当前位置: 仪器信息网 > 行业主题 > >

测试专用反应器

仪器信息网测试专用反应器专题为您提供2024年最新测试专用反应器价格报价、厂家品牌的相关信息, 包括测试专用反应器参数、型号等,不管是国产,还是进口品牌的测试专用反应器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测试专用反应器相关的耗材配件、试剂标物,还有测试专用反应器相关的最新资讯、资料,以及测试专用反应器相关的解决方案。

测试专用反应器相关的资讯

  • Microinnova微通道反应器专用微量泵
    德国原装进口,提供一对一行业解决方案,可上门技术交流。佛山翁开尔公司德国彗诺HNPM微量泵中国独家代理,可为您提供Microinnova微通道反应器专用微量泵,可提供售前,售中,售后服务。 Microinnova微通道反应器专用微量泵-彗诺HNPM微量泵介绍德国彗诺HNPM微量泵在微通道反应器优势:1、微通道反应器的“微”不是指微反应装置的外形尺寸小或产品产量小,而是表示流体通道在微米或毫米级别。德国彗诺HNPM微量泵特别符合该点;2、结构紧凑、体积小、质量轻;3、自吸力强;4、流量范围大、工作可靠;5、压差大、能耐腐蚀;6、流动脉动低——柱塞泵、隔膜泵等机械泵很有可能造成脉动流,而这会产生不良影响;Microinnova微通道反应器专用微量泵优势:(1)微通道反应器专用泵可用于提高移液,输送效率(2)彗诺HNPM微量泵可根据用户的需求,根据客户的应用定制微型齿轮泵,并可集成在模块化系统中,实现模块化工厂系统全自动运行,满足客户的各种需求。
  • 填补空白!国产自研1.5万升超大规模细胞生物反应器下线
    当前,我国生物医药生物反应器设备虽然已经实现了较大程度的国产替代,但是高端产品,尤其是超大规模生物反应器(1万升以上)仍然严重依赖进口,不仅成本高,而且在关键技术和维修保养方面也极易被卡脖子。我国在这一领域长期处于空白状态,仅通过罐体加工国产化、软件自控用进口的方式实现部分国产替代。近年来,随着国家对生物经济的重视和扶持,&zwnj 我国在上游生物工艺装备的技术创新和市场投入程度持续加大,国内已有公司成功研制出全自主知识产权的国产制造,并成功进行了抗体表达工艺的验证测试。此次超大规模1.5万升生物反应器的设计、制造和下线,填补了我国在该领域的空白。双方合影(从左至右:仪器信息网生命科学编辑李兆坤、沃美生物总经理滕小锘博士、仪器信息网客户成功经理康龙、仪器信息网生命科学编辑樊雪竹)为了一睹这套设备的真容,仪器信息网一行走进了这家在生物制造上游产品和服务有着良好口碑的公司——苏州沃美生物有限公司(以下简称“沃美生物”),并在沃美生物总经理滕小锘博士的带领下进入了超大反应器研究和测试车间。那么这套设备到底有什么特别之处?我国在高端生物反应器领域还有哪些难点亟待攻克?……跟着我们的脚步一起去了解吧!专注高端产品,成功自研国内1.5万升动物细胞生物反应器高端装备制造业作为国家战略性新兴产业,是提升制造业核心竞争力、实现新型工业化、建设制造强国的重要支撑。那么,什么是高端装备呢?高端装备又称先进装备,是指具备高技术含量、高附加值的先进工业设施设备,是以高技术为引领,处于价值链高端和产业核心环节,决定整个产业链综合竞争力的核心装备。以高端生物反应器为例,其“高端化”体现在设计、制造、运行和维护等各个细节之中,该系统集成了诸如数字化设计、CFD仿真模拟、PAT技术、QbD设计理念和智能化控制等关键核心技术,每一项都需以高度专业化的人才和精密仪器作为支撑。“换句话说,谁掌握了最先进的生产力,谁就能在竞争中占据优势。比如,在细胞株、菌株无较大差异的情况下,不同的装备最大可造成20%-50%的产量差异。”滕博士解释道,“我们专注于高端的产品,如今,已经有很多企业开始使用这些高端产品,其中多为行业龙头和先进制造企业。”在滕博士介绍完高端装备的概念后,我们也走进了沃美生物工业反应器研究和测试车间。在看到了经历三次技术和软件迭代的生物反应器系列产品后,这台完全自主研发的1.5万升动物细胞生物反应器(DOE-BS15000L)便映入眼帘。这套1.5万升动物细胞生物反应器总共有三层,所有核心元器件均为进口。在问及为何不选用国产配件时,滕博士表示:“该设备主要用于人用抗体药物的生产,国内用户在配件选型阶段优先考虑具有成熟法规认证和良好使用记录的国外供应商。对于高端反应器的配件来说,国产配件在合规性、稳定性和关键性能方面尚不及进口配件,这也导致了我们在进行国产替代的时候,只能先努力做到整机的国产替代,而对于配件的国产替代来说,仍需要后续和众多国产配件商的共同努力。”DOE系列15000L不锈钢细胞生物反应器系统(DOE-BS15000L)工业反应器研究和测试车间布局也充分考虑实际GMP生产时的要求,进行了合理化设计,管廊与主体设备分区布置,充分考虑操作和维护保养便捷性。设置有操作和检修专用通道,可以方便的对每个配件和每一层管道进行检修。所有这些设备都是全自动控制,且具备全生命周期管理功能。同时,整个反应器配备了也配置了联合华东理工大学国家生物反应器重点实验室研发的拉曼在线检测整体解决方案,可实现包括氨、糖、氨基酸、抗体质量属性等二十几种物质的实时在线检测。滕博士说,这套用反应器的设计、自控水平和PAT解决方案代表当前国内生物反应器的最高水平。DOE-BS15000L的背面管道分布图在另一间测试实验室内,35L多联平行细胞生物反应器(图A和图B)和第四代500 ml高通量平行智能生物反应器(图C)在实验台上一字排开,“我身边的这款仪器,就是我们最新研制的多联高通量平行智能生物反应器(WT-IM500),它主要用于高通量工艺开发,,通过自主开发的XBIO上位机软件,可以实现一台控制器同时操控4-64台平行生物反应器的运行。”滕博士为我们介绍道。同时,他认为多联高通量平行智能生物反应器的关键技术主要有以下几点:罐体的合理性设计、制造加工精度和平行性、智能传感器、稳定的自控系统和功能强大的数据采集和工艺分析软件。“总体来说,多联平行生物反应器的技术方面国内外已无明显差异,并且从最终使用效果来看差别也不大。而在售后服务方面,进口品牌做的远不如国内品牌,这也是促使用户从进口品牌转向国产品牌的主要原因之一。”图A:DOE-B35 多联平行细胞生物反应器;图B:多联平行生物反应器产品线图C:WT-IM500 500ml高通量平行智能生物反应器依托华东理工大学技术背景稳扎稳打15载沃美生物最早成立于2010年,成立初始便与华东理工大学国家生化工程技术研究中心(上海)(以下简称“工程中心”)建立合作。经过十多年的发展,公司现在形成了围绕生物医药(动保和人用)、合成生物学上游关键技术服务和相关产品的业务范围,其中细胞培养基和生物反应器是公司的两大主要产品线。在企业发展历程墙边,滕博士与我们回顾了沃美生物的发展史。公司成立初期,沃美生物在上海以技术服务和细胞培养基起家。得益于扎实的技术基础,沃美生物培养基的业务发展很快,2012年便在苏州建立了生产基地。2016年,沃美生物成立了生物反应器事业部,主要开发各种高端生物反应器,2021年,为进一步提高公司的装备制造能力,沃美生物联合珐成制药系统工程(上海)有限公司(以下简称“珐成浩鑫”)共同成立了一家专注于高端生物反应器研发、生产和销售于一体的合资公司——沃钛思(南通)生物科技有限公司(以下简称“沃钛思”),并与华东理工大学生物反应器国家重点实验联合成立了华东理工大学&沃钛思智能制造和过程控制联合技术创新转移中心(创新中心),“通过该中心,可以将最前沿的生物反应器一系列先进关键技术及前沿成果实现快速产业化转移。本次15000升的研发过程也得到了创新中心的强力支持。”滕博士自豪地说。滕小锘介绍沃美生物发展历程2024年如此复杂的环境,沃美生物生物反应器板块仍实现了稳健的发展。仅7月份新签1600万订单,其中海外订单超过一半。“得益于国家对于海外市场的支持,加之一带一路国家的市场需求旺盛,加快了我们产品走出国门的步伐。”滕博士说。公司15年来一直深植技术研发和创新、稳扎稳打。如今,沃美生物的研发总面积将近一万平米,以上海研发中心为主,并在苏州姑苏区和武汉设有研发中心,制造则在张家港工厂。此外,珐成浩鑫的海宁与广州工厂则承担反应器的主要生产制造业务,滕博士说:“当前,我们的制造能力、技术水平和服务能力与国内其他同类型企业相比处于前列。”高端生物反应器领域国内外仍有差距据滕博士介绍,在高端生物反应器领域,国内外的技术差距虽然小,但仍存在。这些技术差距主要体现在以下几个方面:第一,微型高通量智能生物反应器。该类型仪器对于合成生物学的研究以及药物、培养基的开发至关重要,目前国内还没有企业可以在这个方面真正实现高通量和智能化,尤其是在工艺层面的高通量和智能化。第二,超大规模生物反应器。虽然我国目前可以做到生物反应器的大型化,但在高端生物反应器的超大规模生产和应用方面还缺少成功案例。当前,我国对于万升的细胞生物反应器基本依赖于进口厂商,或者进口技术国内制造。第三,核心元器件和传感器。在自控的仪器仪表、阀门、核心的过程监测传感器等配件方面,尚不能实现完全国产化。部分领域已出现国产化替代产品,但在高端生物医药领域的推广应用还比较匮乏。第四,基于工艺出发的理性设计与放大技术。如今,大多数反应器的设计均是在效仿国外,“照葫芦画瓢”,但真正的设计要结合自己的菌株、产品、工艺等特点。在放大过程中,以往靠的是经验,但真正的放大需要依赖于对工艺特性和设备特性的充分理解,流场分析技术起到至关重要的作用,可以从方法学上解决问题。合成生物学发展方向:工艺工程装备一体化如今,合成生物学已经成为了沃美生物业绩快速增长的新型业务板块,其主要发展方向是“工艺-工程-装备一体化”。未来五年,沃美生物仍将继续深耕生物技术产业链上游环节,不仅提供工艺开发过程的全流程装备,还将为用户提供工程设计以及合成生物CDMO服务。“虽然今年的合成生物学市场变得更加‘理性’,但整体来说仍然十分乐观。我认为,合成生物学的繁荣不止50年,由于合成生物学技术发展很快,合成生物企业需要将产品快速落地并产生效益才能有未来,否则很容易被市场淘汰。在企业快速发展的过程中,不仅需要政府的大力支持,同时也离不开我们这种合成生物学的上游企业,希望我们能做好上游繁荣,并通过上游繁荣来支撑下游的发展。”据悉,除了与华东理工大学建立的华东理工大学&沃钛思智能制造和过程控制联合技术创新转移中心以外,沃美生物也与华东理工大学合作建立了合成生物联合技术创新转移中心,主要侧重于合成生物关键技术研究及科研成果的快速产业化。谈及未来的发展策略,滕博士表示,一方面持续加大自身的研发投入,增强自我造血功能,另一方面将继续深化与华东理工大学、华中科技大学、四川农业大学、苏州工学院等高等学府的合作,通过校企合作的方式加速科研成果产业化,最终实现双赢乃至多赢的局面。此外,沃美生物还在积极参与国家和地方在生物医药、合成生物、生物制造等领域的布局,将自身的发展融入到国家战略发展中。沃美生物总经理滕小锘博士
  • 助力绿色化工工艺技术革新,Sanotac与微反应器并驾齐驱
    助力绿色化工工艺技术革新,Sanotac与微反应器并驾齐驱-----记2017全国绿色化工工艺技术研讨会 中国化工企业管理协会、江苏省化学化工学会于 2017 年3月 26日-3月 28 日在南京师范大学仙林校区举办了“2017全国绿色化工工艺技术暨资源综合利用创新研讨会”。上海三为科学仪器有限公司作为会议的协办单位,会上展示了微通道反应器专用的PTFE平流泵,哈氏合金平流泵,主要用于配套微反应器使用,公司平流泵产品引起参加会议的各位专家老师的强烈兴趣。 本次大会的主讲嘉宾和会议内容简单介绍: 金涌,工程院院士,清华大学化学工程系教授,绿色发展中的化工产业; 管国峰,南京工业大学教授,反应精馏过程研究与工程案例; 张志炳,南京大学教授,微界面传质强化反应器研究; 周珏民,东南大学教授,生物废弃物综合利用制生物柴油; 顾正桂,南京师范大学教授,反应与分离集成技术开发与应用研究; 大连微凯化学公司,微流体技术-绿色安全化工生产应用; 山东豪迈化工公司,绿色化工连续化生产-从基础研发到工业应用; 康宁上海公司,成就绿色化工的新武器-高通量微通道反应器技术; 吴有庭,南京大学化学化工学院教授,离子液体设计与不同酸性气体的选择性分离策略; 李群生,北京化工大学教授,吸附结晶法生产碳酸锂的研究与应用; 金艳,华东理工大学博士,结晶分盐技术在废水零排放上的应用; 王彦飞,天津科技大学教授,煤化工高盐废水分质分盐研究; 汤志刚,清华大学化学工程系副教授,O2捕集溶剂吸收-膜解吸收新流程。 与会嘉宾和老师,在150多个座位座无虚席。 高通量-微通道反应器技术是近10多年来发展起来的一种本质安全技术, 微反应器技术已成为化工领域技术创新的亮点和热点,已经引起了医药,农药,精细化工,特种化工研发和生产部门的广泛重视。如何更好地利用这一新的技术为本企业带来新的机遇已成为众多企业家新的追逐目标。反应器能够助您: 缩短反应时间,改善目标产品纯度,提高产品收率和选择性,降低生产总成本,减少环境影响,提高操作安全,减少人员需求等。 Sanotac平流泵覆盖了316L不锈钢、PEEK材料、PTFE聚四氟乙烯,钛金属,哈氏合金材料等供您选择。除了流路材料的改变,低脉冲,高精度的性能一切都没有改变,但是我们又改变了一切。 由于SANOTAC系列高压恒流平流泵用于微反应器中微流体的输送,使得微通道反应器性能更出色,如虎添翼,更能发挥微通道反应器的魔力,发挥微通道反应器高效,本质安全、智能制造的新技术优势,打造美丽化工的未来。 碳化硅由于化学性能稳定、导热系数高、耐化学腐蚀,山东豪迈化工根据碳化硅材料的特性制造了碳化硅微通道反应器,就需要配套四氟PTFE进料泵,这样才更能发挥微反应器的神力。 那么,“微反应”是否与工业大生产相对应,只能生产微量或少量的产品呢?“事实并非如此,微反应器中可以包含有成百上千的微通道,从而通过‘数量放大’实现高产量,国内外都已经有万吨级的工业装置在运行,而且微反应器的种类更是包含了大化工反应中所有的单元设备,混合器、换热器、反应器和控制器等一应俱全。”骆广生表示。 大连化物所开发的微通道反应技术已实现8万吨/年磷酸二氢铵生产的工业运行;清华大学化学工程联合国家重点实验室成功开发出万吨级膜分散微结构反应器制备单分散纳米碳酸钙和15万吨/年的湿法磷酸净化的工业装置;大连理工大学在用微反应技术解决染料合成上间歇反应存在中的产率低、品质差、批次色差大等问题上,也取得了许多进展。 与此同时,国内也有一批化工科技企业积极地投入到微反应技术的开发应用中,上海康宁、大连微凯,贵州微化以及山东豪迈化工技术公司等开始在微反应器设计及技术工艺开发上发力,并已经将微反应技术成功地应用到了硝化反应、过氧化物、苯肼类化合物、磷化工产品、无机纳米材料等产品的合成上,取得了可喜的工业化进展。 三为科学Sanotac,作为化工流体输送解决方案的领导者,微通道反应器专用平流泵供应商,以助力各种微通道反应器,打造绿色智能化工为己任,我们将不断努力,助力绿色化工工艺技术革新,与微反应器技术并驾齐驱。
  • 使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制(上)
