当前位置: 仪器信息网 > 行业主题 > >

影像仪的原理

仪器信息网影像仪的原理专题为您提供2024年最新影像仪的原理价格报价、厂家品牌的相关信息, 包括影像仪的原理参数、型号等,不管是国产,还是进口品牌的影像仪的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合影像仪的原理相关的耗材配件、试剂标物,还有影像仪的原理相关的最新资讯、资料,以及影像仪的原理相关的解决方案。

影像仪的原理相关的论坛

  • 超声波测厚仪基本原理及影响精度的因素

    超声波测厚仪基本原理:  超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。使用技巧:(以我公司销售的超声波测厚仪为例)1、一般测量方法:(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。(2)30mm 多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约为30mm 的圆内进行多次测量,取最小值为被测工件厚度值。2、精确测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。4、网格测量法:在指定区域划上网格,按点测厚记录。此方法在高压设备、不锈钢衬里腐蚀监测中广泛使用。5、影响示值的因素:(1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。(2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头(6mm ),能较精确的测量管道等曲面材料。(3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。可选用频率较低的粗晶专用探头(2.5MHz)。(5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度增加,导致灵敏度下降,从而造成显示不正确。可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。(6)被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。(7)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。 (8)当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%,此时可用超声波探伤仪进一步进行缺陷检测。(9)温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备常常碰到这种情况。应选用高温专用探头(300-600°C),切勿使用普通探头。(10)层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别注意,测厚仪的示值仅表示与探头接触的那层材料厚度。(12)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。因根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高时,耦合剂应涂在探头上。(13)声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果。要求在测量前一定要正确识别材料,选择合适声速。(14)应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。(15)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。 http://www.1718-show.cn/ComFolder/18show/908/2006621161542373.gif 超声波测厚仪基本原理:  超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。使用技巧:(以我公司销售的超声波测厚仪为例)1、一般测量方法:(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。(2)30mm 多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约为30mm 的圆内进行多次测量,取最小值为被测工件厚度值。2、精确测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。4、网格测量法:在指定区域划上网格,按点测厚记录。此方法在高压设备、不锈钢衬里腐蚀监测中广泛使用。5、影响示值的因素:(1)工件表面[/si

  • 超声波测厚仪原理及影响精度的因素

    超声波测厚仪基本原理:  超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。使用技巧:1、一般测量方法:(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。(2)30mm 多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约为30mm 的圆内进行多次测量,取最小值为被测工件厚度值。2、精确测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。4、网格测量法:在指定区域划上网格,按点测厚记录。此方法在高压设备、不锈钢衬里腐蚀监测中广泛使用。5、影响示值的因素:(1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。(2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头(6mm ),能较精确的测量管道等曲面材料。(3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。可选用频率较低的粗晶专用探头(2.5MHz)。(5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度增加,导致灵敏度下降,从而造成显示不正确。可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。(6)被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。(7)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。 (8)当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%,此时可用超声波探伤仪进一步进行缺陷检测。(9)温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备常常碰到这种情况。应选用高温专用探头(300-600°C),切勿使用普通探头。(10)层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别注意,测厚仪的示值仅表示与探头接触的那层材料厚度。(12)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。因根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高时,耦合剂应涂在探头上。(13)声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果。要求在测量前一定要正确识别材料,选择合适声速。(14)应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。(15)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。

  • 【求助】EDS定量分析原理及误差及影响因素

    各位大侠,帮忙解决我的问题吧,EDS定量分析原理及误差及影响因素,有没有这方面的资料啊?可否分享一下,对于这方面我不是很了解,经常回答不出别人的问题,此次想系统的学习一下,麻烦高人指点!感激不尽!

  • 影像测量仪的工作原理是什么?怎么安装操作?

    [b]一、仪器工作原理及结构[/b]1、工作原理:影像座标测量仪是通过连续变倍物镜、彩色 CCD,通过透射光或表面光照明将被测工件放大后成像在显示器上的视频放大测量系统。利用专用测量软件对精密光学尺传输的数据进行处理,而对工件完成测量工作。2、 仪器总体结构(如图):[align=center][img]https://res.mp.sohu.com/djEvY1o1UzVIbzdHZFp6YXNuTDlSSE1PRXNlR1drNUFpZkhHenpUeTlHcnVLOGd4Y2w4N0ZPcXJndW1pTV95SW9RZGE1WUxseUIxWDJ3Ym1BOHU1Q1ZJX2xBRjQ1ZDFwUFhPNkpTMW92VWFlakE9[/img][/align][align=center][img]https://res.mp.sohu.com/djEvNHdlYXpteTNEbDRoNnYwMjNpd1FhbEJHdUpvNjQ0WUNKNVFwZVRzS2JWdmFZNHRoTWt4UVBfcEhQUEFrcVZBM2dxU2ota3YyN2djTTNUb3dZVzdoakZBRjQ1ZDFwUFhPNkpTMW92VWFlakE9[/img][/align][b]二、仪器的安装[/b]1、仪器使用环境① 仪器放置的工作桌面需牢固、可靠、不得摇晃;②放置地点需远离各种震源;③环境温度保持在 20℃-5℃,湿度≤75°RH。④放置环境应避免大量灰尘。⑤供电电源必须有接地保护。2、仪器的安装:① 打开仪器的外包装和内包装,请先阅读本节。② 仪器搬运时要小心谨慎,轻拿轻放。③仪器放置完毕后,将水平仪放置在工作台面上,调节仪器底脚,使仪器保持水平。④松开工作台固定板(X、Y 轴各一块,)、Z 轴固定板(传动组下部),配重紧定螺钉(立柱左侧面)。[align=center][img]https://res.mp.sohu.com/djEvWXRlVG44S1pmejRKS3hkZXdIeVNPcDJqQWxYZ2NtRXdrOVVrTzJPWVJ6RFhZTncxOERCNVZ6U0o5bEZKdTRDeHlndzN1amJVTlNrLTNXSlpqVmV4U1ZBRjQ1ZDFwUFhPNkpTMW92VWFlakE9[/img][/align]⑤测绘软件安装。⑥通讯卡、视频卡、硬件、软件安装。⑦插上电源线,打开电源,按仪器使用方法及软件操作步骤开始操作⑧最后由工程人员进行 X 轴、Y 轴、Z 轴、光栅尺校正,即可完成安装。⑨仪器安装完成后,请不要随便搬动机台。[align=center][img]https://res.mp.sohu.com/djEvY1o1UzVIbzdHZFp6YXNuTDlSSE1PQ1BSZzVqS2dfSG43aWZoemNsUnFGdWF2eTVxbHJBY2hLN3BYOVpEMDRtdDRiWGRodFBkSFJZQUhEcmEwSzZVWlZfNl9ya2oxaXk1bVZqR01XNzhoSjQ9[/img][/align][b]三、仪器使用方法[/b]1、先检查工作台是否复位,再打开电源开关,打开电脑运行测量软件。2、旋转连续变倍物镜的倍率调节圈,选择适当的放大倍率。3、将被测工件置于工作台玻璃中心位置附近,打开表面光源或透射光源,并调节至合适的亮度。3.4 在软件上通过鼠标移动 X 轴和 Y 轴使被测工件需测量的部分,成像在显示器上,通过鼠标调节 Z 轴升降,使工件成像清晰。通过测量软件,即可对工件的各尺寸参数进行测量。注:如果需要视频测量请先选取比例尺(比例尺的选取方法详见软件使用手册),且测量过程中,不可改变变倍物镜的放大倍率!否则会出现错误的测量结果。如果改变变焦物镜的大倍率就必须重新选取比例尺![b]一、仪器工作原理及结构[/b]1、工作原理:影像座标测量仪是通过连续变倍物镜、彩色 CCD,通过透射光或表面光照明将被测工件放大后成像在显示器上的视频放大测量系统。利用专用测量软件对精密光学尺传输的数据进行处理,而对工件完成测量工作。2、 仪器总体结构(如图):[align=center][img]https://res.mp.sohu.com/djEvY1o1UzVIbzdHZFp6YXNuTDlSSE1PRXNlR1drNUFpZkhHenpUeTlHcnVLOGd4Y2w4N0ZPcXJndW1pTV95SW9RZGE1WUxseUIxWDJ3Ym1BOHU1Q1ZJX2xBRjQ1ZDFwUFhPNkpTMW92VWFlakE9[/img][size=14px][color=#909090]点击添加图片描述(最多60个字)[/color][/size][font=iconfont !important][size=14px][back=#ffdd00][/back][/size][/font][size=14px][color=#ffffff][back=rgba(0, 0, 0, 0.55)]编辑[/back][/color][/size][/align][align=center][img]https://res.mp.sohu.com/djEvNHdlYXpteTNEbDRoNnYwMjNpd1FhbEJHdUpvNjQ0WUNKNVFwZVRzS2JWdmFZNHRoTWt4UVBfcEhQUEFrcVZBM2dxU2ota3YyN2djTTNUb3dZVzdoakZBRjQ1ZDFwUFhPNkpTMW92VWFlakE9[/img][size=14px][color=#909090]点击添加图片描述(最多60个字)[/color][/size][font=iconfont !important][size=14px][back=#ffdd00][/back][/size][/font][size=14px][color=#ffffff][back=rgba(0, 0, 0, 0.55)]编辑[/back][/color][/size][/align][b]二、仪器的安装[/b]1、仪器使用环境① 仪器放置的工作桌面需牢固、可靠、不得摇晃;②放置地点需远离各种震源;③环境温度保持在 20℃-5℃,湿度≤75°RH。④放置环境应避免大量灰尘。⑤供电电源必须有接地保护。2、仪器的安装:① 打开仪器的外包装和内包装,请先阅读本节。② 仪器搬运时要小心谨慎,轻拿轻放。③仪器放置完毕后,将水平仪放置在工作台面上,调节仪器底脚,使仪器保持水平。④松开工作台固定板(X、Y 轴各一块,)、Z 轴固定板(传动组下部),配重紧定螺钉(立柱左侧面)。[align=center][img]https://res.mp.sohu.com/djEvWXRlVG44S1pmejRKS3hkZXdIeVNPcDJqQWxYZ2NtRXdrOVVrTzJPWVJ6RFhZTncxOERCNVZ6U0o5bEZKdTRDeHlndzN1amJVTlNrLTNXSlpqVmV4U1ZBRjQ1ZDFwUFhPNkpTMW92VWFlakE9[/img][size=14px][color=#909090]点击添加图片描述(最多60个字)[/color][/size][font=iconfont !important][size=14px][back=#ffdd00][/back][/size][/font][size=14px][color=#ffffff][back=rgba(0, 0, 0, 0.55)]编辑[/back][/color][/size][/align]⑤测绘软件安装。⑥通讯卡、视频卡、硬件、软件安装。⑦插上电源线,打开电源,按仪器使用方法及软件操作步骤开始操作⑧最后由工程人员进行 X 轴、Y 轴、Z 轴、光栅尺校正,即可完成安装。⑨仪器安装完成后,请不要随便搬动机台。[align=center][img]https://res.mp.sohu.com/djEvY1o1UzVIbzdHZFp6YXNuTDlSSE1PQ1BSZzVqS2dfSG43aWZoemNsUnFGdWF2eTVxbHJBY2hLN3BYOVpEMDRtdDRiWGRodFBkSFJZQUhEcmEwSzZVWlZfNl9ya2oxaXk1bVZqR01XNzhoSjQ9[/img][size=14px][color=#909090]点击添加图片描述(最多60个字)[/color][/size][font=iconfont !important][size=14px][back=#ffdd00][/back][/size][/font][size=14px][color=#ffffff][back=rgba(0, 0, 0, 0.55)]编辑[/back][/color][/size][/align][b]三、仪器使用方法[/b]1、先检查工作台是否复位,再打开电源开关,打开电脑运行测量软件。2、旋转连续变倍物镜的倍率调节圈,选择适当的放大倍率。3、将被测工件置于工作台玻璃中心位置附近,打开表面光源或透射光源,并调节至合适的亮度。3.4 在软件上通过鼠标移动 X 轴和 Y 轴使被测工件需测量的部分,成像在显示器上,通过鼠标调节 Z 轴升降,使工件成像清晰。通过测量软件,即可对工件的各尺寸参数进行测量。注:如果需要视频测量请先选取比例尺(比例尺的选取方法详见软件使用手册),且测量过程中,不可改变变倍物镜的放大倍率!否则会出现错误的测量结果。如果改变变焦物镜的大倍率就必须重新选取比例尺!

