当前位置: 仪器信息网 > 行业主题 > >

氧分压仪检测

仪器信息网氧分压仪检测专题为您提供2024年最新氧分压仪检测价格报价、厂家品牌的相关信息, 包括氧分压仪检测参数、型号等,不管是国产,还是进口品牌的氧分压仪检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氧分压仪检测相关的耗材配件、试剂标物,还有氧分压仪检测相关的最新资讯、资料,以及氧分压仪检测相关的解决方案。

氧分压仪检测相关的论坛

  • 【求助】如何控制氧分压

    如何利用简单的装置设置一个可控氧分压测试环境。请大家出出主意。或者谈谈你们所用过的氧分压控制系统,有图的附图。[em09505]

  • 防热材料热性能测试和炭化过程中的氧分压精密控制方法

    防热材料热性能测试和炭化过程中的氧分压精密控制方法

    [size=14px][b][color=#000066]摘要:本文针对大气层再入飞行器、临近空间高超声速飞行器的防热设计计算和防热材料改性优化对于真实服役环境下材料热物性测试和材料处理的需求,提出了变真空和变氧分压精密控制解决方案。解决方案的关键内容是通过质量流量计控制氧含量,并通过分程控制法进行高精度的真空控制。此解放方案对应的配套装置可用于各种材料高温热物理性能参数测试和考核设备,并已在CVD和PVT工艺生产半导体材料中得到了应用。[/color][/b][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][size=18px][color=#000066]一、问题的提出[/color][/size][/b][size=14px]所谓氧分压氧分压定义为气体混合物中氧气体组分的压力,它对应于氧气体组分单独占据整个体积时所施加的总压力。氧分压是一个常用来表征物质氧化环境的变量,特别是在高温条件下,氧分压是一个重要的环境变量。[/size][size=14px]在飞行服役过程的高温条件下,以树脂基防热复合材料、低烧蚀和零烧蚀类结构复合材料、耐高温金属材料为代表的飞行器外层防热材料的传热性能与材料所处环境的氧分压指标密切关联。在高温环境下,树脂基防热复合材料发生的热解碳化反应,低烧蚀/零烧蚀类结构复合材料发生的碳基体、碳化硅基体升华、氧化过程,耐高温金属材料发生的表面氧化反应,均受到材料所处环境的氧含量影响。在相同的高温环境下,材料表面成分、结构和传热性能随所处环境氧分压的变化而产生巨大差异。因此,在材料研究和地面考核试验中需要在可变氧分压的高温环境中对材料进行热处理后进行各种性能测试,有时甚至在相应的测试仪器上直接模拟出可变氧分压高温环境并对材料的各种物理性能进行测试。[/size][size=14px]在飞行器用防热材料的物理性能考核和测试评价中,温度、气压和氧分压是三个重要环境变量,而目前的大多数测试试验仪器和设备最多也只能模拟出温度和气压变化环境,还无法实现可变氧分压环境的精密控制,如材料的导热系数和热辐射系数还只能在变温变真空环境下进行测试,材料烧蚀过程的性能研究还只能用高温真空环境下炭化后的样品进行测试,这些都无法获得不同氧分压下材料的真实性能数据。日前有客户提出了低气压和氧分压的精密控制要求,为以下几个方面的测试和试验提供配套:[/size][size=14px](1)在高温真空碳化炉基础上进行配套实现变真空和变氧分压精密控制,并可多次循环,以在交变环境条件下对多种防热材料进行处理,如对树脂基防热复合材料进行炭化处理,对低烧蚀/零烧蚀类结构复合材料和耐高温金属材料进行表面处理。[/size][size=14px](2)对烧蚀试验装置配备实现变真空和变氧分压精密控制,以考核不同温度、真空度和氧分压条件下的烧蚀性能和隔热性能。[/size][size=14px](3)在高温热辐射性能测试设备的基础上,配套实现变真空和变氧分压精密控制,以测量不同条件下材料的热辐射性能(光谱反射率和半球向全发射率)。[/size][size=14px]本文将针对大气层再入飞行器、临近空间高超声速飞行器的防热设计计算和防热材料改性优化对于真实服役环境下材料热物性测试和材料处理的需求,提出变真空和变氧分压精密控制解决方案。此解决方案将采用分程控制来实现高精度的真空度控制,此解放方案对应的配套装置可用于各种材料高温热物理性能参数测试和考核设备。[/size][b][size=18px][color=#000066]二、解决方案[/color][/size][/b][size=14px] 根据氧分压的定义,对于氧气和氮气组成的混合气体,其中的氧分压就等于混合气体中氧气摩尔分数乘以混合气体的绝对压力值。由此可见,在氧分压控制过程中需要对氧气在混合气体中所占的摩尔分数和混合气体的绝对压力同时进行控制。[/size][size=14px]另外,在客户提出的需求中,所涉及的绝对压力都是小于一个大气压的真空环境,混合气体一般为氮气和氧气,因此氧分压的控制问题就可以归结为以下两部分内容:[/size][size=14px](1)控制氧气在混合气体中的摩尔数。[/size][size=14px](2)控制混合气体的真空度(绝对压力)。[/size][size=14px]为实现上述两部分控制内容,本文所提出的解决方法为如图1所示的氧分压控制系统。[/size][align=center][size=14px][img=变氧分压和变真空度控制系统结构示意图,690,391]https://ng1.17img.cn/bbsfiles/images/2022/10/202210262046440029_8764_3221506_3.png!w690x391.jpg[/img][/size][/align][size=14px][/size][align=center]图1 氧分压控制系统结构示意图[/align][size=14px]如图1所示,为了控制氧气在混合气体中的摩尔数,采用了两个气体质量流量计分别控制由气瓶流出的氮气和氧气,使混气罐中氧气在混合气体中的摩尔数按照设定值进行自动控制,由此保证混合气体和氧气的摩尔数之比始终为精密可控。此时混合罐中混合气体为大于一个大气压的正压。[/size][size=14px]具有确定混合气体与氧气摩尔数之比的混合气体经电动针阀进入高温炉,混合器流过高温炉后再经电动球阀和真空泵排出,通过同时快速调节电动针阀和球阀的开度使进气流量和排气流量达到动态平衡,则能实现高温炉内的真空度精密控制。[/size][size=14px]为了实现宽量程范围内的真空度控制,解决方案中配置了两个不同量程的真空计,双通道真空压力控制器采用分程控制形式进行真空度控制。分程控制形式是压力控制器分别采集两只真空计信号,当进行低气压高真空控制时,控制器将电动球阀开度控制为最大,同时调节电动针阀的开度来控制进气流量来实现高真空控制。当进行高气压低真空控制时,控制器将电动针阀调节到某一固定开度并保持不变,同时调节电动球阀的开度来控制排气流量来实现低真空控制。[/size][size=14px]总之,上述氧分压精密控制解决方案的技术成熟很高,并经过了大量试验,验证了此方案的可行性和可靠性,可完全满足客户对高温条件下氧分压控制的需求,此方案也已在众多其他真空设备和工艺中(如CVD和PVT工艺)得到了应用。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【分享】使用粉末试样压样环可以更方便检测样品