    摘要本期推文,编译了François Bertaux等发表在 Nature Communications期刊上的研究论文《使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制》(Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight),介绍了 ReacSight,一种用于自动测量和反应实验控制的增强生物反应器阵列的策略。ReacSight 利用低成本移液机器人进行样品采集、处理和装载,并提供灵活的仪器控制架构。作者展示了 ReacSight 在涉及酵母的三种实验应用中的能力,包括:基因表达的实时光遗传控制;营养缺乏对健康和细胞应激的影响;对双菌株混合群落的组成进行动态控制。引言小规模、低成本的生物反应器正在成为微生物系统和合成生物学研究的有力工具。它们允许在长时间(几天)内严格控制细胞培养参数(例如温度、细胞密度、培养基更新率)。这些独特的特点使研究人员能够进行复杂的实验,并实现实验的高度再现性。例如,当药物选择压力随着耐药性的发展而增加时,抗生素耐药性的表征,细胞间通信合成路径的细胞密度控制表征,以及使用组合敲除文库在动态变化温度下酵母适应度的全基因组表征。原位光密度测量只能提供总生物量浓度及其增长率的信息,而荧光测量的灵敏度低,背景高。通常还必须测量和跟踪培养细胞群体的关键特征,如基因表达水平、细胞应激水平、细胞大小和形态、细胞周期进程、不同基因型或表型的比例。研究人员通常需要手动提取、处理和测量培养样本,以便通过更灵敏和专业的仪器(如细胞仪、显微镜、测序仪)进行检测。手动干预通常繁琐、容易出错,并严重限制了可用的时间分辨率和范围(即夜间无时间点)。它还阻碍了培养条件对此类措施的动态适应。这种反应性实验控制目前正引起系统生物学和合成生物学的兴趣。它既可以用来维持种群的某种状态(外部反馈控制),也可以用来最大化实验的价值(反应性实验设计)。例如,外部反馈控制可用于解开复杂的细胞耦合和信号通路调控,控制微生物群落的组成,或优化工业生物生产。反应性实验设计在长时间不确定实验(如人工进化实验)的背景下特别有用。通过实现实时参数推断和优化实验设计,也有助于加速基于模型的生物系统表征。原则上,商业机器人设备和/或定制硬件可用于将生物反应器阵列连接到敏感的多样本(通常接受 96 孔板作为输入)测量设备。然而,这对设备采购、设备成本和软件集成提出了巨大挑战。当一个功能平台建立起来时,相应硬件和软件的升级和维护也极具挑战性。因此,迄今为止报告的例子很少。例如,只有两个小组展示了细菌或酵母培养物的自动细胞术和反应性光遗传学控制,设置仅限于单个连续培养物或具有有限连续培养能力的多个培养物。一组还展示了自动显微镜和反应性光遗传学控制单个酵母连续培养。ReacSight, 一种通用且灵活的策略,用于增强生物反应器阵列的自动化测量和反应实验控制。ReacSight 非常适合集成开放源代码、开放硬件组件,但也可以容纳封闭源代码、 仅限 GUI 的组件(如细胞仪)。首先,作者使用 ReacSight 组装一个平台,实现基于细胞术的特征描述和平行酵母连续培养的反应性光遗传学控制。重要的是,作者构建了两个版本的平台,要么使用定制的生物反应器阵列,要么使用最新的低成本、开放硬件、商业化的光遗传学 Chi.生物反应器。然后,作者在三个案例研究中证明了它的有用性。首先,作者在不同的生物反应器中用光实现基因表达的并行实时控制。第二,作者利用高度受控和信息丰富的竞争分析,探讨营养缺乏对健康和细胞应激的影响。第三,作者利用平台的养分稀缺性和反应性实验控制能力,实现对两个菌株混合群落的动态控制。最后,为了进一步证明 ReacSight 的通用性,作者使用它来增强具有吸液能力的平板阅读器,并对大肠杆菌临床分离物进行复杂的抗生素处理。结果测量自动化、平台软件集成和 ReacSight 的反应性实验控制ReacSight 战略旨在增强用于自动测量和反应实验控制的生物反应器阵列, 以灵活和标准化的方式将硬件和软件元素结合起来(图 1)。吸管机器人用于以通用方式在任何生物反应器阵列和任何基于平板的测量设备之间建立物理连接(图 1a)。生物反应器培养物样本通过连接在机械臂上的泵控取样管线发送至移液机器人(取样)。使用移液机器人的一个主要优点是,在测量(处理)之前,可以在培养样本上自动执行不同的处理步骤。然后,样品由移液机器人转移至测量装置(装载)。当然,这需要测量设备的物理定位,以便当其装载托盘打开时,机器人手臂可以接近设备输入板的孔。部分接近设备输入板通常不是问题,因为机器人可用于在测量之间清洗输入板孔,允许随着时间的推移重复使用相同的孔(清洗)。重要的是,如果不需要反应性实验控制,或者如果不是基于测量,机器人功能也可以用于处理和存储培养样本,以便在实验结束时进行一次性离线测量,从而实现具有灵活时间分辨率和范围的自动测量。ReacSight 还提供了一些软件挑战的解决方案,这些软件挑战应该解决,以解锁多生物反应器的自动测量和反应实验控制(图 1b)。首先,需要对平台的所有仪器(生物反应器、移液机器人、测量设备)进行程序控制。其次,一台计算机应该与所有仪器进行通信,以协调整个实验。ReacSight 将 Python 编程语言的多功能性和强大功能与 Flask web 应用程序框架的通用性和可伸缩性相结合,以应对这两个挑战。事实上,Python 非常适合轻松构建 API 来控制各种仪器:有完善的开源库用于控制微控制器(如 Arduinos),甚至用于基于“点击”的控制 GUI 专用软件驱动缺少 API 的封闭源代码仪器(pyautogui)。重要的是,开源、低成本的吸管机器人 OT-2(Opentrons)附带了本地 Python API。Hamilton 机器人也可以通过 Python API 进行控制。然后,Flask 可用于公开所有仪器 API,以便通过本地网络进行简单访问。然后,从一台计算机协调对多个仪器的控制的任务基本上简化为发送 HTTP 请求的简单任务,例如使用 Python 模块请求。HTTP 请求 还可以使用社区级数字分发平台Discord 实现从实验到远程用户的用户友好通信。这种多功能仪表控制结构是 ReacSight 的关键组件。ReacSight 的另外两个关键组件是(1)通用的面向对象的事件实现(如果发生这种情况,请这样做),以促进反应性实验控制;(2)将所有仪器操作详尽记录到单个日志文件中。ReacSight 软件以及硬件的源文件在 ReacSight-Git 存储库中公开提供。图1 ReacSight:用于自动测量和反应实验控制的增强生物反应器阵列的策略。a 在硬件方面,ReacSight 利用吸管机器人(如低成本、开源 Opentrons OT-2)在任何多生物反应器设置(eVOLVER、Chi.Bio、custom……)和任何基于平板的测量设备(平板阅读器、细胞仪、高通量显微镜、pH 计……)的输入之间建立物理链接。如有必要,可使用移液机器人对生物反应器样本进行处理(稀释、固定、提取、纯化……),然后再装入测量装置。如果不需要反应实验控制,处理过的样品也可以存储在机器人平台上进行离线测量(OT-2 温度模块可以帮助保存对温度敏感的样品)。b 在软件方面,ReacSight 通过基于Python 和PythonWeb 应用程序框架 Flask 的多功能仪器控制体系结构实现了全平台集成。ReacSight 软件还提供了一个通用事件系统,以实现反应性实验控制。显示了反应实验控制的简单用例的示例代码。实验控制还可以使用Discord webhooks 将实验状态通知远程用户,并生成详尽的日志文件。曼森自动化高通量发酵实验室曼森机器人自动化技术可根据客户实际需求进行定制化(可实现硬件+软件协同)完成复杂流程自动化。机器人自动化技术与平行反应器组合为生物领域科学研究助力,是实现生物技术biofoundry的重要技术基础;曼森生物致力于满足客户自动化、高通量的需求,推进合成生物技术产品快速产业化。曼森高通量发酵平台曼森实验室自动化系列曼森高通量自动样品检测机器人未完待续文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑 内容审核:郝玉有博士
  • 岛津收购ARC微反应器业务,持续强化气相色谱附件阵容!
    近日,岛津制作所宣布收购了Activated Research Company(以下简称ARC)气相色谱(GC)催化微反应器业务,持续强化气相色谱在GX(Green Transformation,绿色转型)领域的竞争力。在GX领域,许多研究工作集中在通过诸如氢气和生物燃料等新能源以及二氧化碳(CO2)的捕获和利用向碳中和(温室气体净零排放)的转变。在这个过程中,用气相色谱仪(GC)分析和评估相关化合物的需求持续增加。而在GX领域的新技术研究时往往需要配置多个检测器来满足每种目标组分的高质量测量需求,这往往会使气相色谱系统的配置变得复杂。此外,为了应对无机气体的高灵敏度分析需要,分析工作中也通常会考虑使用一些专用检测器,但是这往往需要使用成本非常高且供应紧缺的氦气。催化微反应器是一种小型催化装置,对于像CO2等这些凭常见GC检测器(如FID)很难进行分析的化合物,可以将其转化为甲烷(CH4)的形式来分析,因此催化微反应器与FID结合使用,可以轻松实现多种化合物的高灵敏度分析,简化气相色谱系统并降低实验室运营成本。ARC是一家北美的研发初创企业,在气相色谱用催化微反应器方面拥有出色的技术实力和制造能力。ARC自2016年以来一直和岛津保持着良好的商业关系。本次岛津将从ARC收购多项资产,其中包括ARC的相关专利技术,以及两款催化微反应器产品(Jetanizer和Polyarc)的销售权。预计2024年将开始相关销售工作,2025年将开始内部生产微反应器产品。Jetanizer 是一种尺寸可引入 FID 的微反应器。与专用检测器相比,使用 Jetanizer,现在只需使用 FID 检测器即可同时分析温室气体 CO 2和 CH4,无需氦气。除了Jetanizer的功能外,FID与另一种微反应器Polyarc的结合,可以对生物燃料中的脂肪酸甲酯和含氧成分甲酸等成分进行高灵敏度和准确的测定,甲酸有望用作生物燃料中的脂肪酸甲酯和含氧成分。清洁的化工原料。左:Jetanizer 右:安装在 FID 内部的喷射部分左:Polyarc 右:各单元连接图通过本次收购,岛津将实现催化微反应器生产的扩产和质量改进,将强化气相色谱仪和催化微反应器的方案阵容并提供全面的售后技术支持,利用岛津的销售渠道为从事GX领域研究的客户提供全球化的产品和技术服务。此外,作为积极推动者,岛津将努力推进催化微反应器技术在美国材料与试验协会(ASTM International)的标准化方法制定工作。左起为 ARC 首席执行官 Andrew Jones 博士、岛津GC 全球产品经理Ryo Takechi、岛津GC/GCMS 产品经理Alan Owens在美国加利福尼亚州圣地亚哥举行的 2024 年 Pittcon 大会。
  • 泊菲莱气固相光催化反应器,荣膺实用新型专利认证!
    实用新型专利--气固相光催化反应器 专利号:ZL 2023 2 0652037.7 泊菲莱科技又推出一项实用新型专利——气固相光催化反应器,这一独特的创新设备,是泊菲莱科技在光催化技术领域的一大突破,旨在解决现有反应器在催化剂与反应气体接触不充分、反应效率低下的问题。近年来,光催化技术在清洁能源、空气污染物治理、CO₂ 还原等领域的应用越来越广泛。然而,现有的气固相光催化反应器常采用被动式的气体扩散,催化剂与反应气体的接触不充分,导致反应效率较低。为了解决这一问题,泊菲莱科技研发了这款新型的气固相光催化反应器。 该反应器包括反应器主体、催化剂支架、进气管路、出气管路和控制管路。 反应器主体具有反应容腔,催化剂支架设置在反应容腔内,用于盛放催化剂;控制管路与反应容腔相连,用于输送反应气体至反应容腔内;进气管路连通反应容腔的进口和流体泵的出口,出气管路连通反应容腔的出口和流体泵的进口,形成循环回路,使得反应气体能够在循环回路中循环流动,更加充分地接触催化剂,从而提高反应效率。 这种设计的优点体现在:反应气体可在循环回路中循环流动,与催化剂接触的机会大大增加。通过控制管路将反应气体精确输送至反应容腔内,确保了准确性和稳定性。 此专利应用于“PLR OTPR-I在线测温气固相光催化反应器”,该反应器是适配Labsolar-6A系统使用的光催化光热耦合的气固相反应器,其采用低散热设计,兼容粉末、多孔薄膜和薄层块状材料,由入射强光加热受热材料,可实现催化剂表面温度的实时在线检测,并对反应中的气体成分进行取样送检。 PLR OTPR-I在线测温气固相光催化反应器主要包括PLR OTPR-1型和PLR OTPR-2型两种型号:&bull PLR OTPR-1型适配于Labsolar-6A全玻璃自动在线微量气体分析系统使用; Labsolar-6A系统搭载在线气固相光催化反应器现场实物图 &bull PLR OTPR-2型适配于流动体系的光催化、光热催化气-固相实验。有别于被动式扩散形式,PLR OTPR气固相光催化反应器采用气体“穿透”形式,可有效保证反应气体与光催化剂的充分接触,提高传质效率。PLR OTPR气固相光催化反应器设有专用的原位红外测温口,非接触式实时测量光催化剂表面温度并记录,配有恒温夹套,最大程度降低热耗散。 已发表文章:反应器参数
  • 使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制(上)
    编者按跟踪智慧实验室的理论研究发展状况、产业发展动态、主要设备供应商产品研发动态、国内外智慧实验室建设成果现状等信息内容。本文由中科院上海生命科学信息中心与曼森生物合作供稿。 本期推文, 编 译 了 Franç ois Bertaux 等 发 表 在 Nature Communications 期刊上的研究论文《使用 ReacSight 增强生物反应器阵列以实现自动测量和反应控制》(Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight),介绍了 ReacSight,一种用于自动测量和反应实验控制的增强生物反应器阵列的策略。ReacSight 利用低成本移液机器人进行样品采集、处理和装载,并提供灵活的仪器控制架构。作者展示了 ReacSight 在涉及酵母的三种实验应用中的能力,包括:基因表达的实时光遗传控制;营养缺乏对健康和细胞应激的影响;对双菌株混合群落的组成进行动态控制。因文章篇幅较长,将分为三期来讲述。感谢关注!目录/CONTENT01/引言02/结果 2.1 测量自动化、平台软件集成和 ReacSight 的反应性实验控制 2.2 反应性光遗传控制和酵母连续培养的单细胞解析特性 2.3 使用光实时控制基因表达 2.4 探索营养缺乏对健康和细胞压力的影响 2.5 ReacSight 是一种通用策略:通过吸液功能增强平板阅读器03/讨论01引言小规模、低成本的生物反应器正在成为微生物系统和合成生物学研究的有力工具。它们允许在长时间(几天)内严格控制细胞培养参数(例如温度、细胞密度、培养基更新率)。这些独特的特点使研究人员能够进行复杂的实验,并实现实验的高度再现性。例如,当药物选择压力随着耐药性的发展而增加时,抗生素耐药性的表征,细胞间通信合成路径的细胞密度控制表征,以及使用组合敲除文库在动态变化温度下酵母适应度的全基因组表征。原位光密度测量只能提供总生物量浓度及其增长率的信息,而荧光测量的灵敏度低,背景高。通常还必须测量和跟踪培养细胞群体的关键特征,如基因表达水平、细胞应激水平、细胞大小和形态、细胞周期进程、不同基因型或表型的比例。研究人员通常需要手动提取、处理和测量培养样本,以便通过更灵敏和专业的仪器(如细胞仪、显微镜、测序仪)进行检测。手动干预通常繁琐、容易出错,并严重限制了可用的时间分辨率和范围(即夜间无时间点)。它还阻碍了培养条件对此类措施的动态适应。这种反应性实验控制目前正引起系统生物学和合成生物学的兴趣。它既可以用来维持种群的某种状态(外部反馈控制),也可以用来最大化实验的价值(反应性实验设计)。例如,外部反馈控制可用于解开复杂的细胞耦合和信号通路调控,控制微生物群落的组成,或优化工业生物生产。反应性实验设计在长时间不确定实验(如人工进化实验)的背景下特别有用。通过实现实时参数推断和优化实验设计,也有助于加速基于模型的生物系统表征。原则上,商业机器人设备和/或定制硬件可用于将生物反应器阵列连接到敏感的多样本(通常接受 96 孔板作为输入)测量设备。然而,这对设备采购、设备成本和软件集成提出了巨大挑战。当一个功能平台建立起来时,相应硬件和软件的升级和维护也极具挑战性。因此,迄今为止报告的例子很少。例如,只有两个小组展示了细菌或酵母培养物的自动细胞术和反应性光遗传学控制,设置仅限于单个连续培养物或具有有限连续培养能力的多个培养物。一组还展示了自动显微镜和反应性光遗传学控制单个酵母连续培养。 ReacSight, 一种通用且灵活的策略,用于增强生物反应器阵列的自动化测量和反应实验控制。ReacSight 非常适合集成开放源代码、开放硬件组件,但也可以容纳封闭源代码、 仅限 GUI 的组件(如细胞仪)。首先,作者使用 ReacSight 组装一个平台,实现基于细胞术的特征描述和平行酵母连续培养的反应性光遗传学控制。重要的是,作者构建了两个版本的平台,要么使用定制的生物反应器阵列,要么使用最新的低成本、开放硬件、商业化的光遗传学 Chi.生物反应器。然后,作者在三个案例研究中证明了它的有用性。首先,作者在不同的生物反应器中用光实现基因表达的并行实时控制。第二,作者利用高度受控和信息丰富的竞争分析,探讨营养缺乏对健康和细胞应激的影响。第三,作者利用平台的养分稀缺性和反应性实验控制能力,实现对两个菌株混合群落的动态控制。最后,为了进一步证明 ReacSight 的通用性,作者使用它来增强具有吸液能力的平板阅读器,并对大肠杆菌临床分离物进行复杂的抗生素处理。02结果2.1 测量自动化、平台软件集成和 ReacSight 的反应性实验控制ReacSight 战略旨在增强用于自动测量和反应实验控制的生物反应器阵列, 以灵活和标准化的方式将硬件和软件元素结合起来(图 1)。吸管机器人用于以通用方式在任何生物反应器阵列和任何基于平板的测量设备之间建立物理连接(图 1a)。生物反应器培养物样本通过连接在机械臂上的泵控取样管线发送至移液机器人(取样)。使用移液机器人的一个主要优点是,在测量(处理)之前,可以在培养样本上自动执行不同的处理步骤。然后,样品由移液机器人转移至测量装置(装载)。当然,这需要测量设备的物理定位,以便当其装载托盘打开时,机器人手臂可以接近设备输入板的孔。部分接近设备输入板通常不是问题,因为机器人可用于在测量之间清洗输入板孔,允许随着时间的推移重复使用相同的孔(清洗)。重要的是,如果不需要反应性实验控制,或者如果不是基于测量,机器人功能也可以用于处理和存储培养样本,以便在实验结束时进行一次性离线测量,从而实现具有灵活时间分辨率和范围的自动测量。ReacSight 还提供了一些软件挑战的解决方案,这些软件挑战应该解决,以解锁多生物反应器的自动测量和反应实验控制(图 1b)。首先,需要对平台的所有仪器(生物反应器、移液机器人、测量设备)进行程序控制。其次,一台计算机应该与所有仪器进行通信,以协调整个实验。