当前位置: 仪器信息网 > 行业主题 > >

内部结构原理

仪器信息网内部结构原理专题为您提供2024年最新内部结构原理价格报价、厂家品牌的相关信息, 包括内部结构原理参数、型号等,不管是国产,还是进口品牌的内部结构原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合内部结构原理相关的耗材配件、试剂标物,还有内部结构原理相关的最新资讯、资料,以及内部结构原理相关的解决方案。

内部结构原理相关的资讯

  • 首张原子内部结构图亮相 颠覆物理学家传统观念
    荷兰研究人员拍摄到的世界首张原子结构图,图中颜色不同是因为原子内部微粒密度不同。   荷兰物质基础研究基金会的研究人员日前拍摄到了世界首张原子内部结构照片。 在这项开创性实验中,研究人员用激光、显微镜和能够把拍摄对象放大2万倍的特殊镜头对氢原子内部进行观察研究,并对其进行拍摄。该研究小组的负责人阿尼塔斯托多纳说:“我们对这一成果非常满意。”这项实验颠覆了量子物理学家们的观念。之前,由于原子内部微粒非常微小、脆弱,拍摄原子内部结构照片曾被认为是不可能完成的任务。   研究人员介绍称,选择氢元素作为研究对象,是因为它结构简单,拍摄氢的原子照片要比获取其他元素原子照片更为容易。目前,该小组将研究目标转向结构更为复杂的氦元素,研究是否成功还有待确认。   对于这项实验,加拿大渥太华大学物理学家杰夫伦德恩表示:“这个实验很有趣,这主要是因为它的研究对象是氢元素。”氢元素广泛存在于宇宙万物中。 伦德恩指出,该研究小组基本上开创了一项新技术,它将成为科学家们“一个非常有用的工具”。
  • 英研制新型X射线摄影机 揭示物质内部结构
    据美国物理学家组织网近日报道,英国科技设施委员会(STFC)将和格拉斯哥大学合作,建造迄今为止拍摄速度最快的X射线摄影机:每秒450万帧,可记录瞬间爆发的图像。将它安装于大型研究设备上,有助于从分子和原子水平揭示物质内部结构,开发新型药物及用于其他重要研究领域。   该摄影机也是英国科技设施委员会与欧洲X射线自由电子激光仪(X射线自由电子a激光仪)合作的首批实验终端设备之一,将于明年交付欧洲X射线自由电子激光仪委员会,并于2015年开始运行。欧洲X射线自由电子激光仪委员会代表团在参观了英国科技设施委员会之后,已经签订了300万英镑的样机建造合约。   欧洲X射线自由电子激光仪位于德国北部汉堡附近,由德国牵头,欧洲11个国家共同合作建造,总耗资达10亿欧元,设施长约3.4公里。利用超导加速技术给电子加速,其产生的X射线闪光比传统X光源要亮10亿倍,每次闪光持续不到10亿亿分之一秒。利用这一激光高强度、短脉冲的属性,使拍摄单个分子三维结构的X射线图像成为可能。而目前最先进的X光摄影机只有通过X光束持续不断地轰击物体才能拍摄,X射线自由电子激光仪产生的极短暂而高强度闪光并不适合。   新的摄影机专为X射线自由电子激光仪超短超强的X光而设计,为欧洲X射线自由电子激光仪进一步发挥其强大的探测功能提供了用武之地,有助于理解物质属性,从原子水平绘制病毒结构,精确定位单个细胞的分子组成等。   英国科技设施委员会蒂姆尼古拉斯博士指出,为X射线自由电子激光仪建造尖端摄影机设备,表明了英国在先进微电子学和高技术成像设备设计方面的能力,也将给人们的生活带来巨大变化。   欧洲X射线自由电子激光仪开发公司领导马库斯库斯特博士表示,X射线自由电子激光仪代表了欧洲研究设备的主要进步,加上英国科技设施委员会在成像设备制造方面的先进技术,将帮助X射线自由电子激光仪发挥它最大的潜力。
  • 新的X射线世界纪录:以4nm的分辨率观察微芯片内部结构
    Paul Scherrer Institute (PSI) 的研究人员与洛桑联邦理工学院、苏黎世联邦理工学院和南加州大学合作,利用 X 射线技术取得了重大突破。利用 PSI 瑞士光源 SLS 发出的 X 射线,并采用由瑞士XRnanotech公司提供的最外环宽度为30nm,高度为400nm的FZP(菲涅尔波带片)聚焦,以前所未有的高分辨率观察了微芯片内部结构,实现了4nm的图像分辨率,创下了新的世界纪录!这种高分辨率三维图像将为信息技术和生命科学领域的发展带来深远的影响,研究成果已发表在最新一期的《Nature》杂志上。该样本是从商用计算机芯片中提取的,由图中的金色针头支撑。该样本直径不到 5微米(比人类头发的宽度小 20 倍左右),使用聚焦离子束从芯片上切下并放置在针头上。© Paul Scherrer Institute PSI/Mahir Dzambegovic自 2010 年以来,PSI 大分子和生物成像实验室的科学家一直致力于开发显微成像方法,目的是生成纳米级的三维图像。在目前的研究中,他们与洛桑联邦理工学院 (EPFL)、苏黎世联邦理工学院 (ETHZ) 以及南加州大学合作,首次成功拍摄了最先进的计算机芯片微芯片的图像,分辨率达到 4 纳米,即 百万分之四毫米,创下了世界纪录。科学家们没有使用透镜(目前无法使用镜头拍摄此范围内的图像),而是采用了一种称为 叠层成像 ptychography 的技术,即通过计算机将许多单独的图像组合起来以创建一张高分辨率图片。更短的曝光时间和优化的算法是此次显著提高由他们在 2017 年创下的世界纪录的关键因素。在实验中,研究人员使用了 PSI 瑞士光源 SLS 发出的 X 射线,并由瑞士XRnanotech提供的FZP聚焦。频链接:https://youtu.be/aKEhNgUdFvc深入研究微芯片:新型叠层成像技术可生成分辨率为百万分之四毫米的三维图像。© 视频:Paul Scherrer Institute PSI/Benjamin A. Senn、Markus Fischer 和 Tomas AidukasNo.1 介于传统 X 射线断层扫描和电子显微镜之间微芯片是科技的奇迹。如今,先进的集成电路中每平方毫米可以容纳超过 1 亿个晶体管,这一趋势还在不断增长。高度自动化的光学系统用于在洁净室中将纳米级电路迹线蚀刻到硅坯中。一层又一层地添加和移除,直到完成芯片(智能手机和电脑的大脑)可以被切割和安装。制造过程繁琐复杂,表征和绘制最终结构也同样困难。扫描电子显微镜有几纳米的分辨率,因此非常适合对构成电路的微型晶体管和金属互连进行成像,但它们只能产生表面的二维图像。“电子在材料中传播得不够远,” SLS 的物理学家 Mirko Holler 解释道。“要用这种技术构建三维图像,必须逐层检查芯片,在纳米级别去除各个层——这是一个非常复杂和精细的过程,而且会破坏芯片。”然而,使用 X 射线断层扫描可以生成三维和无损图像,因为 X 射线可以穿透材料更深,这个过程类似于医院的 CT 扫描。样品被旋转并从不同角度进行 X 射线照射,辐射的吸收和散射方式各不相同,这取决于样品的内部结构。探测器记录离开样品的光,然后算法从中重建最终的 3D 图像。“这里我们遇到了分辨率问题,” Mirko Holler 解释说,“目前可用的 X 射线镜头都无法以分辨如此微小结构的方式聚焦这种辐射。”No.2 Ptychography——虚拟镜头解决方案是叠层成像。在这种技术中,不是将X射线束聚焦在纳米尺度上,而是使样品在纳米尺度上移动。“我们的样品被移动,使得光束遵循精确定义的网格——就像筛子一样。在网格上的每个点,都会记录衍射图案,” 物理学家解释说。各个网格点之间的距离小于光束的直径,因此成像区域会重叠。这会产生足够的信息,以便在算法的帮助下以高分辨率重建样品图像。重建过程就像使用虚拟镜头一样。Manuel Guizar-Sicairos、Tomas Aidukas 和 Mirko Holler(从左到右)站在 PSI 瑞士光源 SLS 的实验设备前。科学家利用这里产生的 X 射线创下了新的世界纪录。© Paul Scherrer Institute PSI/Mahir Dzambegovic“自 2010 年以来,我们一直在不断完善实验装置和样品定位的精度。2017 年,我们终于成功对计算机芯片进行了空间成像,分辨率达到 15 纳米——创下了纪录,” Holler 回忆道。从那时起,尽管装置和算法进一步优化,但我们仪器的分辨率一直保持不变。“我们将其延伸到了一到两纳米,但这是我们能达到的极限。有些东西限制了我们,我们必须找出它是什么。”No.3 寻找限制因素这项精心的研究终于在在2021 年由瑞士国家科学基金会资助的一个项目开始。除了参与了第一次记录的 Mirko Holler 和 Manuel Guizar-Sicairos 之外,Tomas Aidukas 也加入了该小组。这位物理学家用他的编程经验支持团队并开发了新的算法,最终帮助他们取得了突破。研究人员在减少曝光时间时找到了他们的第一个线索——衍射图像突然变得更清晰了。这让他们得出结论,照射样品的 X 射线束并不稳定,而是发生了微小的移动——光束在摆动。“这类似于摄影,” Guizar-Sicairos 解释说。“当你在晚上拍照时,你会因为黑暗而选择长时间曝光。如果你不使用三脚架这样做,你的动作就会传输到相机上,照片就会模糊。” 另一方面,如果你选择较短的曝光时间,这样光线被捕捉的速度比我们移动的速度快,那么图像就会很清晰。 “但在那种情况下,图像可能是全黑的或充满噪点,因为在这么短的时间内几乎无法捕捉到任何光线。”研究人员也面临类似的问题。尽管现在的图像已经很清晰,但由于曝光时间太短,图像所包含的信息太少,无法重建整个微芯片。NO.4 更短的曝光时间和新的算法为了解决这个问题,研究人员升级了他们的装置,换上了一个更快的探测器,这也是 PSI 开发的。这样他们就可以在每个网格点记录许多图像,每张图像的曝光时间都很短。“数据量非常大,” Aidukas 补充道。当将各个图像加在一起并叠加时,就会产生与使用长曝光时间获得的模糊图像相同的效果。查看最先进的计算机芯片的内部结构。研究人员新开发的叠层技术使研究人员能够绘制出这一工程奇迹的三维结构。图片显示了组成微芯片的不同层。在顶部可以看到较粗的结构。随着层层向下移动,微芯片变得越来越复杂 - 使那里的连接可见需要几纳米的分辨率。© Paul Scherrer Institute PSI/Tomas Aidukas“你可以把 X 射线束看作是样本上的一个点。我们现在在这个特定点拍摄大量单独的照片,”Aidukas 解释道。由于光束在摆动,每幅图像都会略有变化。“ 在一些图片中,光束处于相同的位置,而在另一些图片中,光束已经移动。我们可以利用这些变化来追踪未知振动引起的光束的实际位置。”接下来要做的是减少数据量。“我们的算法会比较各个图像中光束的位置。如果位置相同,则将它们放在同一组中并加和。” 通过对低曝光图像进行分组,可以增加它们的信息内容。因此,研究人员能够使用大量短曝光图片重建具有高光内容的清晰图像。新的叠层扫描技术是一种基本方法,也可以在类似的研究设施中使用。该方法不仅限于微芯片,还可以用于其他样品,例如材料科学或生命科学。文本:Paul Scherrer Institute PSI/Benjamin A. Senn© PSI 免费提供图像和/或视频材料,供媒体报道上述文本内容。不得将此材料用于其他目的,包括将图像和视频材料转移到数据库以及由第三方出售
  • 高功率显微镜助力机器学习快速揭示细胞内部结构
    借由高功率显微镜和机器学习,美国科学家研发出一种新算法,可在整个细胞的超高分辨率图像中自动识别大约30种不同类型的细胞器和其他结构。相关论文发表在最新一期的《自然》杂志上。  领导该COSEM(电子显微镜下细胞分割)项目团队的奥布蕾魏格尔说,这些图像中的细节几乎不可能在整个细胞中手动解析。仅一个细胞的数据就由数万张图像组成,通过这些图像追踪该细胞的所有细胞器,需要一个人花60多年时间。但是新算法可在数小时内绘制出整个细胞。  除了《自然》上两篇文章外,研究团队还发布了一个数据门户“开放细胞器”,任何人都可通过该门户访问他们创建的数据集和工具。这些资源对于研究细胞器如何保持细胞运行非常宝贵,过去科学家们并不清楚不同细胞器和结构怎样排列——它们如何相互接触及占据多少空间。现在,这些隐藏的关系首次变得可见。  在过去十年中,研究团队使用高功率电子显微镜从多种细胞中收集了大量数据,包括哺乳动物细胞。  最新的机器学习工具可在电子显微镜数据中精确定位突触,即神经元之间的连接。研究人员调整了算法来绘制或分割细胞中的细胞器,该分割算法为图像中的每个像素分配一个数字,这个数字反映了像素离最近的突触有多远,算法使用这些数字来识别和标记图像中的所有突触。COSEM算法的工作方式与之类似,但维度更多。研究人员根据每个像素与30种不同类型的细胞器和结构中的每一种的距离对每个像素进行分类。然后,算法整合所有这些数字来预测细胞器的位置。  研究人员表示,利用这些数字,该算法还能判断特定的数字组合是否合理。例如,一个像素不能既位于内质网内,同时又位于线粒体内。  为了回答诸如细胞中有多少线粒体或它们的表面积是多少等问题,研究团队构建的算法结合了有关细胞器特征的先验知识。经过两年的工作,COSEM研究团队最终找到了一套算法,可为迄今为止收集的数据生成良好的结果。  目前,研究团队正在将成像提升到更高的细节水平,并进一步优化工具和资源,创建一个更为广泛的细胞标注数据库和更多种细胞和组织的详细图像。这些成果将支持未来的新研究领域——4D细胞生理学,以了解细胞在构成有机体的不同组织中的相互作用。
  • 材料也看“颜值”,表面分析与内部结构同样重要!第四届表面分析技术应用论坛来袭
    p style=" text-indent: 2em text-align: justify margin-bottom: 10px " strong 材料的性能,除了取决于材料本身的组成外,其表面的成分、结构、化学状态等特性也极大程度上影响了材料的物理、化学等性能,而材料表面与内部有明显的不同,有时候,改变材料表面的结构,或许可以达到意想不到的效果。 /strong /p p style=" text-align: center text-indent: 0em margin-bottom: 10px " span style=" font-size: 20px color: rgb(255, 0, 0) " strong 因此,对材料表面结构及组成的分析就显得尤为重要。 /strong /span /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 表面分析科学是上世纪60年代后期发展起来的一门学科,是目前已经成为国际上最为活跃的学科之一。随着材料科学、化学化工、半导体及薄膜、能源、微电子、信息产业及环境领域等高新技术的迅猛发展,对于表面分析技术的需求日益增多。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 为积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术最新的进展,由国家大型科学仪器中心-北京电子能谱中心、北京理化分析测试学会表面分析专业委员会、中国分析测试协会高校分析测试分会、全国微束分析标准化技术委员会表面化学分析分技术委员会及仪器信息网联合举办的 strong “第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”主题网络会议将于5月8日举行。 /strong /p p style=" text-align: center margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" img style=" width: 650px height: 142px " src=" https://img1.17img.cn/17img/images/202004/uepic/63bf85a8-5dfc-45da-b1ff-74530cc5e3dc.jpg" title=" w1920h420bmfxj2020(8).jpg" width=" 650" height=" 142" border=" 0" vspace=" 0" alt=" w1920h420bmfxj2020(8).jpg" / /a /p p style=" text-align: center text-indent: 0em margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 点击图片 /strong /span strong style=" text-indent: 0em " span style=" color: rgb(255, 0, 0) " 报名参会 /span /strong /a /p p style=" text-indent: 0em margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" strong style=" text-indent: 0em " span style=" color: rgb(255, 0, 0) " /span /strong /a /p p style=" text-align: center margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c4e4cf10-de01-42d6-ad15-8111a15e6e74.jpg" title=" 报名.JPG" alt=" 报名.JPG" / /a /p p style=" text-align: center " br/ /p p style=" text-align: justify text-indent: 0em margin-bottom: 10px " strong 一、主办单位 /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 国家大型科学仪器中心-北京电子能谱中心 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 北京理化分析测试学会表面分析专业委员会 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 中国分析测试协会高校分析测试分会 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 全国微束分析标准化技术委员会表面化学分析分技术委员会 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 仪器信息网 /p p style=" text-align: justify text-indent: 0em margin-bottom: 10px " strong 二、会议详情 /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 1. 会议时间:2020年5月8日 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 2. 会议形式:网络在线交流 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 3. 