传感器的原理

仪器信息网传感器的原理专题为您提供2024年最新传感器的原理价格报价、厂家品牌的相关信息, 包括传感器的原理参数、型号等,不管是国产,还是进口品牌的传感器的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合传感器的原理相关的耗材配件、试剂标物,还有传感器的原理相关的最新资讯、资料,以及传感器的原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

传感器的原理相关的仪器

  • DSOLAB智能传感器原理与应用技术实验系统 一、 概述对于传感器原理课程的实验,全国各高校目前所用的大多为大型实验台与手动调节千分尺方式,其特点是能够根据传感器基本原理进行验证性实验,满足从原理上认识传感器的教学要求,但在老师教学与学生动手的整个实验过程上实验内容有所欠缺,甚至有点枯燥,似乎实验仅为了测数据,填表,计算出线性度和灵敏度,其他相邻的知识点在此实验中却未有体现。本系统根据上述问题,对整个实验从新设计,对老系统进行升级或替代,在满足原有教学目标上,丰富实验内容,增加操作,软件硬件相结合。本系统采用LabVIEW进行采集和测量,融合软件,电子,测控,机械等专业内容,使得原有单点式的实验,变成多面式的,立体式的,学生所学的知识能够在此实验中一定程度上能够综合运用上。 二、 技术指标1、主实验箱:?电源输出功能:提供+5V、-5V、+12V/、-12V/直流电源;?实验面包板:170*65mm;?接口端子座:37针,50针;?接线端子排:72路;?实验模块:步进电机控制与霍尔元件检测单元 开关量信号控制和检测模块电机调速与测速模块电子秤(压力)测量模块温度测量系统模块光强度检测与控制模块磁场场强计模块湿度测量计模块红外发射与接收模块热释电检测模块可燃气体检测系统模块交通灯系统控制模块音频分析测量模块热电偶温度检测模块点阵汉字显示控制模块加速度测量模块IC卡读写模块超声波测距模块PH值酸碱度测量模块悬臂梁应力分析模块光电池照度检测与控制模块 2、数据采集卡:?模拟输入通道:不低于16路;?输入通道分辨率:12位分辨率;?总采样率:不低于200kS/s;?FIFO: 不低于4K;?模拟输出通道: 不低于4路;?输出通道分辨率: 不低于12位;?输出通道更新率: 不低于100 kS/s;?数字输入通道:不低于16路;?数字输出通道:不低于16路;?计数器:不低于3个;?计数器精度:32位;?与计算机接口:USB;3、执行机构系统最小间隔:0.02mm/0.9DEG步进电机:步 距 角:0.9DEG绝缘电阻:500V DC 100MΩ 绝缘强度:500V AC 1 Minute温 升:65K环境温度:-10~+55℃绝缘等级:B丝杠:总长:大于10CM精度等级:C7底座材料:亚克力 三、 实验内容原理性实验内容(1)金属箔式应变片一单臂电桥性能实验 (2)金属箔式应变片一半桥性能实验 (3)金属箔式应变片一全桥性能实验 (4)直流全桥的应用一电子秤实验 (5)交流全桥的应用一振动测量实验 (6)扩散硅压阻压力传感器差压测量实验(7)差动变压器的性能实验 (8)激励频率对差动变压器特性的影响实验(9)差动变压器零点残余电压补偿实验 (10)差动变压器的应用一一振动测量实验 (11)电容式传感器的位移特性实验(12)电容传感器动态特性实验 (13)直流激励时霍尔式传感器的位移特性实验(14)交流激励时霍尔式传感器的位移特性实验(15)霍尔测速实验 (16)霍尔式传感器振动测量实验(17)磁电式转速传感器的测速实验(18)压电式传感器振动实验(19)电涡流传感器的位移特性实验(20)被测体材质、面积大小对电涡流传感器的特性影响实验(21)光纤传感器的位移特性实验(22)光电转速传感器的转速测量实验(23)PTl0温度控制实验(24)集成温度传感器AD590的温度特性验(25)铂电阻温度特性实验(26)K型热电偶测温实验(27)E型热电偶测温实验(28)气敏传感器实验(29)湿敏传感器实验(30)转速控制实验 应用型实验内容开关量信号控制和检测跑马灯与抢答器控制数字时钟显示控制温度测量与温度控制PID实验光强检测与控制系统实验湿度传感器实验红外数据传输实验电机调速与测速开环实验电机调速与测速闭环PID实验电子秤(压力传感器)实验步进电机控制与霍尔元件位置检测实验热释电人体感应实验磁场场强检测实验可燃气体检测实验交通灯系统控制实验音频分析测量实验热电偶温度检测实验双色点阵汉字显示控制实验加速度测量实验振动测量实验IC卡读写实验超声波测距实验PH值酸碱度测量实验电阻应变片悬臂梁应力分析实验光电池照度计实验 注:上述实验可根据实际教学要求增减定制.