ReacSight 将 Python 编程语言的多功能性和强大功能与 Flask web 应用程序框架的通用性和可伸缩性相结合,以应对这两个挑战。事实上,Python 非常适合轻松构建 API 来控制各种仪器:有完善的开源库用于控制微控制器(如 Arduinos),甚至用于基于“点击”的控制 GUI 专用软件驱动缺少 API 的封闭源代码仪器(pyautogui)。重要的是,开源、低成本的吸管机器人 OT-2(Opentrons)附带了本地 Python API。Hamilton 机器人也可以通过 Python API 进行控制。然后,Flask 可用于公开所有仪器 API,以便通过本地网络进行简单访问。然后,从一台计算机协调对多个仪器的控制的任务基本上简化为发送 HTTP 请求的简单任务,例如使用 Python 模块请求。HTTP 请求 还可以使用社区级数字分发平台Discord 实现从实验到远程用户的用户友好通信。这种多功能仪表控制结构是 ReacSight 的关键组件。ReacSight 的另外两个关键组件是(1)通用的面向对象的事件实现(如果发生这种情况,请这样做),以促进反应性实验控制;(2)将所有仪器操作详尽记录到单个日志文件中。ReacSight 软件以及硬件的源文件在 ReacSight-Git 存储库中公开提供。图1 ReacSight:用于自动测量和反应实验控制的增强生物反应器阵列的策略。a 在硬件方面,ReacSight 利用吸管机器人(如低成本、开源 Opentrons OT-2)在任何多生物反应器设置(eVOLVER、Chi.Bio、custom……)和任何基于平板的测量设备(平板阅读器、细胞仪、高通量显微镜、pH 计……)的输入之间建立物理链接。如有必要,可使用移液机器人对生物反应器样本进行处理(稀释、固定、提取、纯化……),然后再装入测量装置。如果不需要反应实验控制,处理过的样品也可以存储在机器人平台上进行离线测量(OT-2 温度模块可以帮助保存对温度敏感的样品)。b 在软件方面,ReacSight 通过基于Python 和PythonWeb 应用程序框架 Flask 的多功能仪器控制体系结构实现了全平台集成。ReacSight 软件还提供了一个通用事件系统,以实现反应性实验控制。显示了反应实验控制的简单用例的示例代码。实验控制还可以使用Discord webhooks 将实验状态通知远程用户,并生成详尽的日志文件。03曼森自动化高通量发酵实验室曼森机器人自动化技术可根据客户实际需求进行定制化(可实现硬件+软件协同)完成复杂流程自动化。机器人自动化技术与平行反应器组合为生物领域科学研究助力,是实现生物技术biofoundry的重要技术基础;曼森生物致力于满足客户自动化、高通量的需求,推进合成生物技术产品快速产业化。曼森高通量发酵平台曼森实验室自动化系列曼森高通量自动样品检测机器人未完待续Mediacenter Editor | 曼森编辑文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑 内容审核:郝玉有博士
  • 康宁反应器技术新产品“连续流微通道光化学反应器“
    康宁连续流微通道光化学反应器 具有160多年历史的康宁-创新永无止尽。康宁公司应市场的需求,经过康宁反应器技术欧洲研发中心精心的研究和反复的实验推出了可用于光化学反应的“可控-高效-连续流”微通道光化学反应器。康宁在Advanced-Flow? 反应器技术方面的成功为连续流光化学合成领域带来了技术突破。康宁? Advanced-Flow? G1光化学反应器是基于康宁? Advanced-Flow? G1反应器和专门设计的高效光源系统,确保光化学合成能够在分布非常均匀的紫外光照射下,取得: 1.更好的反应性能 2.更高的收率 3.更优的生产效率 4.更均匀地吸收通过反应器通道的光能。 康宁? Advanced-Flow? G1光化学反应器一方面能够满足用户对光化学反应以及特定光源的要求,另一方面让用户享受Advanced-Flow? 反应器优秀的换热和传质性能带来的收益。如果您对光化学反应有兴趣,请与我们联系 0519-81166118或通过邮件 reactor.asia@corning.com 康宁将竭诚为您服务。 关于康宁中国康宁积极参与中国的发展已有30多年,以其专业人才及本土知识开发并应用突破性的技术从而改善了人们的生活。今天,康宁在中国的投资与该地区新兴市场的趋势紧密结合,在大中华区的总投资额已达30亿美金,员工总人数超过5,000人。 请访问www.corning.com.cn,了解更多关于康宁中国的信息。 关于康宁反应器技术在大中华地区推广康宁正在大中华地区努力帮助众多医药化工和精细化工企业以及相关科研院所进行微通道连续流反应工艺的技术可行性认证,并且帮助企业迅速培训微通道反应的技术人员,支持他们进行连续流工艺优化,和工业化示范试验。让更多人见证这一新技术的成效,尽快享受这一新技术给企业清洁安全高效生产和社会效益所带来的回报。如果您想了解康宁反应器技术以及康宁反应器在研发和生产中的应用实例,请访问康宁公司相关网页www.corning.com/reactors 如果您想和康宁反应器技术人员探讨有关工艺的技术可行性,请与我们联系 0519-81166118或通过邮件 reactor.asia@corning.com 康宁将竭诚为您服务。
  • 上新 | IKA 正式发布HABITAT 生物反应器
    /// HABITAT 生物反应器能对多种细胞进行重复性和标准化培养。它集生物反应器、光生物反应器和发酵罐于一体,符合人体工程学设计并可高效运行。IKA 推出一款新的生物反应器。HABITAT 生物反应器能对多种细胞进行重复性和标准化培养。它集生物反应器、光生物反应器和发酵罐于一体,符合人体工程学设计并可高效运行。HABITAT 生物反应器整合了 IKA 核心产品研发能力,在混合、温控、自动化、安全和设计上都实现了创新。HABITAT 作为 IKA 第一款自主研发的生物反应器,该机器在设计和操作上都有显著改善。提供罐盖支架的生物反应器HABITAT 是一款提供支架的实验室生物反应器。支架可让罐盖永远不用放下。马达可挂在支架的侧面,传感器亦可安全存放于支架上。所有这些都确保了符合人体工程学的工作、整洁的实验室台面和更快的组装操作。创新混合模式IKA 工程师开发了一种新的混合模式,专门用于 HABITAT 生物反应器。在Chaotic Mode(混沌模式)下,反应器内容物的混合遵循混沌动力学系统的数学原理。这确保了更快、更有效的混合。单独的 PID 处理器单独的 PID 处理器为实验室反应过程提供控制选项。管理员也不必是有经验的专家。如果温度值被改变,软件就会检查这种改变对过程的影响并进行调控。广泛的应用根据培养细胞的类型,实验室可将 HABITAT 用作生物反应器,或与 IKA 恒温器结合用作发酵罐。通过连接 LED 灯板,HABITAT 甚至变成了一个光生物反应器。在同类生物反应器中,HABITAT 是一款马达尺寸与罐体体积匹配的生物反应器。操作简单易上手从第一次操作开始,可与主机分离的平板电脑和直观的操作软件都让工作变得更容易。HABITAT 的智能校准管理使温度、pH和DO传感器的校准变得简单。软件可存储所有测试条件(反应器尺寸、搅拌器等)和所有测量值。四个集成的蠕动泵有助于收获细胞。因此,整个操作都很简单,学习时间短。长时间的实验可在无人值守条件下安全运行。体验 HABITATHABITAT 现已上市。使用适当的设备也可通过VR虚拟实验室体验 HABITAT 的性能与构造。体验HABITAT,请与我们联系:info@ika.cn,了解更多产品信息。关于 IKA IKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场领导者。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、移液器、研磨机、旋转蒸发仪、加热板、恒温循环器、粘度计、量热仪、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与全球知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。
  • 平行生物反应器 | 英国Cleaver Scientific公司生物反应器
    如需获取原文献/补充资料 请关注曼森生物公众号英国Cleaver Scientific是由Adie Cleaver创立,proSET是Cleaver Scientific旗下的产品,该系统是台式规模的,具有大型彩色触摸屏面板和用户友好的界面。1proSET 平行发酵系统proSET Parallel Fermentation System无论是需要同时进行两个相同的实验还是不同的实验,双重加热系统都允许同时运行两个恒温器加热、两个干式加热或一个恒温器和一个干式加热。远程控制软件可以控制 16 个容器,以实现真正的并行操作。产品特点:🔻一个控制器用于两个容器;🔻用于独立或同时控制的单容器或双容器;🔻用于恒温器和干式加热兼容性的双加热系统;🔻标准包中包含免费的远程控制软件;🔻与所有可选设备完全兼容。2proSET One 发酵系统proSET One Fermentation SystemproSET One System 体积小巧,作为标准仪器提供了所有必要的工具。双重加热系统允许为任何应用需求选择高达 10L 的任何容器类型。可选的扩展模块允许添加额外的设备以增强系统的功能。所有必需品,如温度、消泡剂、pH 和 DO 探头都包含在标准包装中。PC 软件可同时连接16 个系统 16 个容器。 产品特点:🔻基于 Linux 的系统;🔻尺寸:250x510x500mm;🔻最大容量为 10 升;🔻三档速度可调,蠕动泵控制不同流量的进料;🔻SCADA 软件就绪;🔻扩展模块可用于系统升级支持可选设备。3proSET Evo 发酵系统proSET Evo Fermentation SystemproSET Evo 可提供一体化发酵解决方案和终极自动化体验,它与 0.5 至 20L 的容器完全兼容,为大多数细胞系的培养提供了广泛的覆盖范围。proSET Evo System配备最新的控制软件;这款用户友好、直观的软件结合了许多高级功能,可提高实验效率。除了手动控制搅拌、温度、pH、DO 水平和进料外,还可以对上述参数进行 15 步预定顺序控制以及 pH 和 DO 反馈控制。此外,还提供多种即插即用可选设备。产品特点: 🔻用于细胞培养和微生物学研发的通用系统; 🔻可互换的五种耐高压灭菌玻璃容器; 🔻从单个界面控制十六个系统; 🔻兼容小型中试规模 15L 和 20L 玻璃容器。4曼森生物平行生物反应器前几期已经介绍了曼森JOY4-500和JOY4-1000型号的平行生物反应器,本期介绍JOY1-2400型号反应器。JOY1-2400高通量微型生物反应器专为菌种高通量筛选、配方开发、工艺优化、原材料质量评价等研究需求设计;与摇瓶、试管、孔板、微流控芯片相比,与生产罐结构更加一致,通过参数分析获得的工艺条件,可以直接进行放大,使试验室的成果迅速获得转化;高通量微型生物反应器与实验室传统的生物反应器相比,其软件设计更加合理,除了实现一键设定参数、一键同时校准外,还可以将编制好的工艺策略一键下发到每个罐上,提高操作效率,另外通过生物反应器的平行性设计和验证,使得用户的试验结论更加可靠。高通量微型生物反应器因为体积小,所以除了节约占用空间外,还可减少试验人员和原料成本,极大的降低研发成本。 产品特点:🔻一个单元模块由1个2400ml微型反应器组成,多个模块可以并联,组成高通量微型发酵罐组;🔻每个2400ml微型反应器的参数可独立设定和控制;🔻每个反应器对应4路蠕动泵,每个泵的转速单独可调;🔻一台电脑控制所有反应器,完成参数设置、命令执行、数据记录和曲线浏览;🔻一体化设计,不需要外接其他管路和设备,插电即用;🔻具有10个基本在线参数和30个可扩展参数;🔻有参数运行中自我诊断功能;信息来源:https://www.cleaverscientific.com/electrophoresis-products/proset-parallel-fermentation-system/https://www.cleaverscientific.com/electrophoresis-products/proset-one-fermentation-system/https://www.cleaverscientific.com/electrophoresis-products/proset-evo-fermentation-system/由于篇幅受限,关于上述生物反应器具体参数详见公众号右下角底部菜单栏→补充资料,自动跳转获取Mediacenter Editor | 曼森编辑文章来源:本文由上海曼森生物整理提供排版校对:刘娟娟编辑 内容审核:郝玉有博士-END-
  • 生物反应器“大牌”Applikon在中国建工厂
    日前,Applikon Biotechnology位于中国广州的工厂正式开张。新厂位于广州新建立的高新技术科技园&ldquo 科学城&rdquo ,包括办公室、仓库、生产设施、QA/QC测试部和技术支持部。新工厂能够提供Applikon生物反应系统,产品范围从实验室规模到生产系统,涉及中国市场的制药和生物技术行业。 新工厂开业典礼   据悉,这家生产工厂自2013年年底已开始运营,目前已组装生产出了50套生物反应系统。这一新增的供应量是必要的,以便能够满足中国、美国和世界其他市场对Applikon生物反应器不断增长的需求。   Applikon公司是全球生物反应器三大品牌生产商之一,开发、生产和供应研究和生产用途的反应器系统。公司总部位于荷兰,其蒸汽锅灭菌的生物反应器是世界工业的标准,从实验室到中试规模的生物反应器一直都是行业的领导者。Applikon Biotechnology能为用户提供从筛选、实验室到中试、生产(1L-25000L)的微生物、动物细胞培养和植物细胞培养的全系列的生物反应器。 (编译:刘玉兰)
  • 使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(中)
    本篇承接上文,《使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(上)》(点击查看)。2.2反应性光遗传控制和酵母连续培养的单细胞解析特性作者首次应用ReacSight策略的动机是酵母合成生物学应用。在这种情况下,精确控制合成路径并在定义明确的环境条件下测量其输出,并具有足够的时间分辨率和范围是至关重要的。光遗传学为控制合成路径提供了一种极好的方法,生物反应器支持的连续培养是对环境条件进行长时间严格控制的理想方法。为了测量单个细胞的路径输出,细胞术提供了高灵敏度和高通量。因此,借助ReacSight策略,利用台式细胞仪作为测量设备,组装了一个完全自动化的实验平台,实现了对酵母连续培养物的反应性光遗传学控制和单细胞解析表征(图2a)。补充说明2提供了平台硬件和软件的详细信息,此处仅讨论关键要素。八个反应器与移液机器人相连,这意味着每个时间点都会填满一列取样板。虽然机器人可以接触到三列细胞仪输入板,但作者仅使用一列,由机器人进行广泛清洗,以实现小于0.2%的残留,使用免疫磁珠进行验证。通常在机器人平台上安装两个倾翻箱和两个取样板(2×96=192个样本),因此,在没有任何人为干预的情况下,八个反应器中的每一个都有24个时间点。为了实现基于细胞数据的反应性实验控制,作者开发并实施了算法,以在重叠荧光团之间执行自动选通和光谱反褶积(图2b)。作者首先通过对组成性表达来自染色体整合转录单位的各种荧光蛋白的酵母菌株进行长期恒浊培养来验证平台的性能(图2c)。荧光团水平的分布是单峰的,随着时间的推移是稳定的,正如在具有组成型启动子的稳定生长条件下所预期的那样。mNeonGreen和mScarlet-I在单色和三色菌株之间的分布完全重叠。这与从强pTDH3启动子表达一个或三个荧光蛋白对细胞生理学的影响可以忽略不计的假设是一致的,并且三色菌株中转录单位的相对位置(mCerulean第一,mNeonGreen第二,mCarlet-I)对基因表达的影响很小。与单色品系相比,三色品系中测得的mCerulean水平略高(~15%)。这可能是由于反褶积中的残余误差造成的,与自荧光和mNeonGreen相比,mCerulean的亮度较低加剧了这种误差。为了验证平台的光遗传学能力,作者构建了一个基于EL222系统17的光诱导基因表达路径并对其进行了表征(图2d)。正如预期的那样,应用不同的蓝光开-关时间模式导致荧光团水平的动态分布覆盖范围很广,从接近零水平(即几乎无法与自体荧光区分)到超过强组成启动子pTDH3获得的水平。高诱导表达水平的细胞间变异性也很低,变异系数(CV)值与pTDH3启动子相当(0.22vs0.20)。作者组装的第一个平台使用了一个预先存在的定制光生生物反应器阵列。这种设置有几个优点(可靠性、工作容量范围广),但其他实验室无法轻易复制。由于ReacSight架构的模块化,可以通过将这个定制的生物反应器阵列与最近描述的开放硬件、光遗传学就绪的商用Chi.生物反应器(图2a(右图))交换,快速构建具有类似功能的平台的第二个版本。