当前位置: 仪器信息网 > 行业主题 > >

质谱技术的原理

仪器信息网质谱技术的原理专题为您提供2024年最新质谱技术的原理价格报价、厂家品牌的相关信息, 包括质谱技术的原理参数、型号等,不管是国产,还是进口品牌的质谱技术的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱技术的原理相关的耗材配件、试剂标物,还有质谱技术的原理相关的最新资讯、资料,以及质谱技术的原理相关的解决方案。

质谱技术的原理相关的资讯

  • 沃特世质谱成像技术、原理及应用
    p   质谱成像是一种前沿质谱技术,由于其技术的新颖性与应用的广泛性,近期受到了很高关注。该技术应用潜力巨大,它是将质谱检测与影像技术相结合的新型分子影像研究手段。特点是无需标记、所需时间短、耗费低、不局限于单分子,同时还可以提供组织切片中多化合物空间分布和分子结构信息。 /p p   作为质谱领域最具前景的技术之一,质谱成像技术现已经成为仪器厂商、科研院所的重要关注焦点,预测未来市场争夺也将日益激烈。沃特世公司在MALDI质谱成像技术研发与应用方面具有较强的实力。为提升用户对质谱成像技术、应用的了解,促进质谱成像技术的推广应用,仪器信息网特别邀请沃特世公司对其质谱成像技术中的DESI及MALDI技术的原理与应用进行了讲解。 /p p    strong 1. 解吸电喷雾电离(DESI)技术 /strong /p p   质谱成像是对样品中的化合物进行成像分析,以获得基于化合物组成、空间分布情况及相对丰度的一种快速分析技术。解吸电喷雾电离(DESI)是一种快速的大气压环境下的质谱成像技术,完美兼容组织病理学的工作流程 适用于监测整个组织或器官中各类化合物的分布情况,以及应用于指纹的司法鉴定、微生物的成像、植物样品中活性成分或代谢产物分析和其他快速分析领域。 /p p strong   工作原理 /strong /p p style=" text-align: left "   喷雾溶剂连接于毛细管上,施加一定的高电压,在氮气的辅助下形成带电喷雾液滴,轰击样品表面,带电溶剂与待分析物同时发生解吸和电离(电荷转移),去溶剂化后,沿着传输毛细管进入质谱。 /p p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/bc55b344-cfc2-4da3-a7aa-e6b97d85e91a.jpg" / /p p strong   DESI的特点 /strong /p p   ○ 最新的沃特世喷嘴可以达到20 μm的空间分辨率 /p p   ○ 可分析新鲜样品,几乎不需要做样品前处理 /p p   ○ 适用于各类生物组织样本、指纹、表面等成像分析 /p p   ○ 点对点的高通量快速分析 /p p   DESI技术与与Waters高分辨质谱(Xevo G2-XS QTof 或 SYNAPT G2-Si HDMS)均可连接使用,效果非常好,并有配套的数据分析软件。可实现同时采集DESI与离子淌度IMS数据,并实现其处理。还可通过软件对数据进行OPLS-DA等数据分析,借助软件找出目标marker。 /p p    strong DESI应用 /strong /p p style=" text-align: center " img title=" 002.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/8089f096-646b-49fd-8d9c-dd887bbc64d1.jpg" / /p p style=" text-align: center " img title=" 003.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/446f205d-c87a-4001-9c3f-7304f7d781df.jpg" / /p p style=" text-align: center " img title=" 004.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/9350b4b2-7535-4112-a592-54ee39c7c6be.jpg" / /p p style=" text-align: center " img title=" 005.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/f6e0a14d-96c8-443c-881c-4b13a647e6d8.jpg" / /p p style=" text-align: center " img title=" 006.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/1d5ffd80-1c32-4134-8f09-c03df7356632.jpg" / /p p style=" text-align: center " img title=" 007.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/7de51864-111c-49e0-83a8-a0ba735f139c.jpg" / /p p    strong 2. 基质辅助激光解析电离(MALDI)技术 /strong /p p   MALDI SYNAPT G2-Si由一台脉冲频率为2.5KHz的固态激光器驱动,可实现分析过程中光谱采集速率的最大化。光斑大小可根据试验需要进行配置,不论是定性分析中灵敏度和速度的优化还是成像研究中测定最高空间分辨率下化合物的空间分布均适用。 /p p style=" text-align: center " img width=" 450" height=" 495" title=" 0.png" style=" width: 450px height: 495px " src=" http://img1.17img.cn/17img/images/201712/insimg/c0952ffc-a11e-4e31-9224-cc9104f219cc.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   由于Tof分析仪的正交几何结构,离子源在质谱分析中实现“去耦合”。因此,与轴向MALDI-Tof或Tof/Tof仪器不同,该设备能够确保在广泛的质量范围内,对于MS和MS/MS模式都能获得高分辨率和准确质量数。此外,SYNAPT非常适合处理绝缘样品,例如石蜡包埋型组织切片或载玻片等。 /p p   在同一个精简的成像工作流程中,MALDI SYNAPT G2-Si HDMS融合了T-Wave IMS和QuanTof技术,以提供无与伦比的选择性、清晰度和可靠性。 /p p   HDI MALDI解决方案提供了一系列独特且强大的多靶向(IMS/MS/MS)和无靶向(IMS/MSE)工作流程,包括以图像为中心的方法设置、数据处理和图像生成。综合相关(基于与空间位置漂移时间相关的碎片离子)与统计工具(例如PCA、OPLS-DA、S-plots、聚类分析)相结合,提供了更智能、更可靠的成像分析。 /p p   在SYNAPT上可以使用全面的UPLC/MS/MS功能,同时能够在同一个平台上对生物液体或激光切割组织切片进行高效定量和定性分析。 /p p   Waters基质辅助激光解吸电离技术(MALDI) 的特点: /p p   § 卓越的空间分辨率 /p p   § 广泛的应用范围 /p p   § 成熟的质谱成像方法 /p p   § 可同时采集离子淌度数据,有效降低噪音干扰 /p p   MALDI SYNAPT G2-Si 质谱系统适用于成像、化工材料鉴定、蛋白质组学和制药领域, /p p strong   一、MALDI SYNAPT G2-Si 质谱系统应用于小鼠组织中黄腐酚及其代谢物的成像: /strong /p p   样品的制备: /p p style=" text-align: center " img title=" 009.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/f947bb12-f3a1-46f8-84e8-18fb97a56f7d.jpg" / /p p   小鼠肠道中黄腐酚及其代谢物的成像: /p p style=" text-align: center " img title=" 010.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/238d8baf-872c-417b-bca6-ef9d218e6c5c.jpg" / /p p style=" text-align: center " img title=" 011.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/7734a6a9-4919-4679-8e91-c890dd36a5af.jpg" / /p p strong   二、组织中N-糖异构体的成像研究 /strong /p p style=" text-align: center " img width=" 450" height=" 441" title=" 012.jpg" style=" width: 450px height: 441px " src=" http://img1.17img.cn/17img/images/201712/insimg/677094a5-24fd-4c2c-8cd5-be6e6f90ecbe.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   使用离子淌度(IMS)可有效降低噪音的干扰: /p p style=" text-align: center " img width=" 450" height=" 484" title=" 013.jpg" style=" width: 450px height: 484px " src=" http://img1.17img.cn/17img/images/201712/insimg/232442ff-c0a9-48f9-8467-d0c7b929f264.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   strong   /strong 成像结果: /p p style=" text-align: center " img width=" 450" height=" 563" title=" 014.jpg" style=" width: 450px height: 563px " src=" http://img1.17img.cn/17img/images/201712/insimg/4e11f6ee-0c1e-4934-b976-790304951a9a.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p
  • 共话质谱原理及应用 “质谱离子化技术”圆桌论坛成功举行
    p style=" text-align: justify line-height: 1.5em text-indent: 2em " strong 仪器信息网讯 /strong & nbsp 2019年11月14日,为共同探讨质谱离子化技术的原理、应用以及未来的发展方向,探索促进我国质谱技术发展新思路。“质谱离子化技术”圆桌论坛在江西省南昌市东华理工大学(广兰校区)召开。论坛邀请了多位质谱技术专家与会,近50位专家学者、师生代表出席了本次活动,仪器信息网作为特邀媒体进行了报道。 /p p style=" text-align: center line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/532706ad-de91-4006-baaa-8b4a18a5a500.jpg" title=" IMG_3993.JPG" alt=" IMG_3993.JPG" / /strong /p p style=" line-height: 1.5em text-align: center " strong 会议现场 /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/70955211-6675-45d9-a6b1-166f800301bf.jpg" title=" IMG_3990.JPG" alt=" IMG_3990.JPG" / /strong /p p style=" text-align: center line-height: 1.5em " strong 浙江好创生物技术有限公董事长司朱一心主持开幕式 /strong /p p style=" text-align: center line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/d3f866e3-f593-4faa-b314-611050ed4565.jpg" title=" IMG_3997.JPG" alt=" IMG_3997.JPG" / /strong /p p style=" line-height: 1.5em text-align: center " strong 北京蛋白质组研究中心秦均致辞 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 在专家报告环节,来自浙江好创生物技术有限公司朱一心、北京蛋白质组研究中心秦均、深圳华大基因有限公司王融、西湖大学冯杉、暨南大学李雪、暨南大学胡斌、东华理工大学徐加泉等7位质谱技术及应用专家分享了精彩的报告。报告内容上既涉及了质谱离子化技术的原理及研发应用的讨论,也包含利用质谱技术进行蛋白质组学及临床分析的探讨,以及直接质谱技术的研发及相关应用等内容。 /p p style=" text-align: center line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/e16e16e0-d16b-4090-9a49-ed2b95d04c7e.jpg" title=" IMG_4005.JPG" alt=" IMG_4005.JPG" / /strong /p p style=" line-height: 1.5em text-align: center " strong 报告人:浙江好创生物技术有限公司 朱一心 /strong /p p style=" text-align: center line-height: 1.5em " strong 报告题目《电喷雾离子源机理的修正及应用》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " ESI离子源是目前在质谱领域应用范围最广泛的离子源之一。报告针对ESI离子源机理存在的一些疑问,提出质子氢的来源、为什么只有电喷雾离子化才可产生多电荷分子离以及为何会产生离子抑制现象等三个问题。并介绍了多年来的对此的相干研究和思考,提出了“异裂氢离子静电结合极化液滴”的电喷雾电离创新理论,并在报告中展示了其关于理论的相关验证。同时,在报告中,也展示了基于其创新的机理研究,浙江好创研制出的CEESI离子源技术。 /p p style=" text-align: center line-height: 1.5em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/a016cfdf-0caa-4de7-be40-a1f14cd7be77.jpg" title=" IMG_4014.JPG" alt=" IMG_4014.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:北京蛋白质组研究中心 秦均 /strong br/ /p p style=" text-align: center line-height: 1.5em " strong 报告题目《临床蛋白组学对质谱分析的新挑战》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 在报告中,秦均首先介绍了过去十数年间,国家蛋白质科学设施-凤凰中心近年来在蛋白质组方面所做的工作,并主要介绍了团队基于蛋白质组研究,所进行的胃癌精准医疗体系相关工作。利用蛋白质组,对胃癌分型为7个亚型,并对不同亚型对化疗的敏感度以及不同化疗药物的效果等进行了分析研究。在报告的最后,他也对未来用于精准医疗的蛋白质检测IVD提出了相关的趋势见解。 /p p style=" text-align: center line-height: 1.5em " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/5edd86ed-4e07-4063-a8dd-05e6969477a7.jpg" title=" IMG_4026.JPG" alt=" IMG_4026.JPG" / /strong /p p style=" line-height: 1.5em text-align: center " strong 报告人:深圳华大基因有限公司 王融 /strong /p p style=" text-align: center line-height: 1.5em " strong 报告题目《朱氏离子源揭示电喷雾分子的质子化》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 质谱技术发展至今,已经被广泛应用在多个领域。然而目前绝大部分质谱的电离效率仍然不足10%,如何进一步提高电离效率是质谱技术发展面临的重要问题。报告主要介绍了利用改进型的CEESI离子源,通过改变ESI腔室条件,对多肽、咖啡因等物质进行分析,根据质子化的结果,提出气相中的质子对于ESI分子的质子化至关重要。 /p p style=" text-align: center line-height: 1.5em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/edecd6e1-2fd6-4967-ba1c-b48ad548b394.jpg" title=" IMG_4065.JPG" alt=" IMG_4065.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:西湖大学 冯杉 /strong br/ /p p style=" text-align: center line-height: 1.5em " strong 报告题目《发展谷胱甘肽化及蛋白质硝基化的富集鉴定方法》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 报告介绍了冯杉近年来在利用质谱技术在谷胱甘肽化及蛋白质硝基化的富集鉴定方法相关的研究工作。同时也分享了利用CEESI离子源在分析修饰蛋白质组样品时的一些优劣。 /p p br/ /p p style=" text-align: center line-height: 1.5em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/1219292c-05b1-4aa8-9955-0c5be29db836.jpg" title=" IMG_4070.JPG" alt=" IMG_4070.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:暨南大学 李雪 /strong br/ /p p style=" text-align: center line-height: 1.5em " strong 报告题目《呼气直接质谱分析方法研究》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 呼气质谱分析对于疾病诊断、环境暴露监测等领域都有着良好的应用前景。报告介绍了团队近年来在呼气质谱方法相关的研究工作。包括对仪器装置的相关改进以及利用数据分析对呼气质谱信息来源解析等相关研究工作。 /p p br/ /p p style=" text-align: center line-height: 1.5em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/2847085a-ec0d-48ef-847d-391b00e2387d.jpg" title=" IMG_4075.JPG" alt=" IMG_4075.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:暨南大学 胡斌 /strong br/ /p p style=" text-align: center line-height: 1.5em " strong 报告题目《直接质谱分析技术的发展与应用》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 报告主要介绍了团队近期在直接质谱分析技术方面的研究工作。包括研究的一系列直接电离质谱技术及具有分离功能和富集功能的电喷雾电离技术,并利用直接质谱技术在农业食品安全、药品质量控制、毒品检测、临床分析、蛋白质分析以及人体健康等领域的相关的应用研究。 /p p style=" text-align: center line-height: 1.5em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/41c0adb7-00bb-4ee5-8f00-04d4bebb8b91.jpg" title=" IMG_4077.JPG" alt=" IMG_4077.JPG" / /p p style=" text-align: center line-height: 1.5em " strong 报告人:东华理工大学 徐加泉 /strong br/ /p p style=" text-align: center line-height: 1.5em " strong 报告题目《混杂样品直接质谱分析》 /strong /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 混杂样品由多种理化性质各异、含量丰度不等、赋存状态不同组分叠积构成。面对混杂样品时,如何顺次获取获取样品各组分的多维信息是目前的分析难点,目前,常见的方法一般采取对样品进行预处理并采取多方法多仪器联用进行分析,不仅费事费力,还会造成成分、含量、分布等信息失联的问题。报告介绍了团队对混杂样品直接质谱分析的相关研究工作,以及利用该技术对混杂样品,包括金属材料及细胞、稀土等分析应用的研究。 /p p style=" text-align: center line-height: 1.5em text-indent: 2em " strong style=" text-align: center " /strong /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/2cd79daa-0482-4573-b38f-3d30d42cf599.jpg" title=" IMG_4033.JPG" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/b9c60fa4-22fd-4b18-8e8d-3d0a7f65861d.jpg" title=" IMG_4030.JPG" / /p p style=" text-align: center line-height: 1.5em text-indent: 2em " strong style=" text-align: center " 讨论现场 /strong br/ /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " 在自由讨论环节,在场质谱相关专家就质谱离子化技术的原理展开了热烈讨论,并参观了江西省质谱科学与仪器重点实验室质谱科学与仪器国际联合研究中心的实验室。 /p p style=" text-align: center line-height: 1.5em text-indent: 2em " strong /strong /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/9627f83a-83d6-442f-8c42-bbd0904ac348.jpg" title=" IMG_4043.JPG" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/201911/uepic/60ee754e-20fc-489f-8f35-112b6caeb4d3.jpg" title=" IMG_4040.JPG" / /p p style=" text-align: center line-height: 1.5em text-indent: 2em " strong 参观实验室 /strong br/ /p p style=" line-height: 1.5em text-indent: 2em text-align: center " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/32a757e4-275a-4452-9a79-67d609aee97a.jpg" title=" IMG_4051.JPG" alt=" IMG_4051.JPG" / /p p style=" line-height: 1.5em text-indent: 2em text-align: center " strong 合影 /strong br/ /p
  • 揭秘公安司法行业毒品分析检测技术!几类质谱关键原理方法及技术要求!
