当前位置: 仪器信息网 > 行业主题 > >

工程塑料检测

仪器信息网工程塑料检测专题为您提供2024年最新工程塑料检测价格报价、厂家品牌的相关信息, 包括工程塑料检测参数、型号等,不管是国产,还是进口品牌的工程塑料检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合工程塑料检测相关的耗材配件、试剂标物,还有工程塑料检测相关的最新资讯、资料,以及工程塑料检测相关的解决方案。

工程塑料检测相关的资讯

  • 特种工程塑料高温性能分析:超高温热变形维卡温度的测定(MAX.500℃)
    首先,让我们来了解一下什么是工程塑料?Whats”工程塑料,是指一类具有良好物理性质、机械性能、耐磨性、耐腐蚀性、绝缘性、耐热性、耐寒性、耐老化性等特点的高性能塑料材料。这些材料可以承受较高的温度和压力,具有较好的机械强度和耐用性,相对于传统的通用塑料具有更高的综合性能和更广泛的应用范围,相对于金属材料更轻、更薄、更能耐受高温,因此在工业和科技领域中被广泛应用并逐步成为发展趋势。例如常见的用于制造发动机内罩、轴承的聚醚酮(PEEK)、用于制造耐高温的薄膜、涂料,防火织物的聚酰亚胺(PI)、用于制造餐具、耐酸碱的管道阀门的聚苯硫醚(PPS)等。在工程和科研领域中,材料高温下性能的精确测定对材料研究和产品设计至关重要。如果工程塑料材料在实际使用中耐热性不好,就可能会出现以下问题:Question”1)部件变形或软化:在高温环境下,超级工程塑料可能会失去其结构稳定性,导致部件变形或软化,影响其性能和寿命。2)减弱耐久性:高温环境可能会导致超级工程塑料的分子结构发生变化,从而降低材料的耐久性和使用寿命。3)失去机械强度:高温环境可能会导致超级工程塑料的机械强度减弱,从而影响其承载能力和抗冲击性能。4)失效:如果超级工程塑料的耐热性能不好,那么在高温环境下,部件可能会失效,从而影响整个系统的性能和安全性。这些问题的出现会影响整个机械设备的性能和寿命。此外,还可能会对人员和环境造成安全隐患,例如部件失效引发事故、释放有害气体等。因而在使用工程塑料时,必须考虑其耐热性能,并根据实际使用情况选择适合的材料。表征高分子复合材料耐温性能的一个重要指标是热变形温度。但随着高性能聚酰亚胺塑料和各种纤维增强材料的研制和发展,由于其材料本身性能优越,通用仪器很难满足其测试要求。目前国内测定材料热变形的设备大多采用油介质加热,最高测定温度不超过300℃。同时由于加热时介质油的挥发和分解,产生大量的油烟,极易造成环境污染和人员中毒。通用热变形测试仪由金属材料加工制造,高温时,金属自身变形量增大,会对测试材料变形量产生影响,得到的材料热变形数据并不能反应材料的真实性能。而安田精机的高温热变形温度测定仪在测试材料的高温性能方面具有突出的优势。出色的高温稳定性和机械性能安田精机的高温热变形测试设备采用石英材质制作支架、测试台和压头等部位,该材质能够在高达500℃的极端温度下保持卓越的性能,设备最高测试温度可以达到500℃,同时可选择更换维卡测试头,支持维卡测试。【已知石英材质的热膨胀系数是5.6x10-7/℃,而SUS304不锈钢材质是17.3x10-6/℃,这意味着在同样高的温度下石英材质更不容易变形】精密的温度控制和实时监测加热方式放弃使用介质油加热,而选用更加环保安全、便捷经济的空气加热,为了保证温度分布均匀,各测试台的空气隔室是独立的,各自具备温控功能,能够均衡升温;防样条碳化功能为保护试样在高温下不发生碳化,测试过程中可以注入氮气保护,氮气可以将氧气排出,由于其自身具有惰性,可以降低塑料的氧化速度;安田精机的高温热变形温度测定仪可广泛应用于材料科学、汽车制造、航空航天和能源等领域。其卓越性能、高温范围、精密温度控制和广泛的应用领域为特种工程塑料高温性能分析提供了解决方案。感兴趣的朋友欢迎私信我们了解!更多精密物性设备,尽在仕家万联!
  • 杭州卓祥科技携粘度分析设备亮相第五届中国国际工程塑料大会
    杭州卓祥科技有限公司一直专注于研发高分子材料等领域的采用粘度分析仪器,公司设计灵感凝聚了几十家高分子材料生产商的实验人员和科研院所研发人员的智慧。2020年11月3-4日,公司携IV8000X系列在线稀释型全自动粘度仪亮相第五届中国国际工程塑料大会。 展出设备 IV8000X系列在线稀释型 全自动粘度仪 适合聚丙烯酰胺(PAM)、聚偏氟乙烯(PVDF)、聚乳酸等聚合物通过外推法测量粘均分子量、极限粘度数(特性粘度)、聚合度测定;新型聚合物建立新粘度测量方法或新型聚合物求一点法的K值使用。 MSB-15多位溶样块 1.具有加热恒温、搅拌及定时功能、液晶显示、触摸屏控制2.温控范围:室温~185℃;转速范围:100~120rpm(每个孔位转速一致) ZYQ-50自动分注器/ZPQ-50智能配液器 1. ZY-50自动分注器直接输入目标体积之后,仪器将自动完成移液;2. ZPQ-50智能配液器——点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取)便会直接计算出需要的目标体积进行移液。 现场情况
  • 上海市塑料工程技术学会立项《锂电隔膜透气度检测方法》团体标准
    各有关单位:根据《上海市塑料工程技术学会团体标准管理办法》的相关规定,在有关方面申报项目的基础上,学会组织专家对《锂电隔膜透气度检测方法》的团体标准进行立项评审。经评审,该项团体标准符合立项条件,批准立项《见附件》。现将项目名称、主要起草单位等信息在全国团体标准信息平台(www.ttbz.org.cn)予以公示,公示期为5个工作日。公示期间如有任何建议和要求,请与上海市塑料工程技术学会联系。同时也欢迎有关单位和个人参加团体标准的起草制定工作。 上海市塑料工程技术学会联系方式联系人:陈佳 13795212029邮 箱:504812632@qq.com上海市塑料工程技术学会关于《锂电隔膜透气度检测方法》团体标准的立项公告.pdf
  • 长春智能赞助2011年汽车塑料零部件高级研修班
    随着国民经济的发展和人民生活水平的提高,近几年,我国汽车工业发展迅速,2010年全国汽车产量已达1500万辆,已晋升为世界第一汽车生产和消费大国。塑料材料由于质轻、性能优良、成型效率高,在汽车零部件的生产中得到广泛应用,其质量的重要性日益突出。为此,中国塑料加工工业协会于2011年10月26日-28日在长春成功举办汽车塑料零部件生产工艺及质量检测技术高级研修班,主要研修学习汽车塑料零部件生产工艺、工艺参数对产品性能质量的影响和产品质量性能检测技术,研修学习将安排实习环节。 讲课专家主要来自国家汽车零部件产品质量监督检验中心(长春)、大众汽车、北京化工大学材料学院、北京石油化工学院、和国内著名注塑企业。 参加研修班学习的主要对象:汽车塑料零部件生产企业和相关单位的产品(研发)部和质控(质保)部技术和管理人员。(学习期间,将组织参观国家汽车零部件产品质量监督检验中心实验室) 主办单位:中国塑料加工工业协会 承办单位:中国塑料加工工业协会教育与培训委员会 北京三德斯科技有限公司 赞助单位:长春市智能仪器设备有限公司 北京化工大学材料学院&mdash &mdash 苑会林教授参观长春智能&mdash &mdash 转矩流变仪 高级研修班工程师参观&mdash &mdash 长春智能仪器&mdash &mdash 设备展厅 研修班工程师王茜(左)与长春智能芮工(右)合影留念 研修内容 1、 我国汽车用塑料需求分析 2、 国内外汽车用工程塑料性能比较 3、 中国强制性产品认证制度(CCC)认证详解答疑 4、 汽车塑料零部件(保险杠、仪表盘、油箱、内饰件、车灯、密封圈(条)、接线板等)对材料性能要求 5、 汽车塑料零部件的生产(PP、ABS、PS、PVC、PA、PC、POM、PBT等的)成型工艺及工艺条件对产品性能的影响 6、 汽车塑料零部件改性配方与应用(保险杠、仪表板、 内饰件、方向盘、暖风机壳、空调管道及空调风口、后视镜壳、汽车电动玻璃机构部件、燃油系统部件、安全系统部件、座椅部件、发动机室内部件)7、 塑料零部件注塑缺陷原因分析 8、特种工程塑料的研究与应用 9、气体辅助注射技术在汽车塑料零部件生产成型中的应用 10、汽车非金属材料零部件生产及供应(生产现状,在整车中的应用,主机厂供应要求等) 11、汽车塑料零部件性能检测 12、橡塑产品检测实验室管理 13、Rosh指令及其相关法规概要 报告主要专家: 一汽大众质保部非金属材料试验专家 于慧杰 高工 吉林大学化学学院麦柯德尔米德实验室 卢晓锋 副教授 北京化工大学材料学院 苑会林 教授 北京石油化工学院 杨明山 教授 国家汽车检测中心(长春) 魏学颜 主任 研究员 国家汽车零部件产品质量监督检验中心(长春) 李尚禹 博士 总工 国家质检总局REACH工作组组长 李 聪 研究员 国务院特殊津贴获得者
  • 投资45亿元 重庆将建西南最大塑料新材料产业基地
    第十六届渝洽会今日如期开幕,今日(2013年5月16日)上午,第一批重点项目签约,其中西南塑料新材料产业基地项目将投资45亿元,在重庆双桥经开区建西南地区最大的塑料新材料产业基地。   塑料新材料作为朝阳产业,对钢材、铝材、木材和水泥等其他材料的替代正在加速。据项目业主方之一、重庆可益荧新材料有限公司负责人咸旭胜介绍,该产业基地占地1500亩,拟新建总建筑面积130万平方米,主要从事改性塑料、工程塑料、高分子材料等战略新兴新材料的研制、生产、销售和废旧塑料循环利用。   咸旭胜称,该产业基地将引进国际领先、国内一流的技术和设备,研制生产国家战略急需的“863”项目——液晶高分子工程塑料。据介绍,这种塑料只有美国、日本、德国等少数工业发达国家才能工业化生产,我国尚属空白。同时,该项目还将生产重庆急需的笔电专用材料——聚碳酸脂特种工程复合材料,可替代美国GE公司产品,手机、笔电专用材料 高阻隔加纤阻燃吹塑尼龙复合材料,可替代德国巴斯夫公司产品,汽车油箱、增压管专用材料。   据了解,项目建成后,将有利于促进本地区产业结构调整、优化与升级,提升核心竞争力,促进当地经济和第三产业的发展。咸旭胜表示,基地正常运营后,将入驻循环产业基地配送中心的商家800-1000家,实现年产值50-150亿元 入驻循环产业基地塑料相关产业生产企业约200家,年产值达到20-60亿元 入驻新材料基地企业30-50家,年产值50-100亿元 增加物流企业50-80家,年产值3-8亿元。预计该基地投入使用后,年上缴税金3-6亿元 预计新增就业3-4万人。   该项目地点在重庆双桥经开区,据双桥经开区投资促进局局长杨天学透露,该项目将于今年底启动,三年全部建成。
  • 微塑料污染之忧将解 中大规模产可在海水中“消失”的塑料
    p   新华社北京9月5日电(记者喻菲)为解决日益严峻的海洋塑料污染问题,保护海洋生态环境,中国科学家最近研制出一种可在海水中降解的聚酯复合材料,有望在诸多领域替代现有难以降解的通用塑料。 /p p   中国科学院理化技术研究所高级工程师王格侠介绍,其团队研制出的这种结合了水溶性与降解性的材料具有一定的环境耐受性,废弃后能在数天到数百天内在海水中降解消失,最终分解为不会对环境造成污染的小分子。 /p p   王格侠说,长期以来人们聚焦于陆地上的白色污染及其治理。直至近年,大量塑料污染致使海洋生物遇害的现象被频繁报道才引起广泛关注。 /p p   据保守估计,人类每年向海洋投放的塑料垃圾为480万吨到1270万吨,占海洋固体污染物总量的60%至80%。目前,人类活动和洋流导致这些塑料垃圾集中分布于北太平洋、南太平洋、北大西洋、南大西洋及印度洋中部。 /p p   世界经济论坛也发出警告,2050年全球海洋塑料总重量将超过鱼类的总重量。 /p p   专家介绍,目前几乎所有类型的塑料都已经在海洋中找到。这些塑料微粒或者漂浮在海水中,或者沉入海底,几十年甚至几百年不会分解,对整个海洋环境造成了严重的污染。塑料在使用后被直接丢弃或从陆地经过河流、风吹进入海洋,在海水中受到光、海水风化,以及洋流和生物群的作用,导致塑料最终形成小于5毫米的微塑料。 /p p   一些海洋生物,如信天翁、海龟等,误食塑料袋会产生一系列的胃肠问题,以至于无法再进食,最终被饿死。最令人震惊的一项科学数据显示:有90%的海鸟是因为误食了塑料袋而死于非命。 /p p   王格侠指出,尽管海洋中塑料污染问题已经非常严峻,但目前人们对于这些塑料污染仍然没有有效的应对措施。海洋特殊水域环境使得人们不能像在陆地上一样对这样大量分散的垃圾进行集中收集和处理。最根本有效的办法就是让材料废弃进入海水后能自行降解消失。 /p p   据介绍,中国科学院理化技术研究所降解塑料和工程塑料研究组是中国率先开展生物可降解塑料研究的单位。生物降解塑料大都是含酯键的高分子材料,分子链相对脆弱,因而可以被自然界许多微生物分解、消化,最终形成二氧化碳和水。 /p p   目前,该团队的生物降解塑料生产及应用技术已经向4家中国企业完成了技术授权,其中3家已经顺利投产,总产能达到每年7.5万吨,占全球总量的一半。 /p p   在认识到海洋塑料污染的严重性后,科研人员希望研发出在海水中可降解的材料。然而他们发现,在陆地上能够快速降解的生物降解材料在海水中却难以降解,甚至长时间都不降解,不能用来解决海洋中的塑料污染问题。 /p p   经过多次反复实验,理化技术研究所的科研团队将非酶水解过程和水溶过程与生物降解过程结合起来,实现了材料在海水中快速降解。科研人员通过对材料的设计、合成、改性和加工使得其降解性能可根据不同的应用需求进行调控。 /p p   在近期于深圳举行的旨在提升中国自主创新能力、加大先进科技成果转化的第一届“率先杯”未来技术创新大赛上,这一技术位列30个优胜项目之一。 /p p   中国已将生态环境保护提高到前所有未有的层面,在解决本国生态问题的同时也为解决全球环境污染问题贡献中国智慧。 /p p br/ /p
  • “五大总成”再利用,废旧汽车塑料迎来好消息!