    【分享】使用粉末试样压样环可以更方便检测样品

    在钢厂、电解铝车间和水泥厂等连续生产的工厂里,每天需要对产品或生产过程进行理化分析,从而保证生产产品的质量。自荧光和衍射分析方法引入上述行业后,分析检测样品就变得直接和简单,即对测试样品做平面处理后再进行荧光或衍射,可直接得出分析结果。 在传统的样品制作中,需要对选取的样品进行粉碎,通过压样机高压制作成扁平试验样片,为保持样品的完整性,通常采用硼酸包边形式,但这种样品制作的时间长,而且所做样品质地不均,容易出现硼酸污染,科研院所在长期工作中发现,采用柔韧性和延展性好的材料制作的压样环,对于试验样的制作、试验结果的准确性,有着极高的实用价值。 徐州蜂鸟科技有限公司针对试验行业的需要,使用日本新型PDVC材料,生产出耐压强度大、柔韧性延展性合适、耐酸、耐碱、耐腐蚀的粉末样品特种压样环,该压样的使用极大地提高了检测效率。且已创造性地生产出多种颜色压样环,这种带色压样环有利于实验室通过环的色彩来区分样品种类或取样环日期。[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910200904_176721_1702200_3.jpg[/img]

  • 【原创大赛】对家用血糖仪用于工业检测的分析

    【原创大赛】对家用血糖仪用于工业检测的分析

    [b]序言:[/b]近几年,POCT仪器(Pointof care testing,即时检验,又称床边检验)雨后春笋般涌现。其中,人群量很大的糖尿病患者使用的血糖仪,市场竞争十分激烈,销售模式基本上是买血糖试纸送血糖仪。一些学者将血糖仪用于含葡萄糖产品的检验。例如:使用血糖仪测定酱油中的葡萄糖[1];血糖仪法快速测定禽蛋中的葡萄糖[2];血糖仪快速测定豆类中葡萄糖含量[3]等。在国外,也有学者研究将血糖仪用于其他方面的检测。下面,从血糖仪及试纸的结构进行分析,看看家用血糖仪用于工业检测的原理及要注意的事项。[b]一、血糖仪类型[/b] 目前,市售血糖仪按照测糖技术可以分为两大类:电化学式、光化学式。 (1)电化学式:通过酶与葡萄糖反应产生电子,经过微电流检测IC,读取电子的数量,再转化成葡萄糖浓度读数。这类血糖仪需血量少,测试结果快(数秒),是目前的主流。 (2)光化学式:通过酶与葡萄糖的反应,产生有色中间物质,运用硅光电池传感器检测试纸表面的反射光强度,将反射光的强度转化成葡萄糖浓度。光化学法血糖仪稳定性,准确性较好。但成本高、采血量稍多,现在销量不如电化学式。本文序言中[1][2][3]用于工业检测的例子,均采用电化学式血糖仪,不受样品颜色的干扰。[b]二、电化学式血糖仪结构原理[/b]1、检测原理 根据电化学法血糖测试条中所采用的酶不同,又分为葡萄糖氧化酶(GOD)法和葡萄糖脱氢酶(GDH)法两种类型。葡萄糖脱氢酶(GDH)在反应中还需联用不同辅酶,分别为吡咯喹啉醌葡萄糖脱氢酶(PQQ-GDH)、黄素腺嘌呤二核苷酸葡萄糖脱氢酶(FAD-GDH)及烟酰胺腺嘌呤二核苷酸葡萄糖脱氢酶(NAD-GDH)三种。本文仅讨论常见的GOD法。 在检测试纸电极表面的试剂涂层中,固化有葡萄糖氧化酶(GOD)。GOD在有氧条件下能专一性地催化β-D-葡萄糖生成葡萄糖酸和过氧化氢。当血液被吸入到电极上时,血液中的葡萄糖会在GOD的作用下发生氧化还原反应。氧化还原反应所产生的电子被导电介质转移给电极,在一定电压(一般为0.4-0.5伏特左右)的作用下,流过电极的电流(微安级)将发生变化,通过检测电流变化与葡萄糖浓度的关系达到检测血糖浓度的目的。GOD对葡萄糖有高度特异性,不能氧化其它糖类,故可测定血液中葡萄糖真实值。GOD氧化血液中β-D-葡萄糖产生葡萄糖内酯和H2O2,同时释放出电子,具体的反应方程式如下: 葡萄糖+FAD-葡萄糖氧化酶→葡萄糖酸内酯+FADH2-葡萄糖氧化酶 ⑴ FADH2-葡萄糖氧化酶+02→FAD-葡萄糖氧化酶+H2O2(过氧化氢) ⑵ H202(过氧化氢)→2H++O2+2e- ⑶2、血糖仪结构 不同品牌电化学式血糖仪,其电路结构都差不多,电路框图见下图,由酶生物传感器(血糖试纸)、信号检测单元(I/V转换,调理电路)、MCU、存储器、显示器、电源、按键等组成。有的血糖仪有USB、红外、WIFI等通迅接口。[img=,650,454]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142302_01_1807987_3.jpg[/img][b]血糖仪工作原理:[/b]指尖毛细血管血(全血)被吸入施加有电压的试纸酶电极(酶生物传感器)后,产生微电流,该电流经集成电路I/V转换器转换为电压信号,再通过放大滤波、输入主控MCU进行A/D转换、内部程序进行分析计算,结果由液晶显示器显示。血糖仪内部有存储器,可以储存一定量的数据,有通迅接口的血糖仪,可以与家庭计算机或云连接,进行数据管理。以市售国产XX牌血糖仪为例,拆机并分析内部电路结构。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142117_03_1807987_3.jpg[/img][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142143_01_1807987_3.jpg[/img]仪器使用一枚3V一次性锂电池CR2032,大约可检测1000次,十分省电:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142117_05_1807987_3.jpg[/img]插入血糖试纸后,等待血液检验:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142117_06_1807987_3.jpg[/img]机器拆开的情况,一块主电路板,一块液晶显示板:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142117_01_1807987_3.jpg[/img]主电路板上电子元件分布,有前级I/V转换IC、晶振、主控MCU、蜂鸣器、校正芯片插口、电池座等元件:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_02_1807987_3.jpg[/img]主电路板背面,有试纸条插口、液晶显示器接点、微动按钮:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_03_1807987_3.jpg[/img]这是校正芯片插口,旁边的U4是1.2V稳压器,为仪器提供比较基准电压:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_04_1807987_3.jpg[/img]下图中U1是前级电路I/V转换IC,型号MCP6002I,是Microchip Technology公司的1MHz带宽低功耗双运放,构成血糖信号变换及放大电路(将检测试纸微安级的电流信号转换为电压信号):[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_05_1807987_3.jpg[/img]MCP6002I构成的血糖仪前级电路,示意图如下,酶电极(试纸条)采用三电极结构,由WE(工作电极)、CE(辅助电极)、RE(参比电极)组成:[img=,690,540]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_06_1807987_3.jpg[/img]下图中RT1是负温度系数热敏电阻,作为检测环境温度的传感器。由于环境温度对试纸条上的葡萄糖氧化酶(GOD)的活性有影响,需要进行温度补偿。一般情况下,酶在20度以上活性变化不大,在20度以下,温度越低活性越差。活性变差就会在与葡萄糖反应时产生的电流变小,从而使测量结果变低,为了在不同的温度都能测出准确的血糖值,通过热敏电阻根据实时的温度情况来进行补偿,从而尽可能使酶和血液在不同的温度下都能产生和血糖值相匹配的电流,计算出正确的血糖值。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142118_01_1807987_3.jpg[/img]仪器主控MCU[b] [/b],采用ST公司(意法半导体)的超低功耗型8位单片机,型号ESTM8L052C6T6,内部集成了A/D、32K Flash,2K RAM,256bytes EEPROM,4X28 LCD显示驱动等功能,它的左下方Y1是晶振,为MCU提供时钟基准:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_02_1807987_3.jpg[/img]3、血糖试纸为了防潮,平时装在密封塑料瓶内,开封后,应在3个月内使用:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_03_1807987_3.jpg[/img]试纸条的结构:由PET基板、电信号接插端、碳电极、保护膜、反应区及酶试剂涂层(天蓝色)组成。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_04_1807987_3.jpg[/img]低倍显微镜下观看,反应区内的酶涂层不均匀,说明生产工艺还有待提高:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_05_1807987_3.jpg[/img]电信号接插端采用银浆涂层,比起采用碳膜涂层的成本高一些,导电性能更好[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_06_1807987_3.jpg[/img]试纸条背面,是PET材质的基板:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142119_01_1807987_3.jpg[/img]将试纸反应区剥开,看见电极采用碳膜电极,虹吸口处的酶涂层也不均匀:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142120_02_1807987_3.jpg[/img]碳电极是三线制,与插口端触点的关系:[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142120_03_1807987_3.jpg[/img] 通过拆解,可以看出电化学型血糖仪的电路结构不复杂,其准确性关键在于生化酶试纸的稳定性能和生产工艺水平,以及血糖仪主机MCU软件算法的先进性,适当的使用环境及方法。家用血糖仪为了降低成本,电路比较简化,使得测量值只能作为监控使用,要准确的诊断,还得到医院用大型生化仪器鉴别。[b]三、家用血糖仪用于工业测量常见的方法[/b]根据一些学者发布的实验文章,家用血糖仪用于工业测量常见的方法是:1、选择血糖仪类型。采用电化学式血糖仪,避免了试样颜色对检测的干扰;注意选择数据存储量大、有通迅端口血糖仪,便于与将数据传输,进行分析和管理。2、样前处理。根据血糖仪试纸的测量范围1.1mmol/L~33.3mmol/L,换算为0.02g/100ml~0.6g/100ml。首先估计样品的葡萄糖(类型为β-D-葡萄糖)含量,确定样品处理方案,使其稀释后,葡萄糖含量在试纸的检测范围内。3、实验并进行数据统计分析、验证。4、制定SOP,规范检验人员的操作。[b]四、家用血糖仪用于工业测量应注意问题[/b]1、家用血糖仪是在人体大数据基础上设计的,各个厂家对自己研制的内置程序列为核心商业机密,不会示人。要用于人体外项目,必须全面分析被测对象的性质,以便正确运用。2、各个牌号的血糖仪,因为试纸电极材质不同,化学反应涂层的生化酶及配方不同,内置矫正系统(软件系统)的差异,其准确性、稳定性有较大差异。用作其他项目测量时,必须单个进行验证。3、由于血糖试纸测量范围的限制,通常为1.1mmol/L~33.3mmol/L。被测物质必须进行样前处理,需要事先通过实验确定试样稀释倍数,其测量结果需要人为折算,不能直接显示被测物质的葡萄糖浓度。4、不同配方的血糖试纸,受干扰物质的影响不同。被测量样品中糖类干扰物质[4]的影响见下表:[img=,690,755]http://ng1.17img.cn/bbsfiles/images/2017/09/201709142316_01_1807987_3.jpg[/img] 氧气是血糖仪(GOD法)检测时的干扰物质,高原空气中的氧气比起平原要稀薄,因此血糖试纸的使用环境要注意海拔问题。大气的质量愈近海平面愈密集,大气压及氧分压愈大;海拔越高,大气压及氧分压相应降低。海拔高度为0时,氧分压为159.22毫米汞柱,一个毫米汞柱的氧分压相当于0.13%含氧量。海拔升高100米,大气压下降5.9毫米汞柱,氧分压下降约1.2毫米汞柱,氧含量下降0.16%,与海拔为0米时的氧含量相比,下降0.76%。海拔高度1000米,空气含氧量下降1.6%,空气含氧量19.35%,为零海拔含氧量的92.4%;海拔高度5000米,空气含氧量下降8%,空气含氧量为12.95%。在高海拔地区首次使用时,应用校正液进行标定。5、当被测物质成分比较复杂时(有些化学药品亦有干扰),应选择适当的血糖仪方案(主要是试纸酶的类型,说明书未标明的,可以询问厂家),避开干扰物质。经过比对试验,确定准确度在可以接受范围内,才能将血糖仪用于检测。当更换血糖仪厂家、品牌时,要特别注意,经过验证后,才投入使用。6、血糖试纸的保存。血糖试纸是一种生化酶试纸,要求放置在15-30℃的干燥环境保存。开启后的试纸条要在3个月内用完。不要用过期的试纸条。 [b]五、结束语[/b] 家用血糖仪用于一些工业项目检测,取材方便,成本极低,时间快。尽管测试结果比较粗糙,但作为车间中间体的检验还是不错的。由于影响检测结果因素较多,必须选择适当方案的血糖仪,经过验证,建立SOP,才能投入使用。如果要精确检验,还必须在血糖仪硬件、软件、试纸三个方面进行针对性优化设计,当然,成本会大幅度提高。由于工业项目检测用量远不及糖尿病人群的用量,若要进行专门设计制造,生产厂家不一定会有积极性。参考文献:[1]使用血糖仪测定酱油中的葡萄糖 胡嘉鹏《中国酿造》2007年第5期[2]血糖仪法快速测定禽蛋中的葡萄糖 陈佛兰 《科技风》2013年6月刊(下)[3]血糖仪快速测定豆类中葡萄糖含量方法 朱冠琳等 《安徽农学通报》2014年13期[4]血糖仪注册技术审查指导原则