    留言咨询
  • 如需了解更多详细信息,请搜索深圳市飞睿科技有限公司上海毫米波雷达传感器多少钱 安全雷达传感器工作原理飞睿科技FR58L4LD-1212D(A) 微波感应传感器利用多普勒原理,通过天线发射高频电磁波并接收处理反射波,以此判断覆盖范围内物体的移动,给出相应电信号。 广泛应用于感应灯饰、安防、小家电、智慧家庭、自动门控制开关、迎宾器等产品上,以及车库、走廊、楼道、庭院、阳台、洗手间等需要自动感应控制的场所。产品特点:上海毫米波雷达传感器多少钱 安全雷达传感器工作原理比红外感应模块感应距离更远角度更广、无死区、透镜和透镜老化问题 不受温度、湿度、气流、灰尘、噪声、亮暗等影响,抗干扰能力强 可穿透亚克力、玻璃及薄的非金属材料板载MCU,内嵌多重数字滤波算法,具有更高的抗扰度管脚定义:PIN脚功能备注VCC模块供电 可用锂电池或干电池直接供电(2.7~4.8V)GND接地PINSDAI2C接口SCLI2C接口OUT输出信号输出信号为高低电平(0V/3.3V)IF模拟信号输出IF模拟中频信号输出上海毫米波雷达传感器多少钱 安全雷达传感器工作原理技术参数:参数小值典型值大值单位备注发射频率572558005875MHZ输入电压2.73.74.8V输出高电平2.2 3.3 3.3V输出低电平0V波束角6063和天线相关工作电流6875uA感应距离0.12.515M可调延时时间0.2151200S可调光敏阈值N/A10N/A可选工作温度-3085°C存储温度-50125°C雷达探测范围:雷达感应距离可以通过 MCU 来配置,其极限感应距离达15米,实际感应距离可根据需要灵活调节如果使用环境是相对狭窄的空间,那么感应距离和角度会发生相应变化。 现阶段智能化成为家电行业发展的一大趋势,各种智能化传感器在家电产品上的应用也越来越广泛,并且接入互联网,使得传统家电向智能家电转化。智能家电 主 要是指将网络及通信技术、智能控制技术、智能传感探测技术等一系列智能技术应用到家电产品中,从而使家电产品实现自动化、网络化及远程化控制。当前随着新型低功耗、小型雷达模块及传感器的不断发展,雷达技术在很多智能设备产品当中都有很多应用。比如,雷达已经被广泛应用在汽车辅助驾驶领域,用以检测行人和前车,实现防撞预警。由于雷达发射的电磁波对于塑料、砖墙、木板等材料有很好的穿透性,可以将雷达模块安装在智能家电产品的内部(雷达监测前部为非金属材质),不会因为有外观部件的遮挡而无法使用,而且能够保证产品外观的统一美观,其他如红外传感器则不能够在有其他部件遮挡的情况下正常检测。雷达模块可通过人工智能控制算法,提取检测到的人体特征,计算人体的运动特征,从而可判断出人与智能家电产品之间的相互动作行为(靠近或远离)。在此基础上可以检测是否有人靠近或远离正在运行的家电,实现自动点亮或熄灭显示屏,提升查看家电运转状态的操控体验:当有人进入感应探测范围且逐渐靠近时自动点亮显示屏,当人远离且离开感应探测范围后自动熄灭显示屏。进一步可以做到如果有人进入感应探测范围内,显示屏点亮后,一直停留在家电旁边时,在设定延时时间计时结束前,只要人有轻微的移动,显示屏持续点亮,直到人离开后显示自动熄灭。深圳市飞睿智能推出微波感应传感器,利用多普勒原理,通过天线发射高频电磁波并接收处理反射波,以此判断覆盖范围内物体的移动,给出相应电信号。 广泛应用于感应灯饰、安防、小家电、智慧家庭、自动门控制开关、迎宾器等产品上,以及 车库、走廊、楼道、庭院、阳台、洗手间等需要自动感应控制的场所。微波感应模块的特点:比红外感应模块感应距离更远角度更广、无死区、透镜和透镜老化问题 不受温度、湿度、气流、灰尘、噪声、亮暗等影响,抗干扰能力强 可穿透亚克力、玻璃及薄的非金属材料 内置 MCU,内嵌多重数字滤波算法,具有更高的抗扰度。深圳市飞睿智能有限公司拥有自己天线设计,核心算法在毫米波雷达领域钻研多年的研发团队,也有体系化的专业射频,通信测试和生产加工能力,具有价格及方案设计的独特优势,欢迎随时咨询哦!
