频率干扰仪原理

仪器信息网频率干扰仪原理专题为您提供2024年最新频率干扰仪原理价格报价、厂家品牌的相关信息, 包括频率干扰仪原理参数、型号等,不管是国产,还是进口品牌的频率干扰仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合频率干扰仪原理相关的耗材配件、试剂标物,还有频率干扰仪原理相关的最新资讯、资料,以及频率干扰仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

频率干扰仪原理相关的仪器

  • 仪器简介:FRA (Frequency Response Analysis software) 频率响应分析软件是专用于控制和分析处理电化学频率响应(又称:交流阻抗)数据的软件;主要特点: 可提供10Hz ~ 1 MHz全范围一次性测量,无需进行分段测量; 可全范围进行单个或多个正弦波测量; 可提供多种交流阻抗的测量方法,例如: Frequency scan at a single potential常规的单电位下的频率扫描阻抗测量方法; Potential scan with at each potential a frequency scan电位频率扫描; Potentiostatic Time scan恒电位下的时间频率扫描; Frequency scan at a single current单电流下的频率扫描; Current scan, with at each current a frequency scan电流频率扫描; Galvanostatic Time scan恒电流下的时间频率扫描。 可显示多种曲线形式,包括:Nyquist、Bode、Epsilon等; 可基于EQUIVCRT进行曲线的模拟和拟合; 在Nyquist图中找圆; 进行Kramers-Kronig试验。
    留言咨询
  • 1:读数仪 振弦式频率读数仪 频率读数仪 型号:HAD/609A读数仪概述:HAD/609型系列读数仪适应于各种振弦式传感器的数据采集,并支持多种温度传感器的测量 。它是款智能型的仪器,通过设置它能直接显示出所测到的物理量,连接通讯电缆它可把采集到的实时数据或历史数据上传到计算机,以便对数据步行处理,利用转换口可对接入32点、64点的MCU数据采集箱,它可行多传感器的无人自动化的数据采集。读数仪能特点:· MCU采用的AVR架构;具有抗干扰强、度、分辨率、低耗。· 操作简便、显示模式多样;频率、频模值、物理量模式显示。· 数据采集与保存方式;手动操作与自动运行、实时采集与定时采集方式。· 海量数据存储;1条,数据存储格式:温度 频率 测量时间。参数:型号项目HAD/609AHAD/609BHAD/609C测频范围500~6000 Hz小读数0.1 Hz测温范围─-25℃~+110℃测温度─± 0.3 ℃温度传感器类型─2K、 3K、 5K通讯接口──RS232、USB转232口测量方式手动 、自动自动测量间隔1秒~1月 (可调)数据存储6000条10000条作电源三节碱性5号电池 测读仪操作说明 1. 开机:按 键开机入待机状态, 显示 注:本仪器所有的能键 按次时打开启用,二次按时关闭撤消。 2.测量:连接传感器 按 键入测量状态, 显示 3.显示模式切换:按 键切换显示模式, &rarr 频率(H)&rarr 频模值(F)显示 4.测量数据的保存:连接传感器入测量状态,待测量数据稳定后按 键, 这时测量的数据与测量的时间已同步保存到历史数据库内,同时序号自动累加1。5.