会议日程: /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202004/uepic/2577a481-3f33-42ff-b5c8-1bb68e31bfe9.jpg" title=" 1.JPG" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202004/uepic/220a3916-279f-4710-a7c3-9526b9a87f34.jpg" title=" 2.JPG" / /p p style=" text-align: center margin-bottom: 10px text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/421a40bb-6cac-4de9-ab76-e8707f6a75de.jpg" title=" 报名.JPG" alt=" 报名.JPG" / /a /p p style=" text-align: justify text-indent: 0em margin-bottom: 10px " strong /strong /p p style=" text-align: center margin-bottom: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" span style=" color: rgb(0, 0, 0) " strong 点击参会 /strong /span /a /p p style=" text-align: justify text-indent: 0em margin-bottom: 10px " strong 三、参会指南 /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " strong (一)报名方式: /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 1、点击“第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会” 网络会议(https://www.instrument.com.cn/webinar/meetings/2020bmfx/)官方页面进行报名。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 2、报名开放时间为即日起至2020年5月8日。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 3、为使更多用户能够通过网络平台进行学习与交流,报名参加“第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”网络会议不收取注册及参会费用。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " strong (二)参会条件: /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 1、“第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”网络会议将在仪器信息网网络会议平台上举办,报告人PPT视频和讲解将实时传送给所有参会者,参会者也可通过文字向报告人提问,报告人在报告结束后统一进行解答。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 2、参与网络会议听众需要自备一台能上网的电脑或智能手机,网络带宽超过128K。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " strong (三)参会方式: /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 1、报名参会并通过审核后,将会收到邮件通知,并在会前一天收到提醒参会的短信通知。 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 2、会议当天进入“第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”网络会议(https://www.instrument.com.cn/webinar/meetings/2020bmfx/)官方页面,点击“进入会场”,填写报名时手机号,即可登录会场参会。 /p p style=" text-align: justify text-indent: 0em margin-bottom: 10px " strong 四、联系方式 /strong /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 会议联系人:吴先生 18640355925 /p p style=" text-indent: 2em text-align: justify margin-bottom: 10px " 联系邮箱:wuyou@instrument.com.cn /p p style=" margin-bottom: 10px " & nbsp /p p style=" text-align: right margin-bottom: 10px " & nbsp /p p style=" text-align: right margin-bottom: 10px " 国家大型科学仪器中心-北京电子能谱中心 /p p style=" text-align: right margin-bottom: 10px " 北京理化分析测试学会表面分析专业委员会 /p p style=" text-align: right margin-bottom: 10px " 中国分析测试协会高校分析测试分会 /p p style=" text-align: right margin-bottom: 10px " 全国微束分析标准化技术委员会表面化学分析分技术委员会 /p p style=" text-align: right margin-bottom: 10px " 仪器信息网 /p
  • 诺贝尔化学奖:展现细胞的内部世界
    十七世纪,最早的微生物学家安东尼.范.列文虎克(Antonie van Leeuwenhoek)利用聚光下的透镜看到了游动的细胞,并为之惊叹不已。自那时起,显微镜便开辟了新的研究前景。今年,诺贝尔化学奖授予了三位科学家。他们突破光学显微镜的极限,展现了活细胞分子级结构的清晰图像。   斯特凡.赫尔(Stefan Hell)、威廉姆.莫尔纳尔(William Moerner)和埃里克.白兹格(Eric Betzig)在上世纪九十年代与本世纪头十年内所取得的进展,意味着如今生物学家可以对蛋白质分散、进入细胞的过程进行实时观察。该技术可应用于研究神经元间如何连接,以及受精卵如何分裂成胚胎等问题。   &ldquo 这真是生命科学的革命,因为我们现在可以看到从前看不到的结构。&rdquo 斯特凡.赫尔说道。(斯特凡.赫尔在位于哥廷根的马克斯.普朗克学会生物物理化学研究所从事超分辨率技术的研究工作。)或如诺贝尔委员会所说:&ldquo 显微(微米)技术已然变为显纳(纳米)技术了。&rdquo   正如德国物理学家恩斯特.阿贝(Ernst Abbe)于1873年所意识到的那样,无论透镜有多干净,光学显微镜所呈现的细胞分子图像总是模糊不清的。物理定律决定:当物体间距小于约200纳米(约为可见光波长的一半)时,可见光将无法分辨不同物体,而这些物体将会呈现为一点。这称作阿布衍射极限。在这种分辨率下,人们可以看到细胞中的细胞器,却看不到细胞器的具体结构。电子显微镜比光学显微镜的分辨率高,但只限于真空条件下使用,故仅能用于研究已死的组织。   阿布极限是客观存在的,无法克服。于是,2014年的诺贝尔奖得主们转而运用荧光团(荧光分子)技术。所谓荧光团技术,即激光器发射出特定波长的激光,冲击荧光团使其发光。这一技术现常用于生物成像。   战胜模糊 威廉姆.莫尔纳尔现就职于加利福尼亚州斯坦福大学。他于1989年在位于圣荷西的IBM阿尔马登研究中心工作时,发现了单个分子会发出微弱的荧光。1997年,他在加利福尼亚大学圣地亚哥分校任职期间,又找到了控制荧光的办法,从而可以像开关灯一样改变分子。但仍旧需要这些单个分子间距大于200纳米才能分辨出来。   1995年,新泽西默里山贝尔工作室的埃里克.白兹格提议:如果使细胞中异种分子发出不同颜色的光,研究人员应当可以通过顺序拍摄红分子、绿分子、蓝分子的照片来提高分辨率。虽然同色荧光团仍需相距200纳米以上,但通过图层叠加的方法的确可以做出拥有更高分辨率的结构图。接下来,莫尔纳尔证明了各类同种分子可在不同时刻发光。这项发现最终将白兹格的想法变成了现实。   白兹格历经近十年才将他的想法付诸实践。他曾离开科学学术界,到他父亲在密歇根的医疗设备公司工作。2006年,他效力于弗吉尼亚州阿什本地区霍华德?休斯医学研究所珍妮利亚农业研究院。他运用这项技术拍摄了一张溶酶体蛋白的超分辨率照片,溶酶体蛋白上遍布着带有绿色荧光标记的分子。德国维尔茨堡大学超分辨率显微技术研究员马库斯.萨澳(Markus Sauer)说:这项技术现可达到20纳米的分辨率。   此时,正在芬兰图尔库大学工作的斯特凡.赫尔发现了一种可以避开阿布极限的技术。这项技术同样依赖于对荧光分子的控制。1994年,他提出:使用激光器制造有色荧光团,然后再次使用激光器使部分荧光团停止发光。其实早在1917年,爱因斯坦就描述了这一过程。   赫尔的方法是运用第二次激光照射冲击被照亮的荧光团,如此一来只剩下极少荧光点在发光。而由于无法战胜阿布极限,最后的图像还是模糊的。但有一点可以肯定,第二次照射后剩下的极少荧光点可以帮助研究人员确定光源。   将一系列这样的荧光点集合起来,就可以得到一幅高分辨率的图像。理论上,这些荧光点可以达到仅几纳米的间距。但在活细胞中,30纳米左右已然是极限了。萨澳说:这是由于现阶段第二次激光强度太大而常常破坏荧光团。   细胞的世界   &ldquo 至少在我看来,二十世纪那么多的物理发现一定能帮我们克服衍射难题。&rdquo 现就职于哥根廷马克斯?普朗克学会生物物理化学研究所的赫尔,在得知获奖消息时这样对诺贝尔委员会说道。   &ldquo 的确如此,赫尔运用的所有量子物理原理都在二十世纪二十年代末被发现。&rdquo 托马斯.卡拉尔指出。托马斯.卡拉尔(Thomas Klar)是奥地利约翰.开普勒林兹大学应用物理学研究所负责人,曾在2000年与赫尔合着原理论证的论文。   赫尔接到诺贝尔委员会打来的电话时正在读一篇科学论文。之后,他说:&ldquo 我读完了想看的那段,然后打电话给我的妻子和一些亲友。&rdquo   今年诺贝尔奖得主们的发明尚未成为常规技术,但已有许多生物学家运用此技术拍摄出了很好的细胞内部结构图。赫尔还发布了间距40纳米的小泡在神经元内游动的视频。庄小威是马萨诸塞州剑桥市哈佛大学的一名化学家。她自己则另有发明&mdash &mdash 随机光学重建显微法。该显微法可用于展现肌动蛋白纤维如何沿轴突横截面周长呈环状包裹轴突。&ldquo 将来会出现许多新版的超分辨率显微镜。&rdquo 赫尔说道。
  • 先临三维|外星人的内部构造应该是怎样的?3D数字化解剖为你解密
    想必大家对于《et外星人》中,最后,小主人公骑着自行车带着et飞向月球的画面都记忆犹新。也通过这部电影,我们认识了外星人et。▲ 图片源于百度,电影《外星人et》剧照大家是否想探究一下外星人的内部构造?带着这样的好奇,我们开启了“解剖”、重构外星人身体之旅。我们通过3d扫描—内部数据重建—3d打印这样的技术,让外星人的内部构造也可以肉眼可见。 这次“解剖”的外星人来自very museum,是核心艺术家 steve wang的作品。他的名字是alien grey,有着我们熟识的外星人形象。姓名 grey性别 不详 年龄 不详 “解剖”的流程 以下来自grey的独白 复制一个三维的我 3d扫描获取原始 高细节彩色数据我的“皮肤”有细致的纹路,在复制精细三维数据的同时,还需要兼顾皮肤的颜色。因此,先临三维的工程师使用einscan pro 2x 2020设备获取我的等比彩色数据,为后续“解剖”做准备。▲ 精细的扫描数据,肉眼可见的皮肤纹路重构我的三维模型,制作解剖效果,还需要内部的结构。工程师将我的“头骨”利用手持扫描仪进行数据获取,头骨数据结合外形数据,“解剖”的第一步已经完成。 重构我的内部结构 后处理软件设计解剖结构设计师通过maya等数据建模软件,参考人体构造,结合我的头骨数据和外形数据,重构出内部结构。“解剖”最终造型,左右一分为二,一侧展示外形,一侧展示内部结构。 展现我的“解剖”结构 彩色3d打印机打印完整数据利用stratasys的彩色3d打印技术,实现数据的最终呈现。stratasys的全彩3d打印技术,结合了全彩,透明以及类橡胶材质的组合输出能力,使得我的左右半边外形以及内部结构的展示可以一次性完成。在保留外部轮廓的同时,内部结构也可以清晰地展示在观众面前。在创作过程中,stratasys工程师前后测试了十几个不同的版本,特别在细节方面,包括我的皮肤的颜色,质感,血管的形态,肌肉,脑干,脑沟等大脑结构中不同层次的展现。这个时候3d打印的优势就凸现出来了 – 我的数据缩小到11公分的比例,12小时之内可以完成8个不同版本的打印,实现快速评估整体的效果,确保在正确的方向去进行下一步的创作。一个对于外星来客的创意尝试,利用3D技术,终将有趣的想法,变成可见的现实。3d扫描-内部数据重建-3d打印,赋予外星人全新的形象,实现模型的快速设计制造。通过grey的解剖模型重建,我们看到了3d技术的力量。3d技术,为创意赋能。
  • “眼见不一定为实”?岛津工业CT带你了解物体内部信息
    如何利用工业CT获取物体的内部结构信息? 对于这个问题,我们通过一种电子器件的CT图像来说明。 大家都知道电子钟表上有个重要零件叫晶振,而搭过电路的人都知道:晶振,除了用在电子钟表上,还可以用在很多地方,比如,低头族挚爱的智能手机上、智能化程度越来越高的汽车上等等。 晶振是什么? 晶振是让一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定、精确的单频振荡的电子器件。虽然形状多种多样,但是外形简洁大气,例如图1。 图1 普通晶振(SPXO,左)和带有温度补偿电路的晶振(TCXO,右) 在简单的外壳下,它们内部是什么样子?工业CT可以让你略知一二。 晶振内部结构? 图2 图1 SPXO的透视图像(平放俯视) 图3 红色虚线部分的放大透视图像(侧面) 图4 图1 TCXO的透视图像(平放俯视) 图5 红色虚线部分的放大透视图像(侧面) SPXO和TCXO虽然外观相似,但是因为器件性能不同,所以透视图中可看到TCXO明显比SPXO结构复杂些。TCXO中,石英片有罩子,而且震荡电路IC在石英片外罩的下面。透视图上只能看到位置关系,具体样貌无法获知。 那么来看看晶振的CT图像。图6~图10是图1中SPXO的CT图像。 图6就是SPXO的MPR图像。MPR是任意断面图像的简称。断面3是断面1中绿色亮线的截面图像,断面4是断面2中绿色亮线的界面图像。CT图像中,断面1中可见石英片的CT图,断面3中可见导电胶和胶体中气泡的图像,断面4中可见震荡电路IC的绑定点图像。 图6 图2中红框部分的CT断面图像 晶振中的石英片是什么样子呢? 下图就是图6 断面1中的石英片的样子。 图7 图6断面1中石英片的图像 MPR图像怎么看? 有的小伙伴可能说:MPR图像不容易看懂啊!那么可以看看处理后的3维效果图——图8和图9。图8就是SPXO的内部三维图像,图9是石英片下面的震荡电路IC的三维图像。图8 图2的三维图像 图9 震荡电路IC的三维图像 图10 对震荡电路IC中焊点的缺陷分析 除了直观的图形数据,还可以利用分析软件量化分析焊点的缺陷(VGStudio MAX)。那么图1中的TCXO里的石英片和震荡电路IC又是什么样的呢? 图12 图1TCXO的石英片 图13 图1TCXO石英片外罩下的震荡电路IC 图像中可见,TCXO的石英片被罩子罩住,震荡电路IC隐藏在罩子下面。如果没有CT的帮助,估计我们只能把TCXO的器件外壳打开才能看到里面的状态。 外形相似的SPXO和TCXO,原来内部差别如此之大。 最后,看看为我们拍出CT图像的仪器——岛津微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus。 岛津微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus 岛津的CT,除了晶振这种简单器件,大至车用铝压铸件,小到碳纤维,都能够轻松拍摄出清晰的图像。关键是,拍摄对象不需要做任何特殊处理,在原有状态下即可获取内部结构信息,这也是CT存在的最大意义。
  • 高低温冷热冲击试验箱的原理及特点
    高低温冷热冲击试验箱是金属、塑料、橡胶、电子等材料行业必备的测试设备,用于测试材料结构或复合材料,在瞬间下经极高温及极低温的连续环境下所能忍受的程度,得以在最短时间内检测试样因热胀冷缩所引起的化学变化或物理伤害。分为两厢式和三厢式,区别在于试验方式和内部结构不同,产品符合标准为:GB/T2423.1-2008试验A、GB/T2423.2-2008试验B、GB-T10592-2008、GJB150.3-198、GJB360A-96方法107温度冲击试验的要求。    高低温冷热冲击试验箱制冷工作原理:高低制冷循环均采用逆卡若循环,该循环由两个等温过程和两个绝热过程组成。其过程如下:制冷剂经压缩机绝热压缩到较高的压力,消耗了功使排气温度升高,之后制冷剂经冷凝器等温地和四周介质进行热交换,将热量传给四周介质。后制冷剂经阀绝热膨胀做功,这时制冷剂温度降低。最后制冷剂通过蒸发器等温地从温度较高的物体吸热,使被冷却物体温度降低。此循环周而复始从而达到降温之目的。    高低温冷热冲击试验箱质量优势    主要核心配件均采用国际大品牌的配件如法国泰康,日本路宫/和泉/三菱,施耐德,美国快达/杜邦冷媒,丹麦(DANFOSS),瑞典(AlfaLaval)等配件,假一罚十,能确保高低温冲击测试箱正常高效的运行。相比其他同行:采用国产配件或者是使用伪劣的冒牌配件充当品牌配件,发货到客户处和所说的完全不一致,质量大打折扣。    高低温冷热冲击试验箱技术优势    1.采用7″TFT真彩LCD触摸屏,比其它屏更大,更直观,操作简单,运行稳定,并且更节能。    2.蒸发器采用水浸查漏方法,查漏彻底,确保设备稳定运行。    3.采用模块化制冷机组,能确保制造质量,且维护替换非常方便。    4.采用高均匀度的正压式风道系统,温度均匀高。    5.采用最新的自动除霜技术,使除霜时间缩短,试设备的使用效率大大增加。    6.具有多项安全保护措施,故障报警显示及故障原因和排除方法功能显示。    三箱式高低温冷热冲击试验箱相比其他同行设备:    1.控制器界面较小颜色单一,不便于观察和操作。    2.采用传统方法,肥皂水查漏,不彻底。    3.冷冻机组和机箱底板安装在一起,制造质量和维护性能不佳。    4.无自动除霜技术,需手动除霜之后方可再进行试验,使用效率不佳。    5.同行大部分高低温冲击测试箱,通常在运行一段时间后开始结霜,并且除霜时间非常长,使用效率低下。    6.同行设备为了节省成本,导致设备的安全保护措施单一,非常容易造成安全隐患。    三:三箱式高低温冷热冲击试验箱节能优势:三箱式冷热冲击试验箱采用自主研发的控制系统,精度高,稳定操作简单,控制器抛弃日本韩国等控制器的固定模式,采用最新的模糊运算技术,自动分析负载能力,合理调节冷媒流量,使设备节能高达20%。
  • 显微镜下原子内部电场首次现形 未来或可直接观察原子结合过程