    留言咨询
  • PID传感器原理及产品简介PID光离子化检测器(Photo Ionization Detectors,简称PID)可以检测极低浓度的挥发性有机化合物(VOC,Volatile Organic Compounds)和其它有毒气体。很多发生事故的有害物质都是VOC(VOC主要包括,有机化学物质,燃料,油料,润滑,油脂,脱脂剂,溶剂,涂料,塑料和树脂。涉及苯系物,有机氯化物,氟利昂系列,有机酮、胺、醚、醇、酯、石油烃化合物等。),因而对VOC检测具有极高灵敏度的PID就在应急事故检测中有着无法替代的用途。PID是怎样工作的?PID使用了一个紫外灯(UV)光源将有机物打成可被检测器检测到的正负离子(离子化)。检测器测量离子化了的气体的电荷并将其转化为电流信号,电流被放大并显示出“PPM”浓度值。在被检测后,离子重新复合成为原来的气体和蒸气。PID是一种非破坏性检测器,它不会“燃烧”或永久性改变待测气体,这样一来,经过PID检测的气体仍可被收集做进一步的测定。 主要概念所有的元素和化合物都可以被离子化,但在所需能量上有所不同,而这种可以替代元素中的一个电子,即将化合物离子化的能量被称之为“电离电位”(IP),它以电子伏特(eV)为计量单位。由UV灯发出的能量也以eV为单位。如果待测气体的IP低于灯的输出能量,那么,这种气体就可以被离子化。 PID到底能测量那些物质? 大量的可以被PID检测的是含碳的有机化合物。包括: ●芳香类:含有苯环的系列化合物,比如:苯,甲苯,萘等等。 ●酮类和醛类:含有C=O键的化合物。比如:丙酮,等等 ●氨和胺类:含N的碳氢化合物。比如二甲基胺等等。 ●卤代烃类:硫代烃类: ●不饱和烃类:烯烃等等 ●醇类 ●不含碳的无机气体:氨、砷、硒等,溴和碘类等等。 PID不能测量那些物质? 一般来说,空气(N2, O2, CO2, H2O),常见毒气(CO, HCN, SO2),天然气(甲烷、乙烷、丙烷等),酸性气体(HCl, HF, HNO3),氟力昂气体,臭氧,非挥发性气体等等不能用PID检测。 什么是校正系数? 校正系数(CF,也称之为响应系数)是使用PID时特别要注意的一个参数。它们代表了用PID测量特定气体的灵敏度。它用在当以一种气体校正PID后,通过CF直接得到另一种气体的浓度,从而减少了准备很多种标气的麻烦。 1) CF 代表了测量的灵敏度 CF值越低,该种气体或蒸气的灵敏度就越高。苯的CF值是0.53,它的检测灵敏度大概是CF为9.9的乙烯的18倍。通常情况下,PID可以很好地测定CF为10以下的各种物质。 2) 在测量纯气体时,可以用CF调整仪器的灵敏度。 校正系数通过与校正气体比较直接得到待测气体的浓度。例如:苯的灵敏度大约是常用校正气体(CF=1.00)的两倍,这样一来,当我们用异丁烯校准过的仪器测量2PPM的苯时,我们可以有下面的建议: 用读数直接乘以0.53,我们就会得到实际苯的浓度2 ppm 。 另外,我们还可以将仪器的校正系数直接设定为0.53,从而直接得到苯的浓度。 PID的微处理器可以自动存储并使用很多气体的CF。这样,我们就可以预置这些参数,使仪器自动读出待测气体的浓度。 以上是对PID传感器的详细介绍。下文我们来说说目前我们了解的PID 传感器。目前国内市场我们了解的PID传感器有英国离科(ion science),英国阿尔法(Alphasense),美国贝斯兰(Baseline)。 英国离科MiniPID 2系列,有两个量程,0-6000ppm,灵敏度0.1ppm。0-40ppm,灵敏度1ppb。且除常规10.6eV之外,有电离电势10.0eV和11.7eV的可选。英国阿尔法PID就两种型号,PID-A1和PID-AH,量程最大6000ppm,最小量程50ppm,灵敏度最低5ppb。电离电势为10.6eV。美国贝斯兰PID可选量程较多,有2ppm,20ppm,200ppm,2000ppm,10000ppm。灵敏度分别为0.5ppb,5ppb,50ppb,500ppb,1000ppb。 另外还有华瑞的PID模块,AZ的PID模块。两种模块的量程综合了以上三家传感器的量程,灵敏度也是只高不低。模块有三种输出可选,4-20毫安,0-10V,数字TTL电瓶信号。模块有分离式和集成式可选。
    留言咨询