数据自动采集与保存: 连接传感器并入测量状态, 然后按 键, 这时仪器已入自动数据的采集和数据的保存状态。退出自动运行模式时 再按次 键即可。6.自动采集间隔设置: 在关机状态 按 键开机; 按 键 显示 按 键 显示 接着输入数据采集需间隔的时间,以秒为单位;然后按 键确认。 7.自动关机与低电压警示: 仪器在侍机状态和测量状态中如果5 分钟末操作仪器键盘或仪器末连接传感器仪器将自动关机。 8.仪器时间的设定: 9. 组号、序号的改变:读数仪它可保存的数据为 99组(1只传感器组) ,每组序号(即测量的次数)为100号(A型为50);为把测量到的数据保存到的位置,这时需改变组号或序号的大小。具体操作:按 键 显示 ;按 键组号增大;按 键组号减小。按 键序号增大;按 键序号减小。调整好后直接 按 键返回。10.查看历史数据: 按 键 显示 这时显示为 组号68、序号039的历史数据;接着按 键 显示 表示这条数据保存的时间;再按 键返回到查看状态。 按 键查看下条数据;按 键查看上条数据;按 键查看下组数据;按 键查看上组数据。 11.历史数据总清除:按 键开机入待机状态, 显示 ;连续按 键8次显示 接着按 键显示 ; 然后等待仪器自动返回到待机状态显示 此时仪器内保存的历史数据已总清除。注:历史数据经删除,不可恢复2:微电脑页岩膨胀测试仪型号:HY-NP-03适用范围:用于防塌泥浆及处理剂的研究,采用的计算机仿真及多程测控,能同时测定三个样品。能自由设定每个样品的时间间隔实时显示采样结果以及膨胀曲线,软件有校零能,对测试数据可行监控,保存,打印等。主要参数:测量范围: ± lOmm        分辨率:0.Olmm自动检测,动态显示,历史保存电脑是的,里面含有配套的软件。同时检测三种同样的样品。误差小于3%、岩芯直径是25.4mm、有配套的制样仪器、 温馨提示:以上产品资料与图片顺序相对应。
    留言咨询
  • 288A振动频率测量仪使用说明书一、前言288A振动频率仪是针对各种机器设备测量工作频率而研制的,即可测量一般机器设备振动频率、也可测量精度要求高的设备。仪器采用先进集成电路及高灵敏度传感器结合而成,具有可靠性高、耗电低、抗干扰能力强的特点。仪器采用ABS手持式机壳及电池供电方式,LCD模式显示频率值和欠压,操作简便、直观。该仪器的研制成功,将会极大的方便测试人员在现场进行对机器设备的检测、标定。二、技术指标1、频率范围: 5.0Hz—10000Hz 频率范围由用户确定2、测量范围: 0.5—100g (加速度)3、误差: 0.1+0.1% Hz4、工作电源: 5号AA1.5x5节电池5、环境境条件:工作温度-10℃--50℃6、外形尺寸: 180*100*40mm7、重量: 430g三、操作说明 1、将传感器底部磁吸座垂直吸到被测设备上。传感器安装时,底座表面应垂直设备振动方面。传感器输出线与主机相连。 2、将电源开关打到“开”处,2秒钟后便可检测。3、当显示窗“ ”指示灯亮时,表示电池电压低于正常使用电压,应及时换电池(工作电流10mA)。四、注意事项 1、传感器在使用时避免摔打、敲击。与其线连接处不宜扭曲或从根部拉动。 2、频率范围也是滤波器频率范围是用于抗外部于扰,选择适当上下频率值,否则会出现频率表数字值有很大变化。3、当仪器擦洗时,禁止使用汽油、橡胶水擦洗。 4、长期仪器不用时,从仪器后面电池盒取下电池,避免电池损坏。 5、仪器在测量过程中显示有误时,应先考虑电池是否欠压或传感器是否损坏。 五、附件 说明书 1份 主机 1台 传感器 1只 合格证 1份 电池 5节
    留言咨询