  • 【转帖】氧分析仪原理

    常用的氧分析仪主要有热磁式和氧化锆式两种。(1)热磁式氧分析仪  其原理是利用烟气组分中氧气的磁化率特别高这一物理特性来测定烟气中含氧量。氧气为顺磁性气体(气体能被磁场所吸引的称为顺磁性气体),在不均匀磁场中受到吸引而流向磁场较强处。在该处设有加热丝,使此处氧的温度升高而磁化率下降,因而磁场吸引力减小,受后面磁化率较高的未被加热的氧气分子推挤而排出磁场,由此造成“热磁对流”或“磁风”现象。在一定的气样压力、温度和流量下,通过测量磁风大小就可测得气样中氧气含量。由于热敏元件(铂丝)既作为不平衡电桥的两个桥臂电阻,又作为加热电阻丝,在磁风的作用下出现温度梯度,即进气侧桥臂的温度低于出气侧桥臂的温度。不平衡电桥将随着气样中氧气含量的不同,输出相应的电压值。(2)氧化锆传感器式氧分析仪  氧化锆(ZrO2)是一种陶瓷,一种具有离子导电性质的固体。在常温下为单斜晶体,当温度升高到1150℃时,晶型转变为立方晶体,同时约有7%的体积收缩;当温度降低时,又变为单斜晶体。若反复加热与冷却,ZrO2就会破裂。因此,纯净的ZrO2不能用作测量元件。如果在ZrO2中加入一定量的氧化钙(CaO)或氧化钇(Y2O3)作稳定剂,再经过高温焙烧,则变为稳定的氧化锆材料,这时,四价的锆被二价的钙或三价的钇置换,同时产生氧离子空穴,所以ZrO2属于阴离子固体电解质。ZrO2主要通过空穴的运动而导电,当温度达到600℃以上时,ZrO2就变为良好的氧离子导体。  在氧化锆电解质的两面各烧结一个铂电极,当氧化锆两侧的氧分压不同时,氧分压高的一侧的氧以离子形式向氧分压低的一侧迁移,结果使氧分压高的一侧铂电极失去电子显正电,而氧分压低的一侧铂电极得到电子显负电,因而在两铂电极之间产生氧浓差电势。此电势在温度一定时只与两侧气体中氧气含量的差(氧浓差)有关。若一侧氧气含量已知(如空气中氧气含量为常数),则另一侧氧气含量(如烟气中氧气含量)就可用氧浓差电势表示,测出氧浓差电势,便可知道烟气中氧气含量。

