当前位置: 仪器信息网 > 行业主题 > >

大气检测标准

仪器信息网大气检测标准专题为您提供2024年最新大气检测标准价格报价、厂家品牌的相关信息, 包括大气检测标准参数、型号等,不管是国产,还是进口品牌的大气检测标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大气检测标准相关的耗材配件、试剂标物,还有大气检测标准相关的最新资讯、资料,以及大气检测标准相关的解决方案。

大气检测标准相关的资讯

  • 河北印发大气网格化监测地方标准
    p   河北省环保厅印发了《大气污染防治网格化监测系统技术要求及检测方法 》、《大气污染防治网格化监测点位布设技术规范 》、《大气污染防治网格化监测系统安装验收与运行技术规范 》三项地方标准,据了解,这三项标准是我国首批大气网格化监测地方标准。 /p p   这两年来,可大量安装,精确溯源的大气网格化监测技术受到越来越多环保部门认可,市场发展迅速,各厂商也积极布局,此标准的发布有利于规范市场的良性发展。 /p p   全文如下: /p p style=" text-align: center " strong 关于印发《大气污染防治网格化监测系统技术要求及检测方法 》等三项地方标准的通知 /strong /p p   各市(含定州、辛集市)环境保护局: /p p   《大气污染防治网格化监测系统技术要求及检测方法 》(DB 13/T 2544—2017)、《大气污染防治网格化监测点位布设技术规范 》(DB 13/T 2545—2017)、《大气污染防治网格化监测系统安装验收与运行技术规范 》(DB 13/T 2546—2017)等三项河北省地方标准已报经省质量技术监督局同意,于2017年7月17日发布,2017年9月18日实施。现予印发,请参照执行。 /p p   附件: /p p style=" line-height: 16px "   1. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201708/ueattachment/2f990b47-e88e-4ab4-b438-8130703a90ad.pdf" DB13T 2544-2017大气污染防治网格化监测系统技术要求及检测方法.pdf /a /p p   本标准规定了大气污染防治网格化监测系统的术语和定义、系统组成和原理、技术要求、技术指标和检测方法。 /p p   本标准适用于大气污染防治网格化监测系统的设计、生产和检测。 /p p style=" line-height: 16px "   2. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201708/ueattachment/d5425f49-77e5-4ea5-a7bd-9152c6fb64ea.pdf" DB13T 2545-2017 大气污染防治网格化监测点位布设技术规范.pdf /a /p p   本标准规定了大气污染防治网格化监测系统的术语和定义、分类、布设原则、布设要求、监测项目和点位管理。 /p p   本标准适用于大气污染防治网格化监测点位的规划与设立。 /p p style=" line-height: 16px "   3. img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201708/ueattachment/a2ddebb6-3240-430a-8cda-586cac99dff4.pdf" 大气污染防治网格化监测系统安装验收与运行技术规范.pdf /a /p p   本标准规定了大气污染防治网格化监测系统的术语与定义、安装、调试与校准、试运行、验收、系统日常运行维护要求、质量保证与质量控制和数据有效性判断。 /p p   本标准适用于大气污染防治网格化监测系统的安装验收及运行维护。 /p
  • 我国大气重金属污染现状及检测标准的发展
    我国大气重金属污染的现状   我国的环境污染现状已使环境问题成为了公众焦点,其中难以降解的重金属污染以其对环境的破坏及人体的危害又成为焦点中的焦点。国务院于2011年2月19日批复了首个&ldquo 十二五&rdquo 专项规划&mdash 《重金属污染综合防治&ldquo 十二五&rdquo 规划》(以下简称《规划》),《规划》要求,重点区域重点重金属污染物排放量比2007年减少15%,非重点区域重点重金属污染物排放量不超过2007年水平。   《规划》的防治对象主要为铅、汞、镉、铬、砷等生物强且污染严重的重金属元素,以及铊、锰、铋、镍、锌、锡、铜、钼等重金属 《规划》防控的5大重点行业为:有色金属矿(含伴生矿)采选业、有色金属冶炼业、含铅蓄电池业、皮革及其制品业、化学原料及化学制品制造业,重点防控企业有4452家。同时,内蒙古、江苏、浙江、江西、河南、湖北、湖南、广东、广西、四川、云南、陕西、甘肃、青海14个省区被列为重点治理省区,其中,以湖南被列入重点监控的企业最多。另外,新疆、宁夏、西藏、贵州也有少量企业被列入重点监控。   环保部部长周生贤曾透露,未来5年,中央财政将以百亿元为单位增加对重金属污染防治的投资,而2012年环保部的重金属污染防治专项资金可达32亿元。另外,一些地方也规划了重金属防治计划和投资,如浙江省制定了《浙江省重金属污染综合整治规划》,整治区域和监控企业较国家规划均有所增加,不包括对关停企业的赔偿在内的治理投资将达28亿元。   对于重金属污染,由于大气污染物的无形无色,比之水中重金属易被人忽视,但实际上,根据第一次全国污染源普查结果,2007年全国大气中上述铅、汞、镉、铬、砷污染物年排放量已达约9500吨。这些重金属污染物可能通过呼吸,或迁移至水、土壤后,经食物链进入人体。   相关标准方法的发展   在大气颗粒物中金属元素的检测方面,目前国内外并存着原子吸收光谱法(AAS)、电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、X-射线荧光光谱法、中子活化分析法以及质子诱导X射线发射光谱法等检测方法,其中,国内采用较多的有AAS法、ICP-AES法和XRF法。   大气颗粒物的组成成分复杂,颗粒物中不同金属元素的浓度范围相差很大,在数十甚至数百个ppm至ppt级的范围内,由于需要控制的金属元素不断增加,而部分元素的基准浓度或控制限浓度都非常低,因此对仪器及检测方法提出了较高要求。分光光度法、石墨炉原子吸收分光光度法等在一次检测过程中都只能检测一种金属元素,且对一般元素的检出限只能达到ppb级或亚ppb级,原子荧光分光光度法检出限可达ppt级,但同样只能检测一种金属元素。ICP-AES法能同时检测多种元素,其可检元素种类也多于AAS法,是一种相对较成熟的方法,但ICP-AES法对Se、Hg、Be、As、Pb、Tl、U等元素往往无法满足相应的控制限浓度的要求,必须与石墨炉原子吸收(GF-AAS)和汞冷原子吸收(CV-AAS)技术结合使用才能达到大部分元素的分析要求。XRF法的优势在于检测快速、简便、无需复杂的前处理工作、检测无损性、同时检测多种元素,因此其可以实现现场和在线监测,但XRF法的缺点也很明显,检出限仅达ppm级,检测对标样有依赖性,对样品量的要求使其需要一定的富集时间,也部分抵消了其现场优势。ICP-MS法可以实现多元素分析,具有灵敏度高、检出限低,分析取样量少等优点,它可以同时测量周期表中大多数元素,测定分析物浓度可低至纳克/升(ng/L)或万亿分之几(ppt)的水平,但也有着仪器价格高昂,使用难度和维护使用费用均很高,用于大气颗粒物金属检测时重现性不佳的缺点。   因此,目前我国在大气颗粒物中的金属检测方法标准方面,目前以针对一种金属元素检测的环境保护行业标准为主,而许多大气重金属检测仪器如天瑞大气重金属在线监测仪、聚光大气重金属分析仪等也参考了一些国际标准。   随着仪器及检测技术的发展,国内也开始制修订一些新的标准方法,目前,部分现有暂行方法正在修订,而基于电感耦合等离子体质谱法、电感耦合等离子体原子发射光谱法、原子荧光光谱法或氢化物吸收原子荧光光谱法、X射线荧光光谱法的新标准方法也均在同时制定之中。
  • 碳中和目标下,盘点近年来实施的大气污染物排放标准及相应检测仪器
    “加强生态文明建设,确保实现2030年前二氧化碳排放达到峰值、2060年前实现碳中和的目标。”为了实现蓝天愿景,兑现对全世界的减排承诺,自2021年起,一系列规划和阶段性目标都会陆续落地,围绕“碳中和”这个核心风向标,更大力度推动节能减排,应对气候变化带来的挑战。我国碳达峰、碳中和愿景与美丽中国建设目标高度协同,应尽快构建新一代大气污染防治科学体系。政策把“治标和治本很好地结合起来”,并特别指出“大气污染物与温室气体要协同减排”。专家们认为加快能源转型变革对深度融合大气污染防治和气候变化应对至关重要,“十四五”期间,大气环境治理更不能放松,特别是在碳中和目标下。为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治环境污染,改善环境质量,生态环境部对之前相关标准进行了修订,将加油站在卸油、储存、加油过程,油品运输过程以及储油库储存、收发油品过程中油气排放控制要求、监测和监督管理要求进行了单独的规定,相应大气污染物排放标准已于2021年4月1日正式实施。为促进农药制造工业、铸造工业以及陆上石油天然气开采工业的技术进步和可持续发展,出台了相应工业大气污染物排放控制要求、监测和监督管理要求,同时对温室气体甲烷的排放提出了协同控制要求。相应大气污染物排放标准已于2021年1月1日正式实施。涂料、油墨及胶黏剂工业、制药工业以及VOCs无组织排放的相应大气污染物排放标准是在2019年发布并实施。无机化学工业污染物排放标准、合成树脂工业污染物排放标准、石油化学工业污染物排放标准和石油炼制工业污染物排放标准,这四项标准是在2015年发布并实施,目前仍未分离出单独的大气污染物排放标准,但其中涵盖了相应工业大气污染物排放控制要求。近年来实施的大气污染物排放标准(发布稿)标准号标准名称发布日期实施日期GB 20952-2020加油站大气污染物排放标准2020-12-312021-04-01GB 20951-2020油品运输大气污染物排放标准2020-12-312021-04-01GB 20950-2020储油库大气污染物排放标准2020-12-312021-04-01GB 39728-2020陆上石油天然气开采工业大气污染物排放标准2020-12-242021-01-01GB 39727-2020农药制造工业大气污染物排放标准2020-12-242021-01-01GB 39726-2020铸造工业大气污染物排放标准2020-12-242021-01-01GB 37824-2019涂料、油墨及胶粘剂工业大气污染物排放标准2019-05-252019-07-01GB 37823-2019制药工业大气污染物排放标准2019-07-292019-07-01GB 37822-2019挥发性有机物无组织排放控制标准2019-05-252019-07-01GB 31573-2015无机化学工业污染物排放标准2015-05-152015-07-01GB 31572-2015合成树脂工业污染物排放标准2015-05-152015-07-01GB 31571-2015石油化学工业污染物排放标准2015-05-152015-07-01GB 31570-2015石油炼制工业污染物排放标准2015-05-152015-07-01标准引用了下列文件或其中的条款涉及到了分析仪器,未来这些仪器将是重中之重。GB/T 14669 空气质量 氨的测定 离子选择电极法GB/T 14678 空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法GB/T 15264 环境空气 铅的测定 火焰原子吸收分光光度法GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法HJ/T 27 固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法HJ/T 30 固定污染源排气中氯气的测定 甲基橙分光光度法HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法HJ/T 38 固定污染源排气中非甲烷总烃的测定 气相色谱法HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法HJ/T 42 固定污染源排气中氮氧化物的测定 紫外分光光度法HJ/T 43 固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法HJ/T 56 固定污染源排气中二氧化硫的测定 碘量法HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法HJ/T 67 大气固定污染源 氟化物的测定 离子选择电极法HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法HJ 57 固定污染源废气 二氧化硫的测定 定电位电解法HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法HJ 533 环境空气和废气 氨的测定 纳氏试剂分光光度法HJ 539 环境空气 铅的测定 石墨炉原子吸收分光光度法HJ 549 环境空气和废气 氯化氢的测定 离子色谱法HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法HJ 584 环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法HJ 629 固定污染源 废气二氧化硫的测定 非分散红外吸收法HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法HJ 657 空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法HJ 685 固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 688 固定污染源废气 氟化氢的测定 离子色谱法HJ 692 固定污染源废气 氮氧化物的测定 非分散红外吸收法HJ 693 固定污染源废气 氮氧化物的测定 定电位电解法HJ 732 固定污染源废气 挥发性有机物的采样 气袋法HJ 734 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法HJ 777 空气和废气 颗粒物中金属元素的测定 电感耦合等离子体发射光谱法HJ 1006 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法HJ 1131 固定污染源废气 二氧化硫的测定 便携式紫外吸收法HJ 1132 固定污染源废气 氮氧化物的测定 便携式紫外吸收法
  • 安徽省环境检测行业协会发布《大气污染物无组织排放监测规范化操作指南》团体标准
    各有关单位:依据《中华人民共和国标准化法》《团体标准管理规定》(国标委联〔2019〕1号)及《安徽省环境检测行业协会团体标准管理办法(试行)》(皖环检协〔2020〕16号)等有关规定,我会组织专家召开了《大气污染物无组织排放监测规范化操作指南》(T/AHEMA 29-2023)团体标准的评审会,经过专家评审,一致认为该项团体标准符合发布条件,现予批准发布。联系人:牛俊 电话:0551-63680551安徽省环境检测行业协会2023年6月26日 皖环检协2023-24号:安徽省环境检测行业协会关于发布《大气污染物无组织排放监测规范化操作指南》团体标准的公告.pd
  • 多地《大气污染物排放标准》频出,LUMEX提供塞曼汞排放监测方案
    2013年以来,随着我国大气污染问题日益严重,雾霾天数逐年增加,其中以煤为主的能源结构造成的煤烟型污染是导致大气污染的重要原因之一。随着治污减霾工作的强力推进,全国对燃煤锅炉开展了超低排放改造,与此同时“煤改气”工作的推进导致燃气锅炉数量不断增长,控制燃气锅炉的氮氧化物排放迫在眉睫,再加之醇基锅炉、生物质锅炉等新型锅炉尚未有明确排放标准,原有的标准体系已不能满足管理要求。因此近来多地印发《锅炉大气污染物排放标准》及《火电厂大气污染物排放标准》,对各种类型的锅炉的排放限值提出了明确要求,其中包括对共排放限值的要求。广东印发《锅炉大气污染物排放标准》 (DB 44/765-2019) 日前,广东印发《锅炉大气污染物排放标准》(DB 44/765-2019)。该标准在全省域范围执行,适用于燃煤、燃油、燃气和燃生物质成型燃料的每小时65蒸吨及以下蒸汽锅炉、各种容量的热水锅炉及有机热载体锅炉;各种容量的层燃炉、抛煤机炉,其中对汞排放限值的要求为0.05mg/m3,具体执行时间规定如下:一是在用锅炉自2019年7月1日起执行表1规定的大气污染物排放限值,自2020年7月1日起执行表2规定的大气污染物排放限值;二是新建锅炉自2019年4月1日(本标准实施之日)起执行表2规定的大气污染物排放限值;三是未实行清洁能源改造的每小时35蒸吨及以上燃煤锅炉自2021年1月1日起,执行表3规定的大气污染物特别排放限值。 山东印发了《火电厂大气污染物排放标准》DB37/ 664-2019 2019年3月15日,山东近日也印发了《火电厂大气污染物排放标准(DB37/ 664-2019代替DB37/ 664—2013)》。其中对汞污染物的排放提出了更为严格的要求,排放浓度限制要求为0.03mg/m3,标准将于2019年9月7日实施。陕西印发《锅炉大气污染物排放标准》DB61/ 1226-2019 2018年12月29日,陕西印发《锅炉大气污染物排放标准》。本标准规定了火力发电锅炉和工业锅炉的大气污染物浓度排放限值、监测等要求。其中对汞污染物排放限值的要求是0.03-0.05mg/m3,该标准自2019年1月29日开始实施。一起往下看吧! LUMEX高频塞曼烟气汞解决方案 针对标准中提到的《固定污染源废气 气态汞的测定 活性炭吸附/热裂解原子吸收分光光度法》(HJ917-2017)已于2017.12.29颁布实施,我们的测汞仪也充分参与了方法验证,LUMEX针对烟气汞排放监测需求,提供成套解决方案。独特优势:采用高频塞曼背景校正技术:高选择性和灵敏度、抗干扰性强;现场便携检测:可直接野外便携检测样品中汞含量;操作简单:主机直接实时检测气体中的汞含量,复杂样品直接分析,分析结果快--1-2分钟出结果;无需金汞富集及样本前处理;高灵敏度:9.6 m光程保证灵敏性和高选择性;宽泛动态检测范围:适于高汞污染,汞含量可高达0-20000ng;独特设计满足重金属汞污染源排查;在线系统可实现无人操作监控;空气做载气,不用特殊气源; LUMEX公司是具有近30年的分析研发、生产的制造厂商,已开发拥有100多种分析方法,产品/方法用户现已遍布全球80多个国家,产品方法符合美国EPA、欧盟CE标准和中国GB/HJ等分析检测方法标准,并已通过国际ISO认证。LUMEX公司作为汞技术专家,专注于分析方法的开发和研究,为行业用户提供有效的定制化的解决方案。 (来源:LUMEX分析仪器)
  • 碳监测市场潜力巨大!2024年上半年大气新政与标准速览