    p   日本东京大学柴田直哉准教授领导的研究小组,利用目前最先进的扫描透射电子显微镜(STEM)和多分区检测器,首次成功观测到金原子内部电场的分布情况——该电场分布在原子核与电子云之间不到0.1纳米的区域内。最新成果对观察原子内部精密结构极为重要,使未来直接观察原子间如何结合成为可能。 /p p   扫描透射电子显微镜电子探针的大小决定对影像的分辨能力,目前最先进镜片技术的影像分辨力可达0.05纳米以下。电子探针可以检测出由原子产生的散射信号,因此可实现原子可视化。尽管到目前为止,电子显微镜可观测到原子,但直接观察原子内部结构(原子核及电子云)却极为困难。 /p p   研究小组使用分辨能力达0.05纳米以下的扫描透射电子显微镜和他们开发的多分区检测器,对一个金原子内部进行观测,结果发现,在带正电荷的原子核与带负电荷的电子云之间电场的影响下,电子束的行进角度和位置发生了变化,从而直接观察到了原子内部的电场分布,成功捕捉到了原子内部电场从原子核向电子云方向涌动的情形。 /p p   目前,电子显微镜广泛应用于物理化学、电子信息工程学、材料科学、生命科学等尖端基础研究领域 也在半导体设备、医疗、信息通信、能源等产业“大显身手”。提高电子显微镜的性能,对纳米技术研究尤为重要。该研究小组的下一步计划是,挑战直接观察原子间如何联系结合这一难题。 /p p   该成果发表在近日出版的《自然· 通讯》网络版上。 /p
  • 南京农业大学兰维杰:高光谱成像技术是评价食品内部异构性的有效手段
    随着图像处理及分析相关的硬件和软件的不断进步,高光谱成像系统在各种研究项目中的使用越来越多,并被应用于各种领域。最新的研究报告显示,2023年全球高光谱成像系统市场估计为168亿美元,预计2028年有望达到343亿美元,预测期间复合年增长率为15.4%,市场极具活力!为了更好的展现高光谱技术和应用的创新成果,以及未来的发展趋势,仪器信息网特别策划《高光谱技术创新成果集》网络专题,集中展示高光谱领域的最新成果,包括但不限于仪器、部件、技术、方法、应用等。兰维杰 副教授南京农业大学食品科技学院在仪器信息网主办的“高光谱技术在农业领域的最新应用进展” 网络研讨会议中(相关精彩视频回放点击:https://www.instrument.com.cn/news/20230811/679327.shtml ),南京农业大学兰维杰副教授进行了《高光谱成像技术在苹果内部品质异构性的评价潜力研究》的报告分享。会后,我们再次邀请兰老师分享高光谱技术当前的研究进展及其团队研究成果。一、为什么要依靠高光谱技术来研究食品异构性高光谱成像技术是一种在不同波长范围内获取物体光谱信息的技术,其技术优势在于能够捕捉物体的细微光谱差异,并且集成了成像和光谱学,从而实现对物体内部构成和特性的定量或定性分析。目前,高光谱技术在食品质量检测领域应用广泛,如检测食源性污染物、鉴别真伪、果蔬成熟度及病害程度判断。其中,由于果蔬的内部物理性质(如大小、形状、颜色、位置和温度)和生物性质(如品种、季节、成熟度水平和地理来源)各不相同,造成组织具有较高异构性,影响了光学传播特性和与入射光的相互作用行为,从而降低了质量检测的精度。常规色谱、质谱化学分析方法探究单个水果组织水平上的内部异质性方面既昂贵又耗时,这些内部异质性已经被广泛证实,同时也显著影响了其加工后产品的质量安全与稳定性。目前,凭借空间和光谱信息的结合,高光谱成像技术拥有探究其内部品质异构性的潜力,这不仅为对食物内部异质性的科学研究提供了快速有效表征方法,同时也更为获得稳健、精准的食品品质指标预测模型提供关键指导。二、高光谱技术研究苹果异构性的部分进展本团队以苹果为研究对象,通过常规化学分析测定,证明了单个苹果内部在总糖、单糖、酸度、总酚含量等方面均存在显著空间异构性分布。目前,我们提供了一种基于近红外高光谱的简单高效方法来实现苹果内部化学指标异构分布的快速表型(图1)。首先,我们通过近红外高光谱成像系统获取了布瑞本(Braeburn)、嘎啦(Gala)、史密斯(Granny Smith)和高果树负载量(约200个/棵)与低果树负载量(约150个/棵)下的金冠(Golden Delicious)苹果的片状组织,获取了超1000个不同部位的待测样本;其次,对所有苹果切片的高光谱信息,采用主成分分析筛选出变异性较大的特征待测区域(共141个),基于每个部位的平均光谱进行PLS模型与机器学期预测模型构建,结果发现PLS模型能够较好实现特征测试样本的总糖(Total sugar)和干物质(DMC)的预测,模型R2与RPD值高于0.81和2.2;最后,通过该模型对全像素下的目标进行预测,成功实现了不同品种及不同位置的苹果内部的总糖及干物质分布的变异性可视化(图2、图3)。综述,该研究成果的优势在于依靠相对小样本测试数据,即可实现高通量的苹果内部品质指标可视化,这为田间及实验室内三维空间的品质表型提供简单可行方案参考。但是,本研究中高光谱技术也展现了评价单糖、总酚等内部品质指标空间分布的局限性。图1 基于近红外高光谱技术表征苹果内部品质异构性的方法图2基于近红外高光谱技术表征苹果内部干物质含量的可视化空间分布图图3 基于近红外高光谱技术表征苹果内部总糖含量的可视化空间分布图三、高光谱技术对水果硬度异构性与泛化预测模型的开发目前,本团队研究了不同“富士”苹果硬度空间异构性,发现其干物质和硬度也存在着较大变异性,并希望通过减少苹果果皮光学信号干扰,建立更加可靠的果肉硬度泛化检测模型。现有结果表明,在构建苹果果实硬度校正模型时,考虑到样品内部异构性( 10%)可有效提高模型精度和降低样本数量。由此,我们不仅减轻了样品测定的工作量并且保证了模型构建中样本的差异性。希望在后续的苹果硬度模型建立及矫正的过程中开展进一步验证性研究,为点状近红外对苹果硬度检测的泛化模型精度提升提供参考。四、高光谱成像技术探究食品异构性的几点展望目前,限制高光谱成像技术在评价果实内部品质异构性方面的应用依旧存在着以下三个方面:首先,高光谱数据量庞大,急需更有效的数据处理方法、人工智能和机器学习技术从数据中提取有用信息;其次,高精度、小型化的高光谱一起可以提高数据采集的质量和效率,实现食品加工产品在发酵、调配、包埋等过程中内部结构与化学变化的精准控制;最后,明确光在生物物体中传播路径模拟或与生物物体相互作用的机理也是提高模型精度必要的研究方向。这些方法的发展为高光谱成像技术在评价食品异构性的可能性提供了可行性。
  • 前沿应用丨TESCAN Micro-CT 应用于风机叶片的结构缺陷研究
    TESCANUniTOM是一款配置灵活的多分辨率3DX射线CT显微镜,可以对大尺寸的风机叶片(长约40cm)整体3D成像,这是一种非破坏性的技术,可以在不破坏材料的前提下,快速方便地获取风机叶片材料的内部结构,从而进一步研究和分析结构缺陷对叶片材料结构完整性的影响。毫无疑问,风是一种潜能巨大的新能源,在数秒钟内就能发出一千万马力(750万千瓦)的功率。风很早就被人类利用,比如用风车来抽水、磨面等,而现在风能主要被用作风力发电,通过风力带动风机叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。由于风力发电非常环保,无需使用任何燃料,也不会产生辐射或空气污染,因此得到广泛的应用。(图片来源于网络)但风机叶片作为风力发电机的核心部件之一,因积年累月的运转在自然环境中,长期受日照、风雪、雷电,沙尘,甚至大气污染等环境的侵蚀,叶片材料容易老化和损坏,这不但会导致昂贵的维修费用和停机成本,不良的叶片性能还会影响整个叶片的完整性,造成发电量的严重损失,甚至引发事故。风机叶片材料的损坏和老化(图片来源于网络)为了有效避免事故,减少风险,我们首先需要探究一个问题:风机材料的老化和损坏到底是如何影响叶片结构完整性的呢?我们知道风机叶片对材料的要求很高,不仅需要具有较轻的重量,还需要较高的强度、抗腐蚀、耐疲劳性能,因此复合材料在风机叶片的制造中被广泛应用,它占整个风机叶片的比重高达90%。但复合材料是由多种非均质材料组成的,在宏观和微观尺度上的结构都非常复杂,需要利用多尺度三维成像方法才来获得其完整的内部结构。那有没有一种方便快捷的多尺度成像方法能帮助我们快速获得叶片材料的完整内部结构呢?TESCANUniTOM是一款配置灵活的多分辨率3DX射线CT显微镜,可以对大尺寸的风机叶片(长约40cm)整体3D成像,这是一种非破坏性的技术,可以在不破坏材料的前提下,快速方便地获取风机叶片材料的内部结构,从而进一步研究和分析结构缺陷对叶片材料结构完整性的影响。(一)全局扫描,无损获取材料内部宏观结构首先,使用TESCANUniTOM对叶片材料样品进行了整体扫描成像,获得了复合材料的内部宏观结构。如下图中的横向切片所示,我们可以看到风机叶片是由多层玻璃纤维组成,在层之间的树脂中还存在许多孔隙,并且在复合材料的表面覆盖有涂层。对叶片材料整体成像,观测内部结构从风机叶片材料的概览图像和横截面中,可以观察到叶片材料中存在不同大小的孔隙,对这些孔隙进行进一步分析,发现检测到的大多数孔隙可能与存留在材料不同玻璃纤维层之间的气泡有关。孔隙度三维成像分析(蓝色代表较小的孔隙,红色代表最大的孔隙)孔隙度直方图统计分析(二)对概览图实时缩放分析,洞悉更多细节利用TESCANUniTOM系统,可以非常方便地在获得的概览图上选择感兴趣区域,进行实时缩放扫描,来对特征区域进行更加细节的观测。在对感兴趣区域的高分辨观察中,我们发现原本观测不到的存在于玻璃纤维层内和涂层内的孔变得清晰可见(不用对样品做任何处理,分辨度可增加5~10倍,达到12μm),并且借助于高分辨率的细节图像,也可以区分穿过涂层并在涂层下方的树脂内延伸的微小裂缝。局部扫描成像,洞悉更多结构细节然后,从较大叶片的垂直层中,选择一块具有代表性的区域,提取直径为5mm的样品。通过对样品的高分辨率扫描分析,可以得到材料内部不同层的详细信息,甚至可以区分出单根的玻璃纤维。此外,根据样品的横截面剖析,也可以观察到材料内部存在有不同类型的孔隙。对样品进行高分辨扫描,获取更多复杂信息材料内部不同层的特性分析分析表明,在这种叶片的复合材料中确实存在较大的孔隙,而这主要与材料内部玻璃纤维层中的起伏和这些层之间的空气泡有关。(三)涂层分析在叶片复合材料结构的顶部,通常会采用覆盖涂层的方式来增强材料的性能。但这种涂层非常的薄而且涂覆面积非常大,分析时既要求很高的分辨率,又需要分析很大的面积,采用传统的表征方法是不可行的。但TESCANUniTOM具有亚微米级的高分辨率(真实空间分辨率可以达到500nm),并能够分析大尺寸的样品(容纳样品直径可达40cm,高度可达50cm),非常适合叶片复合材料中覆盖涂层的分析。我们利用UniTOM系统对复合材料的内部结构进行局部扫描和放大分析,并借助软件将涂层与材料其他结构分离,对涂层的内部成像,可以发现在整个涂层中也存在大量的小气泡。对涂层结构成像分析,分类筛选出涂层中的小气泡可见,TESCANUniTOM是一款灵活的、模块化的多分辨率X射线CT显微镜,能够对完整的叶片材料样品整体成像来评估材料宏观尺度上的内部结构,还可以在获得的概览图像上选择感兴趣的区域,实时缩放进行更高分辨率的变焦扫描,最大化图像质量、分辨率和分析速度,是一种非常高效和实用的多尺度分析工具。风机叶片材料结构缺陷的多尺度高分辨研究
  • 【有奖直播课】无机碳如何影响有机碳检测?Sievers ICR(无机碳去除器)的原理、结构及维护
    小碳小碳又和大家见面啦!我们的#小碳微课堂#第六期将于9月25日开课。本期直播课,我们还将从报名观众中随机抽取10名幸运儿,送出一份小礼品,快来报名吧!(报名时,请准确填写您的邮寄地址。获奖名单将于10月初在微信公众号中公布,敬请留意。)Sievers® ICR(无机碳去除器)的原理、结构及维护时间:2020年9月25日周五,14:00形式:网络直播课,注册报名后可随时回看费用:免费分析仪在测量总有机碳 (Total Organic Carbon,TOC)时,都必须处理无机碳(Inorganic Carbon,IC)。IC是指CO2、HCO3-、CO32-里的碳。IC的来源包括溶解的石灰石和从空气中吸收的二氧化碳。几乎所有样品水中都含有有机碳和无机碳,它们统称为总碳(Total Carbon,TC)。有机碳 (TOC) = 总碳 (TC) - 无机碳 (IC)当水样中的IC小于TOC时,分析仪可以直接测量IC,然后用TC减去IC,即得到TOC。但当IC较高且TOC较低时(例如,IC=10倍的TOC),如果不去除或降低IC,TOC的测量结果就会变得不稳定。此时就需要去除或降低IC以提高仪器的分析性能。Sievers分析仪采用无需气体的ICR(无机碳去除器)来降低IC含量。该方法已获得专利,并获USEPA批准用于合规监测。常见应用包括监测原始地表水和地下水。有时,降低或去除IC也有利于监测成品饮用水。对于在线连续监测的应用,应对所有样品启用ICR,并保持ICR的运行。ICR安装在Sievers M系列实验室、便携式、在线型TOC分析仪的机箱内部,环保效果最佳,使用方便,占据空间小。此次直播课程中,我们将与您分享ICR相关的以下议题,欢迎收看:- 为何要使用ICR?- Sievers® ICR的工作原理- Sievers® ICR的使用方法- Sievers® ICR的维护与验证- Sievers® ICR的常见报警与处理讲师介绍娄海彦售后服务经理Sievers分析仪娄海彦经理是苏伊士水务技术与方案-Sievers分析仪的售后服务经理。具有多年仪器行业从业经历,熟悉TOC分析仪的软硬件、日常操作、维护及故障排除。报名方式扫下列二维码,进行会议注册,注册成功后,我们将于直播当天通过微信公众号给您发送课程直播提醒,直播时登录直播链接,验证注册时的手机号,即可收看课程。若您未收到微信提醒,直播时可通过苏伊士Sievers分析仪的微信公众号菜单:最新资讯-小碳微课堂进入课程直播。如您当天无法收看直播,课程结束后您也可以登录直播链接,验证注册时的手机号,收看课程回放。
  • 显微 CT 成像在药物制剂结构分析中的应用
    显微 CT 成像在药物制剂结构分析中的应用引言药物是用于预防、治疗、诊断疾病的活性物质,需制成一定的剂型才能作用于人体。药物攸关人民生命安全,因此对药物制剂的质量进行控制和评价至关重要。制剂的结构影响药物的疗效发挥,同时也影响制剂的释药行为,因此制剂的结构在制剂设计和评价方面发挥着重要的作用。药物制剂结构表征常用的技术有光学显微镜、电子显微镜等技术工具,但这些技术手段仅能给出制剂的表面特征,无法有效地表征其内部特征。X 射线具有波长短、分辨率高和穿透力强等特点,能够实现对样品内部结构进行成像,曝光时间短、效率高,可用于观察分析多种微观物理、化学变化以及微纳米结构,在生物医学、材料科学上有着广泛的应用。利用显微 CT 成像研究药物制剂结构的应用包括:&bull 药物制剂的晶型研究&bull 制剂内部结构的表征研究&bull 制剂涂层结构的无损表征&bull 药物释放机制研究图注:NEOSCAN 台式显微 CT 扫描抗过敏药盐酸西替利嗪片本文通过文献资料摘录 3 个实际应用案例介绍显微 CT 技术在固体制剂药品领域的应用和功能。Part 01 利用显微CT对仿制药开展一致性评价昝孟晴等利用显微 CT 技术对盐酸特拉唑嗪片的内部微观结构进行观察分析,发现溶出度测定结果不满足标准限度要求的样品与参比制剂相比具有更大的孔隙率。将溶出度不合格样品和参比制剂的结构进行对比分析,二者局部孔径大小分布见下图。由图可知,二者的局部孔径尺寸大多数都分布在 10~20 μm,平均孔径大小分布没有较大差别。图注:参比制剂样品(蓝色)和溶出度不合格样品(橘色)的局部孔径大小分布但通过分析制剂的孔隙率(片剂表观体积中,除原辅料外,内部的孔隙占总体积的比例),发现溶出不合格样品的孔隙率远大于参比制剂,分别为 32.851%(仿制制剂)和 6.545%(参比制剂),见下图(图中白色部分代表主药和辅料, 红色部分代表孔隙)。从结构对比结果推测,溶出度不合格样品可能是由于孔隙率偏大,因而能迅速吸收大量水分,由于重力作用而沉积在普通溶出杯底部。显微 CT 技术能够提供药品固体制剂的高分辨率三维内部结构图像,包括活性成分的分布、空隙、颗粒大小和分布等,这有助于了解药品的均匀性和质量分布。图注:参比制剂(左图)和溶出度不合格样品(右图)的三维结构图Part 02 显微CT 中药制剂结构研究中药制剂重视药辅合一, 其剂型和辅料的运用蕴含着丰富的药方配比智慧。中药活性成分从剂型里溶出、释放受制于制剂的结构, 并影响其疗效的发挥。制剂结构的创新是中药制剂的发展趋势, 在以缓控释制剂和靶向给药系统等为代表的新剂型发展过程中, 制剂结构发挥着重要作用。微丸压制片是由可持续释药微丸与适宜辅料混合后压制成的制剂, 压片后具有体积小、可刻痕和可分剂量使用等优点。使用显微 CT 无损成像技术对微丸压制片的三维微结构与药物、辅料的空间分布的研究, 有助于进行深度的质量评价与控制。茶碱微丸片 (THEODUR) 为 24h 骨架型缓释制剂, 微丸在片剂径向上的分布均匀, 但在轴向上存在明显的微丸富集区。片剂内部呈现 3 种不同的区域: 基质层、保护缓冲层与载药微丸, 基质层和保护缓冲层并无特定的结构, 两层依次包裹在微丸周围。基质层主要分布有茶碱、蔗糖、乳糖和十二烷基硫酸钠, 而单硬脂酸甘油酯主要存在于缓冲层 (图 A)。琥珀酸美托洛尔微丸片 (倍他乐克) 遇介质快速崩解成单个微丸, 持续释放药物 24h。其中, 微丸在片剂内均匀分布, 且呈光滑球形, 具三层球形结构。此外, 片剂中基质并非十分紧实, 基质中以及基质和微丸之间均有一些空隙, 这不仅有利于片剂在介质中快速崩解, 也保证微丸在压片过程中结构的完整性 (图 B)。另外, 肠溶型微丸压制片的结构研究也有报道, 如埃思奥美拉唑微丸片 (耐信)。图注:显微 CT 分析茶碱微丸片Part 03 显微 CT 对原辅料粉体结构中药物晶型的辨别制剂是由药物活性成分和辅料组成, 原辅料粉体中的药物晶型、粉体粒径及其分布、 配比与规格直接影响药物制剂的质量。显微 CT 成像可以避免剂型中辅料的干扰, 准确识别药物的晶型, 且能无损伤、原位检测制剂内药物微粒的粒径及其分布。该方法解决了固体制剂内药物晶体的识别和药物粒径及其分布的测定难题, 具有重要应用价值, 为仿制药一致性评价中原辅料粉体结构的研究提供了新的视角和思路。例如,Yin 等采用 SR-μCT 研究多晶型混合物中硫酸氢氯吡格雷的晶型, 基于两种晶型颗粒表面的粗糙度差异, 有效地识别硫酸氢氯吡格雷的不同晶型。关于台式显微 CT可在不破坏样品的同时,得到样品的结构信息(空腔孔隙)、密度信息(组分差异),同时可以输出三维模型,进行仿真分析。 参考文献《采用高分辨显微成像技术从药物制剂结构角度分析盐酸特拉唑嗪片溶出度测定结果》昝孟晴,黄韩韩,张广超,马玲云,许鸣镝,牛剑钊*,刘倩*(中国食品药品检定研究院,国家药品监督管理局化学药品质量研究与评价重点实验室)《结构药剂学与中药制剂结构研究进展》杨 婷, 李 哲, 冯道明等(1. 中国科学院上海药物研究所;2. 江西中医药大学)《从结构出发的制剂一致性研究策略》张继稳, 孟凡月, 肖体乔(1. 安徽中医药大学药学院 2. 中国科学院上海药物研究所 3. 中国科学院上海应用物理研究所)《高分辨三维 X 射线显微成像在药物制剂结构分析中的应用》昝孟晴,黄韩韩,南楠等(中国食品药品检定研究院,国家药品监督管理局化学药品质量研究与评价重点实验室)
  • 高能同步辐射光源:照亮微观世界的结构奥秘
