当前位置: 仪器信息网 > 行业主题 > >

超纯酸制备系统

仪器信息网超纯酸制备系统专题为您提供2024年最新超纯酸制备系统价格报价、厂家品牌的相关信息, 包括超纯酸制备系统参数、型号等,不管是国产,还是进口品牌的超纯酸制备系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超纯酸制备系统相关的耗材配件、试剂标物,还有超纯酸制备系统相关的最新资讯、资料,以及超纯酸制备系统相关的解决方案。

超纯酸制备系统相关的论坛

  • 超净高纯电子化学试剂———异丙醇制备方法 !

    超净高纯电子化学试剂———异丙醇制备方法 梁 凯 (黑龙江省化工研究院,黑龙江 哈尔滨 150078) 摘 要:本文介绍了用含量98%的工业级异丙醇经过金属离子络合剂处理、脱水处理、微滤膜过滤、多级精馏、钠滤膜过滤制备超净高纯电子化学试剂———异丙醇的制备方法。该方法制备的超净高纯异丙醇符合半导体技术的芯片及硅园片的清洗和刻蚀的要求。 关键词:超净高纯异丙醇;金属离子络合剂;多级精馏;纳滤膜过滤 中图分类号:TQ224.23 文献标识码:A 文章编号:1002-1124(2011)07-0063-02 随着半导体技术的迅速发展,对超净高纯试剂的要求越来越高。在集成电路(IC)的加工过程中,超净高纯试剂主要用于芯片及硅园片表面的清洗和刻蚀,其纯度和清洁度对集成电路的成品率、电性能及可靠性有着十分重大的影响。超净高纯异丙醇作为一种重要的微电子化学品已经广泛用于半导体、大规模集成电路加工过程中的清洗、干燥等方面。随着 IC的加工尺寸已经进入亚微米、深亚微米时代,对与之配套的超净高纯异丙醇提出了更高的要求,要求颗粒和杂质含量降低 1~3 个数量级,达到国际半导体设备和材料组织制定的SEMI- C12标准,其中金属阳离子含量小于 0.1×10- 9,颗粒大小控制在 0.5μm以下。 目前,超净高纯异丙醇通常是以工业级异丙醇为原料纯化精致而成。精馏是工业化提纯异丙醇的主要方法,包括共沸精馏、萃取精馏等。但是用于微电子化学品工业的超净高纯异丙醇对其中金属杂质,颗粒大小含量和阴离子的要求十分苛刻,精馏工艺已经无法满足要求。 现有文献公布的超净高纯异丙醇的制备方法,以工业异丙醇为原料,以碳酸盐调节 pH 值,加入脱水剂,进行回流反应,经精馏、蒸馏、膜过滤,得到符合国际半导体设备和材料组织制定的SEMI- C12标准的超纯异丙醇。这一公开报道的制备方法无法稳定控制产品质量,特别是产品中金属离子含量以及颗粒杂质大小。

  • 免费培训报名《使用定量加样系统减少样品制备过程中的错误和超差》

    免费培训报名《使用定量加样系统减少样品制备过程中的错误和超差》

    会议名称:使用定量加样系统减少样品制备过程中的错误和超差(OoS) http://ng1.17img.cn/bbsfiles/images/2014/10/201410131411_518073_271_3.jpg会议时间:2014-10-1414:30 (教室于 2014/10/1414:00:00开放)会议时长: 2小时 会议主讲人:季忱 梅特勒-托利多公司天平部产品主管,具有7年的天平产品管理、市场推广经验,并参与起草《JJG658-2010烘干法水分测定仪检定规程》。现主要负责Quantos自动化定量加样系统及其它称量解决方案的市场开发和应用支持。 会议内容简介: HPLC/GC等实验分析过程中,超过50%的实验误差源自标准品/样品溶液的制备,且该过程耗时又费力。梅特勒-托利多将给您的实验室带来一场革命:Quantos自动化粉末/液体定量加样系统,实现流程中的关键步骤的自动化,例如称量、加入溶剂、稀释,将始终为您提供正确的结果,减少超差(OoS)结果。 环境配置:只要您有电脑、外加一个耳麦就能参加。(需要进行音频交流的用户需准备麦克) 报名截止时间:2014年10月14日 14:00 免费报名地址:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/941

  • 网络讲堂:10月14日使用定量加样系统减少样品制备过程中的错误和超差

    网络讲堂:10月14日使用定量加样系统减少样品制备过程中的错误和超差

    http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647375_2507958_3.gif使用定量加样系统减少样品制备过程中的错误和超差(OoS)时间:2014年10月14日 14:30讲师:董文忠先生,梅特勒-托利多公司天平部产品主管,具有7年的天平产品管理、市场推广经验,并参与起草《JJG658-2010 烘干法水分测定仪检定规程》。现主要负责Quantos自动化定量加样系统及其它称量解决方案的市场开发和应用支持。讲座内容: HPLC/GC等实验分析过程中,超过50%的实验误差源自标准品/样品溶液的制备,且该过程耗时又费力。梅特勒-托利多将给您的实验室带来一场革命:Quantos自动化粉末/液体定量加样系统,实现流程中的关键步骤的自动化,例如称量、加入溶剂、稀释,将始终为您提供正确的结果,减少超差(OoS)结果。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年10月14日 14:004、报名参会:http://ng1.17img.cn/bbsfiles/images/2014/08/201408011630_508801_2507958_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647375_2507958_3.gif

  • 超纯水制备系统的维护

    制备[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]所需的超纯水系统的维护:1、6个月更换一次PP纤维滤芯;2、3-6个月更换一次活性炭滤芯;3、制水20~30吨更换一次RO膜,每5天人工冲洗一次;4、制水3~5吨后水质下降或不能满足实验要求需更换纯化柱;5、放假超过7天,需拔掉插头,切断电源。