    步入2024年的下半场,回顾上半年,大气污染防治领域的政策与标准犹如一道道清晰的航标,指引着我们向着更加清澈的天空迈进。从国家层面的顶层设计到地方性的细化措施,一系列政策的出台和标准的修订,显示了政府对改善空气质量的重视。当前大气相关政策现状呈现出高度规范化、技术智能化与治理协同化的特征,我们看到一个更加系统化、精细化的大气污染治理体系正在成型,为实现空气质量的根本改善奠定了坚实的基础。在大气监测方面,为适应新时代的环保需求,国家相关部门不断优化监测网络布局,推动监测技术的升级换代,以实现更精准、更实时的数据采集与分析。地方各级政府积极响应中央号召,因地制宜制定大气监测与治理的专项计划,通过增设监测站点、引入先进监测设备和加强跨部门协作等方式,形成了多层次、宽领域的监测格局。随着政策的持续完善与执行力度的加大,大气监测将更加科学、高效,为打赢蓝天保卫战提供强有力的技术支撑。由下表了解到,碳监测领域正经历一个快速发展的阶段。目前,超过18个省份发布了碳监测相关的规划,遥感技术在碳排放监测方面也取得进展,随着政策推动和技术成熟,碳监测市场预期将迎来快速发展期。国家统计局数据显示,我国规模以上企业共40多万家,主要集中在电力、能源、制造、冶炼、采矿、化工、石油、纺织等行业,大部分都属于高碳产业,据某证券研究数据了解到:“目前一套烟气CEMS监测系统市场价格约30万元,市场现存烟气CEMS系统数量约为10余万套,通过设备升级改造系统实现碳监测功能,需要增加10万元,也就是说,仅改造现有设备就有100亿元的市场规模!由于设备使用周期大概5年,新的试点行业企业持续加入,到2060年碳监测市场总规模将接近千亿元。”可以看出,碳监测市场具有巨大发展潜力。截至目前,大气领域出台了一系列政策与标准,旨在构建更为健全的大气环境质量监控体系。仪器信息网小编不完全盘点了2024年上半年涉及大气领域的重要政策和标准,以便大家收藏、查阅。2024上半年大气领域重点政策盘点(部分)政策(点击可看全文)发文单位发布时间主要内容修改《消耗臭氧层物质管理条例》 国务院1月&bull 生产、使用消耗臭氧层物质数量较大,以及生产过程中附带产生消耗臭氧层物质数量较大的单位,应当安装自动监测设备,与生态环境主管部门的监控设备联网,并保证监测设备正常运行,确保监测数据的真实性和准确性。《推进美丽北京建设持续深入打好污染防治攻坚战2024年行动计划》 北京市人民政府办公厅2月&bull 实施挥发性有机物(VOCs)治理专项行动,组织重点园区、重点行业开展VOCs精细化管控,推进重点行业企业绿色升级。&bull 实施氮氧化物(NOx)减排专项行动,推进非道路移动机械综合治理、大宗货物绿色运输。加强扬尘管控,提升城市环境精细化管控水平。&bull 开展“一微克”行动区级示范,围绕清洁运输、VOCs深度治理、清洁能源改造等不同区有侧重进行先行先试。《工业领域碳达峰碳中 和标准体系建设指南》 工信部2月&bull 到2025年,初步建立工业领域碳达峰碳中和标准体系,制定200项以上碳达峰急需标准,重点制定基础通用、温室气体核算、低碳技术与装备等领域标准。&bull 到2030年,形成较为完善的工业领域碳达峰碳中和标准体系,加快制定协同降碳碳排放管理、低碳评价类标准,实现重点行业重点领域标准全覆盖,支撑工业领域碳排放全面达峰,标准化工作重点逐步向碳中和目标转变。《国家重点低碳技术征集推广实施方案》 生态环境部、科技部、工业和信息化部、住房和城乡建设部、交通运输部、农业农村部2月&bull 主要包括五大重点方向,覆盖能源、工业、农业、建筑、交通等温室气体减排关键领域。&bull 第一是能源绿色低碳转型类,主要包括可再生能源开发与应用技术,先进储能技术,能源互联网技术,氢能开发利用技术等。&bull 第二是重点领域降碳类,主要包括工业领域降碳技术,建筑领域降碳技术,交通运输领域降碳技术等。&bull 第三是储碳固碳类,主要包括CCUS技术和生态增汇与监测技术等。&bull 第四是数智赋能类,主要包括数字赋能效率提升技术,温室气体排放智慧化管理技术,数据中心降碳技术等。&bull 第五是非二氧化碳减排类,主要包括甲烷减排类技术、氢氟碳化物减排类技术、氧化亚氮减排类技术及其他非二氧化碳温室气体减排技术等。《绿色低碳转型产业指导目录(2024年版)》 国家发展改革委、工业和信息化部、自然资源部、生态环境部、住房城乡建设部、交通运输部、中国人民银行、金融监管总局、中国证监会、国家能源局3月&bull 《目录》共分三级,包括7类一级目录、31类二级目录、246类三级目录。第一部分是节能降碳产业。主要指推动节能降碳的装备制造、改造升级、绿色转型等相关产业。具体包括高效节能装备制造、先进交通装备制造、节能降碳改造、重点工业行业绿色低碳转型、温室气体控制5类二级目录,节能锅炉制造、节能窑炉制造等38类三级目录。《关于加快建立现代化生态环境监测体系的实施意见》 生态环境部3月&bull 我国将实施四大能力建设工程,分别是天空地海一体化监测网络构建、监测科技创新、强基层补短板和监测人才培养。预计用 5 年左右时间,在重点区域建成若干一体化监测示范区,推出 100 个左右监测现代化市县优秀案例,完成监测技术人员轮训。&bull 地方监测网点位布设重点向区县、乡镇、农村延伸,覆盖百姓身边的中小河流和岸滩海湾,客观反映本地生态环境状况。&bull 推动京津冀及周边地区、 长江经济带、黄河流域、粤港澳大湾区、成渝等区域一体化监测网络建设。鼓励有条件的地方开展一体化监测试点。&bull 引导现场直读监测仪器小型化、集成化技术攻关,提高便携式监测仪器精度,提升污染源、自动监测设备可靠性和防干扰性,支撑环境执法、应急、精细化管控等管理需求。《中共中央办公厅 国务院办公厅关于加强生态环境分区管控的意见》 中共中央办公厅 国务院办公厅3月&bull 实施生态环境高水平保护以“三区四带”为重点区域,分单元识别突出环境问题,落实环境治理差异化管控要求,维护生态安全格局。&bull 综合考虑大气区域传输规律和空间布局敏感性等,强化分区分类差异化协同管控。《关于深化气候适应型城市建设试点的通知》 生态环境部、财政部、自然资源部、住房和城乡建设部、交通运输部、水利部、中国气象局、国家疾病预防控制局5月&bull 到2025年,优先遴选一批工作基础好、组织保障有力、预期示范带动作用强的试点城市先行先试,气候适应型城市建设纳入试点城市重点工作任务和经济社会发展规划。&bull 到2030年,试点城市扩展到100个左右。&bull 到2035年,气候适应型城市建设试点经验得到全面推广,地级及以上城市全面开展气候适应型城市建设。《火电行业建设项目温室气体排放环境影响评价技术指南(试行)》 生态环境部5月&bull 规定了火电行业建设项目开展温室气体排放环境影响评价的适用范围、一般工作内容和程序、评价方法、技术要求等。《关于建立碳足迹管理体系的实施方案》 生态环境部、国家发改委、工信部、财政部、人力资源社会保障部、住建部、交通运输部、商务部、中国人民银行、国务院国资委、海关总署、市场监管总局、金融监管总局、中国证监会、国家数据局6月&bull 优先聚焦电力、煤炭、天然气、燃油、钢铁、电解铝、水泥、化肥、氢、石灰、玻璃、乙烯、合成氨、电石、甲醇、锂电池、新能源汽车、光伏和电子电器等19个重点产品,制定发布核算规则标准。《关于做好水泥和焦化企业超低排放评估监测工作的通知》 生态环境部6月&bull 大气污染防治重点区域企业率先开展超低排放改造和评估监测工作,其他区域有序推进。&bull 指导企业开展超低排放改造和评估监测工作,支持企业在协会网站上公示企业超低排放改造和评估监测进展情况。 《钢铁行业节能降碳专项行动计划》 《炼油行业节能降碳专项行动计划》《合成氨行业节能降碳专项行动计划》《水泥行业节能降碳专项行动计划》国家发展改革委、工业和信息化部、生态环境部、市场监管总局、国家能源局6月&bull 聚焦四大能源消耗和二氧化碳排放的重点领域,要求加快节能降碳改造和用能设备更新,支撑完成“十四五”能耗强度降低约束性指标。《关于加强重点行业建设项目环境影响评价中甲烷管控的通知(征求 意见稿)》 生态环境部7月&bull 聚焦煤炭开采、石油和天然气开采、畜禽养殖、生活垃圾填埋以及污水处理厂等五大重点行业,结合《建设项目环境影响评价分类管理名录》,将甲烷管控要求落实到重点行业建设项目环境影响评价中。2024上半年大气领域重点标准盘点(部分)标准实施日期环境空气颗粒物(PM2.5)中有机碳和元素 碳连续 自动监测技术规范 (HJ 1327—2023) 2024年7月1日环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(HJ 1328—2023) 2024年7月1日环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(HJ 1329—2023) 2024年7月1日固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法(HJ 1330—2023) 2024年7月1日固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法(HJ 1332—2023) 2024年7月1日固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法(HJ 1331—2023) 2024年7月1日环境空气 颗粒物来源解析 固定污染源废气颗粒物(PM2.5和PM10)稀释通道采样技术导则(征求意见稿) ——环境空气 颗粒物来源解析 扬尘颗粒物(PM2.5和PM10)再悬浮采样技术导则(征求意见稿) ——固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿) ——环境空气气态污染物(氨、硫化氢)连续自动监测技术规范(征求意见稿) ——环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法(征求意见稿) ——
  • 环保部大气PM2.5网格化监测标准征求意见
    p   环保部日前发布了《大气PM2.5网格化监测点位布设技术指南(试行)(征求意见稿)》、《大气PM2.5网格化监测系统安装和验收技术指南(试行)(征求意见稿)》、《大气PM2.5网格化监测系统质保质控与运行技术指南(试行)(征求意见稿)》、《大气PM2.5网格化监测技术要求和检测方法技术指南(试行)(征求意见稿)》。目前国内相关标准,仅有河北省地方标准《大气污染防治网格化监测系统安装验收与运行技术规范》等三项标准(详见: a href=" http://www.instrument.com.cn/news/20170830/227823.shtml" target=" _blank" title=" " 首批大气网格化监测地方标准发布 /a )。 /p p   目前,我国很多城市建设了大气PM2.5网格化监测网络,但是对于点位布设还主要是围绕污染源根据经验来考虑,缺少对现有数据的利用和城市整体环境污染的考虑,《大气PM2.5网格化监测点位布设技术指南(试行)(征求意见稿)》中规定了热点网格识别方法:针对城市区域网格,综合使用地面环境监测数据、卫星遥感、气象数据、地理信息、环境统计、经济表征数据(工商、电力)等进行数据统计,运用多种模型交叉量化分析,综合评估城市的所有区域的污染程度、污染源规模与数量等多项指标,选出需要重点实施监管排查的热点网格。热点网格原则上选在各城市污染浓度水平排名前10%网格,但如果该城市山区面积大于50%时,可适当降低热点网格数量。根据网格内情况,分别设置环境监控点、污染监测点、质量控制点和区域背景点。 /p p   根据编制组调研结果显示,目前国内用于大气PM2.5网格化监测的设备绝大多数为基于光散射法的激光粒子计数器传感器,仅有个别厂家采用光散射法粉尘仪,且粉尘仪具有成本高、运维工作量大等问题,故编制组将监测技术定位基于光散射法激光粒子计数器传感器的网格化监测设备。根据国内14家生产厂家的监测单元,标准规定测量范围0-100微克每立方米时测量误差不大于20微克每立方米,测量范围100-1000微克每立方米的测量误差不大远满量程的20%。 /p p   大气PM2.5网格化监测系统包括监测单元、质控单元、数据传输及存储单元、数据处理分析单元以及其他辅助单元。 /p p    span style=" color: rgb(0, 112, 192) " strong 征求意见稿发布详细情况如下: /strong /span /p p style=" text-align: center "   关于征求《大气PM2.5网格化监测点位布设技术指南(试行)(征求意见稿)》等四项技术指南意见的函 br/ /p p   各有关单位: /p p   为贯彻落实《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,规范大气网格化监测工作,进一步提高大气污染防治精细化和信息化水平,我部组织编制了《大气PM2.5网格化监测点位布设技术指南(试行)》等四项技术指南。现将指南印送给你们,请研究提出意见,于2017年9月7日前通过信函或电子邮件反馈我部(电子邮件请发送至联系人邮箱)。逾期未反馈的,将按无意见处理。指南征求意见稿及其编制说明可登录我部网站(http://www.zhb.gov.cn/)“意见征集”栏目检索查阅。 /p p   联系人:环境保护部环境监测司 刘彬 /p p   通信地址:北京市西城区西直门南小街115号 /p p   邮政编码:100035 /p p   电话:(010)66556817 /p p   邮箱:jcyc@mep.gov.cn /p p   附件:1.征求意见单位名单 /p p   2. a href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201709/W020170905359104694003.pdf" target=" _blank" title=" " 大气PM2.5网格化监测点位布设技术指南(试行)(征求意见稿) /a /p p   3. a href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201709/W020170905359105013506.pdf" target=" _blank" title=" " 《大气PM2.5网格化监测点位布设技术指南(试行)(征求意见稿)》编制说明 /a /p p   4. a href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201709/W020170905359105796391.pdf" target=" _blank" title=" " 大气PM2.5网格化监测系统安装和验收技术指南(试行)(征求意见稿) /a /p p   5. a href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201709/W020170905359106357845.pdf" target=" _blank" title=" " 《大气PM2.5网格化监测系统安装和验收技术指南(试行)(征求意见稿)》编制说明 /a /p p   6. a href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201709/W020170905359107250621.pdf" target=" _blank" title=" " 大气PM2.5网格化监测系统质保质控与运行技术指南(试行)(征求意见稿) /a /p p   7. a href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201709/W020170905359107610561.pdf" target=" _blank" title=" " 《大气PM2.5网格化监测系统质保质控与运行技术指南(试行)(征求意见稿)》编制说明 /a /p p   8. a href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201709/W020170905359108461218.pdf" target=" _blank" title=" " 大气PM2.5网格化监测技术要求和检测方法技术指南(试行)(征求意见稿) /a /p p   9. a href=" http://www.zhb.gov.cn/gkml/hbb/bgth/201709/W020170905359108815292.pdf" target=" _blank" title=" " 《大气PM2.5网格化监测技术要求和检测方法技术指南(试行)(征求意见稿)》编制说明 /a /p p style=" text-align: right "   环境保护部办公厅 /p p style=" text-align: right "   2017年8月24日 /p p   附件1 /p p   征求意见单位名单 /p p   1.各省、自治区、直辖市环境保护厅(局) /p p   2.新疆生产建设兵团环境保护局 /p p   3.中国环境科学研究院 /p p   4.中国环境监测总站 /p p   (部内征求科技司、大气司、环监局意见) /p
  • 首批大气网格化监测地方标准发布——访标准主要起草者河北省石家庄环境监测中心副站长张灵芝和先河环保马景金