  • 【求助】请问苯酐吡啶溶液变黄,影响测定的原理是什么?

    新进的批号是201004的吡啶已经是淡黄色的了,配制溶液过夜后,苯酐溶液颜色更深了,请问,吡啶变色原理是什么?对多元醇测定影响是如何产生的,请高人指点。我用的电位滴定。吡啶变黄不能用是针对使用指示剂干扰终点判断还是其他的原因呢?

  • 【求助】影响钠溶液稳定性的因素和原理是什么?

    每次测定钠溶液,不管是标准曲线的校准还是试样的测定,稳定性都很差,随着放置时间的延长,更加明显,为什么呢?影响钠溶液稳定性的因素和原理到底什么?钠有电离干扰,钾也有,但钾的稳定性要比它好很多呢,唉,想不明白?

  • 看图解读畅谈之十二: 泵结构原理不同对检测的影响

    看图解读畅谈之十二: 泵结构原理不同对检测的影响

    岛津LC-20AT和安捷伦1200 G1310B 虽然都是比较落后的液相色谱仪,但现在化验室还有不少它们的影子,还在发挥着自身的光热。每天和它们朝夕相处自然多了一些了解,也增加了一些情趣, 有时候对它们的差异也很好奇,比如:安捷伦1200泵有阻尼器而岛津LC-20AT却没有看到,安捷伦1200泵与岛津LC-20AT泵原理结构不同,单向阀似乎也有差别,那么它们的结构原理性能具体有多少不同和差异,仔细想想还真的说不清,http://simg.instrument.com.cn/bbs/images/default/em09511.gif要搞清这些秘密也只能请教老师和朋友了!请各位老师不吝赐教说说它们的差异,请各位盆友指点一下它们的不同,在此先行谢过!http://ng1.17img.cn/bbsfiles/images/2017/10/2015051415031036_01_2960432_3.gif再者:它们接泵进六通阀的管线有什么不同,它们的不同对检测器以及检测器参数有什么影响?(图一)岛津LC-20AT泵http://ng1.17img.cn/bbsfiles/images/2015/05/201505141317_546052_2960432_3.png(图二)岛津LC-20AT泵结构图http://ng1.17img.cn/bbsfiles/images/2015/05/201505151356_546247_2960432_3.png(图三)Agilent 1200 单元泵http://ng1.17img.cn/bbsfiles/images/2015/05/201505141317_546053_2960432_3.png(图四)Agilent 1200 单元泵输液系统原理图http://ng1.17img.cn/bbsfiles/images/2017/10/2015051513021484_01_2960432_3.png

  • [经验]影像测量仪|投影仪|CCD的原理(数码篇)!!!?请勿转载!!

    说到CCD的尺寸,其实是说感光器件的面积大小,这里就包括了CCD和CMOS。感光器件的面积大小,CCD/CMOS面积越大,捕获的光子越多,感光性能越好,信噪比越低。CCD/CMOS是数码相机用来感光成像的部件,相当于光学传统相机中的胶卷。 CCD上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。 如果分解CCD,你会发现CCD的结构为三层,第一层是“微型镜头”,第二层是“分色滤色片”以及第三层“感光层”。 第一层“微型镜头” 我们知道,数码相机成像的关键是在于其感光层,为了扩展CCD的采光率,必须扩展单一像素的受光面积。但是提高采光率的办法也容易使画质下降。这一层“微型镜头”就等于在感光层前面加上一副眼镜。因此感光面积不再因为传感器的开口面积而决定,而改由微型镜片的表面积来决定。 第二层是“分色滤色片” CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYK补色分色法这两种方法各有优缺点。首先,我们先了解一下两种分色法的概念,RGB即三原色分色法,几乎所有人类眼镜可以识别的颜色,都可以通过红、绿和蓝来组成,而RGB三个字母分别就是Red, Green和Blue,这说明RGB分色法是通过这三个通道的颜色调节而成。再说CMYK,这是由四个通道的颜色配合而成,他们分别是青(C)、洋红(M)、黄(Y)、黑(K)。在印刷业中,CMYK更为适用,但其调节出来的颜色不及RGB的多。 原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。因此,大家可以注意,一般采用原色CCD的数码相机,在ISO感光度上多半不会超过400。相对的,补色CCD多了一个Y黄色滤色器,在色彩的分辨上比较仔细,但却牺牲了部分影像的分辨率,而在ISO值上,补色CCD可以容忍较高的感光度,一般都可设定在800以上 第三层:感光层 CCD的第三层是“感光片”,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。 传统的照相机胶卷尺寸为35mm,35mm为对角长度,35mm胶卷的感光面积为36 x 24mm。换算到数码相机,对角长度约接近35mm的,CCD/CMOS尺寸越大。在单反数码相机中,很多都拥有接近35mm的CCD/CMOS尺寸,例如尼康德D100,CCD/CMOS尺寸面积达到23.7 x 15.6,比起消费级数码相机要大很多,而佳能的EOS-1Ds的CMOS尺寸为36 x 24mm,达到了35mm的面积,所以成像也相对较好。 现在市面上的消费级数码相机主要有2/3英寸、1/1.8英寸、1/2.7英寸、1/3.2英寸四种。CCD/CMOS尺寸越大,感光面积越大,成像效果越好。1/1.8英寸的300万像素相机效果通常好于1/2.7英寸的400万像素相机(后者的感光面积只有前者的55%)。而相同尺寸的CCD/CMOS像素增加固然是件好事,但这也会导致单个像素的感光面积缩小,有曝光不足的可能。但如果在增加CCD/CMOS像素的同时想维持现有的图像质量,就必须在至少维持单个像素面积不减小的基础上增大CCD/CMOS的总面积。目前更大尺寸CCD/CMOS加工制造比较困难,成本也非常高。因此,CCD/CMOS尺寸较大的数码相机,价格也较高。感光器件的大小直接影响数码相机的体积重量。超薄、超轻的数码相机一般CCD/CMOS尺寸也小,而越专业的数码相机,CCD/CMOS尺寸也越大。如有疑问请登陆www.yr17.net

  • 【资料】超声波测厚仪的工作原理和设计方案

    超声波测厚仪的工作原理和设计方案超声波测厚仪按工作原理分:有共振法、干涉法及脉冲反射法等几种,由于脉冲反射法并不涉及共振机理,与被测物表面的光洁度关系不密切,所以超声波脉冲法测厚仪是最受用户欢迎的一种仪表。  1. 工作原理  超声波测厚仪主要有主机和探头两部分组成。主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示厚度数值,它主要根据声波在试样中的传播速度乘以通过试样的时间的一半而得到试样的厚度。  HT系列超志波测厚仪,在采用国内外先进技术的基础上,运用单片机技术研制 的一种低功耗低下限袖珍式的智能测量仪器,不仅有测量不同材质厚度的仪器,而且有单测钢,超薄型的,同时均可配套高温测厚探头。  2. 测厚仪应用领域  由于超声波处理方便,并有良好的指向性,超声技术测量金属,非金属材料的厚度,既快又准确,无污染,尤其是在只许可一个侧面可按触的场合,更能显示其优越性,广泛用于各种板材、管材壁厚、锅炉容器壁厚及其局部腐蚀、锈蚀的情况,因此对冶金、造船、机械、化工、电力、原子能等各工业部门的产品检验,对设备安全运行及现代化管理起着主要的作用。  超声清洗与超声波测厚仪仅是超声技术应用的一部分,还有很多领域都可以应用到超声技术。比如超声波雾化、超声波焊接、超声波钻孔、超声波研磨、超声波液位计、超声波物位计、超声波抛光、超声波清洗机、超声马达等等。超声波技术将在各行各业得到越来越广泛的应用。  3. 影响测量精度的原因  (1) 覆盖层厚度大于25μm时,其误差与覆盖层厚度近似成正比;   (2) 基体金属的电导率对测量有影响,它与基体金属材料成分及热处理方法有关;   (3) 任何一种测厚仪都要求基体金属有一个临界厚度,只有大于这个厚度,测量才不会受基体金属厚度的影响;   (4) 涡流测厚仪对式样测定存在边缘效应,即对靠近式样边缘或内转角处的测量是不可靠的;   (5) 试样的曲率对测量有影响,这种影响将随曲率半径的减小明显地增大;   (6) 基体金属和覆盖层的表面粗糙度影响测量的精度,粗糙度增大,影响增大。

