当前位置: 仪器信息网 > 行业主题 > >

蓝光切胶仪原理

仪器信息网蓝光切胶仪原理专题为您提供2024年最新蓝光切胶仪原理价格报价、厂家品牌的相关信息, 包括蓝光切胶仪原理参数、型号等,不管是国产,还是进口品牌的蓝光切胶仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蓝光切胶仪原理相关的耗材配件、试剂标物,还有蓝光切胶仪原理相关的最新资讯、资料,以及蓝光切胶仪原理相关的解决方案。

蓝光切胶仪原理相关的论坛

  • 【原创大赛】防蓝光眼镜,真的需要吗?

    【原创大赛】防蓝光眼镜,真的需要吗?

    [font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]相信大家去买眼镜的时候都被推荐过[/font]“防蓝光眼镜”,不管是给孩子买还是自己买,这种眼镜好像都成了必选。好像选了它,才对眼睛更好,甚至还能防近视。[/color][/font][font=Calibri] [/font][font=Calibri][color=#5a5a5a][font=宋体]可是实际上,大部分消费者可能连蓝光是什么都不太清楚。[/font][/color][/font][font=Calibri] [/font][font=Calibri][color=#5a5a5a][font=宋体]今天我们打算好好和大家说说蓝光、防蓝光眼镜,以及镜片蓝光检测笔的一些[/font]“[font=宋体]套路[/font][font=Calibri]”[/font][font=宋体]。由于内容需要花一定的时间理解,我们先把结论放在开头:[/font][/color][/font][font=宋体][/font][font=宋体][/font][b][font=宋体][/font][font=Calibri][font=宋体]1、防蓝光眼镜不是必须的,[/font][/font][font=微软雅黑][font=微软雅黑]防蓝光[/font]≠防近视,目前没有蓝光导致近视的直接证据,[/font][font=Calibri][font=宋体]儿童和成人都不需要额外防蓝光;[/font][/font][font=微软雅黑][font=微软雅黑]2、保护视力的最佳方法是合理使用电子产品,平时采用[/font]20-20-20规则(详情在最后展示)远眺休息,保护眼睛[/font][font=Calibri][font=宋体];[/font][/font][font=Calibri][font=宋体]3、如有特殊的工作要求需要防蓝光眼镜,尽量选择大牌。[/font][/font][/b][font=Calibri] [/font][font=Calibri] [/font][font=宋体][/font][font=宋体]什么是蓝光?什么是蓝光?[/font][font=Calibri] [/font][font=宋体][color=#5a5a5a][font=宋体]蓝光是可见光的一部分,波长在[/font] 400~500 nm范围内,颜色呈蓝色和紫色,是可见光中能量最高,最接近紫外线的部分。[/color][/font][font=宋体][/font][img=,690,575]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091636482459_3700_1834892_3.png!w690x575.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]生活中我们经常会接触到蓝光,比如太阳光、电视、电脑、平板、手机、[/font]LED灯等,这些光源中都有蓝光分布。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]蓝光的危害在[/font]GB/T 20145-2006 | 标准中有提到。[/color][/font][font=宋体][/font][img=,690,179]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091637476971_5530_1834892_3.png!w690x179.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]对视网膜有害的蓝光波段,是主要集中在[/font]( 415~455nm )之间的高短波蓝光。[/color][/font][b][font=宋体][color=#5a5a5a]长期过量的蓝光光辐射,可对眼底视网膜造成慢性光损伤[/color][/font][/b][font=宋体][color=#5a5a5a]。[/color][/font][font=宋体][/font][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091637566075_4599_1834892_3.png!w690x387.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a]如果夜间长时间看冷色调的电子屏幕,比如手机,平板,电脑等,会扰乱人的自然睡眠节奏。尤其是正处于生长发育阶段的儿童和青少年,睡前建议减少电子产品的使用。[/color][/font][font=宋体][/font][img=,690,502]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638083466_4523_1834892_3.png!w690x502.jpg[/img][font=Calibri][color=#5a5a5a] [/color][/font][font=宋体][color=#5a5a5a]蓝光也不是只有害处。它会影响人体的生物钟,具有调节昼夜节律的作用。白天,蓝光比较多,而傍晚则显著减少,所以人会形成白天工作、晚上休息的习惯。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]同时它对产生暗视力以及影响屈光发育等有重要作用。[/color][/font][font=Calibri] [/font][font=Calibri] [/font][font=宋体][/font][font=宋体]蓝光眼镜与检测笔蓝光眼镜与检测笔[/font][font=宋体][/font][font=宋体][color=#5a5a5a]市面上的防蓝光眼镜,主要有两种,一种是[/color][/font][b][font=宋体][color=#5a5a5a]膜层防蓝光[/color][/font][/b][font=宋体][color=#5a5a5a][font=宋体],即在镜片表面镀一层膜[/font],将有害蓝光进行反射。[/color][/font][font=宋体][/font][font=微软雅黑][color=#5a5a5a]一种是[/color][/font][b][font=微软雅黑][color=#5a5a5a]基材防蓝光[/color][/font][/b][font=微软雅黑][color=#5a5a5a],通过在镜片基材加入防蓝光因子,从而将有害蓝光进行吸收阻隔。[/color][/font][font=宋体][/font][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638191422_6149_1834892_3.png!w690x387.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]而对于防蓝光眼镜来说,真正需要阻隔的,是能穿透眼球晶状体到达视网膜的高能短波蓝光,即[/font]( 415~455nm )波段的蓝光。[/color][/font][font=宋体][/font][font=宋体][/font][font=宋体][color=#5a5a5a]因此,[/color][/font][b][font=宋体][color=#5a5a5a]阻隔这部分的蓝光,才是防蓝光眼镜的意义所在[/color][/font][/b][font=宋体][color=#5a5a5a]。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]近些年来,青少年近视问题越来越严重,配防蓝光眼镜的人也越来越多了。有部分眼镜店,在顾客配镜选购时,会拿出[/font]“[/color][/font][font=宋体][color=#5a5a5a]防蓝光镜片[/color][/font][font=宋体][color=#5a5a5a]”和“[/color][/font][font=宋体][color=#5a5a5a]蓝光测试笔[/color][/font][font=宋体][color=#5a5a5a]”来演示,比如这样:[/color][/font][font=宋体][/font][img=,690,417]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638296366_4857_1834892_3.png!w690x417.