    p   大气污染防治网格化精准监控系统,2015年才有地区正式开始建设,2017年就已有大量应用,该系统为全国各地管理部门的大气污染防治工作提供技术支撑。然而,快速发展的市场需要多种方式来规范,而标准就是其中重要的一项措施。 /p p style=" text-align: center " a href=" http://www.instrument.com.cn/news/20170817/226914.shtml" target=" _blank" title=" " img src=" http://img1.17img.cn/17img/images/201708/insimg/d4c05e74-186e-4223-b60d-5551d422321f.jpg" title=" 11_副本.jpg" / /a /p p   目前,由河北省环境保护厅发起,先河环保牵头主笔起草,省环境应急与重污染天气预警中心、石家庄市环境监测中心等相关专家共同参与完成的我国首批大气网格化监测地方标准正式发布。此批标准共包括三个文件:《大气污染防治网格化监测系统技术要求及检测方法》、《大气污染防治网格化监测点位布设技术规范》、《大气污染防治网格化监测系统安装验收与运行技术规范》。 /p p   针对此标准的情况,仪器信息网采访了标准主要起草者河北省石家庄环境监测中心副站长张灵芝和河北先河环保科技股份有限公司环境研究员马景金。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/86333741-16f4-4b52-984d-e68a943f5591.jpg" title=" 22.jpg" / /p p style=" text-align: center " strong 河北省石家庄环境监测中心副站长张灵芝(左)和河北先河环保科技股份有限公司环境研究员马景金(右) /strong /p p    span style=" color: rgb(0, 176, 240) " strong 快速发展的市场急需标准的规范 /strong /span /p p   张灵芝站长为我们介绍了这个标准的起源:“环保部自2013年开始发布74个重点城市空气质量排名。河北省每次排名都有四至七个城市位于后十名,政府的环境治理压力非常大。石家庄作为省会,排名更是徘徊在全国倒一倒二的位置,环境改善的紧迫性更大,所以就想通过科技手段来精准找到直接影响排名靠后的污染源头,并因情施策和源头整治。” /p p   “石家庄自2015年开始采用政府购买服务和数据的方式,由先河环保出资在主城区内建设了空气质量网格化监控系统。第一期网格化建设覆盖了石家庄所有的建筑工地扬尘。石家庄市政府能与先河达成合作也有多方原因:一是先河公司位于石家庄,对政府需求反应快、服务跟得上 二是先河公司是上市公司,技术力量雄厚,产品研发速度很快 三是开展网格化监控需要大量的资金,在政府预算资金尚没有到位情况下,先河公司敢于担当,主动提出先垫资建设。目前,石家庄建设的微型站不仅能监测六参数,还针对当地需求,专门研发了TVOC微型站。大量非国标设备的使用需要标准的规范,才能更好的发挥作用,于是我们制定了这一系列标准。” /p p   马景金补充道:“区域布点完善的大气网格化监控系统能帮助政府更精准的找到污染源,从而可以针对源头分类施策、科学治污,进而在治污过程中寻求GDP与环境的平衡。管理部门的需求促进了技术创新的快速发展,以先河环保为例,公司2015年初首家推出该系统,下半年就在石家庄市区和井陉矿区做了示范应用,后来不断有客户到公司来了解网格化监控系统。据不完全统计,网格化自推向市场以来,先河共接待网格化考察及调研人员2千余人次,平均每年在200批次。” /p p   “先河推出网格化监控系统后,相关市场竞争日趋激烈,市场上的相关产品技术也免不了龙蛇混杂,也给各地政府对真正意义“网格化”的理解和应用,带来诸多偏差和误区。为保证市场的健康发展,保证客户在产品选择中有一个基本的参考,标准规范是必须的。” /p p    span style=" color: rgb(0, 176, 240) " strong 精雕细琢 平衡标准可操作性和适用性 /strong /span /p p   “真正意义的网格化系统需有效保障产品质量、数据准确性,其技术标准、布点规范、运营维护等都是关键因素。只有这样,才能切实发挥网格化的作用。为充分体现关键因素,本批标准对很对内容都进行了详细描述。”马景金介绍到。 /p p   对于监测单元的性能指标,此标准不仅规定了监测单元的实验室性能指标,还规定了室外应用性能指标,包括室外比对测量误差、室外比对测量相关系数和仪器平行性。马景金介绍说:传感器技术凭借费用低、安装方便快捷及可持续动态监测等特点,可实现对监测区域的全面布点、全面覆盖,消灭监测盲区。但是在实际应用过程中,若单纯采用传感器进行网格化建设时,存在监测布点不合理、参数不全面以及传感器固有的零漂、温漂、时漂等缺陷,会造成网格化监控系统的数据不准。因此,在布点方法上,需采用可露天使用的小型国标监测方法设备与传感器技术的微型站组合使用,以国标法设备为基础,运用大数据管理平台进行数据的监控,实时甄别异常数据。” /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/15a4dfcd-8231-4e28-9941-b6653d8f7c6a.jpg" title=" 33_副本.png" / /p p style=" text-align: center " strong 图为国标法小型化设备与传感器技术设备组合布点,形成重点污染源监控网格 /strong /p p   为达到区域大气污染防治精细化管理的目的,点位布设技术规范规定了城市主城区、道路交通、工地扬尘、涉气企业、工业园区、生活源、梯度站等的布设原则,详细的规定与网格化数据和管理部门职能的对接分不开。张灵芝在采访中提到:“石家庄当时建设网格化监控系统的目的是‘谁的责任谁负责’,如一期建设的建筑工地周边颗粒物浓度监控数据主要给建设部门提供扬尘控制管理参考,而道路污染监控数据主要给交通部门和城市管理部门提供参考,多部门联合、各负其责才能更好完成大气污染治理工作。” /p p   详细的规定增加了标准的可操作性,但是现实情况往往更复杂,有时候也需要合理的范围来协调。马景金以质控点位为例做了介绍:“标准中质控点位的范围规定为3-5公里,如果周边环境整体分布比较一致,那么质控设备可对方圆五公里的网格监测点位进行质控 如果周边建筑比较密集或者局部污染水平差异较大,那么就需要缩小质控范围。” /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/6f3827c3-d808-4990-9f0b-82f1bb044813.jpg" title=" 44_副本.jpg" / /p p style=" text-align: center " strong 图为用于监测现场的传感器技术设备及国标法小型化设备 /strong /p p    span style=" color: rgb(0, 176, 240) " strong 规范河北省网格化建设 促进技术推广 /strong /span /p p   国外虽然也有用传感器监测空气质量的技术,但是由于空气污染治理的需求没有我国这么迫切,大多数产品还处于试点阶段,没有成熟的产品体系,更别说规范的标准了。 /p p   中国环境监测总站也已经开始制定国家级的网格化监控系统标准,收集了全国多个企业和单位的信息,也包括先河环保的意见,目前初稿已经基本成形。可以说,河北省此次发布的三个网格化监控系统的标准是首批网格化监控标准,对河北省和乃至全国的大气污染防治网格化建设都规范和促进作用。 /p p   张灵芝评价说:“目前这三个标准的主要使用单位为政府管理部门和环境监测部门,有了这批标准,各部门建设网格化系统时就有据可依了,使用时对数据质量的把控更有底气了。作为非强制标准,这批标准不一定会促进网格化系统的推广,但河北省要求,被列入‘2+26’通道的城市应建设网格化监控系统。” /p p   马景金评价说:“标准的出台肯定会促进网格化监控系统的规范化建设和运行。除此之外,目前网格化监控系统的主要用户为政府管理部门和环保局,标准的出台可以给管理者更多信心,相信这套系统可以促进大气污染防治网格化监控系统的推广,协助各地更好地进行大气污染防治工作。” /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/insimg/50f9c5c0-18fb-4b9c-b037-df482bf30b38.jpg" title=" 77_副本.jpg" / /p p style=" text-align: center " strong 大气污染防治网格化监测系统相关标准专家评审现场 /strong /p p style=" text-align: right " strong (采访编辑:李学雷) br/ /strong /p p    span style=" font-family: 楷体,楷体_GB2312,SimKai " strong 采访后记: /strong 2015年大气污染防治网格化监控系统的理念才刚刚兴起,2017年的CIEPEC展会上,能提供此系统的大大小小厂商已不胜枚举。不同厂商提供的产品各有优势,有的在监测仪器上下功夫,努力提高其准确度 有的在数据传输上下功夫,实现监测数据和多角度监测视频的同步传输 有的在质控硬件上下功夫,多种质控仪器组合保证数据质量 有的在质控软件上下功夫,大数据分析加仪器校准促进数据有效性 有的在数据挖掘上下功夫,多种数据模型和参数校正以实现污染源的预测。不同厂商也有各自的优势应用领域,有的针对城市空气,有的针对工业园区。 /span /p p span style=" font-family: 楷体,楷体_GB2312,SimKai "   大气污染防治网格化监控系统的设立初衷是帮助政府部门更高效的完成大气环境管理工作,多种技术的争奇斗艳可以给用户提供更多的选择,地方标准乃至将来国家标准的发布有助于此市场的规范,多方的努力肯定能早日换来我们的蓝天白云。 /span /p p   附录: /p p   张灵芝:石家庄市环境监测中心副主任,正高级工程师,自1985年参加工作以来一直从事环境监测、环境质量评价及环境科研等工作,负责筹建了石家庄市空气质量自动监测系统和大气梯度监测站。 /p p   马景金:女,博士,中级工程师,毕业于中国科学院理化技术研究所。2012年加入河北先河环保科技股份有限公司,现任数据分析与应用项目负责人,主要从事环境大数据分析与应用研究。 /p
  • 23项在研/拟制订!新污染物生态环境监测分析方法标准大气篇
    为加强新污染物生态环境监测工作,优化完善生态环境监测标准体系,生态环境部组织制订《新污染物生态环境监测标准体系表》(以下简称《体系表》),用于规范和指导新污染物生态环境监测标准制修订工作。《体系表》中新污染物生态环境监测标准项目共219项,包括生态环境监测技术规范(以下简称技术规范)、生态环境监测分析方法标准(以下简称分析方法标准)和生态环境标准样品(以下简称标准样品)共3类。《体系表》中生态环境监测标准编制状态分为已发布、在研和拟制订三种。其中,已发布表示标准已发布实施且现行有效,在研表示标准目前正在制修订,拟制订表示下一步计划制修订。《体系表》主要由新污染物生态环境监测标准体系框架图和体系表标准项目表构成。《体系表》定期更新。《新污染物治理行动方案》明确新污染物主要包括国际公约管控的持久性有机污染物、内分泌干扰物、抗生素等,提出动态发布重点管控新污染物清单和动态制订化学物质环境风险优先 评估计划、优先控制化学品名录的目标和行动举措。本体系表所指新污染物,主要包括现阶段已发布的《重点管控新污染物清单(2023 年版)》(生态环境部、工业和信息化部、农业农村部、商务部、海关总署、国家市场监督管理总局令第 28 号)、《关于持久性有机污染物的斯德哥尔摩公约》《优先控制化学品名录(第一批)》(环境保护部 工业和信息化部 国家卫计委公告2017年 第 83 号)、《优先控制化学品名录(第二批)》(生态环境部工业和信息化部 国家卫健委公告 2020 年第47号)和《第一批化学物质环境风险优先评估计划》(环办固体〔2022〕32号)中的受控物质。其中,新污染物生态环境监测标准与空气废气相关的分析方法标准38项,按编制状态分类,已发布15项、在研2项、拟制订21项。具体标准请查阅下图。新污染物生态环境监测标准体系项目表序号指标标准类型及标准项目名称建标理由*状态备注分析方法标准1三氯杀螨醇环境空气 三氯杀螨醇的测定 气相色谱-质谱法A拟制订2多氯萘环境空气和废气 多氯萘的测定 气相色谱-三重四极杆质谱法B在研3六溴联苯环境空气和废气 六溴联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法B拟制订4毒杀芬环境空气 指示性毒杀芬的测定 气相色谱-质谱法(HJ 852-2017)B已发布5有机磷酸酯类环境空气和废气 有机磷酸酯类化合物的测定 液相色谱-三重四极杆质谱法C拟制订6环境空气和废气 有机磷酸酯类化合物的测定 气相色谱-质谱法C拟制订7麝香类环境空气 麝香类化合物的测定 气相色谱-质谱法C拟制订8N,N'-二甲苯基-对苯二胺环境空气和废气 N,N'-二甲苯基-对苯二胺的测定 气相色谱-三重四极杆质谱法C拟制订9甲醛和乙醛苯胺类(邻甲苯胺)固定污染源排气中乙醛的测定 气相色谱法(HJ/T 35-1999)C已发布10环境空气 醛、酮类化合物的测定 高效液相色谱法(HJ 683-2014)C已发布11固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法(HJ 1153-2020)C已发布12苯胺类(邻甲苯胺)大气固定污染源 苯胺类的测定 气相色谱法(修订 HJ/T 68-2001)C拟制订增加邻甲苯胺指标和环境空气介质13多环芳烃环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法(HJ 647-2013)C已发布14环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法(HJ 646-2013)C已发布15烷基汞环境空气和废气 烷基汞的测定 气相色谱-冷原子荧光光谱法C拟制订16硝基苯环境空气 硝基苯类化合物的测定 气相色谱法(HJ 738-2015)C已发布17环境空气和废气 硝基苯类化合物的测定 气相色谱-质谱法C拟制订18邻苯二甲酸酯类环境空气 酞酸酯类的测定 气相色谱-质谱法(HJ 867-2017)D已发布19环境空气和废气 邻苯二甲酸酯类化合物的测定 气相色谱-质谱法D拟制订20固定污染源废气 酞酸酯类的测定 气相色谱法(HJ 869-2017)D已发布21有机锡化合物(三丁基锡)环境空气 4 种有机锡化合物的测定 液相色谱-电感耦合等离子体质谱法D拟制订22得克隆环境空气和废气 得克隆的测定 气相色谱-质谱法A B拟制订23多氯联苯环境空气 多氯联苯的测定 气相色谱-质谱法(修订 HJ 902-2017)A B拟制订增加固定源废气介质24环境空气和废气 多氯联苯的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B拟制订25有机氯农药环境空气 有机氯农药的测定 气相色谱-质谱法(HJ 900-2017)A B已发布26环境空气 有机氯农药的测定 气相色谱法(HJ 901-2017)A B已发布27环境空气 有机氯农药的测定 高分辨气相色谱-高分辨质谱法(HJ 1224-2021)A B已发布28二噁英类环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(修订 HJ 77.2-2008)B C在研29多溴二苯醚环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法(HJ 1270-2022)A B C已发布30固定源废气 26 种多溴二苯醚的测定 同位素稀释高分辨气相色谱-高分辨质谱法A B C拟制订31短链 氯化石蜡环境空气和废气 短链氯化石蜡的测定 气相色谱-高分辨质谱法A B C拟制订32环境空气和废气 短链氯化石蜡的测定 液相色谱-高分辨质谱法A B C拟制订33挥发性有机物环境空气 65 种挥发性有机物的测定 罐采样/气相色谱-质谱法(HJ 759-2023)A C D已发布34环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法(HJ 644-2013)A C D已发布35固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法(修订HJ 734-2014)A C D拟制订36壬基酚双酚 A4-叔辛基苯酚2,4,6-三叔丁基苯酚环境空气 烷基酚类化合物和双酚 A 的测定 液相色谱-三重四极杆质谱法A C D拟制订37六溴环十二烷双酚 A环境空气和废气 六溴环十二烷和四溴双酚 A 的测定 液相色谱-三重四极杆质谱法A B C D拟制订38氯苯类环境空气 氯苯类化合物的测定 气相色谱法A B C D拟制订*:A:管控清单;B:履约;C:优控名录;D:优评计划。
  • 无人机监测系统填补技术盲区 助力大气监测精准度升级
    p   12月中旬,中国科学院生态环境研究中心痕量气体大气化学研究组协同多家单位成功开展了无人机大气立体监测系统实验。这一监测系统填补了大气环境监测和研究盲区,提升了监测的精准程度,契合了当前大气污染科学迫切需要全方位精细化监测的需求。 /p p   伴随着一声“开始降落”的指令,在河北望都县农村环境研究站,新研制的无人机大气立体监测装备完成污染物监测和数据传输任务之后稳稳落地。 /p p   12月中旬,中国科学院生态环境研究中心痕量气体大气化学研究组协同多家单位成功开展了无人机大气立体监测系统实验。据项目负责人张成龙介绍,这一监测系统首次将低功耗大流量颗粒物采样技术、多通道真空气体采样技术与无人机技术结合,契合了当前大气污染科学迫切需要全方位精细化监测的需求。 /p p   填补大气环境监测和研究盲区 /p p   在对流层大气中,大气污染物多从近地面垂直向上或水平扩散,作为大气化学反应重要驱动力的太阳辐射则自上而下传输。因此,张成龙认为,大气环境化学研究不能只关注近地面污染,还要关注一定高度范围(特别是边界层)内的大气层结构和成分变化,否则很难全面揭示对流层实际的大气化学反应过程。 /p p   此前已有多种大气环境垂直监测方法得到应用,如大气边界层塔、有人飞机、气球及气艇等。但边界层塔位置固定,高度通常在300米以下,且多建于城市地区 有人飞机只能在数百米及以上的高度飞行 气球或气艇抗风能力和移动性差,需要填充大量氦气,单次运行成本高。这些方法已经无法满足新时期大气污染研究的需求。 /p p   “无人机的机动性和灵活性可以有效弥补上述缺陷,让原来不容易接近的地方变得容易到达,使大气监测真正做到动态性和立体性。”张成龙说,“农村地区不同于城市地区,它的下垫面多为农田和低矮村庄,大气污染物处于较低大气层,正好是无人机适合飞行和采集样本的高度。” /p p   无人机大气立体监测系统为农村大气面源污染的深入研究提供重要工具,也为区域大气氧化性、大气光化学过程及二次颗粒物形成等深入研究提供基础数据。 /p p   精准化大气研究工具 /p p   记者了解到,在中科院无人机大气监测系统实验成功之前,市场上已经有少数无人机产品应用于环境监测领域并和政府环境执法活动展开合作。对此,为本次无人机大气监测系统提供无人机设备的华翼天基科技有限公司相关负责人表示:“市场上的无人机设备不仅用于环保,也用于电力、消防等,并不专业,只是搭载几种空气传感器,远远不能解决大气多样化和精准化的监测需求。” /p p   为此,张成龙带领团队为提升系统精准化做出了一系列努力。 /p p   在传感器选择阶段,研发团队找到曾对传感器精度做了长期比对工作的南京信息工程大学教授庞小兵进行取经。庞小兵告诉《中国科学报》记者,大气传感器会受到大气温度、湿度、其他共存成分以及电信号噪音的干扰,因此要通过多种技术手段降低上述因素对传感器精度的影响。 /p p   最终,他们确定了具有较强抗干扰能力、能在实际大气气体中提取精确信息的低功耗大流量颗粒物采样器、多通道真空气体采样器以及传感器。传感器可一次性记录和传输10种参数,包括颗粒物、PM2.5和PM10等常规污染物参数。除此之外,采样设备随无人机升空之前,要经过地面标准台站的数据校准 无人机升空之后,还要保证提前计算设计好的采样器体积、续航能力等均满足远程控制、GPS三维定点悬停以及收集足够分量大气样品的要求。 /p p   该立体监测系统攻克了低功耗大流量颗粒物采样以及多通道真空气体采样等关键技术,实现大气颗粒态、气态以及液态等样品的立体化定点采样,为大气污染全方位立体化的精确诊断提供重要的技术支持。 /p p   从无到有的科研“创业” /p p   在张成龙看来,这次无人机大气监测系统的实验成功是一次从无到有的科研“创业”。没有充足的资金来源,参与研制并提供传感器、采样器、无人机的企业也没有向他索取任何费用,但他们却向着一个共同的目标努力。 /p p   这支由交叉学科领域的人员临时搭建的“梦之队”,不断突破技术难点,根据大气采集监测系统需要满足的科研要求对产品进行完善。华翼天基相关负责人表示:“为了提升监测系统在高空收集样品时的抗风能力和稳定性,我们专门为无人机设计了气动外形结构。” /p p   谈到无人机大气监测系统的应用前景,张成龙则认为“一千个人有一千个想法”。目前也有一些科研单位出于兴趣联系他们。在立体化精准化大气化学研究工具的应用前景之外,他大胆设想,未来在火灾、垃圾焚烧、环境污染执法等应急监测领域,无人机可以到达人们无法接近的地方发挥更大的作用,希望不同行业的人看到这个系统都能对其应用萌生不同的想法。 /p
  • 媒体】先河环保网格化精准监测助力阜阳大气治理