  • 【转贴】超净高纯试剂的现状、应用、制备及配套技术

    超净高纯试剂的现状、应用、制备及配套技术1 微电子技术的发展微电子技术主要是指用于半导体器件和集成电路(IC)微细加工制作的一系列蚀刻和处理技术,其中集成电路,特别是大规模及超大规模集成电路的微细加工技术又是微电子技术的核心,是电子信息产业最关键、最为重要的基础。微电子技术发展的主要途径之一是通过不断缩小器件的特征尺寸,增加芯片的面积,以提高集成度和速度。自20世纪70年代后期至今,集成电路芯片的发展基本上遵循GordonEM预言的摩尔定律,即每隔1.5年集成度增加1倍,芯片的特征尺寸每3年缩小2倍,芯片面积增加约1.5倍,芯片中晶体管数增加约4倍,也就是说大体上每3年就有一代新的IC产品问世。在国际上,1958年美国首先研制成功集成电路开始,尤其是20世纪70年代以来,集成电路微细加工技术进入快速发展的时期,这期间相继推出了4、16、256K 1、4、16、256M 1、1.3、1.4G的动态存贮器。进入20世纪90年代后期,IC的发展更迅速,竞争更激烈。美国的Intel公司、AMD公司和日本的NEC公司这3个IC生产厂家的竞争尤为激烈,1999年Intel公司、AMD公司均实现了0.25Lm技术的生产化,紧接着Intel公司在1999年底又实现了0.18Lm技术的生产化,AMD公司也在紧追不舍。到2001年上半年,Intel公司实现了0.13Lm技术的生产化,而到2001年的2季度末,日本的NEC公司宣布突破了0.1Lm工艺技术的难关,率先成功研发出0.095Lm的半导体工艺技术,现已开始接受全球各地厂商的订货,并将于2001年的11月开始批量生产。因此,专家们认为世界半导体工艺技术的发展将会加速,半导体制造厂商将会以更先进的技术加快升级换代以适应新的市场要求。我国集成电路的研制开发始于1965年,与日本同时起步,比韩国早10年。现在我国已经有了从双极(5Lm)到CMOS、从2~3Lm到0.8~1.2Lm及0.35~0.5Lm工艺技术,并形成了规模生产,0.25Lm工艺技术生产线目前正在北京和上海同时建设,预计到2002年即可投产。“十五”期间及到2010年北京建设的北方微电子基地将建成20条0.35、0.25和0.18Lm工艺技术生产线,上海在浦东将建成大约40条0.35、0.25及0.18Lm工艺技术生产线,深圳也将建设多条超超大规模集成电路生产线。随着芯片制造技术向亚微米发展,出现了产品“多代同堂”的局面,以满足不同用途的需要。可说在生产技术方面我国几乎已经与国际先进水平同步,但在研发方面,我国与国际先进水平还有较大的差距。2 超净高纯试剂的现状超净高纯试剂(国际上称为ProcessChemi-cals)是超大规模集成电路制作过程中的关键性基础化工材料之一,主要用于芯片的清洗和腐蚀,它的纯度和洁净度对集成电路的成品率、电性能及可靠性都有着十分重要的影响。超净高纯试剂具有品种多、用量大、技术要求高、贮存有效期短和强腐蚀性等特点。随着IC存储容量的逐渐增大,存储器电池的蓄电量需要尽可能的增大,因此氧化膜变得更薄,而超净高纯试剂中的碱金属杂质(Na、Ca等)会溶进氧化膜中,从而导致耐绝缘电压下降 若重金属杂质(Cu、Fe、Cr、Ag等)附着在硅晶片的表面上,会使P-N结耐电压降低。杂质分子或离子的附着又是造成腐蚀或漏电等化学故障的主要原因。因此,随着微电子技术的飞速发展,对超净高纯试剂的要求也越来越高,不同级别超净高纯剂中的金属杂质和颗粒的含量要求各不相同,而配套于不同线宽的IC工艺技术。超净高纯试与IC发展的关系见表1。[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608011544_22431_1634962_3.gif[/img]国外20世纪60年代便开始生产电子工业用试剂,并为微细加工技术的发展而不断开发新的产品。到目前为止,在国际上以德国E.Merck公司的产量及所占市场份额为最大,其次为美国Ashland、Olin公司及日本的关东株式会社,另外还有美国的MallinckradtBaker公司、英国的B.D.H.公司、前全苏化学试剂和高纯物质研究所、三菱瓦斯化学、伊期曼化学公司、AlliedSig-nal公司、Chemtech公司、PVS化学品公司、日本化学工业公司及德山公司等。近年来,新加坡、台湾地区也相继建立了5000~10000t级的超净高纯试剂生产基地。由于世界超净高纯试剂市场的不断扩大,从事超净高纯试剂研究与生产的厂家及机构也在增多,生产规模不断扩大,但各生产厂家所生产的超净高纯试剂的标准各不相同。为了能够规范世界超净高纯试剂的标准,国际半导体设备与材料组织(SEMI)于1975年成立了SEMI化学试剂标准委员会,专门制定超净高纯试剂的国际标准。目前国际SEMI标准化组织将超净高纯试剂按应用范围分为4个等级:(1)SEMI-C1标准(适用于1.2Lm IC工艺技术的制作) (2)SEMI-C7标准(适用0.8~1.2Lm IC工艺技术的制作) (3)SEMI-C8标准(适用于0.2~0.6Lm IC工艺技术的制作) (4)SEMI-C12标准(适用于0.09~0.2Lm IC工艺技术的制作)。我国超净高纯试剂的研制起步于20世纪70年代中期,1980年由北京化学试剂研究所(以下简称试剂所)在国内率先研制成功适合中小规模集成电路5Lm技术用的22种MOS级试剂。随着集成电路集成度的不断提高,对超净高纯试剂中的可溶性杂质和固体颗粒的控制越来越严,同时对生产环境、包装方式及包装材质等提出了更高的要求。为了满足我国集成电路发展的需求,国家自“六五”开始至“八五”,将超净高纯试剂的研究开发列入了重点科技攻关计划,并由试剂所承担攻关任务。到目前为止,试剂所已相继推出了BV-Ⅰ级、BV-Ⅱ级和BV-Ⅲ级超净高纯试剂,其中BV-Ⅲ级超净高纯试剂达到国际SEMI-C7标准的水平,适用于0.8~1.2Lm工艺技术(1~4M)的加工制作,并在“九五”末期形成了500t年的中试规模。目前试剂所正在进行用于0.2~0.6Lm工艺技术的BV-Ⅳ级超净高纯试剂的研究开发。