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]底下放个卡片,用[/font]“[/color][/font][font=宋体][color=#5a5a5a]蓝光笔[/color][/font][font=宋体][color=#5a5a5a]”照射,镜片能够阻挡光源,使其透不过去,就证明是“防[/color][/font][font=宋体][color=#5a5a5a]蓝光眼镜[/color][/font][font=宋体][color=#5a5a5a]”。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]我们征集了同事的两副眼镜试了一下,结果一个[/color][/font][font=微软雅黑][color=#5a5a5a]透不过去[/color][/font][font=宋体][color=#5a5a5a],一个[/color][/font][font=微软雅黑][color=#5a5a5a]能透过[/color][/font][font=宋体][color=#5a5a5a]。[/color][/font][font=Calibri][color=#5a5a5a] [/color][/font][img=,600,360]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638391898_2894_1834892_3.png!w600x360.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a]乍一看非常直观,但是这里有个问题。这个笔发出的光,到底是什么波段的光?[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]“[/color][/font][font=宋体][color=#5a5a5a]蓝光测试笔[/color][/font][font=宋体][color=#5a5a5a]”的标签上,用小字标明了其光源波长在 405 nm±10。[/color][/font][font=宋体][/font][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091638499917_6180_1834892_3.png!w690x517.jpg[/img][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]也就是说,通过测试笔验证,只说明该镜片能挡住[/font] 405 nm±10 波长的蓝光,[/color][/font][font=微软雅黑][color=#5a5a5a][font=微软雅黑]并不能判定是否能挡住[/font] 415~455nm 波段的蓝光。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]而在我们的生活中,不管是[/font]LED灯还是电子产品(手机、平板、电脑等),发出的蓝光波峰在 450nm 左右。[/color][/font][font=宋体][color=#5a5a5a]这种笔只是利用了波段不同的差异[/color][/font][font=宋体][color=#5a5a5a]而已。[/color][/font][font=宋体][/font][img=,690,604]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091639006871_3105_1834892_3.png!w690x604.jpg[/img][font=Calibri][color=#5a5a5a] [/color][/font][font=Calibri] [/font][font=宋体][/font][font=宋体]防蓝光眼镜真的需要吗?防蓝光真的需要吗?[/font][font=Calibri] [/font][font=宋体][color=#5a5a5a][font=宋体]市面上的防蓝光眼镜,之前由于缺乏统一的标准,质量参差不齐。值得一提的是,防蓝光的国家标准已经于今年[/font] 7 月 1 日正式实施,标准中明确列出了 4 种不同光谱范围的光透射比要求。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]相信之后的防蓝光眼镜市场,可以得到不错的规范。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]撇开这些不说,关于防蓝光眼镜这事儿,我们想给大家一些小建议:[/color][/font][font=Calibri] [/font][font=宋体]01[/font][b][font=宋体][color=#5a5a5a]防蓝光眼镜不是必须的。[/color][/font][/b][font=宋体][/font][font=宋体][color=#5a5a5a]儿童还处在生长发育期,由于部分防蓝光眼镜底色偏黄,可能会影响视觉发育,不建议日常采用防蓝光措施。[/color][/font][font=Calibri] [/font][font=宋体]02[/font][font=宋体][color=#5a5a5a][font=宋体]防蓝光[/font]≠防近视。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]目前没有蓝光导致近视的直接证据,因此家长不必过分担忧所谓的[/font]“蓝光危害”。 [/color][/font][img=,690,604]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091639271418_5252_1834892_3.png!w690x604.jpg[/img][font=Calibri] [/font][font=宋体]03[/font][b][font=宋体][color=#5a5a5a]成人也不需要额外的防蓝光措施。[/color][/font][/b][font=宋体][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]如果出现视疲劳等症状,多远眺,减少连续用眼时间即可。推荐[/font] [/color][/font][b][font=宋体][color=#5a5a5a]20-20-20 规则[/color][/font][/b][font=宋体][color=#5a5a5a][font=宋体],也就是每隔[/font] 20 分钟,远眺至少 20 英尺(约 6 米)以外的物体,至少停留 20 秒。[/color][/font][font=宋体][/font][img=,690,431]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091639431832_8093_1834892_3.png!w690x431.jpg[/img][font=Calibri] [/font][font=宋体]04[/font][font=宋体][color=#5a5a5a]对于有特殊要求,比如长期高强度的电脑工作者等,如果一定要配防蓝光眼镜,尽量选择大品牌。[/color][/font][font=宋体][/font][font=Calibri] [/font][img=,539,76]https://ng1.17img.cn/bbsfiles/images/2020/09/202009091640014951_2539_1834892_3.png!w539x76.jpg[/img][font=Calibri] [/font][font=Calibri] [/font][font=宋体][color=#5a5a5a]眼睛是我们生来就获得的美妙礼物,要保护好它,其实没有多么难。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a][font=宋体]睡前减少电子产品的照射,避免在背景光比较差的环境下玩手机、看书,每隔[/font] 20 分钟远眺休息眼睛,这些都可以给眼睛带去保护。[/color][/font][font=宋体][/font][font=宋体][color=#5a5a5a]现在,[/color][/font][b][font=宋体][color=#5a5a5a]放下手机,一起去看这美丽世界吧[/color][/font][/b][font=宋体][color=#5a5a5a]~[/color][/font][align=center][font=微软雅黑] [/font][/align]