  • 【分享】热磁式氧分析仪和氧化锆传感器式氧分析仪原理

    氧分析仪原理常用的氧分析仪主要有热磁式和氧化锆式两种。(1)热磁式氧分析仪  其原理是利用烟气组分中氧气的磁化率特别高这一物理特性来测定烟气中含氧量。氧气为顺磁性气体(气体能被磁场所吸引的称为顺磁性气体),在不均匀磁场中受到吸引而流向磁场较强处。在该处设有加热丝,使此处氧的温度升高而磁化率下降,因而磁场吸引力减小,受后面磁化率较高的未被加热的氧气分子推挤而排出磁场,由此造成“热磁对流”或“磁风”现象。在一定的气样压力、温度和流量下,通过测量磁风大小就可测得气样中氧气含量。由于热敏元件(铂丝)既作为不平衡电桥的两个桥臂电阻,又作为加热电阻丝,在磁风的作用下出现温度梯度,即进气侧桥臂的温度低于出气侧桥臂的温度。不平衡电桥将随着气样中氧气含量的不同,输出相应的电压值。(2)氧化锆传感器式氧分析仪  氧化锆(ZrO2)是一种陶瓷,一种具有离子导电性质的固体。在常温下为单斜晶体,当温度升高到1150℃时,晶型转变为立方晶体,同时约有7%的体积收缩;当温度降低时,又变为单斜晶体。若反复加热与冷却,ZrO2就会破裂。因此,纯净的ZrO2不能用作测量元件。如果在ZrO2中加入一定量的氧化钙(CaO)或氧化钇(Y2O3)作稳定剂,再经过高温焙烧,则变为稳定的氧化锆材料,这时,四价的锆被二价的钙或三价的钇置换,同时产生氧离子空穴,所以ZrO2属于阴离子固体电解质。ZrO2主要通过空穴的运动而导电,当温度达到600℃以上时,ZrO2就变为良好的氧离子导体。  在氧化锆电解质的两面各烧结一个铂电极,当氧化锆两侧的氧分压不同时,氧分压高的一侧的氧以离子形式向氧分压低的一侧迁移,结果使氧分压高的一侧铂电极失去电子显正电,而氧分压低的一侧铂电极得到电子显负电,因而在两铂电极之间产生氧浓差电势。此电势在温度一定时只与两侧气体中氧气含量的差(氧浓差)有关。若一侧氧气含量已知(如空气中氧气含量为常数),则另一侧氧气含量(如烟气中氧气含量)就可用氧浓差电势表示,测出氧浓差电势,便可知道烟气中氧气含量。[color=#fe2419]非常好的参考[/color]

  • 溶解氧测定仪是什么仪器

    溶解氧测定仪是什么仪器

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]溶解氧测定仪是什么仪器[/color][/font]溶解氧测定仪是一种用于测量水中溶解氧浓度的专业分析仪器。它采用隔膜电极作为换能器,将溶氧浓度(实际上是氧分压)转换成电信号,再经放大、调整(包括盐度、温度补偿),由模数转换显示。这种仪器广泛应用于环境监测、水产养殖、水处理、生态学研究和污染监测等领域。在锅炉给水和凝结水等ppb级溶解氧测量方面,它也表现出色,确保了在超低浓度的稳定性和准确性。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/01/202401190939356654_9441_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 润滑油检测中积炭是怎么回事

    润滑油检测中积炭是怎么回事  使用润滑油时,由于高温、空气的存在以及金属的催化作用,发生氧化是不可避免的,结果就会生成漆膜和积炭。积碳的产生会大大降低润滑油的使用效果,如果使用润滑油检测仪检测出积碳我们要首先解决这一问题,或者更换新的润滑油使用。  1、积炭是怎样形成的?  压缩机中积炭形成的原因比较复杂,就润滑油方面来说,主要是空气压缩机内部润滑系统用油常以雾状形式与高温、高压、高氧分压的空气和金属催化剂相接触,使润滑油迅速氧化变质。润滑油检测另一方面,油不断蒸发使较重组分的油残留在活塞顶部、排气阀腔和排气管道中不断受热分解,脱氢聚合。其产物与吸入气体中的机械杂质和压缩机内金属磨屑混在一起,沉积在机体表面上被进一步加热,即成为积炭。  2、积炭的危害如何?  当压缩机在排气阀及排气管道处产生较多的积炭时,排气阀就会动作不灵活和关闭不严,造成排出气体倒流气缸并重复压缩(即二次压缩),使气体温度迅速上升。高的气体温度又加剧了润滑油的氧化反应,而反应热又不能及时放出,使得排气管道内气体温度继续升高。当温度达到润滑油的自燃点时,积存在积炭中的润滑油开始燃烧。不完全燃烧产物、油的热分解产物、气体中的油雾与空气组成了爆炸气体,就发生了爆炸。  因此,润滑油检测由积炭引起的着火爆炸是对压缩机安全运转的极大威胁

  • 润滑油检测中积炭是怎么回事

    润滑油检测中积炭是怎么回事  使用润滑油时,由于高温、空气的存在以及金属的催化作用,发生氧化是不可避免的,结果就会生成漆膜和积炭。积碳的产生会大大降低润滑油的使用效果,如果使用润滑油检测仪检测出积碳我们要首先解决这一问题,或者更换新的润滑油使用。  1、积炭是怎样形成的?  压缩机中积炭形成的原因比较复杂,就润滑油方面来说,主要是空气压缩机内部润滑系统用油常以雾状形式与高温、高压、高氧分压的空气和金属催化剂相接触,使润滑油迅速氧化变质。润滑油检测另一方面,油不断蒸发使较重组分的油残留在活塞顶部、排气阀腔和排气管道中不断受热分解,脱氢聚合。其产物与吸入气体中的机械杂质和压缩机内金属磨屑混在一起,沉积在机体表面上被进一步加热,即成为积炭。  2、积炭的危害如何?  当压缩机在排气阀及排气管道处产生较多的积炭时,排气阀就会动作不灵活和关闭不严,造成排出气体倒流气缸并重复压缩(即二次压缩),使气体温度迅速上升。高的气体温度又加剧了润滑油的氧化反应,而反应热又不能及时放出,使得排气管道内气体温度继续升高。当温度达到润滑油的自燃点时,积存在积炭中的润滑油开始燃烧。不完全燃烧产物、油的热分解产物、气体中的油雾与空气组成了爆炸气体,就发生了爆炸。  因此,润滑油检测由积炭引起的着火爆炸是对压缩机安全运转的极大威胁。

  • 【资料】哪些因素影响了溶解氧仪测量的误差不准?

