是实现SERS高灵敏定量检测的必要条件,而只有实现了具有可重复性的测量,SERS技术才具有实际应用与大规模推广的能力。这一困扰拉曼领域几十年的难题,难以在现有的技术框架中得到圆满解决。上海交通大学生物医学工程学院叶坚教授和邵志峰教授团队发明了数字胶体增强拉曼光谱(dCERS),利用胶体纳米颗粒,可以实现较高效率的单分子检测。通过该单分子计数的方式可以实现对多种分子(如染料分子、代谢小分子、核酸、蛋白)的定量检测。其中,dCERS技术所采用的胶体颗粒的合成步骤简单,易于放大生产,在应用中,可以方便地取出每个批次的少量颗粒来针对具体的目标分子预先建立标准曲线,从而可以可靠地用于后续未知浓度样本的定量。为了确立dCERS在实际测量中的潜力,该团队选取了百草枯和福美双作为展示实例。百草枯是一种高效、剧毒的除草剂,可以诱导帕金森氏病的发生,目前已有32个国家严格禁止其使用。福美双是一种含硫剧毒杀真菌剂,被欧盟归为二类致癌物。因此,超高灵敏度的、准确可靠的定量检测技术对于这些分子的检测非常重要,尤其是致癌物,原则上不存在安全剂量。选取普通的湖水作为背景并混入微量的百草枯,该团队成功实现了低于欧盟最大残留量规定三个数量级的检测灵敏度。对于福美双,该团队选取了实验室培养的豆芽提取液,达到了优于质谱五个数量级的检测灵敏度。他们证明了,通过系列稀释的方法,检测中的背景干扰可以得到完美的抑制,从而实现准确的靶分子浓度的测量。而dCERS的超高灵敏度和可靠的统计分布是实现这些定量测量的关键基础。图为研究团队成员。这项研究展示了dCERS技术基于单分子计数实现了超低浓度目标分子在未知复杂背景中的可重复性定量,无需使用任何目标分子的特定标记。由于不同的目标分子大多具有独特的SERS光谱,dCERS可以实现多种不同分子的同时定量检测,因此具有很好的应用前景。另外,本工作使用的胶体纳米颗粒可以方便地进行大规模生产和制备,而检测方法相对简单,因此,dCERS有望进一步推动高灵敏检测技术的变革和进步。今年刚好是发现SERS技术的50周年,随着dCERS技术的进一步成熟,dCERS在生命科学、临床医学、环境保护、食品检测、国防与公共安全以及基础研究等领域有望得到广泛应用。
  • PerkinElmer红外光谱及拉曼分析技术及应用培训班改期通知
    尊敬的用户,原定于2009年8月24日~28日在黑河举办的PerkinElmer公司红外光谱及拉曼分析技术及应用高级培训班,现改至8月31日至9月4日在成都举办,敬请谅解! 以下是此次活动的详细信息: 关于举办 “红外光谱及拉曼分析技术及应用”高级培训班的 通 知 各有关单位: 近年来红外光谱在各行业中的应用日趋广泛,但普遍应用技术水平不是很高,为提高红外光谱分析与应用技术水平,PerkinElmer公司举办红外光谱分析与应用技术培训班,特聘请国内知名专家授课,本培训注重理论、应用和实验结合的方式,给培训学员真正带来提高。具体内容如下: 一、 授课专家 孙素琴 教授 清华大学分析中心副主任,主要研究领域为二维相关光谱技术,分子光谱法与中药和食品的宏观质量控制。 兼任分子光谱专业委员会秘书长,《中华中西医杂志》常务编委,中国物理学会光散射专业委员会委员,《光谱学与光谱分析》、《光散射学报》和《现代仪器》编委。 目前已发表学术论文180篇,获发明专利3项,出版专著一部,曾分别在美国、英国、日本、韩国、香港、新加坡、马来西亚、北京和上海的国际会议上作邀请报告。 周 群 博士 清华大学化学系副研究员。研究领域为分子光谱。多年来一直从事红外、拉曼光谱的研究工作。主要研究重点为中药材的快速无损分析和中药材稳定性的研究,以及采用分子光谱法结合二维相关技术对中药和食品进行宏观质量控制的研究。发表论文50余篇,专著一本,申请发明专利3项。 王国强 博士 PerkinElmer中国区分子光谱产品线技术经理。在公司专注红外技术应用11年,研究方向为高分子聚合物的结构表征。近年主要研究重点为高分子共混物的红外显微化学图像分析的相关技术研究。加入PerkinElmer前在化工部沈阳橡胶研究设计院先后担任分析室和制品室主任,从事橡胶及塑料剖析11年。先后剖析了近万个高分子样品。