    这里是北京雁栖湖畔的怀柔科学城。群山环绕中,一个圆环状的大科学装置静静矗立其间。它是被公众亲切地称为“放大镜”的高能同步辐射光源(High Energy Photon Source,简称HEPS)。提起光源,你的脑海中会浮现出灯泡的画面吧,于是把HEPS想象成一个“大型灯泡”。其实不然。这里的“高能”可不是“前方高能”里的那个“高能”,而是指物理学中探索微观世界物质探针所具有的高能量。据HEPS工程总指挥潘卫民研究员介绍,从高空俯瞰,HEPS整体建筑形似一个放大镜,设计寓意为“探索微观世界的利器”。“通俗地讲,你可以把HEPS视为一个具有超精密、超快、超穿透能力的巨型X光机。”潘卫民说。作为国家“十三五”重大科技基础设施,HEPS由加速器、光束线站及配套设施等组成,总建筑面积约12.5万平方米。周长约1.5千米的主体环形建筑,如同放大镜的镜框,里面安装有储存环加速器、光学元件、衍射仪等科学仪器。其中的储存环里,分布着2400多块磁铁及各类高精尖设备。“同步辐射是指接近光速的带电粒子在做曲线运动时沿切线方向发出的电磁辐射,也叫作同步光。为了研究材料内部结构与变化的过程,科研人员需要借助强力的科研装置进行探测解析。”中科院高能物理研究所副所长、HEPS工程常务副总指挥董宇辉研究员说,作为研究物质内部结构的平台,HEPS能对物质内部进行多维度扫描,“HEPS运行的首要目标,就是提供高能、高亮度的硬X射线。”产生X射线的常见方式有两种:一是用加速后的电子轰击金属靶,产生X射线;二是在同步辐射装置中,当电子以接近光速的速度“飞行”时,会在磁场作用下发生曲线运动,沿着弯转轨道切线方向发射连续的电磁辐射。“这就像下雨时,我们快速转动雨伞,沿着雨伞边缘的切线方向会飞出一簇簇水珠。”董宇辉说,与常规X射线相比,同步辐射光源产生的同步辐射光频谱更宽、亮度更高、相干性和准直性更好。同步辐射光源根据加速器中电子的能量,可以分为低、中、高三种,各有侧重。董宇辉介绍,HEPS侧重于对微观结构及演变的多维度、实时、原位表征,可用于航空发动机单晶叶片等工程材料结构的多维度表征和1微米量级蛋白质分子结构演变表征等。“作为探测物质结构的探针,X射线的光源亮度是最为关键的指标——更高的亮度能将物质内部的微观结构‘看’得更清楚。因此,获得更高亮度的X射线源一直是科学家孜孜以求的目标。”多年来,我国持续发展同步辐射光源,有力支撑了国内基础科学的发展。但我国目前所拥有的同步辐射装置均处于中、低能区,能区地域分布、光谱亮度等还满足不了经济发展和国家战略需求。建设更高亮度的第四代高能同步辐射光源,成为潘卫民、董宇辉等我国当代“追光人”的一大愿望。2008年,HEPS科研团队就开始对我国建设HEPS的必要性和可行性进行论证。此后经过近十年攻关,科研人员成功完成关键技术攻关和样机研制任务,具备了建设先进高能同步辐射光源的能力。2019年6月,HEPS开工启动,建设周期6.5年,预计将于2025年12月底竣工。建成后,它将在材料科学、化学工程、能源环境、生物医学、航空航天等众多领域大显身手。2021年6月28日,HEPS首套科研设备——电子枪(直线加速器端头,即加速电子产生的源头)安装完成,标志着HEPS工程正式进入设备安装阶段。目前,HEPS各建筑单体已陆续交付设备安装。可以预见,3年后,全球“最亮”的光源将照亮微观世界物质的结构奥秘。(光明日报记者 张亚雄)HEPS效果图(人视图)HEPS效果图(白天)HEPS存储环周期单元mockup模型(HEPS-TF项目支持)
  • 用于冻干生物制药化合物的外观和结构评估的颗粒表征解决方案
    冻干产品在制药和生物制药行业越来越受重视。越来越多的制药公司利用冷冻干燥技术和生产工艺生产最终的药品,这种药品保质期长、稳定性强,减少了对运输和储存的限制。最近有报道称,现在40%以上的制药行业的研发和收入涉及生物制药。接近60%的生物制药(如酶、蛋白质和单克隆抗体)需要冻干以制成稳定的可以随时食用的剂型。麦克仪器TriStar® II全自动比表面积分析仪、AutoPore® IV全自动压汞仪、AccuPyc® II 1340全自动真密度/开闭孔率分析仪是确定生物制药冻干滤饼完整性的必要工具。 冻干滤饼的结构,包括密度、总孔体积、孔径大小和表面积在生产过程中需要进行严格控制。在生产过程中的任何变化,如冻结温度、初级干燥温度或次级干燥温度都会影响冻干滤饼的物理和化学性质。三个被推荐或公布的最常测试的参数为外观、热性质和表面积。BET比表面积测量、压汞法和气体密度法为测量冻干产品提供了可见的、量化的解决方案。 通过气体吸附分析技术得到的BET表面积可用于确定优化产品性能和生产工艺的收缩率、塌陷和冷冻/干燥速率这些指标。冻干滤饼的内部结构可评估初级或者次级干燥过程中冻结速度、搁板温度或者压力设置等工艺条件。据文献显示,以蛋白质为基础的药品的物理化学活性和长期的稳定性与冰晶结构以及他们对表面积的影响有关。比表面积数据通过呈现固相的形态提供了滤饼结构和重组的重要信息。 压汞法可提供滤饼的内部结构信息。总孔体积和孔径分布与滤饼完整性和重组特性直接相关。孔径与表面积数据的相关性可以量化冷冻干燥过程中滤饼的收缩量,并确定最终干燥滤饼的孔隙大小。 TriStar II是基于成熟的静态气体吸附技术。这是一个完全自动化的三站分析仪,能够提高质量控制分析速度和效率,同时具有高精度、高分辨率和可进行数据处理的特点,满足大部分生产和研发需求。TriStar II可提供BET比表面数据,帮助预测冷冻干燥变化的影响以及加强过程控制措施,以防止滤饼塌陷。 麦克仪器AutoPore IV压汞仪利用汞浸入法来测定总孔体积、孔径分布、孔隙率、密度和密实度/压缩率。该仪器可收集极高分辨率的数据。它可以配备两个低压站和一个高压站或四个低压站和两个高压站以提高样品测试量。 AccuPyc II是一种高速、高精度的气体置换密度分析仪,可用于粉末、固体、泥浆的体积和密度测量。氦气测密度是测量真密度最可靠的技术之一。
  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 第15期线上讲座:泵与比例阀的结构原理与常见故障
    答疑解惑时间:2009年7月8日---7月24日 热烈欢迎pandora98先生光临仪器论坛进行讲座!   在4月份我们刚在液相色谱与液质联用版面联合举办第12期的线上讲座---剖析液相色谱仪和液质联用仪,而今液相色谱版面又迎来了新一期在线讲座。   本期讲座我们邀请了pandora98先生就泵与比例阀的结构和工作原理以及常见故障展开一期专题讲座。本期讲座共分两章,第一章是对泵的单向阀、泵的比例阀、泵的梯度系统等的结构及工作原理进行详细阐述 第二章就对泵的单向阀漏液、泵的比例阀漏液、二元泵的问题等常见故障进行详细的解剖,并介绍自己的维修的经验及心得体会。   本次的线上讲座将开展16天(2009年7月8日---24日)。这次讲座以某一款仪器为例,主要讲解泵、泵的单向阀、比例阀的知识,重点介绍泵与比例阀的常见故障及pandora98老师的维修经验、心得。希望大家珍惜此次交流机会,共同参与探索液相色谱泵的奥妙之处,有利于提高液相色谱的操作能力。   再次感谢pandora98先生提供的丰富的讲座,也感谢pandora98先生与大家一起交流心得和经验。pandora98先生从事色谱分析工作多年,有丰富的实践经验,欢迎大家就液相色谱仪器泵的单向阀、比例阀的的问题前来提问,也欢迎液相色谱方面的高手前来与pandora98先生一起交流切磋。 第15期线上讲座泵与比例阀的结构原理与常见故障 线上导览论坛线上活动导览
  • 干货分享 | 热分析原理及介绍(DTA,DSC,TGA,TMA,DMA)
    药物冻干,电池爆炸;耐低温橡胶是如何在高寒环境下使用,哪种巧克力甜甜味美还不会在夏天熔化?纵观我们身边的任何物质都会经历温度变化的过程,材料随着温度变化其性质也会发生变化,影响制备工艺和使用性能,生产生活中无时无刻不都在上演着材料的“冰与火之歌”。为了对材料进行表征分析,热分析技术已经成为一种强有力不可或缺的分析手段。梅特勒托利多作为主要的热分析仪器制造商之一,将为大家详细介绍热分析技术及其应用。1 热分析技术概述物质在温度变化过程中可能发生一些物理变化(如玻璃化转变、固相转变)和化学变化(如熔融、分解、氧化、还原、交联、脱水等反应),这些物质结构方面的变化必定导致其物理性质相应的变化。因此,通过测定这些物理性质及其与温度的关系,就有可能对物质结构方面的变化作出定性和定量的分析,还可以被用来确定物质的组分及种类,测定比热容、热膨胀系数等热物性参数。图1-1 材料随温度变化发生的反应国际热分析和量热协会(ICTAC, International confederation for thermal analysis and calorimetry)于2004年对热分析提出新的定义:热分析是研究样品性质与温度间关系的一类技术。我国于2008年实施的国家标准《热分析术语》(GB/T6425-2008)中对热分析技术定义为:热分析是在程序控制温度下(和一定气氛中),测量物质的物理性质与温度或时间关系的一类技术。经过一百多年的发展,热分析技术凭借其快速、高效、低成本的优异特点,应用领域不断扩展,已逐渐成为新材料研究、产品设计和质量控制的必备的常规分析测试手段。根据测定的物理性质不同,国际热分析与量热协会ICTAC将热分析技术分为9类17种,如表1所示:表1-1 热分析技术分类在实际应用中,热分析技术还和其他分析仪器进行联用,例如红外光谱、拉曼光谱、气相色谱、质谱等分析方法,通过多种方式对物质在一定温度或时间变化过程内对材料进行结构和成分进行分析判断。2 重点热分析技术介绍2.1 差热分析(DTA, Differential thermal analysis)差热分析(DTA)是一种利用试样和参比物之间的温差与温度或时间的关系来评价试样的热效应。DTA曲线的纵坐标为试样和参比样的温度差(∆T),理论上单位应该为℃或者K。但因为记录的测量值通常为输出的电势差E,根据温度差与E的关系(公式(1)),转换因子b不是常数,而是温度T的函数,且其他传感器系统也存在类似的情况。公式(1)中,测量的温度差与热电偶输出的电势差E成正比,一些分析软件中DTA采集的信号经常为电势差的单位(μV)表示。现在DTA主要用于热重分析仪(TGA)等的同步测量,市场上已经难觅单独的DTA仪器。2.2 差示扫描量热法(DSC, Differential Scanning Calorimetry)2.2.1 DSC原理及规定差示扫描量热法(DSC)是在程序控制温度下和一定气氛中,测量输送给试样和参比物的热流速率或加热功率(差)与温度或时间关系的一类热分析技术。测量信号是被样品吸收或者放出的热流量,单位为毫瓦(mW),热流指的是单位时间内传递的热量,也就是热量交换的速率,热流越大热量交换的越快,热流越小热量交换的越慢,热流可由式(2)得到公式(2)中,∆T为试样与参比物的温度差,R_th为系统热阻,系统的热阻对于特定的坩埚、方法等是确定的。通过该公式就可以测得热流曲线,也就是DSC曲线。对DSC曲线上的峰进行积分就能够得到某个转变过程中样品吸收或者放出的热量。DSC信号的方向根据ICTA规则(∆T=Ts-Tr),规定为吸热朝下放热朝上,一般图片上标有^exo。反-ICTA(∆T=Tr-Ts)规则为吸热朝上,放热朝下,一般图片上标有^endo,不同规则的DSC曲线如图2-1所示。当样品吸收能量,这个过程被称作是吸热的,例如熔融和挥发过程。当样品放出能量,这个过程被称作是放热的,例如结晶和氧化分解过程。图2-1 DSC曲线:(a) ICTA规则,吸热向下; (b) 反-ICTA规则,吸热向上相比之下,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测得热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。通过DSC可以检测吸热或放热效应、测得峰面积(转变或反应焓值∆H)、确认所表征的峰或其他热效应所对应的温度(如玻璃化温度Tg、结晶点Tc、熔点Tm)以及测试比热容Cp,也可利用调制DSC测得潜热、显热以及可逆热流和不可逆热流,通过动力学可以计算得到活化能Ea。公式(3)中,DSC测得的总热流是由两部分组成的,一部分是由于温度升高引起的显热流,样品没有发生结构的变化;热流的第二部分是由于样品内部结构变化引起的潜热流,ΔHp表示这个反应完全发生所吸收或放出的热量。其中,C_p为样品的比热容,β为升温速率,ΔH_p为反应过程的焓变, dα/dt表示这个反应进行的程度。通常我们把没有发生反应时的热流曲线叫做DSC的基线,其实就是显热流曲线。由于物质的比热容都会随着温度的升高而增大,因此随着温度的升高DSC曲线应该向吸热方向倾斜,这个斜率就取决于样品的比热容随温度的变化率。图2-2 DSC热流曲线示意图2.2.2 DSC分类DSC分为热流式和功率补偿式,当前热流式DSC较为普遍,梅特勒托利多DSC均为热流式。热流式差示扫描量热法(Heat-flux type Differential Scanning Calorimetry, 简称热流式DSC),又称为热通量式DSC,是在按程序控制温度和一定气氛下,给样品和参比品输送相同的功率,测定样品和参比品两端的温差∆T,然后根据热流方程,将温差换算成热流差作为信号进行输出。功率补偿式DSC是在程序控温和一定气氛下,使样品与参比物的温差不变,测量输给样品和参比物功率(热流)与温度或时间的关系。热流式DSC采用单炉体,而功率补偿式DSC采用两个独立的炉体,分别对试样和参比物进行加热,并有独立的传感装置。图2-3 (a)热流式DSC和(b)功率补偿式DSC测量单元示意图2.2.3 DSC典型曲线图2-4为典型的DSC测试曲线示意图。在测试开始曲线出现了“1 启动偏移”。在该区域温度状态发生瞬时改变,有恒温变为升温,启动偏移的大小与样品热容及升温速率有关。在“3 玻璃化转变”区,试样热容增大,出现了吸热台阶。“4 冷结晶”区产生放热峰,“5 熔融”产生吸热峰,通过对峰面积的积分可以得到结晶焓和熔融焓。随着温度升高后为“6 分解”。图2-4 典型的DSC测试曲线示意图:1 初始基线漂移与样品热容成正比;2 无热效应时的DSC曲线(基线);3 无定形部分的玻璃化转变; 4 冷结晶; 5 结晶部分的熔融; 6 在空气气氛中氧化降解了解更多,请点击链接差示扫描量热仪(DSC)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DSC.html2.3 热重分析(TGA, Thermogravimetric Analysis)热重分析(TGA)是在一定控温程序和气氛下,测量试样质量与温度和时间之间的关系,可以获得样品质量随温度的函数。在此之前,人们使用TG作为这项技术的缩写。通过TGA可以检测样品质量的变化(增重或失重),分析质量变化台阶,以及在失重或增重曲线中确认某一台阶所对应的温度。TGA信号对温度和时间的一阶微变,表示为质量变化的速率为DTG曲线,是对热重信号的重要补充,当DTG曲线峰向上时试样质量增加,曲线峰向下试样质量会减小。热天平是热重分析仪中的重要部件,热天平具有三种不同的设计:上置式设计:天平位于炉体下方,试样支架垂直托起试样坩埚;悬挂式设计:天平位于测试炉体上方,测试坩埚放在下垂的支架上;水平式设计:天平与炉体处于同一水平位置,坩埚支架水平插入炉体。根据天平可达到的分辨率,可将天平分为半微量天平(10 μg)、微量天平(1 μg)、超微量天平(0.1 μg)。当样品以不同方式失去物质或与环境气氛发生反应时,质量发生变化,在TGA曲线上产生台阶或在DTG曲线上产生峰。典型的热重曲线如图2-5所示。在“1 挥发”区可为部分组分(水、溶剂、单体)的挥发;“2 分解”具有明显的失重台阶为聚合物的分解;“3 切换气氛”后,在“4 炭燃烧”表现为炭黑或碳纤维的燃烧台阶;“5 残留物”区质量变化微弱,主要为灰分、填料、玻璃纤维等残留。图2-5 典型的TGA测试曲线示意图:1 挥发;2 聚合物分解;3 气氛切换; 4 炭燃烧台阶; 5 残留物了解详情,请点击链接热重分析仪(TGA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TGA.html2.4 热机械分析(TMA, Thermomechanical Analysis)热机械分析TMA测量样品在设定应力/负载条件,样品尺寸变化与温度变化的关系。在TMA测试中,样品受恒定的力、增加的力或调制的力;而膨胀法测量尺寸变化则是使用能实现的小载荷来测量的。TMA具有不同的形变模式如图2-6所示,依据试样尺寸和特性进行选择:膨胀模式(A):是TMA常用的测量模式。测试基于温度的膨胀系数。通常测试时探头施加一个非常小的力于样品上。压缩模式(A):这种模式下,样品受力更大。穿透模式(B):其目的在于测试样品的软化点。拉伸模式(C):薄膜和纤维套件用于进行拉伸模式测试。可以测试由于收缩或者膨胀产生的较长形变。三点弯曲模式(D):用来研究刚性样品弹性行为的理想模式溶胀模式(E):许多样品在接触液体时会产生溶胀。通过溶胀套件可以测定样品在溶胀时发生的体积或长度变化。体积膨胀(F):液体同固体一样也会发生膨胀。图2-6 TMA不同形变模式根据不同的测试模式,我们可以使用TMA检测热效应(溶胀、收缩、软化、膨胀系数的变化),确定某表征的热效应的温度、测量形变台阶高度以及测定膨胀系数。TMA的典型测试曲线示意图如图2-7所示。图2-7 典型的TGA测试曲线示意图:1 玻璃化转变温度以下的热膨胀;2 玻璃化转变温度(斜率改变);3 玻璃化转变温度以上的热膨胀;4 塑性变形了解更多信息,请点击链接热机械分析仪(TMA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TMA_SDTA_1.html2.5 动态机械分析(DMA, Dynamic Mechanical Analysis)动态热机械分析(DMA)是一种测试材料机械性能和粘弹性能的重要技术,可用于热塑性树脂、热固性树脂、弹性体、陶瓷和金属等材料的研究。DMA测试在程序控温和周期性变化的应力下,测试动态模量和力学损耗与时间温度的关系。在DMA测试中,试样受到周期变化的振动应力,随之发生相应的振动相变。除了完全弹性的试样外,测得的应变都表现为滞后与施加应力的变化。这种滞后成为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅以及相位差这三个物理量。图2-8 周期性的力作用下应力与应变的关系应力与应变之比称为模量,DMA分析得到的结果为复合模量M^*,复合模量由储能模量和损耗模量组成:储能模量(M^' ):试样弹性特性的反应,是试样能否完全恢复形变的尺度损耗模量(M^”):试样粘性特性的反应,是试样在形变过程中热量的消耗(损失);损耗模量大表明粘性大,阻尼强。损耗因子(tanδ):损耗模量和储能模量之比,反映的是振动吸收性,也称振动吸收因数。梅特勒托利多的DMA 1提供了六种不同的形变模式。对于特定的应用,适合的模式取决于测试需求、样品的性质和几何因子。包括以下六种测试模式:3-点弯曲模式(A):这种模式用于准确测试非常刚硬的样品,例如复合材料或热固性树脂,尤其适合于玻璃化转变温度以下的测试。单悬臂(B):这种模式非常适合于条形高刚度材料(金属或聚合物)。单悬臂模式是玻璃化转变温度以下的理想测试方法,而且是测试粉末材料损耗因子的推荐模式。双悬臂模式(C):这种模式适合于低刚度的软材料,特别是比较薄的样品,例如膜材料。拉伸(D):它是薄膜或纤维的常规形变模式。压缩(E):压缩模式用于测试泡沫、凝胶、食品以及静态(TMA)测试。剪切(F):剪切模式适合于测试软样品,例如弹性体,压敏胶,以及研究固化反应。2.6 热分析技术应用总结针对不同的材料以及想要测试的属性或热效应,所采用的热分析方法也存在差异,未得到理想的结果需要根据实际样品情况和测试需求来选择不同的热分析方法。表2-1合适的热分析技术选择作者:热分析技术应用顾问 邵艳茹参考文献J.O. Hill. For Better Thermal Analysis and Calorimetry III [M]. ICTA, 1991.热分析术语[S]. GB/T 6425-2008.陆立明. 热分析应用基础[M]. 东华大学版社.E. Ezm, M.B. Zakaria. State of the art and definitions of various thermal analysis techniques. [in] Thermal Analysis, 2021, 1-39.刘振海, 陆立明, 唐远旺. 热分析简明教程[M]. 科学出版社.UserCom, Mettler Toledo International Inc.