    p 商务部等7部门联合发布的《报废机动车回收管理办法实施细则》将于9月1日起施行。《细则》规定允许将具有循环利用价值的报废机动车“五大总成”:发动机、方向机、变速器、前后桥、车架等,出售给具有再制造能力的企业,经再制造后予以再利用,因此报废车回收价格有望提升。 /p p br/ /p p 此外,《细则》还明确提出,回收拆解企业应建立报废机动车零部件销售台账,如实记录报废车“五大总成”数量、型号、流向等信息,并录入全国汽车流通信息管理应用服务系统。 /p p br/ /p p 那么今天我们一起看看汽车塑料的使用情况,以及现阶段废旧汽车塑料的回收情况吧~ /p p br/ /p p 01.汽车中塑料的使用情况 /p p br/ /p p 随着塑料性能的不断改进, 塑料在汽车上除了广泛地应用在制作各种内装饰件外, 现在已可用来代替部分金属材料, 制造某些结构零件、功能零件和外装饰件。这样在满足某些汽车零部件的特使性能要求的同时, 又符合汽车轻量化的要求。 /p p br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/6430dd36-bb2c-4877-9811-266688e3488d.jpg" title=" 202009011230058850.jpg" alt=" 202009011230058850.jpg" / /p p style=" text-align: center " 常用塑料的主要特性以及在汽车上的应用 /p p br/ /p p 塑料已经大面积融入汽车内饰与外饰。外装饰件主要部件有:保险杆、挡泥板、车轮罩、导流板等 内装饰件主要有:仪表盘、车门内板、副仪表板、杂物箱盖、座椅、后护板等 功能和结构件主要有:油箱、散热器水室、空气过滤罩、风扇叶片等。 /p p br/ /p p 02.目前我国废旧汽车塑料回收利用现状 /p p br/ /p p 国内相当部分的车用废塑料还采用焚烧的落后方法来处理, 严重污染环境。还有一些采用填埋方法处理, 由于塑料很难自我分解, 也造成不小的环境隐患。 /p p br/ /p p 目前我们可以通过3种途径对部分车用塑料进行回收, 这种方法分别是:颗粒回收, 重新碾磨 化学回收, 高温分解 能源回收, 即将废弃物作为燃料。 /p p br/ /p p 工程塑料回收料的利用途径: /p p 1、将材料设计成可在相同或相关应用领域中多次使用 /p p 2、将回收的材料用于完全不同的场合,共混、合金化和复合材料化在回收料再利用中发挥着重要作用 /p p 3、回收单体, PC是工程塑料中不经改性直接使用比例最高的品种, 因为没有其它组分, PC最适合回收单体。我国玻纤增强尼龙6有一半以上基料是尼龙纤维同收再生粒料。 /p p br/ /p p 工程塑料的回收, 首先要由机器人进行严格按种类分离,提高再生塑料的物理性能, 确保再生粒料的质量, 还需要进行清洗, 再送入破碎机破碎。 /p p br/ /p p 对于污染较严重的塑料件, 首先进行粗洗, 除去砂石和金属等异物, 脱水后送入破碎机破碎, 破碎后再进一步脱水, 去除包含在其中的杂物, 干燥后造粒。 /p p br/ /p p 以PBT和PET为代表的聚酯系树脂还需要注意水解。如果是回收料, 那么从成型后经过粉碎、保管而吸湿加大, 有时含水率比生粒料还高, 对回收料也必须在成型前进行充分的干燥。 /p p br/ /p p 03.废旧汽车塑料的再利用 /p p br/ /p p 为提高汽车塑料材料的回收再生性, 可以从拆解性、分离性、识别性和再使用性进行考虑改进: /p p br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/bd9a3f2f-8876-4f39-89a0-beb37fa6ec98.jpg" title=" 202009011230060960.jpg" alt=" 202009011230060960.jpg" / /p p br/ /p p 减少树脂使用的种类, 用单一树脂生产多种构件, 优先选用可回收的树脂, 可降低回收费用, 提高回收塑料性减少汽车上塑料件用树脂品种, 可简化回收工作,是提高汽车塑料件可回收性的最优方案。 /p p 目前汽车塑料所用树脂品种多达20种, 专家估计, 汽车塑料件树脂品种可减少至4~9种, 其中PP占主要部分。PP的回收已商业化, 回收问题不大。 /p p br/ /p p 《报废机动车回收管理办法实施细则》施行后,报废车‘论斤卖’的现状将会得到改变,“五大总成”再制造让国内报废机动车回收企业不再仅仅靠废金属盈利,报废回收企业和网点将会逐步增多提高废旧塑料转化率。对于车主而言,这一规定可以有效提高报废车辆的价值,回收企业将依据报废车辆的车况对报废车辆重新定价,实现“一车一价”、精准回收。 /p p br/ /p
  • 微塑料检测技术,解决微塑料难题!
    微塑料指的是直径小于5毫米的塑料微粒,常见化学成分有聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯等。相关研究表明,微塑料在鱼类、贝类等水生生物体内普遍存在,可通过食物链不断向上一级传递,位于食物链顶端的人类将不可避免成为微塑料的摄入和蓄积体。随着各方对微塑料的关注日益增多,微塑料的相关科学研究正如火如荼地开展着,如何精准快速的识别微塑料,对微塑料领域的研究至关重要。多年来,研究人员通过对水陆空环境与生物体等各类样品中的塑料微粒含量、大小、成分等进行科学分析,开展各类型的科研课题研究、环境本底调查,为我国环境微塑料污染防控与监控和常规产品检测等提供技术依据。为了了解当前微塑料检测分析技术和应用进展,加强沟通交流,7月27日-28日,仪器信息网将举办第四届环境新污染物检测网络会议,在28日的下午,以“微塑料的检验检测”为主题的会议专场,将邀请相关领域专家与大家分享当前针对该领域的技术研究与应用进展等。“微塑料的检验检测”专场日程如下:07月28日微塑料的检验检测14:00--14:30“流域-近海-大洋”微塑料观测研究进展与趋势分析蔡明刚厦门大学 教授14:30--15:00岛津GCMS在环境新型污染物检测中的应用王子君岛津企业管理(中国)有限公司 产品专员15:00--15:30污水处理厂微塑料的去除行为解析与探讨安立会中国环境科学研究院 研究员15:30--16:00传感器在渔业环境中新污染物检测应用吴立冬中国水产科学研究院 研究员嘉宾介绍:蔡明刚 教授厦门大学蔡明刚,教授,博士生导师。现任厦门大学海洋与地球学院教授,海洋与海岸带发展研究院兼职教授,福建省高校重点实验室副主任。主要研究方向:基于海洋学视角的开阔海域污染物传输动力学过程研究,及其作为新型示踪剂在海洋科学上的应用。研究海域涉及我国南海等边缘海、全球大洋及两极海区,课题组近10次参加中国南、北极科学考察。个人系中国第3、5次北极科学考察队队员,先后入选福建闽江科学传播学者、福建省杰出青年基金计划、新世纪优秀人才计划、CSC中德合作团队项目等人才计划。主持国家及省部级项目10余项,在Environmental Science & Technology、Environmental Pollution、Deep Sea ResearchⅠ、Marine Chemistry等环境、海洋期刊发表论文70余篇,获得专利授权12项,获得多项省部级奖项。 主要科研与应用成果如下:1)开展我国主要边缘海和极区持久性有机污染物的时间序列变化和储量估算,提出全球变化背景下边缘海POPs海/气交换与垂直传输的海洋生物泵调控机制。2)较早开展大洋海水中细颗粒微塑料研究,发现南海存在数量可观的微塑料。3)利用氟利昂等污染物开展海洋学过程的示踪与人为碳估算,取得创新性成果,组装了国内第1套海水超痕量氟利昂/六氟化硫的吹扫捕集-气相色谱分析系统,获批多项发明专利,分析精度达到国际同类水平。4)构建和应用海湾陆源污染物排海总量估算技术及其系统,提出基于长时间序列观测的沿海社会、经济和环境生态协调发展的计量统计学方法。5)建立基于工业化生产的雨生红球藻培养技术和配方,搭建了微藻多级培养系统并研发新型LED藻类培养设备,拥有多项专利,服务于企业生产并产生实际效益。王子君 产品专员岛津企业管理(中国)有限公司毕业于天津大学应用化学专业,具有丰富的分析仪器产品经验,擅长环境应用解决方案。安立会 研究员中国环境科学研究院安立会(1975 -),博士,中国环境科学研究院研究员,博士生导师。主要从事天然与合成环境污染物的水生态毒理效应、环境质量基准与标准及生态风险评价研究,近年重点关注环境塑料垃圾与微塑料对生态系统安全和人体健康的影响,并致力于塑料污染来源及其控制对策,为开展我国环境微塑料的管控措施和治理提供科学依据。吴立冬 研究员中国水产科学研究院吴立冬,博士、研究员、博士生导师,入选中国水产科学研究院“百人计划”,国家市场监督管理总局食品补充检验方法和快检方法等国标方法审评专家。受邀成为“Biosensor and Bioelectronics”杂志编委(IF 12.545),Agriculture Communications 和Journal of Analysis and Testing杂志青年编委,Micromachines杂志(IF 3.523)专题主编。主持国家自然科学基金、国家重点研发计划、国家标准等国家级及省部级项目10余项。2022年获得了中国农学会青年科技奖、中国仪器仪表学会青年创新奖(朱良漪青年创新奖)和中国分析测试协会一等奖(排名第一)。主要从事水产品危害物快速检测方法及渔业环境智能化监测器件研发。迄今,吴立冬博士在Informat(IF 24.7)、Chemical Engineering Journal(16.7)、ACS nano、Food Chemistry、Biosensor and Bioelectronics、Anal. Chem等杂志发表80多篇论文,申请专利22项(其中美国专利1项,国际专利2项),授权7项(已转让2项)。免费报名点击:第四届环境新污染物检测网络会议:https://www.instrument.com.cn/webinar/meetings/newpollutant2023/诚邀您的参与!
  • 终于全了!微塑料检测主流技术专家报告!