  • 【原创大赛】纯水制备-----离子交换法

    一、离子交换法制水离子交换系统是通过阴、阳离子交换树脂对水中的各种阴、阳离子进行置换的一种传统水处理工艺,阴、阳离子交换树脂按不同比例进行搭配可组成离子交换阳床系统、阴床系统及混床系统。混床系统通常是用在电渗析器或反渗透等水处理工艺之后用来制取超纯水、高纯水的终端工艺。采用离子交换方法,可以把水中呈离子态的阳、阴离子去除,以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应可以用下列方程式表达:  阳离子交换:R—H+Na+ R—Na+H+  阴离子交换:R—OH+Cl- R—Cl+OH-  阳、阴离子交换总的反应式即可写成:   RH+ROH+NaCl RNa+RCl+H2O由此可看出,水中的NaCl分别被树脂上的H+和OH-取代,反应生成物只有H2O,达到了去除水中盐的作用。通过阴、阳离子和混床树脂柱制备纯水,可以达到实验室一、二级水的要求。离子交换法制取纯水,具有制水速度快、制水量大且制备出纯水的电导值高等优点,因此在实验室被广泛应用。二、离子交换树脂的再生树脂在柱内的高度为交换柱的有效高度的2/3,在此高度的树脂层内,其中1/3阳树脂在柱子的下部,2/3阴树脂在上部。阴阳树脂的比例刚好为2/1(体积比)。1、逆洗分层:水从底部进入,上口排出,树脂均匀地松驰膨胀开来,可加大水流速以冲不出树脂为原则,洗至出水清亮为度。反洗的目的为使阴阳树脂分层,阳树脂比重为1.23-1.28,而阴树脂比重为1.06-1.11,两种树脂比重差别较大,所以通过逆洗就很容易分层,通过逆洗也可排出一些杂质异物,保证下一周期的正常运行。逆洗毕,放水,放至树脂层表面10厘米以上。2、强碱性阴离子交换树脂再生:再生剂为4-5%NaOH,用量为树脂体积的3-5倍,从上口进入,控制一定流速,维持液面顺流通过、通碱时间不少于1小时。3、淋洗阴树脂:当碱液通完后,进行淋洗附在阴树脂上的碱液时,淋洗先用纯水正洗,自上而下,顺流通过,慢速淋洗,大约10分钟左右改为反洗,可以用自来水进行反洗,水通过阳树脂洗阴树脂,出水pH大约为10左右。为控制淋洗水碱度,可控制在20毫克当量/升以下即可。如用纯水淋洗,可洗至pH=7-8,反洗时间约为20分钟左右。淋洗完排水可排到阴阳树脂交界处以下1-2厘米,准备阳树脂再生。4、强酸性阳离子交换树脂再生:再生剂为4-5%盐酸,用酸量为阳树脂的2-3倍。酸液从酸再生管加入,从下口排出。此法应严格控制液面,始终在阴阳树脂交界处,切不可上溢到阴树脂层,否则会使刚再生为OH型的阴树脂变为Cl型而失效。维持一定流速,在半小时内流完。5、淋洗阳树脂:仍从进酸管进水,控制液面在阴阳树脂交界处,淋洗水量为阳树脂体积的4-6倍慢速冼至pH=2-3。如测定酸度可控制在5毫克/升以下。如用纯水淋洗可洗至pH=6-7。6、反洗:淋洗阳树脂后可进行一次反洗,水从下口进入上口排出,洗水pH大约为9左右,即反洗5-10分钟。反洗毕,排水,保持液面在树脂层表面以上15厘米左右,准备下一步混合。7、混合:混合的目的是使两种树脂充分混合均匀。混合的办法有两种:压缩空气或真空泵。 混合后应立即排水,因为混合后两种树脂悬浮于水中,若任其自由落层,阳树脂重阴树脂轻,必然会出现再次分层的现象,所以采取立即排水的方法,借助排水向下的动力,迫使树脂来不及分层而落层。水放至树脂层表面即可停止。三、新树脂预处理方法:1、工业性生产的树脂出厂时难免有一些杂质,使用前用清水冲洗,洗至水质清亮为止。2、用4%的HCl和NaOH交替处理,在酸碱之间用大量水淋洗,如此反复三次。即:酸-水,碱-水,反复进行,每次酸碱用量为树脂体积的2倍,在交换柱中动态进行。3、最后一次处理,阳树脂应用酸转成H型,所用酸量加倍,水洗用纯水;阴树脂应用碱转成OH型,所用碱量加倍,水洗时用纯水。处理后的新树脂经过一个周期运行后的第一次再生,酸碱用量应为正常用量的1.5-2倍。

  • 【资料】常用试剂的性质与制备纯化(汇总)

    【分享】常用试剂的性质与制备纯化——冰醋酸【分享】常用试剂的性质与制备纯化——丙酮【分享】常用试剂的性质与制备纯化——氨基钠【分享】常用试剂的性质与制备纯化——吡啶【分享】常用试剂的性质与制备纯化——N,N-二甲基甲酰胺 (DMF)【分享】常用试剂的性质与制备纯化——氮气【分享】常用试剂的性质与制备纯化——钯催化剂【分享】常用试剂的性质与制备纯化——氨气【分享】常用试剂的性质与制备纯化——苯【分享】常用试剂的性质与制备纯化——二甲亚砜

  • 【分享】纯水超纯水的应用和制备

    【分享】纯水超纯水的应用和制备

    随着科学技术的进步,人们对自然界中各类事物的认识都朝着微观化,本质化的方向发展,很多实验、检测对试剂或培养环境中的杂质的要求都达到了ppb级,有的甚至达到ppt级;如在生命科学研究过程中,对水中的多种污染物十分敏感,尤其重金属和可溶性有机物;HPLC中要求的超纯水等等。鉴于此,多个专业研究组织建立了水的质量标准。这些组织和标准有:中华人民共和国国家标准GB6682-92《分析实验室用水规格和实验方法》,中华人民共和国国家标准GB/T11446.1-1997《电子级水规格和实验方法》,美国化学社团组织(ACS),美国测试和材料实验社团组织(ASTM),美国临床试验标准国际委员会(NCCLS),美国药学会(USP)。在此我们先对纯水和超纯水的主要应用做一个简单介绍:1、 反渗透纯水:① 实验室器皿的最后清洗 ② 缓冲液、化学试剂配制用水 ③ 微生物培养基制备用水 ④ 氢气发生器、室内加湿器、高压消毒锅用纯水 ⑤ 人或实验动物饮用水等;2、 超纯水:① 动、植物细细胞培养用水 ② 各种医疗用生化仪、分析仪、血液透析仪用水 ③ 分析试剂及药品配置稀释用水 ④ 生理、病理、毒理学实验用水 ⑤ 医院、医药制剂室及中心实验室用纯化水和高纯水 ⑥ [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]用水 ⑦ 试管婴儿用水 ⑧ 各种高效液相色谱、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]用水 ⑨ 其他各种实验室用水和医药用水。目前制备纯水和超纯水最稳定最方便的方法是通过纯水/超纯水系统。从世界上第一台超纯水系统问世到现在,超纯水系统的设计生产理念就一直围绕着“最佳水质,最稳水质”来不断完善。[img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905041846_148059_1615922_3.jpg[/img]