  • 球差校正技术助力材料微结构与性能关系解析
    2021年10月30日,科学服务领域的世界领导者赛默飞世尔科技与中国分析测试协会高校分析测试分会合作,首次冠名设立的“赛默飞高校分析测试优秀青年人才奖”在线揭晓获奖名单。作为微纳结构分析室负责人和重庆大学分析测试中心的助理研究员,张斌博士凭借优秀的技术成果荣获赛默飞高校分析测试优秀青年人才奖二等奖。对此,仪器信息网走进重庆大学分析测试中心并特别视频采访了张斌。电子显微镜发明于上世纪30年代,距今已90年,电子显微镜有两大特点:第一是超强的空间分辨能力,可以达到纳米甚至原子尺度;第二个是强大的分析能力,可以分析一些化学成分、电子结构等。张斌从研究生起便开始了电子显微学的研究,主要从事相变存储材料、热电材料等功能材料的微结构研究。在此基础上,为了解决一些问题,投身开发一些新的显微学分析方法。这一路走来,丰富的研究经历奠定了他今后在电子显微学的研究方向:电子显微学方法的开发和应用,以及材料微结构与性能关系的解析。当谈及这次的获奖技术成果“基于透射电子显微分析的材料微结构定性/定量研究”时,张斌谦虚地表示,“获奖核心技术不能说是太好的一些成果,就是有一点点小的进步而已。”其中,图像分析、数据处理分析的技术最早被用于相变存储材料微结构研究中空位分布的解析,其主要利用图像上点阵的位置和强度来描绘空位可能的占据以及定量化的动态演变过程。去年张斌团队将这套方法加以改进,首次应用在原子尺度的构型解析实践上,并取得突破。另一个核心技术成果经典案例就是制样,在做显微学分析时,观测100纳米及以上的Cu5FeS4颗粒存在尺度太大的问题,通过超薄切片和引入酸刻蚀腐蚀等方法,张斌团队将其内部结构解析得更加清楚。正是通过这种制样方法,张斌团队发现了二十面体、五次孪晶结构和独到的核壳结构等一系列丰富的结构信息,对热电材料的性能提升带来很大帮助。科研技术的发展离不开仪器技术的发展。张斌表示,这些成果的取得离不开球差校正技术的突破和发展,因为大部分实验图像来源于赛默飞的球差校正电镜,所有的图像分析都是基于球差校正获得的HAADF图像,正是有了这些清晰的照片和先进的技术,才能获得更多的实验结果。采访最后,张斌向我们展示了他的“收藏品”——上万片承载研究观察样品的小铜环。这里的每一片铜环都代表着一个人一次研究的样品,张斌从电镜装好的那一天就开始把这些铜环收集到玻璃皿中,近4年的积累,如今铜环数量已达上万片。关于重庆大学分析测试中心重庆大学分析测试中心,于2014年正式挂牌成立,是面向学校和社会开放的校级仪器共享机构和学科交叉融合平台。2018年3月通过国家级实验资质认定,具备为社会提供公正、科学、准确数据的条件和资格,成为可提供具有法律效力检验检测报告的第三方检测基地。中心遵从源于需求、重在统筹、共建共享、优化资源、科学管理、高效运行的建设原则,致力于为校内科研工作的顺利开展提供高水平测试服务,同时也为重庆市高校、企业及科研院所自主创新能力的提升提供服务与支持。
  • 学术前沿 | 全球最新实验室台式XAFS/XES谱仪,助力材料化学领域结构分析与应用
    引言自W. C. R?ntgen于1895年发现X射线以来,X射线应用技术得到了长足发展,包括X射线衍射、吸收、散射、荧光及光电子谱学等(图1a)。其中Maurice de Broglie在1913年次测到了X射线吸收边, 1920年Friche和Hertz次发现了X射线精细结构(X-ray absorption fine structure),但直到上世纪七十年代Sayers、Stern和Lytle开创性地通过傅里叶变换从X射线吸收谱中得到了详细结构参数,短程有序理论(SRO)才被人们所广泛接受。随着同步辐射光源(Synchrotron X-ray light sources)的大量应用,XAFS技术(图1b,包含XANES(X-ray absorption near-edge structure)和EXFAS (Extended X-ray absorption fine structure ))才逐渐发展成为一种非常实用的结构分析方法。由于XAFS对中心吸收原子的局域结构(尤其是在0.1 nm范围内)及其化学环境十分敏感,因而可以在原子尺度上给出某一特征原子周围几个临近配位壳层的结构信息,包括配位原子种类及其与中心原子的距离,配位数,无序度等,被广泛应用于物理,化学,材料,生物和环境科学等领域,解决了一系列重大科学问题。 图1. x射线应用技术概括及XAFS技术分类 然而,由于XAFS技术通常依赖于同步辐射x射线光源, 而其不像其他设施容易被大众所获得,大地限制了XAFS技术在各领域的大范围应用。近年来实验室用台式xafs谱仪的出现,使得在实验室日常使用XAFS技术进行材料的精细结构分析成为了可能。2013年台实验室用台式XAFS谱仪诞生于美国华盛顿大学物理系gerald t. seidler教授课题组,并于2015年成立了easyXAFS公司,致力于实验室用台式XAFS谱仪在全球的推广和应用。台式XAFS谱仪采用了有的x射线单色器设计,无需使用同步辐射光源,在常规的实验室环境中即可实现X射线吸收精细结构的测量和分析,以高的灵敏度和光源质量,得到了可以媲美同步辐射水平的x射线吸收谱图,实现对元素的定性和定量分析,价态分析,配位结构解析等。工作原理美国easyxafs公司的台式XAFS/XES谱仪其工作原理如图2a所示,光路图为:X射线源---球面弯曲晶体(sbca)---X射线探测器(SDD)。其特有的罗兰环单色器工作原理如图2b所示,x射线源和SDD探测器均设有滑动杆,在x射线照射过程中,两者可以随之进行滑动调节,其中满足布拉格方程的单色x射线被sbca重新汇聚于罗兰环的另一点,并被x射线探测器检测和收集, 从而获得不同能量的单色x射线。 图2. (a)xafs/xes谱仪光路图;(b)罗兰环单色器工作原理图产品特点美国easyXAFS公司的台式XAFS/XES谱仪具有以下特点:1. 台式设计,可以在实验室内随时满足日常使用(如图3) 图3. 台式实验室用XAFS/XES谱仪实物图 2. labview软件脚本控制,附带7位自动样品轮, 可以同时进行多个样品或样品参数条件下的测试 (如图4) 图4. 台式实验室用XAFS/XES谱仪内部结构图及7位自动样品轮图 3. 可集成辅助设备,控制样品条件,适用于对空气敏感的样品的检测或一些原位测试,如原位的锂电池或电催化实验测试,监测电/催化材料的结构变化(如图5) 图5. 手套箱内集成的台式实验室用XAFS/XES谱仪实物图 4. 台式XAFS/XES谱仪具有XAFS和XES两种工作模式,可快速切换,满足不同科研试验需求(如图6所示) 图6. 台式xafs/xes谱仪(a)XAFS及(b)XES工作实物及光路示意图(插图) 5. 台式XAFS/XES谱仪测得的谱图效果可以媲美同步辐射数据,如图7所示,其测得的Ni元素的EXAFS, Ce和U元素的L3-edge的XANES谱图数据与同步辐射光源谱图效果完全一致 图7. 台式xafs/xes谱仪与同步辐射光源测得的(a, b)Ni EXAFS, (c) Ce和U L3-edge的XANES谱图数据对比 6. 多种型号和配置可选,满足不同科研要求 7. 操作便捷,维护成本低,安全可靠应用解析美国easyXAFS公司的台式XAFS/XES谱仪已在全球拥有众多的用户,应用领域包括材料、化学、催化、能源和环境等等,相关成果发表在j. am. chem. soc., j. phys. chem. c, chem. mater., anal. chem.等重要期刊。相关案例如下:1. 化合物价态分析美国华盛顿大学化学系的brandi m. cossairt课题组使用easyxafs公司实验室台式xafs谱仪对溶液相合成的金属磷化物产物的Co元素进行k边xanes谱图分析(图8),十分便捷地获得了合成产物的价态信息,通过与标准样品谱图对比,十分准确快捷的对合成产物的物相组成(CoP或Co2P)给出了鉴别,与其他方法获得的信息高度一致,如XRD, NMR等。 图8. 金属磷化物的(a)合成机理图,(b)透射电镜TEM照片,(c)不同Co化合物的x射线衍射谱以及(d)台式XAFS/XES谱仪测得的不同化合物的Co K-edge XANES谱图 除此之外,X射线发射谱(xes,x-ray emission spectroscopy), 又可称为波长色散x射线荧光谱(wdxrf,wavelength dispersive x-ray fluorescence spectroscopy),通过对特定元素内层电子受激发后外层电子弛豫过程中发射的x射线荧光能量和强度进行分析,也可以的给出分析原子的氧化态,自旋态,共价,质子化状态,配体环境等信息。由于不依赖于同步辐射,且得益于特有的单色器设计,可以在实验室内实现高分辨宽角高通量的xes元素分析(包括p, s, v,zn, cr, ni, as, u, etc. )。如图9所示,通过对不同化合物中p元素的特征kα和kβ轨道能的xes谱图进行定性和定量,可以方便的得到inp量子点中的p元素价态及表面缺陷信息,相比于NMR等技术更加简单方便。其他的实例(如图10)还包括使用特征s元素的 kα XES谱图对不同生物炭中的低含量s元素进行不同价态(氧化态)的定性定量分析,V, As, U和Zn的特征XES谱图,和通过Cr元素特征Kα XES对塑料中重金属铬元素的价态进行分析等等。图9. 通过台式XAFS/XES谱仪测得的P元素特征Kα和Kβ轨道能的XES谱图对InP量子点表面缺陷进行定性和定量分析 图10. 通过台式XAFS/XES谱仪测得的Cr, V, As, U, Zn和S的特征Kα或Kβ轨道能的XES谱图对化学物种元素的价态进行定性和定量分析2. 电池材料价态分析XAFS技术在电池材料,尤其是正材料,在充放电过程中化学态的分析,有着重要的意义,可以帮助科学家们了解电材料的制备过程,电池组装,运行条件等因素对其化学态的影响,有利于人们更深入地了解电池的工作原理,优化电池结构的设计。如图11所示,采用easyXAFS公司生产的台式XAFS/XES谱仪,科学家们能够方便的通过XANES技术对一系列电材料的化学态进行分析,包括充电和放电态,如LiCoO2, VOPO4, NMC(镍锰钴三元电材料)等等。图11. 通过台式XAFS/XES谱仪的不同材料中特定元素的XANES或Kα轨道能的XES谱图来对化学物种元素(Co, V, Ni, etc.)的价态进行定性和定量分析3. 原位电池/催化测试近年来原位测试技术越来越受到大家的关注,对不同物理化学过程中材料的物理化学性能进行原位的表征,更加深入的获得材料的实时结构信息。美国easyXAFS公司的台式XAFS/XES谱仪为原位进行样品目标原子的近邻化学结构信息表征提供了可能。如图12所示,通过对锂电池正材料LiNixMnyCo1-x-yO2在不同充放电状态下的XANES谱图进行分析,可以很方便的得到在不同充放电状态下不同金属元素Ni, Mn和Co的价态信息,为进一步电池材料和结构的优化提供重要的实验依据。 图12. LiNixMnyCo1-x-yO2的化学结构示意图以及通过台式XAFS/XES谱仪测得的金属Co, Mn和Ni在不同充放电状态下的XANES谱图 【参考文献】[1] G. T. Seidler, D. R. Mortensen, et.al., A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements. Rev. Sci. Instrum. 2014, 85, 113906.[2] S. K. Padamati, W. R. Browne, et.al., Transient Formation and Reactivity of a High-Valent Nickel(IV) Oxido Complex, J. Am. Chem. Soc. 2017, 139, 8718-8724.[3] M. E. Mundy, B. M. Cossairt, et.al., Aminophosphines as Versatile Precursors for the Synthesis of Metal Phosphide Nanocrystals, Chem. Mater. 2018, 30, 5373-5379.[4] E. P. Jahrman, J. R. Sieber, et.al., Determination of Hexavalent Chromium Fractions in Plastics Using Laboratory-Based, High-Resolution X-ray Emission Spectroscopy, Anal. Chem., 2018, 90, 6587-6593.[5] W. M. Holden, S. Cheah, et.al., Sulfur Speciation in Biochars by Very High Resolution Benchtop Kα X-ray Emission Spectroscopy, J. Phys. Chem. A, 2018, 122, 5153-5161.[6] J. L. Stein, B. M. Cossairt, et.al., Probing Surface Defects of InP Quantum Dots Using Phosphorus Kα and Kβ X-ray Emission Spectroscopy, Chem. Mater. 2018, 30, 6377-6388.[7] R. Bès, K. Kvashnina, et al., Laboratory-scale X-ray absorption spectroscopy approach for actinide research: Experiment at the uranium L3-edge, J. Nucl. Mater. 2018, 507, 50-53.[8] E. P. Jahrman, G. T. Seidler, An Improved Laboratory-Based XAFS and XES Spectrometer for Analytical Applications in Materials Chemistry Research. Rev. Sci. Instrum., 2019, 90, 024106.