    当下,在毒品问题全球化的大背景下,毒情形势日益严峻,芬太尼类、合成大麻素类、卡西酮类等新型毒品更新换代速度极快,毒品毒物的检测判定作为执法依据变得尤为关键,加之毒品成瘾机理领域还有很多亟待科学解答的内容,也对分析方法提出了更高要求。仅2021-2022年我国发布并实施的毒品检测国家标准、行业标准已超二十项,可见我国毒品检测国家标准、行业标准发布进入快车道,国家对禁毒工作的关注度不断提升。就行业标准而言有分为公安类检测标准和司法类检测标准。司法类检测标准对于毒品类型鉴定有更加清晰的分类,如:苯丙胺类、色胺类、合成大麻素类、芬太尼类等。公安类检测标准更加注重检测样品的类型:毛发中毒品检测、污水中毒品检测、血液、尿液等生物样品中毒品检测以及疑似物中毒品检测等。与发达国家相比,我国毒品检验技术研究起步较晚,但近年来发展迅速。20 世纪 80 年代前,我国毒品检验多采用薄层色谱检验(TCL)结晶法、 红外光谱 法(IR)、 紫外线(UV) 检验及化学显色法;80年代后,气相色谱(GC)法开始应用,90年代开始普及;1990-2009年气相色谱串联质谱(GCMS)技术成为毒品检测的主力军;2010-2022年液相色谱串联质谱(LCMS/MS)类分析技术开始布局公安司法行业毒品检测领域。此外,近年国内外禁毒形势愈发严峻,现场快速便携的稽查技术和检测设备亟待发展,幸运的是,不少仪器企业和科研团队也已推出了相应的便携式现场快速筛查质谱仪。公安及司法行业在实际应用场景中,如何选择适合的毒品分析技术手段?不同质谱技术的原理差异性如何?如果超出各类毒物数据库的检索范围,未知物的识别该选择何种技术手段?便携式质谱技术如何持续助力毒品快筛?毒情监测体系是否建立?……2022年12月13-16日,仪器信息网策划举办年度一次的“质谱网络会议(iCMS)”,每年的会议内容设置都会将当年度最新、最重磅的技术应用进展带给听众,十二年来,质谱网络会议受到广大用户的热烈好评。去年年底的直播间,我们共同约定在2022年末,再次为大家呈现关于质谱领域的最新技术成果和进展。带着这份承诺,3i讲堂将于12月14日举办“第十三届质谱网络会议”的“质谱在禁毒/司法领域毒品分析的新进展”专场,与4位重量嘉宾,在直播间共同寻找答案:(福利:点击此处,快速免费报名,优先审核)嘉宾一:王学虎 江苏省公安厅物证鉴定中心 正高级警务报告:未知药毒物的高分辨液质筛查与识别检验在法庭科学实验室对投(中)毒、缴获毒品,多采用GC-MS、LC-MS技术,配合各类毒药物数据库,如果超出这几个常见的数据库检索范围,就会变成难题——未知物,就需要更多手段进行甄别。本次报告且听王老师通过案例形式介绍使用高分辨液质联用进行未知毒药物的识别技巧。嘉宾二:刘冰洁 SCIEX FEF领域全国应用支持经理报告:QTRAP液质系统在公安司法领域的应用报告将介绍应用QTRAP质谱的EPI模式进行复杂基质样本中的假阳性判定,以及应用QTRAP质谱进行代谢产物的鉴定和新型结构衍生物的分析。嘉宾三:花磊 中国科学院大连化学物理研究所 研究员 报告:基于原位质谱的毒品快速检测技术及应用花磊研究员深耕开发在线质谱关键技术和质谱联用技术的研究多年,目前基于原位质谱的毒品快速检测技术和最新应用有哪些?且听花老师娓娓道来。嘉宾四:金洁 公安部第三研究所 副研究员报告:便携式质谱在现场毒品检测中的应用报告将介绍当前便携式质谱用于毒品检测存在的困难,以及当前EI电离源便携式质谱合成大麻素数据库标准化和操作规程。(点击图片,免费报名,优先审核)
  • 12月8日工程师给客户培训气相色谱质谱联用仪检测原理和应用
    2020年12月8日,客户来我司参观和学习,一起讨论分析仪器的日常用法、维护技巧及领域应用。今日我们主讲7700B 气相色谱质谱联用仪检测原理和应用:7700高性能双腔双泵单四极杆气质联用仪采用离子源和四极杆质量分析器独立排气的双涡轮分子泵设计,离子源和四极杆质量分析器分别处于两个独立真空腔室,形成高效的真空系统。此优化设计能够保证质谱的高真空度,降低离子源污染,减少离子源的维护频率;在开机半小时内即可进行样品分析,提高仪器的稳定性。气相色谱质谱联用仪7700B优于一款高性能单四极杆气相色谱质谱联用仪,检出限优于10fg,达到世界同类型产品主流水平,可广泛应用于科学研究、农残检测、环境监测和代谢组学等高要求领域。应用1,参照标准《HJ 716-2014 水质 硝基苯类化合物的测定 气相色谱-质谱法》,配制不同浓度硝基苯类化合物标准品为测试样品,用GC-MS 7700B测定,根据保留时间和质谱图定性,外标法定量。硝基苯类全扫描模式总离子色谱图应用2,参考标准《HJ834-2017 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》,用GC-MS 7700B测定土壤和沉积物 半挥发性有机物的测定20ppm 76种半挥发性有机物全扫描总离子流色谱图应用3,参考标准《HJ644-2013环境空气 挥发性有机物的测定 吸附管采样-热脱附 气相色谱-质谱法》,用GC-MS 7700B测定环境空气中挥发性有机物的测定。环境空气中挥发性有机物的测定应用4,参考《HJ 753-2015 水质 百菌清及拟除虫菊酯类农药的测定 气相色谱-质谱法》,使用气相色谱质谱联用仪检测,根据保留时间、质谱图及特征离子对有机氯标准品进行定性,外标法定量。除虫菊酯类全扫描模式总离子色谱图 感谢客户的好学聆听,互相交流才有进步,才能更好地发挥仪器所长,节约用户成本,......欲了解更多仪器详情请关注谱标科技,并欢迎来电咨询!
  • 今日抽奖:《集成电路材料基因组技术》+《扫描电镜和能谱仪的原理与实用分析技术》
    仪器信息网2023年10月18-20举办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会,围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件和材料分析、可靠性测试、失效分析、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。为答谢广大用户,本次大会每个专场都设有一轮抽奖送专业图书活动。今日抽取的专业图书是《集成电路材料基因组技术》和《扫描电镜和能谱仪的原理与实用分析技术》。一、主办单位:仪器信息网&电子工业出版社二、会议时间:2023年10月18-20日三、会议日程第四届“半导体材料器件分析检测技术与应用”主题网络研讨会时间专场名称10月18日全天半导体材料分析技术新进展10月19日可靠性测试和失效分析技术可靠性测试和失效分析技术(赛宝实验室专场)10月20日上午缺陷检测与量测技术四、“半导体材料分析技术新进展”日程时间报告题目演讲嘉宾专场:半导体材料分析技术新进展(10月18日)专场主持人:汪正(中国科学院上海硅酸盐研究所 研究员)9:30等离子体质谱在半导体用高纯材料的分析研究汪正(中国科学院上海硅酸盐研究所 研究员)10:00有机半导体材料的质谱分析技术王昊阳(中国科学院上海有机化学研究所 高级工程师)10:30牛津仪器显微分析技术在半导体中的应用进展马岚(牛津仪器科技(上海)有限公司 应用工程师)11:00透射电子显微镜在氮化物半导体结构解析中的应用王涛(北京大学 高级工程师)11:30集成电路材料国产化面临的性能检测需求桂娟(上海集成电路材料研究院 工程师)午休14:00离子色谱在高纯材料分析中的应用李青(中国科学院上海硅酸盐研究所 助理研究员)14:30拉曼光谱在半导体晶圆质量检测中的应用刘争晖(中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师)15:00半导体—离子色谱检测解决方案王一臣(青岛盛瀚色谱技术有限公司 产品经理)15:30宽禁带半导体色心的能量束直写制备及光谱表征徐宗伟(天津大学精密测试技术及仪器国家重点实验室 教授)16:00专业图书介绍及抽奖送书王天跃(电子工业出版社电子信息分社 编辑)五、参会方式本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/icsmd2023/ 或扫描二维码报名
  • 深究质谱仪器原理 探索质谱应用潜力
    p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 2019年10月24日,BCEIA2019在京开幕的第二天。同期,由中国分析测试协会仪器评议办公室主办的分析测试仪器与评议活动顺利举办。作为本次评议活动的一部分,质谱仪器评议活动在24日下午召开,该活动旨在构建国内外仪器技术的交流平台,为质谱业内的仪器研发者、应用从业者以及仪器厂商跟踪国内外质谱仪器技术的发展与趋势以及市场需求服务,为国家科学仪器技术发展决策提供参考。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" text-indent: 2em " 本次活动由军事医学研究院生命组学研究所/蛋白质药物国家工程研究中心魏开华主持,质谱评议组中石化石油化工科学研究院苏焕华、中国农业大学李重九、国家生物医学分析中心医学工程室赵晓光,中国分析测试协会汪正范、国家生物医学分析中心杨松成出席本次会议。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/9027b3f6-6b4d-4070-bf21-ab3178e54014.jpg" title=" 现场.jpg" alt=" 现场.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 会议现场 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/a7350b68-796b-4fa7-8100-75f129a221a3.jpg" title=" 魏开华.jpg" alt=" 魏开华.jpg" / /p p style=" text-align: center " 军事医学研究院生命组学研究所/蛋白质药物国家工程研究中心 魏开华主持会议 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 本次评议活动安排了6位质谱仪器研发和应用的专家们分享了精彩的报告,并且强化了报告嘉宾与听众间的互动交流,促进业内学者及仪器厂商的思想碰撞与交流合作。而且报告内容上既涉及了质谱离子源、分析器的研发,也包含利用MALDI-TOF质谱技术进行临床检验分析的进展,还有近年颇有成果的国产质谱仪器厂商的研究进展分享。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/f819de45-4e86-41d7-a7f0-716760e4aabc.jpg" title=" 朱一心.jpg" alt=" 朱一心.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:浙江好创生物技术有限公司 朱一心 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《电喷雾离子源机理的补充及应用》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告主要对电喷雾离子源的机理提出补充。朱一心提出电喷雾离子化存在的三个问题:1.质子氢的来源,2.为什么只有电喷雾离子化才可产生多电荷分子离,3.为何会产生离子抑制现象?问题的抛出引发了现场专家听众与报告专家的热烈互动与讨论。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201910/uepic/054d1f7b-123e-4fa5-8a06-77b5cf1751eb.jpg" title=" 互动2.jpg" alt=" 互动2.jpg" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 现场互动 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/c98370dc-710a-4582-b258-6344ac7d47d0.jpg" title=" 周晓光.jpg" alt=" 周晓光.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:融智生物科技(青岛)有限公司 周晓光 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《MALDI-TOF质谱宽谱定量与成像技术及其应用》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告主要介绍了青岛融智MALDI-TOF宽谱定量和质谱成像的相关应用进展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/031a8cdb-90ee-4d9e-9ece-7bd8ef51a69a.jpg" title=" 季玲.jpg" alt=" 季玲.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:北京大学深圳医院检验科 纪玲主任 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《MALDI-TOF质谱定量检测糖化血红蛋白的临床应用》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告对新一代宽谱定量飞行时间质谱系统QuanTOF(融智生物)测定糖化血红蛋白HbA1c的分析性能做了系统评价。研究结果显示,批内CV和总CV分别低于1.6%和2.4%,且线性度良好,相关系数为0.999。另外,纪玲也表示,质谱仪的高分辨能力可有效对同时患有异常血红蛋白病的个体进行准确诊断,且抗干扰能力优异,体现了质谱技术在临床检验领域的进一步发展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/90cbee38-576f-46c3-9339-9ea99ecd3d59.jpg" title=" 盖思齐.jpg" alt=" 盖思齐.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:北京市神经外科研究所/首都医科大学 盖思齐博士 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《中国人群生物年龄的生物标记物研究与应用》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告介绍了关于发现血浆IgG糖基化水平与“生物年龄”及“身份证年龄”之间的关联,探讨综合糖基化指标能否作为预测“生物年龄”的潜在生物标记物的研究。此研究阐明了多种IgGN-糖基化水平与年龄的相关模式,并建立了基于糖基化水平的年龄预测模型。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/92ba979a-a053-4f67-8dd5-564d2bf9e092.jpg" title=" 丁力.jpg" alt=" 丁力.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:岛津欧洲研究所 丁力博士 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《数字离子阱的发展与MALDI-DIT质谱仪》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告介绍了数字离子阱质谱的技术发展,对MALDI-DIT质谱技术的创新性进行了阐述。据介绍,MALDI-DIT技术已推出相关的商业化产品,如广州禾信推出了便携式VOC监测线形数字离子阱质谱仪,岛津公司也推出了MALDI-DIT技术的商业化产品MALDI数字离子阱质谱仪mini-1。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/65b17492-441d-47ad-8b3b-a72d49e4fb6a.jpg" title=" TOFWerk.jpg" alt=" TOFWerk.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:TOFWerk中国分公司总经理 朱亮博士 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《Vocus ELF PTR-TOF实时在线VOC监测最小最轻PTR-TOF质谱仪》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告分享结束后,质谱评议组组长魏开华总结了2019年质谱评议的测试结果。此次质谱评议组现场对2家厂商的仪器进行了评测,在肯定成绩的同时,专家们也提出,未来在准确度与分辨率方面国产质谱仪器的成长值得期待。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/fb9ba38f-ce3e-4ce9-a573-05e28f3aac1b.jpg" title=" 合影.jpg" alt=" 合影.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告专家合影 /p p br/ /p
  • 北京质谱年会岛津高端质谱等技术备受关注