    编者按:阜阳市是先河环保在安徽提供网格化监控及管理咨询服务的第一座城市。阜阳市通过先河环保的网格化监测系统进行精准监控,并结合公司管理咨询服务专家团队进行分析研判利,诊断环境问题并对污染源进行精准化、精细化监管。先河环保的科技手段和专家团队,就是这样守护着阜阳的蓝天白云。图为先河环保网格化监测微站 阜阳的空气质量,给大多数人的印象是“灰头土脸”。2017年,因没有完成省政府下达的空气质量控制目标,阜阳市被省环保厅涉气建设项目环评限批。面对严峻形势,阜阳市委、市政府聚焦重点难点,探索治理路径,聚力打赢蓝天保卫战。 近一年来,阜阳市在先河环保网格化监测系统的基础上,推进“一管四全”,即建立健全精准管理的监测体系,对大气污染治理实现全域范围、时空时间、管理责任、系统治理全覆盖,城市空气质量较去年实现明显改善。截至8月14日,阜阳市空气质量综合指数由去年同期的第13名上升至第6名;PM2.5平均浓度51微克/立方米,较去年同期下降25.0%,降幅居全省第2位;优良天数156天,同比增加27天。在生态环境部发布的2018年上半年全国空气质量状况通报中,阜阳空气质量改善幅度居全国169个城市第5位。324个空气质量监测站全天候监控——“罪魁祸首”精准锁定 8月15日上午,在阜阳市环保局大气污染防治网格化监控中心,记者看到电子大屏上显示的监控平台里,呈现着阜城空气质量实时动态,其中,324个颜色不一的数据框,代表着监测点位不同的空气质量状况,任意点击其中一个,就会出现PM10、PM2.5、SO2、NO2、O3、CO等主要空气污染物参数。 “这324组数据,来自于分布在阜城的324个微型监测站。这些站点设在工业企业、建筑工地、搅拌站、餐饮集中区等有可能超标排放的‘敏感地带’。”网格化专家组负责人刘兵朝向记者介绍,微型监测站的监测数据传到监控平台后,工作人员会从中找到参数高值进行分析,实时判断污染源的类型,锁定污染源的位置。微型监测站的监测数据每10分钟更新一次,对于异常数据,会发出预警信号。“以前只知道空气质量变差,污染加重,但污染源是何种类型、在哪个区域,必须靠人工排查,费时费力还难找。网格化监控系统可以精准发现‘罪魁祸首’,及时进行管控。”阜阳市环保局污控科科长阚书培告诉记者。 为提高大气污染治理的科技含量,2017年10月,阜阳市投入近2000万元在主城区建成投运全省首套大气污染防治网格化精准监控系统,实现重点污染源24小时监测。大气网格化精准监控系统打破了传统空气质量评价的点位限制,采用高密度布设网格点实测的方法,在网格化布点的基础上,另行布设敏感区域监控网格、重点污染源监控网格、道路扬尘监控网格和餐饮集中区监控网格,累计安装各类微型监测设备324套,形成了一张覆盖整个城区,高时间分辨率、高空间分辨率和多参数的实时监测大网格,以此消除监测盲区,实时掌握区域内环境污染分布状况及空气质量变化趋势。污染事件第一时间有效处置——“网上指挥部”显成效 实时的网格化监测结果出来后,如何确保问题得到快速处置,有效发挥“定向管控,即时见效”的功能,需要一套决策支持系统来支撑。为此,阜阳市精心搭建了以大气网格化精准监控系统为基础,市环保委办公室总牵头,属地管理为主,市直部门通力协作的“大环保”“大监管”工作机制,其中两个微信群(阜城大气污染防治网格化指挥群和工作群)起到了网上“作战指挥部”的作用。刘兵朝以一个实例给记者描述了快速处置污染事件的工作流程: 7月24日,网格化监控平台发出自动报警:颍州区技术学院正南500米1609点位PM10高出市均值250%,达到轻度污染水平。专家组实时调取历史数据进行对比分析,确定为扬尘污染事件后,立即将该高值点位进行群内交办:“技术学院正南500米,PM10数据异常,今日以东南风为主,请立即对东南方向进行扬尘源排查”。不到2分钟,颍州区副区长杜刚、颍州区环保局李军进行群内回复:“颍州收到,立即赶到现场”。 大约15分钟后,颍州区进行反馈,距离站点20米为城泉路拆迁现场,拆迁单位未按要求采取喷淋相关措施,雾炮车放置一旁、且拆迁主体未提前打湿,拆迁过程扬尘污染严重。颍州区环保局执法人员现场责令施工单位停止拆迁作业,立即对拆迁面采取降尘措施,同时要求拆迁单位配置与作业面匹配的防尘、抑尘设施,安排专门人员具体实施。不出20分钟,数据恢复到与市均值相当水平。 阜阳市环保局局长李哲告诉记者,为加大对应急处置的监督力度,群里还邀请了纪检监察、人大代表、政协委员、政风行风监督员、新闻媒体记者等进群,对各地各部门落实情况进行实时监督,同时,制定了考核问责制度,以确保异常问题得到快速有效处置,达到“以分保时、以时保日、以日保月、以月保年”的目标。分类施策堵住污染源——“水洗”行动防尘抑尘 走进阜阳大剧院施工现场,映入记者眼帘的是,所有裸土均用防尘网覆盖,施工现场内道路都已硬化;沿主要道路及工地四周安装了近300处喷淋设施,工地上的一块电子显示屏上,场区内空气质量各类参数一目了然。 “为防治大气污染,我们工地严格做到‘六个百分百’,即工地四周封闭围挡、易扬尘的物料堆放覆盖、出入车辆全冲洗、路面硬化、拆迁工地湿法作业、渣土车封闭运输。通过采取这些措施,场区内的PM2.5和PM10都得到了有效控制。”项目相关负责人告诉记者。 借助网格化监控系统,阜阳市对空气污染源进行靶向防控,分类施策,治理污染源,一个不能少。图为网格化监控系统设备正在检测工地扬尘污染情况 地面扬尘、烟尘、粉尘是影响阜城空气质量的主要因素,为加强城市扬尘污染控制,阜阳市全面提升混凝土搅拌站污染防治水平,积极推行标准化、绿色施工和预拌砂浆、建筑产业化,在省内率先实施混凝土搅拌站点布点规划,阜城建成区内混凝土搅拌站已全部完成搬迁工作,形成了围绕阜城建成区的3个混凝土搅拌站集聚区,在产的混凝土搅拌站各项大气污染防治措施均已基本落实。同时,大力开展渣土车规范化清运整治,实行渣土清运企业市场准入制度,加强互联网在线监测管理,所有准入渣土车辆全部安装北斗定位系统。在城区主要出入口设置渣土车辆返城冲洗点,实现了渣土运输车辆“出门洗洗澡、进门洗洗脚”。 阜阳市投资1070万元对阜城所有餐饮服务单位油烟进行整治,目前,该市380户3个及以上基准灶头餐饮服务单位和1903户3个以下基准灶头餐饮服务单位全部按照要求安装油烟净化装置。 从2017年11月开始,阜阳市持续开展“水洗阜阳”清洁行动,加大主次干道保洁冲洗力度,全面落实快车道快洗、慢车道慢洗、人行道擦洗、绿化带冲洗“四洗”措施。开展小街巷、非机动车道、人行道、小区保洁冲洗工作,对慢车道、公交站台等环卫死角死面实行人工冲洗作业,力保“不起尘、不见尘”。
  • 环境部征求三项大气/废气监测标准
    生态环境部近日发布三项标准的征求意见稿,分别为固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅里叶变换红外光谱法(征求意见稿)、环境空气 多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法(征求意见稿)、环境空气 羧酸类化合物的测定 气相色谱-质谱法(征求意见稿)。使用高分辨质谱的环境标准又增加一项。关于征求《固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅里叶变换红外光谱法》等3项国家环境保护标准意见的函各有关单位:  为贯彻《中华人民共和国环境保护法》,保护生态环境,保障人体健康,提高生态环境管理水平,规范生态环境监测工作,我部制定了《固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅里叶变换红外光谱法》等3项国家环境保护标准。目前,标准编制单位已完成征求意见稿。按照《国家环境保护标准制修订工作管理办法》(国环规科技〔2017〕1号)要求,现就标准征求意见稿征求你单位意见,请认真研究并提出书面意见。2021年1月25日前,请将意见以传真或电子邮件的方式反馈我部,并注明联系人及联系方式;逾期未反馈,按无意见处理。  标准征求意见稿及其编制说明可登录我部网站“意见征集”栏目(http://www.mee.gov.cn/hdjl/yjzj/zjyj/)检索下载查阅。  联系人:生态环境部生态环境监测司曹宇  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:1.征求意见单位名单     2.固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅里叶变换红外光谱法(征求意见稿)     3.《固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅里叶变换红外光谱法(征求意见稿)》编制说明  本标准规定了测定固定污染源废气中二氧化硫、一氧化氮和二氧化氮(总称为氮氧化物)、 一氧化碳、二氧化碳 5 种气态污染物的便携式傅里叶变换红外光谱法。   本标准适用于固定污染源废气中二氧化硫、一氧化氮和二氧化氮(总称为氮氧化物)、 一氧化碳、二氧化碳的测定。与现行的定电位电解法、非分散红外吸收法和紫外吸收法相比,便携式傅里叶变换红外光谱法采用自采样管至主机全程加热 180℃方式,具有高温原态采样、无损快速、分析精度高、抗干扰能力强等优势,尤其适合固定污染源废气中湿度高而浓度较低的气态污染物的现场监测,对我国固定污染源废气超低排放监测技术体系是一个良好补充。在傅里叶变换红外光谱仪的市场供应方面,当前有芬兰GASMET公司生产的Dx4000型、英国Protea公司生产的AtmosFIR型、杭州谱育公司研发的EXPEC 1630型和北京雪迪龙公司研发的MODEL 3080FT型等4种型号可用于固定污染源废气分析的傅里叶变换红外气体分析仪;而用于污染源在线监测的则有瑞士ABB公司和德国西门子公司出品的傅里叶变换红外光谱仪。此外,目前还有武汉宇虹环保产业发展有限公司、清华大学已承担了科技部重大仪器专项,正在研发基于傅里叶变换红外原理的固定污染源废气监测仪器。     4.环境空气 多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法(征求意见稿)     5.《环境空气 多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法(征求意见稿)》编制说明  本标准规定了测定环境空气中多溴二苯醚的高分辨气相色谱-高分辨质谱法。   本标准适用于环境空气气相和颗粒物中 BDE7、BDE15、BDE17、BDE28、BDE47、 BDE49、BDE66、BDE71、BDE77、BDE85、BDE99、BDE100、BDE119、BDE126、BDE138、 BDE153、BDE154、BDE156、BDE183、BDE184、BDE191、BDE196、BDE197、BDE206、 BDE207 和 BDE209 的测定。详见附录 B。当采样体积为 1000 m3(标准状态),浓缩定容 体积为 20 l 时,本标准测定的二~九溴二苯醚的方法检出限为 0.01 pg/m3~0.4 pg/m3,测 定下限为 0.04 pg/m3~1.6 pg/m3;十溴二苯醚的方法检出限为 9 pg/m3,测定下限为 36 pg/m3。高分辨气相色谱-高分辨质谱法也是市场上型号较少的高端仪器,此次标准制定采用的验证仪器型号为Waters Autospec Premier和赛默飞DFS。     6.环境空气 羧酸类化合物的测定 气相色谱-质谱法(征求意见稿)     7.《环境空气 羧酸类化合物的测定 气相色谱-质谱法(征求意见稿)》编制说明  本标准规定了测定环境空气中羧酸类化合物的气相色谱-质谱法。   本标准适用于环境空气和无组织排放监控点空气中乙酸、丙酸、正丁酸、丙烯酸、异戊 酸和正戊酸 6 种羧酸的测定。   当采样体积为 60 L,浓缩定容体积为 1.0ml 时,乙酸、丙酸、正丁酸、丙烯酸、异戊 酸和正戊酸的方法检出限分别为 7 µg/m3、2 µg/m3、0.3 µg/m3、0.7 µg/m3、0.2 µg/m3 和 0.3 µg/m3,测定下限分别为 28 µg/m3、8 µg/m3、1.2 µg/m3、2.8 µg/m3、0.8 µg/m3和 1.2 µg/m3。此次方法验证采用的仪器型号是Agilent Technologies 7890A/5975C、岛津 GCMS-QP2010 Plus和安捷伦 7890B/5977B。  生态环境部办公厅  2020年12月29日  (此件社会公开)
  • 赛默飞:全面大气在线监测解决方案 助力精准治污
    p   大气污染是世界各国都面临的严峻环境问题,如何防止大气污染已被各国政府高度重视。在我国,随着经济社会的快速发展,大气环境问题也日益凸显。日益复杂的大气污染状况对传统的大气污染监测方式提出了新的挑战。 /p p   大气在线监测技术能够准确、全面地反映出大气环境目标污染物的浓度及其变化趋势,从而实现全时段、全方位、动态监测大气要素的目的。在线监测技术因具备精准、科学、有效提升雾霾治理工作效率的能力,已成为一种发展趋势。 /p p   为了帮助相关用户学习、了解大气在线监测最新技术进展及相关仪器在其中发挥的作用等内容,仪器信息网特别策划了 a href=" https://www.instrument.com.cn/zt/dqzxjcjs2020" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " “大气在线监测技术”专题 /span /a ,并邀请赛默飞环境行业经理胡忠阳共同讨论了大气在线监测技术相关的问题。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8dafec48-54dc-4011-9929-508a004d3e7b.jpg" title=" 图.png" alt=" 图.png" / /p p style=" text-align: center "    strong span style=" color: rgb(0, 112, 192) " 赛默飞环境行业经理& nbsp 胡忠阳 /span /strong /p p   2013年,我国颁布实施《大气污染防治行动计划》,标志着我国大气污染防治进入新阶段。2013年以来,我国大气污染防治取得显著成就。据权威统计:“十三五”以来我国空气质量总体改善明显,但臭氧污染持续反弹。全国337个地级及以上城市,颗粒物超标城市大幅减少,PM2.5浓度超标城市占比从68.5%下降到47.2%。与此同时,臭氧浓度超标城市大幅增加,2019年达到30.6%。 /p p   在2020中国生态环境产业高峰论坛上,贺克斌院士指出“2017年到2019年3年时间,PM2.5浓度持续下降、臭氧污染开始上升的态势,越来越明显。所以对‘十四五’的工作,中央领导有明确指示,要针对PM2.5和臭氧的协同控制开展工作。” /p p   臭氧作为典型的二次污染物,是大气中的NOx和VOCs,在紫外线照射下发生光化学反应的产物。针对PM2.5和臭氧的协同控制将是现阶段大气污染治理的重点 。 /p p   今年下半年,我们也注意到为落实《打赢蓝天保卫战三年行动计划》,生态环境部研究起草的“重点地区2020-2021大气治理攻坚行动方案征求意见稿”相继印发, 涉及京津冀及周边地区、汾渭平原和长三角等重点地区。在完善监测监控体系方面,文件中指出各地要加强秋冬季 strong 颗粒物组分监测 /strong 和 strong VOCs监测 /strong 。特别是要 strong 科学布设VOCs监测点位 /strong ,提升VOCs监测能力,各地级及以上城市要在现有VOCs监测站点基础上,进一步增加VOCs自动监测站点建设。也反映了以上这一趋势。 /p p   目前针对颗粒物组分监测和VOCs监测均有在线的色谱、质谱等手段,并得到越来越多的应用。传统手工监测,一般需要通过滤膜采集颗粒物或吸附管采集气体,通过保存然后送至实验室,再经过复杂的样品处理后进行分析和数据处理。这一方式存在采样误差大、样品存储易损失、费时费力、不能反映大气组分的高频变化规律等缺点。而在线监测技术24 × 7 全天候运行,具备实验室检测仪器的高精确性及在线监测仪器的连续自动化可操作性,从而实现对大气组分实时、高频变化的监测,可为精准治污提供强大的精确数据支撑。 /p p   针对当前重点关注的颗粒物组分监测和VOCs监测,赛默飞能提供完整的在线监测方案: a href=" https://www.instrument.com.cn/netshow/C96503.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " URG 9000D /span /a 实现细颗粒物及气体组分中水溶性离子的在线监测。 针对大气中金属元素监测,目前除了XRF 方法作为间断性的在线监测技术外,均为实验室手工监测手段,而赛默飞GED-ICPMS 方案率先填补这一空白,实现实时大气颗粒物重金属的在线精确监测。基于ISQ7000 GCMS的方案则可实现对VOCs的全自动在线监测。 /p p   下面分别简要介绍以上在线监测产品的特点。 /p p    a href=" https://www.instrument.com.cn/netshow/C96503.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " URG9000D大气在线离子色谱监测系统 /span /a /p p span style=" color: rgb(0, 112, 192) " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/48b7dc9e-5b3d-4f12-817d-52e890ee857f.jpg" title=" urg-9000-series.png" alt=" urg-9000-series.png" / /p p   系统采样管、气体溶蚀器和颗粒物溶蚀器等主要气体流路方向均为竖直方向,消除颗粒物管道中沉积 通过湿式平行板溶蚀器,以气体选择性透过膜技术分离气体和颗粒物,杜绝气体和颗粒物之间相互接触导致的结果不准确问题,确保气体和颗粒物的完全分离 通过气体和颗粒物的分别独立采集和储存,杜绝样品吸收液转移过程中存在的淋洗液交叉污染问题,且兼容大体积浓缩技术,提供较高仪器灵敏度。 /p p   集成了只加水体系离子色谱,实时制备高纯无污染淋洗液,提供零污染空白和较低仪器噪音 兼容梯度分析,获得更高的色谱峰分离度 兼容小粒径填料离子交换分析柱,提供更高的色谱峰分辨率和色谱峰峰容量 仪器只需提供纯水即实现自动在线监测,免维护,自动化程度高,操作维护简便。 /p p    span style=" color: rgb(0, 112, 192) " GED-ICPMS 大气颗粒物重金属实时测定 /span /p p   GED (Gas Exchange Device)气体交换装置实现在线气体样品直接导入系统。 ICPMS 是氩气电离产生的等子体,空气直接导入会使等离子体不稳定,甚至熄灭。即便低流量的空气与氩混合导入,空气中的氮和氧会增加等离子体负载,而影响金属元素电离,使其灵敏度降低,GED成功解决空气直接导入ICP的问题。 将ICPMS 和GED 等采样设备集成化,充分发挥出 ICP -MS 灵敏度高、多元素快速测定以及 GED设备无需任何样品富集及其他前处理的特点,从而也实现了大气金属元素的实时连续监测。 /p p    span style=" color: rgb(0, 112, 192) " 全新ISQ7000GCMS在线VOCs监测系统 /span /p p   赛默飞环境空气挥发性有机物(PAMS、TO14、TO15)自动监测系统,采用赛默飞气质联用仪,英国 Markes 公司全自动在线预浓缩仪,搭配其独有的 Kori-Xr 水汽管理装置,定制化云系统软件进行数据处理和上传,实现环境空气中 VOCs 的在线自动监测。本系统灵敏度高、运行成本低、适用于复杂的采样环境,对挥发性有机物有较优异的检出限。该系统适用于环境空气中 PAMS、TO-15、醛酮类化合物等 117 种挥发性有机物的监测。 /p p   Thermo Scientific& #8482 ISQ& #8482 7000 采用了全新水平的可用性设计,允许操作者在数分钟内无需工具切换即时连接进样口和检测器,实现前所未有的灵活性。其简化的用户界面几次击键便可完成任务,还能保留完整的可编程性。可提高生产率、加速响应时间和降低持有总成本,用于气体、液体和固体样品中微量和痕量挥发性和半挥发性有机物的定性和定量分析,可用于有机物的确认。 /p p   正如前面所介绍的,我们针对大气成分中水溶性离子、金属元素和有机污染物等能提供全面的在线监测方案。这也为大气PM2.5和臭氧协同治理提供了坚实的监测解决方案。 /p p    a href=" https://www.instrument.com.cn/netshow/C96503.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " URG9000D大气在线离子色谱监测系统 /span /a ,针对大气气溶胶中水溶性离子成分分析,可扩展至16种无机阴离子、含氧酸、有机酸和12种无机阳离子、氨氮、有机胺类的准确分离分析。 /p p   正是基于以上优势, a href=" https://www.instrument.com.cn/netshow/C96503.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " URG9000D /span /a 得到国家海洋局第三研究所青睐,曾伴随着“雪龙号”的走航轨迹,以“小时”为单位时间分辨率,准确且完整记录北极科考途经海域气溶胶中27种无机阴阳离子、有机羧酸、有机胺类化合物的浓度及分布特征。为解析极地环境大气中气溶胶的组成及成因提供重要基础资料。 /p p   在线PM2.5 无机元素监测设备 GED- ICP RQ 系列用于大气颗粒物中重金属实时测定。另外,车载ICP-RQ 系列不仅仅是一个可移动实验室,更可实现移动在线大气重金属监测,将ICPMS 和GED 等采样设备集成化,充分发挥出 ICP -MS 灵敏度高、多元素快速测定以及 GED 设备无需任何样品富集及其他前处理的特点。 /p p   针对大气VOCs在线监测系统,可以同时满足117种VOCs检测(包括PAMS,TO-15和醛酮等)的需求。同时该系统还可以使用苏玛罐,气袋以及吸附管进样,可以拓展至环境大气离线方案分析和室内空气分析,例如HJ759,HJ644,HJ73等VOCs测定的标准方法。 /p