传感器的原理相关的方案

  • 基于碳基复合材料的印刷弯曲传感器制备及性能研究
    本论文使用碳黑,石墨,石墨烯等碳系浆料,与树脂和助剂混合制成可印刷油墨。通过比例调配、助剂效果比较,烧结温度,研磨次数等条件优化,研究不同组分、添加剂以及制备工艺对弯曲传感油墨的影响,并基于这一研究设计了两款机理不同的弯曲传感器。与现有的基于光学的弯曲传感器不同,本文设计的传感器主要是基于裂纹结构设计和复合材料界面微结构增强机理而制备的电阻型弯曲传感器。第一种传感器的工作原理是通过材料配方调配和工艺调整,使功能层在受弯曲应力时产生裂纹,导电网络部分断裂从而使器件整体电阻增大,并且由于裂纹可逆的断开和连接极大地提升了器件的灵敏度。传感器电阻与弯曲角度在0-90°内呈线性,线性方程为y=0.07509x+2.39091,相关系数R=0.98421。可以较为准确地测量传感器测量的应力弯曲角度。第二种传感器的工作原理是通过结构设计将力敏传感墨层与插指电极贴合,受弯曲时墨层与电极之间的接触面积增加,导电通道增多从而器件电阻变小。传感器电阻与弯曲角度在0-90°内呈线性,线性方程为y=-1.61242x+154.82909,相关系数为R=0.97779。该传感器除了能够测量弯曲角度外,还可检测垂直加载的压力,受力时传感器电阻与压力在0-160N 呈线性,线性方程为y=-2.68514x+189.62857,相关系数R=0.98902。本文设计的两种弯曲传感器均是通过丝网印刷的方式制备,具有大批量制造、绿色环保和低成本的应用优势。在工业机械手操控监测和人体关节骨骼健康管理等方面,有巨大的应用潜力。
  • ASTM F1249塑料薄膜-薄板水蒸气透过率测试仪(红外线传感器法)
    采用红外传感器法原理。具有一定湿度的加湿氮气在材料的一侧流动,干燥氮气在材料的另一侧以固定的流量流动;湿度梯度差的存在,导致水蒸气从高湿侧透过薄膜扩散到低湿侧;在低湿侧,透过的水蒸气被流动的干燥氮气(载气)携带至红外传感器;传感器对载气的水蒸气浓度会产生对应的电信号;精确测量传感器电信号,计算试样的水蒸气透过率等参数。
  • 用光学传感器非侵入式、实时监控大肠杆菌发酵过程中的氧气和pH
    传感材料和光电子学的进步使得新的光学传感器能应用于生命科学、制药、生物技术等领域。与传统的电化学传感技术(诸如原电池型传感器)相比,海洋光学的光学传感器,外观小巧且可定制参数,可实现非侵入式测量,并且不会消耗样品。操作原理是在光纤的尖端,粘性薄膜(如传感片),或者平面基材(如微量滴定板)上涂抹溶胶凝胶基质,该基体以装载有氧敏感荧光团或pH指示染剂为特征。指示剂材料能够改变特定分析物的光学性质,然后通过电子器件测定该响应。对于氧,NeoFox相位荧光计可测量溶解氧或气态氧的分压;对于pH值,则由微型光纤光谱仪测量pH染剂的比色度(吸收度)响应。