  • .实验室纯水的质量要求及制备 实验室纯水的质量要求

    实验室纯水的质量要求⑴外观与等级实验室纯水应为无色透明的液体,其中不得有肉眼可辨的颜色及纤絮杂质。通常将实验室纯水分三个等级。①一级水不含有溶解杂质或胶态质有机物,用于制备标准水样或超痕量物质的分析。可通过将二级水经过再蒸馏、离子交换混合床、0.2μm滤膜过滤等方法处理,或用石英蒸馏装置作进一步蒸馏进行制备。②二级水常含有微量的无机、有机或胶态杂质,用于精确分析和研究工作。可通过经蒸馏、电渗析或离子交换法制备的纯水进行再蒸馏的方法制备。③三级水适用于一般实验工作。可用蒸馏、电渗析或离子交换等方法制备。⑵质量指标应对实验室纯水中的无机离子、还原性物质、尘埃粒子的含量进行控制,使之满足水质分析的要求。实验室用水的具体质量指标详见表1:⑶影响实验室纯水质量的因素影响实验室纯水质量的主要因素包括空气、容器以及制备过程中使用的管路。制备好的实验室纯水经放置后,其电导率会迅速下降。如用钼酸铵法测定磷以及用纳氏试剂法测氨时,只要是新制取的蒸馏水或离子交换水均适用,但如果经过一段时间的放置,其空白值便显著增高,原因主要是来自空气和容器的污染。玻璃容器盛装纯水可溶出某些金属及硅酸盐,有机物较少;聚乙烯容器所渗出的无机物较少,但有机物比玻璃容器略高。在纯水制备时所用的纯水导出管,瓶内部分可用玻璃管,瓶外部分应使用聚乙烯管,管路最下端可接一段乳胶管,以便于配用弹簧夹。实验室纯水制备及管理纯水应在独立的实验室制备,制备实验室纯水的原料水应当是饮用水或比较干净的水,如有污染或空白达不到要求,必须进行纯化处理。同时,配备专用的纯水电导率测定仪,做好制备、检测及领用记录。

  • 脂肪皂化用氢氧化钠甲醇溶液的制备

    脂肪皂化用氢氧化钠甲醇溶液的制备

    氢氧化钠在甲醇中并不好溶解,包括超声溶解,总有少量不溶物,可能是碳酸钠,回流溶解没有试过,只有一个标准要求加入无水硫酸钠除水,使用前有要求过滤的,也有不要求过滤的。氢氧化钠与甲醇的反应速率如何,是否要求配制好放置几天使之充分反应后再使用,加入无水硫酸钠除水是否有促进正反应的进行。综上,你是怎么制备的?GBT 17376-2008 动植物油脂 脂肪酸甲酯制备http://ng1.17img.cn/bbsfiles/images/2016/06/201606111033_596471_1638724_3.jpgGBT 22110-2008 食品中反式脂肪酸的测定 气相色谱法http://ng1.17img.cn/bbsfiles/images/2016/06/201606111035_596472_1638724_3.jpgSNT 1945-2007 食品中反式脂肪酸含量的测定方法http://ng1.17img.cn/bbsfiles/images/2016/06/201606111038_596473_1638724_3.jpgGBT 21514-2008 饲料中脂肪酸含量的测定http://ng1.17img.cn/bbsfiles/images/2016/06/201606111038_596474_1638724_3.jpg

  • 【实验】无机实验之硫酸铜的制备

    【实验】无机实验之硫酸铜的制备

    硫酸铜的制备目的原理实验目的1.练习和掌握加热、蒸发浓缩,常压过滤及减压过滤,重结晶等基本操作;2.了解由金属与酸作用制备盐的方法。实验原理纯铜不活泼,不能溶于非氧化性的酸中。但其氧化物在稀酸中却极易溶解。因此在工业上制备胆矾时,先把铜烧成氧化铜,然后与适当浓度的硫酸作用生成硫酸铜。本实验采用浓硝酸作氧化剂,以铜片与硫酸、浓硝酸作用来制备硫酸铜。溶液中生成硫酸铜外,还含有一定量的硝酸铜和其他一些可溶性或不溶性的杂质。不溶性杂质可过滤除去。利用硫酸铜和硝酸铜在水中溶解度的不同可将硫酸铜分离、提纯。[img]http://ng1.17img.cn/bbsfiles/images/2007/03/200703201311_45630_1632583_3.jpg[/img]由上表中数据可见,硝酸铜在水中的溶解度不论在高温或低温下都比硫酸铜大得多。因此,当热溶液冷却到一定温度时,硫酸铜首先达到过饱和而开始从溶液中结晶析出,随着温度的继续下降,硫酸铜不断从溶液中析出,硝酸铜则大部分仍留在溶液中,只有小部分随着硫酸铜析出。这小部分硝酸铜的其他一些可溶性杂质,可再经重结晶的方法而被除去,最后达到制得纯硫酸铜的目的。过程步骤一、铜片的净化称取4.5g剪细的铜片,放在蒸发皿中,加入10ml moldm-33,在小火上微热,以洗去铜片上的污物(注意不要加热太久,以免使铜过多地溶解在稀HNO3中,影响产率)。用倾析法除去酸液,并用水洗净铜片。如果用废铜屑为原料,应先放在蒸发皿中,以强火灼烧,至表面生成黑色CuO为止,自然冷却,再作粗CuSO45H2O的制备。二、五水硫酸铜的制备在通风柜中,往盛有铜片的蒸发皿中加入15ml 3moldm-3H2SO4,然后慢慢分批加入7ml浓硝酸组成的混酸(此过程应根据反应情况的不同而决定补加混酸的量)。待反应完全后(铜片近于全部溶解),趁热用倾析法将溶液转至一个小烧杯中,留下不溶性杂质,然后再将硫酸铜溶液转回到洗净的蒸发皿中,在水浴上缓慢加热,浓缩至表面有晶体膜出现为止。取下蒸发皿,使溶液逐渐冷却,析出蓝色的CuSO45H2O晶体。抽滤、称重。计算产率(以湿品计算,应不少于85%)。产品重量 g理论产量 g产率 %三、重结晶法提纯五水硫酸铜将上面制得粗CuSO45H2O晶体在台称上称出1g留作分析用,其余放在小烧杯中,按重量比CuSO45H2O∶H2O = 1∶3的比例加入纯水,加热搅拌,促使溶解。滴加2ml3%H2O2,将溶液加热,同时逐滴加入2moldm-3氨水(或0.5moldm-3NaOH)直到溶液pH = 4,再多滴1-2滴,加热片刻,静置使水解产物的Fe(OH)3沉降。用倾析法在普通漏斗上过滤,滤液流入洁净的蒸发皿中。在提纯后的滤液中,滴加1moldm-3H2SO4酸化,调节pH至1-2,然后在石棉网上加热、蒸发、浓缩至液面出现一层结晶膜时,即停止加热。以冷水冷却,结晶抽滤,取出结晶,放在两层滤纸中间挤压,以吸干水份,称量。计算产率。产品重量 g理论产量 g产品产率 %四、产品纯度检验

  • 有关实验室里高纯酸的制备系统

    最近看了不少对我来说实验室里能用到的新设备,其中就有一台自动酸纯化的设备,不知道有用过的童鞋没有,希望能介绍一下使用的效果如何?与直接花钱买高纯酸相比,哪样更合算些?