    微塑料最早在海洋领域被科学家发现。近几年,随着科学家不断深入的研究,大气、土壤、陆地环境乃至生物体中相继检出微塑料,研究人员已开始尝试对微塑料样品进行更进一步的定性和定量分析。目前常用的微塑料检测方法包括光谱方法和热裂解-气质联用法(Py-GC/MS) 等手段。对于微塑料在合成过程中使用化学品和添加剂、微塑料表面吸附或吸收的污染物质的检测,还需要色谱质谱联用及原子光谱技术。科学家新发现:“微纳塑料”的定量检测方法微塑料是指直径小于5毫米的塑料颗粒,进一步还可分为纳米塑料、亚微米塑料、微米塑料。微纳塑料的检测难度更大,往往需要更高精度的分离-分析技术或分析方法。为此,主办方拟于5月26日举办环境研究系列活动——环境中微塑料分析检测新技术,并邀请到中科院于素娟副研究员出席。届时,于老师将主要介绍研究团队在微纳塑料分离测定方面的研究进展,介绍几种分离测定方法,如用浊点萃取-热裂解-气相色谱质谱联用仪,膜分离-热裂解-气相色谱质谱联用仪测定微纳塑料的质量浓度,单颗粒-电感耦合等离子体质谱测定微纳塑料的数浓度,以及基于总有机碳法测定微纳塑料的监测方法等。更多权威专家,陆续更新,点击右侧红字免费预约:5月26日,我要参会多位专家开讲:光谱、质谱技术检测微塑料显微、光谱技术作为微塑料检测的经典技术,最近又有了新发展。为此,主办方将于6月9日举办微塑料分析检测技术网络研讨会。会议聚焦光谱、质谱技术,涵盖海洋、饮用水、大环境健康范围内容的微塑料检测技术报告,将有疾控中专家团队、中科院烟台海岸带研究所专家开讲,同时,Nature发表微塑料检测技术文章的第一作者将惊喜出席!点此右侧红字免费参会:6月9日,我要参会会议日程:报告时间报告主题报告嘉宾09:30--10:00基于拉曼光谱检测饮用水中微塑料张岚 中国疾病预防控制中心环境所 主任/研究员10:00--10:30“见微知著,赛默飞助您洞察微观世界”-微塑料检测全面解决方案邓洁 赛默飞世尔科技(中国)有限公司 赛默飞分子光谱应用专家10:30--11:00聚合物和聚合物材料的MALDI-TOF质谱分析王勇为 布鲁克(北京)科技有限公司 应用经理11:00--11:30黄渤海微塑料污染特征研究王清 中国科学院烟台海岸带研究所 研究员14:00--14:30O-PTIR显微光谱技术识别环境中微塑料来源苏宇 东南大学能源与环境学院 教授/研究员14:30--15:008700 LDIR 激光红外成像如何准确快速的进行环境样品中微塑料含量测定张晓丹 安捷伦科技(中国)有限公司 分子光谱工程师15:00--15:30待定魏琳琳 布鲁克纳米表面仪器部 应用工程师15:30--16:00土壤微纳塑料分析检测技术待定 南京土壤所
  • 塑料拉伸强度及伸长率试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、大变形引伸计,根据《GB/T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸强度及伸长率试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸强度 伸长率 标称应变塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的大变形引伸计具有响应快、精度高的特点,配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10KN手动楔形拉伸夹具大变形引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级) 加载试验速率:5mm/min、50mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2标准1A型哑铃状试样,中间平行部分宽度约10mm,厚度约4mm,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启载荷零点保持功能消除样品夹持后的预应力,将大变形引伸计夹持在试样的中间部位后将引伸计清零,对应不同伸长率的样品分别以5mm/min、50mm/min的速度进行试验,直至样品断裂,设备监测到试样断裂后自动停止,设备将测量过程中的力以及变形数据完整记录,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果 图13-试验曲线PP图14-试验曲线PP+EPDM+TD20图15-试验曲线ABS图16-试验曲线PC图17-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,其中PP/PP+EPDM+TD20/PC/ABC试样有屈服现象,PA6+30GF无屈服现象,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、大变形引伸计,可以完全满足《GB/T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 海洋、土壤微塑料专场今日顺利召开!大气微塑料监测专场明早继续
    新兴污染物微塑料广泛分布于水体、陆地和大气环境中。4月27日上午9:00,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的“ 微塑料检测与分析网络研讨会”于线上顺利开幕!共计700余名听众参会,现场互动氛围热烈。上午的海洋微塑料监测方法的标准化及风险评估专场,南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》;生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》;安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》;珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》;中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》;中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。在下午的陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》;浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》;QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》;中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》;复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。微塑料在淡水、海洋和土壤介质中的迁移转化研究等备受科研界关注,各项优秀成果层出不穷,与之相对的是,对大气中微塑料的研究相对较少。大气中的微塑料研究起步较晚,但其潜在生态环境影响的范围更广,鉴于空气对人类生存的重要性,今后该领域的研究必然会逐渐增多。有研究表明,大气微塑料已分布于全球大气中,其分布特征与室内外环境、下垫面类型和污染扩散等环境因素相关。大气环境中微塑料主要来源于塑料制品的生产、使用和回收过程,少量来源于陆地和海洋中积累的微塑料。值得关注的是,新冠疫情中口罩的使用可能加重了大气中的微塑料污染。微塑料在大气环境中可发生悬浮、沉降和扩散等迁移,这种迁移同时受到微塑料形态、风力、风向和降水等因素的影响。2023年4月28日上午9:30,由仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办的微塑料检测与分析网络研讨会大气微塑料的监测及健康风险专场将于线上召开!报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/专家阵容如下:李道季 华东师范大学 教授《海洋大气微塑料入海通量:问题与挑战》李道季,博士,华东师范大学二级教授,博士生导师,华东师范大学塑料循环与创新研究院院长(海洋塑料研究中心主任),享受国务院特殊津贴专家。他目前还担任上海市海洋湖沼学会理事长、教育部科学技术委员会委员、联合国教科文组织海洋科学委员会(UNESCO-IOC)海洋塑料垃圾和微塑料区域培训和研究中心主任、联合国环境署(UNEP)海洋垃圾和微塑料科学咨询委员会委员、联合国海洋环境科学问题联合专家组(GESAMP)WG38和WG40成员等职务。龙鑫 中科院重庆绿色智能技术研究院 副研究员《东亚陆地-海洋微塑料大气传输的数值模拟研究》龙鑫,中国科学院大学环境科学理学博士,现任中国科学院重庆绿色智能研究院作副研究员。主要从事大气环境数值模拟研究,发表研究论文30余篇,先后主持国家自然科学基金青年基金、深圳市科创委面上项目、全球变化与中国绿色发展协同中心青年人才交叉项目等竞争性项目。2019年被认定为深圳市高层次专业人才(后备级)。胡辉 应用工程师 岛津企业管理(中国)有限公司《PY-TD-GCMS技术应用于微塑料中典型污染物分析》胡辉,应用工程师,从事色谱质谱工作10余年,擅长于环境、食品安全和电子电气等领域。刘凯 华东师范大学 博士后《城市冠层及海气边界层大气微塑料赋存观测》刘凯,华东师范大学河口海岸国家重点实验室在站博士后/助理研究员,主要从事微塑料陆海传输过程机制及其生态环境效应方面研究。近年来,在国家自然科学基金青年基金、上海市科技创新行动计划启明星培育“扬帆专项”、博士后面上项目和上海市博士后日常经费资助下,开展了陆海界面及海气边界层大气微塑料观测及大洋微塑料沉降模式方面的研究。报名速戳》》》https://www.instrument.com.cn/webinar/meetings/microplastic230427/
  • 微塑料检测标准盘点:多项团标在进程中
    微塑料(Microplastic),是指直径小于5毫米的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。纳米塑料(Nanoplastics)则是目前已知最小的微塑料,尺寸在1μm以下,体积小到可以穿过细胞膜。早在2004年,英国普利茅斯大学Thompson等在《科学》杂志上就首次提出了“微塑料”的概念。作为一类重要的新污染物,微塑料近年来多次引起业界的热议。据发表在《冰冻圈》杂志上的一篇论文称,新西兰坎特伯雷大学研究人员在南极洲的新降雪中首次发现了微塑料 ;发表在《整体环境科学》上研究显示,德国研究人员在城市收集的蜘蛛网中检测出了微塑料颗粒,并且蜘蛛网“捕获”的微塑料颗粒占整个蜘蛛网重量的10%,由多种不同的种类组成;一项发表在环境科学领域权威期刊《环境国际》上的研究披露,科学家首次在人类血液中发现微塑料,引发微塑料对人体健康长期影响的担忧;今年,来自美国国家标准与技术研究院 (NIST) 的化学家Christopher Zangmeister团队开展的一项新研究,带有防水涂层——低密度聚乙烯(LDPE)内衬的一次性纸杯,在接触 100 ℃ 热水短短 20 分钟后,释放的微塑料颗粒密度可达 1012/L。这意味着喝下一杯 300 ml 的外带热咖啡,将有上千亿微塑料颗粒进入体内,研究人员推算,这意味着平均每 7 个身体细胞就会吸收一个微塑料颗粒… … 不得不说,以上研究让大家细思极恐,与“白色污染”塑料相比,微塑料的危害体现在其颗粒直径微小上,这是其与一般的不可降解塑料相比,对于环境的危害程度更深的原因,其治理迫在眉睫!(更多阅读:南极雪中惊现微塑料 新污染物治理迫在眉睫)作为一种新型环境污染物,目前微塑料相关研究如火如荼,但是对其科学客观评判迫切需要建立标准化的分析测试方法和生态健康风险评估技术。由于微塑料物理特性以及化学组分等的差异,不同类型微塑料在不同环境中流动过程的时间均不相同,使微塑料检测变成一大难题。近年来发展的微塑料检测方法主要有傅立叶红外光谱法(FT-IR)、拉曼光谱法、热裂解气质联用法(Pyr-GCMS),以及其他方法等,大大提高了微塑料定量分析的准确性。(更多阅读:微塑料治理持续加码 这些仪器采购正当时)同时,相关标准也在完善过程中,据不完全统计,现行的地方标准有两项:DB21/T 2751-2017海水中微塑料的测定 傅立叶变换显微红外光谱法 ;DB37/T 4323-2021海水增养殖区环境微塑料监测技术规范 ;作为标准体系的一个重要部分,团体标准越来越吸引大家的关注。近年来,一系列微塑料相关的团体标准也在陆续立项或者发布中。其中,2020年6月,上海市环境科学学会批准立项了上海锐浦环境技术发展有限公司申报的《环境水体中微塑料的测定傅里叶变换显微红外光谱法》团体标准;2020年12月,中国材料与试验团体标准委员会批准CSTM标准《景观水中微塑料的测定 显微红外光谱法》立项;2021年5月,中国纺联标准化技术委员会发布关于下达21项团体标准计划项目的通知(中国纺联标委函[2021]3号),其中包括《纤维微塑料术语、定义和分类》、《纤维微塑料鉴别试验方法》、《地表水环境纤维微塑料分析测试方法》。序号项目编号标准项目名称标准类别制定/修订完成年限申报单位1202102-CNTAC001纤维微塑料术语、定义和分类基础制定2022东华大学2202102-CNTAC002纤维微塑料鉴别试验方法方法制定2022东华大学3202102-CNTAC003地表水环境纤维微塑料分析测试方法管理制定2022东华大学其中,《T/CSTM 00563—2022 景观环境用水中微塑料的测定 傅里叶变换显微红外光谱法》已经于2022年2月21日公布,2022年05月21日实施。该文件规定了傅里叶变换显微红外光谱法测定景观环境用水中微塑料的术语和定义、方法原理、仪器设备与试剂、测试样品制备、测定步骤、结果分析与计算等,适用于景观环境用水中尺寸范围在50 μm-5 mm之间的微塑料的形状、颜色、尺寸、数量和聚合物种类的测定。其他水环境中微塑料的测定可参考本方法。此外,2021年4月13日,中国水利企业协会发布通知,对《地表水中微塑料的测定(征求意见稿)》征求意见,标准中涉及了显微拉曼成像光谱法、傅立叶变换显微红外光谱法、傅立叶变换红外光谱法等。2022年初,“中国材料试验团体标准委员会/基础与共性技术领域委员会/微塑料及其环保试验技术委员会(CSTM/FC00/TC03)成立暨专题报告会”召开期间,CSTM 标准委员会批准同意在基础与共性技术领域委员会(CSTM/FC00)下设立微塑料及其环保试验技术委员会。与会专家、委员组成评审组召开团体标准立项答辩会,对《饮用水中微塑料的测定 傅里叶变换显微红外光谱法》、《地下水中微塑料的测定 傅里叶变换显微红外光谱法》、《污水中微塑料的测定 傅里叶变换显微红外光谱法》、《海产品中微塑料的测定 傅里叶变换显微红外光谱法》、《土壤中微塑料的测定 傅里叶变换显微红外光谱法》等5项CSTM团体标准进行立项评审,经全面论证后一致同意立项。2022年7月19-22日,仪器信息网联合江苏省分析测试协会、中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等共同举办“第十一届光谱网络会议(简称iCS2022) ”。其中,针对微塑料的热点话题,特别邀请了中国地质调查局南京地质调查中心沈小明高级工程师和中国科学院烟台海岸带研究所王运庆研究员,分别就《激光共聚焦显微拉幔光谱分析技术在海岸带沉积物微塑料检测中的应用》、《SERS标记纳米塑料及其在典型模式生物体内分布研究》主题发表演讲。立即报名》》》