参与制订了国家红外橡胶标准,在沈阳橡胶研究设计院、西北橡胶研究设计院、一汽大众、中华及宝马等均有应用。 二、 培训内容 (一)绪论 1. 红外吸收光谱分析方法的历史和发展 2. 红外吸收光谱分析的特点 (二)红外吸收光谱分析的理论基础 1. 光的性质与分子光谱 2. 谐振子模型 3. 多原子分子振动 (三)红外吸收光谱仪器 1. 仪器的基本组成 2. 色散型红外光谱仪 3. 傅里叶变换红外光谱仪 4. 多联机系统(重点:红外图像) 5. 仪器的各项指标 (四)红外吸收光谱分析制样技术 1. 液体样品制样技术 2. 固体样品制样技术 3. 气体样品制样技术 4. 特殊样品制样技术-重点:各种反射附件技术 (五)红外光谱分析软件原理、技术与数据处理 1. 多种数据处理技术(背景与差谱、平滑、基线校正、导数光谱和归一化等) 2. 光谱比对分析的原理和技术 3. 光谱检索分析的原理和技术 4. 聚类分析的原理和技术 5. 多组分定量分析的原理和技术 6. 二维相关光谱分析的原理和技术 (六)红外吸收光谱定性分析(谱图解析) 1. 常见分子振动的特征吸收及其指认 2. 影响分子基团频率的各种因素 3. 混合物体系的叠加规律和整体结构解析 4. 混合物样本的红外光谱宏观指纹鉴定法――三级鉴定 (七)红外吸收光谱定量分析(含量测定) 1. 单一组分(比尔定律-标准曲线法) 2. 多组分(化学计量法) (八)红外吸收光谱法的应用 1. 红外吸收光谱分析在文物鉴定中的应用 2. 红外吸收光谱分析在珠宝鉴定中的应用 3. 红外吸收光谱分析在食品质量控制中的应用 4. 红外吸收光谱分析在中药质量控制中的应用 5. 红外光谱在原材料、橡胶、高分子聚合物及其他相关领域的应用 (八)实际操作 (九)日常维护及常见故障排除 (十)拉曼光谱分析的原理技术和应用(选授) 二、培训对象 各企事业单位负责化学分析及红外光谱仪器的负责人及工程技术人员; 三、培训时间、地点、收费 会议时间:2009年8月31日- 9月4日 (8月31日全天报到,9月4日早餐后返回) 报到地点:鼎欣酒店 成都市一环路西三段白果林小区文华路23号 电话:028-87750088 培训费:1900元。 四、培训考核与发证 培训结束后经过考试,将给合格者颁发培训证书。并成立PerkinElmer红外用户协会.同时进行首届PerkinElmer红外用户协会组织机构的选举。 五、报名事宜 报名者请尽早按要求填写《培训班报名回执》传真、E-mail或者网上报名。开班前一周,向您函发正式报到通知。如有具体问题请联系大会组委会会务组: 闫明 电话:024-22566158,传真:024-2256 6153 E-mail: Ming.Yan@perkinelmer.com PerkinElmer红外及拉曼光谱用户会会务组 2009年8月
  • 拉曼积分球光谱仪在气体检测中的应用
    拉曼光谱技术被称为分子指纹谱,可以对目标分子进行准确的定性分析,因而用途广泛。但是其固有的特点,例如拉曼散射信号弱等,限制了其应用范围,尤其是在气体检测领域的应用。气体分子密度低,透光度高,作为激发光源的激光在气体中可以传输较长距离,而拉曼信号作为散射信号散射向四周立体空间,因此不能通过像吸收光谱那样简单的通过增加光程来实现信号的增强。拉曼光谱应用于气体检测具有以下优点:1、准确定性:可以根据特征光谱对除惰性气体外的所有气体进行准确的定性分析;并且气体分子受周围环境影响小,其分子结构均一性较高,因此其特征光谱单色性好;气体分子结构简单,其特征光谱峰较少,不同分子间特征峰重合较少,有利于混合气体的分析。2、准确定量:气体的透明度具有的优点之一是,气体检测过程中不会受到荧光干扰,优点之二即气体分子被激发出的拉曼信号在被收集过程中与其他气体分子发生相互作用的概率极低,所以拉曼光谱强度与分子数量及拉曼散射截面成正比。而拉曼散射截面是固定量,因此拉曼光谱强度的变化量正比于分子数量的变化量,可以用来准确的计算分子数的相对变化。3、无损测量:拉曼散射过程是分子振动-转动能级的跃迁过程,不会破坏分子结构。4、无接触检测:拉曼散射采用光作为信号载体,可以通过透光窗口等对特殊环境例如高压、高温、剧毒等样品进行测试。