    哪些因素影响了溶解氧仪测量的误差不准? 制约溶解氧仪测量溶解氧不准的因素:有温度、压力和水中溶解的盐,流速。【安徽赛科环保科技有限公司】提供以下资料。原文参考:http://www.saikehb.cn/article-1502.html1. 温度对溶解氧仪测量的影响 由于温度变化,膜的扩散系数和氧的溶解度都将发生变化,直接影响到溶氧电极电流输出,常采用热敏电阻来消除温度的影响。温度上升,扩散系数增加,溶解度反而减小。温度对溶解度系数a 的影响可以根据Henry 定律来估算,温度对膜扩散系数β可以通过阿仑尼乌斯定律来估算。(1)氧的溶解度系数:由于溶解度系数a 不仅受温度的影响,而且受溶液的成分的影响。在相同氧分压下,不同组分的实际氧浓度也可能不同。根据亨利定律可知氧浓度与其分压成正比,对于稀溶液,温度变化溶解度系数a 的变化约为2%/℃。(2)膜的扩散系数:根据阿仑尼乌斯定律,溶解度系数β与温度T 的关系为:C=KPo2·exp(-β/T),其中假定K、Po2 为常数,则可以计算出β在25℃时为2.3%/℃。当溶解度系数a 计算出来后,可通过仪表指示和化验分析值对比计算出膜的扩散系数(这里略去计算过程),膜的扩散系数在25℃时为1.5%/℃。2. 大气压的影响 根据Henry 定律,气体的溶解度与其分压成正比。氧分压与该地区的海拔高度有关,高原地区和平原地区的差可达20%,使用前必须根据当地大气压进行补偿。有些溶解氧仪仪表内部配有气压表,在标定时可自动进行校正;有些溶解氧测定仪仪表未配置气压表,在标定时要根据当地气象站提供的数据进行设置,如果数据有误,将导致较大的测量误差。3. 溶液中含盐量 盐水中的溶解氧明显低于自来水中的溶解氧,为了准确测量,必须考虑含盐量对溶解氧的影响。在温度不变的情况下,盐含量每增加100mg/L,溶解氧降低约1%。如果仪表在标定时使用的溶液的含盐量低,而实际测量的溶液的含盐量高,也会导致误差。在实际使用中必须对测量介质的含盐量进行分析,以便准确测量及正确补偿。4. 样品的流速 氧通过膜扩散比通过样品进行扩散要慢,必须保证电极膜与溶液完全接触。对于流通式检测方式,溶液中的氧会向流通池内扩散,使靠近膜的溶液中的氧损失,产生扩散干扰,影响测量。为了溶解氧仪测量准确,应增加流过膜的溶液的流量来补偿扩散失去的氧,样品的最小流速为0.3m/s。 总结: 由于温度变化对溶解氧仪电极膜的扩散和氧溶解度有较大影响,标定时需较长时间(约10min),以使温补电阻达到平衡;氧分压与该地区的海拔高度有关,仪表在使用前必须根据当地大气压进行补偿;测量溶液的含盐量高时,溶解氧测量仪仪表标定时应使用含盐量相当的溶液;对于流通式测量方式,要求流过电极的最小流速为0.3m/s。 赛科环保提醒注意:由于溶解氧电极信号阻抗较高(约20MΩ),溶解氧电极与转换器之间距离最大为50m;溶解氧电极不用时也应处于工作状态,可接在溶解氧转换器上。久置或重新再生(更换电解液或膜)的电极,在使用前应置于无氧环境极化1~2h。推荐好用的溶氧仪产品:便携式溶氧仪 DOS-118-S, DOG-3128-S型 工业溶解氧仪

  • 【讨论】亚运兴奋剂,用啥来检测?【已更新兴奋剂种类和名称】

    【讨论】亚运兴奋剂,用啥来检测?【已更新兴奋剂种类和名称】

    ★兴奋剂丑闻异军突起★广州亚运会今天爆出首例兴奋剂丑闻,乌兹别克斯坦男子柔道81公斤级运动员穆米诺夫尿检呈阳性,被剥夺了他此前取得的银牌。 亚奥理事会叶加森博士19日下午在新闻发布会上发表声明称,穆米诺夫11月14日收集的尿样被查出甲基极安。“上述检测结果已经构成了兴奋剂使用的违规行为,该运动员已经被取消了参赛资格,也被取消了参加以后亚运会比赛的资格,成绩取消,奖牌已经被收回。”讨论:http://ng1.17img.cn/bbsfiles/images/2017/01/201701191652_629080_1600062_3.jpg1、现在兴奋剂除了尿检还可以检测什么?2、常见的兴奋剂除了甲基极安还有有哪些?3、兴奋剂的作用机理是什么?4、可以采取什么仪器或方法进行检测呢?http://ng1.17img.cn/bbsfiles/images/2017/01/201701191652_629080_1600062_3.jpg

  • 【云唐仪器】过氧化苯甲酰检测仪是检测面粉的吗

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403120911496422_7415_5604214_3.jpg!w690x690.jpg[/img]  过氧化苯甲酰检测仪并不是专门用来检测面粉的仪器。实际上,过氧化苯甲酰是一种常见的化学物质,具有广泛的应用领域,包括在食品、医药、橡胶和塑料等行业中。因此,过氧化苯甲酰检测仪可以用于检测各种不同类型的样品中过氧化苯甲酰的含量。  在面粉行业中,过氧化苯甲酰通常被用作面粉改良剂,可以提高面粉的筋力、改善面粉的加工性能和储存稳定性。因此,对于面粉生产厂家来说,对面粉中过氧化苯甲酰的含量进行检测和控制是非常重要的。  过氧化苯甲酰检测仪通过特定的化学反应来检测样品中过氧化苯甲酰的含量。它通常使用比色法或电化学法等方法进行检测,具有快速、准确、简便等优点。使用过氧化苯甲酰检测仪可以快速检测面粉中过氧化苯甲酰的含量,帮助面粉生产厂家及时发现问题,保证面粉的质量和安全性。  除了面粉行业,过氧化苯甲酰检测仪还可以应用于其他领域。例如,在医药行业中,过氧化苯甲酰可以作为药物的原料或辅料 在橡胶和塑料行业中,过氧化苯甲酰可以作为引发剂或交联剂等。因此,过氧化苯甲酰检测仪在这些领域中也有广泛的应用。  总之,过氧化苯甲酰检测仪是一种非常重要的检测仪器,可以用于检测各种不同类型的样品中过氧化苯甲酰的含量。在面粉行业中,它可以帮助面粉生产厂家控制产品质量和安全性 在其他领域中,它也可以发挥重要作用,为各行各业的生产和发展提供支持。

  • 水中亚氯酸盐和二氧化氯的检测

    用国标5750.10和11检测亚氯酸盐和二氧化氯,1.制作无需氯水的游离氯或者二氧化氯或者漂粉精,2.250ml的暴气瓶,这两样都是从哪买的?能带图看一下最好了,谢谢了