为了验证该平台的另一版本的性能,作者使用图2d中相同的菌株进行了光诱导实验,并获得了各种光诱导曲线的极好的反应器到反应器再现性。图2基于ReacSight的自动化平台组装,实现对酵母连续培养物的反应性光遗传学控制和单细胞解析表征。a平台概述。OpentronsOT-2移液机器人用于将支持光基因的多生物反应器连接到台式细胞仪(GuavaEasyCyte14HT,Luminex)。机器人用于稀释细胞仪输入板中的新鲜培养样本,并在时间点之间清洗。“点击”Python库pyautogui用于创建细胞仪仪器控制API。定制算法是在Python中开发和实现的,用于实时自动选通和去卷积细胞数据。使用定制的生物反应器装置(左图)或Chi生物反应器(右图)组装了两个版本的平台。b选通和反褶积算法说明。例如,显示了重叠荧光团mCerulean和mNeonGreen之间的反褶积。c多代单细胞基因表达分布的稳定性。从pTDH3启动子驱动的转录单位中组成性表达mCerulean、mNeonGreen或mCarlet-I的菌株(“三色”菌株),整合到染色体中,在浊度调节器模式下生长(OD设定值=0.5,上限图),每小时采集一次细胞仪(垂直绿线)。所有时间点的荧光强度分布(通过高斯核密度估计进行平滑)(选通、反褶积和前向散射归一化后,FSC)用不同的颜色阴影绘制在一起(下图)。RPU:相对启动子单位(见方法)。为了简单起见,未显示“三色”的OD数据,与其他类似。d基于EL222系统的光驱动基因表达电路的特性。应用三种不同的开-关蓝光时间剖面图(底部),每45分钟采集一次细胞仪。门控、去卷积、FSC标准化数据的中位数如图所示(顶部)。此图中显示的所有生物反应器实验均在同一天与定制生物反应器平台版本并行进行。源数据作为源数据文件提供。2.3使用光实时控制基因表达为了展示平台的反应性光遗传控制能力,作者开始动态适应光刺激,以便将荧光团水平保持在不同的目标设定点。这种用于体内基因表达调控的电子反馈有助于在存在复杂细胞调控的情况下剖析内源性路径的功能,并有助于将合成系统用于生物技术应用。作者首先构建并验证了光诱导基因表达的简单数学模型(图3a)。将三个模型参数与图2d的表征数据进行联合拟合,得到了良好的定量一致性。考虑到模型假设的简单性,这一点值得注意:光激活下的mRNA生成速率恒定,每mRNA的翻译速率恒定,mRNA(大部分降解,半衰期为20分钟)和蛋白质(大部分稀释,半衰率为1.46小时)的一级衰变。因此,当实验条件得到很好的控制并且数据得到适当的处理时,人们可以希望用一小套简单的过程来定量地解释生物系统的行为。然后,作者将拟合模型合并到模型预测控制算法中(图3b)。该算法与ReacSight事件系统一起,实现了对不同反应器中不同目标的荧光水平的精确实时控制(图3c)。为了进一步证明平台的稳健性和再现性,作者在几个月后进行了另一个单8反应器实验,涉及两个荧光团目标水平的四个重复反应器运行。所有的重复都能很好地跟踪目标,并且控制算法决定的光分布在相同目标的重复之间非常相似,但并不完全相同。作者还研究了之前使用的诱导系统在更长时间尺度上的遗传稳定性。遗传稳定性是工业生物生产的一个重要因素。作者观察到,EL222驱动的mNeonGreen蛋白的诱导可以持续5天以上,并且具有很好的稳定性(图3d顶部)。更进一步,作者测试了同一蛋白的分泌版本是否表现出类似的表达稳定性。作者观察到,诱导约2天后细胞水平显著降低。细胞异质性也增加了(图3d右侧)。为了弥补细胞水平的下降,作者将表达盒整合成多个拷贝(三次,串联染色体插入)。诱导后,获得了非常高的荧光水平(图3d底部)。令人惊讶的是,这些水平比非分泌蛋白高一个数量级,并伴随着强烈的应激,正如未折叠蛋白应激报告所反映的那样(pUPRmScarletI)。诱导后,细胞内蛋白质水平逐渐下降。细胞内蛋白质水平显示出明显的双峰分布,强烈的遗传不稳定性迹象(图3d右侧)。最后,当以最大诱导水平的三分之一诱导时,相同的三重拷贝结构表现出非单调行为:高水平初始反应,随后细胞内水平缓慢下降,如完全诱导的三重结构,随后长期内部高蛋白水平的非预期缓慢恢复(图3d底部)。这种恢复可以通过细胞适应高生产需求来解释,或者更可能的是,通过选择高产亚群来解释,该亚群能够更好地保存HIS3选择标记,即使在完全培养基中也具有轻微的生长优势。这个实验证明了作者的平台能够执行长时间的实验,并以相对较高的时间分辨率提供单小区信息。此外,它促使探索和利用营养素可用性对健康和压力的影响。图3闭环:使用光实时控制基因表达。a光驱动基因表达电路的简单ODE模型拟合到图2d的表征数据。拟合参数为γm=2.09h−1,σ=0.64RPU小时−1,γFP=0.475小时−1km被任意设置为等于γm,以仅允许从蛋白质中值水平识别参数。b实时控制基因表达的策略。每小时进行一次细胞仪采集,在选通、反褶积和FSC归一化后,数据被送入模型预测控制(MPC)算法。该算法使用该模型搜索10个周期为30分钟的工作循环(即5小时的后退地平线)的最佳占空比序列,以跟踪目标水平。c四种不同目标水平的实时控制结果,在不同的生物反应器中并行执行(自定义设置)。左:单个单元格的中位数(控制值)。右:单细胞随时间的分布。请注意,所有绘图都使用线性比例。d表达系统的长期稳定性和蛋白质分泌的影响。表达EL222驱动的mNeonGreen荧光报告子的细胞,无论是否分泌,在浊度调节器中生长5天,每2小时进行一次细胞仪测量。表示整个实验期间的平均表达水平。荧光分布也显示在选定的时间点(诱导后0、6、48和120小时)。细胞也有分泌应激的荧光报告子(pUPRmScarlet-I)。还提供了三个拷贝中整合的mNeonGreen报告蛋白的分泌形式的结果。相关蛋白(mNeonGreen水平)和应激水平(mCarlet-I水平)分布的时间演变如补充图11和12所示。源数据作为源数据文件提供。曼森生物高通量菌株筛选平台技术上海曼森生物科技公司专注于高通量、自动化、智能化实验室技术产品开发,逐步形成了全自动化的高通量菌株筛选平台技术,可根据用户需求定制化高通量全自动菌株筛选平台。每天筛选通量可从几千到10万,是人工通量的几十倍上百;在传统生物技术上,加速工业化菌株的遗传进化,帮助提高底物转化率和产量提升;在合成生物技术上,可为选择的平台化合物表达菌株的遗传稳定性、表观遗传进化提升效率。此外高通量筛选必须有高通量的自动化分析检测技术支撑方能发挥最大价值。曼森高通量自动样品检测机器人文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 生物反应器在细胞培养中的应用与产品设计(上)
    生物反应器的应用生物反应器在生物技术,工艺开发和研究中发挥着至关重要的作用,其主要应用包括:1. 细胞株开发:台式生物反应器可用于评估各个细胞株的性能,包括生长和表达效率,这有助于确定最适合进行进一步工艺开发和放大的候选细胞株。2. 工艺开发:台式生物反应器广泛应用于工艺开发的早期阶段,包括了参数优化和工艺放大两方面,首先在较小规模上优化温度,pH,DO等工艺控制参数,然后再进行工艺放大研究,降低放大至较大体积的生物反应器中可能存在的成本和风险。更复杂的工艺开发包括了增强型工艺,例如灌流培养和连续培养。3. 培养基优化:台式生物反应器可以用于优化培养基和补料策略,以改善细胞生长、活力和蛋白质表达,有助于实现高效,稳定且成本可控的大规模细胞培养。4. 工艺表征:台式生物反应器可进行工艺缩小研究,在较小规模上模拟较大生物反应器的条件,有助于了解和解决工艺放大过程中可能出现的限制性因素,如氧气传质、混合效率、CO2分压和剪切力。5. 质量源于设计(QbD):可以在台式生物反应器规模实施QbD开发原则,系统地研究和优化关键工艺参数,以确保产品质量的一致性。6. 临床样品制备:符合GMP要求的台式生物反应器系统,可用于临床前研究或早期临床试验中的小规模生产,以快速、经济地生产小批量的治疗性产品。Reference:cell culture bioprocess engineering, second edition细胞生长所处的生理压力生物制药中,CHO细胞作为常用的重组蛋白的表达体系,优化其生长和产物表达效率至关重要,然而生物反应器中CHO细胞却面临着多方面的生理压力,包括培养条件、营养供应和环境参数有关的各种因素,因此需要反应器提供良好的工艺参数控制,以维持合适的细胞生长微环境。 营养限制:CHO细胞的能量和生物合成严重依赖葡萄糖,葡萄糖浓度过低会导致细胞新陈代谢压力和活力降低;氨基酸是蛋白质合成所必需的,特定氨基酸含量不足会影响细胞生长和蛋白表达;细胞培养基中的生长因子、维生素和微量元素的不足也会影响 CHO 细胞的生理机能。 温度:温度波动会影响细胞的新陈代谢,对于细胞生长和蛋白表达通常所需最适温度不同,需要制定针对性控制策略。 pH值波动:pH 值的变化会导致培养基的酸化,影响分子的电离状态,并影响细胞的新陈代谢,维持pH值在最佳范围内对细胞活力和表达至关重要。 溶解氧浓度:溶解氧浓度过低会导致供氧不足,造成细胞应激,影响细胞生长和蛋白质表达。 二氧化碳分压:二氧化碳分压影响了pH控制,细胞代谢和生理功能,需要加以及时的检测和有效的控制策略。 渗透压:代谢物积累或营养浓度过高导致的高渗透压会对细胞造成压力,这会影响细胞体积大小调节和整体细胞功能。 剪切力:生物反应器中的搅拌和通气产生的能量耗散会对细胞造成剪切应力,过大的剪切应力会损伤细胞结构并影响其生产率。 代谢副产物:细胞新陈代谢产生的有毒副产物(如乳酸、氨)的积累会对细胞活力和蛋白表达产生不利影响。 细胞密度:高细胞密度和细胞聚集会导致营养和氧气的限制,造成压力,有效的混合和充分的氧气供应对防止这些问题至关重要。理解细胞所处的生理压力环境对于工艺条件优化,增强细胞活率,获得高表达产物和目标质量属性非常关键。工艺过程参数的控制在了解了细胞所处的生理压力之后,遵循质量源于设计(QbD)的指导原则,通过风险评估的方式确定关键工艺过程参数(CPP), 重要工艺过程参数(KPP)及非重要过程控制参数(Non-KPP),制定参数各自的设定空间(DS),并在操作范围内进行控制,这整体上需要工艺过程分析技术(PAT)及生物反应器所配置过程控制策略,以提供一致的工艺性能和产品质量(CQA)。图片来源于网络生物反应器常用控制策略 开环控制:开环控制系统应用一组预定义的控制输入或设定点,而不连续测量实际输出,系统假定输入将实现所需的输出,而无需实时反馈。该控制策略的准确度依赖于高精度及快速响应的硬件配置。 闭环(反馈)控制:闭环控制使用传感器持续监测系统输出,将其与所需设定点进行比较,并实时调整控制输入以保持所需的条件。这种方法能更好地适应过程中的变化和干扰。该控制策略的准确度依赖于控制器模式,参数的预设和调节。 前馈控制:前馈控制可预测系统中的干扰,并在干扰影响输出之前调整控制输入。它是对反馈控制策略的补充。生物反应器控制器策略的应用 PID控制:PID 控制是一种闭环控制策略的实现形式,通过比较设定值和实际值(误差),使用比例、积分和微分项来计算控制输出。比例部分使用增益(Gain)乘以误差进行输出;积分部分累积 CV(控制输出)随时间变化的程度,以纠正误差;微分部分分析参数过去的变化率,并将其推断到未来,其动作单位为秒(你想推断多远),可以让回路在发生突发事件时迅速做出反应,但很容易受到测量噪音的影响。 PID同时可以结合死区(DB, Dead Band)来使用,例如pH的PID控制,细胞对于pH有一个适应范围,设定合适的DB值,避免酸,碱的反复添加和渗透压的升高。 级联控制:级联控制涉及主控制器与子控制器,主控制器的输出作为子控制器的设定值,从而更好地抑制干扰;子控制器可以为一个或多个,通过顺序级联或同时级联,以满足不同复杂程度工艺的需求。例如DO控制中,主控制器为DO PID控制器,子控制器为Air,O2,搅拌等控制器。 Profile控制:为控制器的设定值设定随时间变化的程序,控制器接受该设定值进行开环或闭环控制。例如补料泵的控制中,根据预测的细胞密度增加情况调整补料速度供给率,从而实现对营养物质浓度的前瞻性控制。复杂工艺应用需求常见的细胞培养方式为补料分批工艺(Fed Batch),需要多级的种子扩增步骤,主反应器中也需生长至稳定期进行蛋白表达,因此所需设备成本高,占地空间大,生产效率较低且产品质量一致性存在差异。随着灌流培养基,细胞截留设备及PAT技术等方面的发展,增强型工艺(Process Intensification)在生物制药中逐渐得以应用。根据对细胞和蛋白的截留,增强型工艺分为Concentrate Fed Batch, Dynamic perfusion及Continuous Perfusion等不同形式。Reference:Perfusion Cell Culture Processes for Biopharmaceuticals灌流工艺的开发通常在台式反应器中进行,相比Fed Batch系统具有如下组成及特点: 反应器从结构设计到工艺验证上应能支持系统长时间无菌培养的要求。 反应器的通气及搅拌系统配置应当满足高细胞密度培养对于传质和混合的要求,并进行充分的表征,以评估放大过程中的限制性因素。 细胞截留装置:支持切向流或声学细胞截留装置的无菌连接,截留装置控制器可选择接受生物反应器控制,细胞在截留装置中所受的生理压力(剪切力,温度变化,溶解氧浓度等)应当加以控制。 PAT整合:系统应当支持额外的电极整合,实时监控细胞密度、活力、二氧化碳分压等关键参数。 外置设备的拓展:可拓展外置天平等设备。 自动化控制系统:系统应配置自动化灌流程序或配方,实现高精度自动化的灌流速率,反应器液位及细胞密度控制,减少灌流工艺长时间培养过程中复杂的人为操作所带来的风险。英赛斯NestoBR台式生物反应器NestoBR是一款基于生物工艺进行设计和研发的先进型台式生物反应器系统,应用于生物制药及生物技术等方向的工艺研究和开发,系统设计满足生物行业对于反应器的高性能及法规方面的要求,可降低用户实验的批次失败风险,提高工艺开发能力,加速生命科学的研究发现,实现稳健化的技术转移。NestoBR产品特点紧凑化的结构设计:集成式工业控制器,直观的用户界面与交互;减少设备空间需求,易于使用。严格的材料选择及处理:高硼硅玻璃,耐高温,耐腐蚀;316L不锈钢,表面抛光及钝化处理,,易清洗,易清洁;垫圈采用EPDM材质,符合cGMP要求。基于工艺理解的产品设计:从细胞生所处的生长微环境出发,进行功能设计,拓展工艺可操作空间,保障批次稳定。丰富的高性能硬件配置:灵活的硬件配置方案,满足不同细胞或工艺在培养体积、温度控制、搅拌控制、通气控制等工艺方面的差异化要求。高级自动化软件架构:ISA88批处理控制高级自动化软件架构,将物理硬件、操作程序和个性化工艺的紧密的结合,为控制系统提供安全性,稳定性保障。符合cGMP法规要求: 根据用户需求,提供从设计、测试、验证、文件等一系列技术服务;系统设计与验证遵循ISPE GAMP5。快速稳定的自动化参数控制:控制系统配置不同的控制策略,实现快速,稳定,灵活的工艺过程参数自动化控制完善的批次过程监控与管理:系统配置趋势图,批次报告,用户管理,审计追踪功能满足复杂工艺应用需求:NestoBR提供长时间运行的无菌保障,完善的设备表征数据,可集成PAT,外置设备与灌流装置,可新增控制回路实现自动化灌流工艺操作。全面的安全性保障:提供生物反应器在使用,批次,软件,数据,工艺等方面全方位的安全保障。
  • 微反实验太繁复?麦克仪器推出全自动高端微型反应器
    仪器信息网讯 2016年7月3-8日,被学术界誉为“催化领域奥运会”的第十六届国际催化大会(ICC 16)在北京国家会议中心举行。这是国际催化大会首次在我国举办,来自50多个国家的近3000人出席了本次会议。麦克仪器亮相ICC 16  作为全球催化剂表征与催化剂评价仪器的知名专业供应商,美国麦克仪器公司携Particular Systems Microactivity Effi高端实验室反应器积极亮相,为全球催化领域打造了崭新的催化剂评价整体方案,深度诠释了台式反应器自动化、智能化的发展方向。  据了解,Microactivity Effi是一款全自动的紧凑型台式反应器,可通过电脑控制进行一系列的实验,实时获取高精度、高重现性的数据结果,适用于催化剂研发与筛选阶段的各种反应。与市场中的其他微型反应器不同的是,Microactivity Effi配备了专为此系统研发的专利高精度测微伺服阀,可精确控制压力和液面并提供微量级的测试。Particular Systems Microactivity Effi亮相ICC 16  麦克默瑞提克(上海)仪器有限公司总经理许人良介绍说,使用Microactivity Effi,用户可在催化剂活性测试前进行表征以预测催化剂性质 在活性测试后再进行表征,可帮助用户确定催化剂失活的原因。整个表征-测试-表征的实验过程均可在一台设备中自动完成,Microactivity Effi可以说是全球首款全自动的催化剂评价微反装置,可实时控制反应过程。  在积极参展之余,美国麦克仪器公司本次还倾情赞助了ICC 16晚宴,该公司英国区域经理Steve Coulson出席晚宴,并对美国麦克仪器公司的全球概况、产品架构及技术应用优势作了简短介绍。
  • 专家视角 | 看生物反应器是如何诞生、发展和盈利的?