在气体检测领域,由于气体的流动性,更需要对特殊气体进行密闭处理来保证气体的稳定性,适合对有毒、腐蚀性等的气体进行检测。5、同位素分子的分析:同位素作为标记物而应用广泛,而对同位素分子进行区分往往需要气相色谱和高分辨质谱联用这种昂贵的技术来实现,而作为分子振动-转动谱的拉曼光谱,其同位素的不同质量在其特征峰的频移上表现明显,可以轻松的区分同位素的种类和相对含量。正因为以上原因,在二十世纪六十年代激光出现并且作为拉曼光谱的光源而广泛应用的时候,科学家尝试将拉曼光谱技术应用于气体检测领域。近共焦腔、逆向多重反射池、能量聚集腔、多通道拉曼增益池、改进型多通道拉曼光谱仪、空心光子晶体光纤等多种提高激光功率使用效率或拉曼散射收集效率的极具光学技巧的设计应运而生,提高了拉曼光谱技术对于气体分子的检测限并且取得了显著的效果。拉曼散射的特点,及用于拉曼光谱分析的光谱仪的特点决定了共焦型拉曼光谱仪的高效率、高空间分辨率和高光谱分辨率。光谱仪需要将入光狭缝开到50微米甚至更小来保证光谱分辨率,设计一套光学系统将较大空间的散射信号收集聚焦到狭缝这样的狭窄空间并不现实,因此将激光聚焦到一个微小空间并且将这一微小空间的散射信号收集后聚集到狭缝,成为一种可行性选择,这样既充分利用了激光的激发功率,又实现了散射信号的高效收集。因此共焦型拉曼光谱仪提高了拉曼信号的强度,扩大了拉曼光谱技术的应用范围。同样的设计也可以应用于气体检测当中,不同于固体的拉曼信号散射向空气中的部分会被收集,散射向固体内部的部分会被固体吸收或者漫反射,因此很难充分收集;气体的均一性及其透光性决定了其散射向四周的信号均不会受到较大干扰,因此使信号的更高效的收集成为可能。共焦激发收集系统正是为了解决气体的拉曼散射信号的高效收集而设计,散射向上下、左右、前后的信号被聚焦镜准直后传输向反射镜,最终传输向左方的光谱分析系统。根据光的可逆性原理,进入系统的激光也会被上下、左右、前后的聚焦镜聚焦到焦点,从而同时提高激发光功率的使用效率。此设计的优点是可以增加更多的聚焦镜和反射镜,最终实现焦点散射向四周立体空间的所有信号传输向同一个方向,从而实现球状散射信号的充分收集。激光在气体中的传输距离可以达到几十千米,因此共焦激发收集系统中的数次反射的光程远小于这个距离,很难实现激发光功率的充分利用。互相平行的光可以被聚焦到一个点,而激光光斑毫米级别的直径远小于聚焦镜的直径,因此如果能实现光的多次来回反射并且互相平行,其效果将等同于多台激光器并排放置。直角反射镜可以将光的前进方向偏转180度并且与原方向互相平行,传输方向相反,两个直角反射镜配合使用可以使激光多次来回反射形成一个平面,在外面再放置两个直角反射镜可以实现激光平面的纵向扩展,最终互相平行,方向相反的激光布满立体空间。因此,四个直角反射镜配合使用可以使1毫米直径的激光在1英寸的光学元件间来回反射百次以上,而这些光因为互相平行,因此都会被聚焦镜聚焦到焦点。将四直角反射镜增光程系统与共焦激发收集系统结合,形成的系统既能充分利用激发光的功率,又能充分收集散射信号,其结构类似一个球体,因此被称为“拉曼积分球”。目前该技术已经能实现常压下ppm量级的气体检测,还可以通过增加激光功率、对气体加压以提高气体密度,增加曝光时间等来进一步提高检测限。拉曼积分球适用于透明度高的样品,例如气体,上图为典型的空气的拉曼光谱图,包括氮气,氧气的振动峰、转动峰和振动峰耦合的转动峰,水分子的振动峰等,对其进行局部放大,能看到氧气同位素拉曼峰,氮气同位素拉曼峰,二氧化碳拉曼峰等。目前气体检测应用广泛,例如与碳循环相关的各种气体,在催化剂作用下,碳会转换成各种有机分子,拉曼积分球可以实现对反应物和产物的1秒钟内万分之一的浓度检测,而最小样品量只需要2毫升,完全实现原位监控的作用。即使碳循环成各种液体,根据液体的挥发性,即使不需要加热升华,类似甘油等难以挥发的液体的挥发物依然可以被检测到。而对于一些固体的碳化合物,例如塑胶跑道,其挥发气体的成分和浓度的检测方法正在进一步研究当中。土壤的有机污染检测是拉曼积分球的另一个重要应用方向,将被污染的土壤放到密闭加热腔中,使其中的有机污染物升华成气体,即可实现对有机污染物的定性、定量分析。