  • 浙江省辐射防护协会发布《大气气溶胶放射性核素 自动连续监测系统(γ能谱法)技术要求》 团体标准征求意见稿
    各有关单位及专家:由浙江省辐射防护协会归口、浙江恒达仪器仪表股份有限公司联合浙江省辐射环境监测站、浙江国辐环保科技有限公司起草的团体标准《大气气溶胶放射性核素自动连续监测系统(γ能谱法)技术要求》,现已形成征求意见稿(详见附件1、2)。按照《浙江省辐射防护协会团体标准管理办法》有关规定,现向社会各界公开征求意见。意见建议请填写《浙江省辐射防护协会团体标准征求意见表》(附件3),盖章或签字后于2023年10月28日前以邮件方式反馈至联系人。逾期未回复按无异议处理。联系人:夏林芝,0571-87356614邮 箱:2102701967@qq.com地 址:浙江省杭州市西湖区文一路306 号(邮编:310012)附件1:《大气气溶胶放射性核素自动连续监测系统(γ能谱法)技术要求》征求意见的函附件2:《大气气溶胶放射性核素自动连续监测系统(γ能谱法)技术要求》(征求意见稿)附件3:《大气气溶胶放射性核素自动连续监测系统(γ能谱法)技术要求》(征求意见稿)编制说明附件4:浙江省辐射防护协会团体标准征求意见表 浙江省辐射防护会2023年9月27日《大气气溶胶放射性核素自动连续监测系统(γ能谱法)技术要求》征求意见的函.pdf浙江省辐射防护协会团体标准征求意见表.doc《大气气溶胶放射性核素自动连续监测系统》(γ能谱法)技术要求 编制说明-征求意见稿.pdf《大气气溶胶放射性核素自动连续监测系统》(γ能谱法)技术要求 (征求意见稿).pdf
  • 环保部拟修订空气质量检测标准
    8月底的环保部常务会议,对《环境空气质量标准》修订情况进行汇报。   根据今年年初征求公开意见的该标准修订版,将增加臭氧8小时监测值 PM2.5可吸入颗粒物尚未列入新标准,但开始作为各地指标的参考值。这是目前国内空气质量指标最具争议的两个指标。   据了解,修订仍处于征求意见阶段,新标准最终有可能在年底出台。   标准虽宽仍能保护公众健康   我国在1982年制定了《大气环境质量标准》,污染物项目只有6项。1996年进行了第一次修订,改名为《环境空气质量标准》,污染物项目扩大到了10项,此后,环保部又在2000年进行了局部修改,取消了氮氧化物指标,并放宽了二氧化氮和臭氧的标准。   此次修订最令人关注的问题之一,是增设了臭氧8小时平均浓度限值。   环保部《环境空气质量标准(征求意见稿)编制说明》(以下简称《说明》)中写道,以连续8小时最高浓度限值为主的臭氧的空气质量标准已成为世界各国臭氧环境空气质量发展的趋势,一小时的浓度限制已不能适应环境管理的需求。   此次修订将臭氧8小时的平均浓度限制二级标准设定为160微克/m3,该浓度限值在国际上虽然相对较宽,但基本上能够起到保护公共健康的作用。   根据《说明》,6到8小时暴露在臭氧浓度在120微克/m3以下存在健康危害。北京市2001年至2002年臭氧小时浓度在14.4-232微克/m3之间,平均为88.9微克/m3。   此前臭氧标准为1小时监测值   我国此前环境空气质量标准中,并非没有臭氧监测,但依据的是一小时的监测值,即一天中监测到的每小时最大臭氧浓度作为指标,但是,这个时间值无法反映长时间累积臭氧浓度给人体造成的慢性伤害。   “应该说,这是一个科学上的进步,更全面地考虑臭氧污染造成的效应。”北大环境科学与工程学院教授邵敏指出。他还表示,标准设立和信息公开是两回事。臭氧一小时监测值此前也列入了国家标准,但一直没有公开。   背景资料   可吸入颗粒物   PM2.5是指大气中直径小于或等于2.5微米的颗粒物,它的直径还不到人的头发丝粗细的1/20。目前,在城市空气质量日报或周报中的可吸入颗粒物标准为PM10,指直径等于或小于10微米,可以进入人的呼吸系统的颗粒物。   臭氧   是地球大气中一种微量气体,含有3个氧原子。虽然臭氧在平流层起到了保护人类与环境的重要作用,但若其在对流层浓度增加,则会对人体健康产生有害影响。臭氧对眼睛和呼吸道有刺激作用,对肺功能也有影响,较高浓度的臭氧对植物也是有害的。   焦点   可吸入颗粒物暂不实施更严标准   在此次修订标准中,首次列出了PM2.5,但是并非列入强制的统一标准,而是作为参考值供各地参考。   在我国当前很多城市,可吸入颗粒物是主要污染物,粒径小于等于10微米可吸入颗粒物叫PM10,粒径小于等于2.5微米的叫PM2.5。   “PM2.5更小,进入人体肺部的也就更多,”北大医学部公共卫生学院教授潘小川说,因为颗粒物上会附带有毒物质,当进入人体的颗粒物更多时,对人体各方面造成的伤害也更多。   研究显示,2004年至2006年期间,当北大观测点的PM2.5日均浓度增加时,约4公里以外的北大第三医院的心血管病急症患者数量也有所增加。   是否有PM2.5监测值,是我国环境空气质量标准与WHO准则和其他很多国家环境空气质量标准的首要差别,也是目前我国环境空气指标中最具争议的一块。我国目前的监测,只有PM10的颗粒物。虽然有多个城市和科研机构在做PM2.5的监测,但因为没有国家标准,就无法进行考核和公开。   而国际上主要发达国家均已制定了PM2.5的环境空气质量标准,亚洲的日本、泰国和印度也制定了该标准。   北京市环保局:地方任务将重得多   北京市环保局副局长杜少中说,一旦发布了PM2.5的标准,对各地政府环境考核和环保部门来说,将承担重得多的任务。   “北京环保局肯定会遵照国家标准来做,指标越多,压力肯定也越大。”杜少中说,“就像血压等人的健康指标一样,三项指标增加到四项了,合格的人也更少了,但要想健康,就应该锻炼身体,大气治理也是一样,改善空气质量,减排才是硬道理。”   据了解,北京市在空气治理上分了16个阶段,实施了200多项政策,是所有城市中政策实施最多的。北京市又从今年开始实施为期五年的“清洁空气行动计划”。但是,因为北京市独特的地理位置,城市经济快速发展,经济结构复杂,机动车保有量不断增长等原因,大气治理的任务依然非常艰巨,去年的“达标天”也仅占了 78%,一级天数仅为14.5%。   争议   “勿因不能达标就不实施”   对于PM2.5未列入强制的统一标准,公众环境研究中心主任马军(微博)说,“这挺令人失望的。”   根据环保部的《说明》,虽然PM2.5污染较重,全国113个重点城市2008年的年均浓度远高于世卫组织的准则值,但如果制定实施PM2.5环境空气质量标准,将大范围超标,此外,我国还缺少对PM2.5监测的基础,因此,从全国角度制定PM2.5的标准依然较早。   马军认为,“不能因为会大范围超标就不制定这个标准,标准的设置应该以是否会对人体健康造成损害而定。不能因为达不到标准就不公开这个标准。”   马军说,PM2.5的监测就中国的经济发展水平是可承受的,标准的设立涉及公众重要的环境知情权。“它可能会对数以亿计的人口造成潜在的很大的影响,这么严重的公众健康的影响,不能永远瞒着,应该告诉公众,我们存在这个问题,解释现在为什么达不到这个指标,五年解决不了的话,十年,二十年是否能解决。这是激发公众参与到环境保护的最大的动力。”   不过,北大医学部公共卫生学院教授潘小川则认为,“如果一个标准80%都会超标,那标准就没有意义了,设置标准要有经济和技术的可行性。当然从健康角度而言,指标越低越好。”
  • 家具环保检测有新标准 预年内实施测甲醛
    预计年内正式颁布实施的《家具环保监测新标准》将用无损检测取代破损检测,即是将整件家具放置在特定的环境中进行检测,家具不会有任何程度的损坏,对销售和使用不会造成任何影响。还将现有的检测家具有毒有害物质的“大气检测法”与“气候箱检测法”。   标准的颁布与出台,无疑是家具行业的好消息。传统家具环保性能检测方法是按比例取样检测,这样就对家具造成了一定程度上的破坏,被检测家具无法继续销售或使用。而无损检测在保证检测结果的同时,避免了对检测单品造成的损坏,节约了资源。预计今年年内新标准将正式实施。   所谓“气候箱检测法”就是在保持恒温恒湿的房间中进行检测,可以准确体现送检家具有毒、有害物质的整体实际释放情况。众所周知,今年来,消费者对于家具的健康与环保要求越来越高。“气候箱检测法”能对甲醛等有害物质的释放量做出判定,只要有一种材料环保不达标,都能集中体现在综合检测结果中。
  • 防水性能检测标准和方法
    标准集团(香港)有限公司专业生产(供应)销售织物防水性能测试系列产品,公司具有良好的市场信誉,专业的销售和技术服务团队,凭着经营织物防水性能测试仪器系列多年经验,熟悉产品的各项技术支持,供货周期短,价格最优,欢迎来电咨询!1. 防水性能测试标准  纺织品防水性能检测也称抗水性检测,主要分为抗水渗透性(静水压)检测、表面拒水性(喷淋)检测和淋雨测试,国内外常用的检测方法见下表1:表1 国内外主要检测标准   上表中的国家标准和日本JIS方法体系的技术方法基本上等效采用ISO,而AATCC方法检测方法与ISO 的主要不同之处在于:AATCC的静水压检测只要求至少有3个样品,而喷淋检测的评级采用打分制且可评中间级别 而淋雨检测使用不同的淋雨仪且只衡量吸水纸的质量变化。2. 防水性能测试方法2.1 静水压(ISO 811-1981)2.1.1 应用范围及原理  静水压检测适用于测定紧密织物(如帆布、油布、帐篷布及防雨服装布等)水渗透时的压力,理论上纺织品的静水压(P)可以用以下公式求得:  式中:  γL——水的表面能   θ ——微孔内壁与水的接触角   r ——微孔半径   g ——重力加速度。  由公式可见,当90°θ180°时,θ越大,织物表面能越低,微孔的半径(r)越小,静水压(P)越高。而静水压的检测结果在样品和试验液体一定的条件下,与水温、测试面积和水压上升速率有关。试验结果表明,织物的静水压性能中大约有52%是由织物表面孔径决定的,有44%是由织物表面能决定的,有4%是由其他因素决定的。故防水级别要求高的织物在织物的表面必须有微小而均匀的孔和非常低的表面能。2.1.2 试验仪器  耐静水压测试仪,如图1。  图1 耐静水压测试仪2.1.3 试验步骤及结果  在织物有不同部位取5块代表性试样,一般情况下,水压上升速率选0.59kPa/min,水温为20℃,按规定在标准大气条件下调湿试样后,织物试验面与水接触,对试样施加递增的水压,并不断观察渗水的现象,记录织物上第3处渗水时的静水压值,重复测试取平均值。检测结果的计量单位用kPa和Pa表示。结果越大,表明抗静水压性能越好。2.2 喷淋试验(ISO 4920-1981)2.2.1 应用范围和原理  喷淋检测适用于测定各种已经或未经拒水整理织物表面抗湿的能力。该性能表示液体在纺织品表面的润湿情况,与检测液体和纺织品表面的表面能和固液接触角θ有关。根据Young方程式:  式中:  θ——固-液-气三相边界处的接触角   γsv——固体与气体界面的表面能   γsl——固体与液体界面的表面能   γlv——液体与气体界面的表面能。  由公式可见,γsv一定时,γlv越小,θ越小,液体越容易润湿固体。  因而在试样、液体种类和温度一定的条件下,喷淋检测的试验结果与检测液体流速、样品在仪器上如何摆放等有关。2.2.2 试验仪器  喷淋式拒水性能测试仪,如图2。  图2 喷淋式拒水性能测试仪2.2.3 测试步骤及结果  在织物有不同部位至少取3块具有代表性的试样。一般情况下,水温为20℃,按规定在标准大气条件下调湿试样后,织物试验面与水接触接受喷淋,试样经向与水流方向平行。将250ml的水迅速而平衡地注入漏斗中,淋水一停,迅速使夹持器连同织物试验面朝下几乎成水平,轻轻敲打2次,根据标准文字描述或图片评定观察到的试样润湿程度的级别,从5级到1级,5级最佳,1级最差,不评中间等级,评级由至少2名有喷淋评级经验的检测人员进行。重复测试获得3个试验数据,报告每个测试样品的试验结果。2.3. 淋雨试验(ISO 9685-1991)2.3.1 应用范围及原理  淋雨检测适用于测定织物在运动状态下经受阵雨的防水性能,其中包括表面沾湿和纺织品润湿吸收水分的能力,在拒水性原理的基础上,还有纺织品润湿原理,可用Young-Laplace’s方程解释:  式中:  γ——试验液体的表面张力   r ——测试孔的半径   θ——润湿液体对孔壁的接触角。  由上式可见,纺织品润湿吸水的检测结果在样品与试验液体一定的条件下,与水温、测试面积和水压有关。2.3.2 试验仪器  邦迪斯门淋雨性测试仪,如图3。  图3 邦迪斯门淋雨性测试仪2.3.3 测试步骤及结果  在织物上至少取4块代表性试样,按规定在标准大气下调湿样品。试验或校验前,先校正流量 ,移上挡雨板,称量调湿后试样的质量(m1)。试样的测试面平整无张力地放于样杯上,用夹样环夹住,拉开挡雨板,使试样受淋10min。用参比样照目测评定试样的拒水性(类似喷淋检测的评级),试样离心脱水15s,立即称出其质量(m2)。计算吸水率(W),以质量百分比表示,公式如下:3. 性能评价  目前,国际上纺织品的防水检测方法中均没有对防水性能评价的规定,相关检测机构对纺织品防水性能的评价往往是用户根据纺织品的种类和用途来确定检测要求。纺织品的用途和档次不同导致了防水性能有较大差异,评价要求也不同。由于纺织品的防水与透湿性能往往是一对矛盾的共同体,防水性能好的产品的透湿性能相对较差。目前,防水和透湿性能都好的产品往往是最高档的产品,所以也极大限制了防水纺织品的使用范围。  国际上著名的防水纺织品品牌,如:“Teflon”“Scotchgard”“Gore-Tex”等品牌检测认证程序,往往是根据服用纺织品、家居纺织品或产业用纺织品等不同用途来确定产品的具体性能指标要求。美国军用标准中防水纺织产品的耐水压最低要求为13.68kPa,日本自卫队雨衣的耐水压在13.73kPa以下。我国公共安全行业标准GA 10-1991规定,防护服抗渗水内层耐静水压不得小于3.92kPa。而ASTM D3781要求:织物拒水性水洗前应达到4级以上,一次水洗后仍能达到3级以上 淋雨检测的要求往往是吸水质量最大为1g。GB 12799要求纺织品水洗前拒水性达到5级,水洗30次仍至少为≥1级。  更多关于 织物防水性能测试仪器资料信息,请关注:http://www.standard-groups.cn/chanpin/zwjfz/gnxcs/1005.html   标准集团(香港)有限公司专注于检测仪器行业13年,有着丰富的技术经验积累和众多成功的案列,同全国各大企业有着广泛的合作关系,服务和产品质量一流、我们的仪器,价格合理、品质保障、供货周期短服务热情周到,欢迎来电咨询 座机:021-64208466 手机:13671843966。
  • 四项团体标准汇总,涉及多款大气环境监测仪器
    由中华环保联合会归口,中国环境监测总站、上海市环境监测中心、上海大学、中华环保联合会VOCs污染防治专业委员会和上海警合科学仪器股份有限公司等国内外50余家企事业单位共同起草的《便携式挥发性有机物检测仪 (FID)技术要求及监测规范》《便携式挥发性有机物检测仪 (PID) 技术要求及监测规范》《挥发性有机物泄漏检测红外热像仪(0GI) 技术要求及监测规范》《PM2.5中金属元素走航监测系统技术要求及监测规范》四项团体标准,经编制组会议、专家咨询、专家研讨会等对标准内容研讨论证,并对技术指标开展实验验证,已完成标准征求意见稿,相关信息如下:1、《便携式挥发性有机物检测仪 (FID)技术要求及监测规范》(征求意见稿)此标准规定了用于泄漏检测的便携挥发性有机物检测仪(FID)的术语和定义、基本要求、技术要求、试验方法、检验规则、标志、包装、运输和贮存、测定、质量保证与质量控制和注意事项等,适用于爆炸性危险气体场所及非爆炸性危险气体环境用便携式FID检测仪(以下简称分析仪)的设计、生产和检测技术等。2、《便携式挥发性有机物检测仪 (PID) 技术要求及监测规范》(征求意见稿)此文件规定了便携式挥发性有机物检测仪(以下简称仪器)的规范性引用文件、术语和定义、基本要求、性能要求、检验方法、检验规则、标志、包装、运输和贮存等,适用于采用光离子化检测器(PID)原理测试挥发性有机物浓度的便携式仪器。3、《挥发性有机物泄漏检测红外热像仪(0GI) 技术要求及监测规范》(征求意见稿)此文件适用于基于便携式光学气体成像技术开展工业企业设备、管道组件、储罐等挥发性有机物的泄漏检测、现场应急监测、污染筛查等调查与监测工作,规定了便携式挥发性有机物泄漏检测红外成像仪(以下简称“成像仪”)的检测原理、基本参数、技术要求、试验项目及要求、质控质保规范等。在线式检测设备可参考本小准执行,适用于石油炼制、石油化学、精细化工、石化和天然气储运以及其他行业挥发性有机物泄漏检测的控制和管理。4、《PM2.5中金属元素走航监测系统技术要求及监测规范》(征求意见稿)此文件规定了PM2.5中金属元素的走航监测的方法概述、试剂或材料、仪器和设备、监测方法、结果计算与表示、质量保证与质量控制及安全防护要求,适用于环境空气、无组织排放废气的PM2.5中金属的走航监测工作。附:1、《便携式挥发性有机物检测仪(FID)技术要求及监测规范(征求意见稿)》.pdf2、《便携式挥发性有机物检测仪(FID)技术要求及监测规范(征求意见稿)》编制说明.pdf3、《便携式挥发性有机物检测仪(PID)技术要求及监测规范(征求意见稿)》.pdf4、《便携式挥发性有机物检测仪(PID)技术要求及监测规范(征求意见稿)》编制说明.pdf5、《挥发性有机物泄漏检测红外成像仪(OGI)技术要求及监测规范(征求意见稿)》.pdf6、《挥发性有机物泄漏检测红外成像仪(OGI)技术要求及监测规范(征求意见稿)》编制说明.pdf7、《PM2.5中金属元素走航监测系统技术要求及监测规范(征求意见稿)》.pdf8、《PM2.5中金属元素走航监测系统技术要求及监测规范(征求意见稿)》编制说明.pdf
  • 全国首个化学纤维大气污染物排放地方标准发布!