传感器的原理相关的论坛

  • 风速传感器种类_风速传感器原理应用

    [align=center][/align]风速传感器在我们的日常生活中的应用是非常广泛的,根据不同的应用环境,这个风速传感器也是有很多种类的,在不同的环境中需要使用风速传感器的的话一定要选用合适的才行,只有合适的才能够测量出想要的结果。今天OFweek Mall风速传感器商城网就来跟大家说说这个风速传感器的应用原理知识吧!首先风向传感器是以风向箭头的转动探测、感受外界的风向信息,并将其传递给同轴码盘,同时输出对应风向相关数值的一种物理装置。通常风向传感器主体都采用风向标的机械结构,当风吹向风向标的尾部的尾翼的时候,风向标的箭头就会指风吹过来的方向。为了保持对于方向的敏感性,同时还采用不同的内部机构来给风向传感器辨别方向。通常有以下三类:一、电磁式风向传感器:利用电磁原理设计,由于原理种类较多,所以结构与有所不同,目前部分此类传感器已经开始利用陀螺仪芯片或者电子罗盘作为基本元件,其测量精度得到了进一步的提高。二、光电式风向传感器:这种风向传感器采用绝对式格雷码盘作为基本元件,并且使用了特殊定制的编码编码,以光电信号转换原理,可以准确的输出相对应的风向信息。三、电阻式风向传感器:这种风向传感器采用类似滑动变阻器的结构,将产生的电阻值的最大值与最小值分别标成360°与0°,当风向标产生转动的时候,滑动变阻器的滑杆会随着顶部的风向标一起转动,而产生的不同的电压变化就可以计算出风向的角度或者方向了。风速传感器是一种可以连续测量风速和风量(风量=风速x横截面积)大小的常见传感器。风速传感器大体上分为机械式(主要有螺旋桨式、风杯式)风速传感器、热风式风速传感器、皮托管风速传感器和基于声学原理的超声波风速传感器。螺旋桨式风速传感器工作原理,我们知道电扇由电动机带动风扇叶片旋转,在叶片前后产生一个压力差,推动气流流动。螺旋浆式风速计的工作原理恰好与此相反,对准气流的叶片系统受到风压的作用,产生一定的扭力矩使叶片系统旋转。通常螺旋桨式速传感器通过一组三叶或四叶螺旋桨绕水平轴旋转来测量风速,螺旋桨一般装在一个风标的前部,使其旋转平面始终正对风的来向,它的转速正比于风速。示的风速一般是偏高的成为过高效应(产生的平均误差约为10%)1、风向风速传感器在空调及通风设备领域的应用变风量末端装置是变风量空调系统的主要设备之一。风速传感器又是变风量末端装置的关键部件,因此,风速传感器的类型与性能直接影响系统风量的检测和控制质量。目前,我国及欧美各厂家的变风量末端装置均采用皮托管式风速传感器,而日本各厂家多不采用皮托管式风速传感器。 2、风向风速传感器在航空领域的应用飞机上的“空速管”是一种典型的皮托管风速传感器,是飞机上极为重要的测量工具。它的安装位置一定要在飞机外面气流较少受到飞机影响的区域,一般在机头正前方,垂尾或翼尖前方。当飞机向前飞行时,气流便冲进空速管,在管子末端的感应器会感受到气流的冲击力量,即动压。飞机飞得越快,动压就越大。如果将空气静止时的压力即静压和动压相比就可以知道冲进来的空气有多快,也就是飞机飞得有多快。比较两种压力的工具是一个用上下两片很薄的金属片制成的表面带波纹的空心圆形盒子,称为膜盒。这盒子是密封的,但有一根管子与空速管相连。如果飞机速度快,动压便增大,膜盒内压力增加,膜盒会鼓起来。用一个由小杠杆和齿轮等组成的装置可以将膜盒的变形测量出来并用指针显示,这就是最简单的飞机空速表。风速传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333][url=http://mall.ofweek.com/category_44.html]风速传感器[/url]丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 电流传感器原理_如何选择电流传感器