  • 差示扫描量热仪的原理、应用、影响因素及校正综述

    差示扫描量热仪的原理、应用、影响因素及校正综述

    [align=center][b][font=黑体]差示扫描量热仪的原理、应用、影响因素及校正综述[/font][/b][/align][align=center][font=楷体][font=楷体]北京化工大学[/font] [font=楷体]陈思棋,桂伊玲,秦安宇[/font][/font][/align][b][font=宋体]摘要:[/font][/b][font=宋体][font=Times New Roman]DSC[/font][font=宋体]主要有两种基本类型:热通量[/font][font=Times New Roman]DSC[/font][font=宋体]和功率补偿[/font][font=Times New Roman]DSC[/font][font=宋体],这两种仪器的仪器设计和测量原理有所不同,但它们有一个共同点是测量的信号与热流量成正比。影响[/font][font=Times New Roman]DSC[/font][font=宋体]测试的因素有许多,诸如样品选取的一致性、吹扫气的气体条件、升温速率、样品质量等等。热流型[/font][font=Times New Roman]DSC[/font][font=宋体]需要定期进行校验,检测所测试结果是否在误差范围内。[/font][font=Times New Roman]DSC[/font][font=宋体]有许多应用:测定微塑料的组成及含量、对甲基丙烯酰胺接枝蚕丝的接枝率进行定量检测对合金热处理工艺进行分析等等。[/font][/font][b][font=宋体][font=宋体]关键词:差示扫描量热仪[/font][font=Times New Roman] DSC[/font][font=宋体]应用;影响[/font][font=Times New Roman]DSC[/font][font=宋体]测试因素;[/font][font=Times New Roman]DSC[/font][font=宋体]校准[/font][/font][font=黑体]一、[/font][b][font=黑体]引言[/font][/b][/b][font=宋体][font=Times New Roman]DSC[/font][font=宋体]设备已经成为化学和材料科学实验室的必备仪器,是作为表征热力学和动力学性质、相变和性质演化的通用标准工具。[/font][font=Times New Roman]Flash DSC[/font][font=宋体]大大扩大了加热和冷却速率的范围(高达每秒[/font][font=Times New Roman]100[/font][font=宋体]万度),可测量超短时间尺度中的变化。科学家们可以利用[/font][font=Times New Roman]Temperature-Modulated DSC[/font][font=宋体]([/font][font=Times New Roman]TMDSC[/font][font=宋体])将[/font][font=Times New Roman]DSC[/font][font=宋体]信号的热容和动力学成分分离,达到区分重叠的过渡和检测二次过渡的效果。[/font][font=Times New Roman]DSC[/font][font=宋体]的应用十分广泛,[/font][font=Times New Roman]DSC[/font][font=宋体]具有对各种大小能量波动的超高灵敏度,被大量用于检测加热、冷却、加压和退火过程中引发玻璃产生相变和结构变化产生的能量波动。但是[/font][font=Times New Roman]DSC[/font][font=宋体]的测定需要规范操作,对数据进行一定的矫正。我们首先阐述了传统[/font][font=Times New Roman]DSC[/font][font=宋体]、[/font][font=Times New Roman]Flash DSC[/font][font=宋体]和[/font][font=Times New Roman]TMDSC[/font][font=宋体]的原理,然后介绍了[/font][font=Times New Roman]DSC[/font][font=宋体]影响因素和校正方法,最后简单列举了几种[/font][font=Times New Roman]DSC[/font][font=宋体]的应用实例。[/font][/font][b][font=黑体]二、[/font][b][font=黑体][font=Times New Roman]DSC[/font][font=黑体]的原理[/font][/font][/b][/b][font='Times New Roman']DSC[font=宋体]是最常用的热分析技术,应用包括[/font][/font][font=宋体]:[/font][font='Times New Roman'][font=宋体]基础研究、开发新材料和质量检查。它既是一种例行的质量测试,也作为一个研究工具。[/font]DSC[font=宋体]是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。[/font][/font][font=宋体][font=宋体]差示温度控制回路也称为[/font][font=宋体]“能补环”。[/font][font=Times New Roman]DSC[/font][/font][font='Times New Roman'][font=宋体]在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差[/font][font=Times New Roman]ΔT[/font][font=宋体]时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差[/font][font=Times New Roman]ΔT[/font][font=宋体]消失[/font][/font][font=宋体][font=宋体],整个系统保持[/font][font=宋体]“热零位”状态[/font][/font][font='Times New Roman'][font=宋体]。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间[/font]t[font=宋体]的变化关系。本质上,[/font][/font][font=宋体][font=Times New Roman]DSC[/font][/font][font='Times New Roman'][font=宋体]测量[/font][/font][font=宋体]的是[/font][font='Times New Roman'][font=宋体]样品受到特定温度[/font][/font][font=宋体]变化[/font][font='Times New Roman'][font=宋体]时吸收或释放的热量[/font]/[font=宋体]能量。如果升温速率恒定,记录的就是热功率之差随温度[/font][font=Times New Roman]T[/font][font=宋体]的变化关系。[/font][/font][font=宋体]根据测量方法的不同,可分为热流型差示扫描量热法和功率补偿差示扫描量热法。[/font][font='Times New Roman'][font=宋体]除[/font][/font][font=宋体]此之外[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体][font=宋体]还将介绍两种特殊的[/font][font=Times New Roman]DSC[/font][font=宋体]仪器:[/font][font=Times New Roman]Flash [/font][/font][font='Times New Roman']DSC[/font][font=宋体]和[/font][font='Times New Roman']TMDSC[/font][font=宋体]的基本原理。[/font][b][font=黑体](一)[/font][b][font='Times New Roman'][font=黑体]热通量[/font] DSC[/font][/b][/b][font='Times New Roman'][font=宋体]热通量[/font]DSC[font=宋体]是一种热交换量热计。可以通过具有给定热阻的[/font][/font][font=宋体]指定[/font][font='Times New Roman'][font=宋体]热传导路径[/font][/font][font=宋体],来[/font][font='Times New Roman'][font=宋体]测量样品与其周围环境间的热交换。热交换路径包括[/font][/font][font=宋体]:[/font][font='Times New Roman'][font=宋体]磁盘式、炮塔式和气缸式测量系统。其中,[/font][/font][font=宋体]以[/font][font='Times New Roman'][font=宋体]磁盘式测量系统最[/font][/font][font=宋体]为常用[/font][font='Times New Roman'][font=宋体],热交换[/font][/font][font=宋体]借助支撑[/font][font='Times New Roman'][font=宋体]固体样品的磁盘[/font][/font][font=宋体]进行[/font][font='Times New Roman'][font=宋体]。该系统可以在较宽的温度范围内[/font][/font][font=宋体]([/font][font='Times New Roman']?190~1600°C[/font][font=宋体])[/font][font='Times New Roman'][font=宋体]快速准确地进行[/font]DSC[font=宋体]测量。[/font][font=Times New Roman]DSC[/font][font=宋体]测量[/font][/font][font=宋体]需要[/font][font='Times New Roman'][font=宋体]在特定的气氛[/font][/font][font=宋体](如,[/font][font='Times New Roman'][font=宋体]氮气[/font][/font][font=宋体]、[/font][font='Times New Roman'][font=宋体]氩气[/font][/font][font=宋体]等)[/font][font='Times New Roman'][font=宋体]中进行。在具有盘式测量系统的[/font]DSC[font=宋体]中,主热对称[/font][/font][font=宋体]地[/font][font='Times New Roman'][font=宋体]通过盘后从炉流到位于圆盘[/font][/font][font=宋体]状上的[/font][font='Times New Roman'][font=宋体]样品坩埚和[/font][/font][font=宋体]参比[/font][font='Times New Roman'][font=宋体]坩埚。[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]样品坩埚[/font][/font][font=宋体]未加样品时[/font][font='Times New Roman'][font=宋体],流入样品坩埚和参考坩埚的热量相同[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]通常以电位差形式表示[/font][font=Times New Roman]ΔT[/font][font=宋体]为零。如果样品发生任何相变,则稳态平衡[/font][/font][font=宋体]被打破,[/font][font='Times New Roman'][font=宋体]产生与[/font][/font][font=宋体]两种坩埚[/font][font='Times New Roman'][font=宋体]热流速率差成正比[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]微分信号。图[/font]1[font=宋体]显示了热通量[/font][font=Times New Roman]DSC[/font][font=宋体]的测量单元。[/font][/font][align=center][img=,218,227]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021437231806_2263_3237657_3.png!w273x284.jpg[/img][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1[font=宋体]热通量[/font][font=Times New Roman]DSC[/font][font=宋体]的测量单元[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][font='Times New Roman'][font=宋体]根据傅里叶定律,对样品和参考样品的热流速率之差[/font][/font][font=宋体]的[/font][font='Times New Roman']DSC[font=宋体]信号[/font][font=Times New Roman]Φ[/font][font=宋体],[/font][/font][font=宋体]由下式计算:[/font][font='Times New Roman'] [/font][align=center][img=,176,33]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021437367589_4119_3237657_3.png!w220x42.jpg[/img][/align][align=right][font='Times New Roman'](1)[/font][/align][font='Times New Roman'][font=宋体]其中,[/font][font=Times New Roman]Φ[/font][/font][sub][font='Times New Roman']S[/font][/sub][font='Times New Roman'][font=宋体]和[/font][font=Times New Roman]Φ[/font][/font][sub][font='Times New Roman']R[/font][/sub][font='Times New Roman'][font=宋体]分别为样品坩埚和参考坩埚的热通量。[/font]T[/font][sub][font='Times New Roman']S[/font][/sub][font='Times New Roman'][font=宋体]和[/font]T[/font][sub][font='Times New Roman']R[/font][/sub][font='Times New Roman'][font=宋体]是它们各自的温度,[/font]R[/font][sub][font='Times New Roman']th[/font][/sub][font='Times New Roman'][font=宋体]是传感器的热阻。温差[/font][font=Times New Roman]ΔT[/font][font=宋体]由两个热电偶测量。通过定义热电偶[/font][font=Times New Roman]S[/font][font=宋体]的灵敏度,我们将[/font][font=Times New Roman]ΔT[/font][font=宋体]转换为热流[/font][font=Times New Roman]Φ[/font][font=宋体](在[/font][font=Times New Roman]W[/font][font=宋体]中)[/font][/font][font=宋体]:[/font][align=center][img=,108,32]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021437508177_5979_3237657_3.png!w135x40.jpg[/img][/align][align=right][font='Times New Roman'](2)[/font][/align][font=宋体][font=宋体]其中,[/font][font=Times New Roman]V[/font][font=宋体]是热电电压中的传感器信号。方程[/font][font=Times New Roman]2[/font][font=宋体]中的热流速率Φ是[/font][font=Times New Roman]DSC[/font][font=宋体]测量输出的信号。热量校准包括测定测量的热流速率Φ和真实热流速率Φ[/font][/font][sub][font=宋体][font=Times New Roman]true[/font][/font][/sub][font=宋体][font=宋体]之间的比例因子([/font][font=Times New Roman]K[/font][/font][sub][font=宋体][font=宋体]Φ[/font][/font][/sub][font=宋体][font=宋体]),以及测量的交换热[/font][font=Times New Roman]Q[/font][/font][sub][font=宋体][font=Times New Roman]exch[/font][/font][/sub][font=宋体][font=宋体]和真实交换热[/font][font=Times New Roman]Q[/font][/font][sub][font=宋体][font=Times New Roman]true[/font][/font][/sub][font=宋体][font=宋体]之间的比例因子([/font][font=Times New Roman]K[/font][/font][sub][font=宋体][font=Times New Roman]Q[/font][/font][/sub][font=宋体]):[/font][align=center][img=,66,]file:///C:/Users/yangcf/AppData/Local/Temp/ksohtml70884/wps4.png[/img][font='Times New Roman'] [/font][/align][align=right][font='Times New Roman'](3)[/font][/align][align=center][img=,86,16]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021438026500_4907_3237657_3.png!w108x20.jpg[/img][/align][align=right][font='Times New Roman'](4)[/font][/align][font=宋体][font=Times New Roman]K[/font][/font][sub][font=宋体][font=宋体]Φ[/font][/font][/sub][font=宋体][font=宋体]的校准可以通过在恒定扫描速率[/font][font=Times New Roman]q = dT/dt[/font][font=宋体]下测量已知热容量[/font][font=Times New Roman]C[/font][/font][sub][font=宋体][font=Times New Roman]p[/font][/font][/sub][font=宋体]的样品中测量热流速率来实现。[/font][sup][font=宋体][font=Times New Roman][1][/font][/font][/sup][font=宋体]以下关系为样品吸收的热流量有效:[/font][align=center][img=,63,16]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021438145578_8145_3237657_3.png!w79x20.jpg[/img][/align][align=right][font='Times New Roman'](5)[/font][/align][align=center][img=,143,37]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021438259493_1097_3237657_3.png!w179x47.jpg[/img][/align][align=right][font='Times New Roman'](6)[/font][/align][font=宋体][font=Times New Roman]K[/font][/font][sub][font=宋体][font=Times New Roman]Q[/font][/font][/sub][font=宋体][font=宋体]可以通过将一个过渡峰上的积分与已知的过渡热[/font][font=Times New Roman]Q[/font][/font][sub][font=宋体][font=Times New Roman]true[/font][/font][/sub][font=宋体]进行比较而得到[/font][sup][font=宋体][font=Times New Roman][2][/font][/font][/sup][font=宋体]。