频率干扰仪原理相关的方案

频率干扰仪原理相关的论坛

  • 【讨论】关于ICP光谱仪RF发生器工作频率及IRIS INTREPID II系列各型号的说明

    1、RF发生器  目前商品化ICP光谱仪都使用两种类型的RF发生器,一类是自激式发生器,另一类是晶体振荡式(它激式)发生器。自激式是采用L-C振荡回路,工作线圈即是L,参与振荡,等离子体本身就是振荡回路的一部分,所以负载的变化将引起振荡回路参数的变化,正向功率和振荡频率都会产生波动,而且点火不容易。而它激式的发生器就不存在这个问题,它的原理基于石英晶体的压电效应,用晶体的谐振频率来取代L-C振荡回路,所以它具有频率、功率稳定性好,点火容易等特点。发生器在5-60M都可以满足ICP工作的需求,但商品化的ICP光谱仪都使用工业标准的27.12M和40.68M两个频率,因为国际上规定凡工业和医用高频设备使用这两个频率,即使它有泄漏也不干扰正常的通讯广播。按原理上说,频率越高趋肤效应越大,等离子体的中心通道越宽,样品经雾化后通过中心通道被间接加热,40.68M的原子或离子密度降低,背景降低,从而提高了信背比,降低了如K等易电离元素的检出限;但是由于中心通道宽,使其温度比27.12M低,因此影响等离子体的稳定性,而且原子密度降低,所以将影响一些难电离元素的灵敏度。对于点火效果来说,如果是自激式的发生器一般要用40.68M,这样容易点火,而对于晶体控制式,27.12M同样可以获得很好的点火效果,况且对于维修工程师来说,他们希望是更安全的低频率。 2、IRIS Intrepid II系列型号说明  Thermo的IRIS Intrepid II系列ICP产品是基于新的CID38A检测器、改进的RF系统、中阶梯光学系统和TEVA软件,在2003年年初同时推出了三个型号:XSP(扩展稳定性)、XDL(扩展检出限)和XUV(扩展紫外波长)。XPS在IRIS AD 双闭环直接耦合的基础上改进了RF发生器的实时控制电路,虽然把最大输出功率限定在1500W,但其等离子体光源显得更稳定;另外改进了检测器与光室的隔热,改进了光室内的氩气走向;改进了光室恒温系统,这一系列改进使得XSP可获得优异的短期和长期稳定性,所以特别适合于工矿企业、商检质监、测试中心等样品量多,品种复杂的单位,XSP在国内有近200台,使用情况良好。XDL还是使用原来IRIS AD的RF发生系统,目的是通过提高功率等方法来扩展检出限,目前主要是用于纯基体行业,如水和环保行业,通过提高功率来改善此类样品中如Pb等重金属测定的信噪比。但至今XDL占整个系列销售比例不到1%,毕竟用户不只是分析水,就环保来说还是经常分析大气粉尘和土壤等。对于存在大量基体的情况下,信号提高的同时基体背景干扰可能更加严重,虽然仪器检出限(IDL)降低了,但并没有有效地降低方法检出限(MDL)。由于产量较少,所以生产地成本相对较高。XUV是通过改变中阶梯光栅的衍射角,使得紫外波长扩展到130nm,这是油品分析的专业仪器,因为目前国际上对油品中Cl-的分析一般要求使用134nm灵敏线,同时配合油料进样系统进行测定。所以说IRIS Intrepid II系列的三种型号是针对于不同的应用,从目前的销售情况来说,由于XSP的超高稳定性,使其适用面更广一些。

  • 【原创】激发频率对打点有什么影响?

    [b][color=#d40a00][size=4]直读光谱做分析时,除了激发电流和时间等参数,还有激发频率这个参数。帮朋友修直读光谱时发现激发频率对激发电流影响较大,同干扰也有影响,激发频率偏低(如200Hz),激发电流较大,干扰也较大(偶尔有死机现象),激发频率偏高(如400Hz),激发电流稍小些,干扰也小一些,不知各位同行对此有何见解?如何去理解激发频率在直读光谱中的作用?[color=#d40a00]按常理讲,难熔元素用高一些的激发频率,可能对分析有利一些,当然还要取决于激发电流和电压。[/color][/size][/color][/b]