汽车发动机的状态会通过其尾气的成分反映出来,燃料挥发物和一氧化碳含量高说明进气不畅通,氧气剩余多则说明燃料喷嘴的效率不够;氮氧化物的含量高说明排烟脱氮不彻底。其他方面的应用包括环境气体检测,化工厂废气排放监控等等,作为一种自主研制、具有自主知识产权的气体检测技术,相比于传统气体检测技术具有实时快速、无损、检测限好、能区分同分异构体和同位素取代分子等优点,实现了我国气体检测技术的弯道超车,而其应用场景正进一步拓展。三年来,该技术正从发明一步步走向完善,虽然没能争取到纵向项目的支撑,但是相关的科学家的持续投入和支持保证了拉曼积分球技术研发的顺利进行,检测限已经从最初的勉强万分之一到达目前百万分之一,并且还有进一步提高的空间。随着我国对技术研究的重视和大力支持,该技术将会在我国气体检测领域占有一席之地并将推向国际市场。后记我国的分析仪器,尤其是高端分析仪器主要依赖进口,随着我国科研水平的快速提升,仪器自主研发能力也得到了很大的提高。特别是,实验室具有丰富仪器使用经验,在外企中从事技术服务的科学家和工程师也越来越多,他们对高端分析仪器有自己的认识和见解。而且,部分科学家和工程师已经开始了自主仪器研制并取得了很好的成果。相信随着国家在仪器研制方面的大力支持,成果评价体制的进一步均衡,国产化仪器的提倡作用和科学家、工程师的共同努力下,不久的将来,我国会产生一大批自主设计,具有自主知识产权,具有明确应用领域的先进的分析仪器。作者简介黄保坤:博士,高级工程师,江苏海洋大学教师,huang_baokun@163.com。曾就职于中科院大连化学物理研究所催化基础国家重点实验室和英国雷尼绍公司,作为技术负责人研制的深海紫外拉曼光谱仪实现下潜作业深度7749米,是目前世界上工作深度最深的拉曼光谱仪。为中科院、中石化、中核、上海市公安局、各大高校研制了拉曼积分球、显微拉曼、台式拉曼、便携式拉曼等多种类型的拉曼光谱仪。
  • 20多年首修 新版《激光拉曼光谱分析方法通则》12月1日实施
    p   10月9日,教育部办公厅印发30个教育行业标准的通知 ,其中,《JY/T 0573-2020激光拉曼光谱分析方法通则》吸引业界关注。本标准将代替JY/T 002—1996《激光喇曼光谱分析方法通则》,12月1日实施,这也是实施20多年来的首次修订。 /p p   《JY/T 0573-2020激光拉曼光谱分析方法通则》规定了用色散型显微激光拉曼光谱仪检测物质拉曼光谱的方法原理、校准用器具及材料、仪器环境、仪器、试样的制备、分析测试,以及安全、维护注意事项,适用于色散法激光拉曼光谱的常规分析。 /p p   与JY/T 002—1996相比,除编辑性修改外,主要技术变化如下: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 554px " src=" https://img1.17img.cn/17img/images/202010/uepic/148e4301-8696-4209-aee0-82c3e4cefa38.jpg" title=" 微信图片_20201022100119.png" alt=" 微信图片_20201022100119.png" width=" 600" height=" 554" border=" 0" vspace=" 0" / /p p   本标准起草单位:武汉理工大学、中国科学技术大学、四川大学、北京服装学院,北京师范大学。主要起草人包括薛理辉、左健、田云飞、龚龑、吴正龙、祁琰媛等。 /p p   详细内容请查看如下附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://www.instrument.com.cn/download/shtml/960390.shtml" target=" _blank" JYT 0573-2020(1).pdf /a /p
  • 上海交大叶坚教授团队Nature发文:拉曼光谱助力分子定量检测