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/d7d1b172-bc85-414e-a9f1-61ef25af0fc7.jpg" title=" 1.jpg" style=" width: 600px height: 600px " width=" 600" vspace=" 0" hspace=" 0" height=" 600" border=" 0" / /p p strong (1)& nbsp IKA今年7月在中国发布了IKA Algaemaster 10 control光照生物反应器。能了解一下这款产品是怎么诞生的吗?背后有怎样的故事? /strong /p p   IKA Algaemaster 10 control是源于我们与美国北卡罗来纳大学威尔明顿分校的合作开始的。8年前该校研究人员到IKA考察,打算为他们实验室购买一些设备。 /p p   这些来自MARBIONC研究中心的老师正在进行关于藻类研究的课题,他们希望通过研究发掘不同藻类的潜力,从这些藻类中,能够发现新的产物作为治疗肿瘤的药物、膳食补充、生物质能源甚至用于美容等等。 /p p   在此之前,研究人员在12升的大型细口玻璃瓶中培养藻类,它们占用了大量实验室空间。培养藻类所需的光源来自白炽灯泡,而不是光照生物反应器精确控制的LED灯板。控制所有必需条件非常困难,导致产出很低,而且无法培养出足够数量的微藻。 /p p   今天,我们在藻类研究方面的合作实现了双赢。IKA 研发出让海洋科学家用于测试以及改善实验室的设备,而该校则获得最先进的设备用于培养和测试海洋生物。 /p p & nbsp /p p strong (2)& nbsp IKA Algaemaster 10 control光照生物反应器是一款专为科学家设计,用于探寻光合生物(比如微藻)最佳培养条件的完美设备。它的完美仅仅体现在精准控制环境条件和最大限度的降低污染风险? /strong /p p   Algaemaster 10 control通过控制器可以控制包括光照, 温度, 搅拌, pH, 气体和液体的定量补料。比如光照可以模拟日/夜自然光照,pH值可通过气体或液体调控,而控温则可以连接IKA恒温循环器实现一体化控制,更精准,更方便。由于釜体釜盖可以整体灭菌保证无菌环境,因此可以最大限度地降低污染风险。Algaemaster 10 control除了上述的优点之外,我们接触样品的物料均为惰性材料,对于使用海水培养或者一些对金属敏感的藻类也能得到很好的培养效果。而且得益于IKA在搅拌领域的研发基础,Algaemaster的搅拌速度可以完美地控制在10-100rpm的低转速,更接近自然环境中的真实条件。 /p p   在设备材料的选择上,我们采用了坚固耐用的材料(比如Ultem,这是一种热塑性材料,即使经过多年的高温高压灭菌,依然保持得很好)。在控制器上您可以看到有USB接口,设备可以记录整个实验数据,方便科学家做后续的数据分析整理?所以我们说Algaemaster 10 control就如IKA slogan所说的:designed to work perfectly! /p p & nbsp /p p strong (3)& nbsp 我们也认同光照生物反应器这款产品属于比较小众的市场,它的价格是多少?主要应用在那些行业领域?在中国有多大的市场空间?IKA是如何保障产品利润和产品质量及服务的? /strong /p p   目前Algaemaster 10 control标准配置市场定价在人民币30万元左右。主要应用在海洋科学研究、微藻研究、生物能源、制药、食品甚至化妆品行业。在中国,微藻研究在生物能源、制药、食品等多个行业的发展越来越重要,也有越来越多的科学家关注微藻研究,我们相信中国的科学家也会对Algaemaster产生很大的兴趣。 /p p   IKA是一家百年德国企业,长青的基业仰赖对产品品质近乎严苛的高标准;IKA不断在新品方面推陈出新,与全球科学家一道,倾听科学家的声音,满足科学家的不同需求,极富创意的设计,极简的操作便利,为科学家安心于科研实验提供保障。同时,IKA在全球的服务网络日瑧完善,以确保用户第一时间享受到来自IKA的专业服务。 /p
  • 使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(下)
    本篇承接上文。《使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(上)》(点击查看)。《使用ReacSight增强生物反应器阵列以实现自动测量和反应控制(中)》(点击查看)。2.4 探索营养缺乏对健康和细胞压力的影响荧光蛋白可以作为报告物来评估细胞的表型特征,也可以作为条形码来标记具有特定基因型的菌株。再加上生物反应器阵列的自动细胞仪,这种能力扩展了可能的实验范围:在动态控制环境中的多重菌株特性和竞争(图 4a)。事实上,一些荧光蛋白可用于基因分型,其他可用于表型分型。然后,自动细胞仪(包括原始数据分析)将提供关于不同菌株之间竞争动态和每个菌株的细胞状态分布动态的定量信息。根据实验的目标,这些丰富的信息可以反馈给实验控制,以适应每个反应器的环境参数。作为可以进行此类实验的概念的第一个证明,作者开始探索营养缺乏对健康和细胞压力的影响(图 4b,左上角)。微生物群落中的不同物种根据其代谢多样性或专业性有不同的营养需求,因此它们的适合性不仅取决于外部环境因素,还取决于群落本身通过营养物质消耗、代谢物释放和其他细胞间耦合。与分批竞争分析相反,连续培养允许控制这些因素。例如,在恒浊器培养基中,营养素的可用性取决于营养素供应(即输入介质中的营养素水平)和细胞的营养素消耗(主要取决于 OD 设定值)。作者使用组氨酸营养不良作为营养缺乏的模型:对于 his3 突变细胞,组氨酸是一种必需的营养素。通过将 his3 突变细胞与野生型细胞在不同 OD 设定值和喂养介质中不同组氨酸浓度下进行竞争,可以测量营养缺乏如何影响适应性(图 4b,右上角)。在这两个菌株中使用应激报告子也可以了解营养缺乏情况下适应性和细胞压力之间的关系。作者将重点放在未折叠蛋白反应 (UPR)应激上,以研究营养应激是否会导致其他事先无关的应激类型,这将表明细胞生理学中的全局耦合。组氨酸浓度为 4µM 时,在考虑的 OD 设定值(0.1-0.8)范围内,his3 突变细胞被野生型细胞强烈竞争(图 4b,左下角)。当浓度为 20µM 时,情况不再如此。在这种浓度下,野生型细胞的生长速度优势在 OD 设定值 0.6 以下接近零(剩余组氨酸足以使 his3 突变细胞正常生长),在最大 OD 设定点 0.8 时超过 0.2 h −1(剩余组胺过低,限制了 his3 突变体细胞的生长)。因此,对于这种营养供应水平,细胞的营养消耗水平对 his3 突变细胞的适应性有很大影响。4µM 到 20µM 之间 的这种定性变化与组氨酸的单个高亲和力转运体 HIP1 的 Km 常数报告值 17µM 高度一致。此外,因为组氨酸浓度为 4µM 的野生型和突变型细胞之间的生长速度差异接近甚至超过野生型细胞通常观察到的生长速度(在 0.3 到 0.45 h −1之间, 取决于 OD 设定值),作者得出结论,突变细胞在这些条件下完全生长。UPR 数据显示,在组氨酸浓度为 20µM 的所有 OD 设定点上,突变细胞和野生型细胞之间几乎没有差异,但在组氨酸含量为 4µM 时,突变细胞中的 UPR 反应明显激活 (图 4b,右下角)。因此,看似相似的生长表型(例如 4 和 20µM OD 为 0.8 的突 变细胞)可能对应于不同的生理状态(如不饱和蛋白反应应激水平的差异所揭示的)。此外,为了展示基于菌株丰度数据的环境反应控制,作者着手动态控制两个菌株的比率。控制微生物培养物的组成和异质性有望实现更有效的生物加工策略。作者推断,当两种菌株中的一种对组氨酸具有营养缺陷时,培养物的 OD 可以用作方向盘。事实上,组氨酸生物合成突变生长速率在 20µM 的中等组氨酸浓度下对 OD 的强烈依赖性(图 4b,左下角)意味着可以通过切换恒浊器培养物的 OD 设定值来动态控制其生长速率。此外,如果这种菌株与组氨酸原营养菌菌株共同培养,但以 OD 独立的方式生长较慢,则可以实现两种菌株比率的双向控制(图 4c,左)。作者利用繁重的异源蛋白分泌构建了这种菌株。然后,作者构建了一个简单的模型来预测组氨酸营养不良菌株的(稳态)生长速率差异。将此模型用于模型预测控制和 ReacSight 事件系统,作者可以以完全自动化的方式在平行生物反应器(图 4c,右)中保持两种菌株的不同比率。然而,作者注意到稳态误差的系统存在。这种行为可能是由于慢菌株的生长速度意外恢复所致。由于在特征化实验中未观察到这种行为,作者假设这种差异是由于特征化或对照实验中使用的氨基酸供应混合物的组成不同(除了组氨酸外,Sigma 的组氨酸缺失补充物比 Formedium 的完整补充物更丰富)。图 4 探索和利用适应性、营养缺乏和细胞应激之间的关系。a 由于共培养、自动细胞仪和反应性实验控制,结合单细胞基因分型和表型分型的实验得以实现,以实时适应环境条件。b 左上角:必需营养素的可用性(例如 his3 突变株的组氨酸)取决于环境供应,也取决于通过营养素消耗的细胞密度。营养素供应不足会阻碍生长速度,并可能引发细胞应激。右上角:实验设计。野生型细胞(标记为 mCerulean 组成表达)与 his3 突变细胞共同培养。这两个菌株都含有一个 UPR 应激报告基因 mScarlet-I 的驱动表达。自动细胞仪能够将单个细胞分配 给其基因型,并监测菌株特异性 UPR 激活。这两种菌株相对数量的动态可以 推断突变细胞和野生型细胞在每种情况下的生长速度差异。左下图:两种不同介质组氨酸浓 度下突变细胞适应度缺陷的细胞密度依赖性。虚线表示野生型增长率对 OD 设定值的近似依赖性。右下角:每种情况下的菌株特异性 UPR 激活。c 左:双应变联合体的原理,其组成可以通过 OD 控制来控制。右:实施和演示。异源难折叠蛋白的分泌被用作营养独立的慢生长表型。使用模型预测控制和 ReacSight 事件系统对 OD 设定值进行动态控制,类似于图 3b (参见方法)。在时间 0 时开始蓝光,并在整个实验期间保持亮起,以诱导慢 his+菌株的慢 生长表型。作者注意到系统存在稳态误差,测得的比率低于目标值。在补充注释 3 中,作者 研究了限制控制性能的机制(慢生长表型的不稳定性、菌株识别错误和模型中未考虑的延 迟),还提供了其他控制实验的结果。源数据作为源数据文件提供。2.5 ReacSight是一种通用策略:通过吸液功能增强平板阅读器为了说明 ReacSight 的通用性,将其作为通过连接实验室设备来生长细胞和 /或测量细胞读数以及吸管机器人来创建实验平台的策略,作者将 Tecan 平板阅读器与 Opentrons 吸管机器人连接起来(图 5a)。移液机器人和驱动读板器的计算机通过 Flask 连接。因为无法访问平板阅读器的 API,所以再次使用了基于 pyautogui 的“点击”控制策略。在第一个应用中,作者使用移液机器人在生长条件下长时间保持细菌细胞数量。更具体地说,大肠杆菌临床分离物在两种不同的培养基(M9 葡萄糖加或不加 casamino 酸)中生长,并存在不同浓度的头孢噻肟(CTX),一种β-内酰胺抗生素。由于β-内酰胺酶的表达,所选菌株对头孢噻肟处理具有耐药性。它对 CTX 的最低抑制浓度为 2 mg/L。当细胞群 OD 的中位数达到目标水平时,介质将按照补偿蒸发的策略更新(图 5b,左)。通过所选策略,作者能够在至少 15 代细胞中 保持 OD 中值接近所选目标(0.05 或 0.1)(图 5b 右图)。有趣的是,作者观察到,当用 1 mg/L 头孢噻肟处理时,细胞在葡萄糖+酪氨酸钠中的抵抗力比单独在葡萄糖中更好。这有些令人惊讶,因为β-内酰胺类抗生素通常对快速生长的细胞有更强的影响。在第二个应用中,作者使用该平台测试了在不同细胞密度下应用第二剂量头孢噻肟的效果。这些实验在概念上非常简单,但其结果很难预测。低浓度头孢噻肟抑制参与细胞分裂的 PBP3 蛋白,从而导致细丝形成,而高浓度头孢噻肟则抑制参与细胞壁维持的 PBP1 蛋白,并导致细菌溶解。由于成丝作用,即使没有细胞分裂,种群生物量在延长的时间内也可能继续呈指数增长。此外,死亡细胞释 放的β-内酰胺酶在环境中降解抗生素。这导致了细胞死亡和抗生素降解之间的时间赛跑,丝状物有助于延迟这一赛跑,同时增加生物量(图 5c 左)。因此,在不同细胞密度下应用第二剂量抗生素的实验有可能启发人们理解不同的作用(图 5c 中间)。当以 5 10−4 的光学密度开始时,单次处理的结果与分离物的 MIC 一 致,因为高于 MIC 的处理会导致生长明显停滞,而低于 MIC 的处理不会(图 5c, “培养基处理”)。还可以观察到,在前一种情况下,生长在数小时后恢复,这是酶介导的抗生素耐受的典型行为。这两个观察结果在使用 16 mg/L CTX 进行第二次处理的情况下仍然有效。有趣的是,当处理后生长停止时,OD 大约是处理时 OD 的 25 倍:12 10−3 ,6 10−2 和 12 10−2,处理时分别为 5 10−4 , 2.5 10−3 和 5 10−3。这表明,生长停止前活细胞对抗生素的降解是有限的,因此,生长停止之前只有有限数量的细胞死亡。因此,对抗生素处理的耐受性使细胞在死亡前的生物量增加了近 25 倍,然后由于酶介导的抗生素降解,使细胞在处理中存活下来,远远 超过其 MIC。还可以观察到,当初始处理为 4 mg/L 时,生长停止和再生之间的延迟相对恒定(~5 小时),与添加的抗生素总量无关(4 或 20 mg/L CTX)。这表明,生长停止后抗生素降解非常有效,延迟主要对应于无法检测到的再生所需的时间,此时活细胞的动态被死亡生物的光密度所掩盖。在作者的条件下,当第一次处理有效(4 或 16 mg/L)时,第二次处理似乎几乎没有效果。需要进行深入研究,以更量化的方式调查这些影响。图 5 基于 ReacSight 的自动化平台组装,实现反应控制和低容量细菌培养物的表征。a 平台 概述。Opentrons OT-2 移液机器人用于提高读板器(Spark、Tecan)的容量。机器人用于在预先定义的 OD 处处理平板读取器中的培养物。b 左:大肠杆菌临床分离物可以通过以 OD 控制的方式更新培养基来维持在生长条件下。必须注意补偿延长时间范围内的蒸发。右图:富培养基中的细胞(葡萄糖+casaminoacids vs 单独葡萄糖)生长更快,但抵抗更好的亚 MIC 抗生素处理。左:由于两种效应的结合,细菌种群可能表现出对处理的恢复力。在单细胞水 平上,细胞可能通过丝状化耐受超过其 MIC 的抗生素浓度。基于纤维的耐受性允许在细胞 死亡之前增加生物量。在种群水平上,抗生素被环境中细胞死亡时释放的酶降解。最终结果 取决于细胞死亡和抗生素降解之间的竞争。中间:这两种效应的各自作用可以通过反复抗生 素处理来研究。右图:大肠杆菌临床分离物在初始 OD 为 5 10−4 时用不同浓度的 CTX(图 例)处理,第二次使用 16 mg/L CTX(红色)或单独使用介质(蓝色),使用用户定义的 OD (2.5 10−3 或 5 10−3 ). 由于仪器限制,OD 读数低于 10−3 个可靠性较差。源数据作为源数据文 件提供。03 讨论作者报道了 ReacSight 的开发,这是一种通过自动测量和反应实验控制来增 强多生物反应器设置的策略。ReacSight 通过允许研究人员将低成本开放硬件仪器(如 eVOLVER、Chi.Bio)和多功能、模块化、可编程移液机器人(如 Opentrons OT-2)与敏感但通常昂贵的独立仪器相结合,构建全自动化平台,大大拓宽了可行实验的范围。作者还证明,ReacSight 可用于增强具有吸液能力的平板阅读器。ReacSight 是通用的,易于部署,应该广泛用于微生物系统生物学和合成生物学社区。正如 Wong 及其同事所指出的,将多生物反应器装置连接到细胞仪进行自动测量,可以实现微生物培养物的单细胞分辨特性。事实上,在微生物系统和合成生物学的背景下,自动化细胞术几年前已经被少数实验室证明,但低吞吐量或依赖昂贵的自动化设备可能会阻碍这项技术的广泛采用。来自连续培养物的自动细胞仪与最近开发的光遗传学系统相结合,变得特别强大,能够对细胞过程进行有针对性、快速和成本效益的控制。作者使用 ReacSight 将两种不同的生物反应器设置(预先存在的自定义设置和最近的 Chi.Bio-optogenetic-ready 生物反应器) 与细胞仪连接起来。这证明了 ReacSight 战略的模块化,而使用 Chi Bio 生物反应器的平台版本说明了其他缺乏现有生物反应器设置的实验室如何能够以较小的时间和财务成本(不包括细胞仪的成本,尽管其价格昂贵,但即使在缺乏自动化的情况下也已经在实验室中广泛使用)构建这样的平台。作者通过以全自动方式并在不同的反应器中并行执行(1)光驱动的基因表达实时控制,展示了该平台的关键能力;(2)在严格控制的环境条件下,基于细胞状态的竞争分析;动态 控制两个菌株之间的比值。然而,作者只触及了这些平台提供的巨大潜在应用空间的表面。最近通过核 糖体移码技术证明,菌株条形码可以扩展到 20 株带有两个荧光团的菌株,甚至可以扩展到 100 株带有三个荧光团。这种多路复用能力对于并行描述各种候选路径的输入-输出响应(或菌株背景库中路径行为的依赖性)特别有用(在反应器中 使用不同的光感应)。免疫珠可用于更多样化的基于细胞术的测量(机器人可实 现自动孵化和清洗,例如使用 Opentrons OT-2 磁性模块)。表面显示或 GPCR 信号等技术也可用于设计生物传感器菌株,用单细胞仪测量更多培养物尺寸,无需试剂成本。除了高性能的定量菌株表征外,此类平台还可用于生物技术应用。基于自动细胞仪的人工微生物联合体的组成,以及培养条件的动态控制(如本文所示,使用组氨酸营养不良和 OD),可以大大减少设计稳健共存机制的需要,因此可以使用更大多样性的联合体。未来,希望许多基于 ReacSight 的平台将被组装起来,它们的设计将被广泛的社区共享,以大幅扩展实验能力,从而解决微生物学的基本问题,并释放合成生物学在生物技术应用中的潜力。参考文献:Bertaux, F., Sosa-Carrillo, S., Gross, V. et al. Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight. Nat Commun 13, 3363 (2022). https://doi.org/10.1038/s41467-022-31033-9 文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 微反应生产技术专用精准计量泵-德国彗诺微量泵应用案例