    为防治环境污染,改善生态环境质量,保障人体健康,加强浙江省化学纤维工业大气污染物的排放控制,促进企业生产工艺、污染治理技术的进步和可持续发展,浙江省人民政府近日正式印发实施《化学纤维工业大气污染物排放标准》(DB33/2563—2022)(以下简称《标准》)。《标准》规定了化学纤维工业大气污染物排放控制要求、监测和监督管理要求等,据了解,这是全国首个化学纤维工业大气污染物排放地方标准。该《标准》涵盖以下污染物:化学纤维(用天然或合成高分子化合物经化学加工制得的纤维,涵盖GB/T 4754—2017中化学纤维制造业(C28),包括纤维素纤维原料及纤维制造(C 281)、合成纤维制造(C 282)和生物基材料制造(C 283));再生纤维(以天然产物(纤维素、蛋白质等)为原料,经纺丝过程制成的化学纤维);合成纤维(以石油、天然气及煤等产品为原料,用有机合成的方式制成单体,聚合后经纺丝加工制成的纤维。主要产品有聚酯纤维(涤纶)、聚酰胺纤维(锦纶)、聚丙烯腈纤维(腈纶)、聚丙烯纤维(丙纶)、聚乙烯醇纤维(维纶)、聚氨酯弹性纤维(氨纶)以及其他芳香族聚酰胺纤维等);生物基化学纤维(以生物质为原料或含有生物质来源单体的聚合物所制成的纤维);循环再利用化学纤维(采用回收的废旧聚合物材料和废旧纺织材料加工制成的纤维);挥发性有机物 VOCs(参与大气光化学反应的有机化合物,或根据有关规定确定的有机化合物。在表征VOCs总体排放情况时,根据行业特征和环境管理要求,采用总挥发性有机物(以TVOC表示)、非甲烷总烃(以NMHC表示)作为污染物控制项目);总挥发性有机物TVOC(采用规定的监测方法,对废气中的单项VOCs物质进行测量,加和得到VOCs物质的总量,以单项VOCs物质的质量浓度之和计。实际过程中,应按预期分析结果,对占总量90%以上的单项VOCs物质进行测量,加和得出);非甲烷总烃NMHC(采用规定的监测方法,氢火焰离子化检测器有响应的除甲烷外的气态有机化合物的总和,以碳的质量浓度计);VOCs 物料(VOCs质量占比大于等于10 %的原辅材料、产品和废料(渣、液),以及有机聚合物原辅材料和废料(渣、液));油雾(工业生产过程中挥发产生的油剂(矿物油、植物油、动物油、合成油等)及其加(受)热分解或裂解产物);工艺废气(生产过程及其辅助配套设施排放的废气。包括浆粕生产、原液制备、酸站、精炼、溶剂回收、聚合、纺丝、后处理、组件等清洗等生产工序)。作为对大气污染物监控的要求,《标准》指出,企业应按照有关法律法规、《环境监测管理办法》和 HJ 1139 等规定,建立企业监测制度,制订监测方案,对大气污染物排放状况开展自行监测,保存原始监测记录。并且,企业安装污染物排放自动监控设备的要求,按有关法律法规和《污染源自动监控管理办法》等规定执行。 大气污染物的分析测定采用表7中所列的方法标准:
  • 盘点:大气中挥发性有机物检测技术
    大气中的VOCs不仅是生成光化学烟雾污染物的主要前体物,同时也是大气细粒子中有毒有害有机组分的重要来源,对形成灰霾有重要贡献,且一些VOCs本身具有毒性和致癌性。随着我国大气污染控制的不断深化,VOCs成为继颗粒物、二氧化硫、氮氧化物之后,我国大气污染控制中又一新的关注点。   VOCs定义   VOCs是一类有机化合物的组合,不同组织对其有不同的定义,主要分为两类,一类是学术意义上的定义,一类是环保意义上的定义。   化学意义上的定义主要有五种:1)挥发性有机物污染防治技术政策定义VOCs为熔点低于室温、沸点范围在50℃~260℃之间的有机化合物 2)世界卫生组织将VOCs定义为沸点范围在50-260℃之间,室温下饱和蒸汽压超过133.32Pa,在常温下以蒸汽形式存在于空气中的一类有机物,按挥发性有机物化学结构可进一步分为8类:烷类、芳烃类、烯类、卤烃类、酯类、醇类、酮类和其他化合物 3)ISO 4618/1-1998中VOCs指原则上,在常温常压下,任何能自发挥发的有机液体和/或固体 4)德国DIN55649-2000将VOCs定义为在常温常压下,任何能自发挥发的有机液体和/或固体,在通常压力条件下,沸点或初馏点低于或等于250℃的任何有机化合物 5)我国北京地方标准DB11/447-2007中将VOCs定义在20℃条件下蒸汽压大于或等于0.01kPa,或者特定适用条件下具有相应挥发性的全部有机化合物的统称。   环保意义上的定义主要有两种:1)美国EPA对VOCs的定义为除CO、CO2、H2CO3、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物 2)美国ASTM D3960-98中VOCs指任何能参加大气光化学反应的有机化合物。   我国大气污染防治相关政策和标准中,还没有大气中VOCs的明确定义,而VOCs的定义关系到检测方法制定、治理措施等问题。   VOCs标准   我国VOCs检测标准有《HJ 732-2014固定污染源废气 挥发性有机物的采样 气袋法》、《HJ 733-2014泄漏和敞开液面排放的挥发性有机物检测技术导则》、《HJ 734-2014固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法》、《HJ 644-2013 环境空气 挥发性有机物的测定 吸附管采样-热脱附 气相色谱-质谱法》以及《GB 21902-2008 合成革与人造革工业污染物排放标准》附录C,均采用色谱法进行分析。   VOCs排放标准国家还没有相关规定,但是上海、天津、广东等地区针对不同行业制定了一些地区标准,如《DB12/524-2014 工业企业挥发性有机物排放控制标准(天津)》、《DB44/814-2010家具制造行业挥发性有机化合物排放标准(广东)》、《DB44/815-2010印刷行业挥发性有机化合物排放标准(广东)》、《DB44/816-2010表面涂装(汽车制造业)挥发性有机化合物排放标准(广东)》、《DB44/817-2010制鞋行业挥发性有机化合物排放标准(广东)》、《DB31/374-2006半导体行业污染物排放标准(上海)》。   美国EPA在上世纪八九十年代制定了一系列大气有毒有机物检测标准,其中涉及VOCs检测的共有6项,均是气相色谱法,但可配备不同的采样方法和检测方法。   VOCs检测   我国大气中的VOCs主要来源于石油化工、有机化工、表面涂装、包装印刷、医药、塑料制品等行业。因此大气中VOCs的检测主要应用于三个方面:一大气中VOCs检测 二污染源集中排放VOCs检测 三生产过程VOCs泄露检测。与三种应用场合相适应,VOCs的检测仪器也分为实验室仪器、在线式仪器和便携式仪器三类。   实验室VOCs检测   VOCs实验室分析发展较早,也比较成熟。分析方法为使用采样袋、苏码罐、吸附剂或吸收液将VOCs采集回实验室,再经过热解析、溶剂解析等前处理过程后,利用GC或HPLC分析。   实验室VOCs检测主要难点在于选择合适的采样方法保证可以采集到所有挥发性有机污染物,制定规范的运输方案防止运输过程中VOCs的损失,选择合适的前处理过程保证所有的挥发性有机物进入分析仪器。   实验室分析方法的主要优势是结果准确,主要缺点是时效性差,采样和运输过程中易导致样品损失,影响测定的准确性和可靠性。   在线VOCs检测仪   VOCs在线分析仪主要有在线气相色谱仪、在线质谱仪、在线气质联用仪、在线PID和FID检测器、在线红外光谱仪、在线激光检测仪和在线差分光学吸收光谱仪等。   由于VOCs没有标准的检测方法,而且在线系统用于现场检测,而不同现场的挥发性有机物种类差异较大且相对稳定,故检测需求不同。因此需要根据自身的需求和各种检测仪器的特点选择合适的检测方法。   在线气相色谱仪可检测出已知挥发性有机物的浓度 在线质谱仪可同时实现挥发性有机物的定性和定量检测,但无法区分同分异构体 在线PID和FID检测器可得出VOCs的总量,且仪器体积较小 各种在线光谱仪检测范围宽,可适应各种工业场合应用。   在线VOCs检测仪主要的国内厂家有聚光科技、广州禾信、宝英科技、中科光电、富瞻环保、武汉天虹等,国外厂家有英国Markes、日本亚那科、奥地利IONICON、韩国KNR、德国AMA、法国Chromatotec、美国CerexMS等。   便携式VOCs仪器   便携式VOCs分析仪主要有便携式FID/PID检测器、便携红外分析仪、便携激光光谱仪、便携式气质联用仪等。   最新公布的环保部标准中便携式仪器提到了FID检测器、PID检测器和红外吸收检测器三种。   便携式VOCs检测仪主要的国内厂商有东西分析、崂应、富瞻环保等,国外厂商有美国Inficon、英国SIGNAL、美国雷格沃夫、美国华瑞、日本亚那科、英国科尔康等。     挥发性有机物是一种混合物,由于其定义未明确,因此监测需求也不明确。目前的主要检测方法是气相色谱法、质谱法和光谱法,环保部公布的行业标准中采用的是气质联用法。其中环境空气挥发性有机物(HJ644)标准中测定的是35种目标有机化合物,主要是烷烃、烯烃和苯系物,固定污染源废气挥发性有机物(HJ734)标准中测定的是24种目标有机化合物,主要是酮类、酯类、烯烃类和苯系物。
  • 家具检测新标准待发 年内解决甲醛难题
    据悉,为解决甲醛检测难题,正在研究制定中的《家具环保检测新标准》(以下简称“新标准”)预计年内正式颁布实施,新标准对家具行业的监督越来越严格。新标准将尝试采用无损检测取代破损检测,并拟采用“气候箱检测法”取代现有的“大气检测法”, 所谓“气候箱检测法”就是在保持恒温恒湿的房间中进行检测,可以准确体现送检家具有毒、有害物质的整体实际释放情况。   “气候箱检测法”能对甲醛等有害物质的释放量做出判定,只要有一种材料环保不达标,都能集中体现在综合检测结果中。相信这两个检测方法的出台定会很好的满足消费者对环保的需求。   家具漆中含有的甲醛、苯等有害物质是造成室内污染的重要来源,对消费者的健康造成严重损害,近期频频曝光的室内甲醛超标事件充分地说明了这一点。随着家具带来的污染危害的日益严重,消费者在购买家具时越来越迷茫,与此同时,对于家具的健康和环保要求也越来越高。   新标准的颁布与出台,无疑是家具行业的好消息。传统家具环保性能检测方法是按比例取样检测,这样就对家具造成了一定程度上的破坏,被检测家具无法继续销售或使用。而无损检测在保证检测结果的同时,避免了对检测单品造成的损坏,节约了资源,对销售和使用不会造成任何影响。   新标准在对家具行业的监督越来越严格的同时也对家具的“外衣”——家具漆提出了更高的要求。   《家居环保检测新标准》的颁布和实施对于家具漆行业的影响是巨大的。新标准提高了家具漆产品的市场准入门槛 整合了家具漆行业的产业 净化了家具漆行业。新标准预示着家具行业越来越规范、合理,也直接加大了对家具漆产品的监测力度,家具漆企业只有不断改善自身技术问题,提高产品的质量和环保性能,才能符合家具行业的发展需求。   此外,新标准对于家具环保的要求加大了市场对于水性涂料、UV家具漆等环保产品的需求,能够促使家具漆企业进行产业升级,提高生产技术和水平,推进整个行业的发展与整合。得益于新标准的出台,一些具有良好竞争力、正在从事环保家具漆研发和推广的家具漆企业将获得新一轮的发展机遇,而一些鱼目混珠、生产山寨和假冒伪劣产品的企业将被市场淘汰。   随着健康环保观念逐步深入人心,以及《家具环保检测新标准》的实施这种全新局面,家具漆企业还需不断创新,与时俱进,完善自我,提高产品质量,满足市场发展的需求,才能信心百倍的迎接新的发展机遇。
  • 浙江省辐射防护协会批准发布《大气气溶胶γ放射性核素在线自动监测仪技术要求及检测方法》 (T/ZJARP 003-2024)
    根据《浙江省辐射防护协会团体标准管理办法》的规定,我会批准发布《大气气溶胶γ放射性核素在线自动监测仪技术要求及检测方法》(T/ZJARP 003-2024)团体标准,并予以公告。标准内容可在浙江省辐射防护协会网站(www.zjarp.com)和全国团体标准信息平台(www.ttbz.org.cn)查询。 附件:《大气气溶胶γ放射性核素在线自动监测仪技术要求及检测方法》 浙江省辐射防护协会2024年1月16日团体标准批准发布公告(大气气溶胶).pdf大气气溶胶γ放射性核素在线自动监测仪技术要求及检测方法 团体标准-发布稿.pdf大气气溶胶γ放射性核素在线自动监测仪技术要求及检测方法 编制说明-发布稿- (1).pdf
  • 7月份 有330项仪器及检测相关标准将实施
    7月份有330项仪器及检测相关标准将实施——农林/机械/环境标准领衔我们通过国家标准信息平台查询到,在2022年7月份将有330项仪器及检测行业的国家标准、行业标准和团体标准将实施。7月份将要实施标准分布如下:7月份将要实施标准类别图农林牧渔食品将要实施的标准独具鳌头,占据了将要实施标准的18%,涉及农业、农产品产品质量等方面标准。机械类将要实施标准紧随其后,主要是机械的无损检测 等相关标准为主。环境也是分析检测人员重点关注的领域,有多达41个标准将实施,主要是关于大气监测 、水方面的监测 、不同企业排污情况要求等标准。其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(58个)DB42/T 1864.2-2022家禽疫病诊断技术规程 第2部分:禽大肠杆菌致病群双重探针法检测 DB42/T 1864.4-2022 家禽疫病诊断技术规程 第4部分:禽白血病抗原ELISA检测方法 GB 34914-2021 净水机水效限定值及水效等级 GB/T 1600-2021 农药水分测定方法 GB/T 18691.1-2021 农业灌溉设备 灌溉阀 第1部分:通用要求 GB/T 18691.2-2021 农业灌溉设备 灌溉阀 第2部分:隔离阀 GB/T 18691.3-2021 农业灌溉设备 灌溉阀 第3部分:止回阀 GB/T 18691.4-2021 农业灌溉设备 灌溉阀 第4部分:进排气阀 GB/T 18691.5-2021 农业灌溉设备 灌溉阀 第5部分:控制阀 GB/T 19136-2021 农药热储稳定性测定方法 GB/T 1927.10-2021 无疵小试样木材物理力学性质试验方法 第10部分:抗弯弹性模量测定 GB/T 1927.1-2021 无疵小试样木材物理力学性质试验方法 第1部分:试材采集GB/T 1927.12-2021 无疵小试样木材物理力学性质试验方法 第12部分:横纹抗压强度测定 GB/T 1927.17-2021 无疵小试样木材物理力学性质试验方法 第17部分:冲击韧性测定 GB/T 1927.18-2021 无疵小试样木材物理力学性质试验方法 第18部分:抗冲击压痕测定 GB/T 1927.19-2021 无疵小试样木材物理力学性质试验方法 第19部分:硬度测定 GB/T 1927.20-2021 无疵小试样木材物理力学性质试验方法 第20部分:抗劈力测定 GB/T 1927.2-2021 无疵小试样木材物理力学性质试验方法 第2部分:取样方法和一般要求 GB/T 1927.3-2021 无疵小试样木材物理力学性质试验方法 第3部分:生长轮宽度和晚材率测定 GB/T 1927.4-2021 无疵小试样木材物理力学性质试验方法 第4部分:含水率测定 GB/T 1927.5-2021 无疵小试样木材物理力学性质试验方法 第5部分:密度测定 GB/T 1927.6-2021 无疵小试样木材物理力学性质试验方法 第6部分:干缩性测定 GB/T 1927.7-2021 无疵小试样木材物理力学性质试验方法 第7部分:吸水性测定 GB/T 1927.8-2021 无疵小试样木材物理力学性质试验方法 第8部分:湿胀性测定 GB/T 1927.9-2021 无疵小试样木材物理力学性质试验方法 第9部分:抗弯强度测定 GB/T 20882.2-2021 淀粉糖质量要求 第2部分:葡萄糖浆(粉) GB/T 20882.3-2021 淀粉糖质量要求 第3部分:结晶果糖、固体果葡糖 GB/T 20882.4-2021 淀粉糖质量要求 第4部分:果葡糖浆 GB/T 20882.6-2021 淀粉糖质量要求 第6部分:麦芽糊精 GB/T 20886.1-2021 酵母产品质量要求 第1部分:食品加工用酵母 GB/T 20886.2-2021 酵母产品质量要求 第2部分: 酵母加工制品 GB/T 22173-2021 噁草酮原药 GB/T 22178-2021 噁草酮乳油 GB/T 22268-2021 香荚兰 词汇 GB/T 22301-2021 干迷迭香 GB/T 22304-2021 干甜罗勒 规范 GB/T 23528.2-2021 低聚糖质量要求 第2部分:低聚果糖 GB/T 23549-2021 丙环唑乳油 GB/T 24694-2021 玻璃容器 白酒瓶质量要求 GB/T 30359-2021 蜂花粉 GB/T 41184.1-2021 土壤水分蒸发测量仪器 第1部分:水力式蒸发器 GB/T 41185-2021 水生动物病原DNA检测参考物质制备和质量控制规范 质粒 GB/T 41186-2021 鲜、活鲍分级 GB/T 41187-2021 农业物联网应用服务 GB/T 41188-2021 鹿茸加工技术规程 GB/T 41189-2021 蛋鸭营养需要量 GB/T 41190-2021 鹿营养需要量 GB/T 41194-2021 肉用母牛体况评分技术规范 GB/T 41199-2021 木牙签 GB/T 41219-2021 酿酒酵母和乳酸克鲁维酵母的鉴定方法 GB/T 41220-2021 食品包装用复合塑料盖膜 GB/T 41222-2021 土壤质量 农田地表径流监测方法 GB/T 41223-2021 土壤质量 硝化潜势和硝化抑制作用的测定 氨氧化快速检测法 GB/T 41224-2021 土壤质量 土壤相关数据的数字交换 GB/T 41227-2021 蜜蜂饲养管理技术规范 GB/T 41228-2021 棉花加工调湿通用技术要求 GB/T 8618-2021 制盐工业主要产品取样方法 GB/Z 40948-2021 农产品追溯要求 蜂蜜 冶金标准(18个)GB/T 22565.1-2021 金属材料 薄板和薄带 回弹性能评估方法 第1部分:拉弯法 GB/T 228.1-2021 金属材料 拉伸试验 第1部分:室温试验方法 GB/T 26016-2021 高纯镍 GB/T 10117-2021 高纯锑 GB/T 26018-2021 高纯钴 GB/T 26301-2021 屏蔽用锌白铜带箔材 GB/T 29502-2021 硫铁矿烧渣 GB/T 3670-2021 铜及铜合金焊条 GB/T 41079.1-2021 液态金属物理性能测定方法 第1部分:密度的测定 GB/T 41080-2021 钼及钼合金金相检验方法 GB/T 41153-2021 碳化硅单晶中硼、铝、氮杂质含量的测定 二次离子质谱法 GB/T 41154-2021 金属材料 多轴疲劳试验 轴向-扭转应变控制热机械疲劳试验方法 GB/T 41155-2021 烧结金属材料(不包括硬质合金) 疲劳试样 GB/T 5121.28-2021 铜及铜合金化学分析方法 第28部分:铬、铁、锰、钴、镍、锌、砷、硒、银、镉、锡、锑、碲、铅和铋含量的测定 电感耦合等离子体质谱法 GB/T 6730.25-2021 铁矿石 稀土总量的测定 草酸盐重量法 GB/T 6730.28-2021 铁矿石 氟含量的测定 离子选择电极法 GB/T 6730.48-2021 铁矿石 铋含量的测定 二硫代二安替吡啉甲烷分光光度法 GB/T 8643-2021 含润滑剂金属粉末中润滑剂含量的测定 索格利特(Soxhlet)萃取法 环境标准(41个)DB41/T 2252-2022 集中式地下水饮用水水源地基础环境状况调查技术规范 DB32/ 4147-2021 表面涂装(工程机械和钢结构行业)大气污染物排放标准 DB32/ 4148-2021 燃煤电厂大气污染物排放标准 DB32/ 4149-2021 水泥工业大气污染物排放标准 DB41/T 2255-2022 石油污染土壤修复验收技术规范 DB51/ 2864-2021 四川省水泥工业大气污染物排放标准 DB51/ 2865-2021 四川省加油站大气污染物排放标准 GB/T 13277.6-2021 压缩空气 第6部分:气态污染物含量测量方法 GB/T 13277.7-2021 压缩空气 第7部分:活性微生物含量测量方法 GB/T 18916.10-2021 取水定额 第10部分:化学制药产品 GB/T 18916.11-2021 取水定额 第11部分:选煤 GB/T 18916.57-2021 取水定额 第57部分:乳制品 GB/T 18916.58-2021 取水定额 第58部分:钛白粉 GB/T 18916.59-2021 取水定额 第59部分:醋酸乙烯 GB/T 18916.60-2021 取水定额 第60部分:有机硅 GB/T 21534-2021 节约用水 术语 GB/T 30887-2021 工业企业水系统集成优化技术指南 GB/T 41012-2021 含有色金属固体废物回收利用技术规范 GB/T 41015-2021 固体废物玻璃化处理产物技术要求 GB/T 41016-2021 水回用导则 再生水厂水质管理 GB/T 41017-2021 水回用导则 污水再生处理技术与工艺评价方法 GB/T 41018-2021 水回用导则 再生水分级 GB/T 41019-2021 矿井水综合利用技术导则 GB/T 41025-2021 