  • 塑料拉伸模量及泊松比试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、Reliant精密轴向引伸计以及横向引伸计,根据《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸模量及泊松比试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸模量 泊松比塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持对中装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的Reliant精密轴向引伸计以及横向引伸计配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10kN手动楔形拉伸夹具Reliant轴向引伸计Reliant横向引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级)加载试验速率:5mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2的1A型试样,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启试样保护,将夹持后的预应力消除,然后分别将横向引伸计及轴向引伸计夹持在试样的中间部位,然后将引伸计清零,再以5mm/min的速度进行试验,直至拉伸应变超过拉伸模量及泊松比取值范围后,停止测试,将引伸计卸除。测量过程中的力以及变形数据,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果图8-试验曲线PP图9-试验曲线PP+EPDM+TD20图10-试验曲线ABS图11-试验曲线PC图12-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、轴向变形、横向变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,模量大刚性高的样品,曲线斜率更大,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、Reliant轴向引伸计以及横向引伸计,可以完全满足《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 微塑料检测网络会议顺利闭幕!回看视频上线
    2004年,英国普利茅斯大学的汤普森等人在《科学》杂志上首次提出了“微塑料”的概念,其指的是直径小于5毫米的塑料碎片和颗粒。2023年4月27日-28日,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院联合主办“ 微塑料检测与分析网络研讨会”。本次会议共邀请领域内相关报告专家15位,吸引线上听会观众700余位报名。现场学术报告与答疑讨论穿插进行,专家与听众共同就微塑料检测与分析进行了一场别开生面的学术研讨。《全球海洋微塑料的源与汇:三维传输模型视角》(点击图片回看)会议以海洋微塑料监测方法的标准化及风险评估专场开场。南京大学张彦旭教授分享报告题为《全球海洋微塑料的源与汇:三维传输模型视角》。报告围绕目前微塑料的河流入海通量有多高?海洋中有多少塑料?不同年代和国家的贡献有多大?河流入海的塑料归驱如何?这四大关键科学问题展开。《海洋微塑料标准化监测技术方法研究进展》(未授权回看)生态环境部国家海洋环境监测中心张微微副研究员分享报告题为《海洋微塑料标准化监测技术方法研究进展》。报告围绕微塑料问题产生的背景、国内外微塑料的监测进展、微塑料监测存在的挑战三大方向展开。报告指出,2019年,塑料产生了18亿吨温室气体排放,相当于全球排放量的3.4%。《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》(点击图片回看)安捷伦科技(中国)有限公司张晓丹工程师分享报告题为《安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案》。报告介绍了安捷伦 8700 LDIR 激光红外成像的详细解决方案。《Perkinelmer微塑料检测分析方案》(点击图片回看)珀金埃尔默企业管理(上海)有限公司查珊珊工程师分享报告题为《Perkinelmer微塑料检测分析方案》。报告详细分享了Perkinelmer最新的微塑料检测分析方案。《黄渤海微塑料污染及其生态效应》(未授权回看)中国科学院烟台海岸带研究所王清研究员分享报告题为《黄渤海微塑料污染及其生态效应》。报告提到微塑料的研究有一系列重要的背景与意义:2008年,欧盟海洋战略框架指令和美国NOAA将微塑料作为重要监测研究对象;2019年,G20首脑峰会通过《大阪宣言》,重申应采取措施解决海洋垃圾污染,尤其是海洋塑料垃圾和微塑料;2022年,来自160个国家的代表在乌拉圭召开关于制定全球塑料公约的第一轮谈判。《海洋微塑料的生态效应研究进展及展望》(未授权回看)中科院南海海洋研究所徐向荣研究员分享报告题为《海洋微塑料的生态效应研究进展及展望》。报告介绍到,微塑料的摄氏效应会造成物理堵塞或损伤,会沿食物链传递与累计;微塑料的毒性效应会传播有毒化学物质,会引起生物中毒现象;微塑料的附着效应还会影响生物多样性,并导致生物入侵。《农田土壤微塑料污染及其环境风险研究进展》(未授权回看)陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场,华东师范大学何德富教授分享报告题为《农田土壤微塑料污染及其环境风险研究进展》。报告介绍了农田土壤微塑料的多种分析检验方法,包括传统的密度分离法后使用体视镜记录微塑料的形态及尺寸,并结合显微傅里叶变换红外光谱进行聚合物类型判定。《微纳塑料检测分析中的那些“坑”》(点击图片回看)浙江工业大学潘响亮教授分享报告题为《微纳塑料检测分析中的那些“坑”》。在采样、分离与富集阶段,现在常用的大面积水体拖网采样存在孔径大小不一、只能采集相对大粒径的塑料微粒等问题;而采用密度法和简单浮选方法很难达到农田土壤中微塑料的分离,存在土壤中有机质和黏土容易黏附在微塑料表面等问题。这些大大小小的“坑”都会影响农田土壤微塑料的分离与检测。《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》(点击图片回看)QUANTUM量子科学仪器贸易(北京)有限公司赵经鹏经理分享报告题为《亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究》,介绍了亚微米分辨红外-拉曼同步测量系统。《微塑料表面生物膜的结构与功能研究方法》(未授权回看)中国科学院南京土壤研究所涂晨副研究员分享报告题为《微塑料表面生物膜的结构与功能研究方法》。报告内容涵盖微塑料表面生物膜的形成过程及其组成;微塑料生物膜的主要研究方法;微塑料表面生物膜形成的影响因素;生物膜的形成对微塑料表面性质的影响;生物膜的形成对微塑料吸附污染物的影响与机理;生物膜的形成对微塑料降解的影响及未来的研究展望等。《基于表面增强拉曼光谱的纳米塑料检测》(点击图片回看)复旦大学张立武教授分享报告题为《基于表面增强拉曼光谱的纳米塑料检测》。报告聚焦拉曼光谱技术在微塑料研究上的应用,指出传统的拉曼光谱存在信号响应较弱、易受荧光干扰、缺乏深度信息等问题。而如今的改进技术包括傅里叶变换拉曼光谱、针尖增强拉曼光谱、共聚焦拉曼光谱、相干抗斯托克斯拉曼散射技术、表面增强拉曼光谱(SERS)、受激拉曼散射技术(SRS)等。《海洋大气微塑料入海通量:问题与挑战》(未授权回看)28日上午的大气微塑料的监测及健康风险专场,华东师范大学李道季教授分享报告题为《海洋大气微塑料入海通量:问题与挑战》。报告提到,到目前为止,全球所有关于大气微塑料的研究包括大气沉降和大气悬浮。据了解,李道季课题组通过西太平航次在2019年首次揭示了大气微塑料会持续由陆向海传输,并通过估算模型揭示了西太平洋大气塑料袋的存量为1.21吨。《东亚陆地-海洋微塑料大气传输的数值模拟研究》(点击图片回看)中科院重庆绿色智能技术研究院龙鑫副研究员分享报告题为《东亚陆地-海洋微塑料大气传输的数值模拟研究》。报告提到大气微塑料的传输存在形态、来源复杂;采样困难,数据少;远洋及冰川等生态敏感区难以采集;微塑料对于生态系统的影响难以评估等问题。而研究微塑料的源及汇的动力过程及通量可使其造成的生态效应被准确评估,并方便开展有效消减干预对策。《PY-TD-GCMS技术应用于微塑料中典型污染物分析》(点击图片回看)岛津企业管理(中国)有限公司胡辉应用工程师分享报告题为《PY-TD-GCMS技术应用于微塑料中典型污染物分析》。详细介绍了岛津最新的PY-TD-GCMS技术。《城市冠层及海气边界层大气微塑料赋存观测》(点击图片回看)华东师范大学刘凯博士后分享报告题为《城市冠层及海气边界层大气微塑料赋存观测》。面对目前大气微塑料领域亟待解决的大气输送过程中时空分异、理化多样性的变化未知等问题,该报告提出了可靠的大气微塑料采集分析方法,并阐明了微塑料在城市冠层及海气边界层的赋存特征。
  • 日本岛津推出塑料纯度自动化检测技术
    &mdash 岛津与三菱电机共同开发回收塑料的高精度材料识别技术&mdash 三菱电机株式会社与株式会社岛津制作所共同开发出「回收塑料高精度材料识别技术」,该技术能够以99%以上的精度瞬间识别在废弃家电产品回收工程中分选回收的塑料种类。以往以手工作业的回收塑料的纯度检测实现了自动化。 塑料高精度材料识别装置全景 塑料高精度材料识别装置概念图 <开发特长> 1.高速・ 高精度识别回收塑料的种类 ・ 无论着色剂、添加剂的含量有多少,都可识别回收塑料的种类 ・ 基于识别算法,用时约1秒钟完成向传输板上的塑料片照射中红外光以及反射光解析,实 现99%以上的高精度识别 2.自动传输・ 连续识别塑料片 ・ 可将尺寸各异的塑料片自动传输到识别位置上进行连续识别 ・ 按种类自动分选识别的塑料片 <今后工作> 三菱电机株式会社正基于本技术争取提高回收塑料的纯度检测效率,扩大高纯度自循环回收量。株式会社岛津制作所正推进塑料回收装置产品化,以应用于家电回收等中。 ※本技术开发获得经济产业省2011年度产业技术实用化开发事业费补助金[资源循环实证事业(塑料的高度材料识别技术及回收材料化技术)]并实施。 <开发背景> 三菱电机株式会社以降低地球环境负荷、有效利用资源为目的,不断致力于废弃家电产品的再资源化与再利用的「自循环回收」工作,已于株式会社HYPER CYCLE SYSTEMS实施了铁、铜、铝以及单一材料塑料的回收工作,并开发了难以分选的「混合破碎塑料」的回收技术,于2010年在株式会社Green Cycle Systems Corporation启动业界首家大规模塑料材料化工厂,扩大了家电产品的主要塑料(PP、PS、ABS)的回收量。 为了提高以往手工作业的回收塑料纯度检测的效率和高精度化,接受经济产业省2011年度产业技术实用化开发事业费补助金,与日本著名分析仪器厂家株式会社岛津制作所共同开发了回收塑料的高精度识别技术。为基于纯度检测自动化的回收塑料纯度检测高速化与高精度化做出了贡献。 <特长详细内容> 1.高速・ 高精度地识别回收塑料的种类 传统的近红外光塑料分选装置由于受到从废弃家电产品回收的「混合破碎塑料」所含着色剂的干扰,无法识别浓色塑料。 此次开发出使用波长长于近红外光的中红外光,不受着色剂、添加剂影响,高速・ 高精度地识别包括浓色塑料在内的塑料种类的技术。采用不易受到塑料片形状差异影响的光学系统以及高灵敏度识别反射光的检测器,并应用根据1秒钟内多次测定同一塑料片内反射光而获得的数据综合识别塑料种类的算法,达到了99%以上的精度。 2.自动传输・ 连续识别塑料片 倾斜开孔的圆盘状传输板,利用自重将每一塑料片逐一吸附在开孔上,然后自动传输到识别位置上,实现连续识别。使用空气枪自动分选已识别的塑料片,实现了塑料纯度检测的自动化。 在株式会社Green Cycle Systems Corporation,将试制装置应用于分选回收的破碎塑料的纯度检测,结果可知,获得了与传统的手工检测同等的精度。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 土耳其研究人员的微塑料检测技术进入全球文献