  • 求推荐制备型液相色谱系统

    最近公司打算接一个甘草深加工开发项目, 打算从甘草中分离纯化制备甘草酸, 甘草多糖还有甘草酮类物质。 前期工作已经开始进行, 现在需要采购一台制备型[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url], 用来分离和纯化甘草黄酮中的异甘草素, 预算还可以, 求推荐型号。 谢谢大家了

  • 【分享】常用试剂的性质与制备纯化——吡啶

    沸点115.5℃,密度d=1.5095,折光率n 20D =0.9819。分析纯吡啶含有少量水,如要制备无水吡啶,可将吡啶和粒状氢氧化钾一起回流,然后隔绝潮气蒸出备用。干燥的吡啶吸水性很强,保存时应将容器口用石蜡封好。

  • 关于制备脂肪酸甲酯

    小弟看了很多的关于制备脂肪酸甲酯的文章,现在有个疑惑希望高手能帮我解决,我看到国标里面的是先将油脂进行皂化再用三氟化硼进行甲酯化。本人想请问肥皂再三氟化硼甲醇溶液下的甲酯化速度快吗 ??? 另外,为什么不能先用三氟化硼甲醇溶液进行酯化再用碱性甲醇溶液进行酯交换呢?(据本人所知现在很热的生物柴油就是这么做的,只不过他们用的是浓硫酸做催化剂啊!!!) 希望大家能帮忙解决下!!!

  • 【资料】常用试剂的性质与制备纯化

    有机化学实验经常用到大量的试剂,包括无机试剂和有机试剂,市售的试剂有分析纯(A.R)、化学纯(C.P)、工业级(T.P)等级别,其中分析纯的纯度较高,工业级则带有较多的杂质。在某些有机反应中,对试剂或溶剂的要求较高,即使微量的杂质或水分的存在,也会对反应的速率、产率和产品纯度带来一定的影响,因此掌握一些必要的试剂的纯化方法是十分必要的。在实际工作中还会经常遇到无法买到某种试剂或买不到高纯度试剂的情况,影响实验工作正常进行,因此,了解一些常用试剂的制备方法也是十分必要的。在这部分中给出了常用有机和无机试剂的制备与纯化方法,希望能给实验工作带来一些方便。1.氨气 商品的氨气一般用钢瓶盛装,使用时通过减压装置可以得到气态的氨。气体的流速可由计泡计来控制,其中计泡计中含有少量浓氢氧化钾溶液(12 g 氢氧化钾溶于12 mL水)。在计泡计和反应器之间应加一安全瓶。通过装有疏松的碱石灰或块状氧化钙的干燥塔干燥。 如果需要少量的氨可以用如下方法制备:在上端装有回流冷凝管的圆底烧瓶中加入浓氨水,缓慢加热,气体通过装有疏松的碱石灰或块状氧化钙的干燥塔干燥,然后通过安全瓶引入反应瓶。2.氨基钠 市售颗粒状氨基钠纯度为80~90%,氨基钠不容易研碎,通常在装有烃类惰性溶剂(如甲苯、二甲苯等)的研钵中研磨。氨基钠在常温下暴露在空气中2~3天会产生危险的混合物。为了安全,打开的氨基钠应该立即使用,容器敞口放置不应超过12小时。当氨基钠形成氧化物时(颜色变为黄色或棕色)爆炸性很强,不能再使用。将少量没有用完的氨基钠加入甲苯使其完全覆盖,搅拌下缓慢加入用甲苯稀释过的乙醇,可将其分解掉。 实验室由钠和液氨在三价铁离子催化下制备氨基钠:向500 mL的三颈瓶中加入300 mL无水液氨。三颈瓶上装有玻璃塞、密封的搅拌棒和装有碱石灰干燥管的回流冷凝管。搅拌下,向溶液中加入0.5 g钠,溶液显蓝色。然后加入0.5 g硝酸铁粉末催化剂, 30分钟内加入13.3 g切成小块的钠。当钠转化成氨基钠后,溶液由蓝色变为灰色悬浮液,从滴液漏斗中加入足量的无水乙醚,使液体体积保持在300 mL左右。升温蒸出氨,当氨几乎全部蒸完后搅拌氨基钠悬浮液,加热回流5 min,然后冷却到室温,得到23.4 g氨基钠的醚悬浮液,转化几乎是定量的。3.钯催化剂 钯催化剂是非常有效的加氢催化剂,价格比较贵。实验室可由氯化钯制备钯催化剂。(1)Pd-C(5%Pd)的制备:将1.7 g氯化钯和1.7 mL浓盐酸加入到20 mL水中,水浴加热2小时溶解完全,然后将它加入到用200 mL水溶解了30g乙酸钠的溶液中,盛放在500 mL的烧瓶中。加20 g酸洗过的活性炭,在氢气气氛中氢化直到反应结束。过滤收集催化剂,用5份100 mL的水洗涤,吸滤抽干。在室温下用氢氧化钾干燥或在真空干燥器中用无水氯化钙干燥。将催化剂碾成粉末,贮存在塞紧塞子的试剂瓶中。 (2)Pd-C(30%Pd)的制备:将8.25 g氯化钯和5 mL浓盐酸加入到50 mL水中。冰浴冷却下,加入50 mL 40%的乙醛溶液,再加入11 g酸洗过的活性炭。机械搅拌下加入50 g氢氧化钾溶于50 mL水的溶液,保持温度低于50℃。加完后将温度升到60℃,保持15 min,用水彻底清洗催化剂后,再将水倒出;用乙酸洗涤,吸滤,再用水洗至无Cl-和OH-离子。在100℃干燥,储存在干燥器中。 (3)钯黑的制备:5 g氯化钯溶于30 mL浓盐酸后用80 mL水稀释,冰盐浴冷却下加入35 mL 40%的乙醛溶液。将35 g 氢氧化钾溶于35 mL水中,强力搅拌下,在30 min内将其加入混合物中。加热到60℃,保持30 min后将水倾出并用水洗涤沉淀6次,过滤到坩埚上,用1 L水洗涤,吸干,转入干燥器中干燥,产量为3.1 g。 (4)Pd-BaSO4(5%Pd)的制备:在2 L烧杯中加入63.1 g氢氧化钡溶于600 mL水的热溶液(t=80℃),在快速搅拌下一次加入60 mL 3 mol·L-1硫酸。再加入3 mol·L-1硫酸使悬浮物对石蕊显酸性。将4.1 g氯化钯溶于10 mL浓盐酸后用20 mL水稀释,在机械搅拌下加入硫酸钡溶液,然后再加入4 mL 40%的乙醛溶液。用30%的氢氧化钠溶液调至弱碱性,继续搅拌5 min,静置。倾出上层清夜,用水洗,再静置,重复8~10次。过滤,用5份25 mL的水洗涤,尽量吸干,80℃干燥,研细催化剂,密封在瓶子里备用。[/siz