[/font][align=center][img=,210,26]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021438372657_8102_3237657_3.png!w263x33.jpg[/img][/align][align=right][font='Times New Roman'](7)[/font][/align][font='Times New Roman'][font=宋体]其中,[/font][font=Times New Roman]Φ[/font][/font][sub][font='Times New Roman']bl[/font][/sub][font='Times New Roman'][font=宋体]为基线信号,即用两个空坩埚测量的热流量曲线,其中不发生物理或化学反应。因此,热流率和过渡热都可以分别校准。[/font][/font][b][font=黑体](二)[/font][b][font='Times New Roman'][font=黑体]功率补偿[/font]DSC[/font][/b][/b][font='Times New Roman'][font=宋体]功率补偿[/font]DSC[font=宋体]是一种热补偿量热计。功率补偿型[/font][font=Times New Roman]DSC[/font][font=宋体]系统有两个独立的控制回路,即平均温度控制回路和差示温度控制回路。平均温度控制回路也称为[/font][font=Times New Roman]“[/font][font=宋体]升温环[/font][font=Times New Roman]”[/font][font=宋体],测出样品温度[/font][font=Times New Roman]T[/font][/font][sub][font='Times New Roman']s[/font][/sub][font='Times New Roman'][font=宋体]和参比物温度[/font]T[/font][sub][font='Times New Roman']r[/font][/sub][font='Times New Roman'][font=宋体],然后取它们的平均值[/font]T[/font][sub][font='Times New Roman']a[/font][/sub][font=宋体];[/font][font='Times New Roman'][font=宋体]再把平均温度[/font]T[/font][sub][font='Times New Roman']a[/font][/sub][font='Times New Roman'][font=宋体]与程序温度[/font]T[/font][sub][font='Times New Roman']p[/font][/sub][font='Times New Roman'][font=宋体]相比较,以控制样品和参比的微炉,使平均温度[/font]T[/font][sub][font='Times New Roman']a[/font][/sub][font='Times New Roman'][font=宋体]跟随预定的程度温度变化。差示温度控制回路也称为[/font][font=Times New Roman]“[/font][font=宋体]能补环[/font][font=Times New Roman]”[/font][font=宋体],当样品和参比物之间出现温差时用来调整样品支架或参比支架的热功率以消除这一温差用的。[/font][/font][font='Times New Roman'] [/font][align=center][img=,304,183]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021438497161_8138_3237657_3.png!w381x229.jpg[/img][/align][align=center][font='Times New Roman'][font=宋体]图[/font]2[/font][font=宋体] [/font][font='Times New Roman'][font=宋体]功率补偿[/font]DSC[font=宋体]测量单元示意图[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][font='Times New Roman'][font=宋体]如图[/font]2[font=宋体]所示,有两个相同的微炉[/font][/font][font=宋体]在同[/font][font='Times New Roman'][font=宋体]一个恒温室内。样品坩埚放置在一个微炉中,参考样品放置在另一个微炉中[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]样品和参比完全隔离[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]每个微炉都包含一个温度传感器和一个加热电阻器。在加热期间,为两个微型炉提供相同的电力。在单独的温度控制器的帮助下,样品和参考样品始终被加热在相同的温度。如果样品发生任何相变,样品和参比之间就会出现温差。这一温度差由两个微炉上的测温传感器准确地检测并反馈到差示温度控制回路,并由此回路调节两个支架上的加热功率,以补偿样品和参比物之间的温差,使整个系统保持[/font][font=Times New Roman]“[/font][font=宋体]热零位[/font][font=Times New Roman]”[/font][font=宋体]状态。补偿加热功率[/font][font=Times New Roman]ΔP[/font][font=宋体]与剩余的温差[/font][font=Times New Roman]ΔT[/font][font=宋体]成正比[/font][/font][font=宋体],[/font][font='Times New Roman']ΔP[/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]积分对应于样品的消耗或释放的热量。同样,我们需要将热电偶测量的温差[/font][font=Times New Roman]ΔT[/font][font=宋体]转换为热流速率[/font][font=Times New Roman]Φ[/font][font=宋体]。功率补偿[/font][font=Times New Roman]DSC[/font][font=宋体]的输出信号也表示为[/font][/font][font='Times New Roman']Φ[/font][font='Times New Roman'][font=宋体]。根据[/font][font=Times New Roman]Φ[/font][/font][sub][font='Times New Roman']true[/font][/sub][font='Times New Roman']=K[/font][sub][font='Times New Roman'][font=Times New Roman]Φ[/font][/font][/sub][font='Times New Roman'][font=Times New Roman]Φ[/font][font=宋体]的关系,[/font][font=Times New Roman]K[/font][/font][sub][font='Times New Roman'][font=Times New Roman]Φ[/font][/font][/sub][font='Times New Roman'][font=宋体]也必须通过校准来确定。[/font][/font][font='Times New Roman'][font=宋体]另一种类型的[/font]DSC“[font=宋体]混合系统[/font][font=Times New Roman]”[/font][/font][font=宋体]结合了[/font][font='Times New Roman'][font=宋体]热通量和功率补偿系统的优点。[/font][/font][font=宋体]它[/font][font='Times New Roman'][font=宋体]一个磁盘上[/font][/font][font=宋体]装[/font][font='Times New Roman'][font=宋体]有一对传感器[/font][font=Times New Roman]?[/font][font=宋体]加热器组合。样品和参考样品之间的温差[/font][/font][font=宋体]通过[/font][font='Times New Roman'][font=宋体]温度传感器测量,通过控制集成的加热元件进行补偿。温度传感器与其相应的加热器[/font][/font][font=宋体]需要保持[/font][font='Times New Roman'][font=宋体]良好的热耦合[/font][/font][font=宋体],以确保[/font][font='Times New Roman'][font=宋体]传感器[/font][font=Times New Roman]?[/font][font=宋体]加热器元件之间的短时间常数和可忽略的交叉热流[/font][/font][font=宋体][font=宋体]。这种混合型[/font][font=Times New Roman]DSC[/font][/font][font='Times New Roman'][font=宋体]具有稳定的基线、高分辨率、低噪声[/font][/font][font=宋体]、[/font][font='Times New Roman'][font=宋体]短时间常数以及[/font][/font][font=宋体]保持微[/font][font='Times New Roman'][font=宋体]炉和测量系统间的温差小。[/font][/font][font='Times New Roman']DSC[font=宋体]的工作模式通常分为两种类型,即恒定加热速率和变化加热速率。对于前一种类型,温度随时间呈线性变化:[/font][/font][align=center][img=,78,15]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021439053052_1682_3237657_3.png!w98x19.jpg[/img][/align][align=right][font='Times New Roman'](8)[/font][/align][font='Times New Roman'][font=宋体]其中,[/font]t0[font=宋体]为起始温度,[/font][font=Times New Roman]t[/font][font=宋体]为时间。热通量[/font][font=Times New Roman]DSC[/font][font=宋体]的加热速率范围[/font][/font][font=宋体]为[/font][font='Times New Roman'][font=宋体]是[/font]1[/font][font=宋体][font=Times New Roman]-[/font][/font][font='Times New Roman']50K/min[font=宋体]。在等温模式下,[/font][font=Times New Roman]t0[/font][font=宋体]为常数,[/font][font=Times New Roman]q[/font][font=宋体]为零。[/font][/font][b][font=黑体](三)[/font][b][font=黑体][font=Times New Roman]Flash [/font][/font][font='Times New Roman']DSC[/font][/b][/b][font=宋体]由于[/font][font='Times New Roman'][font=宋体]物理和化学过程的发生速度比[/font]10 K/min[font=宋体]的标准扫描速率要快得多[/font][/font][font=宋体],诸如[/font][font='Times New Roman'][font=宋体]亚稳态、分子重组和各种动力学现象[/font][/font][font=宋体]等,[/font][font='Times New Roman']Standard[/font][font=宋体] [/font][font='Times New Roman']DSC[font=宋体]的扫描速率[/font][/font][font=宋体]不够,[/font][font='Times New Roman'][font=宋体]很难用[/font]Standard[/font][font=宋体] [/font][font='Times New Roman']DSC[font=宋体]来探测。[/font][/font][font=宋体][font=Times New Roman]U[/font][/font][font='Times New Roman']ltrafast[/font][font=宋体] [/font][font='Times New Roman']DSC[font=宋体]仪器[/font][/font][font=宋体][font=宋体]也叫做[/font][font=Times New Roman]N[/font][/font][font='Times New Roman']ano[/font][font=宋体][font=Times New Roman]-[/font][/font][font='Times New Roman']calorimetry[/font][font=宋体] [/font][font='Times New Roman']DSC[font=宋体]或[/font][/font][font=宋体][font=Times New Roman]Flash [/font][/font][font='Times New Roman']DSC[/font][font=宋体][font=宋体],是首个扫描速度可达到[/font][font=Times New Roman]750K/min[/font][font=宋体]的[/font][/font][font='Times New Roman'][font=宋体]高速量热法[/font][/font][font=宋体][font=宋体]。[/font][font=Times New Roman]Hyper DSC[/font][font=宋体]的优点在于它可以模拟在实际处理中使用的冷却速率中发生的温度?时间斜坡。芯片量热计会进一步发展为极其快速运行的芯片量热计。一些聚合物液体可以通过[/font][font=Times New Roman]Standard DSC[/font][font=宋体]和[/font][font=Times New Roman]Hyper DSC[/font][font=宋体]在特定的冷却速率下玻璃化。其他聚合物液体的玻璃化只能通过基于芯片的快速扫描量热计来达到,更高的扫描速率使其也可以用在玻璃化极快结晶的玻璃化液体的情况。[/font][/font][font=宋体][font=宋体]为了满足需求,研究者开发出了[/font][font=Times New Roman]Mettler-Toledo Flash DSC 1[/font][font=宋体],这种功率补偿双型、芯片型快速扫描量热计([/font][font=Times New Roman]FSC[/font][font=宋体])扫描范围大大扩大,即从非常低的扫描速率到超高的冷却([/font][font=Times New Roman]40000K/s[/font][font=宋体])和加热([/font][font=Times New Roman]50000K/s[/font][font=宋体])速率。将[/font][font=Times New Roman]Flash DSC[/font][font=宋体]与传统的[/font][font=Times New Roman]DSC[/font][font=宋体]结合,即可达到高于[/font][font=Times New Roman]7[/font][font=宋体]个数量级的扫描率。[/font][font=Times New Roman]Flash DSC 1[/font][font=宋体]被证明在校准、重复性、对称性和扫描率控制方面准确可靠。[/font][font=Times New Roman]Mettler-Toledo Flash DSC 1[/font][font=宋体]的温度窗口为[/font][font=Times New Roman]-95[/font][font=宋体]至[/font][font=Times New Roman]420[/font][font=宋体]°[/font][font=Times New Roman]C[/font][font=宋体],适用于大多数有机玻璃和一些金属玻璃的研究。新开发的[/font][font=Times New Roman]Mettler-Toledo Flash DSC 2+[/font][font=宋体]的温度窗口扩展到[/font][font=Times New Roman]-95[/font][font=宋体]至[/font][font=Times New Roman]1000[/font][font=宋体]°[/font][font=Times New Roman]C[/font][font=宋体],大大拓宽了结晶和熔化的系统。目前还不能制得紧贴在[/font][font=Times New Roman]Flash DSC[/font][font=宋体]芯片上超薄氧化玻璃样品,但是,通过吹制玻璃气泡进行软扩展[/font][font=Times New Roman]x[/font][font=宋体]射线吸收的精细结构,可以实现亚微米厚的样品[/font][/font][font=宋体][font=Times New Roman][3][/font][/font][font=宋体][font=宋体]。这种薄玻璃样品可以放置在传感器表面,稍微熔化后与传感器接触更好,以便[/font][font=Times New Roman]Flash DSC[/font][font=宋体]捕获样品的准确信号。[/font][/font][font=宋体] [/font][align=center][img=,298,189]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021439307633_3986_3237657_3.png!w373x237.jpg[/img][img=,251,189]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021439180865_6240_3237657_3.png!w314x237.jpg[/img][/align][font='Times New Roman'][font=宋体]图[/font]3[/font][font=宋体] [/font][font='Times New Roman'][font=宋体]设备[/font]UFS1[font=宋体]的照片,内部设计[/font][font=Times New Roman]XI400[/font][/font][font=宋体]:[/font][font='Times New Roman'][font=宋体]([/font]a[font=宋体])设备粘在陶瓷包装上,([/font][font=Times New Roman]b[/font][font=宋体])设备的两个电池之一的特写[/font][/font][font=宋体];[/font][font='Times New Roman'][font=宋体]膜中心覆盖有铝层的加热器构成样品区域[/font][/font][font=宋体];[/font][font='Times New Roman']8[font=宋体]个热电偶的热结(箭头指向[/font][font=Times New Roman]2[/font][font=宋体]个热电偶)位于样品区域内。[/font][/font][font=宋体] [/font][font=宋体] [/font][align=center][img=,553,248]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021439430671_2736_3237657_3.png!w690x310.jpg[/img][/align][align=center][font='Times New Roman'][font=宋体]图[/font]4[/font][font=宋体] [/font][font='Times New Roman'][font=宋体]芯片上[/font]UFS1[font=宋体]陶瓷的示意图横截面[/font][/font][/align][align=center][font=宋体] [/font][/align][font=宋体][font=Times New Roman]Flash DSC 1[/font][font=宋体]采用了一种基于[/font][font=Times New Roman]MEMS[/font][font=宋体](微机电系统)传感器技术的带有双传感器的量热计芯片[/font][/font][sup][font=宋体][font=Times New Roman][4][/font][/font][/sup][font=宋体][font=宋体]。如图[/font][font=Times New Roman]3[/font][font=宋体]和图[/font][font=Times New Roman]4[/font][font=宋体]所示,芯片上有两个相同的薄的氮化硅[/font][font=Times New Roman]/[/font][font=宋体]氧化物膜,分别用于样品和参考位点。薄膜悬浮在硅框架中,样品位于薄膜的中间,涂上铝以确保温度均匀分布。传感器的样品侧和参考侧各有两个热阻加热器。主加热器用于实现一般温度程序,副加热器用于补偿参考单元和样品单元之间的温差。样品的温度是由[/font][font=Times New Roman]8p[/font][font=宋体]型和[/font][font=Times New Roman]n[/font][font=宋体]型聚硅热电偶组成的,作为一个散热器。