    土耳其研究人员的开创性微塑料检测技术受到国际赞誉,可迅速识别环境和健康危害,快速准确地解决关键问题,获得全球认可。土耳其研究人员的技术能够迅速识别与微塑料颗粒相关的环境和健康风险,因此获得了国际赞誉。土耳其首都安卡拉比尔肯特大学(Bilkent University)机械工程系教师塞利姆哈内(Selim Hanay)及其同事的工作数据发表在国际科学杂志《先进材料》(Advanced Materials)上。哈内的新技术还得到了欧洲研究理事会(ERC)初创项目和ERC概念验证项目的支持,这些项目都是欧盟著名的资助项目。哈内在接受阿纳多卢通讯社采访时说,科学家们认为,通过食物、液体或空气,每周都会有相当于一张信用卡的微塑料进入人体。他说:“小于5毫米的微塑料和纳米塑料无法排出体外,因为它们不能被生物降解。低于100纳米的塑料微粒可以穿过血脑屏障进入人体细胞,并在大脑中积聚。这种情况威胁着人类健康。目前的技术还不够先进,不足以发现纳米塑料。”他强调,这些超微粒子会在人体的关键组织中积聚,对健康产生不利影响。现有技术很难检测到20微米以下的微塑料,也就是人体细胞的大小。使用这些设备,分析一个微塑料颗粒至少需要10分钟。但要衡量这种威胁,需要连续分析数千个颗粒。他说:“如今,这些分析既缓慢又昂贵,需要训练有素的博士人员。例如,如果我们想在欧洲与一家公司签约进行微塑料分析,他们无法在六周内给我们结果。”他表示,需要快速、廉价的技术来监测微塑料,尤其是饮用水中的微塑料,而他们最近开发的系统正好满足了这一需求。他们开发了第一个使用电子方法进行分析的设备,并表示他们首次能够对20微米及以下的微塑料进行分类。他说:“我们为该设备开发的传感器可以对微型塑料、玻璃材料和含有二氧化钛添加剂的颗粒进行分类。这些传感器使用非常小的液体通道,称为微流体通道。当颗粒流经该通道时,它们会相继进行两次电子测量。当我们把这两种电子测量结合起来时,就能得到这些粒子的电子特性与速度较慢、成本较高的光谱学方法相比,这种系统可以进行更快、更实用的分类。”快速检测可能的威胁哈内表示,他们为该系统制定了两个阶段的计划,他说:“首先,我们希望建立一种可以分析水(微塑料)的服务。当一个机构希望对其水进行分析时,我们就会使用各种技术进行分析。我们希望在一天左右的时间内将结果反馈给用户。这样,饮用水中可能存在的微塑料污染源就能很快被检测出来”他表示这些微粒会在河流和海洋中积累,他强调说,他们的工作对监测和减少微塑料污染具有重要意义。他补充道:“该设备为现场分析水样提供了一种快速、经济、便携的解决方案。它可以在全球范围内部署,用于评估河流、湖泊和海洋等各种水环境中的微塑料污染水平。我们希望与图尔基耶和欧洲的利益相关者,如地方和城市政府、水务公司和部委一起展示如何推进这项技术。”哈内表示,在土耳其科学技术研究理事会(TÜBITAK)支持的另一个相同主题的项目中,正在开发一种测量水和空气中纳米塑料风险的设备。他表示该项目得到了ERC启动基金和ERC概念验证基金的支持,他说:“我们的项目还有一年左右的时间。我们正在一步一步地解决剩余的问题,在这里研究不同的塑料形状。在取得这些技术进步后,我们将把这项应用作为一项服务提供给各个机构。”哈内表示,他们开发的设备的概念验证结果发表在《先进材料》上,这是一份涵盖材料科学的同行评审科学周刊,因此向科学界公开。他表示,他们有权获得欧洲研究理事会的支持,将他们的开创性工作付诸实践。哈内表示,世界各地已开始采取措施应对微塑料污染,根据美国加利福尼亚州的一项新法律,将对饮用水中的微塑料污染进行持续检查,加拿大和欧盟也正在讨论类似的措施。
  • 全国塑料标准化技术委员会年会召开及新一届委员诞生
    2014年4月10日,SAC/TC15暨全国塑料标准化技术委员会年会胜利开幕,全国塑标委负责塑料的国家标准和行业标准编制、修订工作,以及与国际标准化组织塑料标准技术委员会(ISO/TC61)的技术归口管理工作。TC15主要负责塑料术语、通用方法、热固性塑料产品、工程塑料产品等的标准化工作,现已制订塑料国家标准251项、塑料行业标准95项。SAC/TC15于2013年经国家标准化管理委员会批准正式成立了第八届技术委员会,此次成立大会是新一届委员会开启标准化工作的第一次大会也是TC15的年会。 本次会议主要研究讨论国内外塑料及相关国家标准、行业标准的制定及修订,2014年新上标准项目情况,如负荷变形温度的测定、拉伸性能测定、维卡软化点测定等,本次会议也为国内为塑料行业的专家学者提供一个学术交流的平台。国家标准化管理委员会、中国石油和化学工业联合会、中蓝晨光化工研究设计院有限公司、深圳万测试验设备有限公司等单位出席了本次会议,深圳万测试验设备有限公司董事长安建平先生当选为全国塑料标准化技术委员会(SAC/TC15)第八届技术委员会委员。
  • 本周四召开,报名从速!微塑料检测与分析网络研讨会全日程确定
    微塑料(microplastic),指的是在人为生产或太阳照射、太阳侵蚀、生物降解、机械破裂等形成尺寸5mm以下的塑料小颗粒。据现有研究表明,微塑料广泛地存在于土壤、空气以及水体环境中,并不断迁徙扩大污染面积,进一步通过呼吸道、消化道等途径进入生物体内,以物理堆积和化学方式损害健康。在我国,POPs、抗生物、微塑料等新污染物在近年引发新一轮的关注。有关微塑料污染监测治理的相关政策、标准目前已在陆续颁布的过程中。比如,在2021 -2022年各省发布的十四五生态环境保护规划中,已有多数省份提到要强化微塑料污染管控;而在2022年下半年,各地发布的新污染物治理行动方案中,所有省份均提到了要强化微塑料污染治理;2023年2月,上海印发重点管控新污染物清单(2023年版),微塑料上榜。基于此,仪器信息网、上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院将于4月27日-4月28日联合主办“ 微塑料检测与分析网络研讨会”,15位大咖专家齐聚,共同就微塑料检测与分析进行交流讨论。主办单位:仪器信息网 上海市海洋湖沼学会 华东师范大学塑料循环与创新研究院报名通道已开启:https://www.instrument.com.cn/webinar/meetings/microplastic230427/4月27日上午:海洋微塑料监测方法的标准化及风险评估专场张彦旭南京大学教授全球海洋微塑料的源与汇:三维传输模型视角张微微生态环境部国家海洋环境监测中心副研究员海洋微塑料标准化监测技术方法研究进展张晓丹安捷伦科技(中国)有限公司分子光谱应用工程师安捷伦 8700 LDIR 激光红外成像水中微塑料测试分析整体解决方案查珊珊珀金埃尔默企业管理(上海)有限公司材料表征产品高级技术工程师兼北区实验室经理Perkinelmer微塑料检测分析方案王清中科院烟台海岸带研究所研究员黄渤海微塑料污染及其生态效应徐向荣中科院南海海洋研究所研究员海洋微塑料的生态风险评估4月27日下午:陆地土壤环境微-纳塑料的分析方法及有害添加物的检测专场何德富华东师范大学研究室主任/副教授农田土壤微塑料污染及其环境风险研究进展潘响亮浙江工业大学教授微纳塑料检测分析中的那些“坑”赵经鹏QUANTUM量子科学仪器贸易(北京)有限公司产品经理亚微米分辨红外-拉曼同步测量系统在微塑料中的应用研究涂晨中科院南京土壤研究所副研究员微塑料表面生物膜的结构与功能研究方法张立武复旦大学教授基于表面增强拉曼光谱的纳米塑料检测4月28日上午:大气微塑料的监测及健康风险李道季华东师范大学教授海洋大气微塑料入海通量:问题与挑战龙鑫中科院重庆绿色智能技术研究院副研究员东亚陆地-海洋微塑料大气传输的数值模拟研究胡辉岛津企业管理(中国)有限公司 应用工程师PY-TD-GCMS技术应用于微塑料中典型污染物分析刘凯华东师范大学博士后城市冠层及海气边界层大气微塑料赋存观测报名通道已开启:https://www.instrument.com.cn/webinar/meetings/microplastic230427/
  • 又一顶刊!微塑料快速检测新成果!
    研究证实,人体中微塑料的主要来源,除了生活中的塑料制品,还包括我们平时吃的海产品等。那么,生物体内的微塑料从何而来?根据有关报告,海产品似乎是目前了解最多的人类摄入微塑料的来源。正因为如此,近几年,微塑料污染对养殖水产品的影响引起了广泛关注。而渔业环境中的微塑料主要来源于陆地上大型塑料垃圾的降解及养殖过程中塑料的使用,长期暴露于高浓度微塑料环境中,养殖水生物的质量安全和生殖发育都将受到较大影响。顶刊新技术:淡水及海水养殖环境中微塑料快速检测及去除技术近日,中国水产科学研究院质量与标准研究中心吴立冬副研究员与东海水产研究所渔业生态环境实验室合作研发出一种可快速富集渔业环境(淡水及海水养殖环境)中微塑料的磁性纳米材料(mANM)。此项成果发表在环境科学顶级期刊《Journal of Hazardous Materials》。该复合材料对水体中不同粒径、多种典型微塑料均有作用,并且可通过调节pH控制磁性纳米颗粒聚团大小,实现在强磁场中30秒快速分离微塑料。为了更好地促进微塑料检测技术发展,网络讲堂邀请到论文通讯作者——中国水产科学研究院吴立冬副研究员,在8月25日做精彩的技术分享。(点击图片,立即报名)同时,本次会议特邀嘉宾——中科院烟台海岸带研究所陈令新研究员,将分享课题组在近海环境中分析新污染物样品前处理技术的最新研究进展。陈令新研究员作为海洋环境分析监测领域的资深权威专家,科技成果丰富,并著有海洋监测领域的宝典书籍——《海洋环境分析监测技术》,报名并观看本次直播,有机会免费领取哦!免费报名:https://www.instrument.com.cn/webinar/meetings/ocean20220825/(京东售价:161.90元)
  • 【直播】微塑料检测!南大、复旦、中科院等高校科研院所大咖云集!
    2004年,英国普利茅斯大学的汤普森等人在《科学》杂志上发表了关于海洋水体和沉积物中塑料碎片的论文,首次提出了“微塑料”的概念,其指的是直径小于5毫米的塑料碎片和颗粒。自此,微塑料污染开始引发关注。近年,微塑料污染的危害已经在科研界被广泛证实。目前,我国陆续颁布微塑料相关的政策、标准。2021 -2022年,各省发布的十四五生态环境保护规划中,已有多数省份提到要强化微塑料污染管控;2022年下半年,各地发布的新污染物治理行动方案中,所有省份均提到了强化微塑料污染治理;2023年2月,上海印发重点管控新污染物清单(2023年版),微塑料上榜。为了促进微塑料检测技术发展,同时推动我国新污染物治理,仪器信息网联合上海市海洋湖沼学会、华东师范大学塑料循环与创新研究院,将于4月27日-4月28日联合主办“ 微塑料检测与分析”网络研讨会,届时将邀请领域内相关专家出席,共同就微塑料检测与分析进行交流讨论。三大分会场,聚焦微塑料:【1】海洋微塑料监测方法的标准化及风险评估【2】陆地土壤环境微-纳塑料的分析方法及有害添加物的检测【3】大气微塑料的监测及健康风险本届会议赞助商:本届会议适合的参会人群:【1】商业检测机构:第三方检测人员、实验室主任、实验室主管等【2】政府检测部门:环境监测总站、各省市环境监测中心技术检测人员、管理人员;各省市环境生态中心科长、所长、执法人员等【3】科研院所:农科院、中科院、环科院、食品科学院、检科院等单位研究员或技术人员【4】高等院校:各普通高等院校环境、农业等专业教授、分析测试中心技术或管理人员【5】工业企业:大型环保企业、环保工程单位技术人员、管理人员等赞助商会议合作:(刘老师:13717560883 微信同号)形式1:【1】可在任一会场做30分钟主题报告1次,会后报告视频剪辑后上传至3i讲堂【2】列为本届会议赞助商,在会议页面展示企业logo【3】会议报道、EDM、海报、主持人口播等体现赞助商名称【4】直播期间,弹出调研问卷(注:本次会议免费增值服务)形式2:【1】可在任一会场做15分钟技术展示1次,会后展示视频剪辑后上传至3i讲堂【2】列为本届会议赞助商,在会议页面展示企业logo【3】会议报道、EDM、海报、主持人口播等体现赞助商名称【4】直播期间,弹出调研问卷(注:本次会议免费增值服务) 用户免费参会 报名链接:https://www.instrument.com.cn/webinar/meetings/microplastic230427/可添加助教微信:13260310733(保存二维码图片,相册中长按识别后添加)
  • 我国塑料包装检测仪器市场崛起
    目前国内塑料凹版油墨以溶剂型油墨为主,超标的苯对人体危害极大,而凹印速度高,必须使用挥发性强的油墨才能满足印刷要求,这使得环保问题在凹印工艺中尤为突出。水性油墨由于不含挥发性有机溶剂,完全消除了溶剂型油墨中的有毒有害物质,避免对包装商品产生污染,是目前各种油墨中唯一经过美国FDA认可的无毒油墨。目前国内仅有极少数厂家生产该品种水墨,但由于水性油墨在凹版印刷中其附着力、印刷速度、光泽等方面还不能完全达到溶剂型油墨性能水平,一时无法满足塑料薄膜彩色包装印刷厂商的要求。   在国家和用户要求包装制品严格按标准生产的呼声越来越高的情况下,用于包装原辅材料和制品的检测仪器市场开始渐热,各种国产和进口的包装专用检测仪器纷纷出现在市场上。   据统计,我国年销售收入5,00万元以上的包装企业有1万余家,其中近三分之一为塑料包装制品企业。这些企业中过去只有少数企业拥有自己的检测试验室,而现在小企业也开始重视建立自己的检测室。专家指出,由于塑料包装制品大多具有阻隔水蒸气、氧气、二氧化碳功能,所以有关这方面检测仪器的需求将越来越大。
  • 被“橡塑”粘住的科研工作者——访青岛科技大学橡塑材料与工程教育部重点实验室庄涛