    德国彗诺微反应生产技术专用精准计量泵能精确输送少量具有高腐蚀性的液体,具有精确,微量,压差大的输送优势。微反应生产技术专用精准计量泵产品优势如下:1、结构紧凑、占地体积小、质量轻、易集成;2、自吸力强;3、流量可调范围大、输送精准可靠;4、压差大、能耐腐蚀;5、流动脉冲低,稳定性强——柱塞泵、隔膜泵等机械泵很有可能造成脉动流,而对微通道反应产生不良影响;6、剪切应力小;7、死区体积小;8、使用寿命长;9、RS232、电流电压等多种控制方式可选;微反应生产技术专用精准计量泵应用案例:Microinnova公司微通道反应器,Microinnova公司将德国彗诺微量泵集成到两个十分紧凑的连续配方合成装置和一个智能模块化自动连续生产系统中。这款反应器需要精确添加八种不同粘度的液体到三个静态混合器中,从而得到最终混合物。该反应器不仅能生产不同聚合物浓度的混合物,而且可根据客户的日常供应需求进行自动调节产量。另外,该连续微通道反应器能轻松连接本地站点的 IT 系统,如 SAP系统,真正实现智能自动化。为实现这些要求,该系统通过集成热/冷追踪系统和德国彗诺微型齿轮泵,实现了多个全自动操作功能。翁开尔是德国彗诺微量泵中国独家代理商,欢迎致电咨询。
  • 美科学家制成聚合物纳米纤维反应器
    美国研究人员已开发出一种仅用大约1000个分子即可进行化学反应的新型化学合成方法,该新系统利用的是聚合物纳米纤维相互交织后所产生的微弱的化学反应,该方法已被证明可用于新型药物和工业原料的快速筛选。   研究人员称,这种新工艺还可用于对新的蛋白或DNA识别标签进行高通量测试,以改进目前用于测序的蛋白或DNA识别标签;或用于检测罕见的生物分子,如癌症或其他疾病早期阶段的微量蛋白特性。   目前,研究人员一般使用微流体系统来进行小规模的化学反应,即在一个芯片上通过由微型管路和泵组成的网络来传递化学物质。而美国博林格林州立大学化学家帕维尔安祯贝切尔开发的这个新系统则完全不同,反应在悬浮于干燥的聚合物纳米纤维中进行,且只在纤维相遇时才会相互发生反应。   研究人员使用静电技术研制出了这个纤维反应器。他们将液体聚氨酯装入配有细针的注射器,在针尖处形成一个微小的液滴,然后给针尖施加电压。电荷相斥驱动液滴形成细长的聚合物纤维,每条的直径约在100纳米至300纳米之间。研究人员认为,利用含有少量反应物的聚氨酯溶液所产生的静电,就可编制出一个液态纤维网,这样就创建出了反应器。经向的纤维包含一种反应物,纬向的纤维则包含另一种反应物。当施以微热使这些纤维融合时,结合处的化学物质就混合在一起发生反应。通过荧光成像和质谱等各种方法,这些生成物就可被鉴别出来。   在最近一期《自然化学》杂志上,研究人员介绍了利用该微型反应器对4种不同反应所做的测试。这些反应只发生在具有zepto-mole(10的负21次方摩尔)量级的大约1000个分子间。其中两种反应可用来测试与荧光染料分子相关的方法,这些分子只在经向与纬向相互交织的线上碰到相似的目标分子时才会发光。安祯贝切尔的研究领域之一便是开发可检测特定蛋白片段或DNA碱基的染料,目前他正在开发attoliter(一万亿分之一升)级的反应器纤维,以对这些染料进行高通量筛选。该系统加以改进后就可使用非常小的样本来研究数千个蛋白的相互反应。   研究人员表示,这种纤维反应器的最大优势在于比其他技术费用低廉,低反应量在测试那些目前尚未知晓的物质之间的新反应时也具有优势。更重要的是,反应和生成物仅限于纤维内,它们不会蒸发和泄露,因而更为安全。
  • 康宁庆祝反应器制造中心在中国投入运营
    纽约州康宁&中国常州 — 康宁公司(纽约证券交易所代码:GLW)今日宣布其常州制造中心正式投入运营,将为康宁反应器技术有限公司生产连续流反应器 (AFR)。常州制造中心位于江苏省常州科教城园区,将于2020年1月投产并于当季度开始交付产品。这意味着康宁能够更专注于服务亚太地区的医药和化工产业,包括制药、农药、特种化学及精细化工。康宁反应器业务的全球总部也坐落于该园区,并将于2020年投入使用。康宁反应器技术有限公司总裁兼总经理姜毅表示:“对于连续流反应器技术而言,中国在全球市场中的地位首屈一指。 因此,当地通过鼓励制药及精细化工产业智能化绿色化发展,采用更先进、更高效、更安全的生产技术,进一步促进化学品高端智能研发和本质安全生产。这对于连续流反应器技术的全球领导者康宁而言,无疑是一个重要的机遇。” 常州康宁反应器制造中心的落成,意味着康宁能够以更快的速度响应客户需求,为客户提供包括高质量反应器在内的系统解决方案,确保亚太区客户可持续药品及精细化学品的本质安全生产,同时为客户带来更高的产率和效益。康宁反应器技术有限公司常州制造中心利用全球供应链,采用最新的“系统-应用-产品”(SAP)云端数字技术,在亚太地区以智能化的方式制造康宁反应器和配套系统。位于法国的康宁反应器业务团队将继续为全球其他地区提供全面服务。康宁大中华区总裁兼总经理李放表示:“虽然康宁反应器技术有限公司总部位于中国,我们却拥有来自全球各地康宁团队的支持。常州总部集结了四大洲10多个国家的资源,以满足亚太地区客户的需求,确保高效交付产品。” 康宁反应器技术能够在提高化学品加工质量的同时降低安全风险。此外,康宁反应器技术还能节约能源,提高化学合成效率,降低生产成本,减少对环境的影响。相较于传统的间歇式反应器,康宁的连续流反应器可以使传质效率提高至少100倍,换热效能提高1000倍;可实现从化学品的实验室可行性验证到大批量生产之间的无缝对接,适用于制药、特种化学及精细化工行业。
  • 康宁反应器技术系列线上讲座开播啦!
    【2020康宁反应器技术年会延期通知】 期待着的2020康宁反应器技术年会,因为新冠肺炎的爆发将延期到2020年6月21日在上海举行。考虑到6月22-24日2020 CPhI& P-MEC China将在上海开幕,康宁反应器技术交流年会地点变更为上海浦东,时间定为6月21日,CPhI展会前一天。康宁真诚地为客户着想,一次出行,两场活动,让您满载而归。具体会议通知,请关注康宁反应器技术微信公众号,后续将陆续推出。 【康宁反应器技术线上讲座开播啦】 年会延期,复工延期,但化学人学习连续流新技术的热情不减。康宁反应器技术将陆续推出系列连续流技术线上讲座。实验室中的智能化-带您进入连续流的世界康宁G1反应器连续流流工艺开发案例分享康宁反应器技术工业化案例分享Zaiput连续分离技术在线核磁技术连续过滤技术连续流技术在药物研发中的应用连续流技术在农药研发及生产中的应用连续流技术在光化学中的应用连续流技术在硝化反应中的应用连续流技术在加氢反应中的应用连续流设备的安全和腐蚀 会议免费,将以微信群的形式进行。早日报名入群,即使错过会议,也可进群学习。具体会议内容以实际安排为准。敬请关注康宁反应器技术微信平台的信息发布。公众号:corningAFR 【线上讲座第一期】实验室中的智能化–Lab Reactor带您进入连续流世界 微化学工程与技术是当前化工行业科技创新的热点和重点之一,将开启医药和精细化工安全生产的新时代。微化工技术具可强化传热和传质能力,可平行放大、安全性高、易于控制等优点。在医药和精细化工领域可以大大提升研发及工业生产的效能,以自动化控制,微型化和绿色化满足化工过程的连续和高度集成的生产要求。 康宁自动化连续流化学反应快速筛选平台,自动化程度高,可对工艺条件进行快速筛选,反应结果瞬间可知。可在短时间内建立强大的化合物库,并可无缝放大,能在实验室条件下为供临床提供公斤级产品。 主办单位:康宁反应器技术有限公司 会议时间:2020年3月3日20:00-21:00 会议形式:网络微信会议 演讲嘉宾:伍辛军博士 康宁反应器技术中心主任 伍辛军,男,理学博士,2010年毕业于中国科学院成都有机化学研究所,获有机化学博士学位。2010-2013年在龙沙公司( Lonza )从事药物合成工艺研发与放大生产工作。2013年加入美国康宁公司,现任康宁反应器技术中心(中国)主任,从事康宁反应器技术在中国区应用与推广业务,主要负责带领康宁反应器技术团队为中国东亚太区客户提供技术培训、应用开发、工业化生产等技术支持与服务。 伍辛军博士曾在Chem. -Eur. J.等期刊发表论文10余篇,并申请多项发明专利。伍博士从事医药中间体、精细化工中间体、先进材料等合成工艺开发及工业生产工作多年,先后领导过数十个基于康宁微通道反应器技术的连续流工艺开发、工业生产项目,在康宁微通道反应器技术应用方面有丰富的经验。 【如何报名】1.请关注微信公众号:康宁反应器技术2.点击下方“产品介绍”,选择活动报名3.识别报名二维码,选择第一场:实验室中的智能化——带您进入连续流的世界4.填写完您的个人信息,即可成功报名参加我们的会议请记住3月3日,让我们相聚微信群,共享连续流技术饕餮盛宴。
  • 2015年康宁反应器技术交流年会(第五届)
    康宁反应器技术与行业先驱同写微通道技术之章,共寻化学工艺创新之道,携手开通绿色化学之路!3月26-27日,让我们相约江苏常州,于触手生春时节,启动康宁绿色行动年,现场见证康宁G4工业化反应装置的模拟化工厂运行;聆听国内外专家和客户应用康宁反应器技术取得的最新成果;实现科技创新成果与产业化应用的最佳结合;开启科技创造价值,绿色化工生产新时代之门, 祝您梦圆绿色化工,让您的企业更环保,更安全,更具竞争力。此外,您还将有机会 1. 康宁反应器技术在华和全球推广现状报告 2. 西班牙客户代表交流康宁G4反应器成功应用低温API工业化cGMP生产的最新经验-从G1 小试到G4大生产无缝对接 3. 康宁2000吨年通量G4工业化装置现场运行演示-“康宁绿色反应车间” 4. 康宁法国总工程师分析G4工业化反应器设计与工艺控制要点 5. 英国专家与您分享成功应用于连续化生产系统的连续结晶新技术 6. 行业专家现场解读“史上最严环保法”,分享应对策略 7. 康宁技术团队现场讲解《康宁反应器初级应用讲座》和《康宁AFR反应器高级应用讲座》 8. 多功能康宁反应器技术中心实地参观 9. 零距离接触康宁各系列反应器和配套设备并观摩反应器系统实验演示 10. 国内外计量泵和温控机供应商为您现场解答反应器配套设备的技术特点 11. “第二届康宁反应器技术绿色创新楷模奖”颁奖仪式 12. 除了会议报告及培训参观外,最新的应用案例将在展板区展出 13. 现场各种抽奖答谢活动等着您的参与 会议时间:3月26-27日 地点:江苏常州武进香格里拉酒店 希望有意参加的单位和个人尽快和康宁反应器技术部联系:每单位限两名免费名额。联系电话:021-22152888转1408 或email: reactor.asia@corning.com
  • IKA 光照生物反应器Algaemaster 10 control 正式上市
    这款新产品线的诞生令IKA家族更瑧丰富品类。IKA Algaemaster 10 control光照生物反应器是一款专为科学家设计,用于探寻光合生物(比如微藻)最佳培养条件的完美设备。 利用IKA Algaemaster 10 control光照生物反应器,可轻松在密闭系统中精准控制环境条件,从而培养微藻或蓝藻等光合生物。在必须达到高纯度微生物培养并最大限度降低污染风险的研究领域,密闭系统尤其重要。光照生物反应器为科学研究微生物创造培养环境,如新药物发现或转化科学等。 10L夹套式反应釜可抗海水腐蚀;釜体及釜盖可高压蒸汽灭菌,保证无菌条件。为了最大限度防止金属或塑料部件在水中释放游离分子,整个反应器接触样品的部分均由惰性材料(如硼硅酸玻璃,PTFE, Ultem® 热塑性材料)制造而成。通过数个接口可轻松控制光照,温度,搅拌,pH,气体和液体的定量补料。 IKA 与美国北卡罗来纳州立大学(UNCW)的藻类资源中心(ARC)建立了长期的合作进行研发及测试。ARC为商业、工业以及学术研究海洋微藻在各种不同应用中的机会提供支持,包括营养学、药学或生物质研究等。 这些科学家证实,IKA Algaemaster 10 control光照生物反应器能够更好地控制条件,以及比过往更快的时间培养大量高密度的藻类。
  • 德国彗诺微反应器连续补料计量泵|内含Microinnova微通道反应器集成案例
    【翁开尔是德国彗诺微反应器连续补料计量泵中国总代理】最近,Microinnova集成了一个 mzr-11558X1,由合金 C22 制成,具有双壳,作为高度复杂的模块化工厂的主要组件之一。该工厂采用先进的工艺性能和模块化的“即插即用”化学生产技术。该工厂系统专为处理气/液和液/液过程的小规模生产而设计。为了满足客户的要求,该设备主要由合金 C22 制成。通过包括微型环形齿轮泵的双壳的完全集成的热/冷跟踪系统实现了广泛的操作窗口。模块化设计在容器化环境中提供智能流程灵活性。模块化工厂系统全自动运行。满足客户的完全满意,完成的工厂系统于 2018 年 8 月投入使用。德国彗诺微反应器连续补料计量泵适用泵 翁开尔是德国彗诺微反应器连续补料计量泵中国总代理,欢迎致电咨询。
  • 2019年康宁反应器技术交流年会(第九届)预告
    2019年康宁反应器技术交流年会(第九届)预告 2019 Corning Reactor Technology Annual Conference (9th)2019年3月20-22日,中国×常州聚心引航, 智驱未来2019注定又是非同寻常的一年。对医药和精细化工企业来说,环保安全,工艺升级,节能增效,差异化竞争仍然是不变的主题。但是站在全球经济一体化的舞台上,实验室工艺研发的智能高产化,生产装备和生产工艺的本质安全化,已成为当今新兴化工产业发展的风口。高质量发展已经成为行业发展的共识。如何借助于本质安全、智能化、高质量发展的东风和世界接轨正在成为化工科技人员和企业家头脑风暴的重要内涵。连续制造是2018年医药和精细化工行业最响亮的口号。美国白宫先进制造Bai皮书,美国食品和药品监督管理局FDA的一再重申,已让“连续制造”深入民心。康宁AFR® 微通道反应器技术在中国多家企业已经实现了年通量万吨级的工业化装置的开车以及超过500天的“零放大”、“7/24”的 稳定运行,充分证明了康宁AFR连续生产制造系统多功能可行性和卓越可靠性。这些工业化成功示范,也彰显了中国化工医药企业在创新技术的应用上敢为人先,引领行业的风采。康宁反应器技术平台的使命是聚心引航, 智驱未来。新格局,新动力,专注客户价值2019是康宁反应器技术工业化连续制造“零放大、稳运行”的示范年。康宁将进一步拓展AFR® 实验室多功能研发一体化平台的应用范围,联手世界欧美亚创新研发团队,结合在线监测PAT技术,努力打造先进的实验室多功能智能化合成研发平台。在工业化装置安装数量迅速增长层面,康宁凭借10年来在全球工业化应用积累的宝贵经验,全心全意地专注客户价值,帮助客户完成AFR微通道合成技术从实验室小试到工业化生产的成功转化。2019年3月20-22日,让我们齐聚江苏常州聆听国内外连续流技术大咖对行业趋势、热点和难点的新分享和解读:? 美国麻省理工学院化工系Klavs Jensen教授,院士、康宁国际流动化学和反应器成就大奖获得者再次登台畅谈:计算机系统预测化学合成反应:机器学习与人工智能辅助药物加速开发;? 多名欧美亚连续流技术领域学术带头人:连续流新应用进展和成果? 康宁万吨级连续流工业装置安装和运行体会;? 发布授牌新一批全球康宁反应器应用认证实验室(AQL)? 原料药微通道连续合成cGMP生产论证过程? 化工安监政策新动向和对微反应应用意见? 多家企业康宁反应器应用成果大展示? 颁发2018年度康宁反应器技术应用创新奖? 康宁连续流微反应器高级培训? 更多惊喜现场发布主办方:康宁(上海)管理有限公司 康宁反应器技术中心(中国)会议规模: 600人 会议地点:江苏省常州市武进区香格里拉酒店会议时间:2019.3.20-3.22会议免费:包括会议资料,茶息,午餐和晚宴及各种抽奖活动了解更多会议内容、演讲嘉宾信息和报名信息,请关注公众号:康宁反应器技术。 康宁反应器技术年会是康宁公司对客户的真诚回馈,是康宁专注客户价值实现的重要环节。康宁反应器技术年会是全球连续流微反应技术行业的盛会。世界的大咖云集,高端学术,工业制造,客户现场交流,公开坦诚,精彩呈献。2019年康宁反应器技术年会免费向热爱连续流微反应技术的企业和康宁现有客户开放。不但会议免费,还有各种大奖等着您!