样品面积与周围环境之间的热阻([/font][font=Times New Roman]Rth[/font][font=宋体])由:[/font][/font][align=center][img=,61,33]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021439561243_1008_3237657_3.png!w77x42.jpg[/img][/align][align=right][font='Times New Roman'](9)[/font][/align][font=宋体][font=宋体]式中,[/font][font=Times New Roman]SDT[/font][font=宋体]为器件传输,即热电堆的输出电压与主加热器电阻中的输入功率之比;[/font][font=Times New Roman]N[/font][/font][font='Times New Roman']’[/font][font=宋体][font=宋体]为形成热电堆的热电偶数,[/font][font=宋体]α[/font][font=Times New Roman]s[/font][font=宋体]为热电堆的塞贝克系数。[/font][/font][font=宋体][font=Times New Roman]Flash DSC 1[/font][font=宋体]中采用动态功率补偿。多余功率的电池的动态切换,使所施加的补偿功率的符号总是正的。这种开关克服了传统功率补偿的缺点,使响应时间和分辨率提高,且无需量热校准即可将量热精度控制在[/font][font=Times New Roman]1[/font][font=宋体]?[/font][font=Times New Roman]3%[/font][font=宋体]范围内。量热计芯片需要进行校准,以量化测量信号和样品温度之间的关系。首先对主加热器电阻进行等温校准和热堆灵敏度进行校准。[/font][font=Times New Roman]Flash DSC 1[/font][font=宋体]的最大温度误差保持在±[/font][font=Times New Roman]5 K[/font][font=宋体]。在一阶近似中,样品质量([/font][font=Times New Roman]mS[/font][font=宋体])与扫描速率[/font][font=Times New Roman](q)[/font][font=宋体]成反比,如下所述[/font][/font][sup][font=宋体][font=Times New Roman][5][/font][/font][/sup][font=宋体]:[/font][align=center][img=,72,34]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021440073086_9306_3237657_3.png!w90x43.jpg[/img][/align][align=right][font='Times New Roman'](10)[/font][/align][font=宋体][font=宋体]其中[/font][font=Times New Roman]C[/font][font=宋体]([/font][font=Times New Roman]|CF|[/font][font=宋体])是作为一个函数[/font][font=Times New Roman]CF[/font][font=宋体]的比例,即修正因子。[/font][font=Times New Roman]|CF|[/font][font=宋体]不应该太高,以避免高温修正、较大的热滞后和较差的分辨率。此外,样品质量和扫描速率不能太低,以确保可检测到的热流速率信号。[/font][/font][b][font=黑体](四)[/font][b][font=黑体][font=黑体]温度调制[/font][font=Times New Roman]DSC[/font][/font][/b][/b][font=宋体][font=Times New Roman]DSC[/font][font=宋体]信号包括在玻璃化转变范围内的重叠的动态过程的卷积。过冷玻璃形成液体,如动态非均匀性,使热容量极为复杂,动力学和热力学对热容量的贡献不能使用传统的[/font][font=Times New Roman]DSC[/font][font=宋体]与线性热速率标准进行解卷积。[/font][font=Times New Roman]TMDSC[/font][font=宋体]克服了[/font][font=Times New Roman]Standard DSC[/font][font=宋体]技术的局限性[/font][/font][sup][font=宋体][font=Times New Roman][6][/font][/font][/sup][font=宋体][font=宋体]。为了保持线性,样品在等温情况下,被施加远离于平衡小的温度正弦振荡来测量热容。[/font][font=Times New Roman]TMDSC[/font][font=宋体]的温度分布可以显示为:[/font][/font][align=center][img=,148,15]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021440190311_2004_3237657_3.png!w185x19.jpg[/img][/align][align=right][font='Times New Roman'](11)[/font][/align][font=宋体][font=宋体]其中,[/font][font=Times New Roman]At[/font][font=宋体]和ω分别为正弦振荡的振幅和角频率。区分方程[/font][font=Times New Roman]11[/font][font=宋体]导致了调制的加热速率[/font][/font][align=center][img=,122,29]https://ng1.17img.cn/bbsfiles/images/2022/12/202212021440298415_9351_3237657_3.png!w153x37.jpg[/img][/align][align=right][font='Times New Roman'](12)[/font][/align][font=宋体]在线性响应材料中,动力学响应比调制周期快;它们是在复平面上以恒定的角度移动的两个点。当一个动力学事件发生时,其时间尺度与调制周期相当或慢于调制周期,这两个函数之间的相位角随动态过程的速率而变化。因此,输入和输出函数仍处于相位角恒定的相位状态。在过冷液体区域,热容涉及振动和构型贡献,分子运动主导了热流过程。分子重排的平均时间尺度也比调制周期短得多,因此输入和输出函数是相位的。然而,当过冷液体在淬火时接近玻璃化过渡区时,结构弛豫时间将急剧增加到一个类似于玻璃化过渡范围内振荡的调制周期的时间尺度。因此,这两个函数之间的相位角在玻璃化转变的附近不断变化[/font][sup][font=宋体][font=Times New Roman][7][/font][/font][/sup][font=宋体]。[/font][font=宋体][font=宋体]将相位角设置为弛豫时间的分布的线性函数,可以研究玻璃中的动力学过程和弛豫动力学。由于[/font][font=Times New Roman]TMDSC[/font][font=宋体]技术依赖于一个单一的恒定频率,因此在玻璃化转变范围内的温度扫描代表了对给定观测时间(或频率)的动态域的响应。然而,相同的调制可以在一个频率范围内重复,以探测整个系统或局部域的热流(或焓响应)的频率依赖性。[/font][/font][font=宋体] [/font][b][font=黑体]三、[/font][b][font=黑体]影响因素[/font][/b][font=黑体](一)[/font][b][font=黑体]影响因素[/font][/b][font=黑体]1.[/font][b][font=黑体]样品选取一致性原则[/font][/b][/b][font=宋体][font=宋体]选择测试样品的原则包括([/font][font=Times New Roman]1[/font][font=宋体])样品具有稳定性,即样品的检测结果需要具有可重复性。([/font][font=Times New Roman]2[/font][font=宋体])样品的测试范围应在常用高分子材料的检测范围内([/font][font=Times New Roman]-50~300[/font][font=宋体]℃),实验结果往往更加准确。[/font][/font][b][font=黑体]2.[/font][b][font=黑体]坩埚使用原则[/font][/b][/b][font=宋体][font=宋体]在[/font][font=Times New Roman]DSC[/font][/font][font='Times New Roman'][font=宋体]测试过程中坩埚种类的选择[/font][/font][font=宋体]是首先要注意的问题[/font][sup][font=宋体][font=Times New Roman][8][/font][/font][/sup][font=宋体],[/font][font='Times New Roman'][font=宋体]在坩埚的选择方面应该注意:[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])[/font][/font][font='Times New Roman'][font=宋体]除坩埚起催化作用[/font][/font][font=宋体]外,[/font][font='Times New Roman'][font=宋体]例如使用铜坩埚测试氧化诱导期[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]坩埚不能和样品发生反应[/font][/font][font=宋体][font=宋体];([/font][font=Times New Roman]2[/font][font=宋体])[/font][/font][font='Times New Roman'][font=宋体]在测试温度范围内坩埚不能熔融;([/font][/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman'][font=宋体])[/font][/font][font=宋体]坩埚[/font][font='Times New Roman'][font=宋体]具有足够的容积来盛放样品,一般[/font][/font][font=宋体]不[/font][font='Times New Roman'][font=宋体]超过坩埚容积的一半[/font][/font][font=宋体][font=Times New Roman][9][/font][/font][font='Times New Roman'][font=宋体];([/font][/font][font=宋体][font=Times New Roman]4[/font][/font][font='Times New Roman'][font=宋体])不含挥发物的样品通常使用的是加盖标准铝坩埚([/font][/font][font=宋体][font=Times New Roman]40[/font][font=宋体]μ[/font][font=Times New Roman]L[/font][/font][font='Times New Roman'][font=宋体],高度约为[/font][/font][font=宋体][font=Times New Roman]1.5mm[/font][/font][font='Times New Roman'][font=宋体],内径约为[/font][/font][font=宋体][font=Times New Roman]5mm[/font][/font][font='Times New Roman'][font=宋体]),并对铝坩埚盖子进行打孔(通常孔径为[/font][/font][font=宋体][font=Times New Roman]20~100[/font][/font][font='Times New Roman']μ[/font][font=宋体][font=Times New Roman]m[/font][font=宋体])[/font][/font][sup][font=宋体][font=Times New Roman][[/font][/font][/sup][sup][font=宋体][font=Times New Roman]12[/font][/font][/sup][sup][font=宋体][font=Times New Roman]][/font][/font][/sup][font='Times New Roman'][font=宋体],本实验使用的坩埚盖孔径相同约[/font][/font][font=宋体][font=Times New Roman]5[/font][/font][font='Times New Roman']0μm[font=宋体])。[/font][/font][font=宋体]对于[/font][font='Times New Roman'][font=宋体]含挥发物样品[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]如果需要阻止汽化[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]则应该使用密封的[/font]40μL[font=宋体]标准铝坩埚或中压坩埚,如果[/font][/font][font=宋体]汽化不影响实验结果及仪器,[/font][font='Times New Roman'][font=宋体]则一般使用坩埚盖子打孔的[/font]40μL[font=宋体]标准铝坩埚;([/font][/font][font=宋体][font=Times New Roman]5[/font][/font][font='Times New Roman'][font=宋体])高压坩埚适用于高能材料或爆炸物;([/font][/font][font=宋体][font=Times New Roman]6[/font][/font][font='Times New Roman'][font=宋体])高分子样品一般使用铝坩埚,但超过[/font][/font][font=宋体][font=Times New Roman]500[/font][/font][font='Times New Roman'][font=Times New Roman]℃[/font][font=宋体]铝会发生变形,因此大于[/font][/font][font=宋体][font=Times New Roman]500[/font][/font][font='Times New Roman'][font=Times New Roman]℃[/font][font=宋体]的测量,应根据实际样品选择合适的坩埚种类[/font][/font][sup][font=宋体][font=Times New Roman][10][/font][/font][/sup][font=宋体] [/font][sup][font=宋体][font=Times New Roman][11][/font][/font][/sup][font='Times New Roman'][font=宋体]。[/font][/font][b][font=黑体]3.[/font][b][font=黑体]吹扫气的气体条件[/font][/b][/b][font='Times New Roman'][font=宋体]实验气氛对[/font][/font][font=宋体][font=Times New Roman]DSC[/font][/font][font='Times New Roman'][font=宋体]测试曲线[/font][/font][font=宋体]具有显著的影响[/font][font='Times New Roman'][font=宋体],首先选择合适的吹扫气体种类:([/font][/font][font=宋体][font=Times New Roman]1[/font][/font][font='Times New Roman'][font=宋体])防止氧化,需要选择惰性气体,如:氮气、氩气[/font][/font][font=宋体]等[/font][font='Times New Roman'][font=宋体]不会产生氧化反应峰,同时又减少试样挥发物对检测器的腐蚀;([/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'][font=宋体])研究氧化诱导期([/font][/font][font=宋体][font=Times New Roman]OIT[/font][/font][font='Times New Roman'][font=宋体]),则通常需选择相应的反应性气体,例如空气和氧气。其次,[/font][/font][font=宋体]实验员[/font][font='Times New Roman'][font=宋体]需要确定适当的吹扫气流量,一般在[/font][/font][font=宋体][font=Times New Roman]20~100mL/min[/font][/font][font='Times New Roman'][font=宋体]之间,也可根据实际测试需要对气流进行调节,[/font][/font][font=宋体]最常用[/font][font='Times New Roman'][font=宋体]的吹扫气体速率为[/font][/font][font=宋体][font=Times New Roman]50mL/min[9[/font][font=宋体],[/font][font=Times New Roman]10][/font][/font][font='Times New Roman'][font=宋体],此外,气流量也要始终保持恒定,否则会引起基线的波动。最后,在吹扫气体的种类和气流量固定时,坩埚的密封性也会对实验测试有一定的影响,[/font][/font][font=宋体][font=宋体]苏小琴、王伟等人根据[/font][font=Times New Roman]In[/font][font=宋体]标样在全密封铝坩埚、加打孔盖的铝坩埚、敞开铝坩埚[/font][font=Times New Roman]DSC[/font][font=宋体]测试得到的起始温度和熔融焓分别为[/font][font=Times New Roman]157.15[/font][font=宋体]、[/font][font=Times New Roman]156.69[/font][font=宋体]、[/font][font=Times New Roman]156.43[/font][font=宋体]℃和[/font][font=Times New Roman]29.45[/font][font=宋体]、[/font][font=Times New Roman]28.52[/font][font=宋体]、[/font][font=Times New Roman]29.55J/g[/font][font=宋体]。[/font][font=Times New Roman][1][/font][font=宋体]其中使用加打孔盖的铝坩埚测试数值更接近于标准[/font][font=Times New Roman]In[/font][font=宋体](起始点温度:[/font][font=Times New Roman]156.6[/font][font=宋体]℃,熔融焓:[/font][font=Times New Roman]28.5J/[/font][font=宋体]g),分析得到由于厂家使用加打孔盖的铝坩埚校准仪器,故加打孔盖的铝坩埚结果与标准结果最为接近,实验中优先选择加打孔盖的铝坩埚作为容器。[/font][/font][b][font=黑体]4.[/font][b][font=黑体]升温速率[/font][/b][/b][font=宋体][font=宋体]在[/font][font=Times New Roman]DSC[/font][/font][font='Times New Roman'][font=宋体]测试温度设置方面[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]根据测试样品特性,选择合适的温度范围[/font][/font][font=宋体]后,[/font][font='Times New Roman'][font=宋体]一般起始温度应比第一个热效应低大约[/font][/font][font=宋体][font=Times New Roman]3[/font][font=宋体]β[/font][/font][font='Times New Roman'][font=Times New Roman]℃[/font][font=宋体]([/font][font=Times New Roman]β[/font][font=宋体]为升温速率),这样在第一个热效应发生前基线便能稳定。[/font][/font][font='Times New Roman'][font=宋体],[/font][/font][font='Times New Roman'][font=宋体]随着升温速率的升高,样品特征温度均会向高温方向移动,这与升温速率快,产生一定的热量的滞后有关。同时,加热速率会影响样品的熔融峰面积,在实际测试中如果没有特殊要求,则一般使用的升温速率为[/font][/font][font=宋体][font=Times New Roman]10[/font][/font][font='Times New Roman']℃[/font][font=宋体][font=Times New Roman]/min[/font][/font][font='Times New Roman'][font=宋体],但是对于一些热效应不明显的测试时,可以适当增大升温速率来检测微弱效应;而对于一些放热较高的测试比如含能材料的测试则应该减小升温速率。一般来说,升温速率越快,灵敏度越高,分辨率下降[/font][/font][font=宋体][font=Times New Roman][11][/font][/font][font='Times New Roman'][font=宋体]。[/font][/font][b][font=黑体]5.