  • 【讨论】猪肉为什么会发蓝光

    【讨论】猪肉为什么会发蓝光

    [img]http://ng1.17img.cn/bbsfiles/images/2010/02/201002261053_202654_1641058_3.jpg[/img][b]  “发光猪肉”重现家乐福 检疫站:无法检验 质疑:“待定猪肉”该不该继续销售 调侃:吃了蓝光猪肉会不会变阿凡达? 家乐福超市:暂不下柜 动物检疫站:待送检更高级别部门[/b]  市民在家乐福超市长沙五一店买回的猪肉会发出蓝光以后(详见2010年2月9日A08版),引起了市民高度关注,很多市民纷纷来电询问这些蓝光猪肉最后的处理结果,这样的“待定猪肉”是不是还在家乐福销售?会不会对人体造成伤害? 记者2月24日采访了长沙市动物检疫站卫监科的胡鹏辉队长,他表示:“由于市里暂时没有相关检测项目,建议向更高一级部门送检。”[color=#f10b00]20楼、21楼、23楼、24楼有最新更新。目前认为是发光杆菌引起的。[/color]

  • 红蓝光结合对黄芩生长和次生代谢的影响机制

    [font=楷体]黄芩([/font][font='Times New Roman',serif]Scutellariabaicalensis Georgi[/font][font=楷体])是一种常见于中国及东亚其他地区的药用植物,其高含量的黄酮类化合物赋予其多种生物活性,包括抗炎、抗菌、抗病毒和抗新冠病毒([/font][font='Times New Roman',serif]COVID-19[/font][font=楷体])等功效。发光二极管([/font][font='Times New Roman',serif]LED[/font][font=楷体])已被公认为能够增强植物生长及次生代谢物积累的有效人工光源,适用于商业植物生产。然而,关于[/font][font='Times New Roman',serif]LED[/font][font=楷体]光对黄芩的影响仍知之甚少。本研究探讨了单色蓝光([/font][font='Times New Roman',serif]B[/font][font=楷体],[/font][font='Times New Roman',serif]460 nm[/font][font=楷体])、单色红光([/font][font='Times New Roman',serif]R[/font][font=楷体],[/font][font='Times New Roman',serif]660 nm[/font][font=楷体])、白光([/font][font='Times New Roman',serif]CK[/font][font=楷体])及不同比例的红蓝光组合([/font][font='Times New Roman',serif]R9B1[/font][font=楷体]、[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]、[/font][font='Times New Roman',serif]R5B5[/font][font=楷体]、[/font][font='Times New Roman',serif]R3B7[/font][font=楷体]、[/font][font='Times New Roman',serif]R1B9[/font][font=楷体])对黄芩生长和黄酮积累的影响。结果表明,在[/font][font='Times New Roman',serif]R:B[/font][font=楷体]比为[/font][font='Times New Roman',serif]9:1[/font][font=楷体]或[/font][font='Times New Roman',serif]7:3[/font][font=楷体]的条件下,黄芩幼苗的全株及根部生物量和黄酮含量较高。靶向代谢组学分析显示,不同处理组间验证了[/font][font='Times New Roman',serif]48[/font][font=楷体]种差异表达代谢物([/font][font='Times New Roman',serif]DEMs[/font][font=楷体]),且与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组上调的[/font][font='Times New Roman',serif]DEMs[/font][font=楷体]数量尤其是黄酮类化合物较多。转录组数据表明,与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组分别有[/font][font='Times New Roman',serif]1412[/font][font=楷体]和[/font][font='Times New Roman',serif]1508[/font][font=楷体]个差异表达基因([/font][font='Times New Roman',serif]DEGs[/font][font=楷体])。[/font][font='Times New Roman',serif]KEGG[/font][font=楷体]通路分析显示,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组中的[/font][font='Times New Roman',serif]DEGs[/font][font=楷体]主要富集于苯丙烷生物合成、植物激素信号传导、黄酮生物合成、淀粉和蔗糖代谢、半乳糖代谢、类胡萝卜素生物合成、玉米素生物合成和氮代谢等通路。[/font][font='Times New Roman',serif]qRT-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=楷体]结果表明,参与黄酮生物合成途径的[/font][font='Times New Roman',serif]SbPAL[/font][font=楷体]、[/font][font='Times New Roman',serif]SbCLL-7[/font][font=楷体]、[/font][font='Times New Roman',serif]SbCHI[/font][font=楷体]、[/font][font='Times New Roman',serif]SbFNS[/font][font=楷体]和[/font][font='Times New Roman',serif]SbOMT[/font][font=楷体]等编码酶在黄芩中的表达显著上调,且与转录组数据一致。最后,[b]通过黄芩中主要黄酮类化合物与编码黄酮代谢途径的转录因子和酶的基因之间的相关性分析,构建了一个共表达网络图,为挖掘与黄酮类合成相关的光响应基因提供了依据[/b]。这是首个关于红蓝光组合如何影响黄芩生长及次生代谢的研究报告。 [/font][font=楷体]黄芩([/font][font='Times New Roman',serif]Scutellariabaicalensis Georgi[/font][font=楷体])是唇形科著名的药用植物,其干燥根部在中国被称为“黄芩”,是最常用的中药材之一,广泛用于抗菌、抗炎、抗病毒和抗肿瘤治疗([/font][font='Times New Roman',serif]Do et al., 2021 Xiang et al., 2022[/font][font=楷体])。黄芩的化学成分主要包括黄酮类、有机酸类化合物和皂苷类,其中黄酮类是其主要活性成分([/font][font='Times New Roman',serif]Miao et al., 2022 Sun et al., 2020a[/font][font=楷体])。黄芩苷是黄芩中含量最高的黄酮类化合物之一,也是《中国药典》评估黄芩质量的重要指标之一。最近的研究表明,黄芩提取物和黄芩素具有潜在的抗冠状病毒药物活性([/font][font='Times New Roman',serif]Liu et al., 2021[/font][font=楷体])。黄芩是清肺排毒汤的重要成分,清肺排毒汤是国家卫健委推荐用于新冠肺炎治疗的权威中药方剂(中华人民共和国国家卫生健康委员会[/font][font='Times New Roman',serif], 2021[/font][font=楷体])。目前,黄芩在中国北方广泛种植,对其药用成分的需求不断增加。因此,[/font][b][font=楷体]提高该物种的产量及其黄酮类化合物(包括黄芩素和黄芩苷)含量成为了重要的研究领域。[/font][/b][font=楷体]在多种可控的环境因素中,光是至关重要的因素之一,因为光对植物光合作用具有重要性,不同的光质对植物的生长和发育有显著影响([/font][font='Times New Roman',serif]Chen et al., 2021 Danziger and Bernstein, 2021[/font][font=楷体]),如红光和蓝光更有效地参与植物光合作用([/font][font='Times New Roman',serif]Mccree, 1970[/font][font=楷体])。植物已经进化出一系列光受体来响应光的特定方面,这决定了植物的生长和发育([/font][font='Times New Roman',serif]Ahmad, 2016 de Wit et al., 2016[/font][font=楷体])。在温室园艺中,发光二极管([/font][font='Times New Roman',serif]LED[/font][font=楷体])可以通过发射特定波长的光精确控制光谱组成,已被用于提高作物的产量和质量([/font][font='Times New Roman',serif]Lazzarin et al., 2021 Ma et al., 2021[/font][font=楷体])。例如,研究表明,与白光相比,红光照射下的苹果([/font][font='Times New Roman',serif]Malus domestica[/font][font=楷体])根长、侧根数量和根体积显著增加,而蓝光和白光之间的根指数没有显著差异([/font][font='Times New Roman',serif]Li etal., 2021b[/font][font=楷体])。红光和蓝光通过影响植物的激素水平和信号传导调节其生长和发育。例如,蓝光和红光促进了挪威云杉幼苗中赤霉素和吲哚[/font][font='Times New Roman',serif]-3-[/font][font=楷体]乙酸([/font][font='Times New Roman',serif]IAA[/font][font=楷体])的积累([/font][font='Times New Roman',serif]OuYang et al., 2015[/font][font=楷体])。与单色红光或蓝光相比,两种光的组合能显著刺激植物的光受体,从而影响其生长和发育([/font][font='Times New Roman',serif]Spalholz et al., 2020[/font][font=楷体])。之前的研究表明,单一的红光或蓝光无法促进番茄茎的伸长和生长,但当红蓝光的比例适当时,植物的生长状态达到最佳([/font][font='Times New Roman',serif]Liang et al., 2021[/font][font=楷体])。