  • 制备型高效液相色谱系统的应用领域

    制备型高效液相色谱系统的应用领域制备型高效液相色谱系统主要应用在植化、合成、制药、生物及生化等领域的产品的提取及纯化工作中。在不同的工作领域中,组份的提取和纯化量的差异是很大的。在生物技术领域中,酶的分离是微克级;在植化和合成化学领域中,为了鉴别未知成份并进行结构测定,需要得到一至若干毫克的纯品;在药品和医药学测试中,需要克级的标准品和对照品;在当今的工业级提纯中,制药成份往往需要千克级的提取。制备型高效液相的应用领域可以归纳在下表中。 成份量:所在领域 微克: 生物技术领域的酶的分离、生物学和生化学测试 毫克: 结构描述和特征鉴定,包括:生产中的副产品、生物矩阵的新陈代谢产物、天然产物 克级: 对照品(分析标准)毒物学分析所需组份:高纯品中的主要成份、副产品的分离提取 千克级:工业规模生产,活性成份,药物 制备方法的发展和扩大规模的计算  在分析液相中色谱柱的典型进样量是微克级,甚至更低。样品量和固定相之比有的甚至小于1:100000。进样体积一般来说都大大小于色谱柱体积(小于1:100)。 在这种条件下,会达到很好的分离效果,峰形尖锐并且很对称。而在制备液相中,最大的区别就是超量进样。其结果,超量进样的方法和分析方法的放大将在下章内介绍。 吸附变化线  分析液相的目的是给一种组份定性、定量。重要的色谱参数有溶解度、峰宽和峰的对称性。如果进样量越来越多,峰高和峰面积会增加,但峰的对称性和容量因子保持不变。如下图。   在分析液相中,最佳的峰形应是一条高斯曲线。峰的标准背离 бV 描述了其对称性和与高斯曲线的相似性。容量因子是与一种不保留物质的保留时间t0相关的保留时间。  如果将超过一定量的样品注射进色谱柱,吸附变化线就会成非线性。这意味着峰形会变的不再对称,表现为严重的拖尾和容量因子的缩小。如下图。在制备液相中,这种效果称作浓缩超量进样。在一些情况中,根据进样量的增加,容量因子也相应变大,并造成很强的前峰。既然吸附变化线取决于组份的多少,那么液相色谱柱的载样能力就必须根据不同的制备液相实验来决定。 色谱柱载样和超量载样  大样品量的纯化有两种可行的方法:分析系统的放大或色谱柱超量载样。分析系统的放大意味着使用直径更大的制备柱、更高的流速和根据色谱柱的长度增加进样量并保持样品浓度不变。峰形仍会保持尖锐而对称。这种方法需要大型的色谱柱和大量的溶剂来分离较少的样品,因此这种方法是不经济的。 因此色谱柱超量载样,暨在相同的分析条件下超量进样通常是一种很好的选择。使用色谱柱超量载样的方法,在分析柱上甚至可以进行毫克级的分离。但更大 量的样品分离就需要整个系统的放大。色谱柱超量载样可以通过两钟方法进行— 浓缩法和体积超载法。 在浓缩法中,样品的浓度会提高,但进样体积保持不变。容量因子k’降低,同时峰形从高斯曲线变为矩形。如下图。浓缩法超量载样只有在样品组份在流动相中具有良好的溶解性的条件下才有可能采用。   如果样品组份的溶解性很差,浓缩法超量载样不能使用。同时更多的样品体积注射到色谱柱中,这种技术称作体积法超量载样。超过一定的进样体积,峰高不变,但峰变宽并且呈矩形。在制备液相中浓缩法超量载样比体积法超量载样更受欢迎,因为可被分离的样品量更高。既然组份的溶解性通常是一个限制因素,所以两钟超量载样技术通常被结合起来使用。两种技术的概览浓缩法超量载样   体积法超量载样 取决于组份在流动相中的溶解性   取决于进样体积 吸附变化线的制备部分   吸附变化线的分析部分 生产效率决定于选择性   生产效率决定于制备柱直径 受固定相粒度大小的影响不大   需要小颗粒填料 方法的放大 浓缩法超量载样和体积法超量载样都会导致组份溶解性的降低。既然组份的分离需要一定的溶解性,那么在放大分析方法的时候,优化溶解性、特别是选择性就是一项很重要的工作。   因为选择性和超量载样潜力是相互依靠的,选择性的提高会提高一次运行中所分离的样品量,因此从分析方法到制备方法的放大和方法的优化需要三个步骤。 1. 优化分析方法的选择性。2. 在分析柱上进行超量载样。3. 放大到制备柱 制备型高效液相色谱的目的  判断制备型高效液相色谱使用的结果有三个重要参数:产品的纯度、产量和生产效率。三个参数之间是相对独立的,因此很难同时使用这三个参数来优化制备型高效液相色谱方法。见图形6。 色谱图1显示在制备型高效液相色谱的使用中有很高的生产效率,但是两种组份的分离效果却是很差的。这种方法很可能得到两种组份的高纯品,但是产量和收率却是很低的。  在色谱图2中峰有很好的分离,因此这种方法可以得到两种组份的高纯品和高产量,但是生产效率却很低。  色谱图3中的情况是三个参数综合后得到的最优化的结果。峰在基线上被完全分开,这使得产品纯度、产量和生产效率都达到最高。  在实际应用中,每个参数的重要性都是不同的。如为了进行活性或药物测试,某种组份必须被完全单独提取,那么组份的纯度是最重要的参数,产量和生产效率是其次的。如果某种合成中间体必须被纯化,并且需要有足够的量为下一步合成作准备,那么纯度就不是最重要的了。而生产效率在这种情况下就是个首先需要解决的问题,因为其直接关系到完成整个合成工作的进程和速度。同时产量也是很重要的,因为高价值组份的损失需要控制在最少的范围内。