    “2016年度北京质谱年会”在北京蟹岛会议中心与日前成功召开。300余名来自科研院所、高校、检测实验室及仪器公司等单位的代表参加了此次会议。北京质谱年会是北京理化分析测试技术学会主办的系列年会,自2005年第一届开始,每年举办一次。正如会议开幕式上北京质谱学会理事长再帕尔阿不力孜在开幕辞中所述,质谱年会发展至今,规模逐步扩大,形式固定,内容丰富,受到了质谱专家、研究学者、学生和质谱厂商的广泛关注,更吸引了很多京外学者的参与。会议现场北京质谱学会理事长再帕尔阿不力孜致开幕辞  北京质谱年会已于2016年初完成了理事长换届工作,下任北京质谱学会理事长由清华大学张新荣教授担任。张新荣教授首先肯定了多年来北京质谱年会的发展与成就,对再帕尔教授及各位老师同学的支持表示感谢。张新荣介绍了未来几年我国质谱科学基础研究及应用的发展愿景,希望北京质谱学会能为我国质谱科学、质谱仪器的发展做出贡献。清华大学张新荣教授任新一届北京质谱学会理事长  本届质谱年会的报告非常精彩,围绕质谱技术在生命科学领域中应用的背景、质谱仪器研制方面的前沿进展等非常广泛的议题展开。南京大学化学化工学院刘震教授做了题为“分子印记微萃取-质谱联用方法及应用研究”的报告;清华大学精密仪器系欧阳证主任做了题为“质谱仪器研究的大小、高低和难易”的报告;中国计量科学研究院王军研究员做了题为“同位素丰度测量技术及计量标准研究新进展”的报告;军事医学科学研究院谢剑炜研究员做了题为“效应标志物质谱定量技术揭示的硫芥毒性作用新特点及应用”的报告̷̷本届质谱年会大会报告传真 岛津企业管理(中国)有限公司倾情赞助本次大会,并向与会者报告并展示了携最新的高端质谱等分析技术、产品与应用,备受与会者的关注。与会者纷纷来到岛津展台与岛津技术专家交流 在大会报告中,岛津中国质谱中心的李艳敏女士做了题为“原位分子分布可视化时代”的报告。她在报告中首先介绍了质谱显微镜的原理和特点,并论述了岛津质谱显微镜iMScope TRIO的优势,特别是其在癌症标记物的发现、药代动力学、疾病发病机理解析、药物控制释放系统、植物类内生分子等多领域的应用引起了与会专家的关注。与会专家就从质谱显微镜的硬件指标到具体应用与李艳敏女士进行了深入的探讨,现场气氛热烈。岛津中国质谱中心的李艳敏女士做了题为“原位分子分布可视化时代”的报告与会专家与岛津李艳敏女士深入探讨 应广大年轻学者及学生的需求,北京质谱年会不仅有学术报告,更准备了内容丰富的学术沙龙和培训内容。在有机质谱培训讲座中,岛津公司分析中心的李长坤先生做了题为“超临界流体色谱质谱联用系统的特点及应用”的报告。他介绍了岛津超临界流体色谱质谱联用系统Nexera UC的特点优势与丰富的应用实例。他强调Nexera UC是统一LC、GC、SFC多种分离模式的分析技术与统一前处理操作和分离的分析技术。Nexera UC从提取到分析全自动操作在线联用系统防止易氧化物质降解,改善了分析流程,减少了手动操作的误差;通过自动更换萃取器对多个目标分析物萃取,最多可进行48个样品的连续提取与分析;实现高灵敏度检测,低延迟体积和低扩散保证了其灵敏度。他介绍了Nexera UC系统的多个热点应用,比如原来分别使用GCMS和LCMS分析的成分可以利用在线联用Nexera UC系统进行一次分析,从农产品中萃取的农药残留约500种成分可同时分析,等等。他的报告受到在座的青年学者的欢迎。岛津公司分析中心李长坤做题为“超临界流体色谱质谱联用系统的特点及应用”的报告关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 第三届华人质谱研讨会:无机同位素及质谱技术专场
    2010年全国质谱大会曁第三届世界华人质谱研讨会--无机同位素及质谱技术专场   由中国质谱学会、美国华人质谱学会、台湾质谱学会、香港质谱学会共同举办的“2010年全国质谱大会曁第三届世界华人质谱研讨会”的分会“无机同位素及质谱技术专场”于8月1日上午召开,由于会议内容涉及到新型质谱技术的开发、质谱技术的新应用而吸引了众多的观众,现将主要报告内容摘录如下。   中国计量科学研究院 王军   报告题目:非传统同位素体系计量标准研究   国外有证非传统同位素标准物质因其研制时间早,在应用中占主导地位。目前非传统同位素标准物质存在的问题:有限的元素同位素标准物质商品化 部分已经供应不足 质谱仪测量精密度的提高(0.0002%)推荐同位素组成变异研究,传统的测量模式导致标准物质的不确定度0.2%-0.02% 提高同位素标准物质的品质,关键是提高研制的技术含量 在目前的同位素标准物质不确定度水平上,在降低1-2个数量级。    PerkinElmer公司 姚继军   报告题目:ICP-MS分析复杂样品长期稳定性的影响因素   复杂样品涉及土壤、矿石、冶金材料、高盐样品、生物样品、有机样品等。姚继军分析了进样的各个环节影响长期稳定性的影响因素,如泵管、锥、控温、离子透镜等方面。“锥”是影响长期稳定及检测结果的重要因素之一,在检测过程中,Na、K、Mg等易电离元素很难沉积在锥口上,而金属基体以及硅酸盐德国那则容易沉积在锥口上,导致锥口变小,从而影响到仪器的稳定性。姚继军还介绍了各种锥的适用范围。    西安核技术研究所 朱凤蓉   报告题目:钚气溶胶直接进样ICP-MS快速分析技术-6级高效过滤器后钚气溶胶的定量   经典理论认为,气溶胶通过虑材时,微粒被捕集的机理主要有惯性碰撞、拦截、扩散、重力沉积及静电吸引等。气溶胶直接进样,由ICP-MS进行钚的识别容易,但是要定量分析气溶胶则困难较多,主要时效率标定困难。朱凤蓉所在实验室研发了钚气溶胶直接进样ICP-MS快速分析技术,用外加雾化气溶胶实时标定ICP-MS的灵敏度,用天然铀单粒子验证了方法的可靠性。    岛津分析技术研发(上海)有限公司 蒋公羽   报告题目:Tandem Mass Analysis using Quadrupole and Linear Ion Trap Analyzers   在报告中展示了一种利用离子阱前的四级杆对样品离子初步筛选,利用四极杆与离子阱间的的直流电位差加速离子使其碎裂的串联质谱方法。高能量条件下本方法所得子离子谱与三重四极杆仪器子离子谱图相似,有利于进行谱库查询及定性、定量检测。    中国原子能科学研究院 赵永刚   报告题目:核取证--质谱技术应用新领域   核能利用主要在两个方面:核子武器和核能发电。“核不扩散条约”是核能利用的国际规则。质谱技术在核取证过程具有非常重要的作用,主要有TIMS、ICP-MS、GD-MS、GC-MS。核取证的作用正被越来越多国家和国际组织认可,相关投资正逐步加大,核取证是需要多学科共同介入的技术过程,质谱技术有明确的应用需求。    核工业北京地质研究院 郭冬发   报告题目:铀资源勘查质谱技术新进展   铀资源勘查需要高效的灵敏的技术,涉及到多种质谱技术,ICP-MS、GC-MS、二次离子质谱、热电离离子质谱等、稳定同位素、惰性气体质谱等。典型的应用是铀分量地球化学勘探,铀浓缩物微量元素分析 判定工艺质量和取证。难溶元素的分析使用激光ICP-MS,同位素示踪用TIMS和GMS。   西安核技术研究所 翟利华   报告题目:欧姆加热的热腔离子源与磁质谱的匹配及初步实验结果   报告中主要介绍了热腔离子源的主要特点和可能的用途、欧姆加热+磁质谱的利弊、离子源的设计、离子透镜的优化、以及初步的离子源效率实验。对铀的系统探测和离子源效率实验结果表明:离子源对铀的效率约为4-8%,通过扫描离子束大致判断通过率约为20-30%,通过率还有较大的改进余地。    中国计量科学研究院 江游   报告题目:大气压接口-单四极杆和线性离子阱质谱仪的研制   报告中主要介绍了大气压接口-单四极杆和线性离子阱质谱仪的研制两种仪器的研制情况。大气压接口-单四极杆应用范围:(1)液相色谱-质谱联用:ESI、nano-ESI、APCI、APPI等离子源。(2)常压原位分析:DESI、DBDI、DART等。(3)质量分析器:Ion Trap、Qaudrupole、TOF等。    中国计量科学研究院化学所 黄泽健   报告题目:基于离子阱技术的便携式质谱仪研制   报告中介绍了课题组关于气相色谱四极杆质谱联用仪的研制情况,经过原理样机、科研样机,已经研制出了产品样机。便携式叠型场离子阱质谱仪已经发布,涉及的关键部件和关键模块:RF电源、测控系统、小信号放大器AC驱动模块等 在机械部分成功研制了RIT离子阱、四极杆、离子源(EI、ESI、CI、GDEI、DESI、DBDI等)。    广州禾信分析仪器有限公司 周振   报告题目:气溶胶质谱及飞行时间质谱技术新进展   单颗粒气溶胶质谱检测技术优势:(1)基于单颗粒分析技术:颗粒物的粒径信息、化学成分信息同时得到测量 (2)分析速度快:多种成分同时测量 (3)高时间分辨率:现场实时分析,可以捕捉气溶胶的舜时变化 (4)更完整的反映颗粒物信息:不会造成易挥发性和强吸附性组分造成的误差。周振在报告中展示了最新研发成功的单颗粒气溶胶质谱仪SPAMS,该仪器具有体积小、实现野外检测、按要求做功能定制、维护方便。已积累了70万个同时含有颗粒物粒径和正负图谱颗粒信息。    华质泰科生物技术有限公司 刘春胜   报告题目:DART® -MS 实时直接分析质谱:升级您的液质联用LC/MS   报告中首先介绍了DART这一新型具有突破性的离子化技术的基本原理。目前用户要求样品的检测越快越好,但是中间包括了样品的制备、分离以及各种参数的调整,对于现场的操作人员,使用起来相对困难。相对于电喷雾,DART具有更多的优点,甚至不需要样品前处理,实验过程中只需要便宜的氮气就可以。DART和质谱仪之间,能够在大气压下直接分析固体、液体、或气体样品。 DART® -MS 实时直接分析质谱具有高分辨率、高特异性,能直接分析货币、食物、药片和衣物等样品。目前商品化的只有DESI和DART。操作非常简便,DART® -MS可以用有线或者无线,Iphone或Ipod进行控制。
  • 离子淌度质谱技术:质谱领域的新维度和新深度
    离子淌度质谱技术:质谱领域的新维度和新深度  距离质谱的上一个诺贝尔奖已经过去了20年,但目前的质谱技术并没有超越几十年前的模式,如傅里叶变换离子回旋共振质谱(FTICR-MS)依然具有最高的质量分辨率,飞行时间质谱(TOF-MS)依然具有最快的扫描速度等。质谱领域的革命性工作在于提高分析的精度、维度、广度和通量。近几十年来,离子淌度技术(ion mobility spectrometry,也称“离子迁移谱”)快速发展,离子淌度质谱的联用技术也得到了广泛应用,这使得质谱分析能力从相对简单的质荷比拓展到复杂的三维结构,从简单的异构体区分发展到复杂的构象解析。  近年来,国家自然科学基金委、科技部及相关部委对离子淌度质谱相关的技术开发和应用工作进行了资助,相应的成果在蛋白质组学、代谢组学、脂质组学、质谱成像分析、生物大分子结构分析、中医药分析、手性化合物分析等领域都得以广泛体现。然而,这些工作中使用的质谱仪器,尤其是同时拥有离子淌度功能的质谱仪器仍以国外企业产品为主,价格也十分昂贵。质谱等高精尖的科学仪器发展一直依赖于各行各业的齐心协力,不仅新的原理创造和技术开发需要重点资助和支持,新的应用场景和技术迭代同样需要各行各业的支持和响应。目前,现场爆炸物检测分析常用的离子淌度谱仪已经广泛实现了国产品牌替代,然而国产离子淌度质谱仪器的研究还基本处于空白。这些都极大地限制了自主性、原创性研究工作的开展,也对新一代质谱仪器的研发提出了更高的要求,特别需要引起国家部委和本土企业的极大关注和重视。  本专辑汇集了国内离子淌度质谱研究一线人员的工作,从多个方面展现了我国离子淌度质谱研究的现状,其中共收录了13篇论文,包括了新型离子迁移谱的理论技术,如基于离子阱技术和FTICR-MS的离子淌度分析、用于行波离子迁移谱的关键电源技术、基于离子淌度质谱技术的离子光谱研究等,还包括了离子淌度质谱技术的应用,如碰撞截面积的测量、小分子代谢物分析、糖类异构体分离、蛋白质的立体修饰、环境对蛋白结构的影响和糖基化蛋白分析等工作。专辑中的综述性工作和研究报告从不同的维度和角度反映了国内外离子淌度质谱研究的新进展,也提炼出了多个具有潜力的发展方向。  回首过去的几十年,国内质谱技术的发展一直在奋力追赶,在离子源、离子传输、分离、检测等各个领域都逐渐崭露头角。路漫漫其修远兮,时光流逝,希望下一个十年能看到高端国产离子淌度质谱技术在各个领域的身影。  本文内容源自《质谱学报》2022年第五期Vol.43,本期执行主编为中国科学院上海有机化学研究所生物与化学交叉研究中心研究员朱正江、湖南大学教授博士生导师岳磊。 doi:10.7538/zpxb.2022.3000
  • 合肥研究院提出质子提取反应质谱新技术
    可实现对痕量有机和无机化合物的同时监测   近期,中国科学院合肥物质科学研究院医学物理中心光谱质谱研究室在线质谱检测新原理、新方法研究取得进展,发展的质子提取反应质谱(Proton Extraction Reaction Mass Spectrometry, PER-MS)新技术,实现了对痕量有机和无机化合物的同时监测。此项研究工作发表在《质谱国际杂志》(International Journal of Mass Spectrometry)上。   长期以来,以质子转移反应质谱(PTR-MS)为代表的先进在线质谱技术,在环境、生物、医疗健康、公共安全等领域发挥着重要作用,为痕量挥发性有机物(VOC)的快速定量检测提供了高灵敏技术手段。PTR-MS的工作原理是通过反应离子H3O+与被测物质VOC之间的质子转移反应,将VOC转化为(VOC)H+,从而实现VOC的离子化和后续的质谱探测。早在2008年,光谱质谱研究室科研人员研制了我国首台PTR-MS仪器,并在国际上率先将该技术用于炸药、医疗器械溶剂/杀菌剂残留以及易制毒品的快速检测,研究室储焰南研究员受邀编写了Mass Spectrometry Handbook(John Wiley & Sons, 2012)中的PTR-MS章节。但是,由于H3O+与无机化合物几乎不发生反应,因此,以H3O+为反应离子的PTR-MS技术检测不了无机化合物。   为了解决这个问题,光谱质谱研究室科研人员另辟新径,成功制备了负离子OH-,利用反应离子OH-与VOC之间的质子反方向转移反应,即质子提取反应(PER),将被测物质VOC转化为(VOC-H)-,从而实现VOC的离子化和后续的质谱探测 重要的是,OH-可以与无机化合物例如CO2发生反应,将无机物转化为离子例如CO2OH-。因此,新发展的以OH-作为反应离子的质子提取反应质谱PER-MS,不但能检测有机物,而且也可以检测无机物。   该项研究提出的PER-MS技术,不但丰富了在线质谱内容,而且也为痕量有机/无机物的同时检测,提供了一种新手段。相关技术已经申报了国家发明专利。 质子提取反应质谱(PER-MS)原理示意图
  • BLT小课堂 | 蛋白芯片技术原理及应用
    概念蛋白质芯片技术是在DNA芯片技术基础上发展的一项蛋白质组学技术。其原理是将大量不同的蛋白质分子(如酶、抗原、抗体、受体、配体、细胞因子等)通过微阵列的形式有序排列在固相载体表面,利用蛋白质与蛋白质或者蛋白质与其他分子之间的特异性结合,获得与之特异性结合的待测蛋白(如血清、血浆、淋巴、间质液、尿液、渗出液、细胞溶解液、分泌液等)的相关信息,便于我们分析未知蛋白的组分、序列,体内表达水平、生物学功能、与其他分子的相互调控关系、药物筛选、药物靶位的选择等。蛋白质芯片技术的出现,为我们提供了一种比传统的凝胶电泳、Western blot和Elisa更为方便和快速研究蛋白质的方法。该方法具有高通量,微型化和快速平行分析等优点,不仅对基础分子生物学的研究产生重要影响,也在临床诊断、疗效分析、药物筛选及新药研发等领域有着广泛应用。特点①蛋白芯片具有高特异性、重复性、准确性。这是由抗原抗体之间、蛋白与配体之间的特异性结合决定的。②蛋白芯片具有高通量和操作自动化的特点,在一次实验中可对上千种目标蛋白同时进行检测,效率极高。③可发现低丰度、小分子量蛋白质,并能测定疏水蛋白质,特别是膜蛋白质。④蛋白芯片具有高灵敏性,只需0.5-5μL样品,或2000个细胞即可检测。蛋白芯片技术在分子生物学及生物化学基础研究中的应用01 在蛋白质水平上检测基因的表达由于基因转录产物mRNA数量并不能准确反映基因的翻译产物蛋白质的质与量,因此在蛋白质水平上检测基因的表达对于了解基因的功能非常重要。蛋白质芯片技术产生前,蛋白质双向电泳技术是蛋白质组规模上进行蛋白质表达研究的唯一方法,但这种技术操作繁琐而且难以快速检测样品中成百上千种蛋白质的表达变化。蛋白质芯片的特异性、灵敏性和高通量等特点,在检测基因表达终产物蛋白质谱的构成及变化中发挥着不可替代的作用。02 高通量筛选抗原/抗体相互作用目前蛋白质芯片检测利用最广泛的生物分子相互作用是抗原抗体的特异性识别和结合,单克隆抗体是蛋白质芯片检测中使用最广泛的生物分子。运用蛋白质芯片可以研究不同抗原/抗体的特异性作用,而且对于检测样品中极微量的抗原/抗体分子作用非常有利。03 蛋白质/蛋白质相互作用分析酵母双杂交系统是近年来基因组规模上研究蛋白质相互作用的主要方法,但存在体内操作、假阳性、假阴性和外源蛋白质折叠、修饰等局限。蛋白质芯片技术不依靠任何生物有机体而在体外直接检测目标蛋白质,实验条件可随意控制,同时实验步骤自动化程度高,一次分析的蛋白质数量巨大,因而成为目前除酵母双杂交系统外进行大规模研究蛋白质相互作用的主要方法。04 酶/底物作用分析耶鲁大学的Snyder小组用蛋白芯片对酵母基因组编码的119种蛋白激酶的底物专一性进行了研究。实验中将蛋白激酶表达为谷胱甘肽转移酶(GST)融合蛋白,针对17种不同的底物,平行测定了119种GST2蛋白激酶融合蛋白的底物专一性,发现了许多新的酶活性,大量蛋白激酶可以对酪氨酸进行磷酸化,而这些激酶在催化区域附近有共同的氨基酸残基。也证明了蛋白质芯片可作为高通量筛选酶-底物作用的良好平台。蛋白芯片的检测目前蛋白芯片的检测主要有两种方式。一种是以质谱技术为基础的直接检测法,采用表面增强激光解析离子化-飞行时间质谱技术,用激光解析电离的方法将保留在芯片上的蛋白质解离出来。具体过程为:芯片经室温干燥后,加能量吸附因子如芥子酸,使其与蛋白质结合成混合晶体,以促进蛋白质在飞行时间质谱检测中的解析和离子化,利用激光脉冲辐射使芯池中的分析物解析成荷电粒子,根据不同质荷比离子在仪器场中的飞行时间长短不一,通过飞行时间质谱来精确地测定出蛋白质的质量,并由此绘制出一张质谱来,以分析蛋白质的分子量和相对含量。另一种为蛋白质标记法,样品中的蛋白质预先用荧光染料或同位素等标记,结合到芯片上的蛋白质就会发出特定的信号,用CCD照相技术及荧光扫描系统等对激发的荧光信号进行检测。与飞行时间质谱相比,该方法定量更加准确,操作也更加简便。与DNA芯片一样,蛋白质芯片同样蕴含着丰富的信息量,必须利用专门的计算机软件进行图像分析、结果定量和解释。其中应用最广的是荧光染料标记法,原理较为简单、使用安全、灵敏度高,且有很好的分辨率。可直接用广州博鹭腾 GelView 6000Plus进行拍摄。图1.GelView 6000Plus智能图像工作站GelView 6000Plus 配备600万像素科学级制冷CCD相机,制冷温度为环境温度下 55℃,极低的暗电流,很大程度降低背景干扰。而且独有的红外感应开关,自动控制样品台的开启与关闭,同时也减少了实验时对仪器的污染。
  • 国际视野 共话原位电离质谱技术前沿——2021年原位质谱主题网络研讨会成功召开!