煤层气废弃井处置指南 GB/T 41058-2021 水泥窑协同处置污泥及污染土中重金属的检测方法 HJ 1237—2021 机动车排放定期检验规范 HJ 1244-2022 排污单位自行监测技术指南 稀有稀土金属冶炼 HJ 1245-2022 排污单位自行监测技术指南 聚氯乙烯工业 HJ 1246-2022 排污单位自行监测技术指南 印刷工业 HJ 1247-2022 排污单位自行监测技术指南 煤炭加工—合成气和液体燃料生产 HJ 1248-2022 排污单位自行监测技术指南 陆上石油天然气开采工业 HJ 1249-2022 排污单位自行监测技术指南 储油库、加油站 HJ 1250-2022 排污单位自行监测技术指南 工业固体废物和危险废物治理 HJ 1251-2022 排污单位自行监测技术指南 金属铸造工业 HJ 1252-2022 排污单位自行监测技术指南 畜禽养殖行业 HJ 1253-2022 排污单位自行监测技术指南 电子工业 HJ 1254-2022 排污单位自行监测技术指南 砖瓦工业 HJ 1255-2022 排污单位自行监测技术指南 陶瓷工业 HJ 1256-2022 排污单位自行监测技术指南 中药、生物药品制品、化学药品制剂制造业 HJ 19-2022 环境影响评价技术导则 生态影响 HJ 2.4-2021 环境影响评价技术导则 声环境 医疗卫生生物标准(10个)GB/T 15981-2021 消毒器械灭菌效果评价方法 GB/T 38479-2021 壳聚糖含量测定 高效液相色谱法 GB/T 38478-2021 虾青素旋光异构体含量的测定 液相色谱法 GB/T 38482-2021 动物源性I型胶原蛋白成分测定 聚丙烯酰胺凝胶电泳法 GB/T 38485-2021 微生物痕量基因残留测定 微滴数字PCR法 GB/T 38488-2021 微生物快速测定方法 GB/T 38490-2021 微生物高通量适应性进化测定 微流控芯片法 GB/T 41144-2021 放射性气溶胶的通风防护衣要求与测试方法 GB/T 41212-2021 纳米技术 荧光素二乙酸酯法检测纳米颗粒诱导巨噬细胞产生的活性氧 GB/T 41221-2021 中药材种子检验规程 化工橡胶塑料标准(37个)DB41/T 2251-2022 危险化学品安全生产风险监测预警系统管理规范 DB41/T 2250-2022 化工园区整体性安全风险评估导则 GB/T 15592-2021 聚氯乙烯糊用树脂 GB/T 17934.3-2021 印刷技术 网目调分色版、样张和生产印刷品的加工过程控制 第3部分:新闻纸冷固型平版胶印 GB/T 17934.5-2021 印刷技术 网目调分色版、样张和生产印刷品的加工过程控制 第5部分:网版印刷 GB/T 41197-2021 印刷技术 印刷纸张特性沟通交流规则 GB/T 20724-2021 微束分析 薄晶体厚度的会聚束电子衍射测定方法 GB/T 21636-2021 微束分析 电子探针显微分析(EPMA) 术语 GB/T 2384-2021 染料中间体 熔点范围测定通用方法 GB/T 24166-2021 染料产品中含氯苯酚的测定 GB/T 24282-2021 塑料 聚丙烯中二甲苯可溶物含量的测定 GB/T 24370-2021 纳米技术 镉硫族化物胶体量子点表征 紫外-可见吸收光谱法 GB/T 2449.1-2021 工业硫磺 第1部分:固体产品 GB/T 25808-2021 硫化黑2BR、3B 200% GB/T 29732-2021 表面化学分析 中等分辨俄歇电子能谱仪 元素分析用能量标校准 GB/T 3637-2021 液体二氧化硫 GB/T 3681.1-2021 塑料 太阳辐射暴露试验方法 第1部分:总则 GB/T 3681.2-2021 塑料 太阳辐射暴露试验方法 第2部分:直接自然气候老化和暴露在窗玻璃后气候老化 GB/T 41003.1-2021 塑料泡沫垫通用技术条件 第1部分:聚乙烯/乙烯-醋酸乙烯酯共聚物儿童泡沫垫 GB/T 41003.2-2021 塑料泡沫垫通用技术条件 第2部分:室内聚氯乙烯泡沫垫 GB/T 41050-2021 纳米技术 光催化纳米材料降解苯性能测试方法 GB/T 41064-2021 表面化学分析 深度剖析 用单层和多层薄膜测定X射线光电子能谱、俄歇电子能谱和二次离子质谱中深度剖析溅射速率的方法 GB/T 41067-2021 纳米技术 石墨烯粉体中硫、氟、氯、溴含量的测定 燃烧离子色谱法 GB/T 41068-2021 纳米技术 石墨烯粉体中水溶性阴离子含量的测定 离子色谱法
  • 6项海洋样品检测国家标准发布
    日前,国家海洋局组织编制的《海域分等定级》等12项海洋国家标准,由国家质量监督检验检疫总局和国家标准化管理委员会2014年第11号公告批准发布。   其中相关的分析检测标准有6项,分别是:《海洋微微型光合浮游生物的测定 流式细胞测定法》《海洋沉积物中放射性核素的测定 &gamma 能谱法》《海洋沉积物中正构烷烃的测定 气相色谱&mdash 质谱法》《海洋沉积物中总有机碳的测定 非色散红外吸收法》《海洋大气干沉降物中总硫的测定 非色散红外吸收法》和《海洋大气干沉降物中总碳的测定 非色散红外吸收法》。   《深海微生物样品前处理技术规范》和《海洋微微型光合浮游生物的测定 流式细胞测定法》标准规定了海洋生物样品处理的技术要求、工作条件、处理方法和测定方法等,为海洋生物科学技术的发展提供了正确的研究方法和工作依据,有助于提高海洋科研技术水平。《海洋沉积物中放射性核素的测定 &gamma 能谱法》等其他5项标准规定了海洋沉积物和海洋大气干沉降物中一些成分含量的测定方法,为维护海洋生态系统的良性发展和人民群众的健康安全提供了技术保障。   以上标准于今年10月1日起实施。
  • 一大波空气检测新标准来袭!这些仪器请就位
    近日,小编从生态环境部了解到多个环境检测新标准即将实施,特地选取了环境空气相关的标准分享给大家,帮助众多环境领域用户了解新标准概况及涉及到的仪器品类和检测方法。接下来,就让小编带领大家一起看下吧~一、空气检测新标准1、HJ 1261-2022 固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法实施日期:2023年1月15日标准说明:本标准为首次发布。本标准规定了测定固定污染源废气中苯系物的气袋采样/直接进样气相色谱法。检测项目:苯系物(苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯)所需仪器:气相色谱仪、自动稀释系统、气体采样器/大气采样器等。2、HJ 1262-2022 环境空气和废气 臭气的测定 三点比较式臭袋法实施日期:2023年1月15日标准说明:自HJ 1262-2022标准实施之日起,原国家环境保护总局1993 年 9 月 18 日批准发布的《空气质量 恶臭的测定三点比较式臭袋法》(GB/T 14675-93)在相应的国家生态环境标准实施中停止执行。本标准规定了测定环境空气及各类恶臭污染源(包括水域)以不同形式排放的臭气的三点比较式臭袋法。本标准适用于环境空气、无组织排放监控点空气和固定污染源废气样品中臭气的测定。本标准测定方法是嗅觉器官测定法,不受臭气物质种类、种类数目、浓度范围及所含成分浓度比例的限制。检测项目:臭气所需仪器:分析天平、真空泵、空气压缩机等。3、HJ 1263-2022 环境空气 总悬浮颗粒物的测定 重量法实施日期:2023年1月15日标准说明:自HJ 1263-2022标准实施之日起,原国家环境保护总局1995 年 3 月 25 日批准发布的GB/T 15432-1995《环境空气 总悬浮颗粒物的测定 重量法》在相应的国家生态环境标准实施中停止执行。本标准规定了测定环境空气中总悬浮颗粒物的重量法。本标准适用于使用大流量或中流量采样器进行环境空气中总悬浮颗粒物浓度的手工测定,同时适用于无组织排放监控点空气中总悬浮颗粒物浓度的手工测定。检测项目:总悬浮颗粒物所需仪器:大气采样器、分析天平、恒温恒湿箱等。4、HJ 1270-2022 环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法实施日期:2023年6月15日标准说明:本标准为首次发布。本标准规定了测定环境空气中多溴二苯醚的高分辨气相色谱-高分辨质谱法。本标准适用于环境空气气相和颗粒相中26种多溴二苯醚的测定。检测项目:26种多溴二苯醚分别为:BDE 7、BDE 15、BDE 17、BDE 28、BDE 47、BDE 49、BDE 66、BDE 71、BDE 77、BDE 85、BDE 99、BDE 100、BDE 119、BDE 126、BDE 138、BDE 153、BDE 154、BDE 156、BDE 175/183、BDE 184、BDE 191、BDE 196、BDE 197、BDE 206、BDE 207和BDE 209所需仪器:大气采样器、高分辨气质联用仪、索氏提取器、快速溶剂萃取仪、旋转蒸发仪、氮吹浓缩仪等。5、HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法实施日期:2023年6月15日标准说明:本标准为首次发布。本标准适用于环境空气和无组织排放监控点空气颗粒物中甲酸、乙酸和乙二酸的测定。检测项目:甲酸、乙酸、乙二酸所需仪器:颗粒物采样器、离子色谱仪、超声波清洗器等。6、HJ 759-2023 环境空气 63种挥发性有机物的测定 罐采样/气相色谱-质谱法实施日期:2023年8月1日标准说明:本标准自实施之日起,《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759-2015)废止。本标准规定了测定环境空气和无组织排放监控点空气中 65 种挥发性有机物的罐采样/气相色谱-质谱法。本标准适用于环境空气和无组织排放监控点空气中 65 种挥发性有机物的测定。检测项目:挥发性有机物所需仪器:采样罐、气体流量计、气质联用仪、气体稀释装置、气体浓缩仪等。除了上述仪器,小编了解到还有很多【环境监测仪器】以及【实验室常用设备】在环境检测实验中会经常用到,感兴趣的用户,可点击查看。更多仪器种类,请访问【仪器优选】。二、空气检测相关解决方案1、离子色谱法测定环境空气颗粒物中甲酸、乙酸、乙二酸方案简介:本文建立了一种使用离子色谱法测定环境空气颗粒物中甲酸、乙酸、乙二酸的方法。参考2021年版《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法(征求意见稿)》标准,用IC-16进行定性定量分析。结果显示甲酸、乙酸和乙二酸线性良好,标准曲线相关系数均≥0.995;低中高浓度混标溶液连续分析6次,保留时间RSD≤0.032%,峰面积的RSD≤1.587%;低中高浓度加标样品回收率在93.1%~107.0%之间,相对标准偏差<0.620%,方法准确可靠。该方法重现性好,灵敏度高,可用于环境空气 颗粒物中甲酸、乙酸、乙二酸的测定。使用仪器:岛津离子色谱仪Essentia IC-162、天美赛里安气相色谱仪在空气检测的应用——热脱附-气相色谱法(TD-GC)测定空气中的苯系物方案简介:本应用采用GC456i气相色谱仪搭配热脱附进行测试,符合国家标准要求,该方法配置合理,线性良好。使用仪器:天美公司赛里安456i气相色谱仪3、环境空气中二噁英类检测方案简介:二噁英类剧毒物质通常指具有相似结构和理化特性的一组多氯取代的平面芳烃类化合物,属氯代含氧三环芳烃类化合物,包括75 种多氯代二苯并一对一二噁英和135种多氯代二苯并呋哺,缩写分别PCDDs/PCDFs。人类可能因摄取被污染食物,不断地将二噁英类物质富集在人体脂肪中,最终对人体产生严重影响。使用仪器:睿科HPFE高通量加压流体萃取仪4、罐采样-气相色谱质谱法检测环境空气中挥发性有机物方案简介:挥发性有机物(简称VOCs)是空气中非常重要的一类污染物,能够形成二次气溶胶,是PM2.5和臭氧的重要前体物。HJ759-2015是非常重要的实验室环境空气中VOCs的检测方法,能够有效解决国内环境空气中VOCs检测难题。标准更新征求意见稿中扩宽了符合方法标准的预浓缩仪类型,细化了采样和分析中的技术细节,使得方法更具有普遍适用性和专业性。本文主要针对2021年3月15日生态环境部发出的《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法(征求意见稿)》(简称HJ759修订稿)进行仪器适用性评价。使用仪器:赛默飞ISQ™ 7000单四极杆GC-MS三、关于导购平台【仪器优选】作为专业性及影响力兼具的国内一线科学仪器导购平台,囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等15大类仪器,1000+个仪器品类,收录20万+台优质仪器。其核心宗旨是帮助仪器用户快速找到优质靠谱的仪器。经过多年的持续建设,平台实现了可以同时从价格、品牌、行业、口碑、产品横向对比等多维度快速查找仪器产品的功能,助力千万级用户轻松找到靠谱仪器。【行业应用】是仪器信息网专业的行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、制药、环境、农/林/牧/渔、石化、汽车、建筑、医疗/卫生等二十余个行业领域。目前,已经收录行业解决方案6万+篇。四、空气检测新标准采购节马上开启仪器信息网围绕2023年实施的一系列空气检测新标准,特于2023年3月底举办【空气检测新标准采购节】活动。活动将邀请相关专家及知名仪器厂商为行业用户带来新标准解析,同时,联合各优质厂商助力空气检测仪器选型。敬请期待!
  • 煤基活性炭行业大气污染物排放标准编制工作展开
    记者近日从宁夏环境监测中心站获悉,中心站正在组织有关方面专家和专业技术人员编制《煤基活性炭行业大气污染物排放标准》。目前,各项工作已全面展开,并完成了区内活性炭生产企业碳化、活化工序、废气实地部分监测项目测试工作。   全国目前活性炭企业已发展到400余家,制定活性炭行业大气污染物排放标准,对节能降耗,减少污染物排放量,推动产业结构调整,促进技术进步,优化经济增长具有重要意义。   据介绍,课题组将通过活性炭工业排放污染物种类、排放方式、浓度限值、排放速率等项目的调查、调研,参考环境保护部有关固定污染源废气监测技术规范、采样方法规范、采样器技术规范等36个技术规范,通过实地监测、试验、验证,对活性炭 行业大气污染物排放制定详细标准。   宁夏回族自治区环保厅十分重视标准的制定工作,专门召开启动会议进行安排部署。自治区环保厅副厅长强小媛要求,狠抓工作落实,深入开展课题研究,圆满完成国家课题研制任务。
  • 国内VOCs走航监测标准发布
    长三角生态绿色一体化发展示范区挥发性有机物走航监测技术规范1 范围本文件规定了利用走航监测技术(VOCs走航监测方案)测定环境空气、无组织排放废气中挥发性有机物浓度,结合地理位置信息显示挥发性有机物浓度空间分布的方法原理、仪器性能要求、监测实施方法及质量控制方法。本文件适用于长三角生态绿色一体化发展示范区,长三角其它区域执行本文件由各省(市)人民政府批准实施。2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其BCT新版本(包括所有的修改单)适用于本文件。HJ/T 55大气污染物无组织排放监测技术导则HJ 168环境监测 分析方法标准制修订技术导则HJ 194环境空气质量手工监测技术规范HJ/T 212污染源在线自动监控(监测)系统传输技术指南HJ 654环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统技术要求及检测方法HJ 759环境空气 挥发性有机物的测定罐采样/气相色谱-质谱法HJ 818环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统运行和质控技术规范HJ 1010环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法3 术语和定义下列术语和定义适用于本文件。3.1 挥发性有机物 volatile organic compounds参与大气光化学反应的有机化合物,或者根据有关规定确定的有机化合物。一般指在20℃时蒸汽压不小于10 Pa,或101.325 kPa标准大气压下沸点不高于260℃的有机化合物,或实际生产条件下具有以上相应挥发性的有机化合物(甲烷除外)的统称,简称VOCs。3.2 总挥发性有机物 total volatile organic compound 在满足本规范要求的走航监测设备上,对单项VOCs物质进行测量,加和得到VOCs物质的总量,以单项VOCs物质的质量浓度之和计,简称TVOC。3.3 走航监测 cruise monitoring 利用车载式大气采样系统和快速监测设备在移动中进行连续实时监测,结合高浓度点位定点监测,对污染物进行定性定量分析,结合地理位置显示污染物空间分布的技术。4 方法原理利用车载挥发性有机物快速监测设备,在行进时对环境空气、厂界、无组织排放废气进行连续实时监测,并根据地理位置信息,显示沿行进路线的挥发性有机物浓度空间分布,对高浓度点位进行复测或定点监测,完成定性、定量分析。5 试剂和材料5.1 高纯氮气:≥99.999%。5.2 116种组分挥发性有机物标准气体:1 μmol/mol,N2平衡。5.3 内标气:根据监测设备实际需求。6 仪器和设备6.1 质谱仪包括进样系统、离子源、质量分析器及数据解析软件等部分,具备全谱扫描分析、谱库检索、实时显示空气污染组分等功能。具有一定的抗电磁干扰,抗震动,防雷击等能力。6.2 车载式大气采样系统采样系统可采用符合HJ 654中要求的采样总管,也可直接采用满足要求的独立管路。采样管路应尽量短以减少对目标化合物的吸附,应选用不与被监测污染物发生化学反应和不释放有干扰物质的材料。一般以聚四氟乙烯、硅烷化处理的不锈钢管等为制作材料。采用多支路采样总管时,挥发性有机物的采样支管应位于采样总管的BCT前部。采样口应高于车顶0.2米以上,且不受车辆尾气排放干扰。采样管路应做保温处理,避免采样管路内壁结露。6.3 气体稀释系统BCT大稀释倍数不小于1000倍。气体稀释系统应满足表1要求。 表1 气体稀释系统性能指标要求HJ/T 55大气污染物无组织排放监测技术导则HJ 168环境监测 分析方法标准制修订技术导则HJ 194环境空气质量手工监测技术规范HJ/T 212污染源在线自动监控(监测)系统传输技术指南HJ 654环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统技术要求及检测方法HJ 759环境空气 挥发性有机物的测定罐采样/气相色谱-质谱法HJ 818环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统运行和质控技术规范HJ 1010环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法6.4 工控机应满足HJ/T 212要求,保障系统运行并将数据传输BCT上位平台。1)通信接口:具备一路RS-485或RS -232或以太网通信接口,用于与上位机通信。2)存储容量:能完整存储不少于12个月(按每1分钟记录一组数据来计算)的所有参数监测数据和报警等信息,并且储存容量不小于300Gbytes;4)抗干扰能力:具有防雷击、防电磁干扰、抗震动等能力;5)电压稳定性:允许外部供电电压波动±10%;6.5 供电设备应配备电池组,电量应BCT少满足走航监测设备连续运行4h以上。可外接电源直接为设备供电。6.6 车载卫星定位系统及电子地图配备车载卫星定位系统,在走航监测时记录经纬度坐标,并在地图上实时显示行进路径。车载定位系统定位精度在3m以内。6.7 其他设备根据需要配备风向风速仪、罐、便捷式气相色谱质谱仪等设备。7 监测方法7.1 仪器准备7.1.1 建立校准曲线。校准曲线应BCT少包含除零点外的五个浓度点,校准曲线范围可根据实际工作情况调整。在仪器工作条件下,使用高纯氮气将混合标准气体稀释BCT标准曲线浓度点,依次从低浓度到高浓度进行分析测定,或者采用不同进样体积的方式进行分析测定,以目标化合物物浓度为横坐标,目标物特征离子峰响应为纵坐标,用BCT小二乘法绘制校准曲线。计算目标化合物的标准曲线相关系数。7.1.2 重复性和方法检出限测定。连续通入10 nmol/mol标准气体2 min,取BCT后连续7组检测数据,参照HJ 168规定计算相对标准偏差及方法检出限。相对标准偏差及方法检出限结果应作为附表,列在走航监测结果报告中。要求附录A中所规定的挥发性有机物相对标准偏差≤20.0%,方法检出限≤10 nmol/mol。7.1.3 准确度检查。连续通入40 nmol/mol标准气体2 min,取BCT后连续7组检测数据,参照HJ 168规定,计算与理论浓度的相对误差。要求附录A中所规定的挥发性有机物相对误差小于30%。设备无法区分的一组分子量相同或相近的有机物,理论浓度为所用标准气体组分中所有分子量相同或相近成分的浓度数学加和。7.1.4 如使用气相色谱-质谱法分析测定,重复性和方法检出限、准确度的测试方法按HJ 1010实施,使用5.2节规定的116种种组分挥发性有机物标准气体。7.1.5 空白样品测定。以高纯氮气或除烃空气作为空白样品,按与样品分析相同步骤进行分析。