[/font][b][font=黑体]样品质量[/font][/b][/b][font='Times New Roman'][font=宋体]随着样品的质量增加,起始点温度、峰温度及终止点的温度都呈上升趋势,[/font][/font][font=宋体][font=宋体]同时样品用量增加导致峰面积增加。增加样品有利于微弱反应的检测,同时过量样品也会造成仪器污染和实验结果分辨率下降。因此实验室通常要求一般样品用量为[/font][font=Times New Roman]5~10m[/font][font=宋体]g,体积不超过坩埚容积的[/font][font=Times New Roman]1/2[/font][font=宋体];对于具有强放热效应的样品,如炸药需较少量的样品,比如[/font][font=Times New Roman]0.5~1m[/font][font=宋体]g或者更少。[/font][/font][b][font=黑体]6.[/font][b][font=黑体]样品预处理[/font][/b][/b][font=宋体]样品预处理的目的是使样品均匀、密实分布在样品皿内,以提高传热效应,填充密度,减少试样与坩埚之间的热阻,使测量结果尽可能精确。理想的样品几何形态包括:固体样品制成粉末、薄片、晶体或颗粒状;对高聚物薄膜,可直接冲成圆片,块状的可用刀或锯分解成小块。[/font][b][font=黑体]四、[/font][b][font=黑体]校正[/font][/b][/b][font=宋体][font=宋体]对于热流型的[/font][font=Times New Roman]DSC[/font][font=宋体],由于使用一段时间,仪器周围环境以及热电偶的老化,则需要定期(一般每两周)对仪器进行校验,检验所测试结果是否在误差范围内,如果偏差较大不可接受,则需要对仪器进行校准,校准主要是使用标准物质[/font][font=Times New Roman]In[/font][font=宋体]和[/font][font=Times New Roman]Zn[/font][font=宋体]对温度,热流(焓值)进行校准,使测量值与标准值一致。并根据实际使用情况定期对仪器进行总校准,执行总校准程序,总校准能在一次测试中确定温度、热流和时间常数τ[/font][font=Times New Roman]lag[/font][font=宋体]。其中对时间常数τ[/font][font=Times New Roman]lag[/font][font=宋体]进行校准,可以消除升温速率对熔融起始温度的影响[/font][font=Times New Roman][10][/font][font=宋体]。校正过程中不同的校准人员操作误差,环境影响,放置样品的位置等都会给校准带来一定的误差[/font][font=Times New Roman][12][/font][font=宋体],这就需要仪器管理员要有一定的操作技术和使用技能。[/font][/font][b][font=黑体](一)[/font][b][font='Times New Roman'][font=黑体]获得较好[/font][/font][font=黑体][font=Times New Roman]DSC[/font][/font][font='Times New Roman'][font=黑体]图谱的方法[/font][/font][/b][font=黑体]1.[/font][b][font='Times New Roman'][font=黑体]仪器管理方面[/font][/font][/b][/b][font='Times New Roman'][font=宋体]要想获得较准确的[/font][/font][font=宋体][font=Times New Roman]DSC[/font][/font][font='Times New Roman'][font=宋体]谱图,仪器管理员应根据使用情况及时对仪器进行维护,保持炉体和传感器的干净,不能有污染物,否则会影响实验测试数据。其次要定期检验,一般每两周用标样进行检验,然后根据实际测试要求,及时对仪器进行校准,确保所测试数据准确性。[/font][/font][font=宋体][font=Times New Roman][8][/font][/font][b][font=黑体]2.[/font][b][font=黑体]实验条件的设置[/font][/b][/b][font=宋体][font=宋体]尽可能使用所用[/font][font=Times New Roman]DSC[/font][font=宋体]型号所校准的实验条件,包括坩埚类型、吹扫气、吹扫速率、加热速率和样品用量,以得到较为准确的谱图。[/font][/font][font=宋体][font=Times New Roman]DSC[/font][font=宋体]属于热分析仪器,量热和温度的准确度直接影响了检测结果。美国材料与试验协会[/font][font=Times New Roman]1999[/font][font=宋体]年发布了《差示扫描量热仪热流校准标准实践》,目前[/font][/font][font='Times New Roman'][font=宋体]国家尚未颁布差示扫描量热仪的计量检定规程和校准规范[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]结论:在介绍[/font]DSC[font=宋体]的原理和现有技术的基础上,本篇综述将重点放在分析[/font][font=Times New Roman]DSC[/font][font=宋体]的应用和影响因素,以及校准维护上;通过综述,读者可以快速了解差示扫描量热仪的原理、技术、应用、影响因素及校准保养的方法。[/font][/font][b][font=黑体]五、[/font][b][font=黑体][font=Times New Roman]DSC[/font][font=黑体]的应用[/font][/font][/b][font=黑体](一)[/font][b][font=黑体]测定海水中的几种微塑料[/font][/b][/b][font=宋体][font=宋体]不同种类的塑料热稳定性有所区别,体现为[/font][font=Times New Roman]DSC [/font][font=宋体]热特性曲线上的不同的特征峰,而特征峰的面积与测试样品的质量有关,因此可通过 [/font][font=Times New Roman]DSC[/font][font=宋体]来验证塑料材料的热特性,继而测定出样品中某种塑料的质量。[/font][/font][font=宋体][font=宋体]微塑料通常是指粒径在[/font] [font=Times New Roman]5 mm [/font][font=宋体]以下的塑料颗粒,广泛存在于海洋、河流、湖泊、土壤、沉积物等环境介质中。由于其尺寸小、难降解,微塑料被生物摄食后,会通过生物累积和食物链生物放大效应对生态系统甚至人类健康造成危害。目前,虽然对环境中微塑料的分离提取有多种方法,但是这些方法需要对微塑料颗粒逐一分析,过程耗时费力,并且无法得到微塑料的质量浓度。因此,利用[/font][font=Times New Roman]DSC[/font][font=宋体]多种塑料混合物测定的补充、快速分析很有必要。[/font][/font][font=宋体][font=Times New Roman]DSC[/font][font=宋体]可定性确认微塑料的种类:因为不同的热特征峰对应着不同的聚合物特征基团,因此可基于不同种塑料[/font][font=Times New Roman]DSC[/font][font=宋体]曲线及热特征峰值的图像进行微塑料的确认表征。 [/font][/font][font=宋体][font=Times New Roman]DSC[/font][font=宋体]可定量确认不同种类微塑料中所含某种材料的含量:[/font][font=Times New Roman]DSC [/font][font=宋体]热特征峰积分面积与受试样品质量成正比,分别取 [/font][font=Times New Roman]PE[/font][font=宋体]、[/font][font=Times New Roman]PP[/font][font=宋体]进行测试,分别取不同质量的[/font][font=Times New Roman]PE[/font][font=宋体]和[/font][font=Times New Roman]PP[/font][font=宋体],利用仪器自带软件[/font][font=Times New Roman]Netzsch Proteus Thermal Analysis Software[/font][font=宋体]对峰面积进行积分,以质量为横坐标、[/font][font=Times New Roman]DSC [/font][font=宋体]峰面积为纵坐标绘制标准曲线和方程。[/font][/font][font=宋体][font=Times New Roman]DSC [/font][font=宋体]提供了一种很好的选择来定性鉴别微塑料种类,同时能够对多种微塑料混合物定量测定[/font][font=Times New Roman]PE[/font][font=宋体]和 [/font][font=Times New Roman]PP[/font][font=宋体],结果显示为质量浓度,而无需费时费力的目检法进行识别计数,提高检测效率。但是,该种方法仍有一定的缺陷,由于存在重叠峰,在研究的几种微塑料中,只有 [/font][font=Times New Roman]PE [/font][font=宋体]和 [/font][font=Times New Roman]PP [/font][font=宋体]能够有清晰的峰,对于其他种类的塑料无法进行定量计算。[/font][font=Times New Roman][13][/font][/font][b][font=黑体](二)[/font][b][font=黑体][font=Times New Roman]DSC[/font][font=黑体]技术可以对甲基丙烯酰胺接枝蚕丝的接枝率进行定量检测[/font][/font][/b][/b][font=宋体][font=宋体]通过改变不同实验条件从而得到不同接枝率的蚕丝后,利用[/font][font=Times New Roman]DSC[/font][font=宋体]技术对接枝后的蚕丝进行测量,最后在 [/font][font=Times New Roman]DSC[/font][font=宋体]曲线中出现新的吸热峰,新峰面积随着接枝率的增加而增加,其峰位也逐渐向高温向移动,而位于317 ~327 ℃内蚕丝本身固有结构的吸热峰面积呈现减小趋势,表明新吸热峰面积与蚕丝接枝率之间存在一定关系。[/font][/font][font=宋体][font=宋体]由[/font][font=Times New Roman]DSC[/font][font=宋体]曲线原理可知,流到样品的热流量对时间的积分等于转化的热焓(ΔH/J),对温度表示的[/font][font=Times New Roman]DSC[/font][font=宋体]曲线也总是对时间的积分,积分得到的结果即为[/font][font=Times New Roman]DSC[/font][font=宋体]曲线与基线之间的面积,考虑测试样品的质量,即可得到单位热焓值,其与相关吸热峰面积对应。[/font][font=Times New Roman][14][/font][/font][font=宋体][font=Times New Roman]DSC[/font][font=宋体]也有许多其他的用途,比如利用[/font][font=Times New Roman]DSC[/font][font=宋体]可以对合金热处理工艺进行分析;利用[/font][font=Times New Roman]DSC[/font][font=宋体]法分析交通事故中保险杠塑料残片;利用[/font][font=Times New Roman]DSC[/font][font=宋体]可以快速测试聚乙烯密度等等。[/font][/font][b][b][font=黑体]【参考文献】[/font][/b][/b][font='Times New Roman'][1][/font][font='Times New Roman']ASTM. [font=宋体]差分扫描量热计的热流量校准标准实施规程[/font][font=Times New Roman]. [/font][font=宋体]美国材料与试验协会[/font][font=Times New Roman], 2002:5P A4.[/font][/font][font='Times New Roman'][2][/font][font='Times New Roman']E37.01. [font=宋体]用差分扫描量热法测量熔化和结晶热焓的标准试验方法[/font][font=Times New Roman]. [/font][font=宋体]美国材料与试验协会[/font][font=Times New Roman], 2006:4P. A4.[/font][/font][font='Times New Roman'][3][/font][font='Times New Roman']GUANGLONG M, JI F, WEIFENG L, et al. Determination of non-freezing water in different nonfouling materials by differential scanning calorimetry[J]. Journal of biomaterials science. Polymer edition, 2022, 33(8).[/font][font='Times New Roman'][4][/font][font='Times New Roman']POEL G V, MATHOT V B F. High performance differential scanning calorimetry (HPer DSC): A powerful analytical tool for the study of the metastability of polymers[J]. Thermochimica Acta, 2007, 461(1).[/font][font='Times New Roman'][5][/font][font='Times New Roman']YU. I M, V. S N, V. F M. Ionic liquid glasses: properties and applications[J]. Russian Chemical Reviews, 2022, 91(3).[/font][font='Times New Roman'][6][/font][font='Times New Roman']ALEX S, ALESSANDRO V, DANILO D G, et al. Determination of cooling rates of glasses over four orders of magnitude[J]. Contributions to Mineralogy and Petrology, 2022, 177(3).[/font][font='Times New Roman'][7][/font][font='Times New Roman']J. W C, C. M J. Modeling the relaxation and crystallization kinetics of glass without fictive temperature: Toy landscape approach[J]. Journal of the American Ceramic Society, 2021, 105(1).[/font][font='Times New Roman'][[/font][font=宋体][font=Times New Roman]8[/font][/font][font='Times New Roman']][/font][font=宋体] [/font][font='Times New Roman'][font=宋体]苏小琴[/font],[font=宋体]龙伟[/font][font=Times New Roman],[/font][font=宋体]刘秀兰[/font][font=Times New Roman],[/font][font=宋体]李艳红[/font][font=Times New Roman],[/font][font=宋体]王宇晶[/font][font=Times New Roman].[/font][font=宋体]差示扫描量热仪的影响因素及测试技术[/font][font=Times New Roman][J].[/font][font=宋体]分析仪器[/font][font=Times New Roman],2019(04):74-79.[/font][/font][font='Times New Roman'][[/font][font=宋体][font=Times New Roman]9[/font][/font][font='Times New Roman']][/font][font=宋体] [/font][font='Times New Roman'][font=宋体]李承花[/font],[font=宋体]张奕[/font][font=Times New Roman],[/font][font=宋体]左琴华[/font][font=Times New Roman],[/font][font=宋体]等[/font][font=Times New Roman].[/font][font=宋体]差式扫描量热仪的原理与应用[/font][font=Times New Roman][J],[/font][font=宋体]分析仪器[/font][font=Times New Roman],2015,(4) 88-94.[/font][/font][font='Times New Roman'][[/font][font=宋体][font=Times New Roman]10[/font][/font][font='Times New Roman']][/font][font=宋体] [/font][font='Times New Roman'][font=宋体]陆立明[/font],[font=宋体]热分析应用基础[/font][font=Times New Roman][M].[/font][font=宋体]上海[/font][font=Times New Roman] [/font][font=宋体]东华大学出版社[/font][font=Times New Roman],2011 34-105.[/font][/font][font='Times New Roman'][[/font][font=宋体][font=Times New Roman]11[/font][/font][font='Times New Roman']][/font][font=宋体] [/font][font='Times New Roman'][font=宋体]李承花[/font],[font=宋体]张奕[/font][font=Times New Roman],[/font][font=宋体]左琴华[/font][font=Times New Roman],[/font][font=宋体]等[/font][font=Times New Roman].[/font][font=宋体]差式扫描量热仪的原理与应用[/font][font=Times New Roman][J].[/font][font=宋体]分析仪器[/font][font=Times New Roman],2015,(4) 88-94.[/font][/font][font='Times New Roman'][[/font][font=宋体][font=Times New Roman]12[/font][/font][font='Times New Roman']][/font][font=宋体] [/font][font='Times New Roman']PishchurDP[font=宋体],[/font][font=Times New Roman]DrebushchakVA[/font][font=宋体],[/font][font=Times New Roman]RecommendationDSCcalibration[J].JThermAnalCalorim,2016,124 951-958.[/font][/font][font='Times New Roman'][1[/font][font=宋体][font=Times New Roman]3[/font][/font][font='Times New Roman']][/font][font=宋体] [/font][font='Times New Roman'][font=宋体]周东星,张艳萍,刘静,曾兴宇,李雪丽[/font]DSC[font=宋体]测定海水中几种微塑料[/font][font=Times New Roman][b]2096[/b][/font][b][font=宋体]-[/font][font=Times New Roman]3408(2022)06[/font][font=宋体]-[/font][font=Times New Roman]0024[/font][font=宋体]-[/font][font=Times New Roman]03[/font][/b][/font][b][font='Times New Roman'][[/font][font=宋体][font=Times New Roman]14[/font][/font][font='Times New Roman']][/font][font=宋体] [/font][font='Times New Roman'][font=宋体]方帅军,陈梦婕[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]舒可人[/font],[font=宋体]岳心茹基于DSC技术构建丙烯酰胺接枝蚕丝的接枝率定量检测方法[/font][font=Times New Roman][A][/font][/font][font=宋体][font=Times New Roman]1001700301002005[/font][/font][/b]