  • 【求助】有没有专门用于氨基酸制备的柱子或填料

    [size=3]我最近在一种植物里发现一种非蛋白质氨基酸,想把它分离制备出来,然后再做出它的结构。但现在用普通的732阳离子交换树脂只能初步纯化,纯度不高,并且里面的盐含量也比较大。想问问各位大侠,有没有专门用于氨基酸类物质分离制备的柱子或填料,谢谢了![img]http://simg.instrument.com.cn/bbs/images/brow/em09511.gif[/img][/size]

  • 高纯水制备装置

    各位,有知道高纯水制备装置的请与我联系,我们打算买一个,价格合理,而且出水量大的,每天大约制备20kg水吧。

  • 制备纯化技术服务

    目前,新药研发市场竞争如火如荼,大小药物研发公司都在奋力一搏,但是真正能成功的如凤毛麟角。本公司提供制备色谱分离纯化包括SFC手性、非手性服务,反相制备,杂质制备服务及技术咨询服务可以真正加快你得到你的目标化合物的速度。

  • 纯水和超纯水在科研中的应用和制备方法

    随着科学技术的进步,人们对自然界中各类事物的认识都朝着微观化,本质化的方向发展,很多实验、检测对试剂或培养环境中的杂质的要求都达到了ppb级,有的甚至达到ppt级;如在生命科学研究过程中,对水中的多种污染物十分敏感,尤其重金属和可溶性有机物;HPLC中要求的超纯水等等。鉴于此,多个专业研究组织建立了水的质量标准。这些组织和标准有:中华人民共和国国家标准GB6682-92《分析实验室用水规格和实验方法》,中华人民共和国国家标准GB/T11446.1-1997《电子级水规格和实验方法》,美国化学社团组织(ACS),美国测试和材料实验社团组织(ASTM),美国临床试验标准国际委员会(NCCLS),美国药学会(USP)。在此我们先对纯水和超纯水的主要应用做一个简单介绍: 1、反渗透纯水:①实验室器皿的最后清洗②缓冲液、化学试剂配制用水③微生物培养基制备用水④氢气发生器、室内加湿器、高压消毒锅用纯水⑤人或实验动物饮用水等; 2、超纯水:①动、植物细细胞培养用水②各种医疗用生化仪、分析仪、血液透析仪用水③分析试剂及药品配置稀释用水④生理、病理、毒理学实验用水⑤医院、医药制剂室及中心实验室用纯化水和高纯水⑥原子吸收光谱用水⑦试管婴儿用水⑧各种高效液相色谱、离子色谱用水⑨其他各种实验室用水和医药用水。 目前制备纯水和超纯水最稳定最方便的方法是通过纯水/超纯水系统。从世界上第一台超纯水系统问世到现在,超纯水系统的设计生产理念就一直围绕着“最佳水质,最稳水质”来不断完善。 一、最佳水质 1.天然水中常见杂质 包括可溶性无机物、有机物、颗粒物、微生物、可溶性气体等。纯水/超纯水系统就是要尽可能彻底地去处这些杂质。 2.净化水质的主要工艺 目前常用净化水质的工艺方法有蒸馏法、反渗透法、离子交换法、过滤法、吸附法、紫外氧化法等。同时我们可以将水的纯化过程大致分为3大步,前处理(生产出纯水),离子交换(可生产出18.2MΩ-cm超纯水)和后处理(生产出符合特殊要求的超纯水)。根据进水的水质和对出水水质的要求,确定每一步采用的方法工艺。 3.前处理 主要包括预处理单元和反渗透(RO)单元,由于预处理后的水将通过反渗透进行再一步的净化,所以一定要尽量去除对反渗透膜有影响的杂质;主要包括大颗粒物质、余氯以及钙离子镁离子。在此要说明的一点是必须要根据进水水质的差异针对性地配备不同的处理单元。多数纯水仪生产厂家并不能很好帮助客户解决这个问题,这会导致后续的纯化无法达到理想结果并缩短反渗透膜等仪器主要部件的寿命。 反渗透是使用一个高压泵对高浓度溶液提供比渗透压差大的压力,水分子将被迫通过半透膜到低浓度的一边,反渗透可以滤除90%-99%的包括无机离子在内的绝大多数污染物,因为它出众的纯化效率,反渗透是水纯化系统的一个非常有效的技术,因为反渗透能去除大部分的污物,所以它经常被用作为前道处理手段,能显著地延长去离子交换柱的使用时间。鉴于反渗透在水质纯化过程中是非常关键并且反渗透膜的更换价格较高,我们建议用户一定要选择对反渗透膜有保护功能的超纯水系统。为了尽可能延长反渗透膜的使用寿命以及提高反渗透膜的过滤效率 4.离子交换 离子交换即是,水中的正离子与离子交换树脂中的H+离子交换,水中的负离子与离子交换树脂上的OH-离子交换,从而达到纯化水的目的。通过离子交换去除离子,理论上几乎能除去所有的离子物质,在25℃时,出水电阻率达到18.2MΩ-cm。经离子交换出水水质的高低主要取决于离子交换树脂的质量和交换柱内水与树脂的交换效率。 市面上离子交换树脂鱼龙混杂,质量参差不齐,用户很难分辨。所以我们建议用户一定要关注树脂的品牌。 这里要注意的是离子交换法能有效的去除离子,却无法有效的去除大部分的有机物或微生物,而微生物可附着在树脂上,并以树脂作为培养基,使得微生物可快速生长并产生热源。因此,需配合其他的纯化方法设计使用,也就是下面我们要讨论的后处理部分。 5.后处理 主要根据客户的特殊要求生产出低有机物型、低热源型等的超纯水。针对不同要求有多种处理方式,如超滤过滤法用于去除热源,双波长紫外氧化法用于降低水中总有机碳(TOC),微滤去除细菌等。 超滤(UF)薄膜则是一个分子筛,它以尺寸为基准,让溶液通过极细微的滤膜,以达到分离溶液中不同大小分子的目的,可将超纯水中的热源含量降至0.001EU/ml以下。双波长紫外氧化法可利用光氧化有机化合物,将超纯水中的总有机碳浓度降低至5ppb以下。 二、最稳水质 超纯水系统能够制造出高质量的超纯水只是第一步,对于用户使用来说,能够尽量长时间的稳定保持高出水水质才是用户最为关心的问题。目前厂商大多强调让客户注意使用细节,常换配件耗材,而从自身方面所做的改进并不多。