    2024年4月17日国际顶级期刊Nature(《自然》)在线发表了题为“Digital colloid-enhanced Raman spectroscopy by single-molecule counting”的研究论文。该研究针对表面增强拉曼光谱领域内定量的挑战,系统阐述了基于数字胶体增强拉曼光谱(digital colloid-enhanced Raman spectroscopy, dCERS)的定量技术。基于单分子计数,dCERS成功实现了超低浓度目标分子的可靠定量检测,为表面增强拉曼光谱技术的普遍应用奠定了重要基础。 本文的第一作者为上海交通大学生物医学工程学院致远荣誉计划博士研究生毕心缘,通讯作者为叶坚教授。作为资深作者,邵志峰教授在基本概念、数据解析以及文章的凝练、修改等方面做出了关键贡献。Daniel M. Czajkowsky教授也对数据的物理原理与文章修改做出了重要贡献。上海交通大学是论文的唯一完成单位和通讯单位。该工作得到了上海交通大学古宏晨教授、徐宏教授和沈峰教授的帮助,得到了国家自然科学基金委、国家重点研发计划、上海市科学技术委员会、上海市妇科肿瘤重点实验室、上海交通大学、王宽诚教育基金会的资助。该成果成员:(从左往右)邵志峰、叶坚、毕心缘、Daniel M. Czajkowsky拉曼散射(Raman scattering)是Chandrasekhara Venkata Raman于1928年发现的一种指纹式的、具有分子结构特异性的非弹性散射光谱,并获得了1930年颁发的诺贝尔物理学奖。通过拉曼谱峰可以直接判断对应的分子结构,进而识别具体的分子的类型。该技术具有无需标记的优势,使其在物理、化学、生物、地质、医学、国防和公共安全等各个领域均具有重要的应用价值。拉曼信号通常比较弱,因此信号增强就变得非常有必要。表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)源于1974年英国南安普敦大学化学系Martin Fleischmann等人的一个重要实验。他们发现,在粗糙的银电极表面所附着的吡啶分子所产生的拉曼散射信号会被极大地增强,其物理原理在1977年分别由美国西北大学化学系David L. Jeanmaire和Richard P. Van Duyne以及英国肯特大学化学实验室M. Grant Albrecht和J. Alan Creighton从电磁场效应和电荷转移效应做出了解释。1997年SERS迎来了里程碑的事件——单分子SERS检测的实现。自此,SERS技术被认为有希望使得拉曼光谱第二次获得诺贝尔奖。迄今为止,研究人员开发了各种不同的纳米增强基底,如纳米星、纳米海胆、纳米花、纳米森林等,通过采用不同的湿化学合成方案与芯片制造工艺,使得基底表面具有更为丰富的尖端、缝隙结构,形成更强的热点区域为其中的分子提供更高的增强能力,实现超低浓度的分子检测。 但是,随着SERS研究的不断深入,人们发现在低浓度检测时,拉曼信号强度存在极大的不可重复性。因此,具有单分子检测的灵敏度并不意味着超灵敏定量的实现。换言之,获得更高的增强因子只是实现SERS高灵敏定量检测的必要条件,而只有实现了具有可重复性的测量,SERS技术才具有实际应用与大规模推广的能力。很显然,这一困扰拉曼领域几十年的难题,难以在现有的技术框架中得到圆满解决。本工作展示了dCERS技术基于单分子计数实现了超低浓度目标分子在未知复杂背景中的可重复性定量,无需使用任何目标分子的特定标记。由于不同的目标分子大多具有独特的SERS光谱,dCERS可以实现多种不同分子的同时定量检测,因此具有很好的应用前景。dCERS成功实现具有普适意义的1fM水平定量灵敏度。另外,本工作使用的胶体纳米颗粒可以方便地进行大规模生产和制备,而检测方法相对简单,因此,dCERS有望进一步推动高灵敏检测技术的变革和进步,验证了在环境保护、食品安全等领域的实用性。 今年刚好是发现SERS技术的50周年,可以预见,随着dCERS技术的进一步成熟,dCERS在生命科学、临床医学、环境保护、食品检测、国防与公共安全以及基础研究等领域都会得到广泛的应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制