[/font][font=楷体]红光和蓝光通常用于温室农业种植,不仅影响植物的生长状态,还影响次生代谢物的生成。例如,红光和蓝光通过激活青蒿素合成相关基因的表达提高了黄花蒿([/font][font='Times New Roman',serif]Artemisia annua[/font][font=楷体])中青蒿素的水平([/font][font='Times New Roman',serif]Zhang et al., 2018[/font][font=楷体])。在某些物种中,红光和蓝光对次生代谢的影响有所不同。例如,在贯叶连翘([/font][font='Times New Roman',serif]Hypericum perforatum[/font][font=楷体])中,红光下金丝桃素和黄酮类化合物的含量显著增加,而蓝光和白光处理之间无显著差异([/font][font='Times New Roman',serif]Sobhani Najafabadi et al., 2019[/font][font=楷体])。类似地,红光被证明有效提高了蓝莓([/font][font='Times New Roman',serif]Vaccinium spp.[/font][font=楷体])中的花青素含量([/font][font='Times New Roman',serif]Abou El-Dis et al., 2021[/font][font=楷体])。红蓝光组合可以强烈刺激莴苣([/font][font='Times New Roman',serif]Lactuca sativa cv. "Batavia"[/font][font=楷体])中花青素和黄酮类化合物的积累([/font][font='Times New Roman',serif]Sng et al., 2021[/font][font=楷体])。[/font][b][font=楷体]对于药用植物育种者来说,一个重要的目标是优化活性成分的含量,同时提高产量[/font][/b][font=楷体]。近年来,黄芩黄酮类化合物的生物合成及其调控机制得到了广泛研究([/font][font='Times New Roman',serif]Zhao et al., 2016[/font][font=楷体]),[/font][b][font=楷体]但关于不同波长光对黄芩生长、发育和次生代谢影响的信息仍然缺乏。[/font][/b][font=楷体]本研究利用红光和蓝光及其不同比例组合研究了它们对黄芩的影响。根据植物的形态特征和主要活性成分的含量确定了最佳的红蓝光比例。随后,利用靶向代谢组学和转录组学数据分析了最佳红蓝光组合促进黄芩生长及次生代谢物积累的潜在机制。通过代谢组和转录组数据的整合分析,鉴定了参与黄酮类化合物生物合成和调控的转录因子和酶的潜在光响应基因。[/font][b][font=楷体]本研究结果为黄芩的分子育种及[/font][font='Times New Roman', serif]LED[/font][font=楷体]应用于其优化生长和黄酮类药效的研究奠定了基础。[/font][font=楷体]结果[/font][font='Times New Roman',serif]3.1. [/font][font=楷体]光处理对黄芩生长和生物量的影响[/font][/b][font=楷体]不同光照显著影响了黄芩的生长(图[/font][font='Times New Roman',serif]1A[/font][font=楷体])。与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,红蓝光组合处理组的植株高度显著低于[/font][font='Times New Roman',serif]CK[/font][font=楷体]组和单色光处理组(图[/font][font='Times New Roman',serif]1B[/font][font=楷体])。与[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,单[b]色红光处理下,黄芩全株和根部的生物量分别增加了[/b][/font][b][font='Times New Roman',serif]1.44[/font][font=楷体]倍和[/font][font='Times New Roman',serif]1.77[/font][font=楷体]倍,而单色蓝光处理组则无显著差异[/font][/b][font=楷体]。[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]处理下,全株和根部生物量分别是[/font][font='Times New Roman',serif]CK[/font][font=楷体]组的[/font][font='Times New Roman',serif]2.23[/font][font=楷体]倍和[/font][font='Times New Roman',serif]3.53[/font][font=楷体]倍,[/font][font='Times New Roman',serif]2.04[/font][font=楷体]倍和[/font][font='Times New Roman',serif]3.45[/font][font=楷体]倍(图[/font][font='Times New Roman',serif]1C[/font][font=楷体]、[/font][font='Times New Roman',serif]D[/font][font=楷体])。数据表明,与单色光处理和[/font][font='Times New Roman',serif]CK[/font][font=楷体]组相比,红蓝光组合显著抑制了植株高度。然而,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]处理显著增加了黄芩幼苗全株和根部的生物量,而在较高比例的蓝光处理下,植物生长受到抑制。 [b][font='Times New Roman',serif]4.1. [/font][font=楷体]适当的红蓝光组合促进黄芩的生长和主要活性成分的积累[/font][/b][font=楷体]植物对红光和蓝光的反应具有物种特异性([/font][font='Times New Roman',serif]Izzo et al., 2020 Kong and Zheng, 2020 Liang et al., 2021[/font][font=楷体])。例如,在红蓝光组合处理下,贯叶连翘([/font][font='Times New Roman',serif]Hypericum perforatum L.[/font][font=楷体])的根、叶和花的生物量随着红光比例的增加而增加,尤其是在[/font][font='Times New Roman',serif]100%[/font][font=楷体]红光处理下([/font][font='Times New Roman',serif]Karimi et al., 2022[/font][font=楷体])。在单色蓝光处理下,四周龄的豆薯幼苗的生物量显著高于单色红光、绿光和白光处理([/font][font='Times New Roman',serif]Chung et al., 2019[/font][font=楷体])。本研究得出结论,单色红光相比[/font][font='Times New Roman',serif]CK[/font][font=楷体]显著促进了黄芩根部和全株的生长,而蓝光对生长没有显著影响(图[/font][font='Times New Roman',serif]1[/font][font=楷体])。[/font][font='Times New Roman',serif]Yeo[/font][font=楷体]等([/font][font='Times New Roman',serif]2021[/font][font=楷体])研究了在单色红光、蓝光和白色[/font][font='Times New Roman',serif]LED[/font][font=楷体]光处理下黄芩幼苗的初级和次级代谢物变化,发现白光[/font][font='Times New Roman',serif]LED[/font][font=楷体]最有效地促进了黄酮类物质(如黄芩苷、黄芩素和汉黄芩素)的生产。不同比例的红蓝光组合能够更好地控制植物生长和次生代谢物的生成([/font][font='Times New Roman',serif]Bantis et al., 2018 Chen et al., 2019 Li et al., 2021a[/font][font=楷体])。例如,适当比例的红光和蓝光可以显著促进大麻([/font][font='Times New Roman',serif]Cannabis sativa L.[/font][font=楷体])的生长和大麻二酚的积累([/font][font='Times New Roman',serif]Wei et al., 2021[/font][font=楷体])。在另一种唇形科著名药用植物丹参([/font][font='Times New Roman',serif]Salvia miltiorrhiza Bunge[/font][font=楷体])中,[/font][font='Times New Roman',serif]R[/font][font='Times New Roman',serif]=7:3[/font][font=楷体]的比例不仅促进了其生长,还促进了酚酸的生成([/font][font='Times New Roman',serif]Zhang et al., 2020[/font][font=楷体])。本研究发现,[/font][font='Times New Roman',serif]R9B1[/font][font=楷体]和[/font][font='Times New Roman',serif]R7B3[/font][font=楷体]组相比[/font][font='Times New Roman',serif]CK[/font][font=楷体]组或其他处理组,更有利于黄芩的生长和黄酮类物质的积累(图[/font][font='Times New Roman',serif]1[/font][font=楷体],图[/font][font='Times New Roman',serif]2[/font][font=楷体]),这与丹参的研究结果类似([/font][font='Times New Roman',serif]Zhang et al., 2020[/font][font=楷体])。[/font][b][font='Times New Roman',serif]4.2. [/font][font=楷体]组合光可激活黄芩的黄酮类合成途径[/font][/b][font=楷体]多种在黄芩根部参与黄酮类合成途径的关键酶基因,如[/font][font='Times New Roman',serif]SbPALs[/font][font=楷体]、[/font][font='Times New Roman',serif]SbC4H[/font][font=楷体]、[/font][font='Times New Roman