要求空白样品中各目标物均应低于方法检出限。7.1.6 正式开展走航监测前,进行试运行。启动监测设备和车辆,在周边开展小范围走航,确认车辆、采样系统、监测设备运行正常,工控机可上传监测数据,电子地图显示定位准确、无明显延迟。7.2 监测方案制定7.2.1 走航监测适宜在风力4级以下、无降雨天气开展。7.2.2 依据环境管理要求,选择监测区域或企业。优先选取涉及挥发性有机物使用、排放的区域或企业,特别是涉及受大气污染物综合排放标准、行业大气污染物排放标准、恶臭(异味)污染物排放标准等管控的挥发性有机物排放的区域或企业。掌握监测区域的企业分布及所属行业、道路分布状况、周边敏感区分布状况、盛行风向及恶臭异味投诉情况等。7.2.3 在对目标区域开展挥发性有机物走航监测前,应事先调查区域内污染源信息,包括但不限于单位名称,原材料、中间体、产品、副产品、生产工艺涉及的挥发性有机化合物,废气处理设施类型及运行状况等。有行业大气污染物排放标准的,重点关注行业特征污染物。7.2.4 根据工作目标区域情况,规划走航监测路线。一般沿园区内部、企业边界或城市道路进行监测,参考HJ/T 55要求,尽量接近监测目标,在目标企业或排口周边及其下风向处进行监测。需要进一步监测无组织排放废气浓度情况、进行污染溯源的,可在厂区内部进行监测,尽量靠近生产厂房或无组织排放源。7.3 样品采集分析7.3.1 按照预定路线对目标区域或企业开展监测,约每5 s得到一条监测数据时,走航速度一般不超过40 km/h。7.3.2 监测过程中发现相对高值(一般指TVOC浓度600 ug/m3以上)时,在该点位附近进行巡查或停车定点监测BCT少1 min,记录TVOC浓度BCT高值。条件允许时,进入厂区,尽量靠近生产厂房开展监测,记录TVOC浓度BCT高值。7.3.3 以TVOC浓度BCT高值作为该点位监测结果,同时记录监测到TVOC浓度BCT高值的时间、位置,主要污染物及其浓度,周边企业、车间、生产装置名称。根据监测现场周边情况、风向、主要污染物组成及7.2.3节调研结果,初步判断污染来源。7.3.4 根据需要可利用快速色谱质谱联用设备进行现场分析或罐采样带回实验室分析,具体方法参见HJ/T 194及HJ 759。8 结果计算与表示8.1 定性分析离子源采用单光子电离(SPI)、质子转移反应(PTR)等技术,且气体样品不经色谱柱分离的监测设备,根据分子离子、准分子离子的质荷比(m/z)定性。离子源采用电子轰击源(EI)的监测设备,气相色谱-质谱联用模式时根据总离子流图上各峰的保留时间、离子碎片质量和相对丰度,在NIST标准谱库中检索结构BCT为相似的有机物作为定性结果。走航模式时,根据NIST标准谱库的特征离子和丰度比,进行组分种类的定性。因分子量相同或相近,或保留时间、结构相近而无法区分的物质,应结合7.2.3中调查得到的监测点位周边企业挥发性有机物使用情况,对定性结果进行判断。8.2 定量分析通过外标校准曲线法进行定量分析。根据物质响应值和相应的校准曲线,计算得到环境空气中单个挥发性有机物的浓度,以μg/m3表示。对于在仪器上有响应、可定性分析,但标准气体中没有的挥发性有机物,优先选择分子量接近、结构接近的物质作为参考物,进行半定量分析。或根据需求统一选取某一物质作为半定量参考物。半定量物质及参考物质应在结果报告中标注。所有可监测污染物浓度数学加和,计算总挥发性有机物(TVOC)浓度。无法区分同分子量物质的,计算TVOC浓度时,某一分子量物质浓度不得重复加和计算。8.3 结果表示8.3.1 所有单个污染物浓度及TVOC浓度默认单位为μg/m3。当测定结果小于100 μg/m3时,保留小数点后一位;当测定结果大于100 μg/m3时,保留三位有效数字。报告中应列出用于计算TVOC浓度的所有挥发性有机物。8.3.2 默认浓度单位为nmol/mol的监测设备,需对单位进行换算,计算方法如式(8—1)。先对单个污染物浓度进行换算,再进行加和得到TVOC浓度。 … … … … … … … … … … … … … … (8—1)式中,——质量浓度,μg/m3; ——体积浓度,nmol/mol; ——摩尔质量,g/mol; 22.4——标准状况下的气体摩尔体积,L/mol。 8.3.3 走航监测完成后绘制走航路径上的TVOC浓度或单项、多项VOCs污染物浓度分布图,污染物浓度高低由颜色区分。标注走航监测区域名称、主要道路名称、方向、时间、图例。根据工作需求,在主要污染点位旁进行注释,如位置、TVOC浓度、风向及风力等级、主要污染物名称、上风向企业、车间或生产装置名称等信息。8.3.4 TVOC走航监测图的浓度-颜色分级可如下表所示统一为7级,或按仪器说明书显示:表2 TVOC浓度-颜色分级HJ/T 55大气污染物无组织排放监测技术导则HJ 168环境监测 分析方法标准制修订技术导则HJ 194环境空气质量手工监测技术规范HJ/T 212污染源在线自动监控(监测)系统传输技术指南HJ 654环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统技术要求及检测方法HJ 759环境空气 挥发性有机物的测定罐采样/气相色谱-质谱法HJ 818环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统运行和质控技术规范HJ 1010环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法9 质量保证与质量控制9.1每次走航监测前按照7.1.3节要求开展准确度检查,样品测定值与校准曲线相应点浓度的相对误差不超过30%,否则应查找原因、修正校准曲线或重新建立校准曲线。9.2每次走航监测前或按仪器说明书要求定期对质谱进行调谐。如对离子源及质量分析器进行维护、更换,完成后必须调谐。9.3对于监测仪器的采样流量,BCT少每月进行一次检查,当流量误差超±10%时,应及时进行校准。9.4建立质量控制文件,包括每台仪器的标准操作规范、日常运行维护与质量控制规范、巡检表格、维修表格与校准表格等。9.5作为工作标准的标气应为国家有证标准物质或标准样品,或等效于国家一级标准的标准气体,并在有效期内使用。9.6气体稀释系统管路应尽可能短,并使用惰性化的管路,使其不与监测污染物反应、不释放干扰物、不吸附监测污染物。9.7气体稀释系统中的流量计或压力计应选用经与国家或地方计量检定、溯源的基准流量计或压力计,按计量检定规程的要求进行周期性检定。流量计应BCT少每季度使用标准流量计进行1次单点检查,流量误差应≤1%,否则应及时进行校准。附录A(规范性)挥发性有机物走航监测基本目标物HJ/T 55大气污染物无组织排放监测技术导则HJ 168环境监测 分析方法标准制修订技术导则HJ 194环境空气质量手工监测技术规范HJ/T 212污染源在线自动监控(监测)系统传输技术指南HJ 654环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统技术要求及检测方法HJ 759环境空气 挥发性有机物的测定罐采样/气相色谱-质谱法HJ 818环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统运行和质控技术规范HJ 1010环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法
  • 大气监测市场逐渐放量
    目前国内PM2.5监测仪器市场国内外监测系统并存 监测原理看,贝塔射线法和震荡天平发并存 国内企业起步较晚,技术成熟度与国外仍有差距,中短期看,国外产品仍将占据国内主流市场,长期看,国内监测仪器的市场有望逐步打开。   一、政府主导下大气污染监测仪器市场将逐渐放量   1.1 2012版《环境空气质量标准》实施带来大气监测仪器采购高潮   2012年2月29日,环保部发布了关于实施《环境空气质量标准》(GB3095~2012)的通知,新标准增设了PM2.5平均浓度限值、臭氧8小时平均浓度限值以及CO浓度限值。   通知规定2012年,新标准将在京津冀、长三角、珠三角等重点区域以及直辖市和省会城市开始实施 2013年,将在113个环境保护重点城市和国家环保模范城市铺开 2015年,所有地级以上城市实施新的标准 2016年1月1日,全国实施新标准。   根据新标准的要求,2012年开始,京津冀、长三角、珠三角等重点区域以及直辖市和省会城市已逐步展开了相关监测仪器的采购工作,主要集中于PM2.5自动监测仪器的采购 部分地区还增加了臭氧和CO监测仪器的采购 目前该工作已基本完成,而二线城市的采购工作目前也已展开,大气监测仪器采购的高潮正逐渐到来。   1.2 "十二五"大气监测仪器投入将超20亿元   根据我们的调研情况,以PM2.5监测仪器为例,按照一个监测站点配备一台,每三台仪器需额外配臵一台备用仪器计算,我国"十二五"规划中重点区域城市631个市区监测点仅仅PM2.5仪器的采购投入将达1~4亿元(按照一台国产或进口仪器15~40万元人民币不等计算) 如若新建一个大气监测站点,配齐全套仪器,最低约需要人民币130万元~140万元左右,按照国家环保部部长吴晓青的表示,"十二五"期间,国内要新增近1500多个PM2.5监测点位,如每个新增站点均配齐全套空气监测仪器,以此推算,前期投入将超过20亿元。在这20亿空气监测仪器销售市场中,我们粗略估算,PM2.5仪器销售市场规模约为3~8亿元(取决于所使用的仪器品牌及类型),其余由其他空气监测仪器占据。   1.3 后期仪器的更新、维护将带来持续增长的市场空间   公开资料显示,一台国外仪器的平均使用寿命为6~8年,而一台国产仪器的平均使用寿命为3~4年左右 使用寿命达到后,如果仪器的性能已明显不能满足监测需要,则需整机废弃并重新购臵,这将带来相关仪器销售市场的持续增长。   除了仪器销售市场的增长,后续的运维服务市场也将随之快速增长 主要包括耗材的更换费用,机器的维护费用等。据我们了解,一台国产仪器一年的耗材更换及运营维护费用约为1万元附近,一个监测站点一年全部的运营和维护费用在6万元附近,以此推算,我国"十二五"规划新增1500个监测站点,每年的运营和维护费用将接近1亿元。   据了解,目前国内的运营维护提供商主要有两种类型,一种是专门从事仪器运营维护的第三方(其业务主要来自于国外仪器企业),另一种是仪器的生产商(主要为国产仪器),两类运维商根据消费者消费习惯的不同,占有不同的市场份额。一般来讲,消费者对运维商的选择更多的考量其服务的便利性以及价格。地域优势是运维商的重要竞争优势之一。   二、PM2.5监测仪器市场中短期仍为外资企业占领   2.1 PM2.5仪器市场,国内外监测系统并存   目前国际上比较有名的PM2.5监测设备厂商主要有:美国赛默飞世尔(thermofisher,俗称"美国热电公司")、美国METONE公司、法国ESA(法国苏氏环境公司)、澳大利亚的EcoTech和Monitor等 国内的主要厂商有河北先河环保科技股份有限公司(300137)、武汉天虹公司(拟上市)、聚光科技(杭州)股份有限公司(300203)、安徽蓝盾光电子、北京中晟泰科环境科技等多家企业。在2013年中国环境监测总站主页上发布的最新环境空气自动监测系统认证检测合格产品名录中(见表2),美国赛默飞世尔、河北先河环保、武汉天虹、聚光科技等公司的产品均有上榜。   2.2 贝塔射线法和震荡天平法同时存在   按照监测原理的不同,PM2.5监测仪器又可分为光谱法、震荡天平法和β射线法,目前在我国普遍使用的是后两种方法。通俗的讲,震荡天平法的测量原理是用颗粒物重量的变化而引起的震荡频率来反映颗粒物的浓度,β射线法是通过颗粒物对β射线能量的吸收来反映颗粒物的浓度。两者由于原理不同,测得的数值也不尽相同。无论是振荡天平法还是β射线法在实践中都各有优劣,其使用必须与标准称重法(又称滤膜称重法)进行校准。   为了解决两种测试仪器的技术争议,更好的指导地方仪器采购,2012年初,中国环境监测总站牵头对国内外几种不同类型的测试仪器进行了检测(包括美国赛默飞世尔科技公司、美国MetOne公司、河北先河环保、北京中晟泰科公司、武汉天虹公司、安徽蓝盾光电子公司等国内外企业的9种PM2.5自动监测仪器,以及美国赛默飞世尔科技公司、德国Derenda公司、武汉天虹公司等国内外厂家的4种手工采样监测仪器。),并于2013年7月30日发布了《环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法》等六项国家环境保护标准的公告,进一步明确了空气颗粒物的监测方法。根据中国环境监测总站公布的合格产品名录,震荡天平法和β射线法均在榜上。其中,震荡天平法在加装了美国热电研制出的滤膜动态测量系统(FilterDynamicMeasurementSystem,以下简称FDMS),贝塔射线法在加装了光浊度仪后,均可进一步提升数据的准确性。   目前国外生产震荡天平法颗粒物监测仪的厂家只有:赛默飞世尔(同时兼产基于射线法的监测仪) 而国内生产震荡天平法颗粒物监测仪的有:安徽蓝盾光电子和武汉宇虹两家企业,并且两家企业的相关产品均处于起步阶段。   生产射线法的监测仪的厂家有:美国赛默飞世尔、美国METONE、法国ESA(法国苏氏环境公司)、澳大利亚的EcoTech和Monitor、河北先河环保科技股份有限公司、杭州聚光科技股份有限公司、武汉宇虹公司、北京中晟泰科环境科技公司等。   2.3 国内企业起步较晚,技术成熟度与国外仍有差距   与国产同类产品相比,国外仪器,以赛默飞世尔的产品为代表,从产品研发、生产、销售等各方面都相对成熟,并经过较长时间的检验,产品运行较为稳定。其加装FDMS系统的震荡天平法测量技术为目前PM2.5市场上最为高端的监测技术,相比之下,国内PM2.5的技术研究起步较晚,大部分国内企业所采用的技术与美国Metone公司的技术类似,个体之间技术差异不大,但与赛默飞世尔的技术存在一定的差距。以贝塔射线法技术为例,目前国内生产的所有仪器均无法做到24小时连续读数。   2.4 国外产品采购仍是市场主流,长期来看国内市场有望打开   在我国,空气监测站点的建设以及仪器采购主要来自于各级地方政府的财政拨款。政府财力的大小是仪器选择的关键因素,在资金许可的条件下,地方政府在仪器采购招标中,首先考虑的因素是仪器读数的稳定性,其次是仪器提供商的售后服务。在一些技术人员相对较为充裕的发达地区,如北京、上海等地,仪器的后期运维服务均由当地环保局的下属机构自行承担,这一因素自然就不包含在仪器采购时所考量的范围内。   调研显示,我国现有的PM2.5监测市场基本由国外产品所占据,国外品牌在中国市场的占有率约为70%,而其中绝大部分又由美国赛默飞世尔公司的产品所占据。以上海地区为例,目前10个市级检测站采购的PM2.5监测仪器全部为赛默飞世尔公司生产的震荡天平法监测仪。   短期来看,国产设备与美国进口设备的抗衡还存在一定的难度,但中长期看,国产设备市场也有望打开。国产设备的优势主要体现以下两个方面,1)价格。根据我们调研得到的数据,目前一台配备了FDMS系统的震荡天平法仪器价格约为40万元附近,而国产仪器的价格仅为20万元附近 具备补偿机制的β射线法进口仪器的价格在25万元附近 国产仪器的价格仅为10万元附近,两者价格相差一倍,国产价格仅为进口价格的一半附近 2)运维服务。赛默飞公司一般不负责后期运维服务,而国产仪器生产公司基本都涵盖了运维服务,并在全国各地建设了自己的运维服务网络。   2013年7月份中国环境监测总站的产品合格认证目录出台后,部分国产仪器也榜上有名,标志着国产仪器从技术性能上与国外产品一样获得了国家的认可,随着大气监测由城市延伸至农村,国产仪器所特有的价格和服务优势将愈发的凸显出来,为其赢得更多的市场空间。
  • 征求环标《火电厂大气污染物排放标准》意见
    关于征求国家环境保护标准《火电厂大气污染物排放标准》(征求意见稿)意见的函   各有关单位:   为贯彻落实《中华人民共和国大气污染防治法》,保护环境,保障人体健康,我部决定修订国家环境保护标准《火电厂大气污染物排放标准》(GB 13223-2003)。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请予研究。若有意见或建议,请于2009年8月15日前以书面形式反馈我部。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   附件:1.征求意见单位名单    2.《火电厂大气污染物排放标准》(征求意见稿)      3.《火电厂大气污染物排放标准》(征求意见稿)编制说明   二○○九年七月七日   主题词:环保 火电厂 标准 意见 函   附件一:   征求意见单位名单   发展改革委办公厅   工业和信息化部办公厅   国土资源部办公厅   住房城乡建设部办公厅   水利部办公厅   农业部办公厅   商务部办公厅   国家质量监督检验检疫总局办公厅   中国科学院   中国工程院   各省、自治区、直辖市环境保护厅(局)   新疆生产建设兵团环境保护局   中国环境科学研究院   中国环境监测总站   中日友好环境保护中心   中国环境科学学会   环境保护部对外合作中心   环境保护部南京环境科学研究所   环境保护部华南环境科学研究所   环境保护部环境规划院   环境保护部环境工程评估中心   中国环境保护产业协会   环境保护部环境标准研究所   环境保护部标准样品研究所   中国电力企业联合会   中国华能集团公司   中国大唐集团公司   中国华电集团公司   中国国电集团公司   中国电力投资集团公司   中国电力工程顾问集团公司   西安热工院有限公司苏州分公司   (部内征求意见单位:总量司、环评司、污防司、环监局)
  • 2015年上半年环境监测政策标准盘点
    虽然国家和各地方政府在不断推动环保行业的市场化,但是环保领域以政策为导向的大环境还没有发生改变。对于环境监测领域的从业人员来说,政策、法规、标准仍是需要重点关注的内容。  仪器信息网小编对我国2015年上半年发布的各项政策、法规、标准等内容进行了整理,以飨读者。  政策法规 推动环境监测市场化  2015年2月5日,环保部印发《关于推进环境监测服务社会化的指导意见》。意见提出,全面放开服务性监测市场,有序放开公益性、监督性监测领域。这是环保部对国务院办公厅发布的《关于政府向社会力量购买服务的指导意见》在环境监测领域的细化。从此之后,各级政府纷纷开始尝试,我国环境监测领域第三方运营事业发展步伐明显加快。  2015年4月2日,国务院印发《水污染防治行动计划》(简称“水十条”)。“大气十条”对行业的影响使大家对“水十条”充满了期待,大部分环保企业认为这是一个很大的机遇。从报道的多起收购并购可以看出,各仪器生产厂商对此市场充满信心。但是由于我国水质监测事业发展较早,故与大气监测不同的是,水质监测市场主要集中在设备更新、设备升级以及细分市场上。  2015年5月19日,工信部发布《钢铁行业规范条件(2015年修订)》。此文件要求钢铁企业配套建设污染物治理设施,实施在线自动监控系统等,并与地方环保部门联网。企业要接受环保监测,定期形成监测报告。  除此之外,今年上半年还有三项相关政策发布征求意见稿,分别为《环境监测数据弄虚作假行为处理办法》、《环境保护公众参与办法(试行)》、《中华人民共和国环境保护税法》。这些政策都将促进环境监测市场规范化。  方法标准 关注行业污染和土壤监测  检测标准是环境监测工作开展的重要依据。今年上半年,环保部共颁布20项排放和监测标准,与2014年同期相比,在数量上基本持平。  排放标准主要是针对某些行业污染物的排放限值做出了规定,分别是合成树脂、石油化工、石油炼制、火葬场、无机化学以及再生铜、铝、铅、锌等行业。明细如下:  今年上半年颁布的监测标准共有13项,其中3项涉及水质,2项涉及环境空气,8项涉及土壤。频繁的土壤监测标准的颁布,可能是在为正在修订中的土壤新标的实施做准备。对于监测项目,其中9项涉及有机物的监测,3项涉及重金属的监测。有机物的检测主要采用气质联用和气相色谱法,重金属的检测主要采用原子吸收法。  合格目录 批量更新促市场规范化   为规范环境监测仪器市场秩序,环保部对部分环境监测仪器颁布了技术规范,并由中国环境监测总站质检室对厂商生产的此类仪器进行检验,检验合格颁发证书。同时,对于安装完毕的此类仪器,如果没有环保认证,则不允许通过验收。目前,中国环境监测总站公开发布了合格目录的产品包括烟尘烟气连续自动监测系统(CEMS)、环境空气气态污染物连续自动监测系统、水质自动采样器、水质重金属在线监测仪、紫外吸收水质在线监测仪、数据采集传输仪、水质在线监测仪(COD、氨氮、总磷、总氮、五参数)、PM2.5采样器、PM2.5连续监测系统、PM10连续监测系统。  2015年上半年公布的最新合格产品目录见下述链接:   环境监测总站发布PM10连续监测系统合格产品名录  PM2.5连续监测系统合格产品目录更新 新增4台仪器  环境监测总站紫外吸收水质在线监测仪合格目录更新  环境监测总站水质自动采样器合格名录更新  环境监测总站CEMS合格名录更新  时隔一年半 环境监测总站再次更新数采仪合格目录  环境监测总站公布最新环境空气自动监测系统合格目录  环境监测总站首次发布水质重金属在线监测仪合格目录  环境监测总站水质在线仪器目录再更新 新增28台仪器
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制