    仪器信息网讯 2021年7月8日,由仪器信息网与华质泰科生物技术(北京)有限公司联合举办的“2021原位质谱主题网络研讨会”在线上盛大召开。会议共邀请美国JEOL公司首席科学家/DART技术共同发明人Robert (Chip) Cody博士、马里兰大学药学院质谱中心主任Jace W. Jones、美国托莱多大学Emanuela Gionfriddo博士、美国德州大学圣安东尼奥医学研究中心韩贤林教授、美国威斯康星大学麦迪逊分校李灵军教授、国立台湾大学化学系徐丞志副教授、德国慕尼黑工业大学Christoph Haisch教授、英国剑桥大学代谢科学研究所主任Albert Koulman博士、英国斯旺西大学医学院质谱分析系主任William J. Griffiths教授、德国 Plasmion联合创始人Jan-Christoph Wolf博士等十二位原位质谱领域的资深专家,聚焦原位电离质谱技术新方法新应用,以及原位电离技术在食药安全、法证毒检、精准医疗、生命科学、检验检疫、聚类溯源、能源环境、与健康大数据管理等领域的应用发展等进行介绍和探讨。  会议由南京师范大学/加拿大英属哥伦比亚大学陈大勇教授与华质泰科生物技术(北京)有限公司首席技术官刘春胜博士共同主持。  美国JEOL公司首席科学家/DART技术共同发明者 Robert Chip Cody博士  Cody博士做了题为《实时直接分析质谱在病原学和临床检验中的应用前景》的报告。Cody表示, DART技术目前还没有任何批准的临床应用,但当前也有报道了一些非常前沿的应用进展。相信在不久的将来,一些临床应用很可能会获得批准。此外,报告还回顾了一些基于DART技术开展的临床化学和微生物学的研究情况。    美国马里兰大学药学院质谱中心主任 Jace W. Jones  Jones教授做了题为《AP-MALDI 和高分辨质谱用于病毒包膜脂质结构表征》得报告。报告介绍了Jones团队使用 AP-MALDI 与高分辨率质谱结合掺锂基质系统的高通量分析平台,并将其应用于包膜病毒总脂质提取物的检测和结构表征等研究进展。美国托莱多大学Emanuela Gionfriddo博士  Gionfriddo博士做了题为《通过原位质谱研究人源微生物与环境毒理》的报告。环境基质中人为污染物的快速定量分析对于监管检测至关重要。原位质谱(AIMS)极大地提高了样品通量,适用于现场分析。对于现场分析应用,瞬态微环境(TME)和可变背景可能干扰重现性。在这项工作中,Gionfriddo团队开发了一种有效的策略,将固相微萃取(SPME)与质谱联用,通过热解吸单元(TDU)和实时直接分析离子源(DART)来最小化这些影响。该方法适用于地表水中杀虫剂和药物的提取和分析。美国德州大学圣安东尼奥医学研究中心 韩贤林教授  韩贤林教授做了题为《基于多维质谱的鸟枪法脂质组学最新研究进展》的报告。报告介绍了基于多维质谱的鸟枪脂质组学,并简要讨论了克服鸟枪脂质组学中存在的“离子抑制”问题的策略,以进行细胞脂质组的综合分析。美国威斯康星大学麦迪逊分校 李灵军教授  李灵军教授做了题为《生物体原位化学反应下的空间质谱成像》的报告。质谱成像(MSI)提供了探测组织中分子信息的机会,无需目标分析物的前置知识,便可提供分析物的分布图。报告介绍了李灵军课题组在不同生物体系中多种信号分子分布成像方面的工作情况和最新进展,尤其是质谱成像在多肽组学、糖组学和脂质组学方面的挑战和重要性。国立台湾大学化学系 徐丞志副教授  徐丞志副教授做了题为《纸基-原位质谱定量测定肠道微生物短链脂肪酸与乳腺癌诊断》的报告。报告介绍了徐丞志团队以快速质谱鉴定为核心,结合原位质谱以及高分辨质谱仪的优势,建立了新式生物医学分析法,并开发细胞尺度下的质谱成像技术,将质谱技术应用在基础生物学研究以及医疗诊断研究的进展情况。  德国慕尼黑工业大学 Christoph Haisch教授  Haisch教授做了题为《原位质谱用于废气测量与颗粒物分析》的报告。报告介绍了HELIOS 与 SICRIT/MS 的结合实现稳健、通用且灵敏的气溶胶表征的相关研究进展。 英国剑桥大学代谢科学研究所主任 Albert Koulman博士  Koulman博士做了题为《高通量单细胞脂质组学的发展与应用--聚焦帕金森发病机理》的报告。单细胞基因组学和转录组学的研究表明,在组织水平上存在复杂的细胞异质性。为了解这种细胞间异质性对代谢的影响,有必要开发一种单细胞脂质质谱分析方法,测量群体中大量单细胞的脂质。这将提供细胞活动和膜结构的功能读数。利用 Triversa Nanomate 的液体萃取表面分析 (LESA) 功能,结合高分辨率 (HRMS) 质谱,成功搭建高通量非靶向单细胞脂质分析平台。这一技术进展突出了细胞异质性在个体多巴胺神经元功能代谢中的重要性,提示 A53T 突变型 α-突触核蛋白(SNCA)神经元膜功能受损。报告介绍了分析单个细胞的挑战,以及Koulman团队开发的获得单个细胞脂质质谱分析的解决方案。  英国斯旺西大学医学院质谱分析系主任 William J. Griffiths教授  Griffiths教授做了题为《脑内胆固醇代谢组的多重原位质谱成像与空间代谢研究》的报告。沃特世大中华区质谱产品经理 王志英  王志英做了题为《2021沃特世全新原位电离质谱,聚焦快检与成像》的报告。报告介绍了Waters近期推出两款新型质谱,RADIAN ASAP 和ACQUITY RDa,报告介绍了其原理、特性及最新的相关应用。岛津中国创新中心应用工程师 陈振贺  陈振贺做了题为《岛津敞开式源DPiMS的原理及应用》的报告。报告详细介绍了DPiMS技术的原理以及其在生物医学研究领域的应用进展。德国 Plasmion联合创始人Jan-Christoph Wolf 博士  Wolf 博士做了题为《SICRIT-MS 质谱鼻与工业食品分析》的报告。报告介绍了SICRIT质谱鼻技术在工业食品领域的一些应用情况,并简要阐述了该技术的优势和未来发展趋势。
  • 质谱成像技术概念及质谱成像方法介绍
    p   现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。 /p p   因此研究人员将目光转向了质谱技术上,以质谱为基础的成像方法不局限于特异的一种或者几种蛋白质分子,可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,不需要对待测物进行标记,分析物可以其最初的形态被检测,同时可对这些蛋白质分子含量进行相对定量,适用于研究生物分子的反应。 /p p   质谱成像(Imaging Mass Spectrometry,IMS)这种最新原位分析技术主要是利用质谱直接扫描生物样品,分析分子在细胞或组织中的 “结构、空间与时间分布”信息。其基本流程(以质谱分析生物组织标记物为例)见下: /p p style=" text-align: center " img title=" 9a504fc2d56285350618456392ef76c6a6ef63fc.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/640b0273-3ad1-4c6a-b6bf-22df33199709.jpg" / /p p   简单而言,质谱成像技术就是借助于质谱的方法,再配套上专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。但是随着这项技术的不断发展,也陆续出现了许多针对各种问题的新技术。 /p p   最早的质谱成像技术是基质辅助激光解吸电离(MALDI,matrix assisted laser desorption ionization)质谱分子成像技术,由范德堡大学(VanderbiltUniversity)的Richard Caprioli等在1997年提出,他们通过将MALDI质谱离子扫描技术与专业图像处理软件结合,直接分析生物组织切片,产生任意指定质荷比(m/z)化合物的二维离子密度图,对组织中化合物的组成、相对丰度及分布情况进行高通量、全面、快速的分析,可通过所获得的潜在的生物标志物的空间分布以及目标组织中候选药物的分布信息,来进行生物标志物的发现和化合物的监控。 /p p   正如数字图像包括三个通道:红、绿、蓝一样(单个亮度定义了每个像素的颜色),质谱成像也包含了数以千计的通道,每一个对应于一个特殊的光谱峰值,“你可以通过质谱方法从这些像素中获得任何信号,然后调整图像中所需分子像素的相对亮度,最后得到一张分子特异性的成像图。” /p p   这种方法可用于小分子代谢物、药物化合物、脂质和蛋白,而且质谱成像能相对快速的利用许多分子通道,完全无需特殊抗体。下面列出五种先进的质谱成像方法。 /p p    strong I. 挑战高分子量蛋白——MALDI质谱分子成像技术 /strong /p p   在对组织或生物体进行成像,分析小分子构成的时候,有一个“拦路虎”总是阻碍实验的进程,那就是多肽,这些多肽体积十分大,要想对它们进行分子成像几乎是不可能的,比如想要研究肿瘤边缘的分子微环境,如果直接成像是不可能获得清晰图像的。 /p p   来自范德堡大学的质谱方法专家Richard Caprioli博士因此发明了基质辅助激光解吸电离(MALDI)质谱分子成像技术,这项技术不局限于特异的一种或者几种蛋白质分子,它可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,同时可对这些蛋白质分子含量进行相对定量。 /p p   MALDI 质谱分子成像是在专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用基质封闭组织切片并将切片置入质谱仪的靶上。通过计算机屏幕观察样品,利用MALDI 系统的质谱成像软件,选择拟成像部分,首先定义图像的尺寸,根据尺寸大小将图像均分为若干点组成的二维点阵,来确定激光点轰击的间距。激光束通过这个光栅图案照射到靶盘上的组织切片,软件控制开始采集质谱数据,在质谱仪中,激光束对组织切片进行连续的扫描,组织样品在激光束的激发下释放出的分子被质谱仪所鉴定从而获得样品上每个点的质荷比(m/ z)信息,然后将各个点的分子量信息转化为照片上的像素点。在每个点上,所有质谱数据经平均化处理获得一幅代表该区域内化合物分布情况的完整质谱图。仪器逐步采集组织切片的质谱数据,最后得到具有空间信息的整套组织切片的质谱数据。这样就可以完成对组织样品的“分子成像”。设定m/ z 的范围,即可确定该组织区域所含生物分子的种类,并选定峰高或者峰面积来代表生物分子的相对丰度。图像中的彩色斑点代表化合物的定位,每个斑点颜色的深浅与激光在每一个点或像素上检测到的信号大小相关。 /p p   通过增加单位面积上轰击的激光点数量和像素,研究人员可以获得更多的样品信息,例如采用4000 像素比200 像素能够得到更好的样品图像。质谱分子成像技术是一种半定量或相对定量技术,图像上颜色深的部分表明有更多的生物分子聚集在组织的这个部分。然而,不可能据此确定生物分子在组织的不同部位的实际绝对含量。选择组织图像上的任意一个斑点,图像都能够给出一个质谱谱图或者离子谱图,代表在组织的该部位存在这种生物分子,然后与做指纹图谱类似,像做指纹图谱那样,将样品的离子谱图与已知标准品进行对照,分析差异,从而进行生物标志物的发现和药物作用的监控。 /p p    strong Ⅱ. 无需样品处理 实时成像——电喷雾电离技术 /strong /p p   一般质谱成像方法由于体积庞大,重量重,需要冗长的样品准备阶段,因此并不适用于即时成像(bedside applications),比如说要帮助外科医生进行实时的肿瘤边界成像监控,那么就要寻找新的方法了。 /p p   一种称为电喷雾电离技术(desorption electrospray ionization,DESI)的MS成像技术解决了这个问题。DESI技术于2004年首次提出,由于这一方法具有样品无需前处理就可以在常压条件下,从各种载物表面直接分析固相或凝固相样品等优势而得到了迅速的发展。 /p p   这种方法的原理是带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子DESI与另外一种离子源:SIMS(二次离子质谱)有些相似,只是前者能在大气压下游离化,发明这项技术的普渡大学Cooks博士认为DESI方法其实就是一种抽取方法,即利用快速带电可溶微粒(比如水或者乙腈acetonitrile)进行离子化,然后冲击样品,获得分析物的方法。 /p p   DESI系列产品最大的优势就在于无需样品处理,一般质谱和高效液相色谱分析,样品必须经过特殊的分离流程才能够进行分析检测,使得一次样品检测常常需要约一个小时,而DESI系列产品可将固体样品直接送入质谱,溶液被喷射到检测表面,促使样品离子均匀分布。采用这一手段的质谱分离过程,只需3分钟左右即可完成。 /p p    strong Ⅲ. 活体成像——APIR MALDI/LAESI技术 /strong /p p   了解细胞的内部成分是理解健康细胞不同于病变细胞的关键。但是直到目前为止,唯一的方法是观察单个细胞的内部,然后将其从动物或植物中移除,或者改变细胞的生存环境。但是这么做的话,会使细胞发生变化。科学家还不是很清楚一个细胞在病变时与健康细胞的差别,或者当它们从一个环境移到另一个环境中产生的变化。 /p p   来自华盛顿大学Akos Vertes教授希望能从另外一个方面来进行活细胞分析,在他的一项关于活叶样品中初级和次级代谢产物分布的研究中,研究人员发现叶片中积累基质很厚,常导致光谱末端低分子量部分模糊,而且基质辅助激光解析电离(MALDI)质谱分析需要在真空中进行,但活体样本在真空中无法存活。 /p p   实际上,MALDI质谱分析的原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。而生物样品也可以直接吸收能量的,比如2.94mm波长的光能激活水中氢氧键。 /p p   因此Vertes等人想到复合两种技术来解决这一问题。首先他们利用大气压红外线(an atmospheric pressure infrared,APIR)MALDI激光直接激活组织中的水分,使样品气化,就像是组织表面发生了细胞大小的核爆炸,从而获得了离子化微粒,进入质谱中进行分析。但是并不是所有的气化微粒都带电,大部分其实是不带电的,会被APIR MALDI遗漏。 /p p   为了捕捉这些中性粒子,Vertes等人采用了第二种方法:LAESI (laser ablation electrospray ionization,激光烧蚀电喷雾电离),这种方法能捕捉大量带电微滴的微粒,然后重新电离化。通过对整个样品进行处理,复合这两种方法,就能覆盖更多的分子,分析质量更高。 /p p   与一般质谱成像过程不同,Verte的方法还在成像中增加了高度,从而实现了3D代谢物成像。这项技术的分辨率是直径10mm,高度30mm,这与生物天然的立体像素相吻合,这样科学家们就可以获得天然构像。 /p p    strong Ⅳ. 3D成像——二次离子质谱技术 /strong /p p   质谱成像技术能将基质辅助激光解吸电离质谱的离子扫描与图像重建技术结合,直接分析生物组织切片,产生任意质荷比(m/z)化合物的二维或三维分布图。其中三维成像图是由获得的质谱数据,通过质谱数据分析处理软件自动标峰,并生成该切片的全部峰值列表文件,然后成像软件读取峰值列表文件,给出每个质荷比在全部质谱图中的命中次数,再根据峰值列表文件对应的点阵坐标绘出该峰的分布图。 /p p   但是一般的质谱成像技术不能对一些携带大分子碎片的化学成分进行成像,来自宾夕法尼亚州州立大学的Nicholas Winograd教授改进了一种称为二次离子质谱(SIMS,secondary ion mass spectrometry)的方法,可以对样品进行完整扫描,三维成像。 /p p   SIMS早在用于生物学研究之前就已经应用广泛了,比如分析集成电路(integrated circuits)中的化学成分,这种质谱技术是表面分析的有利工具,能检测出微小区域内的微量成分,具有能进行杂质深度剖析和各种元素在微区范围内同位素丰度比的测量能力。 /p p   这种技术具有几个优点:速度快(-10,000 spectra per second),亚细胞构造分辨率(-100 nm),以及不需要基质。但是另外一方面,不同于MALDI方法,SIMS方面不是一种“软”技术,这种方法只能对小分子成像,因此常常需要进行粉碎。 /p p   Winograd教授改进了这一方法,他利用了一种新型SIMS光束(carbon-60 磁性球),这种新光束比传统的SIMS光束对物体的化学损伤更小。C60同时撞击样品表面,类似于“一阵爆炸”,这样重复的轰击使得研究人员能深入样品,进行三维分子成像,Winograd教授称这个过程是“分子深度成像”(molecular depth profiling)。 /p p   C60的能量与其它的离子束相当,却不到达样品表面以下,这样样品可以连续地被逐层剥离,研究人员就可以得到纵面图形,最终获得三维的分子影像。Winograd教授等人用含有肽的糖溶液将硅的薄片包裹起来并进行SIMS实验,随着薄膜逐渐被C60剥蚀,可以获得糖和肽的稳态信号。最终,薄膜完全剥离后就可以获得硅的信号。如果用其它的射线或原子离子代替C60 ,粒子束会快速穿过肽膜而无法提供有关生物分子的信息。因此这种方法具有良好的空间分辨率,能够获得巨噬细胞和星型细胞的细胞特征和分析物的分布情况。 /p p   这里还要说到一点,SIMS和上一技术(APIR MALDI/LAESI技术)都可以对三维成像,但两者也有差别,SIMS方法中,采用高能离子轰击样品,逐出分析物离子(二级离子),离子再进入质量分析器。MALDI方法则用激光辐射样品使之离子化,另外SIMS探针可以探测到100nm的深度,能提供纳米级的分辨率,而MALDI可以探测更深,但空间分辨率较低。 /p p   strong  Ⅴ. 高灵敏度 高分辨率——纳米结构启动质谱技术 /strong /p p   质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来自于哪儿。 /p p   来自斯克利普斯研究院的Gary Siuzdak博士发明了一种称为纳米结构启动质谱(nanostructure-initiator mass spectrometry,NIMS)的新技术,这种技术能以极高的灵敏度分析非常小的区域,从而允许对肽阵列、血液、尿和单个细胞进行分析,而且还能用于组织成像。 /p p   NIMS利用了一种特制的表面,这种多孔硅表面上聚集了一种含氟聚合物,这些分子在受到激光或离子束照射时会猛烈爆发,这种爆发释放出离子化的分析物分子,它们被吸收到表面上,使其能够被检测到。这种方法利用激光或离子束来从纳米尺度的小囊中气化材料,从而克服了一般质谱方法缺少所需的灵敏度和需要基质分子促使分析对象发生离子化的缺陷。 /p p   通过这种方法可以分析很多类型的小分子,比如脂质,糖类,以及类固醇,虽然每一种分析材料需要的含氟聚合物有少许差别,但是这是一种一步法的方法,比MALDI简单多了——后者需要固定组织,并添加基质。 /p p   由于含氟聚合物不能很好的离子化,因此会发生轻微的光谱干扰,而且由于离子化过程是“软性”的——就像MALDI,所以NIMS产生的生物分子是整块离子化,而不是片段离子化。不过这种技术对于完整蛋白的检测灵敏度没有MALDI高。 /p p & nbsp /p p & nbsp /p