  • 【分享】常用试剂的性质与制备纯化——氮气

    氮气一般以压缩气的形式贮存于钢瓶中,一般含有痕量的氧气,可以采用以下方法除去:(1)通过没食子酸的碱溶液(15 g没食子酸溶于100 mL 50% NaOH溶液);(2)通过Fieser溶液,该溶液制备方法:在100 mL水中溶20克氢氧化钾,搅拌加入2克蒽醌-2-磺酸钠和15 g亚硫酸氢钠微热到溶解,当该血红色的溶液冷至室温即可使用,该溶液能吸收750 mL氧气,当溶液颜色变化至褐色或者有沉淀生成时,该溶液即失去作用了。也有市售的不含氧气的高纯氮,但价格较贵。

  • 【求助】找专家,研究制备农残级的甲醇

    我们的项目想从分析纯的甲醇,制备农残级的甲醇,研究精馏工艺.我们急需找些化工教授和专家来参加本项目,是有报酬的.达标要求是:甲醇在旋转蒸发仪上浓缩1000倍之后,使用GC-ECD检测时,在γ-六六六的保留时间的一半至60min内出峰都不高于2 ppb(以γ-六六六为外标定量)。(条件:炉温200°C,色谱柱:HP-5)现在的问题是:(1)分析纯的甲醇,结果是有3个杂质.不达标.(2)我们试过加入高锰酸钾与硫酸,将甲醇中的杂质氧化,然后蒸馏,结果ECD上没有峰,但是在GCMS会产生一个杂质, CH2OCH2OCH3.(3)我们减少了高锰酸钾与硫酸的用量,结果ECD上出了很多峰,比上面(1)的还多.请问有什么办法解决.如果你对类似的问题,有经验的话,可以联系我. huangtinggd@126.com

  • [资料] 水的纯化与超纯水的制备

    关于高纯水的制备在闻瑞梅先生等[1]的专著中已有详细论述。本文仅想就与化学分析和仪器分析用水有关的一些常识和小经验作点滴介绍,以供参考。 天然水中通常含有五种杂质:1.电解质,包括带电粒子,常见的阳离子有H+、Na+、K+、NH4+、、Mg2+、Ca2+、Fe3+、Cu2+、Mn2+、Al3+等;阴离子有F-、Cl-、NO3-、HCO3-、SO42-、PO43-、H2PO4-、HSiO3-等。2.有机物质,如:有机酸、农药、烃类、醇类和酯类等。3.颗粒物。4.微生物。5.溶解气体,包括:N2、O2、Cl2、H2S、CO、CO2、CH4等。所谓水的纯化,就是要去掉这些杂质。杂质去的越彻底,水质也就越纯净。 国家标准规定有分析实验室用水[2]和电子级水[3]的技术指标。分析实验室用水的技术指标见表1: 表1.一.二. 三级实验室用水的技术指标(GB6682—92) 名称 一级 二级 三级 pH值范围(250C) -- -- 5.0-7.5 电导率(25OC),mS/m. ≤ 0.01 0.10 0.50 可氧化物质(以0计),mg/L 0.08 0.4 吸光度(254nm,1cm光程) ≤ 0.001 0.01 蒸发残渣105O±2C O), mg/L ≤ 1.0 2.0 可溶性硅(以SiO2计) mg/L 0.01 0.02 一级水用于有严格要求的分析实验,如液相色谱分析用水等。二级水用于无机痕量分析,如[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析用水等。三级水用于一般化学分析实验。 国标(GB6682-92)的补充说明:由于在一级和二级水的纯度下,难于测定其真实的pH值,因此对一级和二级水的pH值范围国标不作规定。 一级和二级水的电导率需用新制备的水在线测定。 由于在一级水的纯度下,难于测定可氧化物和蒸发残渣,故国标对其限量也不作规定,可用其他条件和制备方法来保证一级水的质量。国标对一、二级水电导的测试方法有明确的规定:用于一、二水测定的电导仪,需配备电极常数为0.01—0.1cm-1的在线电导池,并具有温度自动补赏功能。 电子级水对水中的离子浓度水平有更高的要求。国标GB/T11446.1-1997规定分为四级,即EW-I,EW-Ⅱ,EW-Ⅲ和EW-Ⅳ。其技术指标见表2: 表2。电子级水的技术指标级别指标 EW-Ⅰ EW-Ⅱ EW-Ⅲ EW-Ⅳ 电阻率MΩ.cm(250C) 18以上(95%时间)不低于17 15(95%时间)不低于13 12.0 0.5 全硅,最大值,μg/L 2 10 50 1 000 >1μm微粒数,最大值,个/mL 0.1 5 10 500 细菌个数,最大值,个/mL 0.01 0.1 10 100 铜,最大值,μg/L 0.2 1 2 500 锌,最大值,μg/L 0.2 1 5 500 镍,最大值,μg/L 0.1 1 2 500 钠,最大值,μg/L 0.5 2 5 1 000 钾,最大值,μg/L 0.5 2 5 500 氯,最大值,μg/L 1 1 10 1 000 硝酸根,最大值,μg/L 1 1 5 500 磷酸根,最大值,μg/L 1 1 5 500 硫酸根,最大值,μg/L 1 1 5 500 总有机碳,最大值,μg/L 20 100 200 1 000 *.引自国家标准GB/T 1144.6.1-1997 二.水的纯化方法 1.蒸馏法,按蒸馏器皿可分为玻璃、石英蒸馏器,金属材质的有铜、不锈钢和白金蒸馏器等。按蒸馏次数可分为一次、二次和多次蒸馏法。此外,为了去掉一些特出的杂质,还需采取一些特殊的措施。例如预先加入一些高锰酸钾可除去易氧化物;加入少许磷酸可除去三价铁;加入少许不挥发酸可制取无氨水等。蒸馏水可以满足普通分析实验室的用水要求。由于很难排除二氧化碳的溶入。所以水的电阻率是很低的,达不到MΩ级。不能满足许多新技术的需要。 2.离子交换法,主要有两种制备方式:A. 复床式,即按阳床—阴床—阳床—阴床—混合床的方式连接并生产去离子水;早期多采用这种方式,便于树脂再生。B. 混床式(2-5级串联不等),混床去离子的效果好。但再生不方便。离子交换法可以获得十几MΩ的去离子水。但有机物无法去掉,TOC和COD值往往比原水还高。这是因为树脂不好,或是树脂的预处理不彻底,树脂中所含的低聚物、单体、添加剂等没有除尽,或树脂不稳定,不断地释放出分解产物。这一切都将以TOC或COD指标的形式表现出来。例如,当自来水的COD值为2mg/L时,经过去离子处理得到的去离子水的COD值常在5-10mg/L之间。当然,在使用好树脂时会得到好结果,否则就无法制备超纯水了。

  • 【求助】培养基制备系统

    哪位大虾有关于培养基制备系统相关的资料,原理、应用、品牌、技术对比等越详细越好,哪位大虾愿意分享啊

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制