  • 【分享】在线溶解氧(DO)分析仪的测量原理及维护

    在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,在线测量氧含量有助于确定最佳的净化方法和最经济的曝气池配置。在生物发酵过程中氧含量的测量数据可对工艺过程进行指导,如判断发酵过程的临界氧浓度、发酵罐的供氧能力以及菌体的活性和菌体的生长量等,并根据发酵时的供氧和需氧变化来指导补料操作。 一 溶解氧分析仪测量原理氧在水中的溶解度取决于温度、压力和水中溶解的盐。溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧分析仪电极加上0.6~0.8V 的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:阳极 Ag+Cl→AgCl+2e-阴极 O2+2H2O+4e→4OH-根据法拉第定律:流过溶解氧分析仪电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。二 溶解氧含量的表示方法溶解氧含量有3 种不同的表示方法:氧分压(mmHg);百分饱和度(%);氧浓度(mg/L 或10-6),这3 种方法本质上没什么不同。(1)分压表示法:氧分压表示法是最基本和最本质的表示法。根据Henry 定律可得,P=(Po2+P H2O )×0.209,其中,P 为总压;Po2 为氧分压(mmHg);P H2O为水蒸气分压;0.209 为空气中氧的含量。(2)百分饱和度表示法:由于曝气发酵十分复杂,氧分压不能计算得到,在此情况下用百分饱和度的表示法是最合适的。例如将标定时溶解氧定为100%,零氧时为0%,则反应过程中的溶解氧含量即为标定时的百分数。(3)氧浓度表示法:根据Henry 定律可知氧浓度与其分压成正比,即:C=Po2×a,其中C 为氧浓度(mg/L);Po2 为氧分压(mmHg);a 为溶解度系数(mg/mmHgL)。溶解度系数a 不仅与温度有关,还与溶液的成分有关。对于温度恒定的水溶液,a为常数,则可测量氧的浓度。氧浓度表示法在发酵工业中不常用,但在污水处理、生活饮用水等过程中都用氧浓度来表示。三 影响溶解氧测量的因素氧的溶解度取决于温度、压力和水中溶解的盐,另外氧通过溶液扩散比通过膜扩散快,如流速太慢会产生干扰。1. 温度的影响由于温度变化,膜的扩散系数和氧的溶解度都将发生变化,直接影响到溶氧电极电流输出,常采用热敏电阻来消除温度的影响。温度上升,扩散系数增加,溶解度反而减小。温度对溶解度系数a 的影响可以根据Henry 定律来估算,温度对膜扩散系数β可以通过阿仑尼乌斯定律来估算。(1)氧的溶解度系数:由于溶解度系数a 不仅受温度的影响,而且受溶液的成分的影响。在相同氧分压下,不同组分的实际氧浓度也可能不同。根据亨利定律可知氧浓度与其分压成正比,对于稀溶液,温度变化溶解度系数a 的变化约为2%/℃。(2)膜的扩散系数:根据阿仑尼乌斯定律,溶解度系数β与温度T 的关系为:C=KPo2exp(-β/T),其中假定K、Po2 为常数,则可以计算出β在25℃时为2.3%/℃。当溶解度系数a 计算出来后,可通过仪表指示和化验分析值对比计算出膜的扩散系数(这里略去计算过程),膜的扩散系数在25℃时为1.5%/℃。2. 大气压的影响根据Henry 定律,气体的溶解度与其分压成正比。氧分压与该地区的海拔高度有关,高原地区和平原地区的差可达20%,使用前必须根据当地大气压进行补偿。有些仪表内部配有气压表,在标定时可自动进行校正;有些仪表未配置气压表,在标定时要根据当地气象站提供的数据进行设置,如果数据有误,将导致较大的测量误差。3. 溶液中含盐量盐水中的溶解氧明显低于自来水中的溶解氧,为了准确测量,必须考虑含盐量对溶解氧的影响。在温度不变的情况下,盐含量每增加100mg/L,溶解氧降低约1%。如果仪表在标定时使用的溶液的含盐量低,而实际测量的溶液的含盐量高,也会导致误差。在实际使用中必须对测量介质的含盐量进行分析,以便准确测量及正确补偿。4. 样品的流速氧通过膜扩散比通过样品进行扩散要慢,必须保证电极膜与溶液完全接触。对于流通式检测方式,溶液中的氧会向流通池内扩散,使靠近膜的溶液中的氧损失,产生扩散干扰,影响测量。为了测量准确,应增加流过膜的溶液的流量来补偿扩散失去的氧,样品的最小流速为0.3m/s。四 注意的问题对溶解氧分析仪来说,只要选型、设置、维护得当,一般均能满足工艺的测量要求。溶解氧分析仪的使用不好的主要问题出在:使用维护不正确;电极内部泄露造成温度补偿不正常;电极输入阻抗降低等。1. 日常维护仪表的日常维护主要包括定期对电极进行清洗、校验、再生。(1)1~2 周应清洗一次电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意不要损坏膜片。将电极放入清水中涮洗,如污物不能洗去,用软布或棉布小心擦洗。(2)2~3 月应重新校验一次零点和量程。(3)电极的再生大约1 年左右进行一次。当测量范围调整不过来,就需要对溶解氧电极再生。电极再生包括更换内部电解液、更换膜片、清洗银电极。如果观察银电极有氧化现象,可用细砂纸抛光。(4)在使用中如发现电极泄露,就必须更换电解液。2. 仪表标定仪表的标定方法一般可采用标准液标定或现场取样标定。(1)标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3 溶液。量程标定溶液可根据仪表测量量程选择4M 的KCl 溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。(2)现场取样标定法(Winkler 法):在实际使用中,多采用Winkler 方法对溶解氧分析仪进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A 即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时就不能将调整仪表读数等于A,而应将仪表读数调整为1 MA ×M2。3. 使用中应注意的问题使用中应注意以下问题:由于溶解氧电极信号阻抗较高(约20MΩ),溶解氧电极与转换器之间距离最大为50m;溶解氧电极不用时也应处于工作状态,可接在溶解氧转换器上。久置或重新再生(更换电解液或膜)的电极,在使用前应置于无氧环境极化1~2h;由于温度变化对电极膜的扩散和氧溶解度有较大影响,标定时需较长时间(约10min),以使温补电阻达到平衡;氧分压与该地区的海拔高度有关,仪表在使用前必须根据当地大气压进行补偿;测量溶液的含盐量高时,仪表标定时应使用含盐量相当的溶液;对于流通式测量方式,要求流过电极的最小流速为0.3m/s。此文章由 http://www.3017.com.cn 转发文章连接: http://www.31517.cn/jishuwenzhang/wenzhang.asp?wenzhang_id=150&ta=3&tb=4 我站诚邀友情连接:QQ 84424693