    电流传感器原理_如何选择电流传感器

    [align=center][/align]电流传感器具体的工作原理是:当主电路有大电流Ip流动时,导体周围会产生强磁场。该磁场由多磁环收集并作用于电流传感器器件以使其具有信号输出。该信号由放大器A放大并输入到功率放大器。此时,功率管的相应电压降变化以获得补偿电流Is。由于Is电流流过太多,绕组产生磁场Hs。 Hs与由主电流Ip产生的磁场Hp相反,由此补偿原始磁场,逐渐减小从霍尔器件输出的信号,最后乘以Is和匝数以产生磁场和磁场由Ip生成的字段。当它相等时,Is不再增加。此时,电流传感器达到零磁通量检测。如何选择当前电流传感器:霍尔电流传感器基于磁平衡霍尔原理。根据霍尔效应原理,从霍尔元件的控制电流端施加电流Ic,并且在霍尔元件平面的法线方向上施加具有B的磁场强度的磁场。然后,在垂直于电流和磁场的方向上(即,在霍尔输出端子之间),将产生电势VH,其被称为霍尔电势,其与控制电流I成比例。产品。即,其中K是霍尔系数,其由霍尔元件的材料确定 一,控制电流 B是磁场强度 VH是霍尔的潜力。电流传感器应用:电流传感器在许多领域都有应用,如电池监测,汽车,工业,铁路,机车,车载电力测试,能源和自动化等。电流传感器的主要特性参数:1、线性线性决定了电流传感器输出信号(次级电流IS)和输入信号(初级电流IP)与测量范围成正比的程度。2、温度漂移偏移电流ISO在25°C时计算。当霍尔电极周围的环境温度变化时,ISO会改变。因此,考虑偏移电流ISO的最大变化很重要,其中IOT指的是当前电流传感器性能表中的温度漂移值。3,偏移电流ISO偏移电流也被称为剩余电流或剩余电流。这主要是由霍尔元件或电子电路中的运算放大器不稳定造成的。当电流传感器在25°C和IP = 0下制造时,偏移电流会最小化,但传感器在离开生产线时会产生一定量的偏移电流。4、标准额定值IPN和额定输出电流ISNIPN是指电流传感器可以测试的标准额定值。它由有效值(A.r.m.s)表示。 IPN的大小与传感器产品的型号有关。 ISN是指电流传感器的额定输出电流,一般为10〜 400mA。当然,这可能会因型号而异。5、准确性霍尔效应电流传感器的精度取决于标准额定电流IPN。在+ 25°C时,传感器的测量精度对初级电流有一定的影响。同时,在评估电流传感器精度时,还必须考虑偏移电流,线性度和温度漂移的影响。电流传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨超声波风速传感器[/color][color=#333333]丨氧气传感器丨电流传感器丨风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨[url=http://mall.ofweek.com/category_63.html]电流传感器[/url]丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨位置传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨压电薄膜传感器丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