    高分子材料包含橡胶、塑料、化纤等,对社会发展和人们的生产生活有着重要影响。橡塑材料是高分子应用中最为广泛应用的一类。随着高分子材料功能和环保性的要求,橡塑材料的研究有哪些新进展,其中科研仪器发挥了哪些作用?带着这些问题,仪器信息网编辑采访了青岛科技大学橡塑材料与工程教育部重点实验室的高级实验师——庄涛。青岛科技大学 庄涛“感情”不断升温的“科研”与“生活”庄涛进入青岛科技大学就读高分子材料专业时,并不知道这所学校(当时名为青岛化工学院)是中国橡胶工业领域的重要人才培养基地,被社会赞誉为“中国橡胶工业的黄埔”。“入学之后才发现学校的高分子材料以橡胶为特长,上课讲的是轮胎、胶管、胶带、胶鞋等,一点都不‘高大上’,和预期相差甚远。”落差感扑面而来,如何在橡胶领域寻找研究兴趣成为头等大事。转折很快出现在一项研究中,当时某种合成橡胶需要国外进口,国产新开发的产品质量控制指标(门尼粘度)与进口产品一致,但是下游客户轮胎生产厂的生产工艺总出现问题,且找不到原因。庄涛表示:“当时企业找到我们,希望在实验技术层面上解决这个问题。我们通过凝胶渗透色谱(GPC)技术准确测出国产和进口合成橡胶分子量的分布,找到两者的差异,为企业优化加工工艺提供了建设性意见。这让我获得了巨大的成就感,找到了研究的意义,也深刻体会到导师说过的一句话,‘橡胶有粘弹性,一旦接触,就被粘上,无法弹开’”。随着时代的发展,人们在材料科学、医学应用和环境保护等领域越来越关注功能与特种橡塑材料。“从橡胶领域扩展到其他应用类高分子材料,通过解决材料应用中实际难题帮助到别人,实现自己的研究价值,让我觉得自己的工作不只是为了物质财富,还为改善国民生活和人类的健康发挥更大的价值和意义。”庄涛说。他介绍了一个医用高分子材料研究的实例。在骨科领域,通常都需要植入物来固定骨骼。一直以来,钛合金因其优越的强度、较低的排斥风险和惰性成为植入物的首选。“近几年,可降解可吸收的工程塑料代替金属材质的螺钉等植入物,这些材料可以慢慢在体内被吸收,成为研究热点。”这些材料的出现,不仅避免去除操作造成的二次手术,还具有安全无毒、促进细胞生长等优点,对患者临床和术后病情的改善具有积极的应用价值。高分子材料的应用研究不断进步,为人们的生活带来了更多的便利和改善。庄涛不禁感慨道:“以前科研工作中前沿的技术总是离生活很遥远,但是这两年科研与生活越来越近,日常生活中碰到的问题,也是目前在技术攻关的一些难题。一旦研究成功马上就转化到实际的生活中,医疗行业尤为明显。”这些成就离不开科研工作者的努力和先进科研仪器的支持。橡塑材料研究的“助手”——GPC在庄涛的整个研究生涯中,无论是橡胶材料还是应用高分子材料的研究,都离不开各种科研仪器的支持,包括GPC、XRD、BET等,其中应用最频繁的是凝胶渗透色谱仪(GPC)。凝胶渗透色谱仪高分子材料是由单体在催化剂作用下聚合而成的分子量高且具有一定分布的材料。结构决定性能,对分子结构的调控和改性可获得不同类型的高分子材料,由于易改性、易加工等特点,使其具有其他材料不可比拟、不可替代的优异性能。GPC技术可以通过多检测器联用来分析材料的分子量和分子量分布度、以及分子链嵌段结构组成和分子链构象信息,帮助优化加工工艺,确保产品的质量和稳定性。常温GPC的研究范围有限,无法检测常温下无法溶解的结晶性高分子材料。庄涛最近的研究刚好遇到了这个难题。特种工程塑料聚苯硫醚(PPS)常温下无法溶解,不满足仪器进样要求。“这一特性导致无法从微观结构层面分析聚合物的特性,所以一直无法攻克这个材料。”他谈到,“研究发现PPS可以在220℃溶解于1-氯萘溶剂中。为解决高温检测的难题,我们联系到东曹(上海)生物科技有限公司的研究人员。通过和厂家不断的沟通和讨论,引进了温度上限为220℃的高温GPC。在220℃下持续摸索检测条件,最终成功实现检测目的。”庄涛在学习和工作中使用过多个品牌的GPC,但是让他印象最深刻的还是东曹。他表示说:“分析仪器专业化较强,很多品牌的GPC是从液相发展而来,产品的结构设计都是以液相色谱作为基础,并不太适合GPC的检测。而东曹的产品设计最初就是按照凝胶色谱的机理设计的。”深入聊到具体的设计特点,他举例说:“比如温度的控制,东曹的GPC把整个系统做成一个整体,从管路到各个部件都进行控温。再比如双流路的管路结构,参比池和样品池分成两套独立的管路,在检测过程中都是流动状态;这种流路设计,保证了实际检测过程中示差信号的稳定性,实现了极稀溶液检测,提高了测试准确性。”“另外,东曹GPC的仪器性能在硬件和软件方面都很优异。在硬件方面,仪器运行10年以来,测试了1万多个的样品,仅仅维护过一个泵头。”庄涛回想到。东曹的GPC仪器有选配的柱切换阀,可以同时搭载两套不同规格的色谱柱,“在软件方面,仪器更换色谱柱可以实现‘一键操作’”,只需提前安装不同型号的色谱柱即可。”仪器技术飞速发展 为科研注入“强心剂”庄涛在青岛科技大学学习和工作二十多年,一直奋斗在分析检测一线,见证了不同时期分析仪器的进步。他介绍说:“刚入学时,实验课程能接触到的仪器很少,实验仪器非常庞大,比如凝胶渗透色谱(GPC),需要一个小房子才能装得下;色谱柱有一米多长,还要自装填料;采集信号通过一个指针式绘图仪绘制。整个实验和数据分析过程所花费的时间可想而知。”仪器开始更新是在读研究生的时候,“那是我第一次见到国外进口的高档分析仪器,”庄涛回忆道,为了维护好仪器,整个学院都小心翼翼的。不仅配上了单独的房间,还装上空调,严格保证环境恒温恒湿,卫生一尘不染。“当时仪器操作都是由专职老师完成,研究生都没有权限。”独立操作大型仪器是在读博期间。学院盖了新的实验楼,购置了大量的先进分析仪器。建设完成后的实验室具备了实现各种各样的表征手段,也有足够的机时让学生操作仪器,自主测试。检测的效率和科研能力都有了大幅的提升。到了工作阶段,分析测试的仪器要兼顾教学和科研,即使多台/套的仪器也无法满足测试的需求,尤其是GPC。庄涛说:“老师们的科研项目越来越多,学生的数量也急剧增加。为了提高测试效率,自动进样器就成为必需的配置。可以让GPC仪器全天候运行,解放了测试人员的精力,也提高了仪器分析测试的效率。测试人员只需要偶尔到实验室看看仪器状态是否正常,有没有报警或报错。”分析仪器的技术水平直接影响科研的质量和速度。随着技术不断创新和产品升级,仪器在科研方面的助力也更明显。在领导的高瞻远瞩以及同事们的共同努力下,庄涛所在的实验室从一个小小的教学实验室逐步发展成橡塑材料与工程教育部重点实验室。他自豪的表示:“实验室教学质量和效率明显提升,让每个本科生都可以进入实验室操作仪器,这对学生来说是来之不易的机会。”橡塑材料与工程教育部重点实验室庄涛,作为科研工作者,不断扩展新的研究领域,解决生活应用中的难题;作为老师,以培养学生为己任,靠星星之火照亮每位学生前进的路;作为实验师,依赖仪器却不受限于仪器,积极实践自己的新想法、新思路,充分发挥每台仪器的最大效用。这三个身份交织在一起,“忙并快乐着”,为国家和社会的进步贡献自己的力量,相信未来有更多的可能性。在学校这片土地上滋养出的花持续盛放着……
  • 微塑料研究最前沿丨微塑料监测遇难题,我们该何去何从?
    近年来,塑料污染在水环境(海洋和淡水)中的问题日益严重,得到广泛报道和关注。据《Science》杂志研究报告,2010 年全球192 个沿海和地区共制造2.75 亿吨塑料垃圾,其中约有800 万吨排入海洋,并且塑料垃圾数量不断增多,到2015 年已有超过900 万吨塑料垃圾排入海洋。如果不加以控制,科学家预计到2050年海洋中的塑料垃圾排放量将会是2010年的两倍。这些污染物正在持续威胁海洋生物和人类自身的安全与健康。近期,科学家再次发现塑料会在机械作用、生物降解、光降解、光氧化降解等过程的共同作用下逐渐被分解成碎片,形成微塑料,被海洋生物吞食,在生物体内不断积累,随着生物链,造成更广泛的危害。这一发现引起科学家的广泛关注,同时,也引起了各国政府的高度重视。近期,生态环境部发布的《生态环境监测规划纲要(2020-2035年)》也着重强调应加强海洋微塑料监测,加快形成相关领域监测支撑能力,为国际履约谈判和全球新兴环境问题治理提供支撑。在微塑料监测中,由于微塑料的物理特性(大小、形状、密度、颜色)以及化学组分等差异,不同类型微塑料在不同环境中流动过程(输入、输出和存留)的时间均不相同,使微塑料监测变成一大难题。目前,对微塑料的分析方法主要有目视分析法、光谱法 (如傅立叶变换红外光谱法和拉曼光谱法)、热分析法以及其他分析方法等 (如质谱法以及扫描电子显微镜-能谱仪联用法)。其中,红外光谱及Raman光谱分析,由于具有无破坏性、低样品量测试、高通量筛选以及所获取的结构信息互补等特点,成为检测和鉴别微塑料的主要分析技术;而在实际操作中上述技术仅可对几微米颗粒物进行检测(FT-IR为10~20μm、Raman 低仅为1 μm),使微塑料的研究仍处于起步阶段。作为先进仪器平台,Quantum Design中国时刻关注重大科研发展方向,并致力于引进先进表征技术及设备,为我国科研搭建先进科技平台。聚焦于微塑料监测难题,Quantum Design中国表面光谱部门认为需要考虑三个关键因素:尺寸、微观形貌以及聚合物类型。理论上可用于测量两者的方法均适用于微塑料分析,但是由于疑似微塑料样品的干扰,使得仅用一种分析方法难以准确的识别微塑料,为了提高准确度以及检测效率,需要采用多组合分析测试方法对其进行监测。目前,我司主要有Neaspec纳米傅里叶红外光谱仪(nano-FTIR)、IRsweep微秒时间分辨超灵敏红外光谱仪和PSC非接触式亚微米分辨触红外拉曼同步测量系统mIRage三款先进光谱表征设备。其中,非接触式亚微米分辨触红外拉曼同步测量系统mIRage采用的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500 nm的空间分辨率。不仅如此,该设备将显微成像、红外及Raman测试集成于一体,多测试方法同步测量有效提高检测效率及准确度。同时,它具有更简单,更快速的测量模式,无需复杂的样品制备过程等优势,让更快、更准确地进行微塑料追踪、监测和研究成为可能,正成为下一代标准的方法。为更好的服务国内科研用户,Quantum Design中国北京样机实验室引进了非接触式亚微米分辨触红外拉曼同步测量系统mIRage,为国内科研用户开放,以期为微塑料监测技术的发展做出一定的贡献。 Quantum Design中国非接触亚微米红外光谱系统mIRage样机操作过程示意 精选案例:目前,mIRage在塑料领域的研究中大放异彩,助力美国特拉华大学Isao Noda教授课题组对PLA和PHA的复合薄片塑料结合方式及内在机理的研究,向我们展示了mIRage在微塑料领域研究中的潜力。该工作中,作者先对PHA和PLA的结合面进行了固定波数下的红外成像(图1)。通过对比发现,在约330 nm的范围内(空气/PHA界面)1725 cm-1处的红外信号出现了急剧的下降,而在PHA/PLA界面处几微米范围内1760 cm-1处的变化较为平缓,且无清晰的边界,表明PHA和PLA可能有某种程度的分子混合。由于使用光学光热红外技术,不存在困扰传统红外成像设备的米氏散射效应,因此能够确定这一模糊的边界是来自于两种材料间的相互渗透而非光学伪影。图1. PLA和PHA在固定波数下的红外成像。(A)红外成像图(红色1725 cm-1为PHA;绿色1760 cm-1 为PLA);(B)A图中黑色线性区域PHA/PLA红外吸收强度分布对比 为了进一步研究PHA/PLA界面处的化学成分变化,作者对这大概2 μm左右交界面的红外图谱进行了间隔200 nm的线性红外扫描分析(图2)。从羰基(C=O)伸缩振动区和指纹区(图2 A和B)的线性扫描红外谱图可以清晰的区分PHA(1720和1740 cm-1)和PLA分子(1750-1760 cm-1)。区别于理想的简单二元系统(不互溶或无分子相互作用),PHA/PLA薄片羰基伸缩振动红外叠加图谱(图2C)并不存在一个明显的等吸收点,反映了在界面区域存在着复杂的组分变化及两种以上不同物种的分布。图2. PHA/PLA界面区域每200 nm间隔的羰基伸缩振动区域(A)和指纹图谱区域 (B) 以及羰基区域伸缩振动的叠合图谱(C) 为获取更详细的界面处PHA/PLA组分的空间分布规律,采用同步和异步二维相关光谱(2D-COS,two-dimensional correlation spectroscopy)来分析羰基拉伸区域采集到的红外谱图(图3A和3B),并以等高线的图形式展现,详细的分析方法可以参考相关信息(Combined Use of KnowItAll and 2D-COS, https://www.youtube.com/watch?v=0UCcD3irVtE)。结果显示,在主要为PHA的混合界面区域同时观测到来源于PLA的1760 cm-1红峰外,表明部分PLA渗透到PHA层,且与PHA层的其余部分相比,界面附近的PHA结晶度明显降低。在对指纹图谱区域进行2D PHA/PLA相关光谱同步和异步对比时,也得到了同样的结果(可参照发表文章,在此不再显示), 即PLA向PHA渗透,且PHA的晶型有所改变。另外,作者还通过非接触式亚微米分辨触红外拉曼同步测量系统对该区域进行了同步红外和拉曼分析(图3C),两者选择性和灵敏度不同却可以很好的互补,进一步验证了这一发现的可靠性。结果证实,即使是表面上不混相的PHA和PLA聚合物对,也存在一定程度的分子混合,这种混合可能发生在界面只有几百纳米的空间水平上,很好的解释了这两种生物塑料之间的高度相容性。 图3. PHA/PLA羰基伸缩振动区域二维同步(A)和异步(B)相关光谱(2D-COS)分析以及交界区域红外和拉曼光谱分析(左为红外,右为拉曼)。 参考文献:[1] Two-dimensional correlation analysis of highly spatially resolved simultaneous IR and Raman spectral imaging of bioplastics composite using optical photothermal Infrared and Raman spectroscopy,Journal of Molecular Structure,DOI: 10.1016/j.molstruc.2020.128045.