  • 2010年全国质谱年会之质谱技术培训讲座顺利召开
    仪器信息网讯 2010年全国质谱大会曁第三届世界华人质谱研讨会将于7月30日在长春国际会展中心正式拉开序幕。在开幕的前一天,大会主办单位邀了中科院化学所的王光辉研究员、中国医科院基础医学研究所的李智立研究员、复旦大学的陆豪杰教授、北京协和医院的胡蓓教授以及沃特世公司和安捷伦公司的工程师分别进行了内容新颖的质谱技术培训讲座,使广大参会人员在其相关领域的质谱技术上得到了启迪和可借鉴的经验。培训讲座由中科院长春应化所的刘淑莹研究员主持。 质谱技术培训讲座现场 王光辉研究员就小分子的激光电离研究进展进行讲解   来自中科院化学所的王光辉研究员给大家进行了题为《小分子的激光电离研究进展》的讲座。王光辉研究员具体介绍了MALDI中利用不同表面物理形态的靶(如多空硅及硅纳米丝)及不同基质(如铅笔芯及质子海面)检测小分子物质的方法和实例,并根据其导电性影响,给大家介绍了多种不同材质的样品靶,如聚四氟乙烯、胶带、陶瓷等。王老师的试验方法及结果很好的证明了MALDI进行小分子检测的能力,拓宽了MALDI检测的分子量范围,给大家在进行小分子检测时增加了新的思路和适用方法。 李智立研究员介绍傅里叶离子回旋共振质谱仪(FTICR-MS)在生物医学中的应用   接着,来自中国医科院基础医学研究所的李智立研究员就傅里叶离子回旋共振质谱仪(FTICR-MS)在生物医学中的应用给大家进行了详细的讲解。李老师具体介绍了FTICR-MS的原理及其主要功能,以及它在生物大分子、有机小分子及代谢产物和组织成像等领域中的主要应用和当前存在的问题。 陆豪杰教授介绍质谱大规模研究肿瘤蛋白质标志物的新技术新方法   复旦大学化学系的陆豪杰教授给参会人员介绍了质谱大规模研究肿瘤蛋白质标志物的新技术新方法。陆博士肯定了蛋白质组学在转化医学中所处的核心地位,蛋白质是肿瘤最主要的标志物,目前基于质谱的分析方法是目前大规模筛选肿瘤标志物的最有效手段。陆博士继而介绍了他们建立的复合材料富集低含量蛋白质、痕量蛋白质酶解、复合纳米材料富集糖蛋白、化学修饰磷酸化蛋白质这四种质谱分析新方法。 胡蓓教授介绍质谱技术在临床药理研究中的应用   来自协和医院的胡蓓教授给参会人员介绍了质谱技术在临床药理研究中的应用。胡教授主要介绍了他们正在进行的PK和PD/PK研究及其延伸性研究进展,以及药物的生物转化研究等内容。在定量分析方法学问题上,胡教授介绍了在临床研究中为保证生物标本定量分析的安全性和可靠性所需要符合的各项规范及其相关考核内容。 沃特世公司丁雁灵博士介绍SYNAPT G2 HDMS的离子淌度 高清质谱技术及应 Agilent的王颖博士介绍安捷伦超高解析度质谱技术在药物代谢中的应用   除了以上4专家以外,来自沃特世公司丁雁灵博士和来自安捷伦公司的王颖博士也分别就SYNAPT G2 HDMS的离子淌度高清质谱技术及应用和安捷伦超高解析度质谱技术在药物代谢中的应用这两个主题进行了仪器介绍及相关实例讲解。SYNAPT G2 HDMS显示出了其优秀的分离及检测能力,而安捷伦超高解析度质谱的代谢产物鉴定软件可根据数据进行评分,并进行分子特征提取,大大提高了代谢产物选择的准确性。
  • 质谱技术的新方向—电荷检测质谱法(CDMS)
    电荷检测质谱法是通过同时测量单个离子的质荷比和电荷数,进而算得离子质量m的单粒子统计方法,在测定超大分子离子的质量分布方面有独特的优势。现有质谱仪在超大分子量测量方面面临的挑战在质谱仪中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来,因此形成质谱。所以,目前的质谱仪测量的是离子的质荷比(m/z),而不是质量本身。经过一个多世纪的发展,质谱仪从原先只能分析无机元素和小分子,逐步发展到能够分析有机物分子、生物大分子直至具备生命体特征的病毒颗粒。2002年诺贝尔化学奖之一授予了用电喷雾电离(ESI)进行蛋白质质谱分析的创始人John Fenn。在电喷雾质谱对蛋白质进行分析时,溶液中的蛋白质样品被传送到加有高压的毛细管尖端,强电场促使样品溶液喷雾,喷雾中的液滴通过蒸发,库仑爆炸等过程,形成带有多个电荷的蛋白质离子,被引入处于真空中的质谱分析器。每个离子所带的电荷数的多少,取决于分子的大小、分子在溶液中的几何构象(折叠或打开)以及电喷雾尖端处的电压和气流等参数。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以用电脑程序退卷积得到m分布。对于分析较小(分子量在5万以下)、较简单纯净的蛋白样品,退卷积还是很有效的。然而,在实际应用中对蛋白和蛋白组的分析,特别是对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化(heterogeneity),很宽的质量m分布(可达上千Da)使得不同价态的峰群连接在一起。图1中,用高分辨质谱仪对二种病毒壳体的质量进行测定,由于各种价态的质谱峰群连城一片,根本无法辨别谱峰,得到样品分子的质量。同时,实际样品也可能因处理不善或自然裂解,使谱图混杂着不同大小的分子离子,它们各自的价态z分布可能导致它们的峰群在m/z轴上交叠在一起。目前对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用退卷积软件来获得分子量的分布信息。事实说明,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。图1 ESI质谱对大型病毒壳体质量测定的困难。(a,b)晶体结构效果图 (c,d) 的“高分辨”质谱分析图。(摘自:Kafader, J. O., Nature methods, 17(4), 391-394)糖蛋白是生物制品中比例最大的一类药物,其糖修饰对其功能非常关键,准确解析此类药物的糖修饰是药物研发、报批和质量监控的关键内容。但它们在ESI-MS的质谱中,看到的好像是一堆杂草,无法辨别有什么蛋白组分。将一个糖蛋白药物中的各组分进行高分辨检测,是当前生物质谱面临的巨大挑战。电荷检测质谱仪的提出与技术发展早在上世纪90年代,美国西北太平洋国家实验室R.D.Smith组的 Bruce, J. E等就提出可以在傅里叶变换质谱仪中同时测量单个离子的电荷和质荷比,从而算出离子的质量m。随后,美国劳伦斯伯克利国家实验室W. H. Benner 发明了一种线形的静电离子阱,并用其测量单个高价离子的电荷数和质荷比,进而得到单个事件中的离子质量m。只要连续不断地进行大量的单个离子测量,就可以把总离子事件统计出来,形成按质量分布的直方图,而这就是一张电荷检测质谱。图2,Benner小组采用的直线形静电离子阱进行CDMS测量的原理图CDMS技术的关键是如何准确地测量单个离子的电荷。测量中,离子在静电离子阱内进行周期性运动并在电极上感应出“镜像电荷”信号。通过对信号的傅里叶变换,得到离子信号的频率从而决定离子的质荷比,而由频谱峰的强度得到离子所带的电荷数。虽然单个离子的镜像电荷频谱的峰强度与离子的电荷数成正比,它也同时与离子在阱内的轨道形状、离子存活时间有关,而这些参量都存在不定性;并且由于镜像电荷信号强度极弱,回路中的电子噪声对精确测量镜像电荷产生很大的影响,因此早期的电荷测量的RMS误差达2.2e以上,由此计算出的质量精度只比凝胶电泳好一点。近年来随着人们对天然、复杂蛋白分析的需求日益显现,CDMS技术也进一步得到了发展。美国印第安纳大学Jarrold小组通过对线形静电离子阱分析器的不断改进,特别是采用了低温前级信号放大器等优化设计后,实现了最小RMS 0.2 e的电荷测量误差,测量的样品包括2 MDa以上的蛋白复合体(protein complex)和20 MDa以上的病毒外壳。在这个RMS误差下,通过电荷数取整可以大概率获得精准的电荷值,从而得到精准的质谱分布。图3给出了用普通ToF质谱仪和CDMS测量天然态丙酮酸激酶(PKn)多聚体的效果比较。当3个以上四聚体组装在一起时,ToF质谱完全无法辨别其质量分布,而CDMS可以看到近10个四聚体组合的质量峰。图3.用常规ToF质谱(左)和用CDMS测量的丙酮酸激酶(PK)多聚体,使用相同样品和相同电喷雾条件。(摘自D. Keifer: Analyst, 2017,142,1654)目前,虽然用线形静电阱结合傅里叶变换可以得到较好的电荷测量精度,但该方法每次只能测一个离子,否则库伦相互作用会影响测量。在实际测试中,每次引入的离子数是随机分布的,需要用软件鉴别超过一个离子注入的事件,也要发现因为和残余气体碰撞而半路夭折的事件,并把这些“不良”记录剔除。考虑单次分析时间大约需要1s,得到一张良好统计的CDMS谱图需要几个小时甚至一天的数据积累。加利福尼亚大学E. Williams团队对线形静电离子阱分析器的设计和的数据处理方法进行了创新,能让宽能量范围的离子同时进入离子阱进行分析,避免了离子之间的空间电荷作用,可以在一个测量周期内测量10-20个离子,进而有望提高了检测效率。与此同时,其他尝试使用商业傅立叶FT质谱仪进行CDMS的研究团体也逐步浮现。美国西北大学Kelleher团队、荷兰乌得勒支大学的A.R.Heck团队先后使用热电公司的静电场轨道阱(Orbitrap) 系统,通过更新数据处理软件,对CDMS进行了应用研究。除了Orbitrap是成熟的商业化仪器这一优点外,轨道静电离子阱内的离子由于其轨道运动,导致电荷分布在中心电极周围,因此其空间电荷相互作用较小。Kelleher 在Nature Method上的论文声称,基于Orbitrap的CDMS可以同时分析100个离子。不过,在电荷测量精度上,Orbitrap-CDMS目前只达到RMS 1 e左右,较Jarrold的线形静电阱还有一定的差距,但Orbitrap对m/z的测量精度、分辨率远远超过ELIT,一定程度上帮助消除在多离子同时分析时可能出现的m/z相近离子的信号干涉效应。笔者在岛津公司的欧洲研发团队去年也在JASMS发表了用CDMS测量糖蛋白的尝试。该工作采用了一种盘状平面静电离子阱分析器,如图4,而这种分析器也能像Orbitrap那样获得超高分辨质谱。通过对测量硬件和软件进行改进,实现了CDMS实验。该报道给出了一种全新的CDMS数据处理方法,能够克服离子在分析过程中因碰撞夭折造成测量不准的问题,同时实验验证了该方法的有效性,还对多个离子同时分析时的信号干涉等问题提出分析和研判,为深入研究CDMS技术,消除造成电荷测量误差的障碍打下了基础。图4,用于CDMS 实验的平面静电离子阱系统 (A. Rusinov, L. Ding, JASMS, 32, 5, 2021)CDMS技术的应用现状目前,电荷检测质谱技术还处于早期发展阶段,还没有现成的商品仪器出售,只有能够自己开发质谱仪器硬件,或自己改编FTMS(含Orbitrap)软件的专家才能进行这样的实验。 今年初美国沃特世公司宣布成功收购专攻电荷检测质谱技术(CDMS)及服务的初创企业Megadalton Solutions Inc. Megadalton Solutions是由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立,他们目前是研发的CDMS仪器最长久的团队并拥有最成熟的技术。沃特世曾于2021年将Megadalton的CDMS技术引进到了沃特世Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。沃特世公司首席执行官Udit Batra博士表示要进一步开发Megadalton的CDMS技术并将其商业化。在国内,CDMS无论是仪器技术开发还是应用都属空白。虽然国内在复杂生物大分子结构与功能的研究、病毒载体空壳率监测方面对CDMS已经产生需求,但我们在高端质谱仪器研制方面远远落后于西方。CDMS在技术上是基于FTMS分析原理而演化产生的,但国内目前对FT类型的质谱仪器研究,除了少量理论分析与离子光学仿真工作外,还没有实质性的进展,也没有企业能够提供FTMS类商品仪器。针对这些需求,笔者打算在前期研究工作的基础上,研究开发静电离子阱分析器,并进一步结合开发CDMS特定的数据处理软件,建成一套拥有自主知识产权的新型质谱仪器。同时建立国内的研发应用合作机制,解决目前国内超大分子蛋白质生物药剂质量分析的问题。预测CDMS技术未来的市场空间如前所述,目前对复杂蛋白等大型生物分子进行质谱分析时,由于其分子量的差异性(heterogeneity), 存在着严重的多价态峰群重叠问题,导致无法通过质谱仪获得这些大分子在样品中的质量分布。而用电荷检测质谱仪,无需对电荷态退卷积,可以直接得到蛋白质、蛋白复合体、各种转译后修饰造成的特定质量分布图。因此,该仪器的发展在天然蛋白质、糖蛋白、病毒颗粒的成分和结构研究,抗原-抗体作用机理研究和疫苗研发方面有很大的未来市场空间,具体可以列举以下几个方面:(1)新型电荷检测质谱仪可实现复杂样品的蛋白离子精确分析,可时提供复杂样品中各蛋白分子的结构,密度分布等。(2)可直接测定糖蛋白及其它各种转译后修饰造成的特定质量分布图,为解释蛋白大分子及其转译后修饰分子量或结构表征变化信息等之间的关系,从而对糖蛋白相关的疾病诊断具有重要意义。(3)通过研究DNA等生物大分子离子的电荷分布,以及质量与电荷的关联,可以推断这些大分子的结构,比如它的聚合程度、纤维股数等。(4)在病毒研究中,可以用来确定病毒衣壳的蛋白复合体结构及其组装反应的过程,这将在抗病毒药物的研究中发挥作用。(5)在基因疗法研究和产品质控中,本项目研制的电荷检测质谱仪可以用来测定腺病毒载体的空壳率,检查载体内的基因完整度。推动现代临床医学的发展;(6)电荷检测质谱仪还可以用来测定纳米聚合物分子的聚合度和分散指数,推动材料科学的发展。值得关注的是新冠疫情给质谱分析带来了全新机遇,除了对新冠病毒本身的蛋白进行分析研究以外,也可以在灭活疫苗、病毒载体疫苗以及核酸疫苗产品的质量控制、效果评价、免疫机制研究以及载体类疫苗的体外模拟产物的评价等方面发挥优势。关于笔者:宁波大学材料科学与化学工程学院/质谱技术研究院 丁力1990年于复旦大学物理系获理学博士学位。先后工作于复旦大学材料科学系,以色列魏兹曼科学研究所,英国贝尔法斯特女王大学纯粹与应用物理系。1998年加入岛津欧洲研究所。2007年至2011年任岛津分析技术研发(上海)有限公司总经理。2011-2020年任岛津欧洲研究所高级研究员,研发二部经理。主要领导了多项质谱仪器的研发,是国际上数字离子阱质谱技术的创始人,在离子源,四极场离子阱,静电离子阱,飞行时间等分析器技术及其联用技术方面有很多创新和突破。发表论文、报告、专著一百余篇,有三十余项发明专利。领域:QIT、ToF、Quadrupole、MALDI、APMALDI、ESI、Digital Ion Trap、Linear Ion Trap、Electrostatic Ion Trap,FTMS、 CDMS、MSMS、ECD、Ambient Pressure Ion Sources 等。目前丁力在宁波大学组建团队,继续静电离子阱的设计和优化工作,已提出了静电“和谐阱”的设计概念,充分利用其高次谐波来提高质谱分析器的分辨本领。同时也在探索在国内实现这种精密分析器的加工和组装工艺,为下一步实现超高分辨质谱仪国产化做准备,也为在国内研制电荷检测质谱仪打好基础。
  • 院士领衔,看质谱新技术新应用有哪些?