传感器的原理相关的耗材

  • 电容传感器
    Capacitec是非接触式电容传感器专 业 制 造 商。从 1960 年 开 始 Capacitec投身于研究生产电容传感器, 公司治理与 改进电容原理物理测量技 术,在传感器的设计方面达到世界最高 水平,其产品主要应用在航空、汽车、薄膜等行业。Capacitec位移传感器因其高稳定性而出 名。在恶劣条件下同样能正常使用:² 温度高达 1000℃ ² 辐射高达10(18次方)RADS² 磁场强度高达 5Tesla
  • 空气质量传感器
    空气质量传感器 ZWIN-AQMS06-M空气质量传感器是专门针对探测器推出的一款新型智能传感器,主要用于SO2、NO2、CO、O3等四种组合气体(可替换)浓度的测量,也可配置颗粒物PM2.5、PM10进行同时监测。本传感器采用颗粒物与气体双路采样、各气体间单独分路进气的方式,互不干扰,测量准确,内置有吸气泵,响应速度快,灵敏度高。其中,颗粒物采样单元采用机械切割头,并且配置孔径为1mm的防护网,有效隔离杂质,增加传感器使用寿命;气体采样单元增加预处理模块,可有效除湿除尘,提高气体检测的J准度。传感器配备485信号传输接口,操作方便、测量准确、工作可靠,可嵌入各种与检测空气质量浓度相关的仪器仪表或空气质量改善设备,适用于多种场合。 规格参数:精度:±5% 输出方式:RS485 检测原理:光散射原理PM2.5测量范围/分辨率:0-1000/0.1ug/m3PM10测量范围/分辨率:0-2000/0.1ug/m3 检测原理:电化学原理NO2测量范围/分辨率:0-1/0.001ppm SO2测量范围/分辨率:0-1/0.001ppmCO测量范围/分辨率:0-10/0.01ppm O3测量范围/分辨率:0-1/0.001ppm
  • 电容位置传感器
    电容位置传感器应用于工厂生产,在生产过程中来测量和测试质量保证,电容位置传感器的电容测量原理确保测量结果非常稳定和精确。电容位置传感器规格测量范围(mm):0.2 | 0.5 | 1 | 2 | 3 | 5 | 10 最大线性0.6μm 最高分辨率0.01μm 高稳定性和高精度 纳米级分辨率 集成的数字信号处理器(DSP),功能强大 带宽50kHz 无磨损 免维护 线性特性 适用于所有导电材料 测量速率高

传感器的原理相关的资料

传感器的原理相关的资讯

  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 光照度传感器的工作原理是什么?使用时应注意什么呢?
    光照度传感器是一种常用的检测装置,在多个行业中都有一定的应用。在很多地方我们都会看到光控开关这种设备,比如大街上的路灯、各个自动化气象站以及农业大棚里面,但当我们看到这种有个小球的盒子的时候,虽然知道这是光照度传感器,但是对于它还是不太了解,今天我们来了解一下光照度传感器。光照度传感器的工作原理光照度传感器采用热点效应原理,最主要是使用了对弱光性有较高反应的探测部件,这些感应原件其实就像相机的感光矩阵一样,内部有绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层,热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐射度成正比。透过滤光片的可见光照射到进口光敏二极管,光敏二极管根据可见光照度大小转换成电信号,然后电信号会进入传感器的处理器系统,从而输出需要得到的二进制信号。当然,光照度传感器还有很多种分类,有的分类甚至对上面介绍的结构进行了优化,尤其是为了减小温度的影响,光照度传感器还应用了温度补偿线路,这样很大程度上提高了光照度传感器的灵敏度和探测能力。光照度传感器的使用方法光照度传感器应安装在四周空旷,感应面以上没有任何障碍物的地方。将传感器调整好水平位置,然后将其牢牢固定,将传感器牢固地固定在安装架上,以减少断裂或在有风天发生间歇中断现象。壁挂型光照度传感器安装方式:首先在墙面钻孔,然后将膨胀塞放入孔中,将自攻螺丝旋进膨胀塞中。百叶盒型光照度传感器安装方式:百叶盒型光照度传感器一般应用在室外气象站中,可通过托片或折弯板直接安装在气象站横梁上。宽电压电源输入,10-30V均可。485信号接线时注意A/B条线不能接反,总线上多台设备间地址不能冲突。光照度传感器使用注意事项1.一定要先检查下包装是不是完好无损的,然后去核对变送器的型号和规格是不是跟所购买的的产品一样;如果有问题一定要尽快与卖家联系。2.使用光照度传感器的时候一定不能有外压力冲压光检测传感器,避免压力冲压下测量元件受损影响光照度传感器的使用或导致光照度传感器发生异常或压坏遮光膜产生漏水现象。一定要避免在高温高压环境下使用光照度传感器。3.用户在使用光照度传感器的时候禁止自己拆卸传感器,更加不能触碰传感器膜片,以免造成光照度传感器的损坏。4.使用光照度传感器之前一定要确认电源输出电压是不是正确;电源的正、负以及产品的正、负接线方式,保证被测范围在光照度传感器相应量程内并详细阅读产品说明书或咨询卖方。5.安装光照度传感器的时候,一定要保证受光面的清洁并置于被测面。6.严禁光照度传感器的壳体被刀或其他锋利的金属连接线及物体划伤,磕伤,砰伤,造成变送器进水损坏。

传感器的原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制