  • 【转帖】移液器的分类、原理和使用注意事项

    微量加样器([url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url][/color][/url])最早出现于1956年,由德国生理化学研究所的科学家Schnitger发明,其后,在1958年德国Eppendorf公司开始生产按钮式微量加样器,成为世界上第一家生产微量加样器的公司。这些微量加样器的吸液范围在1—1000~1之间,适用 于临床常规化学实验室使用。微量加样器发展到今天,不但加样更为精确,而且品种也多种多样,如微量分配器、多通道微量加样器等,其加样的物理学原理有下面两种:①使用空气垫(又称活塞冲程)加样;②使用无空气垫的活塞正移动(positive displacement)加样。上述两种不同原理的微量加样器有其不同的特定应用范围。 一、空气垫加样器 活塞冲程(空气垫)加样器可很方便地用于固定或可调体积液体的加样,加样体积的范围在小于1ul至lOml之间。加样器中的空气垫的作用是将吸于塑料吸头内的液体样本与加样器内的活塞分隔开来,空气垫通过加样器活塞的弹簧样运动而移动,进而带动吸头中的液体,死体积和移液吸头中高度的增加决定了加样中这种空气垫的膨胀程度。因此,活塞移动的体积必须比所希望吸取的体积要大约2%~4%,温度、气压和空气湿度的影响必须通过对空气垫加样器进行结构上的改良而降低,使得在正常情况下不至于影响加样的准确度。一次性吸头是本加样系统的一个重要组成部分,其形状、材料特性及与加样器的吻合程度均对加样的准确度有很大的影响。 二、活塞正移动加样器 以活塞正移动为原理的加样器和分配器与空气垫加样器所受物理因素的影响不同,因此,在空气垫加样器难以应用的情况下,活塞正移动加样器可以应用,如具有高蒸汽压的、高黏稠度以及密度大于2.0g/cm3的液体;又如在临床聚合酶链反应(PCR)测定中,为防止气溶胶的产生,最好使用活塞正移动加样器。活塞正移动加样器的吸头与空气垫加样器吸头有所不同,其内含一个可与加样器的活塞耦合的活塞,这种吸头一般由生产活塞正移动加样器的厂家配套生产,不能使用通常的吸头或不同厂家的吸头。 三、多通道加样器、电子加样器和分配器 多通道加样器、电子加样器和分配器的原理与上述相同。多通道加样器通常为8通道或12通道,与8X12=96孔微孔板一致。多通道加样器的使用不但可减少实验操作人员的加样操作次数,而且可提高加样的精密度。电子加样器和分配器为半自动加样系统,电子加样器最大的优点是其具有很高的加样重复性,应用范围广。

  • 【求助】求教:关于光谱仪的光源和光谱原理

    各位大侠: 1、 谁能给我讲讲光谱仪的光源到底是起什么作用? 2、 直读发射光谱的基本原理是什么? 3、 直读光谱中的光强是代表什么意思?与实际分析中有什么关联?高或低 有影响吗? 4、 光谱仪器分析软件菜单中有关暗电流的测试是指什么意思?什么是负高 压呢? 5、 光谱分析中的电弧和电火花是指什么意思?........... 诸如此类问题太多了。。。谁能给些详细的解说?不胜感激!附:我使用的是spectro Maxx 光谱仪。 另外,软件帮助中有一份英文的说明书,谁能给翻译一下啊?[~140488~]

  • 有哪位高人知道耶拿的连续光源的仪器的背景校正原理啊?

    有哪位高人知道耶拿的连续光源的仪器的背景校正原理啊?

    最近,单位要购买一台原吸,有人推荐耶拿的连续光源型的仪器,型号是contr700型。关于连续光源的原理通过耶拿厂家的产品彩页的介绍基本搞懂了,可是关于该类型仪器的背景校正原理却是含糊其辞,仅仅说是一种“独特的同时背景校正”方式。至于独特在哪里,问了许多人也讲不清,甚至询问了厂家工程师也说不出个子丑寅卯来。最后找到一篇专门介绍contr700的文献来,在这6页的产品介绍中,大量的篇幅均为介绍连续光源怎么怎么好;CCD检测器如何如何好;至于“独特的背景校正”只是一带而过。见附图:http://ng1.17img.cn/bbsfiles/images/2015/05/201505281640_547842_2353015_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/05/201505281640_547843_2353015_3.jpg看过的疑问是:该类型的仪器的背景校正技术是不是一个商业秘密啊?否则为何所有介绍连续光源的资料中均未涉及背景校正的原理呢?如果真的是保密的话,对于想买该类型仪器的客户而言,会不会影响信任度呢?

  • 【资料】影像测量仪按分类是咋分的?

    影像测量仪在行业内又被称为视频测量仪,前期习惯叫它二次元;它是将工件的投影和视频图像集合在一起,进行影像传送和数据测量的光、机、电、软件为一体的非接触式测量设备。适用于以二坐标测量为目的的一切应用领域,机械、电子、仪表、五金、塑胶等行业广泛使用。 影像测量仪的分类如下:  一.影像测量仪按原理分类  A、手动型:手动移动工作台,影像测量仪具有多种数据处理、显示、输入、输出功能,特别是工件摆正功能非常实用;仪器备有RS-232接口,与电脑连接后,采用专用测量软件可对测绘图形进行处理及输出。  B、全自动型:全自动光学影像测量仪是最新推出的一款光学测量仪器,专为高端全自动量测市场量身定制。大幅度减少阿贝误差,提高的测量准确度,有效保证各轴稳定性。同时引进日本伺服全闭环控制系统,采用我司最新开发的MCINS自动量测软体,具有CNC编程功能,能够大幅度提高了定位精准度及重复性、且测量速度快。    二.影像测量仪按结构分类  A、小型影像测量仪:工作台行程范围比较小,适合较小工件的检测。一般行程在150mm以内。  B、普通型影像测量仪:工作台行程150mm—600mm之间,一般Y轴方向,行程在300mm范围内性价比是最好的。  C、增强型影像测量仪:在普通型的基础上加探头,从而到达三维测量的效果,可以检测高度。  D、大行程影像测量仪:大工作平台,根据客户的需求定制,奥秋目前可以制作1200mm左右行程,交货周期一般在3个月左右。

  • 【求助】请问大家,相似相容原理的一些疑惑

    相似相容的原理是前处理中主要的依据,那我想问一下,农药残留检测中第一步用乙腈提取蔬菜中的农药,最后用正己烷定容后进样,这两中试剂极性不同,会影响到提取的效果吗?如正己烷定容,极性的分子能较好的溶解在正己烷中吗

  • 果蔬肉类检测仪检测原理可靠吗

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]果蔬肉类检测仪检测原理可靠吗,果蔬肉类检测仪的检测原理是可靠的。首先,果蔬肉类检测仪通常基于光谱学、化学传感或生物传感技术,这些技术都是经过科学验证并被广泛应用的。通过与样品中特定成分的相互作用,这些技术能够产生可测量的信号,从而判断样品是否安全。其次,检测仪内置了多种检测模块,能够针对不同类型的有害物质进行专项检测。这些模块采用了高精度的传感器和检测试剂,能够确保检测结果的准确性。此外,检测仪还具备智能化的操作系统,通过简单的按键操作即可完成检测过程,减少了人为因素对检测结果的影响。同时,检测仪还具有高灵敏度和高分辨率的特点,能够检测到微小的有害物质,从而提高了检测结果的准确性。然而,任何检测工具都不可能达到百分之百的准确率。果蔬肉类检测仪的准确性也会受到一些因素的影响,如样品的准备和保存状态、检测仪的校准和维护情况、操作人员的技能水平等。因此,在使用果蔬肉类检测仪时,需要严格按照操作规程进行,确保样品的准备和保存符合要求,定期对检测仪进行校准和维护,提高操作人员的技能水平,以最大程度地保证检测结果的准确性。总的来说,果蔬肉类检测仪的检测原理是可靠的,但在实际使用中需要注意一些影响准确性的因素。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405201116470283_5725_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 空气质量测试仪的原理