    据调研,中国质谱市场规模已超140亿人民币。作为高端科学仪器,质谱对高精尖产业研究和创新具有基础性支撑和服务作用。近几年来,在国家政策支持下,中国质谱产业化发展之路上多点开花,四极杆、离子阱、串联四极杆、飞行时间以及电源、分子泵、气体发生器等附件装置与设备等方面不断有新的产业化技术涌现。尤其近两年科技部持续加大研发支持力度,针对高分辨和串联质谱等国产空白领域,不断加大投资,推动国产质谱向高端化发展。当前有哪些最新的质谱技术涌现?国内质谱研发进展如何?科学研究、工业企业、实验室分析在实际应用场景中,如何选择适合的质谱技术手段?不同质谱技术的原理差异性如何?如何攻关新技术研究的核心难点?……自2010年起,仪器信息网独家策划年度一次的“质谱网络会议(iCMS)”,每年的会议内容设置都会将当年度最新、最重磅的技术应用进展带给听众,十二年来,质谱网络会议受到广大用户的热烈好评。去年年底的直播间,我们共同约定在2022年末,再次为大家呈现关于质谱领域的最新技术成果和进展。带着这份承诺,3i讲堂将于12月13日举办“第十三届质谱网络会议”的“质谱新技术新方法”专场,与12位重量嘉宾,在直播间共同寻找答案:(福利:点击此处,快速免费报名,优先审核) 嘉宾一:厉良 加拿大皇家学会科学院院士/加拿大阿尔伯塔大学 教授 报告:《高覆盖代谢组学研究的最新进展》作为代谢组学领域的代表专家,目前关于高覆盖代谢组学研究中最新的进展如何?且听厉老师娓娓道来。嘉宾二:简诗涵 日本电子 应用工程师报告:《结合人工智能AI技术以及GC-TOF系统对未知物化合物进行自动结构分析报名占位》报告将介绍今年日本电子推出一套全新结合人工智能AI技术的自动分析msFineAnalysis AI软件,及其对未知物结构鉴定分析整合方案。嘉宾三:郭寅龙 中国科学院上海有机化学研究所 研究员报告:《基于离子淌度质谱技术分析小分子代谢物》近年来,不同原理的离子淌度技术相继出现,与质谱技术相结合已广泛应用于许多领域。本报告中郭老师将带来离子淌度-质谱(IM-MS)技术为复杂基质中小分子代谢物的快速分离和分析方法,并展望其发展前景。嘉宾四:邓力 岛津企业管理(中国)有限公司 经理报告:《易・轻松——迎接实验室变革 ——LCMS-2050小型化液相色谱质谱联用仪》主要介绍 LCMS-2050高效液相色谱质谱联用仪的技术特点和应用案例。嘉宾五:丁力 宁波大学 教授报告:《超高分辨静电离子阱质谱技术》超高分辨静电离子阱主要发明人,权威解读!嘉宾六:王建华 东北大学 教授报告:《循环肿瘤(单)细胞的二维分析研究》主要介绍团队基于单细胞研究的最新的进展。嘉宾七:江兆玲 沃特世科技(上海)有限公司 高级产品专员 报告:G质探索,进无止境---Waters质谱新技术报告将介绍Waters质谱最近的技术创新和突破及应用研究进展。嘉宾八:郭冬发 核工业北京地质研究院 副总工程师/正高级工程师(二级)报告:《多接收电感等离子体质谱仪(MC-ICP-MS)离子传输调控方法》报告将以国产双聚焦MC-ICP-MS为例,分享若干离子传输过程中的调控方法。嘉宾九:黄丹仪 普兰德(上海)贸易有限公司 资深产品工程师报告:《分析实验中移液产品的选择和使用》报告将介绍如何选择和使用移液器类的产品。嘉宾十:王方军 中国科学院大连化学物理研究所 研究员报告:《极紫外光解离谱创新仪器和方法应用》报告将介绍报告人在近期工作中搭建了世界首个50-150 nm极紫外激光皮秒脉冲解离-高分辨质谱装置(XUPD-HRMS)。嘉宾十一:刘本康 大连奥远电源有限公司 研发工程师报告:《适用于分析质谱的精密高压电源选型特性及应用》报告将对分析质谱用精密高压电源进行选型总结。嘉宾十二:岳磊 湖南大学 教授报告:《新维度结构质谱仪器开发和应用》报告将介绍了一种基于质谱的离子光谱技术,为复杂团簇化学和痕量生物活性分子的快速精准分析带来可能。(点击图片,免费报名,优先审核)
  • “发展前沿技术,解决分析疑难问题”- 布鲁克质谱高层谈质谱新技术与市场发展
    p    strong 仪器信息网讯 /strong span style=" font-family: times new roman " 2016年9月10日-12日,布鲁克作为高端质谱生产制造商参加了在青海西宁举办的第34届中国质谱学会学术年会。继去年推出用于完整的组织成像的rapifleX MALDI tissuetyper之后,布鲁克在今年的美国质谱年会(ASMS 2016)发布了全新的质谱技术平台捕集型离子淌度QTOF( timsTOF)和rapilfeX TOF/TOF。仪器信息网编辑在西宁会议现场就布鲁克质谱的最新技术与市场情况采访了布鲁克质谱中国区高级商业总监王克非与全国销售经理鲁静。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" 布鲁克道尔顿中国区高级商业总监王克非与全国销售经理鲁静.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/97e1da20-fbb8-4bc1-be16-50fd7b344b15.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong 布鲁克道尔顿中国区高级商业总监王克非与全国销售经理鲁静在布鲁克展位合影 /strong /span /p p span style=" font-family: times new roman "   timsTOF是一款将布鲁克专利TIMS(Trapped Ion Mobility Spectrometry)技术与ESI-QTOF质谱联用的布鲁克最新技术。王克非博士在本届质谱会质谱检测新方法的研究分会场详细介绍了timsTOF捕集离子淌度高分辨质谱原理及应用,到场听众对该技术表现出浓厚的兴趣。 /span /p p style=" text-align: center " img title=" 质谱检测新方法的研究分会场.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/15fd8de7-94ec-405c-b7bc-9e888fe6786a.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong 质谱检测新方法的研究分会场 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong img title=" 王克非博士.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/b5809cd5-a6eb-493f-94b6-1daf12d41e27.jpg" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong 王克非博士在质谱检测新方法的研究分会场介绍timsTOF捕集离子淌度高分辨质谱原理及应用 /strong /span /p p span style=" font-family: times new roman "   在报告之后,仪器信息网编辑针对timsTOF的原理与技术创新采访了王克非博士。据王克非介绍,捕集型离子淌度技术(Trapped Ion Mobility)是近几年新发展的离子淌度新技术,布鲁克成功将这一技术用在了液质Q-TOF产品中。其离子淌度分析部分包含离子漏斗和淌度分析器,能够捕获聚集离子以达到更高的分析效率。与传统离子淌度的载气与离子同方向流动不同,tims的分析是载气与离子在电场作用下反方向流动,较大离子因淌度较小而先流出进入质谱分析。 /span /p p span style=" font-family: times new roman "   timsTOF能够提供高分辨的淌度和质谱分析。据介绍,该系统的离子淌度分辨率R超过了200。而独特的离子淌度扩展技术imeX能够调整淌度的分辨能力。用户可以在分辨率与所需求的分析质量数(m/Z)范围之间平衡选择,给科研工作带来了灵活性。timsTOF可应用于同分异构化合物的分析,因为异构体在一般的LC-MS/MS上很难分析。timsTOF还可分离和排除母离子干扰离子,极大程度降低背景噪音,提高二级图谱质量。timsTOF在分析中可以得到准确的(& lt 0.5%) 碰撞截面值(CCS),为复杂物质定性定量分析提供了另一个关键参考信息。 /span /p p span style=" font-family: times new roman "   王克非还提到,离子淌度质谱系统的软件是体现系统优越性的重要一环。timsTOF采用开放的数据格式(*.tdf)和开源格式SQLite支持用户定制分析过程与算法。灵活的软件使用户能根据高分辨的离子淌度质谱数据实现在热图、mobilograms和质谱谱图之间的相互分析研究。 /span /p p span style=" font-family: times new roman "   布鲁克在离子淌度技术发展方面做出新的技术突破,于今年把捕集离子淌度技术与QTOF的结合带给了用户。对此,王克非感叹说:“匠人匠心,德国先进技术一直在传承,在这背后是对高端质谱技术的坚持和热爱”。和布鲁克其他Q-TOF质谱一样,timsTOF能够获得精确的同位素峰形以及干净的MS/MS谱图,得到真实性更强的同位素分布(TIP)。 /span /p p span style=" font-family: times new roman "   除此之外,今年布鲁克先进的MALDI产品家族又添了新成员MALDI TOF/TOF –rapilfeX TOF/TOF,以满足更高应用需求,是科研工作者在生物药和生物仿制药的Top-down测序、糖基化结构分析、二硫键或三硫键定位分析和错配分析、组织成像等方面的最佳选择。 /span /p p span style=" font-family: times new roman "   王克非对布鲁克质谱的在中国的销售情况比较乐观。2016年上半年,受欧洲经济疲软的影响,布鲁克质谱在全球的销售业绩出现小幅下滑,但布鲁克质谱在中国的销售额却获得了2位数的增长。他透露,“今年MALDI质谱在中国销售额已经超过了100%的增长。布鲁克MALDI质谱在政府机构、科研、临床及工业微生物市场全面开花。” /span /p p style=" text-align: left " span style=" font-family: times new roman "   今年7月份,布鲁克质谱对内部进行了重新部署,正式任命原区域销售经理鲁静为全国销售经理。对于布鲁克MALDI质谱在中国的发展情况,鲁静补充说:布鲁克MALDI Biotyper是取得国内医疗器械许可证为数不多的质谱仪器之一,目前在国内医院微生物检验科、食品安全系统、疾病控制等系统得到了用户好评。除此之外,我们也能够为临床医院、科研院所等用户提供用于分子成像、蛋白组学研究等领域的高端研究级MALDI质谱。目前,在微生物鉴定之外的医学领域是我们的高增长区,主要是质谱用于精准医疗的热潮中。MALDI-TOF由于操作便捷易学、图谱简单易解等特点已成为医生和新兴的医疗企业首选的质谱平台,各种围绕着MALDI-TOF的诊断解决方案不断被开发出来。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" 布鲁克新技术交流会:应用专家潘晨松.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/cdcda811-91ac-4b65-ae6b-44917541eb47.jpg" / /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-family: times new roman font-size: 14px " strong 布鲁克新技术交流会:应用专家潘晨松介绍《基于液相色谱-质谱联用的代谢组学研究中代谢物的结构鉴定进展》 /strong /span /p p style=" text-align: left " span style=" font-family: times new roman "   对于布鲁克独有的傅里叶变换离子回旋共振质谱仪(FTMS),鲁静透露:在继中科院生态环境研究中心和中科院大连化物所之后,石油化工科学研究院将成为国内第三家拥有最高分辨率15T FTMS的研究机构。鲁静对FTMS的应用充满信心,她表示:目前在国内拥有2台和2台以上FTMS的单位逐渐增加,FTMS的应用技术正在不断发展。 /span /p p span style=" font-family: times new roman "   在2016年8月的国际质谱大会(IMSC 2016)上,布鲁克发布了最新的FT质谱solariX 2XR。该产品具有7T磁场价格适中,在1秒检测时间内能够达到120万的检测分辨(m/z 200),可以稳定的获得未知小分子化合物的分子式。用户能够利用solariX 2XR质谱获得1千万以上的分辨率,清晰分辨出其他质谱技术无法分辨的质谱峰,可用于进行石油、可溶性有机质、质谱成像、代谢组学及自上而下蛋白质组学等研究领域中的极度复杂样品。 /span /p p style=" text-align: left " span style=" font-family: times new roman "   在问到对今年的最新产品timsTOF的市场前景预估时,鲁静表示,布鲁克的QTOF具有很多优势,如鉴定的重要指标同位素峰型最为接近真实值。再加上timsTOF融入了最新的捕集IMS技术,已经引起了很多用户的关注,截止目前已经产生了订单。她表示,希望timsTOF能够帮助更多的科研工作者解决分析难题。 /span /p p style=" text-align: right " span style=" font-family: times new roman " 仪器信息网编辑:郭浩 /span 楠 br/ /p
  • 生命科学|当“核酸”遇上“质谱”——多重分子诊断技术的下一站
    引言新冠病毒肺炎疫情的爆发,推动了国内分子诊断技术的高速发展,同时也使得“核酸”成为大家耳熟能详的词汇。当前的核酸分析技术,主要是基于荧光定量PCR(qPCR)的原理,虽然具有灵敏、准确、便捷的优势,但却通常只能对少于5个的靶标进行分析。不过这样相对有限的检测靶标数目,虽然在新冠检测等特定应用场景已经足够有效(即判断是否感染新冠),却难以应对一些复杂疾病的检测,如肿瘤、出生遗传缺陷、精-准用药的检测等。因为这些疾病通常都涉及到更多的基因变异情况,需要有具备更广泛的检测能力的技术。而核酸质谱技术,就是一个非常好的进行多重核酸分析的分子诊断平台。核酸质谱原理说到质谱的技术,领域内的人应该并不是完全陌生。顾名思义,质谱就是对“质量”进行精-确检测的精密设备,也是临床诊断领域快速发展的未来平台之一。质谱可以用来检测蛋白质和代谢物,也可以用来检测核酸。生命的遗传物质DNA分子是由4种碱基——ATCG所构成的,每种碱基的分子质量不同。核酸质谱犹如一把高精度的天平,可区分单个碱基的质量差异(GATC)(图1)。当核酸发生变异的时候,不论是碱基的替换还是修饰,都会改变DNA的分子质量,核酸质谱通过对这种质量变化的精确分析,就能够对其进行精-准的识别。通过这种方式,核酸质谱既可以检测基因的多态性和基因的突变,也可以检测核酸的化学修饰,还能够对拷贝数变异和修饰水平等进行定量的分析。图1 DNA分子碱基组成核酸质谱的优势相比传统的qPCR等分子诊断手段,核酸质谱拥有多重、准确、高通量的优势。这是由核酸质谱的检测原理和技术路线所决定的。首先,核酸质谱直接依据分子量的差异来进行检测,只要待测靶标扩增后的分子量不同,就可以相互区别开来,不会像传统的qPCR一样受到荧光通道数的限制。因此,50重乃至更多靶标的分析,
  • 【强势来袭】气相色谱-质谱联用技术课程上新上新啦!
    你的必修之选近日,备受期待《气相色谱-质谱联用技术》课程正式上线发布。该课程由北京大学化学学院教授刘虎威联合北京大学城市与环境学院高级工程师付晓芳老师共同研发打造,经历了1年的精心策划与打磨。该课程以“培养行业精英,助力学员技能提升”为核心理念,立志培养一批熟练掌握GC-MS技术的专业人才,为他们的技能提升提供坚实的支撑。亮点纷呈,打造优质的学习体验《气相色谱-质谱联用技术》课程内容全面深入,包括GC-MS技术的基础原理、仪器操作、方法开发以及实际应用等关键领域。通过理论讲解与案例分析相结合的方式,我们帮助学员深入了解GC-MS技术的核心原理与应用场景,并掌握仪器操作的基本技能与故障排除方法。除此之外,本课程还采用录播+直播答疑的灵活形式,为学员提供便捷且全面的学习体验。录播课程方便学员随时随地回顾与巩固关键知识点,而直播答疑则为学员提供与专家实时互动的机会,解答学习中的疑惑,进一步加深对知识点的理解。此外,我们还特别配备了专业的助教团队,为学员提供全程陪伴式学习支持,确保每位学员都能顺利掌握GC-MS技术的精髓。这样的课程设置与助教支持,旨在让学员的学习过程更加轻松高效,助力学员取得更佳的学习成果。满足多元化的受众需求,横跨多个领域这门课程不仅适合化学、环境科学、食品科学等相关专业的初学者入门,也适合从事科研、环境监测、食品安全、化妆品、司法等领域的从业者进阶。无论你是初学者还是资深从业者,都可以通过这门课程系统掌握GC-MS技术的核心知识和技能,提升自己的专业素养和实践能力。课程价值显著,系统学习全面进阶GC-MS技术,作为现代分析化学的支柱,在科研探索、环境监测、食品安全等领域具有不可替代的重要作用。然而,其高度的专业性和技术深度常常让初学者和从业者望而却步。《气相色谱-质谱联用技术》课程的推出,正是为了解决这一难题,帮助学员突破技能瓶颈,实现职业发展的新跨越。通过本课程的学习,学员将能够更好地掌握GC-MS技术的核心知识和技能,为科研和检测工作提供更加准确、可靠的数据支持,推动科研和产业的深度融合让这门课程成为你职业发展的助推器,助力你攀登新的高度!现在就行动起来,加入我们,共同开启技能提升新篇章!
  • 岛津原位电离质谱新技术闪耀亮相第六届中国原位质谱会议
    2019年11月14日至16日,由中国质谱学会主办的第六届中国原位质谱会议在南京香格里拉酒店召开。本次会议邀请了近50位来自国内外知名院校、相关行业的专家学者作大会报告,并得到了国内外多家高校、科研机构、企事业单位200余位分析工作者的支持和参与。诸位学者共聚一堂,讨论了原位电离质谱技术发展及应用新趋势等多个方面的话题。岛津公司多款原位电离质谱技术如DCBI、PESI在本次会议上亮相,岛津中国创新中心投稿的Poster《DPiMS-8060快速筛查和定量检测细辛和天仙藤中的马兜铃酸和马兜铃内酰胺》,获得了与会者的广泛关注。 DCBI(解吸电晕束离子源)是一种可在常压下对固态或液态样品进行快速、直接分析的离子源,其工作原理是利用被加热后的可见等离子电晕束,通过其产生的亚稳态氦原子和其它离子对样品直接进行解吸电离。可以实现高灵敏度实时分析,离子源安装和拆卸方便,可用于快速检测、公安法医、食品安全等广泛的应用领域。 DCBI+LCMS-8040 岛津最新推出的原位探针电喷雾离子源——PESI(Probe Electro Spray Ionization),可用于岛津LC/MS和LC-MS/MS,商品名分别为DPiMS-2020和DPiMS-8060。无需样品前处理即可实现简便、快捷的质谱分析。DPiMS-8060+LCMS-8060PESI技术具有以下特点:1、高性能的样品原位质谱分析。2、无需直接加热,适用于热不稳定化合物分析。3、有效避免复杂基质对质谱仪的污染。该技术适用于各类样本的测定,如体液、组织切片和植物样本等。 简便快捷的工作流程 本次大会上,岛津介绍了基于DPiMS-8060建立的中草药中马兜铃酸类物质的快速筛查和定量分析方法。该方法能够在20s内完成4种马兜铃酸和1种马兜铃内酰胺的定性定量分析,校准曲线相关系数大于0.999,检出限0.04-0.66μg/g,定量限在0.13-1.99μg/g。精密度和加标回收率都能够满足快速筛查的要求。马兜铃酸、马兜铃内酰胺及内标的MRM色谱图马兜铃酸类物质主要包含两个类型,一类是马兜铃酸(Aristolochic acid),一类是马兜铃内酰胺(Aristolactam)。世界卫生组织国际癌症研究机构将马兜铃酸、含马兜铃酸的植物列在一类致癌物清单中。中国药典(2015版)收录了三种含马兜铃酸的草药:天仙藤、马兜铃和细辛。目前,TLC、LC和LC-MS/MS是主要的检测方法。然而,TLC法难于准确定量,LC和LCMS方法需要采用固相萃取和色谱分离等手段,前处理和分析时间长,消耗大量的有机溶剂。本方法具有不需要复杂的前处理,分析速度快(20s),不需要流动相,不需要雾化气和脱溶剂气等特点。同时,该方法分析速度快、重复性好、灵敏度高,适合中草药中马兜铃酸类物质的快速筛查与定量分析。 更多科技前沿,敬请关注“岛津科技资讯通”微信公众号。
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • 技术革新——质谱技术让微生物检测进入新纪元
    培养、鉴定、药敏是微生物检测的三大环节,微生物鉴定在微生物检测中起到承上启下的作用,鉴定的结果不仅可以评价培养结果的成败,还为下一步药敏实验抗生素的选择提供依据,是微生物检测的重中之重。长期以来微生物的快速准确鉴定始终是非常困难的问题,不论是传统的形态学检测还是常用的生化鉴定,其检出率、准确性均不理想,并且结果报告时间较长,临床治疗不得不经验用药,造成了抗生素的滥用,耐药菌泛滥,甚至出现超级细菌。近年来精准医疗的概念越来越收到重视,临床微生物检验迫切需要一种快速、准确的方法确定微生物的种类。质谱的技术的出现及应用,使微生物检测成为现实,使精准医疗迈进一大步。 什么是微生物质谱仪? 微生物质谱,即基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS) ,其采用软电离技术,特别适合蛋白质等生物大分子的检测,基本原理是将样品分子转化成带电离子,并利用适当的电场磁场实现不同质荷比(m/z)的离子分离,进而检测每种离子的峰强度进行物质分析。 MALDI-TOF MS的性能参数一台微生物质谱仪性能的好坏主要从以下指标评估: 禾信康源MALDI-TOF MS有哪些特点?广州禾信康源医疗科技有限公司在全面掌握质谱仪核心技术和先进制造工艺下,不断改进技术壁垒,创新性的设计了近垂直(5°)激光入射离子源、双脉冲离子延迟引出技术,采用了高性能长寿命固体激光器,使质谱性能和应用范围大幅提高,同时标配国家疾控中心数据库,微生物鉴定结果更具权威性。 近垂直激光入射离子源 双脉冲离子延迟引出技术 仪器分辨率 案例一:空气微生物鉴定2018年8月于某食堂样本采集,一天中采样四次,每次收集3个平板,共计收集12个平板;经培养、分离纯化,最终获得98株纯菌,所得菌株分别使用禾信康源微生物质谱系统CMI-1600、进口某品牌BLT质谱仪、进口某品牌BRT质谱仪及16sRNA测序的结果相比对,CMI-1600鉴定至种属水平禾信康源匹配度可达到87%,分别比进口品牌高15%和10%;结果表明禾信康源CMI-1600微生物质谱的微生物鉴定能力已达到国际领先水平。 鉴定率 广州某检测中(BLT)北京某科学院(BRT)康源(CMI-1600)种水平59%58%74%属水平 77%62%87%案例二:临床微生物鉴定2021年8月云南某医院检验科收集临床菌株282例,使用质谱仪和细菌鉴定仪鉴定结果比对,结果不一致的样本采用第三方仪器验证,结果表明质谱仪鉴定至种、属水平以上菌株279例,准确率可达99%,对比细菌鉴定仪准确率(86%)具有明显优势,且质谱仪数据库菌种范围更广,可以对厌氧菌、丝状真菌进行快速检测。 此外,微生物质谱还可以应用于多种多样的场景,如蛋白组学分析、水环境中微藻类检测、肉类甄别、核酸SNP位点检测、大分子聚合物的分析等等,随着技术的提升以及功能的不断完善,相信在临床检测、科学研究、环境保护等领域微生物质谱的新纪元即将来临!