  • 【求助】请问pe标记的抗体在荧光显微镜下是用蓝光观察吗?

    [color=#00FFFF][size=4][em09512] 请教大家一下哦,,我用pe荧光标记的抗体 在荧光显微镜是用蓝光去看吗? 那台是nikon的落射荧光显微镜来的,有绿光,蓝光,黄光可选的(那个是激发光的光源吗?), 我用蓝光去看什么都没有,用绿光去看就有一两颗红色一点的东西,那些是什么啊? 我是新手啊,请教大家罗,。。 谢谢。。[/size][/color]

  • 手机蓝光诱发的后天性红绿色盲。

    台湾媒体曝光全球首例玩手机变色盲患者。一名高中女生每天玩手机超10小时,夜里常关灯躺在床上看视频。随后多次过马路时将绿灯看成黄灯,险些被车撞。经检查,女孩被确诊患上手机蓝光诱发的后天性红绿色盲。

  • 猪肉半夜发蓝光,怀疑是生猪被喂食过量含磷饲料

    猪肉半夜发蓝光,怀疑是生猪被喂食过量含磷饲料

    http://ng1.17img.cn/bbsfiles/images/2011/12/201112122132_337576_1641058_3.jpg 猪肉半夜发蓝光,北京通州区动物检验检疫所工作人员表示,荧光猪肉很可能是生猪在饲养环节即被喂食过过量含磷饲料,也可能是感染了荧光菌。 你知道原因吗?北京通州区动物检验检疫所工作人员说法有道理吗?