  • 线上开讲:基于XRD数据精修晶体结构模型的数学原理
    晶体结构精修过程,本质上是一个不断调整结构模型参数以使结构模型与XRD数据最为吻合的过程。7月18日,国家纳米科学中心正高级工程师、中国科学院大学物理科学学院岗位教授贺蒙将于第四届X射线衍射技术及应用进展网络研讨会期间分享报告,重点讲述这一过程背后的数学原理,帮助大家通过了解相关数学原理,加深对于结构精修本质的认识,了解单晶结构精修和Rietveld法粉末衍射结构精修的区别,并正确理解各种结构精修残差因子(R因子)的意义。关于第四届X射线衍射技术及应用进展网络研讨会为促进相关人员深入了解X射线衍射技术发展现状,掌握相关应用知识,仪器信息网将于2023年7月18日组织召开第四届X射线衍射技术及应用进展网络研讨会,邀请业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法、热点应用领域等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/xrd2023
  • 有机结构解析难?RISE显微镜给你新方法
    《RISE大招》有机材料分析篇来了!上期小编带大家了解了TESCAN RISE拉曼-电镜一体化系统在碳材料中的新应用,收获了很多老师们的关注。今天,继续带大家走进RISE有机材料分析,阅读完记得右上角点击分享喔?在扫描电镜分析中,有机物的分析一直是一个难题。现在随着电镜低电压的能力越来越强,已经能解决有机物的荷电以及电子束辐照损伤问题,对形貌的表征不再是难事。但是对有机物除形貌之外的分析依然是个难题,因为能谱的元素分析功能对有机物的表征起不了太大作用。而拉曼光谱是除了红外光谱以外,另一个可以很好地进行有机结构解析的表征手段。因此RISE拉曼-电镜一体化系统相比一般的SEM系统,对有机物的分析能力就有了极大的拓展。有机物的结构分析主要是碳骨架结构和特殊官能团的解析。碳结构的表征在上期已经详述,是拉曼最为优势的领域之一;而特殊官能团也可通过其对应的拉曼指纹峰来进行指示。不同特殊官能团对应不同拉曼指纹峰有机材料的分析如下图,试样为聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)的共混膜。如果是用传统电镜观察,可以凭借经验,根据形貌来大致区分两者,但是这仅仅是依靠经验判断,并无有效的证据。除此之外,EDS等附件并不能确切的给出区分两相的有力数据。而用RISE分析却有了明显的进步,在观察到的区域可以进行拉曼光谱面扫描。PMMA和PS虽然都是有机材料,不过碳骨架结构和部分官能团的结构却有着较大的差异。PMMA化学式是-[CH2C(CH3)(COOCH3)]n-,PS为(C8H8) n。聚甲基丙烯酸甲酯(PMMA)和聚苯乙烯(PS)的化学结构式PMMA有特征的C=O结构、CH3伸缩振动,而PS有特征的苯环的环呼吸振动、苯环内碳原子的非对称振动、苯环C-H的伸缩振动。这些振动对应的拉曼峰分别位于1727cm-1、2951cm-1、1000cm-1、1600cm-1、3052cm-1,这些峰即可作为两项的特征峰轻易的将两项进行区分。通过拉曼特征峰轻易区分PMMA和PS此外,很多有机物都有特征性的骨架结构和官能团,这些均可作为拉曼光谱的特征峰用RISE进行分析。有机物中特征骨架结构和官能团对应特征拉曼峰再比如,RISE也可轻易区分下图有机物中的聚羟基丁酸酯(红色)和聚乳酸(蓝色)。通过拉曼特征峰区分聚羟基丁酸酯(红色)和聚乳酸(蓝色)生命科学的分析在生命科学研究领域中也经常需要用到扫描电镜,尤其是染色的细胞切片组织通过扫描电镜观察,可以通过形貌衬度判断细胞内部结构。然而除了形貌照片之外,没有更多的分析数据也困扰着这一类方向的研究。然而RISE技术仍可以在此基础上进行进一步的拓展,很多生命试样的特征结构也都有特征的物质组成,比如特征的蛋白、脂类等等,还是可以由特征的有机物及其对应的特征拉曼光谱作为指纹标记。如下图,可以将细胞切片组织在形貌的基础上进行RISE表征,进一步区分出细胞核、细胞间隙和高浓度磷脂。通过RISE技术表征细胞切片组织中不同物质再比如下图,试样为眼虫细胞。在获得SEM图像之后再通过拉曼光谱获得RISE图像,可以进一步分析出其中的叶绿体、蛋白质、细胞核、副淀粉等物质。眼虫细胞中不同物质的RISE表征分析医工交叉目前学科交叉是科学研究的发展趋势,其中医工交叉也是备受关注的方向。医工交叉的科学研究中有大量的新材料和仿生材料,这也是仅靠传统SEM系统无法完全表征清楚的。而RISE系统在这方面就大有了用武之地。如下图,某仿生材料,用户除了关心其形貌特征外,也关心其中的胶原和矿化胶原的分布。其特征峰主要在627cm-1、1601cm-1,其特征峰强度分布如图,除此之外还有420-460cm-1、2938-2941cm-1等其他特征峰,可以进行更加细微结构的判断。最终得到了胶原和矿化胶原,以及细微结构不同的(矿化)胶原的分布图和电镜形貌混合的RISE图像。仿生材料中胶原及不同细微结构的矿化胶原分布分析 食品安全食品安全及其相关领域已经成为大众非常关心的问题以及检测领域遇到的新问题,比如三聚氰胺奶粉、苏丹红等问题。然后可惜的是在食品安全及相关领域,用户更关系的是化学结构分析而非形貌和元素成分,因此扫描电镜很难在此领域的检测上发挥作用。如下图,某品牌婴儿奶粉,对其中部分区域进行RISE成像,发现其中的空气液泡、脂类、磷酸、胡萝卜素、蛋白质、胆固醇、甘油三酯等物质的分别。婴儿奶粉中不同物质的RISE表征分析RISE拉曼-电镜一体化系统相比一般的扫描电镜系统,对有机物的分析能力有了极大的拓展,通过有机物的碳骨架结构和特殊官能团对应的拉曼指纹峰来进行指示,结合形貌表征,从而实现对于有机材料的结构解析。更多应用案例,请继续关注我们的专题分享。《RISE大招》系列下期将带大家开启RISE二维材料分析 关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN新微信“TESCAN公司”,更多精彩资讯↓ 观看RISE分析全系列,请戳:“拉曼-电镜-能谱 +”,SEM Plus带你玩转无机材料分析“高碳材料带来低碳生活,TESCAN带你了解 “神器”的神奇
  • 基于Pμ SL 3D打印的导电点阵结构用于多模态传感器
    介观尺度(10μm-1mm)的3D点阵结构为新应用领域提供了最佳的几何结构,例如轻质力学超材料、生物打印组织支架等。其周期性、多孔的内部结构为调谐3D点阵结构对力、热、电以及磁场的多功能响应提供了机会。借助这种结构优势,多材料3D点阵结构可用于实现器件的多功能性。由于传统微加工技术在复杂三维结构制造方面的局限性,而3D打印技术在制备复杂三维结构方面可较好的克服这一局限性。目前,研究人员基于挤压成型、立体光刻(SLA)等3D打印技术制备了金属点阵或者复合材料点阵实现结构的功能化。但是这些方法打印分辨率比较低,挤压成型制备的点阵需要高温烧结处理,工艺比较繁琐。面投影微立体光刻(PμSL) 3D打印技术具有超高的精度,可以实现介观尺度3D聚合物点阵结构的制备。纳米薄膜可以利用表面驱动的静电对化学吸附和物理吸附的敏感性而被用于化学和生物传感领域。因此,基于PμSL技术,通过纳米薄膜与3D聚合物点阵结构的集成化可以实现介观尺度传感器件的制备。近日,美国达特茅斯学院William J. Scheideler课题组基于面投影微立体光刻(PμSL) 3D打印技术结合原子层沉积技术(ALD)制备了多功能3D电子传感器。该团队基于摩方精密(BMF)超高精度光固化3D打印机 microArch S240打印了3D点阵结构,结构表面光滑,有利于电子薄膜的均匀沉积(图1)。采用原子层沉积技术先在聚合物点阵表面低温沉积一层Al2O3晶种层,然后再均匀沉积一层导体(SnO2,ZnO : Al)和半导体(ZnO)的金属氧化物薄膜材料,从而实现3D打印聚合物到多功能3D电子器件的转变(图2)。其中,Al2O3晶种层可以促进导电薄膜在聚合物点阵表面的生长。图1. 基于PμSL 技术制备的3D导电点阵结构 图2. 金属氧化物在3D打印点阵结构上的生长图3. 金属氧化物包覆的3D打印八面体点阵的电学性能图4. 3D导电点阵结构的传感性能 3D导电点阵结构电学性能的测试表明金属氧化物薄膜厚度、3D网络结构以及生长温度等均可影响结构的导电性能;同2D结构相比,3D导电点阵结构具有更大的比表面积,为电流传导提供更多的平行通道,因此,该结构的导电性能明显增强。研究结果发现,八面体导电点阵具有高比表面积、高理论预测电导率和热导率,因此研究者将其用于多模态传感器进行传感性能的研究并进行验证。结果表明3D几何结构不仅提高了传感器的灵敏度,而且增强了传感器对化学、热以及机械刺激的响应。该研究成果表明3D导电点阵结构在植入式生物传感器、3D集成微机电系统等介观尺度器件方面具有巨大的应用潜力,以“Transforming 3D-printed mesostructures into multimodal sensors with nanoscale conductive metal oxides”为题发表在Cell Reports Physical Science上。原文链接:https://doi.org/10.1016/j.xcrp.2022.100786官网:https://www.bmftec.cn/links/10
  • 免疫荧光显微成像详解(上)——免疫荧光原理、步骤
    前言免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术,它是将不影响抗原抗体活性的荧光色素标记在抗体(或抗原)上,与其相应的抗原(或抗体)结合后,在荧光显微镜下呈现一种特异性荧光反应。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。直接法将标记的特异性荧光抗体,直接加在抗原标本上,经一定的温度和时间的染色,用水洗去未参加反应的多余荧光抗体,室温下干燥后封片、镜检。间接法如检查未知抗原,先用已知未标记的特异抗体(第一抗体)与抗原标本进行反应,用水洗去未反应的抗体,再用标记的抗抗体(第二抗体)与抗原标本反应,使之形成抗体—抗原—抗体复合物,再用水洗去未反应的标记抗体,干燥、封片后镜检。如果检查未知抗体,则表明抗原标本是已知的,待检血清为第一抗体,其它步骤的抗原检查相同。标记的抗抗体是抗球蛋白抗体,同于血清球蛋白有种的特异性,如免疫抗鸡血清球蛋白只对鸡的球蛋白发生反应,因此,制备标记抗体适用于任何抗原的诊断。一、实验步骤免疫荧光实验的主要步骤包括 样片制备、固定及通透(或称为透化)、封闭、抗体孵育、封片及荧光检测等。1、 样品准备对于单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过(70%乙醇中浸泡)的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片即可,操作过程要小心,防止细胞脱片。对于悬浮生长细胞,有两种方式,一种是取对数生长细胞,制备细胞片或直接制备细胞涂片,把细胞片浸入封闭液中固定,封闭后滴加一抗和二抗孵育;另一种是先在悬浮液中进行固定和染色,离心洗脱后,用移液管移至盒式玻片进行后续抗体孵育。对于冰冻切片制备,建议用新鲜组织,否则组织细胞内部结构破坏,易使抗原弥散。组织一定要冷冻适度,切片时选用干净锋利的刀片,防止裂片和脱片。对于石蜡切片的制备,要先进行脱蜡和抗原修复的处理。2、固定做好切片并风干后立即用合适的固定液(固定液包括有机溶剂和交联剂,其选择取决于抗原的性质及所用抗体的特性)进行固定,尤其要较长时间保存的白片,一定要及时固定和适当保存。固定时间则取决于固定组织切片的大小和类型,对大多数组织,18-24h即可,而细胞的固定时间较短。3、通透针对胞内抗原,使用0.5% Triton X-100或丙酮等通透剂进行通透,这一步的目的是使抗体进入胞内。 4、封闭为防止内源性非特异性蛋白抗原的结合,需要在一抗孵育前先用封闭液(一般包括与二抗同一来源的血清、BSA或者羊血清)封闭,减弱背景着色。封闭开始后,要注意样品的保湿,避免样品干燥,否则极易产生较高的背景。5、一抗孵育一抗孵育温度一般分为:4℃、室温、37℃,其中4℃效果更佳;孵育时间与温度、抗体浓度有关,一般37℃孵育1-2h,4℃过夜(从冰箱拿出后37℃复温45min)。具体条件还要根据样品、稀释液等条件进行摸索尝试。6、荧光二抗孵育荧光二抗孵育一般在室温或37℃孵育30min-1h,该过程必须在避光环境下进行,防止荧光淬灭。荧光素标记的二抗随着保存时间的延长,可能会有大量的游离荧光素残留,需要注意配制时采用小包装并进行适当的离心。7、复染一般采用DAPI进行复染,目的是形成细胞轮廓,从而更好地对目标蛋白进行定位。8、封片为了长期保存,我们需要对样本进行封片,用吸水纸吸干爬片上的液体,一般用缓冲甘油等或专门的抗荧光淬灭的封片液。9、 荧光观察有条件的话最好立即用荧光显微镜观察拍照,若不能及时拍照,也要做好封片和封固,保持避光和湿度。荧光显微镜的成像能力对最终的结果也会造成很大的影响,好的荧光显微镜能够最大限度地收集荧光信号,并呈现高分辨率的图片,使细节更清楚,更易得到一张效果极佳的结果图。注意:切片清洗:为了防止一抗、二抗等试剂残留而引起非特异性染色,所以适当地加强清洗(延长时间和增多次数)尤为重要,一般在一抗孵育前的清洗是3min*3次,而一抗孵育后的清洗均为5次*5min。(1)单独冲洗,防止交叉反应造成污染;(2)温柔冲洗,防止切片的脱落。可使用浸洗方式;(3)冲洗的时间要足够,才能彻底洗去结合的物质;(4)PBS的PH和离子强度的使用和要求(建议PH在7.4-7.6,浓度是0.01M;中性及弱碱性条件有利于免疫复合物的形成,而酸性条件则有利于分解;低离子强度有利于免疫复合物的形成,而高离子强度则有利于分解)。根据上述步骤完成免疫荧光实验后,就需要进行荧光显微成像,得到我们想要的结果。选择一款操作简单、成像清晰、效果卓越的荧光显微镜进行观察拍照,才能轻松得到更为理想的结果图,达到事半功倍的效果。Echo Revolve正倒置一体荧光显微镜Echo Revolve正倒置一体荧光显微镜作为一款电动化、智能化的显微镜,具有以下优势:☑ 正倒置一体快速切换:切片、细胞观察随心切换,无惧任何耗材;☑ DHR数字降噪功能:极大地降低了背景噪音和荧光干扰,提高图像锐度,加深细节,得到分辨率更高的图片;☑ 强大的Z-Stacking功能:通过高精度电动化Z轴层扫来扩大景深,解决厚样本观察问题,提高图像分辨率;☑ 500MP单色相机:能够采集更多荧光信号,助力低荧光强度样本观察;☑ 多通道荧光自动拍摄叠加功能:可自动进行多通道成像的叠加,个性化选择查看/保存各通道的组合图像。
  • GISAXS用于监测超高分子量嵌段共聚物快速自组装过程的结构演变
    超高分子量嵌段共聚物自组装的挑战 嵌段共聚物(BCPs)是一种特殊材料,具有两个或以上化学上不同的单体单元形成不连续的高分子嵌段,转而又以共价键连接在一起。在融化相,这些材料组成嵌段之间的热力学不相容造成微相分离。这导致了周期性纳米材料(四种常见结构见图1)的形成,它们的形态可以通过改变分子组成来控制,而它们的尺寸和周期性则由分子量的变化来决定。它们的结构和组成多样性提供了获得多种表面纳米结构的可能性,这些表面纳米结构可用于大量应用,例如纳米电子学、抗反射涂层、光学活性表面化学传感器或药物输送。图1. 四种基本共聚物结构。 对于使用可见光的光电应用,需要具有横向周期性大于150nm的BCPs。因此,出现了一种子类材料,叫做超高分子量(UHMW)嵌段共聚物。长链聚合物的高度缠结特性形成了这些BCPs,但是却引起了自组装过程的其他问题。尤其是相分离的缓慢开始使得近乎所有过程都不适合工业应用。近期,一组来自都柏林大学、波尔多大学和谢菲尔德大学的研究人员提出了UHMW BCPs(800kg/mol)的超快自组装的方法,在气相溶剂退火法(SVA)阶段利用可控的溶胀动力学,从而退火时间与平常数小时或数天相比将缩短到分钟。在他们的研究工作中,证明了通过快速并控制使膜膨胀到非常高的溶剂浓度,有可能在10分钟内诱导UHMW poly(styrene)-b-poly-2-vinylpyridine (PS-b-P2VP)系统的相分离。为了得到这个结果,大量研究了干膜厚度、聚合物膜内溶剂浓度、溶胀时间和速率对BCP膜的形态和结构演化的影响。GISAXS测试揭示了溶剂浓度对UHMW嵌段共聚物结构的影响 具有高分子量体系的长聚合物链在干膜中显示有较高的链缠结。已知UHMW BCP的聚合物流动性是高度依赖于溶胀比的,那在SVA过程中通过向BCP膜中加入相对中性的溶剂是有可能解决这一问题的。这样溶剂的分子将在两个嵌段之间产生屏蔽作用,从而减少聚合物之间的相互作用。在上述研究中,选用了氯仿和四氢呋喃(THF)的混合物作为退火溶剂。 随后用掠入射小角X射线散射(GISAXS)研究166nm的BCP膜在宏观区域上随溶剂浓度变化的形态演变。与透射模式下的SAXS实验相比,掠入射模式(X射线光束在样品表面反射)转变成了表面敏感探测技术,在大表面区域上分析材料的结构且无需额外的样品制备。如图1所观察到的,通过GISAXS测试随着溶剂浓度的增加,内部结构发生了明显的变化。铸膜样品只出现微弱的散射点,表明表面主要是无序的胶束结构。随着溶剂浓度的增加,从GISAXS散射图谱上明显看出,ϕs~0.80以下,BCP链仍处于缠结状态而无法自组装成界限清晰的微区。只有在浓度等于或高于0.8时,有序垂直层状形态才开始逐步形成。使用散射峰的位置,计算结构在ϕs = 0.83和ϕs = 0.86的平面域间距分别是(~ 184 nm)和(~ 191 nm),而一旦溶剂浓度的值达到0.88结构会失序。图2.(a-h)二维GISAXS散射数据。8个图中显示PS-B-P2VP膜的形态随退火溶剂浓度ϕs的变化而变化。(i)在每个样品的Yoneda位置的1DGISAXS图像。强度分布显示为一阶散射峰,二阶散射峰分别用红色和蓝色表示为1和2。 铸膜(在没有溶剂的情况下测试)出现一个弱散射峰,用绿色表示为m。 通过AFM分析对这些值进行了进一步的证实,并且典型的FIB/SEM实验结果证明层状结构在整个膜上的延伸。为了证明BPC结构的传输能力,自组装膜也被用作模板制备金属氧化物纳米结构。这些材料也被进一步用作硬膜,来生产统一的高宽比硅纳米壁结构(高500nm,间距190nm)。 这一研究工作为超高分子量嵌段共聚物在工业适用的时间内通过高精度气相退火进行自组装的可行性奠定了基础。在大约10分钟的时间内实现了相分离,产生了间距超过190nm的层状特征。在整个过程中,GISAXS测量与其他探测技术共同用于控制过程的效率并评估不同参数的影响。
  • 万字讲懂离子色谱仪原理、结构、分类、应用、常见品牌等 | 仪器博物馆
    离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。今天小谱就其发展史、检测原理、结构等和大家进行探讨,一文把离子色谱仪讲通透。(如果读完文章您觉得还有哪些想听的知识点没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎您积极留言。)01离子色谱的“前世今生”1975年,Dow Chemical(陶氏化学)的H.Small等人发表的第一篇离子色谱方面的论文在美国分析化学上;在分离用的离子交换柱后端加入不同极性的离子交换树脂填料,该树脂填料呈氢型或氢氧根型。如阴离子交换柱后端加入氢型的阳离子,交换树脂填料阳离子交换柱后端加入氢氧根型的阴离子,交换树脂填料当由分离柱流出的携带待测离子的洗脱液在检测前发生两个简单而重要的化学反应,一个是将淋洗液转变成低电导组分以降低来自淋洗液的背景电导,另一个是将样品离子转变成其相应的酸或碱以增加其电导。这种在分离柱和检测器之间降低背景电导值而提高检测灵敏度的装置后来组成独立组件称为抑制柱(或抑制器),通过这种方式使电导检测的应用范围扩大了;在H-Small等人提议下称这种液相色谱为离子色谱。离子色谱一经诞生就立即商品化;1975年,第一家离子色谱公司诞生——戴安公司(Dow Ion Exchange),由H-Small和T-S.Stevens研发;1979年,美国阿华州大学的J.S.Fritz等人建立了单柱型离子色谱,许多其它公司生产了离子色谱;1983年,中国核工业第五研究所刘开禄研究员刘开禄带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1,并实现产业化。性能基本与国外同类仪器(美国Dionex-14型)相接近,填补了国内空白;第六届“科学仪器行业研发特别贡献奖”获奖者 刘开禄ZIC-1型离子色谱仪第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。1985年6月,赵云麒、刘开禄研制ZIC-2型离子色谱仪,包含双模式理论和适用于阳离子分析的“五级电导检测”电路。1987年12月22日 ,ZIC-2型离子色谱仪通过了专家鉴定并投产,核心技术目前仍应用在中国的核潜艇水质监测。1995年,ZIC-3型离子色谱仪由张烈生、荆建增设计完成并获得国家科技成果完成者证书。左:ZIC-2型离子色谱仪、中:ZIC-2A型离子色谱仪、右:ZIC-3型离子色谱仪目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。02离子色谱的原理和结构离子色谱的原理基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。离子色谱的结构离子色谱仪一般由流动相输送系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统六大部分组成。1、流动相输送系统离子色谱的输液系统包括贮液罐、高压输液泵、梯度淋洗装置等,与高效液相色谱的输液系统基本一致。1.1贮液罐溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:(1)必须有足够的容积,以保证重复分析时有足够的供液;(2)脱气方便;(3)能承受一定的压力;(4)所选用的材质对所使用的溶剂一律惰性。出于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0.5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。脱气方法有多种,在离子色谱中应用比较多的有如下方法:(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。(2)吹氧气或氮气脱气法:氧气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左看,可以达到脱气日的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可白动对琳洗液进行在线自动脱气。1.2高压输液泵高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱。泵应采用全塑Peek材料制作。(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。(5)流量在一定范围任选,并能达到一定精度要求。(6)部分输液泵具有梯度淋洗功能。目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。1.3梯度淋洗装置梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:(1)低压梯度低压梯度是采用比例调节阀,在常压下预先按一定的程序将溶剂混合后,再用泵输入色谱柱系统,也称为泵前混合。(2)高压梯度它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。2、进样系统离子色谱的进样主要分为3种类型:即气动、手动和自动进样方式。(1)手动进样阀手动进样采用六通阀,其工作原理与HPLC相同,但其进样量比HPLC要大,一般为50μL。其定量管接在阀外,一般用于进样体积较大时的情况。样品首先以低压状态充满定量管,当阀沿顺时针方向旋至另一位置时,即将贮存于定量管中固定体积的样品送入分离系统。