  • 首届橡胶及塑料质量控制及检测主题网络会议回放视频
    仪器信息网于2021年7月22日组织举办首届橡胶及塑料质量控制及检测主题网络会议,邀请业内从事橡胶研发、检测和质控的资深专家分享了相关经验成果。小编将会议报告的部分报告视频整合成集锦以飨读者。回放视频链接如下(点击观看):国家橡胶轮胎质量监督检验中心副总工程师 苍飞飞:《检测技术服务于橡胶及塑料质量控制》上海市食品药品包装材料测试所主任 徐俊:《药用橡胶密封件的质量控制》四川大学教授 严正:《聚丙烯CO2超临界发泡》布鲁克(北京)科技有限公司资深应用科学家 魏岳腾:《橡胶和塑料制品表面微观力学及摩擦磨损性能测试方法》
  • 天津启动新污染物治理,985高校齐助阵微塑料检测!
    随着《重点管控新污染物清单(2023年版)》的发布,各省关于新污染治理的行动方案也相继公布。近日,天津市发布了《天津市新污染物治理工作方案》,启动新污染物治理,并制定了16项重点任务。据悉,天津将建立新污染物环境调查监测制度,开展天津市新污染物环境调查监测,2025年底前,初步建立新污染物环境调查监测体系。同时,启动全市新污染物筛选及“一品一策”管控行动;启动天津近岸海域微塑料监测行动,开展以渤海近岸海域典型区域为试点的微塑料监测。此外,方案指出,天津鼓励科研院所、高新技术企业申报国家和市级相关重点科研项目,推动技术创新中心、产业创新联盟、企业重点实验室等平台开展新污染物相关新理论基础研究和有毒有害化学物质管控关键核心技术攻关,加强涉新污染物科学研究,提升创新能力。为促进分析测试技术在环境新污染物领域的应用与发展,助力高校、科研院所科研能力提升,天津分析测试协会联合仪器信息网,将于2023年3月2日组织召开“天津分析测试新技术与前沿应用高端论坛——环境新污染物分析与检测创新技术论坛”。届时将邀请环境领域知名专家学者围绕分析测试最新技术与前沿应用,以线上报告、圆桌讨论等形式展开深度交流。985高校专家亲临,合力助阵微塑料检测南开大学汪磊教授、天津大学的刘宪华教授,将共同出席本次会议,聚焦微塑料检测的最新成果、技术进展。与此同时,来自天津科技大学、天津工业大学、农业农村部环境保护科研监测所的专家将出席,分享关于新污染物识别、痕量检测、纳米材料识别、微流控检测技术等方面内容。诚邀参会。点此报名:https://www.instrument.com.cn/webinar/meetings/tjaia230111/ 报告主题报告嘉宾嘉宾单位环境微塑料的检测方法开发与应用汪磊南开大学环境学院 教授/博士生导师植物对有机磷酸酯的转化途径及机理研究刘青天津科技大学海洋与环境学院 博士后微塑料的分析测试及其环境影响研究刘宪华天津大学环境学院 副教授/博士生导师典型纳米材料环境识别技术及植物风险效应研究穆莉农业农村部环境保护科研监测所 副研究员膜基微流控耦合系统应用于痕量污染物检测研究王捷天津工业大学环境科学与工程学院 教授/博士生导师
  • 百特为您提供橡胶塑料原材料粒度检测方案
    第三十一届中国国际塑料橡胶工业展览会在广州琶洲国际会展中心盛大开幕!会展首日的早上,展馆外人头攒动。国内外橡塑行业的大咖齐聚琶洲,现场火爆。 百特携新品粒度粒形测试仪Bettersize 3000 Plus和智能型一体化粒度仪BT-9300ST亮相10.3B69展台,现场测试塑料原材料粉末样品,吸引了众多客户了解咨询。看到展会的火爆现场,您想不想亲自来一探究竟呢?百特的工程师小伙伴在现场等你,还有精美礼物,先到先得!地点:广州琶洲国际会展中心,10.3B69展台时间:5月16-19日
  • 探微知著:微塑料多维检测技术的发展与应用
    微塑料(Microplastic)的定义是指尺寸小于5 mm 的塑料颗粒、微纤维或者薄膜等。从目前的研究报道看,微塑料在环境中的分布已极为广泛,从深海到高山,从极地到赤道地区,几乎无处不在。近几年微塑料的环境影响引起了全球的关注,它们能够被多种生物摄取,通过食物链的传递可能对生态系统造成长期且复杂的影响。此外,微塑料还能吸附水中的有毒物质,如重金属和有机污染物,这些物质可能通过食物链累积并放大,最终对人类健康构成潜在风险。微塑料逐渐成为一种需特别关注的潜在环境污染物,越来越受到研究人员和公众的关注。 “微塑料”的概念最早于2004年《Lost at Sea: Where Is All the Plastic? 》文章中被首次提出。2012年《The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments》文章发表,红外光谱技术被引入微塑料的定性表征检测,很荣幸珀金埃尔默的Spotlight红外显微成像系统担任了文章中检测微塑料光谱信息的任务。 2017年中国重点研发计划“海洋微塑料监测和生态环境效应评估技术研究”启动,同年3月份辽宁省海洋水产科学研究院起草发布了国内首个微塑料的检测标准《DB21/T 2751-2017 海水中微塑料的测定 傅立叶变换显微红外光谱法》。 △ 点击可查看大图 在微塑料科研和检测方法的发展过程中,珀金埃尔默始终和各行各业的客户合作,助力客户的科研和检测工作,改进完善微塑料的检测方案。 2018年,一项由新闻机构Orb Media组织的研究对全球11个国家的259瓶瓶装水进行了测试,结果显示其中93%的瓶装水样本含有微塑料。微塑料污染问题引起了国际社会的广泛关注,成为全球环境和健康议题的一部分。 微塑料相关领域的研究人员,采用了各种测试方法来确定微塑料在环境中的分布和来源。其中红外及显微红外光谱法,被用作检测和鉴别各种环境和样品基质中的微塑料的标准方法。珀金埃尔默的红外及显微红外已有完善的准确可靠检测方案,另外还充分挖掘不同检测设备的优势,将热分析-红外光谱-色谱质谱联用方法和单颗粒ICPMS方法引入微塑料研究,以提供微塑料多维检测数据,更好的服务于行业客户对全面表征数据的需求。 Part.1 ✦ ✦ 微塑料的红外及显微红外 光谱检测方案 ✦ △ 点击可查看大图 多尺寸 提供1.56微米以上多尺寸全光谱范围的微塑料的红外光谱法检测方案,可以根据测试尺寸要求的下限,自由选择不同的检测手段。现场检测大尺寸的微塑料,比如在船上直接检测拖网上的颗粒,可以直接使用红外光谱仪Spectrum 3或Spectrum 2。在实验室测试肉眼不可见的微米级别的微塑料,可使用Spotlight200i红外显微镜或Spotlight400红外显微成像系统。采用Spotlight200i红外显微镜,配合珀金埃尔默自主开发的微塑料自动分析统计软件,可以快速得到整张滤膜的微塑料的测试数据和尺寸统计等信息。下图是自来水样品过滤到滤膜上之后,整个滤膜全自动扫描微塑料光谱和微塑料自动计数的数据。 △ 点击可查看大图 测试10微米以下尺寸的微塑料,采用Spotlight400红外显微成像系统,配合ATR成像附件,最小可以原位测到1.56微米尺寸的微塑料。下图是海洋中贝类样品的小尺寸微塑料的ATR成像原位测试的数据。 △ 点击可查看大图 全光谱 珀金埃尔默方案提供微塑料完整的红外光谱图定性结果,光谱范围至少覆盖7800cm-1~600cm-1波段,保证谱图符合光谱学的定性三要素(特征峰位置、峰形状和峰强度),确保微塑料定性结果的准确无误。 其他使用局部波段的检测技术,会出现微塑料光谱图的误判情况,导致微塑料成分鉴定是不准确的。 △ 点击可查看大图 上图是高密度PE微塑料和ABS微塑料的全波段红外光谱图,在1900cm-1以上和900cm-1以下的波段有非常关键的特征官能团和指纹吸收峰(标阴影区域),如果只是采集中间局部光谱图,比如1900-900cm-1的谱图来定性微塑料,会缺少待测物质的特征信息,不符合光谱学的定性三要素,不能始终给出可靠的光谱学定性结果。 Part.2 ✦ ✦ 微塑料的热重-红外-GCMS 联用技术检测方案 ✦ 微塑料通常悬浮在水面,被生物摄入后进入食物链,并在体内蓄积。随着微塑料带来的环境问题越来越受关注,除了微塑料颗粒、纤维的定性定量研究外,越来越多的研究人员,也在研究微塑料吸附的污染物以及微塑料降解产物的成分相关信息。在研究开始早期,微塑料的热裂解气相色谱-质谱联用技术,被用于分析和鉴定微塑料及其裂解产物的分析。但是随着研究方法使用的深入,暴漏了一些方法的弊端,比如无法获得关于降解产物特性的充分信息,几乎无法获得关于降解产物形成时间的信息。 △ 点击可查看大图 珀金埃尔默将热重分析(TGA)-红外(IR)-气相色谱-质谱(GC/MS)联用方案引入微塑料研究,可以程序控制样品升温速率,实时分析微塑料基质中微塑料PE、PP、PS的总离子色谱图(TIC)数据热分解产生的产物,对逸出气体进行深入表征,获得更多关于降解产物特性的信息以及关于降解产物形成时间的详细信息。 下图为珀金埃尔默联用技术TGA-GCMS模式,悬浮液体中的微塑料(聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS))成分分析数据。 △ 点击可查看大图 另外珀金埃尔默联用技术的TG-IR模式,可快速的对可降解性塑料的成分进行界别,下面是可降解性塑料餐盘(上)和不可降解性塑料(下)的对比热红联用数据。 △ 点击可查看大图 Part.3 ✦ ✦ 微塑料的TGA-ICPOES 及单颗粒ICPMS技术检测方案简述 ✦ 微塑料吸附的污染物,有机污染物部分可以用前面所述的联机技术进行检测。可能吸附的无机污染物部分,可采用珀金埃尔默开发的TGA-ICPOES联用技术,对微塑料上吸附的重金属等无机污染物进行定性表征,如下图为微塑料的热失重和热重逸出气体的实时ICPOES响应曲线数据。 △ 点击可查看大图 单颗粒ICPMS(SP-ICP-MS)技术,也可作为一种快速筛选方式,作为微塑料表征手段的一种补充工具。 相比其他分析手段,SP-ICP-MS分析速度较快,可以在更短的时间内采集更多颗粒,并能提供粒度分布和颗粒浓度的更多信息。通过监测C13的信号,使用NexION系统的SP-ICP-MS,可以成功用作微塑料测定的筛选工具或补充技术。利用单颗粒ICP-MS分析技术采用的快速瞬时采集能力(NexION 系列ICP-MS高达100000点每秒),C13背景得以大大降低,从而实现纳微塑料颗粒的准确分析。将SP-ICP-MS与可鉴别微塑料成分的红外光谱技术相结合,可以获得有关微塑料的更全面信息。右图为SP-ICP-MS筛选塑料茶包中微塑料颗粒的分析数据。 △表1:塑料茶包中含碳颗粒结果 综上,珀金埃尔默仪器与解决方案,在微塑料检测技术的发展中扮演着关键的角色,不断推动各项测试技术的创新与更新。我们的微塑料检测方法开发团队不仅积极参与当前的研究工作,而且与不同行业的合作伙伴携手,共同推动检测标准的建立与完善。我们坚信,微塑料问题所在之处,正是珀金埃尔默技术和解决方案发挥作用的地方。珀金埃尔默的使命是致力于创造一个更加美好的未来,我们期望能够支持和帮助更多投身于微塑料研究和检测的科研工作者。我们共同努力,为了我们共同生存的地球环境的改善和可持续发展贡献力量。 关注我们
  • 珠峰顶部已发现微塑料?当前微塑料的检测技术,你可能不知道