  • 废水中砷的测定——砷铋钼蓝光度法

    原理如下:取一定量的废水,砷总量在200ug以内,用高锰酸钾氧化成As5+,在酸性环境中,加入钼酸铵—硝酸铋—酒石酸钾钠混合显色剂和还原剂抗坏血酸,还原成砷铋钼蓝比色,本方法主要干扰因素为硅和磷,弱酸性中,可生成硅铋钼蓝干扰,调高酸度,则硅不干扰;同条件下,磷铋钼蓝也干扰,可以同时取一份试液,将高锰酸钾改为硫代硫酸钠-亚硫酸钠溶液,将As5+还原为As3+,以此作为参比,扣除磷的吸光度则为砷的吸光度,消除磷的干扰。问题:在酸性环境中,硫代硫酸钠易析出单质硫,这个问题没有解决,大家出出主意看怎么实施,主要是不知道溶液中到底是多少价的砷,还有就是其中会有磷的干扰,如果单独只有砷,则加高锰酸钾氧化即可还有砷锑钼蓝和磷锑钼蓝光度法,这里就不讨论了

  • 化学发光检测原理概述(转贴)

    化学发光检测原理概述化学发光作为一种分析工具的吸引之处就在于检测的简单性。化学发光的实质是自身发光,这意味着化学发光的分析测试仪器只需要提供一种可以检测光信号和纪录结果的方法就可以了。自发光检测仪需要一个闭光的样品室和光检测器。最简单的便是相片纸或x-光片,甚至视觉检测器都可以。化学发光检测方法的简单性使得它的应用很简单并且完全可以自动化。但是它的灵敏度又是怎么样的呢?化学发光有如下两个内在的优势:1.绝大多数的样品没有“背景”信号,如它们自身不发光。2.化学发光的检测不是一个比例测试,这是与荧光和吸收或比色测试不同的。在荧光测试中,具有小的Stokes Shift的荧光基团非常难检测。荧光很难从激发波长中分辨出来。另外一个问题是,特别在样品是浑浊的情况下有一部分杂光会进入到检测器。在吸收光测试上,其灵敏度受到限制的根本因素是需要在两个相对较强的信号之间去区分一个较小的差别。需要注意的是检测器对光谱的敏感性近可能接近化学发光的光谱,以得到最大化的灵敏度。一般在自发光仪中的光电倍增管对蓝光有最佳的反应,对红光的末端光谱不太敏感。固态检测器对红光有较好的反应。X-光片广泛用于记录在尼龙膜、纤维素膜或PVDF膜上的化学发光印迹分析。但是我们需要牢记在心的是x-光片仅能够用于检测紫外到蓝光光谱范围内的光信号,虽然有一些特殊的光片对增强的绿光有敏感性。

  • 亚甲基蓝光度法测定溶液硫化物浓度

    求对亚甲基蓝光度法毕竟熟悉的同志!最近在学习这个方法,身边没有熟悉这个方法的同学,我想问一下显色后可以放置多久,溶液基质对硫化物浓度测试有什么影响?什么杂质对它的影响大?