  • 质谱原来能和这项技术联用?中科院研究员畅谈前景
    电化学分析是依据电化学和分析化学的原理及实验测量技术来获取物质的质和量及状态信息的一门学科。传统的电化学联用研究主要是集中在电化学和光谱技术领域,近年,质谱因其分析速度快、可以实时解析等特点,也已与电化学分析取得诸多联用进展,逐渐发展成为一种先进的表征手段。从原理上来说,电化学分析法和质谱分析法是两种经典的分子检测的方法。电化学分析法,以电流、电导、电量、电位等电化学参数与被测物质浓度之间的关系为计量基础,进行定量分析,可以实现物质的电氧化还原,并且得到反应的氧化还原及电子转移信息;而质谱分析法可以直接获得产物和反应物的分子信息,同时具备高特异性和高灵敏度,可提供丰富的结构信息。但是,两类分析法同样存在着不同程度的缺陷,这就需要在分析上寻求联用突破口,达成互补。比如,电化学分析法可以用于氧化还原反应的机理研究,但该方法不能提供直接的分子结构鉴定;相对的,质谱法用作结构鉴定的检测器,可在电化学反应期间提供关于中间体和产物的分子信息,但是易受外界的电磁干扰源影响。两者相结合,就可以同时得到电子流动和分子结构信息,广泛用于蛋白质组学、药物代谢等领域的研究。1971年,Bmckenstein等首次将电化学(EC)和质谱(MS)结合用于测定挥发性电极反应产物并建立了电化学质谱联用(EMS)装置,是传统电化学与现代质谱分析技术的结合。而Differential electrochemical mass spectroscopy(DEMS),即微分电化学质谱为此基础上的进一步拓展,在储能领域有着广泛应用。作为技术的补充,DEMS可以测量所产生物种数量的时间导数(derivative),即形成速率。DEMS领域目前已有众多相关研究,其中锂-氧电池相关更是热门。锂离子电池的安全性问题在很大程度上限制了其在纯电动汽车、规模储能等领域的广泛应用,电池材料|电解质界面副反应所产生的可燃性气体是锂离子电池安全隐患的首要原因,而DEMS是解析锂离子电池产气副反应机制的强有力研究技术。2022年12月22日,仪器信息网特别邀请中科院大连化学物理研究所彭章泉研究员,就《锂电池产气反应的原位质谱分析》进行报告分享。电化学质谱可用来研究锂电池中的反应和过程,如SEI膜形成、电解液/电极材料反应性,电池系统安全性等。本此报告,彭章泉结合相关工作探索,以电化学质谱为主线,总结了近年来质谱技术在锂电池研究的应用,并提出了电化学质谱研究方法未来的努力和改进方向。点击参会》》》https://www.instrument.com.cn/webinar/meetings/electroanalytical2022 。彭章泉,武汉大学本科,中科院长春应化所硕士和博士。先后在德国、丹麦和英国从事电化学研究工作。现任中科院大连化学物理研究所研究员。研究方向: (1)现场光谱/质谱电化学,(2)计算电化学,(3)锂-离子/锂-空气电池成果和荣誉:在Science, JACS, Angew Chem 期刊发表学术论文60余篇,授权发明专利10余项;英国牛津大学牛顿学者,德国杜塞尔多夫大学洪堡学者;吉林省科技进步一等奖。点击参会》》》https://www.instrument.com.cn/webinar/meetings/electroanalytical2022 。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • iCMS2016第七届质谱网络会议-质谱新技术与生命科学
    p span style=" FONT-FAMILY: times new roman"    strong 仪器信息网讯 /strong /span span style=" FONT-FAMILY: times new roman" 仪器信息网网络讲堂与中国化学会质谱分析专业委员会合作举办的& quot 第七届质谱网络会议(iConference on Mass Spectrometry,iCMS2016)于2016年11月22日正式开幕。会议为期四天(11月22日-25日),共设质谱新技术、生命科学、药物、食品、环境、仪器维护及软件操作六个主题会场。质谱新技术主题会场(上)、(中)已于11月22日顺利进行,清华大学教授林金明、SCIEX应用支持工程师罗继、赛默飞生命科学质谱应用技术部经理陈伟、中国医学科学院副研究员贺玖明、清华大学教授瑕瑜、美资力可仪器应用专家李莉、安捷伦液质应用工程师冉小蓉、中科院成都生物研究所公共实验技术中心主任周燕8位质谱新技术研发应用专家和厂商技术专家分享了质谱新技术相关报告。[ a title=" " href=" http://www.instrument.com.cn/news/20161122/206970.shtml" target=" _self" 质谱新技术主题会场(上)、(中)相关报告 /a 链接] /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" zhipuxinjishu.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/340fd073-f275-4aa8-8945-e336c0b0a6ed.jpg" / /span /p p span style=" FONT-FAMILY: times new roman"   11月23日上午,两位研究和应用专家:中科院化学所研究员汪福意、复旦大学教授丁传凡与两位厂商技术专家:滨松光谱应用工程师周旭升、珀金埃尔默中国区质谱产品经理周向东在质谱新技术主题会场(下)继续分享质谱新技术。 /span /p p span style=" FONT-FAMILY: times new roman"   生命科学主题会场在11月23日下午举行,清华大学教授邓海腾、Waters公司高级应用技术工程师郏征伟、中科院生物物理所研究员李岩、中科院上海有机所研究员郭寅龙在线上给出了精彩报告。 /span /p p span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 24px FONT-FAMILY: times new roman" strong 质谱新技术主题会场(下) /strong /span /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 24px FONT-FAMILY: times new roman" img title=" 20161123093150_副本.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/872c8f1e-6a42-4c67-9fb1-d5237276297e.jpg" / /span /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0" strong 中科院化学所研究员汪福意 报告题目:SIMS和激光共聚焦单细胞成像研究金属抗肿瘤药物的分子作用机理 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   二次离子质谱分为NanoSIMS和ToF-SIMS,汪福意在报告中首先介绍了二者的区别和特点。在价格方面,ToF-SIMS更便宜,目前应用更为广泛。在SIMS的生物研究方面,起初,研究组采用ToF-SIMS研究有机金属钌配合物的细胞分析。通过SIMS细胞表面分析检测到细胞表面的钌分子离子峰分布,而得到的相关质谱信息还不足以说明钌在细胞核中的分布。后来研究组将激光共聚焦显微与ToF-SIMS联用(COIM),通过可寻址硅片样品板将两部分数据结合比对,成功定位了细胞核和金属在细胞核的分布。 /span /p p span style=" FONT-FAMILY: times new roman"   汪福意介绍其研究团队开始通过COIM( confocal和ToF-SIMS联用)的组合成像技术研究单细胞内金属抗肿瘤药物的分子作用机制。此前铂药物损伤DNA和蛋白相互识别的研究还没有到单细胞水平,而细胞内也可能存在这样的特异识别。顺铂与DNA形成交联复合物铂损伤DNA,再经蛋白HMGB1识别形成三元复合物,从而阻止铂损伤的细胞修复,最终能导致细胞凋亡。研究组首先用光学方法定位HMGB1,再用SIMS定位铂结合离子在细胞的位置,观察二者的重叠情况以及与DNA的结合情况。研究表明,CIOM成像是研究单细胞内铂损伤DNA-蛋白质之间相互识别的有效方法。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" 20161123100937_副本.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/d2b57e65-aa4b-419c-97e7-3cfd7c2afe84.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0" strong 滨松光子公司高级工程师周旭升 报告题目:质谱分析仪的微通道板/真空紫外电离源/电子倍增器 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   周旭升介绍,目前定量用分析质谱仪90%以上依赖进口,包括TOF在内的国产质谱仪在环保、精准医疗等特殊应用市场具有发展优势。滨松的微通道板以及组件探测器、真空紫外电离光源、电子倍增器三类产品支持国内的质谱研发。在报告中周旭升首先介绍了滨松微通道板(MCP),通过MCP离子有10000倍左右的增益。如果说MCP是具备探测功能的器件,那么MCP组件(MCP Assembly)就是有独立功能的探测器,其集成了阳极、电压接线、电容等功能器件,直接安装到仪器上就能工作。 /span /p p span style=" FONT-FAMILY: times new roman"   MCP Assembly可以用于TOF,测量不同质核比的离子飞过飞行管到达MCP位置的飞行时间,从而定性和定量。不同离子的到达时间信号连续描点就是质谱图。高分辨质谱需要MCP组件的快速响应。滨松的MCP组件HPK加入了Mesh栅网具有三级结构Troid,非常适合用于医疗和药物研究的定性高响应速度。针对TOF的特点,滨松有一些列微通道板产品,除了快速时间响应的HPK也有紧凑型和较低成本的产品,适合不同定位的厂商选择。滨松目前的MCP通过改造漏斗型结构增加了MCP的开口率,使得OAR从60%增到90%,显著增加了CCD像素点。除了MCP和MCP Assembly,周旭升也详细介绍了滨松真空紫外(VUV)电离源和电子倍增器(EM)的产品特点。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" 20161123103803_副本.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/1e333425-1ee1-4c78-8294-d1c28e96a338.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0" strong PerkinElmer中国区质谱产品经理周向东 报告题目:PerkinElmer便携式气质联用仪在环境检测和突发应急检测中的应用 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   面对目前现场实时环境检测和突发应急检测市场的需求,便携式GCMS的应用需求在逐渐增大。周向东介绍说,PerkinElmer Torion T-9是当前世界上最快的便携气质产品,曾在2007年获得R& amp D创新奖。据介绍,Torion T-9电池可持续供电2.5h,按照每个样品检测5分钟可完成20-30次检测。其主要部件微型低热质(LTM)气相约为手掌大小,与普通GC结构类似,LTM色谱柱具迅速降温能力,GCMS运行时间小于5min。在保证分离性能的情况下,其比常规GCMS分析速度大幅提升。Torion T-9另一主要结构特点是其环状离子阱设计,据介绍,环状离子阱比常规离子阱的离子容量高400倍,从而提高了定性和定量能力。 /span /p p span style=" FONT-FAMILY: times new roman"   据介绍,除了GC和MS方面的特点,Torion T-9也从适合便携应用的采样技术增强了仪器的易用性。其专用的SPME能够实现快速现场样品采集,操作简单方便。针式捕集阱进样系统非常适合气体样品和顶空定量分析。为了让现场检测更方面,Torion T-9的操作软件也选择了清晰明了的界面设计,能够自动进行化合物判定,也可以外联计算机。另外,周向东也展示了Torion T-9在环境水VOCs、土壤苯系物、爆炸现场、公共安检方面的应用案例。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" 20161123110656_副本.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/9caad5ff-318a-4572-87ec-d9f6546e8185.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0" strong 复旦大学化学系教授丁传凡 报告题目:离子源的物理化学原理与探索 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   目前世界上至少已有几十种质谱电离技术,丁传凡在报告中详细介绍了离子化技术的基本原理。产生离子的物理学原理是质谱的基本原理,即通过离子在电场、磁场中的运动轨迹与其M/Z的物理学相关性原理来分析和测量不同质核比的离子。离子源是产生样品离子的部件,从基础理论上讲,离子源能够从中性分子中“拿走”电荷或“给予”中性分子电荷,使得中性分子成为离子。 /span /p p span style=" FONT-FAMILY: times new roman"   分子的电离电势是质谱仪器中电子轰击电离(EI源)的基础,分子的电离电势一般在10-15eV左右,几乎所有商业质谱EI源的电子能量都设为70eV,EI源是基于分子电离电势的离子源。分子的亲和势(PA)反应了它获得质子生成质子化离子的能力。在含有大量质子的等离子体中,具有较大PA的分子较易生成质子化离子,因此显示较强的质谱信号。电喷雾电离源(ESI)、DESI、质子转移反应离子源、MALDI、EESI、化学电离等是基于质子亲和势的离子源。通过加上质子而产生样品分子离子的过程都是利用了分子质子亲和势的性质。凡是通过加上电子而产生样品分子离子的过程都是利用了分子电子亲和势大于0的性质。ESI、DESI、MALDI、EESI、电子俘获离子源都是基于电子亲和势的离子源。总之,所有电离方式的离子产生都需要以电离电势、质子亲和势、电子亲和势、电子亲和势或离子亲和势中的一种为基础。 /span /p p span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 24px FONT-FAMILY: times new roman" strong 生命科学主题会场 /strong /span /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-SIZE: 24px FONT-FAMILY: times new roman" img title=" 20161123140015_副本.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/f346cc6f-f96e-4271-acaf-742eb9e2de4c.jpg" / /span /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0" strong 清华大学教授邓海腾 报告题目:蛋白质组学研究的现状、挑战和发展方向 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   在报告中,邓海腾以综述的形式介绍了目前国内外蛋白组学研究的现状、挑战与未来。蛋白研究领域早些年2D-PAGE和MALDI-MS的方法寻找Biomaker,但找到的蛋白数量非常局限。串联质谱扫描速度的提高过程给蛋白鉴定数目带来了大幅提升。随着质谱技术可组学研究的发展,现在每分钟鉴定的蛋白数可比2000年增长几十甚至上百倍。2013年,海外科学家采用高分辨质谱组学分析方法在12h内鉴定7000-8000个蛋白。而目前蛋白鉴定的灵敏度还不够,如在Mann的一篇研究文章中,15万个细胞仅能够鉴定775个蛋白。我国科学家邹汉法团队曾发表磷酸化蛋白组学系统鉴定方法的文章,此技术中pTyr superbinder是关键,该方法鉴定了20000个肽段和10000个pTyr位点。目前蛋白鉴定更多采用SILAC/TMT方法应用在蛋白质组定量, SILAC法能够在一次分析中定量8个样品,TMT法能够定量6个,还在向更多个样品的定量发展。 /span /p p span style=" FONT-FAMILY: times new roman"   另外,邓海腾介绍了该研究组应用TMT lable技术所做的肾透明细胞癌生物标记物鉴定,共检测到9000多个蛋白。在肾癌中HSP60是低表达,激活AMPK通路,抑制合成代谢。而在脑瘤中,HSP60是高表达,敲低HSP60会抑制蛋白合成。邓海腾还提到,蛋白组学研究非常需要前端色谱分离技术的支持,结构相近的肽段的在色谱中的有效分离对提高sequence coverage非常有帮助,希望色谱技术的发展再给质谱鉴定带来更多突破。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" 20161123144556_副本.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/e9e94a0b-1960-4c6b-9b0d-e711a5abcc65.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0" strong Waters公司高级应用技术工程师郏征伟 报告题目:DESI质谱成像技术在临床研究领域的应用进展 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   Zoltan Takats在2004年发明了解析电喷雾电离(DESI技术),DESI非常适合用于质谱成像,可分析新鲜样品不需要复杂处理。目前Waters是DESI技术在临床领域的独家生产应用销售企业,对该技术做了很多硬件和软件上的优化,目前已经发展到第二代DESI离子源产品。DESI的拆装不需要卸真空,用户十几分钟就可以从ESI换到DESI。配套的HDI高清成像软件能够定义成像区域,进行可视化数据和图像处理。DESI目前能够应用在Waters Synapt G2-Si QTOF淌度平台,提供研究级的成像分析平台。增加多一维分离,能够使目标物的分析更加准确。 /span /p p span style=" FONT-FAMILY: times new roman"   郏征伟还介绍了DESI成像实验从组织样品制备、质谱分析到组织染色的工作流程,以及其用于病理学研究发现生物标志物的应用过程。另外,DESI成像也能给药物代谢研究、司法鉴定、微生物成像等方面带来新的思路。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" 20161123151641_副本.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/46fbf5ef-9bea-4f9e-8003-74478eeb9880.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0" strong 中科院生物物理所研究员李岩 报告题目:基于多级质谱技术的糖链结构解析研究 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   由于糖类结构复杂且变化多样,糖组学的分析非常困难。李岩介绍了该研究组通过MALDI源的IT TOF多级质谱进行的一些列糖类分析。研究团队进一步研究发现了人体蛋白N糖的多级质谱数据库,并建立了了自动化寡糖数据解析算法。该算法能够区分分支的同分异构体,该团队也一直在该算法的自动化方面继续研究。