  • 在线溶解氧(DO)分析仪的测量原理及维护

    核心提示:  在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,在线测量氧含量有助于确定  在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,在线测量氧含量有助于确定最佳的净化方法和最经济的曝气池配置。在生物发酵过程中氧含量的测量数据可对工艺过程进行指导,如判断发酵过程的临界氧浓度、发酵罐的供氧能力以及菌体的活性和菌体的生长量等,并根据发酵时的供氧和需氧变化来指导补料操作。一、溶解氧分析仪测量原理氧在水中的溶解度取决于温度、压力和水中溶解的盐。溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧分析仪电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:阳极Ag Cl→AgCl 2e-阴极O2 2H2O 4e→4OH-根据法拉第定律:流过溶解氧分析仪电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。二、溶解氧含量的表示方法溶解氧含量有3种不同的表示方法:氧分压(mmHg);百分饱和度(%);氧浓度(mg/L或10-6),这3种方法本质上没什么不同。(1)分压表示法:氧分压表示法是最基本和最本质的表示法。根据Henry定律可得,P=(Po2 PH2O)×0.209,其中,P为总压;Po2为氧分压(mmHg);PH2O为水蒸气分压;0.209为空气中氧的含量。(2)百分饱和度表示法:由于曝气发酵十分复杂,氧分压不能计算得到,在此情况下用百分饱和度的表示法是最合适的。例如将标定时溶解氧定为100%,零氧时为0%,则反应过程中的溶解氧含量即为标定时的百分数。(3)氧浓度表示法:根据Henry定律可知氧浓度与其分压成正比,即:C=Po2×a,其中C为氧浓度(mg/L);Po2为氧分压(mmHg);a为溶解度系数(mg/mmHg·L)。溶解度系数a不仅与温度有关,还与溶液的成分有关。对于温度恒定的水溶液,a为常数,则可测量氧的浓度。氧浓度表示法在发酵工业中不常用,但在污水处理、生活饮用水等过程中都用氧浓度来表示。三、影响溶解氧测量的因素氧的溶解度取决于温度、压力和水中溶解的盐,另外氧通过溶液扩散比通过膜扩散快,如流速太慢会产生干扰。1.温度的影响由于温度变化,膜的扩散系数和氧的溶解度都将发生变化,直接影响到溶氧电极电流输出,常采用热敏电阻来消除温度的影响。温度上升,扩散系数增加,溶解度反而减小。温度对溶解度系数a的影响可以根据Henry定律来估算,温度对膜扩散系数β可以通过阿仑尼乌斯定律来估算。(1)氧的溶解度系数:由于溶解度系数a不仅受温度的影响,而且受溶液的成分的影响。在相同氧分压下,不同组分的实际氧浓度也可能不同。根据亨利定律可知氧浓度与其分压成正比,对于稀溶液,温度变化溶解度系数a的变化约为2%/℃。(2)膜的扩散系数:根据阿仑尼乌斯定律,溶解度系数β与温度T的关系为:C=KPo2·exp(-β/T),其中假定K、Po2为常数,则可以计算出β在25℃时为2.3%/℃。当溶解度系数a计算出来后,可通过仪表指示和化验分析值对比计算出膜的扩散系数(这里略去计算过程),膜的扩散系数在25℃时为1.5%/℃。2.大气压的影响根据Henry定律,气体的溶解度与其分压成正比。氧分压与该地区的海拔高度有关,高原地区和平原地区的差可达20%,使用前必须根据当地大气压进行补偿。有些仪表内部配有气压表,在标定时可自动进行校正;有些仪表未配置气压表,在标定时要根据当地气象站提供的数据进行设置,如果数据有误,将导致较大的测量误差。3.溶液中含盐量盐水中的溶解氧明显低于自来水中的溶解氧,为了准确测量,必须考虑含盐量对溶解氧的影响。在温度不变的情况下,盐含量每增加100mg/L,溶解氧降低约1%。如果仪表在标定时使用的溶液的含盐量低,而实际测量的溶液的含盐量高,也会导致误差。在实际使用中必须对测量介质的含盐量进行分析,以便准确测量及正确补偿。4.样品的流速氧通过膜扩散比通过样品进行扩散要慢,必须保证电极膜与溶液完全接触。对于流通式检测方式,溶液中的氧会向流通池内扩散,使靠近膜的溶液中的氧损失,产生扩散干扰,影响测量。为了测量准确,应增加流过膜的溶液的流量来补偿扩散失去的氧,样品的最小流速为0.3m/s。四注意的问题对溶解氧分析仪来说,只要选型、设置、维护得当,一般均能满足工艺的测量要求。溶解氧分析仪的使用不好的主要问题出在:使用维护不正确;电极内部泄露造成温度补偿不正常;电极输入阻抗降低等。1.日常维护仪表的日常维护主要包括定期对电极进行清洗、校验、再生。(1)1~2周应清洗一次电极,如果膜片上有污染物,会引起测量误差。清洗时应小心,注意不要损坏膜片。将电极放入清水中涮洗,如污物不能洗去,用软布或棉布小心擦洗。(2)2~3月应重新校验一次零点和量程。(3)电极的再生大约1年左右进行一次。当测量范围调整不过来,就需要对溶解氧电极再生。电极再生包括更换内部电解液、更换膜片、清洗银电极。如果观察银电极有氧化现象,可用细砂纸抛光。(4)在使用中如发现电极泄露,就必须更换电解液。2.仪表标定仪表的标定方法一般可采用标准液标定或现场取样标定。(1)标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3溶液。量程标定溶液可根据仪表测量量程选择4M的KCl溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。(2)现场取样标定法(Winkler法):在实际使用中,多采用Winkler方法对溶解氧分析仪进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时就不能将调整仪表读数等于A,而应将仪表读数调整为1MA×M2。3.使用中应注意的问题使用中应注意以下问题:由于溶解氧电极信号阻抗较高(约20MΩ),溶解氧电极与转换器之间距离最大为50m;溶解氧电极不用时也应处于工作状态,可接在溶解氧转换器上。久置或重新再生(更换电解液或膜)的电极,在使用前应置于无氧环境极化1~2h;由于温度变化对电极膜的扩散和氧溶解度有较大影响,标定时需较长时间(约10min),以使温补电阻达到平衡;氧分压与该地区的海拔高度有关,仪表在使用前必须根据当地大气压进行补偿;测量溶液的含盐量高时,仪表标定时应使用含盐量相当的溶液;对于流通式测量方式,要求流过电极的最小流速为0.3m/s。

  • 【原创】康仁348血气分析仪详细资料

    康仁348血气分析仪详细参数 产品特点:自动化免保养,独有Ready SensorTM(待发电极),低成本, 产品介绍: 产品参数: 分析时间 少于50秒,操作系统汉化软件,中文菜单 测量参数范围: 酸硷度pH: 6.001-8.000 pH 氢离子H+ : 10.0-997.70 nmol/L 二氧化碳分压pCO2: 5-250 mmHg 0.67-33.33 kPa 钠离子Na+: 80-200 mmol/L 钾离子K+: 0.50-9.99 mmol/L *钙离子Ca2+: 0.5-50 mmol/L *氯离子Cl-: 40-160 mmol/L 血细胞比容Hct: 12-75 % (*注意:请选择Ca2+或Cl-) 计算参数范围 实际碳酸氢根HCO3-act: 0-60 mmol/L 标准碳酸氢根HCO3-std: 0-60 mmol/L 二氧化碳总量ctCO2: 0-60 mmol/L 组织间液剩余碱BE(ecf): ±29.9 mmol/L 血浆剩余碱BE(B): ±29.9 mmol/L 钙离子值Ca++(7.4): 0.2-5.0 mmol/L 阳离子间隙Anion Gap: ±60.0 mmol/L 计算血氧参数范围 氧饱和度O2SAT: 0-100 % 氧总量ctO2: 0-40 mL/dL 肺泡动脉氧分压差: PO2(A-a) 0-1 0.00-99.86 kPa 动脉肺泡氧分压的比值: PO2(a/A) 0-1 氧分压与吸氧浓度之比: 0-5 PO2/FIO2 全血红蛋白ctHb: 2-25 g/dL 20-250 g/dL 1.2-15.5 mmol/L 检测透析液 可测量碳酸氢盐或乙酸盐透析液中的钠离子值,钾离子值和钙离子值。 样本 标准抗凝剂抗凝的全血样本血浆/血液(只限于电解质测定) 样本量 针筒 : 95μL 毛细管 : 70μL 全自动分样: 40μL 连网功能: 两个RS232接口 仪器体积与重量 宽:386mm 长 :380mm :高:371mm 重: 9.1kg