  • 海克斯康发布首款智能蓝光扫描系统SmartScan VR800

    [color=#000000]创新时代,变幻无穷!SmartScan VR800智能蓝光扫描系统,是首款配备自动变焦镜头的结构光3D扫描仪,拥有智能分辨率、智能变焦和智能抓拍三大创新功能。它专为提高工作效率而设计,通过简单的软件设置,即可完成扫描分辨率和测量范围的快速调整,为用户实现精确、高效的扫描测量提供了前所未有的创新体验![/color][align=center][img=,600,212]https://img1.17img.cn/17img/images/202404/uepic/74b34626-ce3e-4317-a935-2508ecaa58da.jpg[/img][/align][color=#0070c0][b]全新的3D扫描方式[/b][/color][align=center][img=,600,443]https://img1.17img.cn/17img/images/202404/uepic/072b615f-af9e-4630-bfb3-fae80ec4dca0.jpg[/img][/align][color=#000000]SmartScan VR800具有开创性的全新功能,可以通过软件设置调整扫描分辨率和测量范围。这些功能可应用于各种检测工作流程,能够大幅提升光学3D扫描系统检测的效率。[/color][color=#0070c0][b]随时随地,自定焦测量[/b][/color][color=#000000][/color][align=center][img=,600,444]https://img1.17img.cn/17img/images/202404/uepic/c1915315-3d3c-4d9a-afe4-15a29ddedd6b.jpg[/img][/align][color=#000000]SmartScan VR800配备四个独立的高清相机和变焦投影单元,具有独特的可变分辨率和可变测量范围功能。只需几秒钟,用户就能在检测软件中快速完成对扫描细节和测量范围的调整,且无需更换光学器件或进行重新校准。[/color][color=#0070c0][b]易于使用,极简工作流程[/b][/color][color=#000000][/color][align=center][img=,600,443]https://img1.17img.cn/17img/images/202404/uepic/8d4fb6dc-0528-4dd1-937e-2aad35341141.jpg[/img][/align][color=#000000]VR800的多相机配置能够简化3D扫描仪的测量操作,为开创新型高效工作流程提供了前所未有的机会。该系统在一个项目中可以使用不同的扫描分辨率,并且能够近乎同步完成对其切换,从而有效提升数据采集、处理和分析的速度。[/color][color=#0070c0][b]精度聚焦,关键数据一览无余[/b][/color][align=center][img=,600,400]https://img1.17img.cn/17img/images/202404/uepic/864b8804-7fd1-467d-9aff-51372cdb7181.jpg[/img][/align][color=#000000]随着检测设备的日益强大,检测数据的处理由于需要大量的计算资源,也变得越来越具有挑战性。用户使用VR800可以准确定义检测对象中的重要部分,并只对这些区域进行高分辨率扫描。由于图像在基准对齐情况下同步采集的,VR800通过设置可以避免扫描重叠区域。[/color][color=#0070c0][b]三大创新功能,让测量更加智能[/b][/color][b][color=#000000]智能分辨率[/color][/b][align=center][img=,600,334]https://img1.17img.cn/17img/images/202404/uepic/e10eeb88-b33c-4656-b352-d974b53d6b5b.jpg[/img][/align][color=#000000]VR800的智能分辨率功能允许用户在保持恒定测量范围的同时改变分辨率。用户可在软件中切换不同设置,并将数据合并到同一个测量项目中。这一功能方便用户根据工件测量的具体需要,进行分辨率的调整。[/color][b][color=#000000]智能变焦[/color][/b][align=center][img=,600,277]https://img1.17img.cn/17img/images/202404/uepic/69581e92-7a65-40bc-b3dc-8b87a7cf3b4e.jpg[/img][/align][color=#000000]VR800的智能变焦功能允许用户快速调整扫描仪的测量范围和分辨率,共有6种测量范围选项,其中最大的测量长度800 毫米,最小160 毫米。用户可根据测量工件的实际情况,按需选择合适的选项。[/color][b][color=#000000]智能抓拍[/color][/b][align=center][img=,600,189]https://img1.17img.cn/17img/images/202404/uepic/2725229e-27ac-48ca-bdb8-b99407fca602.jpg[/img][/align][color=#000000]VR800的智能抓拍功能支持多相机以不同的方式投入使用,全部四个数字相机在LED闪光灯的支持下,可以同时获取定位信息和扫描数据。这种组合方式能够大大减少所需目标点的数量,增大目标测量范围,同时加快整个扫描工作流程。[/color][align=center][img=,600,422]https://img1.17img.cn/17img/images/202404/uepic/66e7e5c0-78c0-4968-96b3-105a2d47f73b.jpg[/img][/align][color=#000000]质量为先,创新是新时代制造行业的核心,SmartScan VR800突破性的产品功能和创新设计理念,开创了结构光扫描技术发展的新篇章,不仅实现了多项行业先进技术的首创,还首次将变焦镜头的使用提升到了全新的技术平台。不断实现技术革新突破,真正用技术创新催生行业客户发展新质生产力,海克斯康始终同行![/color][来源:海克斯康智能制造][align=right][/align]

  • 有没有GB/T 223.59铋磷钼蓝光度法的详细过程啊

    各位大师有没有GB/T 223.59-2008铋磷钼蓝光度法的详细过程啊?国标上写得不清不楚,也没有老师傅指导,一个人摸索摸索,做不出来烦死了http://simg.instrument.com.cn/bbs/images/default/em09504.gifhttp://simg.instrument.com.cn/bbs/images/default/em09504.gif

  • 【求助】请教:有谁做过硅钼蓝光度法测硅的 请进

    我目前在做硅钼蓝光度法,方法如下:将金属溶解,冷却,定容至50ml容量瓶。分取10ml,在分取后的溶液中加标(硅),加盐酸羟胺低温还原,保温10min,放置30min。过滤。滤液体积不大于35ml,加钼酸铵,热水浴加热2min,冷却,加硫酸(1+9),草酸,抗坏血酸,显色10min后测定,我目前在做回收率。每次的回收率差别很大,重现性不好,请各位高手指点,我该怎样才能做好?请问钼黄在正常室温中5-10分钟能正常显色吗?我目前用的方法是热水浴加热2分钟,然后冷却,我发现水冷和自然冷却相差很大,大家遇到过吗,请教了,谢谢!

  • 折光仪的原理

    折光仪原理:光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比与溶液浓度成正比(一定压强、温度条件下),测量折光率即可换算出溶液浓度。

  • 光学滤光片质量好坏直接影响仪器的灵敏度高低

    光学滤光片的质量是好是坏,会直接去影响仪器的灵敏度高低,而滤光片的质量又是以其波长精度及其峰值指标来衡量的,因此滤光片波长精度及峰值是衡量光学仪器的重要参数之一。这在厂家的仪器说明书中虽未曾提及,但在仪器的实际使用过程中,我们发现对滤光片波长精度和峰值进行检查是重要的也是必要的,通过检查可以发现滤光片的波长标定值与实测值的符合程度,可以发现滤光片的质量是否符合要求。平常生活中我们会看到各种各样颜色的物体,滤光片的颜色也有红、橙、黄、绿、蓝、紫等多种颜色。那么光学滤光片的颜色是由什么来决定的呢?我们需要先了解一下光的原理。光在透明和不透明的物体上的照射原理是不同的。1.不透明物体的颜色是由它反射的色光决定的桌子、墙壁等不透明物体的颜色是由它反射的色光决定的,而不透明物体主要是反射与它本身相同颜色的色光。比如让白光照射到蓝色的物体上,白光中的红、橙、黄、绿、蓝、靛、紫7种色光都会被蓝色物体吸收掉,只有蓝光不能被吸收而被反射回来,这样我们就看到该物体是蓝色的。但若用红光照射到蓝色物体上,由于红光全部被蓝色物体吸收,我们看不到反射回来的光,所以该蓝色物体呈黑色。其他不透明物体的颜色也是如此。另外,白色不透明物体能反射所有色光,因而不管什么颜色的光射到白色不透明物体上,我们就看到它呈什么颜色。而黑色不透明物体几乎不反射任何色光,因而任何色光射到它表面上,我们都会因为看不到反射色光而呈黑色。2.透明物体的颜色是由它透过的色光决定的玻璃等透明物体的颜色是由它本身透过的色光决定的,而透明物体能透过与它自身相同的色光。比如让白光通过蓝色玻璃,除蓝光外其他色光均不能顺利地通过玻璃,所以我们见到的玻璃就会呈现出蓝色。若透明物体能让所有的色光通过,那么该透明物体看起来就会是无色的。