  • 分批补料微型生物反应器设计的最新进展
    前沿先进的分批补料微生物反应器可降低扩大规模的风险,并更接近模拟工业培养实践。近年来,已经开发了高通量微量补料策略,无论实验预算如何,都可以提高微量分批补料培养的可及性。该综述探讨了这些技术及其在加速生物过程开发中的作用。扩散和酶控制的补料可实现基质的连续供应,且简单实惠。更复杂的补料曲线和更强的过程控制需要额外的硬件。自动液体处理机器人可被编程为预定义的补料曲线,并具有响应过程参数偏差的灵敏度。研究显示,微流体技术可促进连续和精确补料。将自动化高通量分批补料培养与实验设计和基于模型的优化相结合的整体方法极大地增强了过程理解,同时最大限度地减少了实验负担。为在线优化补料条件引入实时数据可进一步细化筛选。尽管该综述中讨论的技术有望实现高效、低风险的生物过程开发,但自动化培养平台的费用和复杂性限制了其广泛应用。未来的关注点应该集中在开源软件的开发上,减少硬件的排他性。介绍许多公司依赖于不可再生的石化原料以及更复杂工艺的天然产品所需的大量步骤可能会阻碍经济可行性,将可再生原料生物转化为此类天然产物的微生物细胞工厂的建设,引起了人们的极大兴趣。生物工艺开发的初始阶段涉及广泛筛选各种菌株和工艺参数。使用简单的批量微量滴定板(MTP)或摇瓶培养在此阶段仍然很普遍,这主要是由于与实验室规模的搅拌反应器相比,它们的成本相对较低且通量较高。然而,由于体积小和缺乏用于在线监测和控制基础设施,分析通常限于端点分析,限制了过程洞察力。在这种情况下,先进的微型生物反应器MBR 系统越来越多地被采用,其目的是克服这些关键的瓶颈。使用新的混合策略,尽管空间和资源要求显著降低,但仍有可能有效模拟较大的实验室生物反应器。许多装置可以并行运行,便于高通量筛选应用。通过将 MBR 技术与战实验设计(DoE)方法相结合,可以进一步最大化过程洞察力,同时最小化实验负担。DoE 促进了对生物系统中无处不在的因素相互作用的系统评估,以及对设计空间的更广泛探索。为确保工业规模的最佳性能,应在生物过程开发的早期阶段应用 DoE 同时优化遗传和环境。微规模培养和工业规模培养之间的培养策略的主要不一致性可导致在生物过程开发的最早阶段选择次优菌株和过程条件。因此,必须将过程控制策略和分批补料操作纳入高通量筛选,以确保更接近地模拟工业规模的培养条件。最近开发了几种具有内置补料、控制和采样能力的新型 MBR,以克服这一关键瓶颈。已经研究了创新的内部和外部补料策略及其模仿不同常用工业补料策略的潜力,例如脉冲、指数、修正指数和线性补料。内部分批补料策略包括扩散和酶控制的补料,通常涉及由半透膜分开的双相培养基和多糖基质的生物催化分解。通过使用微流体和自动化液体处理系统(LHSs)。这种系统提供了改进的补料控制,允许更有效地模仿工业相关的脉冲、线性和指数进给策略。引入基于模型的优化算法以实时分析过程数据并重新确定最佳培养策略也获得了极大的兴趣,以进一步加快生物过程开发。将新型分批补料 MBR 与统计 DoE 和基于模型的优化策略相结合的整体方法可能是稳健菌株开发和优化的最佳方法。通过对大量遗传和环境因素组合进行战略性高通量筛选,可以确保设计质量,同时监测和控制工业相关工艺参数。与传统方法相比,这种增加的过程洞察力有可能通过减少所需的筛选阶段的数量来大大加快生物过程的开发。内部补料策略在内部分批补料系统中,基质在培养容器内逐渐释放,无需外部补料。这些系统的主要特点是它们与现有基础设施的兼容性。由于不需要先进的微型泵、微流体或液体处理机器人技术,因此可以显著降低成本和复杂性。这种系统通常利用扩散或催化现象。2.1扩散控制补料扩散控制进料涉及将截留的营养物从聚合物吸附剂或通过人工膜缓慢释放。培养基中的营养物质扩散穿过半透性透析膜,然后被细胞利用。Philip 等人 2017年阐明了作为影响补料速率的关键因素的两个参数,储器中的初始基质浓度和膜几何形状。这有助于更好的补料速率控制,并且发现尽管培养体积放大了 100 倍。然而,使用透析膜的扩散控制补料方法的一个主要限制是其对摇瓶培养的限制, 这限制了生产量。Jeude等人2006 年开发了 FeedBead® 技术,这项技术最初也是为了在摇瓶中使用而开发的,但 Scheidle 等人 2009 年证明了 FeedBead® 技术适用于 MTP 应用。Keil 等人于 2019 年开发了一种 MTP FeedPlate® 系统,该系统在每个孔的底部包含一个固定的固体有机硅基质和嵌入的葡萄糖晶体。在这些 FeedPlates® 中,GFP 产量提高了 245 倍。该板以 24、48 或 96 孔形式上市,允许以分批补料模式直接进行高通量培养。然而,培养基 pH、温度和渗透压等外部因素对葡萄糖释放速率有主要影响。因此,使用该技术时,对基质释放速率的精确控制受到限制。2016 年,Flitsch 等人研发了一种改进的 μ-RAMOS 设备,其目的是克服原始设备的瓶颈。更新后的系统在 48 孔 MTP 的每个孔中配备了气体入口和出口阀以及光学传感器,便于对所有 48 种培养物同时进行 OTR 监测。该技术最近被进一步扩展用于 96 孔深孔 MTP,使研究人员能够实现比原始摇瓶规模的RAMOS 系统增加 15 倍的实验通量。Habicher 等人 2020 年证明了最先进的 μ- RAMOS 和 FeedPlate® 对于工程化用于蛋白酶生产的地衣芽孢杆菌菌株的葡萄糖限制培养的兼容性。OTR 的在线监测极大地改善了 MTP 培养物的信息含量,发现其在 MTP 和摇瓶规模下的性能相当。使用该平台生成的数据可用于在开发的最早阶段生成数学模型,从而根据设计原则显著改善了过程质量。Wilming 等人 2014 年使用 96 孔 MTP 开发了一种替代的基于扩散的分批补料系统。每个培养孔通过填充有聚丙烯酰胺水凝胶的扩散通道连接至储层孔,便于每个平板进行多达 44 次平行分批补料培养。用浓缩基质溶液填充储器,以实现逐步扩散驱动补料。通过改变储器中的浓度并由此改变驱动浓度梯度。然而, 发现补料浓度和葡萄糖释放速率之间的关系是非线性的。这种使补料速率微调复杂化的非线性归因于水的反向扩散。尽管如此,板的透明底座提供了与板读取技术兼容的主要优势,例如用于通过散射光测量生物量和荧光的 BioLector 系统(mp2-Labs,德国)。使用该系统证明了大肠杆菌和多形嗜血杆菌菌株的分批补料培养。与分批对照相比,用最佳 300g/L 葡萄糖补料进行大肠杆菌的分批补料培养分别导致生物量和基于黄素单核苷酸的荧光报告蛋白信号增加约5 倍和14 倍。2.2酶控补料淀粉在液体培养基中的溶解度差,需要在原始 EnBase® 工艺中使用固相。为了消除对双相系统的需求,开发了具有完全可溶性聚合物基材的 EnBase® Flo。葡萄糖释放方法与矿物盐和复杂培养基添加剂的精心优化组合相结合,以产生高细胞密度和产品滴度。Glazyrina 等人 2012 年通过在 3mL 至 60L 的范围内培养经工程改造过量生产模型酶醇脱氢酶的大肠杆菌菌株,研究了 EnBase® Flo 系统的可扩展性。在所有测试规模下均实现了相当的增长率和蛋白质滴度,突出了可扩展性。在所有测试规模上都实现了可比的生长速率和蛋白质滴度,突出了可扩展性。EnBase® 系统还提供了在大型生物反应器的初始培养阶段控制葡萄糖释放的额外好处,完全消除了溢出代谢。EnBase® 技术还以方便的片剂形式在市场上销售。该 EnPresso® 系统与 D- optimal DoE 方法相结合,可优化 24 孔板中工程大肠杆菌的缬诺霉素生产。与原始分批培养相比,DoE 驱动的平行分批补料培养策略使缬氨霉素滴度提高了 33 倍。2.3内部补料策略小结扩散和酶控制的补料策略提供了一种相对简单和低成本的方法来模拟更大规模的分批补料过程。它们提供了恒定基质补料的关键优势,但在整个培养过程中通常不可能精确控制补料速率。结果,更复杂(例如指数)的进给曲线不能使用内部补料策略。此外,补料通常限于单一基质,这可能导致培养基中的其他营养物变得有限。特别是基于酶的补料依赖葡萄糖作为碳源,这可能不是所有过程的最佳选择。此外,在此类系统中,酸和碱补料通常是不可能的,从而限制了过程控制能力。曼森平行生物反应器分批补料应用曼森采用Watson-malow 400A高精度泵头,16 路补料,平均每个罐有四路补料,蠕动泵流量可设定,连续可调;每个蠕动泵的功能可单独分配,可以作为酸泵、碱泵、补料泵、消泡泵、液位控制泵。信息来源:https://www.sciencedirect.com/science/article/pii/S0734975021001944?ref=pdf_download&fr=RR-2&rr=747c4db53ee4ddb1文章来源:本文由中科院上海生命科学信息中心与曼森生物合作供稿排版校对:刘娟娟编辑内容审核:郝玉有博士
  • 2018康宁反应器技术交流年会(第八届)
    打造本质安全一体化连续合成制造工艺Integrated Continuous Manufacturing via Inherently Safer Flow Synthesis Technology【会议展望】康宁反应器技术的年会已成为微通道连续流行业的盛会。2017年,600多嘉宾汇聚一堂的盛况仍历历在目。2018年3月29日,又将迎来新一届的盛典。每年的康宁反应器技术交流年会,不只是当下国内外新的微反应器应用成果,更是世界级连续流专家传播化工新的理念及新发展趋势的平台。今年我们非常有幸邀请到美国科学院和工程院两院院士、麻省理工学院Klavs F. Jensen教授及众多知名学者及专家。国内外连续流大咖聚集一堂,注定是一场不寻常的年会。以国际化的视野,交流微通道连续化学研发和制造的现状。展望这一“颠覆性”技术,能够推动本质安全和智能制造的化工产业转型。 【演讲嘉宾】Martin J. Curran 康宁创新官,高级副总裁,Executive Vice President & Corning Innovation OfficerMartin J. Curran 康宁创新官,高级副总裁负责康宁的新兴业务。康宁新兴创新团队将康宁非凡的材料和工艺特性与新市场机遇联系在一起,打造可带来新产品和业务的创新。 演讲嘉宾:Klavs F. Jensen 教授 美国麻省理工学院(MIT)教授Dr. Klavs JENSEN, Warren K Lewis Professor and Head of Chemical Engineering Department, MITKlavs F. Jensen 教授 - 美国科学院,工程院两院院士;美国麻省理工学院(MIT)化工系教授和材料科学与工程系教授;世界微反应器研究,开发,应用领域领袖人物;拥有500多篇论文,30多项专利。演讲嘉宾:骆广生教授清华大学 博士生导师Dr. Guangsheng LUO, Director of the State Key Lab of Chem Engineering, Tsinghua University.骆广生教授,1988年本科毕业于清华大学,1993年获清华大学化学工程博士学位。1995—1996年在法国 CAEN 大学从事博士后研究工作。2001—2002年在 美国MIT 化工系作访问科学家。2005年获得国家杰出青年科学基金。2009年受聘教育部“长江学者”特聘教授。主要研究领域为微化工技术、分离科学与技术、功能材料可控制备等。在核心刊物上发表论文300余篇,获授权发明专利50余项,曾获国家和省部委科技奖励多项,荣获全国优秀科技工作者、全国优秀博士学位论文指导教师、北京市优秀教师等称号。演讲嘉宾:卫宏远教授,天津大学 博士生导师Dr.Hongyuan Wei, Tianjin University, Director of the Tianjin University - AstraZeneca Joint Laboratory for process safety.卫宏远教授,国际著名工艺放大、过程安全、流体混合和工业结晶专家,国家千人计划特聘专家,主持并顺利完成了多个国家级重大项目。 1997 年博士毕业于英国曼彻斯特理工大学,并任英国 BHR 公司高级顾问多年,现为天津大学聘为特聘教授。卫宏远教授一直活跃在化学工程及制药工程领域,有很高的国际知名度。兼任中国精细化工专业委员会副主任、中国化工系统工程专业委员会委员。天津大学-阿斯利康过程安全联合实验室主任。演讲嘉宾:姜毅博士,康宁大中华区创新官兼康宁反应器技术全球业务总监Dr.Yi Jiang Innovation Officer, Corning Greater China, & Business Director- Advanced Flow Reactors姜毅博士负责美国康宁公司反应器技术在全球的业务以及康宁新产业在亚洲的开发和推广,2011年由总部派驻上海。此前派驻过康宁欧洲技术中心(法国)任康宁全球反应器技术和应用工程总监。派驻法国之前, 姜博士曾在美国康宁公司的研发总部(纽约州)担任多年的研究部经理和项目经理。加盟康宁之前, 姜博士曾在美国效力于杜邦公司和康-菲石油公司, 开发用于化工能源工业的新型高效反应器技术姜毅拥有美国华盛顿大学(圣路易斯)化学工程博士学位, 十多项发明专利, 三十多篇国际一流化工期刊论文。在美国化工工程师协会AIChE曾担任了多年的新型反应器技术年会分会主席。演讲嘉宾: 朱建军博士, 中化集团化工事业部创新管理部总经理中化国际(控股)股份有限公司研发管理部总经理Dr.Jianjun Zhu, General Manager of the Departmentof innovation management, Ministry of chemical industry, Sinochem Sinochemical International (holding) general manager of research and development management of Limited by Share Ltd朱建军博士先后在常州大学、丹麦技术大学、荷兰大学、林德集团、中国中化集团从事研究及管理工作。先后在等国际权威杂志及国内核心期刊发表研究论文多篇;共申请专利多项,其中获得授权专利项。获得省部级科技进步二等奖两项。现任中化集团化工事业部创新管理部总经理中化国际(控股)股份有限公司研发管理部总经理。【颁奖晚宴】2018年度颁奖晚宴和晚会抽奖活动"康宁-国际流动化学成就大奖”"康宁反应器技术应用楷模榜-绿色创新奖”“康宁反应器优秀供应商奖” 【圆桌会议】颠覆性技术推广关键是人才的培养。微反应器技术应用人才的培养是康宁所肩负的社会责任。在过去的几年间,欧美各高校已培养了不少的研究人员,微反应技术的研究也成为各高校的热门课题。相比之下,中国高校的连续流人才培养还远远不能适应化工研发和生产的需求。本次年会,康宁会邀请有意向发展连续流技术的高校院长和Jensen教授一起探讨人才培养计划,帮助高校及科研单位有效地培养现代化连续流化学专家。3月30日 连续流化学化工教学院长圆桌会议(08:15-13:00)地址:江苏常州希尔顿酒店主持人:马旭 康宁反应器技术中国及远东区商务总监嘉宾:Klavs Jensen 麻省理工学院化工系,材料科学系,两院院士嘉宾:骆广生博士,清华大学教授嘉宾: 卫宏远教授,天津大学教授、博士生导师嘉宾:姜毅博士, 康宁大中华创新官兼康宁反应器全球运营总监 【技术培训】微化学工程与技术是当前化工行业科技创新的热点和重点之一。国家安全监管总局关于加强精细化工反应安全风险评估工作的指导意见中明确指出:“对于反应工艺危险度为4级和5级的工艺过程,尤其是风险高但必须实施产业化的项目,要努力优先开展工艺优化或改变工艺方法降低风险,例如通过微反应、连续流完成反应”。 该培训就微化工技术从化学品的研发着手,从源头改变思路。把智能化、绿色化融入到产品的设计、研发中。用机器代替大量的人工操作、减少人为误差、缩短产品研发周期;同时探讨如何把连续流技术开发的产品进行工业化转化;最后就大家关心的目前全球连续流技术的工业化应用状况及应用实例做详细的分析。 3月30日 连续流技术专题培训(08:30-12:00)地址:常州科教城 1.报告题目:实验室中的智能化-Lab Reactor带您进入连续流世界主讲人:伍辛军博士,美国康宁公司反应器技术中心(中国)经理 2. 报告题目:微通道反应器技术-强化传质传热,成就绿色化工主讲人:王艳华,康宁反应器技术高级工程师 3. 报告题目:智能制造-连续流工业化应用现状及投资案例分析主讲人:欧阳秋月,康宁公司反应器技术(中国区)总工 【现接受电子报名】一年一度的康宁微反应器技术的盛会,会议内容精彩纷呈,不容错过。现接受报名!今年将采取电子报名的方式,报名成功,审查合格后将收到二维码将用于签到和抽奖。因为会议名额的限制,每单位限两名免费名额,额外名额需收取会务费2000元/人。先到先得,额满为止。 扫描上面二维码,即可报名。