    空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量测试仪原理,空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量测试仪是一款能实时检测甲醛,PM2.5,TVOC和温湿度的产品,小巧精致,方便携带。采用32位高精度CPU处理计算,然后转化为污染物浓度值,并在液晶屏上加以显示。空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量测试仪可同时检测仪装修污染所产生的有害气体,被很多家庭所采用。那么你了解空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量测试仪的原理吗?接下来,就让小编给大家介绍空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量测试仪原理。[b]空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量测试仪原理[/b]空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量测试仪是一款能实时检测甲醛,PM2.5,TVOC和温湿度的产品,小巧精致,方便携带。通过其内部的原装进口传感器,能准确测量出污染物浓度,并计算出空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量指数AQI,当浓度超标时报警。空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量检测仪原理为检测前端甲醛传感器,PM2.5传感器,TVOC传感器以及温湿度传感器的信号,通过运算放大器将传感器的微弱信号放大,并通过滤波电路去除噪声干扰,然后通过AD采集,并采用32位高精度CPU处理计算,然后转化为污染物浓度值,并在液晶屏上加以显示。空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量检测仪配套的传感器空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量检测仪内部配备了多种气体传感器,分别有甲醛传感器,PM2.5传感器,TVOC传感器以及温湿度传感器。[b]甲醛传感器原理和技术指标[/b]采用英国DART达特两电极电化学传感器,通过扩散原理,不需要气泵抽取,是一款能真正实现连续测量的甲醛传感器,通过国际甲醛检测领域权威部门认可。有甲醛存在时,会产生很小的直流电流,结合高精度放大电路和AD采样,测量甲醛浓度。空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量测试仪原理,空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量测试仪是一款能实时检测甲醛,PM2.5,TVOC和温湿度的产品,小巧精致,方便携带。采用32位高精度CPU处理计算,然后转化为污染物浓度值,并在液晶屏上加以显示。技术指标:测量范围:0.00-5.00mg/m3分辨率:0.01mg/m3测量精度:±5%测量原理:电化学[b]PM2.5传感器原理和技术指标[/b]PM2.5传感器使用韩国进口传感器,采用光散射原理,其内部对角安放着红外线发光二极管和光电晶体管,他们的光轴相交,当带灰尘的气流通过光轴相交的交叉区域,粉尘对红外光反射,反射的光强与灰尘浓度成正比。技术指标:测量范围:0-999ug/m3分辨率:1ug/m3测量精度:±5%测量原理:光散射[b]TVOC传感器原理和技术指标[/b]TVOC是总有机挥发物的总称,TVOC可有嗅味,有刺激性,能引起机体免疫水平失调,影响中枢神经系统功能,出现头晕、头痛、嗜睡、无力、胸闷等自觉症状;还可能影响消化系统,出现食欲不振、恶心等,严重时可损伤肝脏和造血系统,出现变态反应等。测量传感器采用韩国进口传感器。技术指标:测量范围:0.00-9.99mg/m3分辨率:0.01mg/m3测量精度:±10%测量原理:半导体工作湿度:15-90%RH输入规格:5V/1A电池容量:1000mAh充电接口:micro usb设计了恒流控制器, 确保采样流量恒定,切割曲线的正确。 具有特别的保护气幕,避免了粉尘对仪器核心部件—光学系统的污染,确保仪器高可靠性 通过计算机软件实现仪器零点自动调节,提高了仪器测量精度,方便了用户使用。

  • 求助:想总结一下图像操作上的一些原理

    在电子枪偏压以及物镜光阑固定的情况下,改变聚光镜激励,也就是所谓的调整聚光镜中电磁线圈的激励电流,是电镜中调整束流的一种方法,不知道我理解的对不对,我是新人,有些原理性问题还不是很懂,希望论坛里的老师可以讲的通俗易懂些,谢谢!http://simg.instrument.com.cn/bbs/images/default/em09511.gif我自己看书总结的电镜软件上一些图像操作的对应原理: 调整放大倍率: 就是通过调节扫描线圈的激励电流来使电子束打在样品上的范围放大缩小。 聚焦调节: 调整物镜磁场的激励电流是电子束在通过物镜时受到相应的影响,来聚焦图像。 束斑尺寸的调节: 改变聚光镜电磁线圈的激励电流 消像散: 调节消像散器,根据像散的由来,我的理解是最大可能的使电子束在经过镜筒时,通过消像散器改善光轴的非对称影响。 对比度和亮度的调节: 电子探头上的偏压调整还是光电倍增管上的高压调整?如果有不对的地方,请一定要说出来,我把自己的理解写在上面,可是鼓起了很大的勇气啊,毕竟不知道自己理解的对不对,最初发现激励这个词的时候,想了老长时间啊,http://simg.instrument.com.cn/bbs/images/default/em09506.gif

  • 【求助】关于ONH检测O的原理的一些疑问

    ONH分析仪检测O元素时,先是将O转为CO和少量CO2,测一次含量。然后再经过氧化铜全转为CO2,再检测,这时氧化铜中的氧对检验结果没影响吗?这三次检验结果相加就是O的含量吗那位大侠能不能把这原理仔细讲讲。谢了

  • 绝缘子测试仪测试原理及使用方法

    绝缘子测试仪测试原理及使用方法

    绝缘子测试仪是一种理想的运行线路试验设备,主要用于交流线路10~500kV的带电测量过线塔的绝缘子串电压分布值。随着科学的发展,绝缘子测试仪走进了实验室,主要用于试验室内各种35kV以及交流电压绝缘子的电压分布测量。绝缘子测试仪是一种理想的保障线路运行安全的电力检测设备和带电作业辅助工具。http://ng1.17img.cn/bbsfiles/images/2014/01/201401071254_486962_2781177_3.jpg 随时科技的不断进步,绝缘子测试仪的样式与种类也越来越多,但其在原理上基本上是一样的:测量绝缘子两点之间电位差,将被测电压变成电场进行测量。因而阻抗高,对于被测量系统的影响最小。被测出的信号经内部放大处理,最后以电压值的形式,由LCD数字显示输出。 如果某一片绝缘子的电位差为 O 时 , 则该片绝缘于为零值绝缘子。如测试中某一节是标准值 50% 时说明其是劣化绝缘子。最后根据所测的数据还可以绘制绝缘于分布电压图,通过绝缘子电压分布图就可以很方便的绝缘子的优劣或者使用状态。从绝缘子测试仪的测试原理来看,整个测量过程是非常简单的。 下现以三新电力旗下产品SX-15绝缘子带电测试仪为例说明其使用方法 用M8螺丝将SX-15表装于绝缘操作杆上,杆的长度应符合带电作业的规定。调整接头,使接触杆与被测绝缘子的悬挂方式对应,能顺利地接触到被测绝缘子两端的金属部分。连接好插头,打开开关,有液晶显示便可工作,读数的单位为kV。 测量过程中有两需要注意:第一,本测试仪采用了独特的升压方式,即晶体震荡,再通过特殊的频率脉冲分配电路,产生脉动脉冲信号,整流滤波后得到高压。5000V直流电压容易受到外界环境的影响而改变,特别是环境湿度的影响,一般情况下,高压应在4000V至6000V之间;第二“电源开关”打开后,不要用手直接接触“测试杆”,以免高压静电伤人。

  • 电容式水位传感器的原理介绍以及注意事项

    [size=18px]电容式水位传感器的原理内部是有元件可检测电容值变化,无水状态时,电容值会减小,有水状态时电容值会增大,因此电容式水位传感器只通过感应此变化,进行判断传感器位置是否有液体。因其原理导致了电容式水位传感器附近是不能有金属物体的,否则会影响到传感器检测,传感器周围20mm处不能有金属物体,接触到金属物体传感器会一直输出低电平,无法正常工作。且其灵敏度会受温湿度影响,对于被测液体的温度,水箱的厚度以及应用环境会有所限制,使用时应将传感器紧贴水箱容壁不留缝隙。传感器输出信号为数字信号,针对污垢影响,我司出厂前会设定好传感器软件处理,出厂后软件不可调,严重污垢会干扰传感器工作。电容式水位传感器适用于环境较为简单,例如饮水机、净水器、加湿器、咖啡机等等应用,可实现缺水断电、满水断电、缺水报警等功能。[/size][align=center][size=18px][img=,520,446]https://ng1.17img.cn/bbsfiles/images/2022/05/202205191440565005_4648_4008598_3.gif!w520x446.jpg[/img][/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px] [/size][/align][align=right][/align]

  • 电子天平,千分之一电子天平的详细称重原理

    电子天平的重要特点是在测量被测物体的质量时不用测量砝码的重力,而是采用电磁力与被测物体的重力相平衡的原理来测量的。秤盘通过支架连杆与线圈连接,线圈置于磁场内。在称量范围内时,被测重物的重力mg通过连杆支架作用于线圈上,这时在磁场中若有电流通过,线圈将产生一个电磁力F,方向向上,可用下式表示:F=KBLI,其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力mg大小相等、方向相反而达到平衡,同时在弹性簧片的作用下使秤盘支架回复到原来的位置。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。 若称盘上的加上或除去被称物时,天平则产生不平衡状态,通过位置检测器检测到线圈在磁钢中的瞬态位移,经PID调节器和前置放大器产生一个变化量输出,经过一系列处理使流经线圈的电流发生变化,这样使电磁力也随之变化并与被测物相抵消从而使线圈回到原来的位置,达到新的平衡状态。这就是电子天平的电磁力自动补偿电路原理。电流的变化则通过数字显示出被称物体的质量。 电子天平在使用过程中,其传感器和电路在工作过程中受温度影响,或传感器随工作时间变化而产生的某些参数的变化,以及气流、振动、电磁干扰等环境因素的影响,都会使电子天平产生漂移,造成测量误差。其中,气流、振动、电磁干扰等环境温度的影响可以通过对电子天平的使用条件加以约束,将其影响程度减小到最低限度。而温漂主要是来自环境温度的影响和天平内部的自身影响,其形成的原因复杂,产生的漂移大,必须加以抑制。

  • 【分享】破坏型测厚仪原理介绍

    破坏型测厚仪,使用面比较广,称谓也很多,可以叫做破坏型涂层测厚仪,万能测厚仪,PIG等等。主要用来测量各种基材上不同颜色的涂层或者镀层。(请注意,相邻的涂层或者镀层的颜色一定要有所区别,否则无法测量),它可以测量单层,或者多层涂层或者镀层的厚度。工作原理:PIG破坏式测厚仪 以不同规格的工具,根据不同试验的需要,分别将涂层做V形切口、格阵图形割划或压痕。其涂层厚度值、涂膜剥离现象及压痕产生的影象,可用显微镜直接观察。仪器标尺的分度已通过校准系数换算成相应的微米数,因此可从显微镜中直接读出被测漆膜的实际厚度和压痕长度值。

  • 【原创大赛】浅谈电子天平称重原理

    电子天平的种类很多,结构也大不相同,但是他们的工作原理都是基本一致的,都是利用电磁力平衡原理,这和传统机械天平的杠杆原理是有本质区别的,即用电磁力来平衡重物重量从而衡量出重物的重量。与机械天平相比,电子天平具有测量准确度高、反应灵敏等优点,除此之外还具有自动校准和超载保护等功能,这些都是机械天平难以实现的,因此正因为电子天平有这么多优点,所以已渐渐取代了机械天平。 电子天平的重要特点是在测量被测物体的质量时不用测量砝码的重力,而是采用电磁力与被测物体的重力相平衡的原理来测量的。秤盘通过支架连杆与线圈连接,线圈置于磁场内。在称量范围内时,被测重物的重力mg通过连杆支架作用于线圈上,这时在磁场中若有电流通过,线圈将产生一个电磁力F,方向向上,可用下式表示:F=KBLI其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力mg大小相等、方向相反而达到平衡,同时在弹性簧片的作用下使秤盘支架回复到原来的位置。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。若称盘上的加上或除去被称物时,天平则产生不平衡状态,通过位置检测器检测到线圈在磁钢中的瞬态位移,经PID调节器和前置放大器产生一个变化量输出,经过一系列处理使流经线圈的电流发生变化,这样使电磁力也随之变化并与被测物相抵消从而使线圈回到原来的位置,达到新的平衡状态。这就是电子天平的电磁力自动补偿电路原理。电流的变化则通过数字显示出被称物体的质量。 电子天平在使用过程中,其传感器和电路在工作过程中受温度影响,或传感器随工作时间变化而产生的某些参数的变化,以及气流、振动、电磁干扰等环境因素的影响,都会使电子天平产生漂移,造成测量误差。其中,气流、振动、电磁干扰等环境温度的影响可以通过对电子天平的使用条件加以约束,将其影响程度减小到最低限度。而温漂主要是来自环境温度的影响和天平内部的自身影响,其形成的原因复杂,产生的漂移大,必须加以抑制。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制