  • 滤光片的作用及原理

    滤光片的作用及原理

    滤光片是由塑料或者光学玻璃加入染料做成的,红色[b][url=http://www.fydxr.com/]滤光片[/url][/b]只能让红光通过,如此类推。玻璃片的折射率与空气的差不多,当所有的色光都可以通过的时候,就是透明的,但是染了染料后,分子结构变化,折射率也会发生变化,对某些色光的通过就会有变化了。[img=,605,375]http://ng1.17img.cn/bbsfiles/images/2017/10/201710081403_01_3313006_3.jpg[/img][img=,690,690]http://ng1.17img.cn/bbsfiles/images/2017/10/201710081403_02_3313006_3.jpg[/img][img=,690,690]http://ng1.17img.cn/bbsfiles/images/2017/10/201710081403_03_3313006_3.jpg[/img][img=,690,690]http://ng1.17img.cn/bbsfiles/images/2017/10/201710081403_04_3313006_3.jpg[/img]比如一束白光通过蓝色滤光片,射出来的就是一束蓝光,而绿光、红光就相对很少,大多数被滤光片吸收了。滤光片的作用很大,被广泛的使用在摄影界。一些摄影师拍摄的风景画,为什么主景总是那么的突出,这是怎么做到的呢?现在我们飞宇达光电的技术人员来给打击分析分析:这是用到了滤光片。比如您想要拍一朵红花,背景是蓝天、绿叶,如果按照平常那么拍,肯定就不能突出“红花”这个主题了,因为红花的形象是不够突出,但是如果你能在镜头前放一个红色滤光片去阻挡绿叶的绿光,蓝天的蓝光,那么我们的红花的红光就会大量的通过。这样子红花就会十分的明显,也就能突出了“红花”这个主题。然而[b]滤光片的主要特点[/b]是尺寸可以做的很大。薄膜滤光片又分为薄膜吸收滤光片和薄膜干涉滤光片这两种。薄膜吸收滤光片是在特定的材料片基上,用化学浸蚀使吸收线正好位于需要的波长处,一般透过的波长较长,多是用做红外滤光片。后者是在一定的片基上,用真空镀膜法交替形成具有一定厚度的高折射率或者低折射率的金属-介质-金属膜,或者介质膜,形成一种低级次的、多级串联实心法布里-珀罗干涉仪。膜层的材料、厚度和串联的方式的选择,由所需要的中心波长和透射带宽来确定。我司深圳飞宇达光电生产的滤光片种类很多,有850nm窄带滤光片、940nm窄带滤光片、920nm窄带滤光片、808nm窄带滤光片、530nm[b][url=http://www.fydxr.com/html/productlist/list-15-1.html]窄带滤光片[/url][/b]、590nm窄带滤光片、460nm窄带滤光片、1064nm窄带滤光片等各种不同规格的窄带滤光片;450nm带通滤光片、780nm带通滤光片、870nm带通滤光片、850nm带通滤光片、940nm带通滤光片、400nm带通滤光片、635nm带通滤光片、980nm带通滤光片等各种规格的[b][url=http://www.fydxr.com/html/productlist/list-19-1.html]带通滤光片[/url][/b];红外滤光片;透红外滤光片;[b][url=http://www.fydxr.com/html/productlist/list-17-1.html]长波通滤光片[/url][/b];短波通滤光片;中性密度滤光片;中性密度衰减滤光处;干涉滤光片;红外窄带滤光片;红外带通滤光片;红外窄带通滤光片等滤光片。

  • 【转帖】东芝正式宣布全面撤出HD DVD业务,新一代DVD为蓝光光盘一统天下

    DATE 2008/02/20   【日经BP社报道】 东芝西田社长宣布彻底退出HD DVD业务   东芝将全面退出HD DVD规格的全部产品的开发和制造。东芝的西田厚聪社长在记者招待会上亲自宣布了这一消息。2006年3月31日东芝上市HD DVD影碟机,新一代DVD之战由东芝打响,两年之后停战的帷幕也由东芝亲手落下。   西田社长表示,撤出的首要原因是华纳公司脱离HD DVD阵营(参阅本站报道)。“(得知这一消息后)如同晴天霹雳”。受此影响,零售商相继宣布停售HD DVD产品。“华纳公司脱离之后,我们认为如果继续坚持这一业务的话,既不符合消费者的利益,而且也没有胜算”(西田)。   HD DVD新产品的开发将立即停止。录像机、影碟机等新产品的开发和生产也将停止。对产品流通渠道的供货将逐渐缩小,2008年3月底之前全面结束业务。个人电脑HD DVD光驱业务也将终止。   对于已经购买HD DVD产品的用户,“将建立完善的服务体制”(西田)。具体而言,除了强化HD DVD产品呼叫中心外,还将在今后8年中提供维修部件、继续售后服务。HD DVD光盘方面,将与光盘厂商协商,在一定期间内继续提供光盘。东芝目前并不生产和销售光盘,不过将考虑通过在线商店的方式来销售。对于日本以外的HD DVD影碟机,也将根据各地区的具体情况向用户提供服务。   关于今后的AV业务战略,东芝没有明言。“关于数字聚合(Digital Convergence)时代应该采取的AV战略,我们将充分利用NAND闪存、小型硬盘、图像处理技术、无线技术和加密处理技术,构筑中长期战略”(西田)。东芝没有生产和销售蓝光光盘产品的计划。   东芝表示今后将继续与Universal、Paramont、Dreamworks、日本国内的内容提供商、微软、英特尔、惠普保持良好的关系。将研究利用共同开发的技术从事业务的可能性。(记者:浅川 直辉)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制