(2)气动进样阀气动阀采用一定氮气或氮气气压作动力,通过两路四通加载定量管后,进行取样和进样,它有效地减少了手动进样因动作不同所带来的误差。(3)自动进样自动进样器是在色谱工作站控制下,自动进行取样、进样、清洗等一系列操作,操作者只须将样品按顺序装入贮样机中。自动进样可以达到很宽的样品进样量范围的目的。3、分离系统分离系统是离子色谱的核心和基础。离子色谱柱是离子色谱仪的“心脏”,要求它具有柱效高、选择性好、分析速度快等特点。离子色谱柱填料的粒度一般在5~25μm之间,比高效液相色谱的柱填料略大,因此其压力比高效液相色谱的要小,一般为单分散,而且呈球状。3.1高分子聚合物填料离子色谱中使用得最广泛的填料是聚苯乙烯——二乙烯苯共聚物。其中阳离子交换柱一般采用磺酸或羧酸功能基,阴离子交换柱填料则采用季胺功能基或叔胺功能基。离子排斥柱填料主要为全磺化的聚苯乙烯 二乙烯苯共聚物,这类离子交换树脂可在pH0~14范围内使用。如果采用高交联度的材料来改进,还可兼容有机溶剂,以抗有机污染。一般来说,离子交换型色谱柱的交换容量均很低。3.2硅胶型离子色谱填料该填料采用多孔二氧化硅柱填料制得,是用于阴离子交换色谱法的典型薄壳型填料。它是用含季胺功能基的甲基丙烯十醇酯涂渍在二氧化硅微球上制备的。阳离子交换树脂是用低相对分子质量的磺化氟碳聚合物涂渍在二氧化硅微粒上制备的。这类填料的pH值使用范围为4~8,一般用于单柱型离子色谱柱中。3.3色谱柱结构一般分析柱内径为4mm,长度为100~250mm,柱子两头采用紧固螺丝。高档仪器特别是阳离子色谱柱一般采用聚四氟乙烯材料,以防止金属对测定的干扰。随着离子色谱的发展,细内径柱受到人们的重视,2mm柱不仅可以使溶剂消耗量减少,而且对于同样的进样量,灵敏度可以提高4倍。4、离于色谱的抑制系统对于抑制型(双柱型)离子色谱系统,抑制系统是极其重要的一个部分,也是离子色谱有别于高效液相色谱的最重要特点。抑制器的发展经历了多个发展时期,而目前商品化的离子色谱仪亦分别采用不同的抑制手段及相关研究成果。4.1树脂填充抑制柱该抑制系统采用高交换容量的阳离子树脂填充柱(阴离子抑制),通过硫酸,将树脂转化为氢型。它抑制容量不高,需要定期再生,而且死体积比较大,对弱酸根离子由于离子排斥的作用,往往无法准确定量。目前这类抑制器目前已经基本不用。4.2纤维抑制器这种抑制系统采用阳离子交换的中空纤维作为抑制器,外通硫酸作为再生液,可连续对淋洗液进行再生,这种抑制器的死体积比较大,抑制容量也不高。4.3微膜抑制器这种抑制系统采用阳离子交换平板薄膜,中间通过淋洗液,而外两侧通硫酸再生液。这种抑制器的交换容量比较高,死体积很小,可进行梯度淋洗。4.4电解抑制器这种抑制系统采用阳离子交换平板薄膜,通过电解产生的H+,对淋洗液进行再生。早期的这类抑制器是由我国厦门大学田昭武发明,并投入了生产,但它需要定期加入硫酸来补充H+。美国Dionex公司对这类抑制器进行了改进,使之成为自再生,只要用淋洗液自循环或去离子水电解就可能实现再生,抑制容量可以通过改变电流的大小加以控制,而且死体积很小。5、检测系统5.1电导检测器电导检测是离子色谱检测方式中最常用的一种。它是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。由于电导池中的等效电容的影响,施加到电导池上的电压和电流之间的关系是非线性的,这给测量电导值带来很大困难。另外,流动相中本底电导值很高,从较大的背景值中准确测量待测组分的信号,也是电导检测中的重要问题。目前采用较多的方法有:(1)双极脉冲检测器:在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。容易受到电极极化和双电层的影响。(2)四极电导检测器:在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。(3)五极电导检测器:在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。5.2安培检测器安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。安培检测主要包括恒电位(直流安培)、脉冲安培以及积分安培三种方式。(1)直流安培检测模式:该方法是将一个恒定的直流电位连续地施加于检测池的电极上,当被测物被氧化时,电子从待测物转移至电极,得到电流信号。在此过程中,电极本身为惰性,不参与氧化反应。该方法具有较高的灵敏度,可以测定pmol级的无机和有机离子,主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。(2)脉冲安培检测模式:脉冲安培检测器出现在20世纪80年代初,是美国Dionex公司为满足糖的测定而研制的。糖类化合物的pKa值为12~14,在强碱性介质中以阴离子形式存在,可以用阴离子交换色谱分离。因为糖的分离是在碱性条件下完成的,检测方法必须与此相匹配,用金电极的脉冲安培检测法适合于这个条件。金电极的表面可为糖的电化学氧化反应提供一个反应环境。用脉冲安培检测法可检测pmol~fmol级的糖,而且不需要衍生反应和复杂的样品纯化过程。该检测器主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测,不可检测硫的氧化物。(3)积分脉冲安培检测模式:积分脉冲安培检测法为脉冲安培检测的升级模式,于1989年由Welch等人首先提出,并运用此技术,用金电极实现了对氨基酸的检测。与脉冲安培检测法相似,积分脉冲安培检测法中加到工作电极上的也是一种自动重复的电位对时间的脉冲电位波形,不同之处是:脉冲安培检测法是对每次脉冲前的单电位下产生的电流积分;而积分脉冲安培检测法是对每次脉冲前循环方波或三角波电位下产生的电流积分,即是对电极被氧化形成氧化物和氧化物还原为其初始状态的一个循环电位扫描过程中产生的电流积分。由积分整个高-低采样电位下的电流所得到的信号仅仅是被分析物产生的信号。在没有待测物(可氧化物)存在时,静电荷为零。积分脉冲安培检测法的优点在于通过施加方波或三角波电位消除了氧化物形成和还原过程中产生的电流。正、反脉冲方向的积分有效地扣除了电极氧化产生的背景效应,使得那些可受金属氧化物催化氧化的分子产生较强的检测信号和获得稳定的检测基线成为现实。此外,离子色谱还可以采用紫外、可见光、荧光等高效液相色谱常用的检测器,其原理与常规的高效液相色谱检测相似。6、数据处理系统离子色谱一般柱效不高,与气相色谱和高效液相色谱相比一般情况下离子色谱分离度不高,它对数据采集的速度要求不高,因此能够用于其他类型的数据处理系统,同样也可用于离子色谱中。而且在常规离子分析中,色谱峰的峰形比较理想,可以采用峰高定量分析法进行分析。主要数据处理系统为:6.1记录仪记录仪要求满刻度行程时间≤1s,输入阻抗高,屏蔽好,纸速稳定。采用双笔式记录仪,可以同时测量样品中高浓度和痕量浓度组分,也可进行双检测器分析。6.2自动积分仪它是一种通过A/D转换,采用固定程序,分析色谱信息,打印色谱图的仪器。采用自动积分仪大大减少了记录仪中色谱手工处理的繁琐手续。6.3数据工作站通过A/D转换,将数据采集于电脑,然后通过对采集的数据分析,得到相关的色谱信息。随着个人电脑的普及,数据工作站将得到广泛的应用。03离子色谱的分类通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。离子交换色谱:离子交换色谱以离子间间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。根据应用场景可分为:实验室、便携式、在线离子色谱。便携式离子色谱:适用的主要场景比如户外检测、或者在移动检测车上使用等等。在线离子色谱:适用的主要场景,比如大气环境的连续监测、或者工厂流水线中的连续监测等等。实验室离子色谱:相对来讲,就是最常规的离子色谱类型了,用户采购量也是相对最大。04离子色谱的应用离子色谱作为20世纪70年代发展起来的一项新的分析技术,由于具有快速、灵敏、选择性好等特点,尤其在阴离子检测方面有着其它方法所的优势,因此被广泛地应用于化工、医药、环保、卫生防疫、半导体制造等行业,并在某些领域被列为标准测定方法。涉及离子色谱的国内标准分析方法行业标准部分国际标准05离子色谱使用的注意事项1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。3、高压泵sp 岛埃仑YC3000离子色谱仪青岛埃仑YC7000型离子色谱仪 等▲ 青岛埃仑YC3000离子色谱仪B. 岛津
  • X 射线探伤技术在文物保及考古绘图中的应用
    一、X 射线探伤技术在文物考古中应用的原理X 射线探伤技术,是利用射线透过物体时,发生吸收和散射这一特性,通过测量材料中因缺陷存在影响射线的吸收来探测缺陷的一种技术。根据底片上有缺陷部位与无缺陷部位的黑度图像不一样,就可判断出缺陷的种类、数量、大小等,这就是射线照相探伤的原理,也称 X 射线照相技术。在考古学中运用 X 射线照相技术,就是利用 X 射线照相方法所具有不损坏器物的特性,而且,具有高穿透能力的电磁辐射 X 射线。在文物保护工作中单一的利用数码照片,只能对器物表面及形的一些信息进行了解,锈层底部及器物的内部的信息无法知晓,X 射线照相技术就能很好地解决这一问题。从另一个角度上讲,X 射线照相技术实际是一种“转换”技术,是把用肉眼直接观察不到的信息,变成“可识信息”,以反应物体内部的形貌特征,或者是物体内部结构特征。通过记录在 X 射线照片物体透视影像的丰富信息及其特征,来判断文物内部结构特征,或者相关的其他特征,如文物保存状况、前修复痕迹、相关其历史艺术信息,相关器物制作工艺特点等。现在,X 射线探伤技术已经成熟地应用于文物保护修复及古代技术研究中。运用此种设备进行文物相关研究比较广泛。X 射线是借助荧光屏显像的一种成像技术,具有穿透和荧光两个作用。X 射线照相是借助各种摄影装置,利用 X 射线的吸收、穿透和感光等作用。将被检客体的影像记录在与 X 射线仪连接的电脑相应的程序中。传统光学成像方式与 X 射线平面成像有些差异,传统的光学成像,不管模拟成像或数字成像,均使用光学透镜,波长范围为紫外线、可见光和近红外线。X 射线平面成像不用光学透镜成像。而是利用射线的直线传播,穿透物体,在物体背后放置 X 射线感光片将影像记录下来。X 射线平面成像与光学成像相比,除了不用镜头外,最主要的是记录的信息并不相同。二、X 射线照相技术在文物考古和绘图方面的应用实例文物具有不可再生性,在修复文物前,用 X 光照相方法能反应文物保存现状,通过这种无损分析结合文物的保存状况更利于文物保护与研究1. 在文物考古方面的应用X 射线照片作为光源的一种照相方法,利用具有高穿透能力的电磁辐射 X 光,在不破坏“研究对象”的情况下,对其内部形态进行探测来反应物体内部结构特征的一种无损检测方法。不同材质的文物,由于非均质特征,各个部位对X 射线能量的吸收明显不同。能够显示铁器表层的锈蚀深度,能够了解器物的内部形貌特征。 现代文物保护修复,不仅是把破碎的文物复原,把受自然力侵蚀的文物寿命延长,而是对其历史价值、艺术价值的一个重新“发掘”、认识和评价的过程。文物在锈蚀或损坏得比较严重的情况下,对其修复保护操作前,没有详细的了解器物的现状,直接进行操作很可能对文物造成损伤甚至破坏,相关的历史和艺术信息将永远的消失,并且对文物研究也会有极大的影响,造成无法弥补的遗憾。下面结合铁牌饰、铁饰件、铁称砣数码相片与X 射线照片的对比图片,可以细致地了解器物纹样与图案。 图2 为铁牌饰的 X 射线照片,从片中看到的是一件非常生动的艺术品,没有任何损伤拼接痕迹,轮廓立体感强,人、马的轮廓线及人体五官和头部也非常清楚,马的线条也很清晰,马身上的饰物、缰绳、马鞍、弓弦、缨、鞦带等细微之处都清晰地呈现出来。马的五官、尾部、四蹄的外轮廓与真实马的形态相像,从马的尾巴及身体上的饰物上看去,动感很强。整体上看去好似一人悠闲地在马背上吹着音乐,而马听着美妙的乐声慢步行走,很陶醉的样子。铁饰件的数码片中,只能看到表面厚厚的锈层,锈层下的任何信息都显示不出来。这次在文物保护的过程中,我们利用 X 射线照技术,详细的对器物进行了解,发现锈层下的有粗细不均线条组合成生动的图案,而且固定在铁饰件边缘的两个片状铁片及与铆钉相接的结构也能清晰地看到。这个信息的解读对于保护研究方面与保护工作的操作方面以及考古研究工作的开展有着非常重要的价值,也同时要求文物保护人员在进行保护工作时要特别小心,如果不小心就会伤及器物的花纹。所以在保护操作工作中,一边对照 X 射线图片,一边小心谨慎进行保护操作,结果器物花纹没有受到一丝的伤害,同时也说明器物得到了成功的保护。秤砣虽锈迹斑斑,却保存尚好。器表 1 面刻有凹槽(图 5),另一面无任何纹饰。经 X 射线照相,想进一步对其进行了解。结果很遗憾,在 X 射线片上除有一些白点外(图 6),只能看到一块加工规整的铁块,没有显现出任何套接及修复痕迹,说明这件器物是一次成形的实心器物。在器物中心部位有若干大小不等的小圆点,我们认为此物应是在制作器物时产生的气泡而形成。器物表面刻的凹槽在 X 射线片中没有任何体现,我们也无法辨别记录的是什么文字,这种结果的出现主要是由于器物太厚,器物上所刻文字的凹槽太浅所致。反而在数码片中,这种实心器物用数码片的效果反而要比 X 射线片好一些,表面信息虽然不是很清晰,还可以看到大致的轮廓。2. 在考古绘图中的应用出土文物是研究者对遗址的文化进行判定的重要依据。器物图是对器物进行平面展示的平台,绘图是编写考古报告中的一项不可缺少的基本工作,也是进一步研究器物相关工艺的基础。目前的考古绘图,是完全使用手工测量,可直接测量的部分,在图中可以准确绘出其结构与大小,而一些无法测量的部位,尤其在绘器物的剖面图、内部结构及加工工艺和器物厚度是无法准确测量的,也只能估测,这样会影响考古报告的读者对器物内部结构的认知程度。X 射线平面成像是 X 射线穿透物体的影像信息的记录。由于 X 射线穿透能力强,光学成像射线无法穿透的物体,X 射线却可能穿透,获得其内部信息。通过 X 射线照片专业绘图员可以对文物的内部形貌及器物的原貌有更加细致的了解。在绘图时,用绘图工具测量、数码片、X 射线片三者相结合,能够完整地把器物的内、外部信息更全面地表现出来。如铁锁为圆柱形,锈蚀严重,有些锈层已经剥落(图 7),内部结构不详。从(图 8)X 射线照片中,能够清晰地了解铁锁的内部形貌。除铁锁两端外侧可看到的铁条贯通铁锁内部外,再无任何部件。铁条一侧弯曲,呈“U”形,且残断。则另一侧端部似花瓣形扁片。数码片对器物表面信息是一个很好的展示,在铁锁两侧各有一孔,一侧为圆形,另一侧则为月牙形,且二孔在一条直线上。通过铁锁使用两种照相技术相结合的方法。能够清晰地了解铁锁内、外部结构与构成,有助于绘图者对器物有更深一层、更细致的了解,提高了绘制器物线图的准确性,尤其是对器物的内部结构能够绘得更准确。再如,帽顶,表面可以看到它的内部构成。先制成直径不等的空心半圆形范,并在范上刻好花纹,三个直径基本相同,另一个较前者稍大,其中两个小的半圆对扣成球体,而另一个小半圆与大者叠扣在一起,再用一根方形铁条通过顶点将其串在一起(图 9、图 10)。三、利用 X 射线照相技术进行文物保护应注意的问题利用 X 射线技术对文物进行保护,能收到较好的效果,但不能取代所有的方法,还要注意与其他方法的结合。1. 要对 X 光片进行整体判读从利于文物保护与研究的角度,在提取器物时,最好用整取的方法将器物内部任何遗物信息留存。在对器物进行清洗保护时,根据 X 射线片对器物的锈蚀物进行清理,这样就不会将器物本身破坏,也不会丢失任何信息,可以更准确地识别器物的内部构成与结构形貌。2. 要与传统的数码技术相结合如前所述,进行文物保护,利用 X 射线技术并不能解决所有的问题。从(图 5、图 6)的秤砣来看,器物大致为柱状,受 X 射线穿透力的影响,在识别时纹样图案的效果极差。(图 8)的铁锁 X 射线照片也如此,除铁锁的内部存有一根铁条以外,无其他任何信息,也无法得知铁锁内部的具体结构。而数码相机照的照片,可以把器物表面的一些特征及信息反应出来。而两者相结合,第一有利于文物保护与制造工艺的研究;第二有利于文物保护操作工作的进行。所以个人认为,用 X 射线技术对文物进行研究时,应运用多种科学技术方法相结合进行测试,具有互补的作用。获取更多、更大量的信息,减少丢失任何有价值信息的可能性,对文物考古的相关研究可提供更全面的内在信息。通过对以上三件器物 X 射线相片,可以看出,它们的效果完全不同。由于骑士牌饰为薄片状,相关的历史和艺术信息一览无余。而多年保护工作的实践,本人总结出一些经验。对器物进行保护工作前,一定要进行一些科学技术的测试,能够尽量多的留下一些信息。文物具有不可再生性,所以对文物进行的保护都应在详细了解文物之后再进行操作。X射线探伤技术,具有无损的特征,这种特性非常适合在文物研究和文物保护中应用,可以更全面地揭示与文物有关的历史信息,更生动地提供文物的制作工艺及技术,更详细地绘制器物的原图。
  • 拆机详解|红外体温计(耳温枪)结构原理 掌握正确使用要领
    p style=" text-indent: 2em " 本文首发在仪器信息网-仪器社区在疫情期特别上线的 a href=" https://bbs.instrument.com.cn/class_471.htm" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 抗击新冠肺炎版块 /span /a ,为仪器信息网社区版友sc360xp(版友笔名: span style=" color: rgb(0, 112, 192) " 仪器信息网sc360xp /span )在其原创拆机文基础上编写,特此感谢。 /p p style=" text-align: center" a href=" https://bbs.instrument.com.cn/class_471.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 500px height: 138px " src=" https://img1.17img.cn/17img/images/202002/uepic/bd6efefb-f5ef-46b3-abca-8eb68a06d078.jpg" title=" 1.png" alt=" 1.png" width=" 500" height=" 138" border=" 0" vspace=" 0" / /a /p p style=" text-indent: 2em " 目前临床上使用的体温计种类有水银体温计、电子体温计、红外线体温计。由于红外线体温计检测快速、非接触的优点,在抗击“COVID-19”病毒战役中普遍使用。 /p p style=" text-indent: 2em " 红外线体温计有额温及耳温两种检测方式,又称额温枪及耳温枪。在公共场所,普遍使用非接触的额温枪,准确度稍差,受环境波动影响较大。耳温枪测量的准确度较高,但耳温枪使用时,其耳套要与被测人耳朵接触,在公共场所使用,需要频繁更换耳套。耳温枪更适合家庭测量体温使用。 /p p style=" text-indent: 2em " & nbsp 额温枪及耳温枪的电路基本原理相同,只是在外形及算法上有所不同。有的厂家设计了二者通用产品。下面通过了解耳温枪结构原理,谈谈正确使用耳温枪的注意事项。 /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 一、测量耳温原理 /strong /span /p p style=" text-indent: 2em " 人的大脑深部有一个叫下视丘的地方,它是人脑自主神经系统的主要管制中枢。主要功能是管制内分泌、维持新陈代谢正常、调节体温,并与饥饿、渴、性等生理活动有密切的关系。下视丘里面有一个支配人体恒温的“定点”(set-point)构造,是人体温度的中心点。当人体发烧时,也就是该“定点”温度接受一些循环在血流中的发炎性化学物质之后调高的结果,所以下视丘是人体体温最早上扬的地方。 /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319189573_9036_1807987_3.jpg!w544x535.jpg" width=" 450" height=" 443" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319189573_9036_1807987_3.jpg!w544x535.jpg" style=" border: 0px display: inline width: 450px height: 443px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 耳膜接近下视丘。下视丘得到颈动脉流血充分供应,而供应耳膜与供应下视丘的血流互有交通,因此耳膜温度可以及时反映出人体的温度变化,耳膜也是可以最早侦测到人体是否有发烧的地方。耳温枪用热电堆红外传感器检测耳膜6~15μm区域的红外辐射能量,转换为电信号送入专用MCU进行处理,对应的体温值由液晶屏显示出来。 /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319195244_3245_1807987_3.jpg!w690x506.jpg" width=" 450" height=" 330" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319195244_3245_1807987_3.jpg!w690x506.jpg" style=" border: 0px display: inline width: 450px height: 330px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 二、仪器简要情况 /strong /span /p p style=" text-indent: 2em " 以前在TB上拍的,仪器有医疗器械注册文号,有厂家地址等,是正规产品,包邮才58元一只。现在,没有这个价位的产品出售了。 /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319198923_3272_1807987_3.jpg!w690x362.jpg" width=" 450" height=" 236" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319198923_3272_1807987_3.jpg!w690x362.jpg" style=" border: 0px display: inline width: 450px height: 236px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 仪器平时搁放在耳温枪座上,粉红色按钮是检测时扫描按钮。该仪器是非耳套更换型,耳温枪座只是一个搁仪器的机座,没有“博朗”那样的耳套存放功能。使用前,需用酒精棉擦拭耳筒清洁消毒。 /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319202054_7877_1807987_3.jpg!w690x355.jpg" width=" 450" height=" 232" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319202054_7877_1807987_3.jpg!w690x355.jpg" style=" border: 0px display: inline width: 450px height: 232px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 正面中间的按钮是开机按钮,兼读取存储数据、清零: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132324360523_9545_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132324360523_9545_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 耳筒对准耳道后,按下背面的扫描按钮,进行检测: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319207384_3147_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319207384_3147_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 体温正常,显示屏背景光为绿色。