  • 高精度亚硝酸盐检测仪检测项目有哪些

    高精度亚硝酸盐检测仪主要用于检测和分析不同样本中的亚硝酸盐含量。具体来说,其检测项目主要包括但不限于以下几种情况:  食品检测:可检测肉食品、肉类食品水果罐头、蔬菜水果、酱腌菜、鲜肉类食品、鱼类、食盐、饮料、各种坚果及药草等食品中的亚硝酸盐成分。这对于确保食品安全,防止食品中亚硝酸盐含量超标对人体健康产生危害具有重要意义。  环境监测:除了食品外,亚硝酸盐检测仪还可用于监测土壤、水体等环境样本中的亚硝酸盐含量,评估环境污染情况。  化工生产:在化工生产过程中,亚硝酸盐检测仪可用于检测工业原料中亚硝酸盐的含量,以优化生产工艺,确保产品质量。  此外,一些高智能全项目多通道食品安全综合检测仪器除了能检测亚硝酸盐外,还能检测其他食品添加剂和有害物质,如二氧化硫、双氧水、硝酸盐、山梨酸、糖精钠、甜蜜素等。这些仪器还具备果蔬中农残留、病害肉诊断、重金属含量以及食用油脂检测等功能。  请注意,不同型号和品牌的高精度亚硝酸盐检测仪可能具有不同的检测项目和功能,具体检测项目还需根据仪器说明书和实际需求进行选择。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405151517329623_250_6238082_3.jpg!w690x690.jpg[/img]

  • 【讨论】白胖豆芽(“美容豆芽”)药水大揭密及检测

    传统的方法生豆芽成本高,卖相也不是很好。为此,一些人在生豆芽的过程中,使用了一种物质,使豆芽变得白白胖胖,卖相诱人,这就是我们在市场上经常能看到的“美容豆芽”。 什么东东能让豆芽变成白白胖胖? 是保险粉,由工业原料连二亚硫酸钠、低亚硫酸钠组成。 保险粉中,连二亚硫酸钠含量一般是20%,这种产品是工业级的,对人体的毒害相当大,可能会影响人的视力,损伤肝脏和肠胃。严重的会引起中毒,对儿童的影响则更大,甚至会影响智力。这种漂白剂在肠胃中积累多了还会致癌。“保险粉”与去年轰动的“洗虾粉”一样,都是工业原料酸。所谓的“保险粉”,其酸含量可能比“洗虾粉”更高。 保险粉对豆芽的作用: 保险粉中含有硫黄成分,可以起到漂白与杀菌的作用,被浸泡过的蔬菜色泽白亮,保质期也更长久。保险粉兑水化开,把豆芽直接浸泡在里面就完事了。用不了10分钟,色泽鲜艳,外形漂亮。这东西在批发市场,很多老板都在用。 用于其它方面:海鲜中也藏秘密 泡10分钟,蟹肚洗得雪白 问了五个监管部门 对方都称“不管保险粉” 济南市质检院的工作人员称,检测连二亚硫酸钠需要相关的资质,而他们并没有做过相关的测试,所以没法检测。 大家知道的目前检测方法有哪些?检测过程中会出现哪些问题?有奖讨论

  • 【求助】求铁粉中二氧化硅的检测方法

    求铁粉中二氧化硅的检测方法称样:0.11、小弟用铁锅熔样 过氧化纳0.6助容。在电阻炉里840度(熔4分钟)。2、拿出铁锅后稍微冷却(锅壁从燃烧的红色变成黑灰色)后,然后加入蒸馏水(不知道该加多少蒸馏水我加了100ML),然后加入盐酸10ML搅拌均匀后提取(也不知道应该提取多少量)。3、加入钼酸按10ML、硫磷混合酸10ML、硫酸亚铁按10ML。但是我感觉颜色不对呢。请高手朋友 详细指点一下谢谢了。很急。

  • 【求购】广州亚运用的仪器检测

    兴奋剂检测  在中国反兴奋剂中心的大力支持下,广州亚运会将共设58个兴奋剂检查站,24小时内可出结果。中国反兴奋剂中心将参与兴奋剂检查、检测政策制定,专业志愿者检查程序培训,样品采集和样品检测等工作。据了解,将有10名国际兴奋剂检查官参与样品采集。预计在23天内将检查约1500例尿检、血检,阴性结果在24小时出具结论,阳性结果可在48小时确定结论。58个兴奋剂检查站中54个设在广州主赛区、4个设在分赛区。中国反兴奋剂中心主任杜利军介绍,2008年中国反兴奋剂中心协助北京奥组委圆满完成历史上规模最大的兴奋剂检查、检测工作,获得国际奥委会颁发的“体育与反兴奋剂奖”。二十余年来,中国反兴奋剂中心还承担了全运会、城运会、亚运会、东亚运动会、世界大学生运动会及各类体育竞赛的兴奋剂检查检测任务,有信心为举办一届成功的亚运会作出贡献。广州亚组委副秘书长叶细权表示,第16届亚运会是继北京奥运会之后中国举办的又一国际体育盛事。希望亚组委与中国反兴奋剂中心认真组织、实施兴奋剂检查、检测项目,给亚洲各国与地区的参赛运动员提供一个公平、公正的竞争环境。

  • 纺织品中烷基酚聚氧乙烯醚的检测方法

    4 的烷基酚聚氧乙烯醚样品。因此,为保证仪器检测的灵敏度,常利用在线或离线的衍生化方法提高APEOs 的挥发性和降低目标化合物的极性,从而提高分析方法的选择性和灵敏度。衍生化步骤一般需要1 h 左右。除了衍生化法外,还可以用裂解剂先对烷基酚聚氧乙烯醚进行处理。甲苯磺酸作分解剂由于此裂解剂对试样断键彻底,对于分析同时存在氧乙烯和氧丙烯的聚醚比较有效 3)液相色谱-质谱联用技术(LC-MS)。具有灵敏度高、选择性好、可同时检测多种物质的能力,并具有实验步骤简单,样品预处理时间比较短等优点。王成云等以甲醇为提取溶剂,采用微波辅助萃取法提取纺织品中残留的AP和APEO,采用高效液相色谱-质谱法对其进行测定,并对前处理条件进行了优化。该方法的检测限(S/N="5)" 为0.010~0.025 μg/mL,回收率为93.19%~103.97%,精密度实验的RSD 为1.03%~4.96%。该方法简便、快速,灵敏度高,可完全满足纺织品中AP 和APEO 的检验要求。3 结语 APEOs类表面活性剂因其多种特性而广泛应用于工业生产中。然而,在带来各产业快速发展的同时,也日益凸显出它对人类身体健康和生态环境的危害。由于APEOs是多种异构体的混合物,其降解产物种类很多,性质各异,且基体复杂,浓度较低,在其检测方面存在许多尚未彻底解决的问题。本文对当前使用较多的预处理和检测方法的测试效果、适用范围及其优缺点作了简要概括,以期对纺织品中APEOs的分析检测提供一定的参考。在实际检测中,应根据待测样品的不同特性,选择合适的分离富集方法,在必要时也可将各种方法结合使用,以更好的分离富集试样,并尽可能去除各种干扰因素,然后选择合适的检测手段,从而实现APEOs的快速分析和精确检测。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制