李岩在报告中介绍了多级质谱数据解析的概念:基于Carbbank(7837)糖数据库,在分析中模拟所有可能性,选择有效洗洗脑量最多的峰进行下一级质谱分析,并使用熵的概念进行经过判断。研究组通过质谱得到的离子类型、峰高等信息通过database search、DeNovo算法进行分析。李岩介绍了研究阶段从做标准品分析到实际生物样品分析的情况。在实际分析中连接位点导致的同分异构体分析、混合物分析方面还存在挑战。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" 20161123155210_副本.jpg" src=" http://img1.17img.cn/17img/images/201611/insimg/e6767edb-c12b-4222-910c-881af66f5868.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: #0070c0" strong 中科院上海有机所研究员郭寅龙 报告题目:新型离子化技术的研究与应用 /strong /span /span /p p span style=" FONT-FAMILY: times new roman"   在该报告中郭寅龙介绍了团队研发的三类新型离子化技术。溶剂辅助双喷雾质谱离子源(SAESI)、碳纤维离子化(CFI)和常压火焰离子化技术(AFI)。AFI是目前成本最低的离子源,非常适合实际样本的直接分析。其离子源装置由耐高温玻璃样品棒和可控氢火焰源组成,其离子化机理是水和氢离子与M结合生成一价正离子。氢火焰中含有丰富的金属离子,能够扩大待测物检测分析范围。AFI氢火焰温度可以调控,辅助气体有氮气、二氧化碳和氦气三种选择,并可实现选择温度的解吸离子化。 /span /p p span style=" FONT-FAMILY: times new roman"   另外,郭寅龙以驱蚊胺的分析实例说明了AFI的灵敏度,在最低浓度100ng/ml时检出限100pg。AFI在果蔬表面农残分析、药物活性成分快速检测、脂肪酸快速分析等方面有方便快速的优势。 /span /p p style=" TEXT-ALIGN: right" span style=" FONT-FAMILY: times new roman"   编辑:郭浩楠 /span /p p span style=" FONT-FAMILY: times new roman"  & nbsp & nbsp a title=" " href=" http://www.instrument.com.cn/news/20161124/207186.shtml" target=" _self" strong 环境检测、食品检测主题会场 /strong 报告内容链接 /a /span /p p span style=" FONT-FAMILY: times new roman" /span & nbsp /p p    a title=" " href=" http://www.instrument.com.cn/news/20161122/206970.shtml" target=" _self" strong 质谱新技术(上)、(下) /strong 主题会场报告内容链接 /a /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp a title=" " href=" http://药物与天然产物、仪器维护主题会场" target=" _self" 药物与天然产物、仪器维护主题会场 /a /p p    /p p span style=" FONT-FAMILY: times new roman" /span & nbsp /p p & nbsp /p
  • 雪迪龙召开质谱技术应用研讨会
    2015年9月29日,由中国仪器仪表学会分析仪器分会和北京雪迪龙科技股份有限公司共同举办的质谱仪技术应用研讨会在北京温都水城召开,会议邀请了十几位业内知名的专家,对质谱技术的原理、应用等进行讨论。 众所周知,北京雪迪龙科技股份有限公司在今年6月收购了英国Kore公司的部分股权,进入中国质谱界。此次会议就是特邀KORE公司的两位博士介绍KORE的质谱技术,并与中国的质谱仪专家进行讨论交流。 敖小强先生介绍说,质谱仪是分析仪器王冠上的一颗明珠,非常高兴雪迪龙可以与英国Kore公司合作,在中国共同推广质谱技术,并非常感谢今天所有的到场嘉宾能来参与此次研讨会。 梁永佳是香港资深的分析仪器专家,他一直在从事分析仪器应用方面的工作,熟识光谱 (NIR, Raman), 质谱 (Quad MS, TOFMS和软电离质谱),色谱(HPLC) 和生物工程、药物分析仪器,对各类分析仪器的应用有深入的研究。他向大家介绍了Kore公司的部分概况。 梁永佳先生介绍说,Kore公司是专门做质谱和超高真空技术的,公司总部在英国剑桥大学的旁边,所以与剑桥大学也有密切关系。此次邀请的Kore公司的两位主要的技术人员Dr.BarrieW.Griffiths和Dr.StephenJ.Mullock,都是有二三十年的质谱研发经验,基本一生都是从事质谱方面的科研。Kore也是一家很特别的公司,基本上没有所谓商品化的东西,只是一味的研究质谱技术。现在雪迪龙公司拥有了Kore公司的质谱技术,将会对中国的质谱技术的应用及发展做出重大的影响。 Kore公司的两位技术人员Dr.BarrieW.Griffiths和Dr.StephenJ.Mullock向大家介绍了Kore公司的质谱技术的历史发展,并着重向大家介绍了二次离子质谱仪SurfaceSee(TOF-SIMS)、手提便携质谱仪MS-200和软化学电离质谱仪PTR/SCI-TOFMS。 二次离子质谱(SIMS),利用超高真空技术,主要是应用于材料表面分析,它可以原位无损的分析表面区域,重组表面分布,进行分子层面的分析。Kore公司SurfaceSeer分析仪采用功能强大的二次离子质谱技术,结构紧凑,仅需一个标准电源,可放置任何场所。 手提便携质谱仪MS-200,MS-200是一种便携式的气体分析质谱仪,采用PDMS薄膜进样器及混合物自动分析软件,使其可以不需要GC也可以正确分析多种VOCs,其应用范围非常广泛,可应用于环保、公安、卫生等等领域。
  • 岛津:浅谈质谱在毒品检测领域的技术进展
    当下,在毒品问题全球化的大背景下,毒情形势日益严峻,芬太尼类、合成大麻素类、卡西酮类等新型毒品更新换代速度极快,毒品毒物的检测判定作为执法依据变得尤为关键,加之毒品成瘾机理领域还有很多亟待科学解答的内容,也对分析方法提出了更高要求。在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”专题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文特别邀请来自岛津企业管理(中国)有限公司分析仪器事业部的崔巍经理谈谈她对毒品检测质谱技术进展的看法。仪器信息网:据了解,仅2021-2022年发布并实施的毒品检测国家标准、行业标准已超二十项,您认为我国近两年毒品检测标准频繁颁布的背后有哪些因素在推动?我国毒品检测技术规范及标准的发展历程如何?您认为近些年该领域里程碑式的标准有哪些?崔巍:2022年毒品检测国家标准、行业标准发布进入快车道,国家对禁毒工作的关注度不断提升。技术方面最主要的目标就是对全类型精神活性物质的制造、贩运进行有效的管制。毒品检测规范的发展历程也反映了化学分析仪器的变革。1990-2009年GCMS类分析仪器成为毒品检测的主力机种产品;2010-2022年LCMSMS类分析仪器产品开始布局公安司法行业毒品检测领域;按照20年一个产业革命的周期分析,LCMSMS产品的产业布局将在2030年前结束。就行业标准而言有分为公安类检测标准和司法类检测标准。司法类检测标准对于毒品类型鉴定有更加清晰的分类,如:苯丙胺类、色胺类、合成大麻素类、芬太尼类等。公安类检测标准更加注重检测样品的类型:毛发中毒品检测、污水中毒品检测、血液、尿液等生物样品中毒品检测以及疑似物中毒品检测等。仪器信息网:您如何评价当前质谱技术在毒品检测领域的应用现状?其中质谱技术在该领域的发展将呈现怎样的趋势?贵公司针对毒品检测主推的产品有哪些?基于哪些技术?崔巍:当前质谱技术的难点有:1.痕量毒品及代谢物检测能力提升;2.未知类型毒品的筛查能力提升。这同时也预示着毒品检测将向着高灵敏度质谱技术和智能检测数据库开发这两个方向发展。下面就以岛津质谱技术为例介绍岛津在上述两个个领域的产品及应用技术成果。1.痕量毒品及代谢物检测能力提升样品中目标物浓度极低,在质谱技术灵敏度逐年提升的情况下,无限提升极限检测灵敏度势必将影响质谱仪及实验室数据的长期稳定性。在基质复杂的生物样品或污水检测中直接进样技术成熟度和仪器长期使用的稳定性均有待提升。目前较为成熟的技术是在线自动化样品富集技术,既可以最大程度的去除基质的干扰又可以提升质谱系统灵敏度,视为目前业内最稳定的系统化质谱平台:典型案例岛津AOE-LCMS-8050集在线固相萃取技术于一体化的AOE系统(岛津全自动固相萃取分析系统(Automatic Online Extraction System,简称AOE系统))客户装机实景图2.未知类型毒品的筛查能力提升中国毒品管制体系的建立,要求检测实验室具备大量的毒品及疑似物筛查检测方案。现有的检测方案虽可以满足常见策划类毒品的鉴定需求,但对于新型策划类物质的管理仍无法做到质谱筛查方案完全覆盖的能力。同分异构/同系物的出现更令众多业内专家十分头疼。智能化的数据库检索能力及可通过质谱信息预测检测化学结构的软件技术是毒品检测新技术革命的最新趋势。在传统GCMSMS平台上解决小分子类毒品的种属及结构鉴定是岛津质谱技术为毒品鉴定能力提升量身定制的解决方案。 软件平台:GCMS-TQ8050NX+卡西酮检测方法包智能化方法包检索原理排除同分异构体,1600 余种卡西酮类化合物共产生29种特征碎片离子,可进行产物离子扫描分析此外,结合质谱成像技术可以通过生物组织中毒品及代谢物的分布情况研究吸毒成瘾性及其背后的生物学原理。代表产品:iMScope QT 成像质谱显微镜产品及应用方向特点:1.带有光学显微镜的质谱仪,更加精准地融合光学显微镜图像和质谱成像图2.高空间分辨率、高速、高灵敏、高效成像分析功能3.通过拆装成像单元,使用一台仪器就能实现成像分析和LCMS分析。4.可提供从前处理到数据采集,数据分析的质谱成像整体解决方案应用案例:毛发截面样品中Methoxyphenamine(MOP)Methamphetamine(MA)在质谱显微镜下的分布图
  • 中关村材料试验技术联盟 重磅!团体标准《质谱仪器分类与代码》正式发布!
    创新引领,有标可依2024年1月5日,团体标准《质谱仪器分类与代码》(T/CSTM 01082—2024 /T/CAIA/YQ 008—2023(IDT))中文版正式发布!该标准由中关村材料试验技术联盟和中国分析测试协会联合发布,将于2024年4月5日起正式实施。英文版标准于2024年3月5日发布,将于2024年6月5日起开始实施。 标准适用性该标准适用于质谱仪器的分类、编码、命名、统计、管理等;但不适用于氦质谱检漏仪、离子迁移谱。 标准意义质谱仪器是一类非常重要的科学仪器,其结构复杂,技术路线及技术组合多样,而规范的分类标准是数据有效统计和分析基础。《质谱仪器分类与代码》标准发布实施后,可规范质谱行业统计标准,实现行业经济、技术等信息互认与共享,做到数据可汇总、可比较、可分析;为政府、行业协会、社会组织等对质谱行业统计调查提供重要依据和支撑;同时为厂家的仪器名称命名提供规范参考。标准内容 l 质谱仪器分类原则:按照仪器结构和原理对质谱仪器进行分类,具体采用联用技术、离子化技术、质量分析器三个维度划分。l 分类方法:采用分面分类法,按“分面—亚面—类目”建立类表结构体系。根据质谱仪器的结构组成分为三个分面,每一分面根据对应的原理逐次分为若干亚面或若干类目。l 具体分类如下:分面一:按照联用技术划分根据质谱仪器联用技术分为直接离子化分析、色谱联用以及常用非色谱联用三个亚面。根据不同的色谱类型分为液相色谱、气相色谱、离子色谱、薄层色谱、超临界流体色谱、毛细管电泳6个类目;各类目再根据该色谱原理不同,再逐一划分。常用非色谱联用分为热解吸、流式细胞术、激光烧蚀3个类目。1) 直接离子化分析;2) 色谱联用划分为:a) 液相色谱包括:—液相色谱;—高效液相色谱;—超高效液相色谱;—多维液相色谱;b) 气相色谱包括:—气相色谱;—全二维气相色谱;c) 离子色谱;d) 超临界流体色谱;e) 薄层色谱;f) 毛细管电泳;3) 常见非色谱联用划分为:a) 热解吸;b) 流式细胞术;c) 激光烧蚀。4) 其他。分面二:按照离子化技术划分根据离子化原理不同,对常用的离子化技术进行分类。分为轰击离子化、电喷雾离子化、化学离子化、光致离子化、放电离子化、热离子化、场致离子化七个亚面。各亚面根据该种离子化原理是否有不同细分,再逐一划分若干类目。1)轰击离子化包括:a) 电子轰击离子化;b) 快速原子轰击离子化;c) 二次离子化;2) 电喷雾离子化包括:a) 电喷雾离子化;b) 解吸附电喷雾离子化;c) 纳升电喷雾离子化;d) 脉冲直流电喷雾离子化;e) 电喷雾萃取离子化;f) 电喷雾辅助激光解吸离子化;g) 极性反转电喷雾离子化;3) 化学离子化包括:a) 化学离子化;b) 大气压化学离子化;c) 质子转移反应;4) 光致离子化包括:a) 基质辅助激光解吸离子化;b) 单光子离子化;c) 多光子离子化;d) 激光解吸离子化;5) 放电离子化包括:a) 介质阻挡放电离子化;b) 辉光放电离子化;c) 低温等离子体离子化;d) 电晕放电离子化;e) 解吸电晕束离子化;f) 火花放电离子化;g) 电感耦合等离子体离子化;6) 热离子化;7) 场致离子化包括:a) 场解吸离子化;b) 场离子化;8) 其他。分面三:按照质量分析器类型划分根据质谱仪器的主质量分析器(输出最终分析结果的质量分析器)的不同原理,划分为五个亚面,分别为四极杆质量分析器、飞行时间质量分析器、离子阱质量分析器、磁质量分析器、傅里叶变换质量分析器。各亚面根据该种质量分析器原理不同,再逐一划分若干类目。1) 四极杆质量分析器;2) 飞行时间质量分析器包括:a) 直线飞行时间质量分析器;b) 单次反射飞行时间质量分析器;c) 多次反射飞行时间质量分析器;3) 离子阱质量分析器包括:a) 二维离子阱质量分析器;b) 三维离子阱质量分析器;4) 磁质量分析器包括:a) 单聚焦质量分析器;b) 双聚焦质量分析器;5) 傅里叶变换质量分析器包括:a) 静电阱质量分析器;b) 离子回旋共振质量分析器;6) 其他。l 质谱仪器代码:分为英文代码和数字代码两种方式;英文代码以质谱仪器主要结构的英文简称组合表示,数字代码以纯数字组合表示。起草单位标准由广东省麦思科学仪器创新研究院牵头编制,广州禾信仪器股份有限公司、暨南大学、宁波大学、中国计量科学研究院、中国广州分析测试中心、赛默飞世尔科技(中国)有限公司、杭州谱育科技发展有限公司、宁波华仪宁创智能科技有限公司、常州磐诺仪器有限公司、中国科学院苏州生物医学工程技术研究所、上海质谱仪器工程技术研究中心、北京东西分析仪器有限公司、江苏天瑞仪器股份有限公司、钢研纳克检测技术股份有限公司、苏州安益谱精密仪器有限公司、北京清谱科技有限公司、山东英盛生物技术有限公司、安捷伦科技(中国)有限公司、珀金埃尔默企业管理(上海)有限公司、岛津企业管理(中国)有限公司、西北核技术研究院共同参与完成。标准起草单位涵盖了国内外质谱厂商、高校和研究机构等22家单位,具有广泛代表性。
  • 岛津助力仪器信息网上海质谱技术交流会
    仪器信息网讯 2011年8月21日,仪器信息网用户交流会之上海质谱技术交流会在岛津国际贸易(上海)有限公司(以下简称&ldquo 岛津&rdquo )分析中心顺利召开。本次技术交流会主要面向仪器信息网VIP会员,旨在促进用户交流,提高用户的质谱仪器分析水平。   来自上海、苏州、昆山、杭州等地的近80位仪器信息网用户参加了本次技术交流会。仪器信息网对本次活动进行了网上直播,全国各地50余位用户在线聆听了本次活动相关报告。岛津独家赞助本次技术交流会。 技术交流会现场 仪器信息网副总经理王志博士致辞   活动开始,仪器信息网副总经理王志博士对仪器信息网概况和能为网友所提供的各项特色服务进行简要介绍。   岛津分析仪器事业部分析中心黄涛宏经理致辞   岛津分析仪器事业部分析中心黄涛宏经理代表岛津致辞,并作为仪器信息网注册7年的老版友欢迎各位网友此次参加活动。   仪器信息网网友hoggy   报告题目:飞行时间质谱原理和技术(TOF-MS THEORY & TECHNOLOGY )   仪器信息网网友hoggy对TOF-MS进行了系统地介绍与分享:首先通过最简单的TOF-MS模型分析介绍了仪器原理及特点,并根据仪器特点分析其所适合的应用领域,重点介绍了TOF-MS1聚焦、反射器、垂直引入、延时萃取4项关键技术,并对关键参数进行分析解释,最后对现代TOF-MS产品进行了总结汇总。   仪器信息网网友JIMZHU   报告题目:香气香味样品分析技术   仪器信息网网友JIMZHU针对质谱技术在香气香味样品分析中的应用进行了介绍。报告结合自己在工作中的经验从仪器分析设备及分析条件的选择、样品前处理、数据评估处理三个方面分享,他在报告中例举很多工作实例,并进行分析与探讨,极大引起其他网友的共鸣。   岛津应用工程师 姚劲挺先生   报告题目:LCMS-IT-TOF在食品安全和制药行业应用   岛津应用工程师姚劲挺先生对LCMS-IT-TOF在农药快速筛查、药物中未知物鉴定中的应用进行分享。报告内容涉及仪器特点、分析条件及鉴定过程步骤等几个方面,通过对结果的分析,充分展示了LCMS-IT-TOF将多级质谱能力和高质量准确度、高分辨率相结合的特点。   仪器信息网网友littleduck   报告题目:气相色谱负化学源电离质谱法的应用延伸   仪器信息网网友littleduck在本次活动中分享了自己在气相色谱负化学源电离质谱(GC-NCI-MS)技术的应用体会,对负化学源质谱的应用范围进行总结,并结合自身使用体会分享检测手段选择分析,最后对GC-NCI-MS 技术在环境领域的应用提出自己的想法与参会网友进行讨论。   技术答疑现场   本次活动还设有趣味问题讨论、问题抢答、专家团解疑答惑等互动环节。   围绕质谱应用及最新技术,同时秉承仪器信息论坛技术讨论中具有趣味性的特点,本网工作人员为参会网友准备了8个趣味问题,参会网友以小组讨论的形式解答问题,正确率最高的小组将获得其他小组的赞美,并获得仪器信息网提供的精美礼品一份。   此外,岛津与仪器信息网共同准备了10道抢答题,回答成功者即可获得精美礼品一份。   此次活动特邀质谱领域资深网友与资深工程师组成答疑团,进行现场集中答疑,网友针对自己工作中对质谱仪器使用、应用、维护等方面的问题进行提问,答疑团成员与现场网友进行分享、讨论,充分体现出仪器论坛互通有无,相互提高的讨论氛围。   参观岛津全球应用技术开发中心实验室   活动最后,仪器信息网网友集体参观了岛津全球应用技术开发中心实验室。通过本次参观,仪器信息网网友们对岛津产品得到了系统的认识,切实感受到岛津产品的全面性。在参观过程中,各位网友与应用工程师进行面对面交流,尤其对质谱产品特点及应用进行详细的咨询与探讨。   仪器信息网网友上海质谱技术交流会合影 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 中科院发明水中VOCs实时在线质谱监测新技术
    最近,中国科学院合肥物质科学研究院医学物理与技术中心光谱质谱研究室在水中挥发性有机物(VOCs)实时在线监测方面取得进展,发展的喷雾进样——质子转移反应质谱(SI-PTR-MS)技术方法,实现了水中VOCs快速/高灵敏在线检测。该研究工作已发表在美国化学会期刊Analytical Chemistry上。  长期以来,水中VOCs在线监测很难做到既快又灵敏,例如,膜进样或顶空进样质谱,灵敏度高,但响应慢 毛细管进样质谱,响应快,但灵敏度有限。光谱质谱研究室科研人员根据亨利原理,设计制作了一种简便的水喷雾提取(SI)单元,用于水中VOCs的高效萃取,并与自主研制的质子转移反应质谱(PTR-MS)仪器联用,对水中VOCs进行快速/高灵敏在线监测。目前,测量水中苯的检测限达到0.14 微克/升,响应时间55s 并对自来水、湖水、实验室/药厂废液等水样中的苯进行了成功检测。新发展的SI-PTR-MS技术方法,不但为水中有机物自动监测提供了一种新的技术方案,而且可促进PTR-MS技术在水环境质量监测中的应用。  该研究得到了国家自然科学基金等项目的资助,使用的装置和方法已获得国家发明专利授权。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制