当体温接近发烧时(低烧),显示屏背景光为黄色: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319209733_4917_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319209733_4917_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 体温发烧,显示屏背景光为红色,蜂鸣器发出滴滴滴警告声讯。这种颜色光提醒设计比较实用: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319212684_9156_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319212684_9156_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 停止使用30秒钟后,自动关机,节约电池电量: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132328229853_1828_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132328229853_1828_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 三、拆机及电路元件 /strong /span /p p style=" text-indent: 2em " 取下电池盖,使用两节7号电池,比较耐用: /p p style=" text-align: center text-indent: 0em " img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319184123_6857_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132319184123_6857_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 取下电池,看见电池仓中的电路板上12个触点,是耳温枪厂家调校用的: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333587730_739_1807987_3.jpg!w690x385.jpg" width=" 450" height=" 251" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333587730_739_1807987_3.jpg!w690x385.jpg" style=" border: 0px display: inline width: 450px height: 251px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 卸掉电池仓中一颗固定螺丝,外壳是卡扣设计,比较容易分离开: /p p style=" text-align: center text-indent: 0em " img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333590920_3574_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333590920_3574_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 下面是检测按钮,导电橡胶触点: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333594568_1650_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333594568_1650_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 电路结构,由于采用了专用MCU,使得仪器电路显得格外简单: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333598688_5573_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333598688_5573_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 这是检测头,内部热电堆传感器的电信号,用红白绿黑四根导线引出,焊接在电路板上: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334004331_3502_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334004331_3502_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 电路板左边的空位较多,说明这个是简化版,阉割了一些功能: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334011292_6996_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334011292_6996_1807987_3.jpg!w690x517.jpg" style=" border: 0px font-family: " microsoft=" " font-size:=" " white-space:=" " background-color:=" " display:=" " width:=" " height:=" " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " U2是存储器,采用低电压E2PROM--T24C02A(2K),用于存储10组体温检测数据: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132338426058_5787_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132338426058_5787_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 卸下电路板上的四颗固定螺丝,取下电路板: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334014728_7530_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132334014728_7530_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 电路板背面,没有啥元件: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333582258_3625_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132333582258_3625_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 仔细观察,电路板上的那些圆触点不是“装饰”,通向电路,是厂家生产时调校用: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342421018_5551_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342421018_5551_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 电路板上的L1、L2分别是绿、红LED,起到发出三色(绿、黄、红)背景灯作用: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342424958_9108_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342424958_9108_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 液晶显示板采用导电橡胶条连接;右边粉红色是开机按钮: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342427718_8047_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342427718_8047_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 先将检测头反时针旋转,然后向外拉出: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342432494_6549_1807987_3.jpg!w690x269.jpg" width=" 450" height=" 175" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342432494_6549_1807987_3.jpg!w690x269.jpg" style=" border: 0px display: inline width: 450px height: 175px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 卸下检测头上的两颗固定螺丝,取出传感器组件(传感器装在金属管内): /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342433588_1882_1807987_3.jpg!w690x279.jpg" width=" 450" height=" 182" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342433588_1882_1807987_3.jpg!w690x279.jpg" style=" border: 0px display: inline width: 450px height: 182px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 将热电堆传感器从金属管中取出,传感器外壳上有密封胶,取出时要特别小心: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342435938_8876_1807987_3.jpg!w690x312.jpg" width=" 450" height=" 203" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342435938_8876_1807987_3.jpg!w690x312.jpg" style=" border: 0px display: inline width: 450px height: 203px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 传感器上没有标识(或被抹去),不知道型号: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342438788_7998_1807987_3.jpg!w690x514.jpg" width=" 450" height=" 335" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342438788_7998_1807987_3.jpg!w690x514.jpg" style=" border: 0px display: inline width: 450px height: 335px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 安装传感器的金属管没有磁性,是铜质镀克罗米,它的作用是增大检测探头传感器的热容量,使检测数据稳定可靠: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342441568_8890_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342441568_8890_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " 仪器“全家福”图片: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342446185_9267_1807987_3.jpg!w690x517.jpg" width=" 450" height=" 337" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342446185_9267_1807987_3.jpg!w690x517.jpg" style=" border: 0px display: inline width: 450px height: 337px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 四、电路原理分析 /strong /span /p p style=" text-indent: 2em " 根据拆机情况,绘出仪器电路结构示意框图如下: /p p style=" text-align:center" img class=" lazy" data-original=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342418113_1628_1807987_3.jpg!w690x451.jpg" width=" 450" height=" 294" border=" 0" src=" https://ng1.17img.cn/bbsfiles/images/2020/02/202002132342418113_1628_1807987_3.jpg!w690x451.jpg" style=" border: 0px display: inline width: 450px height: 294px " vspace=" 0" title=" " alt=" " / /p p style=" text-indent: 2em " strong 仪器工作原理: /strong /p p style=" text-indent: 2em " 热电堆传感器感受到耳膜上的热辐射后,产生微弱的电势信号。这个电信号送入专用MCU进行处理,其温度值由LCD显示出来。对应不同的温度值,显示绿(正常)、黄(低烧)、红(高烧)三种颜色的背光。检测到高烧时,蜂鸣器同时发出“滴滴滴”警告声讯。热电堆传感器中的热敏电阻,用于检测热电堆本身温度,供内置程序分析计算使用。 /p p style=" text-indent: 2em " 由于耳温枪要吸收热源,为了达到稳定的热平衡,热电堆传感器要安装在热容量大的金属热容管上,减少温度快速变化的干扰。 /p p style=" text-indent: 2em " 至于温度的原点,就必须要在厂内调校。调校的过程是,把耳温枪放入恒温槽,设定原点的温度,然后依据温升的程度,加以计算,得到正确的温度。所以,厂家在说明书中提示,一般保用期3年,过期应进行校核。 /p p style=" text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 五、正确使用耳温枪的注意事项 /strong /span /p p style=" text-indent: 2em " 耳温枪使用看似简单,但许多人不能正常使用。需要注意以下问题。 /p p style=" text-indent: 2em " strong 1、正常体温对于每个人来说都是独一无二的 /strong ,从34.7℃~38℃不等,取决于测量温度的部位和个体差异。世卫组织(WTO)提供的人体正常体温的参考数值是: /p p style=" text-indent: 2em " 耳内:35.8℃—38℃ /p p style=" text-indent: 2em " 腋窝:34.7℃—37.3℃ /p p style=" text-indent: 2em " 口腔:35.5℃—37.5℃ /p p style=" text-indent: 2em " 直肠:36.6℃—38℃ /p p style=" text-indent: 2em " 这个正常范围受到诸多因素的影响,比如体力劳动,昼夜变化,年龄增长。你可以为本人或家人在身体状况良好的情况下,在一天内多次测量体温来获得这一数据,以备需要时,作为判断发烧的参考数据。 /p p style=" text-indent: 2em " strong & nbsp 2、耳温枪使用的温度环境 /strong /p p style=" text-indent: 2em " 国家标准给出的耳温枪使用环境温度为16 ℃~35 ℃。当超过16 ℃~35 ℃使用范围,准确度没有得到有效验证,误差会较大。冬季一般应当在室内测量。 /p p style=" text-indent: 2em " & nbsp 耳温枪是不知道标准温度的,就像数字相机不知道颜色坐标,必须作白平衡一样。耳温枪开机之后,会先测量环境温度作为基准温度;然后测量耳温。正规厂家的使用说明书上会告诉消费者,到别的温差大的房间取用耳温枪,要等大约30分钟、直到温度平衡稳定后,才能开机使用。人从温差大的外部环境回来,应滞留5分钟左右,与房间温度平衡后再测量。手持部分,必须离检测头越远越好。耳温枪使用时远离任何热源,不要在风扇口、空调下测量。除了温度变动因素,长时间手持仪器,被测人有中耳炎、耳屎、插入耳朵位置不准,电池电量不足等,也会影响准确度。 /p p style=" text-indent: 2em " 3、由于耳温枪对于热辐射十分敏感的特点,要发挥耳温枪的正常测量功能,一定要仔细阅读使用说明书,正常操作。 /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-indent: 2em text-align: center " ------------------------------------------- br style=" margin: 0px padding: 0px " / /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-indent: 2em " span style=" font-family: arial, helvetica, sans-serif " strong style=" margin: 0px padding: 0px " 征稿活动: /strong “红外体温检测仪技术及相关应用”主题征稿活动进行中,一经入选,将在资讯栏目发布并支付一定稿酬,并择优邀请做线上专家报告 span style=" margin: 0px padding: 0px color: rgb(127, 127, 127) " (新冠病毒主题研讨会---红外体温检测仪检测技术与应用现状) /span 。让我们共同努力,携手抗“疫”! span style=" margin: 0px padding: 0px color: rgb(0, 176, 240) " (投稿或自荐邮箱:yanglz@instrument.com.cn) /span /span /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-indent: 2em " span style=" margin: 0px padding: 0px color: rgb(0, 0, 0) font-family: arial, helvetica, sans-serif " 更多红外体温检测仪技术与应用相关资讯点击关注以下专题: /span /p p style=" margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, & quot Arial Narrow& quot white-space: normal text-align: center " a href=" https://www.instrument.com.cn/zt/hwcwy" target=" _blank" style=" margin: 0px padding: 0px color: rgb(42, 123, 192) text-decoration-line: none background-color: rgb(255, 255, 255) !important " img src=" https://img1.17img.cn/17img/images/202002/uepic/6214fb81-41dd-4869-b8d4-8361d93b54d2.jpg" title=" 3.png" alt=" 3.png" width=" 600" height=" 171" border=" 0" vspace=" 0" style=" margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% width: 600px height: 171px " / /a /p
  • PEAK售后服务用户交流会(上海站)圆满举办
    Peak售后服务用户交流会(上海站)于11月29日在毕克中国上海总部顺利举行。本次交流会吸引了诸多用户积极参与,进一步拉近了Peak与用户的距离。客户签到毕克中国总经理Chris Harvey先生首先对各位的莅临表示感谢和欢迎,随后产品专员冯清清给与会者介绍了Peak各大产品系列、原理及各种应用,让大家对气体发生器的应用范围有深入的了解——除了常见的LC-MS和GC之外,ELSD、TOC、VOC、CAD、TGA/DSC、FT-IR等仪器都可以由Peak气体发生器供气。产品专员冯清清给与会者介绍Peak各大产品系列、工作原理及应用范围售后技术经理陆冠兰介绍设备使用时注意事项时刻准备着为客户展示的Peak气体发生器们工程师为客户展示Genius 1024氮气发生器内部结构Genius XE 35氮气发生器内部结构展示客户与Peak销售沟通产品客户的满意是Peak的首要目标,我们希望能通过这样的交流会向用户展示Peak优质的产品和服务,同时也能为用户日常使用中遇到的问题给予专业的解答。更多最新资讯,可关注“毕克气体”官方微信。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制