  • 2016年康宁反应器技术交流年会(第六届)
    亲爱的朋友,你们好! 还记得去年的三月,在触手生春的时节,我们相聚在常州聆听专家们畅谈连续流之古往今昔吗?昔日之概念,今日已成功被众多企业所接受和使用。在制造业面临困境的今天,设备的技术革新已迫在眉睫。康宁,微通道反应器技术的全球领导者将再次回馈于中国的广大客户。聚康宁全球之力,邀请世界名家汇聚江苏龙城,以国际化的视野去领略全球连续流的今天。 康宁反应器技术愿与行业先驱,共寻化学工艺创新之道,携手开通绿色化学之路!2016年3月23-24日,让我们再次相约江苏常州,启动康宁绿色行动年。“本质安全”和“智能制造” 是康宁反应器技术的使命。 “国际视野和多层面交流”将会是2016年客户年会的特点。届时期待来自欧洲,美国,印度的专家用户和国内的专家客户一起切磋微通道连续流技术的发展和应用体会,共商发展合作机会。 “用心做反应”不仅是康宁著名的”心型”微通道专利技术的特写,而且也是康宁对反应器技术开发和应用推广所秉承的职业操守!“全心全意为客户着想,尽心尽力满足客户需求”是康宁反应器技术在中国发展的运行准则。国际视野篇:连续流专家(美国Nalas总裁)畅谈连续化学的优势和新突破欧洲精细化工和原料药企为什么积极采用连续化生产印度头号药企SunPharma分享对连续化学的追求智能制造篇:连续化下游分离技术连续化生产投资效益分析连续化生产项目全球建设合作伙伴经验分享篇:康宁反应器客户案例分享康宁反应器配套设备零距离交流第三届康宁反应器应用奖颁奖仪式 2016年康宁反应器技术交流年会(第六届)“本质安全”和“智能制造”时间:2016年3月23日-3月24日地点:常州香格里拉大酒店(常州市武进高新技术产业开发区西湖路2号)详细会议内容及报名表请联系:薛小姐:021-22152888-1408 或 reactor.asia@corning.com
  • 快来围观!康宁反应器技术在山东有新布局!
    “四面荷花三面柳,一城山色半城湖”,今日在美丽的泉城济南,高新区新泺大街颖秀路1666号齐盛广场2号楼1510室内欢声笑语,多方宾客共聚一堂庆祝康宁反应器技术有限公司济南办事处(以下简称济南办事处)正式成立!京博控股集团高级副总裁蔡颖辉,河北建新化工股份有限公司常务副总经理朱秀全以及山东师范大学化学化工与材料科学院,山东省化工研究院,烟台远东精细化工有限公司、齐鲁制药、北京海菲尔格与济南龙行翱翔等客户及合作伙伴代表作为嘉宾到场祝贺济南办事处成立。康宁反应器技术有限公司总裁兼总经理、中国化学品安全协会常务理事姜毅博士主持成立仪式并做主要发言。姜博士向与会嘉宾介绍了康宁公司及康宁反应器技术进入中国的发展历程和显著成绩。并重点提到了康宁本质安全的反应器技术在山东地区的应用与发展。山东区域的客户一直勇于创新,敢于拥抱新技术,在康宁尝试工业化道路的开始便协力同行!康宁的多套G4、G5万吨级工业化装置已经稳定运行多年。现在,在化工、制药与新材料行业加快产业整合向绿色高质方向发展的大环境下,本质安全、绿色低碳的微通道反应器技术工业化的进程在不断加快,客户急需要更加全面的技术与服务支持,济南办事处正是应这一需求而成立的。京博控股集团高级副总裁蔡颖辉作为揭牌嘉宾与康宁反应器技术有限公司总裁兼总经理姜毅博士共同为康宁反应器技术有限公司济南办事处揭牌!济南办事处的成立也是康宁反应器技术全国战略布局的至关重要的一步。它的成立将 更全面地支持区域客户进行工业装置长期验证协助客户进行微通道反应器技术工艺快速开发利用全球经验优化和提高工程服务质量与效率集合新成立的康宁连续流技术培训中心以及科研高校合作伙伴的力量为区域客户培养和输送连续流技术专业人才助力客户实现安全、高质、绿色创新与发展。姜博士还展望了康宁反应器技术在山东的发展前景。他提到绿色微化工为国家“双碳”目标提供了有效技术路径。山东作为化工和能源使用大省,在实现这个双碳目标的过程中承担重要的责任和使命,高效利用能源,技术创新与发展势不可挡。康宁反应器技术将携手山东区域的合作伙伴与客户在共同承担这一历史使命的同时让客户获得发展,让广大人民享受绿色化工技术带来的安全、绿色的产品与服务。最后姜博士表达了对当地政府、客户、高校研究所以及合作伙伴的诚挚谢意!从左到右依次为康宁反应器技术有限公司马俊海(区域商务总监)、王金远(区域技术经理)、姜毅(总裁兼总经理)、常宝磊(技术销售经理)、贾柏峰(商务副总裁) 康宁反应器技术有限公司商务副总裁贾柏峰先生表示:“为了更好的服务当地客户,济南办事处除了配备有康宁主要产品系列的样机进行展示,还会着力加强当地技术服务团队建设。办事处将依托康宁领先连续流技术和市场支持,加强与当地客户的联系,及时响应当地客户对于工艺开发和工业化技术服务需求,高效服务,使当地客户快速获得创新技术带来的应用成果!” 同时贾总携北方区区域商务总监马俊海、济南办事处技术销售经理常宝磊和区域技术经理王金远等诚挚邀请和欢迎当地客户只要有涉及到连续流技术应用、工艺开发、放大的任何问题,来办事处与我们一对一地面谈交流。
  • “动植物生物反应器”主题项目各课题通过验收
    p   利用真核生物作为蛋白表达的工厂来生产蛋白药物、疫苗等重组蛋白产品是现代生物技术的重要应用,我国自上世纪90年代开始关注该领域科技创新。“十二五”期间,国家863计划在现代农业技术领域设置了“动植物生物反应器”主题项目对该领域进行持续支持。2017年3月17日,农村中心组织专家在北京对该项目到期课题进行了验收。陈焕春院士和陈晓亚院士带领验收专家组听取了课题负责人对课题执行情况的汇报,审查了相关材料。经质询和讨论,验收专家组认为所有课题完成了规定的主要任务和指标,同意通过验收。 /p p   “十二五”期间,“动植物生物反应器”项目各课题组建立了高表达且稳定遗传的乳腺生物反应器及水稻胚乳生物反应器等技术平台和体系,研制了蚕蛹高效表达口服蛋白药物,建立了动物基因工程疫苗研发平台、鹿茸生物反应器及多基因协同高效表达等植物代谢工程技术体系,开发了植物油体生物反应器外源药物蛋白表达体系、高效表达目的基因的水牛生物反应器、高表达花色素苷及胡萝卜素的甘薯生物反应器等相关动植物生物反应器。相关课题组还建设了设施先进的重组蛋白类药物与疫苗的研究与生产基地,这些成果为现代生物技术向产业化过渡迈出了夯实的一步,为我国创新技术领域的升级与指导提供了新的方向和重要理论和实践支撑。 /p p br/ /p
  • 流动合成仪搭配反应器合成“肽”Easy了!
    近日(1月26日),中国国家药监局(NMPA)官网公示,诺和诺德(Novo Nordisk)司美格鲁肽片的新药上市申请已获得批准,用于成人2型糖尿病治疗。司美格鲁肽片是一款口服GLP-1受体激动剂药物(GLP-1RA),它的出现打破了2型糖尿病患者每天或每周需要接受GLP-1RA注射的格局,为他们控制血糖提供了侵入性更小的便捷治疗选择。 图片来源:中国国家药监局官网多肽药物的发展现状与合成什么是多肽药物?多肽药物作为一种特殊的蛋白质,由多个氨基酸通过肽键连接而成,通常由10~100个氨基酸组成,具有独特的空间结构。相对于小分子和蛋白质药物,多肽药物具有更强的生物活性和特异性,广泛应用于抗肿瘤、内分泌和代谢领域。多肽药物备受医药行业关注全球已有80多种多肽药物上市。GLP-1目前在医药行业可谓备受瞩目,犹如当下备受欢迎的“炸子鸡”。一方面,GLP-1受体激动剂已经取得了显著的市场认可,甚至在2023年超越了胰岛素,成为全球范围内广泛应用于2型糖尿病治疗的主流药物;另一方面,GLP-1受体激动剂在减肥市场上展现出巨大的潜力,使其成为全球范围内备受瞩目的焦点。多肽药物的合成方法尽管技术进步推动了多肽药物的发展,但人工合成的复杂性逐年增加。多肽合成主要采用生物合成法和化学合成法。● 生物合成法包括天然提取法、酶解法、发酵法和基因重组法。然而,工艺开发大多周期长,粗产品收率低;● 肽还可以通过不同的化学途径合成,液相和固相均可,可以批量生产也可以流动合成。流动合成相对于批量方法的优势在于在线光谱监测、高效混合以及对物理参数的精确控制,从而限制副反应的发生。 资料来源:Chemical Reviews,平安证券研究所Vapourtec固相肽合成方案自2017年以来,Vapourtec一直致力于开发受控可变床流动反应器(VBFR),可容纳树脂生长,减少机械损伤,提高偶联和去保护效率。该反应器实时生成内联数据,支持即时调整合成过程,如通过双重偶联提升肽质量和产量。实时监测密度并自动调整填充床,0.5ul分辨率监测体积变化。目前,VBFR反应器在肽和寡糖合成研究中已取得成功! Vapourtec R系列流动合成仪搭配VBFR[1]本文展示了Vapourtec R系列流动合成仪的能力,该系统配备了一种新型流动反应器——可变床流动反应器,用于进行连续流动的固相肽合成。通过选择治疗糖尿病的30氨基酸的类胰高血糖素样肽(GLP-1)作为研究对象,我们通过优化树脂活性位点与泵送的试剂之间的接触表面,保持固体介质的持续填充,实现了更高效的合成。可变床流动反应器的应用不仅减少了溶剂用量,还确保了更高的合成效率。整体方案下,GLP-1 30氨基酸的粗品纯度在不到5小时内达到了82%。方案详情与结论GLP-1是一种30个氨基酸的激素,对糖尿病治疗具有重要意义。在合成中,ChemMatrix树脂被广泛用于保持肽溶解,有助于试剂扩散。该树脂适用于复杂肽合成,因仅由聚乙二醇(PEG)链组成。其相对两亲性使其在化学和机械上稳定,提供比聚苯乙烯树脂更好的性能。SPPS协议已适应两种树脂,确保合成挑战性肽(如GLP-1)具有高粗品纯度和产量。 用于GLP-1的R-Series示意图主要的R2C+泵用于自动加载样品环的自动进样器,传递偶联试剂。次要的R2C+泵传递去保护溶液。VBFR在R4加热模块中设置。双核反应器将去保护和偶联反应器放在一个反应器芯片中。氨基酸在1.6ml反应器体积中活化,哌嗪在0.8ml反应器体积中预热。两个输出连接到VBFR反应器底部。使用SF-10泵作为主动BPR,系统压力保持不变。聚四氟乙烯过滤器确保树脂在VBFR中保持。Vapourtec的扩散板确保试剂均匀流过过滤器。Vapourtec 采用CF-SPPS反应协议,适用于0.08-0.11 mmol规模。VBFR-SPPS使用Dual-CoreTM PFA管反应器和VBFR反应器,装载200 mg树脂。通过流动DMF,使树脂膨胀到1.4ml/min,加热至80℃。系统压力为2.5bar。CF-SPPS方案A和B包括去保护和偶联步骤,采用不同参数。最后,通过DMF、DCM、MeOH洗涤,TFA裂解,分离肽,使用HPLC和质谱分析。典型循环中,VBFR体积在去保护和偶联过程中相应调整。结论流动化学在手工操作、反应速率和转化率方面相对于传统的批量SPPS(固相合成)路径具有多重优势。使用流动化学,GLP-1已经成功在不到5小时的时间内合成,只需少于1升的DMF(二甲基甲酰胺),通过HOBt和DIC激活。最终产物的原始纯度超过82%,产率为71%。总结在整个合成过程中,控制树脂的填充密度至关重要。可见,VBFR在合成困难序列时非常有优势,获得的宝贵数据将为工艺科学家提供指导,对于合成工艺的改进和优化提供了有益的数据。VBFR反应器特点玻璃、聚四氟乙烯(PTFE)、氟聚合物(PFA)和卡尔莱兹(Kalrez)材质与强酸碱有抗腐蚀性;全自动体积变化;可加热和冷却,温度范围:-20℃~150℃;工作体积范围从0.3ml到20ml;有三种规格可选:6.6mm、10mm和15mm孔径的反应器;体积变化测量分辨率为0.5微升(6.6mm孔径反应器);最大工作压力为20bar(6.6mm孔径反应器);VBFR可以与Vapourtec的R-Series软件接口,体积变化可被记录和图表化。Vapourtec VBFR应用领域 在连续流中使用异质试剂(例如有机金属试剂的形成);在易于膨胀的支持体上使用固定的异质催化剂(例如聚苯乙烯树脂);固相合成;捕获和释放的纯化;肽合成(本文中已展示);寡核苷酸合成;糖基组装。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696或点击在线咨询。[1]SLETTEN E T, NUNO M, GUTHRIE D, et al. Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor [J]. Chemical Communications, 2019, 55(97): 14598-601.Vapourtec英国Vapourtec是德祥集团资深合作伙伴之一。Vapourtec成立于 2003年,已有20年生产经验。Vapourtec 作为专业生产流动化学系统的厂家,一直致力生产实验室级别的流动化学系统的研发生产。Vapourtec设计和生产流动化学合成系统持续领先于市场,提供了新的连续化学合成能力,并且始终保持着技术兼容性,从而使得即使最早期的用户仍可利用最新技术发展提供的优势。目前已经Vapourtec流动合成仪证明有效的反应包括:硝化、氧化、还原、偶合、重排、酰胺化、溴化、加氢等。广泛适用于医药,农药,染料,香料,有机光电材料,有机磁性材料,纳米材料,表面活性剂等精细化工中间体和其它特种助剂。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制