    11月24日 英媒称,地球zui高处和最深处都出现了微塑料。此前在太平洋11公里深的马里亚纳海沟发现了塑料微粒,如今又在珠穆朗玛峰上探测到了。英国普利茅斯大学的伊莫金纳珀及其同事从珠穆朗玛峰多个地点采集了8个900毫升的溪水样本和11个300毫升的积雪样本。该研究小组发现,在所有积雪样本和3个溪水样本中都发现了微塑料。微塑料进入环境后很难被降解,在环境中的半衰期长达数百年,给自然环境及生态系统造成极大危害,还可能通过食物链威胁到人类,因此微塑料的污染问题引起了全球的重视。微塑料的来源解析是当前的重点,微塑料的检测是来源解析的重要手段。本文主要是基于化学表征微塑料的检测技术汇总,为未来的研究开展提供思路。化学表征分析最常用的是傅立叶变换红外光谱(FTIR )、拉曼光谱、 ESM-EDS和气相色谱-质谱联用技术。1、FTIRFTIR依靠物质偶极矩改变产生红外光谱,可以实现20μm以上的微塑料的鉴定。不受滤膜和杂质的干扰,尤其适用于极其微小尺寸微塑料的检测。2、拉曼光谱拉曼光谱依靠分子化学键极化率的变化产生指纹图谱,可以实现20μm以下微塑料的鉴定,和 FTIR 相比,拉曼光谱空间分辨率更高、光谱覆盖范围广,但是容易受色素、添加剂、污染物等有机质和矿物质产生的荧光干扰,奥谱天成拉曼光谱仪1064nm 系列在抗荧光干扰方面有着出色的表现,加上软件的优化处理,将结果调到zui优状态,用于微塑料检测方面有着独特的技术优势。3、气相色谱-质谱联用技术通过对微塑料的热降解产物进行分析判断其种类,将峰面积与同位素标记的内标进行比较实现微塑料的定量,但是应用范围较窄。微塑料检测方法虽然多,但还有很多问题需要解决,微塑料在环境中存在的不规则性问题,不仅困扰着检测手段,同时也对采样有较大的挑战。
  • 海洋生物微塑料检测方法及污染现状研究进展
    来源:《农业资源与环境学报》2022 年 06 期作者:李娟1,季超2,张芹1,汪星宇1,伍志强1,解玉鑫1,李嘉晴1,张皓森1,臧桐宇1, 郑文杰1*单位:1. 天津师范大学生命科学学院;2. 云南农业大学云南生物资源保护与利用国家重点实验室摘要海洋微塑料污染问题是全球研究热点,现有研究表明微塑料在海洋环境中无处不在,对海洋生态的威胁逐渐加重,伴随着海洋食品的兴起,人们也越来越重视微塑料污染对人体健康的危害。本文通过对海洋生物体内微塑料污染情况的概述,系统分析了微塑料对海洋生物造成的影响。主要针对微塑料检测的前处理方法以及组分的鉴定方法展开综述,对不同方法的优缺点进行比较,指出在微塑料检测研究中多种方法综合应用效果最佳。基于现阶段海洋微塑料的研究状况,从科学研究和管控方面讨论了目前研究中存在的问题,展望了未来的研究方向。结论与展望:微塑料已经成为全球海洋环境中的新兴污染物之一,获取海洋环境中微塑料丰度等信息的标准程序方案对于确定微塑料对海洋环境的污染情况和潜在影响至关重要。本文总结了海洋微塑料污染的现状,详细阐述了对样品进行消解和分离的常用方法,认为对于海洋生物体内微塑料的提取分离而言,碱液(KOH、NaOH 等)提取相较于其他提取液的回收效果更好。针对微塑料的鉴定分析方法,本文重点介绍了显微观察法、傅里叶变换红外光谱法、拉曼光谱法和热分析法,并讨论了多种分析方法的优缺点及各自的适用特点。目前而言,单一的分析方法很难对复杂的环境样品中的微塑料进行准确定性和定量研究,尤其对于尺寸小于1 mm 的微塑料,建议采用显微观察和光谱分析相结合的方法;而对于截距小于10 μm 的微塑料,拉曼光谱是更好的选择。微塑料的来源与人类活动息息相关,人类产生的塑料垃圾会通过排水系统、河流以及风的作用进入海洋生态系统,在其中产生累积效应,已有相关研究表明,微塑料可能是海洋生物多样性降低的重要因素之一。这一方面由于微塑料体积相对较小,易被海洋生物摄取并在其体内富集,对海洋生物的组织、循环系统造成有害影响;另一方面由于微塑料自身的物理和化学性质特殊,其表面易吸附污染物,成为污染物进入海洋生物体的载体,并可通过食物链进入人体,对人类产生潜在危害,但其作为载体的具体机制和转移途径鲜见报道。未来,微塑料相关研究可从以下几个方面进行:(1)目前塑料颗粒检测技术多样且发展迅速,但随着新产业新科技的发展,一些新的材料会产生微米级、纳米级等更小的塑料颗粒,因此,针对这些新材料的检测需要探索新的检测方法来实现。(2)现阶段微塑料的检测方法良莠不齐,各种方法检测结果的准确性有待进一步验证。为了更加全面准确地监测微塑料污染情况,应建立检测微塑料、评估微塑料污染风险的标准体系,标准化、规范化的微塑料检测流程,可保证微塑料污染风险评估的准确性,为维护海洋环境和生态安全提供理论支撑。(3)人们普遍认为粒径小于100 μm 的微塑料对海洋生物和人体的影响最大,但是微塑料不同的形态、大小及聚合物类型对海洋生物的风险仍缺少具体的参考标准,故建立评估微塑料污染风险的标准体系非常必要。微塑料危害并不仅限于微塑料本身,其表面富集的各类污染物的风险更大。通过微塑料摄入将有毒化学物质转移到生物群是一个值得重视的问题,然而现有的研究鲜少使用微塑料载体进行毒性研究。为进一步明确微塑料的物理性质和污染物的连锁效应,应加强对微塑料的吸附作用和污染物(如放射性重金属和抗生素)之间相互作用的研究。(4)目前全球不同区域的食品种类繁多,而大多数微塑料研究是针对鱼类、贝类等水生生物体内微塑料浓度、形态、大小和聚合物类型所开展,对加工食品中微塑料的研究不多,这使得人类通过食物摄入的微塑料总体数量很难估计。因此,今后的研究应加强对各类食品中微塑料提取鉴定方法以及定量分析方法的研究,为食品安全检测提供途径。
  • 对微塑料、纳米颗粒、PFAS的深度解析!新污染物检测与监测新技术发展论坛成功举办
    仪器信息网讯 2023年5月17-19日,中国科学仪器发展年会(ACCSI 2023)在北京怀柔雁栖湖国际会展中心召开。作为大会重要的分论坛之一,由珀金埃尔默和仪器信息网主办的“新污染物检测与监测新技术发展论坛”于5月19日上午成功举办。本次论坛由珀金埃尔默企业管理(上海)有限公司环境及高校细分市场经理魏攀主持,中国科学院生态环境研究中心研究员曲广波、普利茅斯大学生物与海洋科学学院博士Winnie Courtene-Jones、自然资源部第一海洋研究所研究员孙承君、普利茅斯大学生物与海洋科学学院博士Sabra Botch-Jones、国家纳米科学中心高级工程师郭玉婷、清华大学副教授周群等嘉宾出席。国内外环境领域科研专家与科学仪器企业专家齐聚,共同就新污染物这一主题进行了一场多维度、深层次、全方位的学术交流。论坛现场新污染物指的是对生态环境和人体健康存在风险,但尚未纳入管理或当前管理措施不足的一类污染物。2022年国务院印发《新污染物治理行动方案》,提出“筛、评、控”“禁、减、治”的总体工作思想,要求对新污染物实施源头管控、过程控制及末端综合治理。而2023年,《重点管控新污染物清单(2023年版)》的印发也预示着新污染物的治理已从基础科学研究层面提升至了国家监管的战略层面。珀金埃尔默企业管理(上海)有限公司环境及高校细分市场经理魏攀主持论坛在论坛的报告环节,曲广波研究员首先进行了题为《新污染物的转化与毒理》的报告。在新污染物领域,由于实际样品中污染物总浓度未知、化学品信息亦未知,单独的毒性评价与化学分析很难满足需求。基于高分辨质谱的靶标和非靶标分析可解析污染物浓度与结构,并进行毒性评价。据报告介绍,成组毒理学分析(ITA的应用)可应用于新污染物转化中的毒理学研究,并进行污染物高通量毒性评估与区域环境风险诊断。报告提到,TBBPA BAE为主要效应污染物,总毒性贡献为86%,其代谢产物的风险极大,值得重视。中国科学院生态环境研究中心研究员曲广波报告随后,Winnie Courtene-Jones博士进行了题为《“eXXpedition环球航行”:全球海洋中的塑料污染状况研究》的报告。目前海洋微塑料的采样工作仍然是不足的,全球塑料污染的数量亦未知。报告详细介绍了研究团队在一次海洋航行中有关塑料污染的调查结果,比如南加勒比地区塑料的来源、流动和数量等。珀金埃尔默的傅里叶变换红外光谱仪被研究团队带至船上,并在航行过程中帮助研究团队实时评估了聚合物成分。普利茅斯大学生物与海洋科学学院博士Winnie Courtene-Jones报告孙承君研究员报告题为《海洋环境中微塑料检测技术》。目前微塑料的研究领域仍然存在诸多难题,比如缺少快速、高通量的微塑料监测/检测技术;大洋微塑料的监测工作不足,监测评估与治理支撑有待加强;微塑料的毒性和生态环境效应机制研究还比较欠缺;我国在海洋微塑料的监测、预防和治理方面的国际影响力亟待加强;有关微塑料的宣传力度有待提高……据报告介绍,目前海水微塑料的采样方法主要为拖网采样等;前处理方法主要为氧化消解、密度分离等,检测方法主要为显微拉曼、红外光谱、高分辨扫描电镜、热裂解质谱等。自然资源部第一海洋研究所研究员孙承君报告全氟和多氟烷基化合物(PFAS)也是重要的新污染物之一,PFAS在被人体接触后可能引发一系列潜在风险。Sabra Botch-Jones博士聚焦了这一类污染物,进行了题为《人体生物组织中PFAS的检测与研究》的报告。该研究旨在检测PFAS化合物在各种人类生物样本(包括胎盘)中的生物累积,研究团队特别选择了珀金埃尔默的QSight®220 UHPLC-MS/MS来应对人体中各种复杂的基质组织,如尿液、骨骼等。据其介绍,研究团队选择的分析方法适用于高通量分析,并确保了PFAS化合物的高回收率,最大程度地杜绝了检测中的干扰物质。普利茅斯大学生物与海洋科学学院博士Sabra Botch-Jones报告郭玉婷高级工程师的报告题为《纳米材料检测和职业风险防护标准示例及应用研究》。纳米尺度上,材料有许多未知的现象和规律。人们在受益于纳米技术产品优点的同时,开始关注纳米材料可能的潜在风险。报告指出,针对纳米材料的检测,splCP-MS法检出限低于ng/mL含量,检测过程中制样简单,单次检测可同时获得纳米颗粒成分、颗粒数量浓度、尺寸分布、颗粒团聚、溶解离子浓度等信息。《纳米技术水相中无机纳米颗粒的尺寸分布和浓度测量单颗粒电感耦合等离子体质谱法》国家标准为环境和纳米产品等中纳米颗粒检测提供了技术依据;此外,目前纳米材料行业缺少职业危害检测标准和纳米材料职业接触限值,职业风险管理方法缺少依据,《GB/T 38091.2-2019纳米技术工程纳米材料的职业风险管理第2部分:控制分级方法应用》等国家标准有望为国家监管、企业人员职业风险防控等提供技术支撑。国家纳米科学中心高级工程师郭玉婷报告在本次论坛特设的圆桌讨论环节,曲广波、周群、郭玉婷参与现场答疑,与听众就新污染物的研究方法、未来发展等问题进行了一场热烈的学术讨论。现场问题包括:1、“新型阻燃剂作为新污染物的一类,随着电子电器材料、建筑材料及其在交通运输中的广泛使用,引发其在环境中迁移的风险。围绕溴代阻燃剂在环境中的分布、转化与生态毒理,您认为哪些研究方向有望提供更深入的认识与解决方案?2、针对环境中未被管控的新型阻燃剂,如四溴双酚A及其衍生物,其在环境中的分析和风险评价面临哪些挑战?3、目前都有哪些科学证据,可以来表明微塑料所具有生态和健康危害?您认为分析环境及生物体中微塑料的关键点有哪些?4、与天然源颗粒物相比,释放到环境中的工程纳米材料的浓度非常之低。有效检测出这些人造颗粒物对预测其未来对环境和生命系统的影响至关重要,目前的研究工作中,纳米颗粒超痕量测量与溯源方法都有哪些进展?嘉宾与参会听众讨论氛围空前热烈,不断分享着最新学术灵感、未来研究计划、仪器应用经验。圆桌论坛环节有关新污染物的研究与治理,目前国家已提出具体的行动路线,即“2023年年底前,完成首轮化学物质基本信息调查和首批环境风险优先评估化学物质详细信息调查;2025年年底前,初步建立新污染物环境调查监测体系。”可以预见的是,在环境领域,新污染物依然会是未来备受关注的前沿方向。关于ACCSI 20232023第十六届中国科学仪器发展年会(ACCSI2023)于2023年5月17-19日在北京雁栖湖国际会展中心盛大召开。ACCSI定位为科学仪器行业高级别产业峰会,经过16年的发展,已被业界誉为科学仪器行业的“达沃斯”论坛。ACCSI2023以“创新发展 产业互联—助力北京怀柔打造科学仪器技术创新策源地 ”为主题,促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,助推北京市“两区”建设。届时将邀请到政府及协会学会领导,检验检测机构负责人,实验室主管人员,仪器采购负责人,科学仪器及配件厂商董事长及总经理、总工、研发主管、市场总监、投融资机构负责人、合作媒体负责人等参会。会议期间还将举办“3i奖:仪器及检测风云榜颁奖盛典”,颁发多项行业大奖,引领科学仪器产业方向。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制