频率干扰仪原理相关的耗材

  • 高重复频率Q开关增强能量激光器
    高重复频率Q开关增强能量激光器(High Repetition Rate Q-switched Laser with Increased Energy)LS-2138, LS-2138OPO, LS-2138TFLS-2138包含了LS-2136 和LS-2137激光器的所有优点,它的脉冲重复率达到50 Hz,发散度小,输出功率达到220 mJ。双连杆激光腔体及带腔内望远镜的激光谐振器共同打造了稳定,可靠,高效率的操作A 。单一电源及水气热力交换的独立冷却机组都是LS-2138的特点。规格:LS-2138LS-2138OPOLS-2138TF能量, mJ1064 nm220200220532 nm115-115355 nm453045266 nm30-30脉冲时间 (FWHM), ns14-16脉冲重复率, Hz50光束直径, mm≤5Jitter, ns±1.5光束发散度, mrad86%能量时为全角≤0.7≤1.5≤1.0能量稳定性 (RMS), %1064 nm2.5
  • 高重复频率Q开关Nd: YAG激光器
    高重复频率Q开关Nd: YAG激光器(High repetition rate Q-switched Nd: YAG Laser)LS-2136激光器是一个高重复率Q开关Nd: YAG激光器,发出基频( 1064 nm)和2倍频(532 nm)。远视稳定谐振器(telescopic stable resonator)的优点为光束质量统一,高能量及低光束发散度。内腔模式控制望远镜补偿了Nd: YAG连杆上的热透镜,同时通过减少光束横向模式容量限制了激光光束发散度。冷却系统无需给水,它通过水气热交换可完全实现自足。数字化显示遥控装置可先择自动或手动模式。所有的激光功能都可在你的指尖实现。规格:LS-2136LS-2136LP能量, mJ1064 nm14040532 nm75-355 nm 25-266 nm18-脉冲时间(FWHM), ns1064 nm15-1824光束直径, mm≤5≤3Jitter, ns±1.5脉冲重复率, Hz50光束发散度, mrad86%能量时为全角≤0.7能量稳定性 (RMS), %1064 nm2.5-尺寸长x宽x高, mm激光头815x206x136电源446x449x177致冷系统446x449x266远程控制105x175电源单相 220 ±20V, 50-60 Hz, 1500 W
  • 食品工程原理实验仿真软件FES
    流程简述: “食品工程原理仿真实验”,就是利用动态数学模型实时模拟真实实验现象和过程,通过对仿真3D实验装置进行互动操作,产生和真实实验一致的结果。从而达到每个学生都能够一对一地亲自动手做实验,观察实验现象,验证公式、原理定理的目的。可以通过网络,使教师站上运行的监控程序与管理程序能方便地对下位机的学员站上运行实验仿真软件进行监控与管理,同时配有标准的实验思考题生成器,开放接口。培训工艺:1.1、流体粘度测定实验1.2、柏努利方程实验 1.3、雷诺实验 1.4、流体阻力实验 1.5、离心泵性能实验 1.6、过滤实验 1.7、传热实验 1.8、洞道干燥实验 1.9、流化床干燥实验 1.10、精馏实验 1.11、气体扩散系数测定实验1.12、液体扩散系数测定实验运行环境要求建议配置:学员站:CPU:奔腾E2140或更强的CPU(或AMD Athlon X2 4000)内存:1G以上显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows XP SP2/SP3教师站:CPU:奔腾E5200或更强的CPU(或AMD Athlon X2 5000)内存:1G以上(推荐2G以上)显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows Server 2003 SP2网络要求:网络必须稳定通畅(统一式激活)

频率干扰仪原理相关的资料

频率干扰仪原理相关的资讯

  • 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳
    成果名称 基于光纤激光器的可见光频率梳、20GHz可见光波段天文光学频率梳 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 □原理样机 &radic 通过小试 □通过中试 □可以量产 成果简介: 光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。利用频率梳测量频率时,需要频率梳的频率间隔在200MHz以上,以便波长计数器计量波数。特别地,类地行星观测需要20GHz以上频率间隔的频率梳来定标光谱仪,这个频率间隔一般的光纤激光器无法达到,目前只能依靠法布里-珀罗(FP)滤波装置进行频率倍增。由于FP透射光谱的有限线宽会导致边模泄露,从而影响天文光谱仪的定标精度,因此需要源激光频率梳本身的频率间隔尽量大,以抑制边模。可见,研制高重复频率(大频率间隔)的频率梳已经成为国际激光器和频率梳领域研究的热点和难点。目前该产品的国内市场基本上被德国Menlo System公司生产的基于掺镱光纤激光器的可见光域频率梳垄断,我国亟需研制出具有自主知识产权的光梳设备。 2011年,北京大学信息学院张志刚教授申请的&ldquo 基于光纤激光器的可见光频率梳&rdquo 得到第三期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金经费支持下,通过关键配件的购置和加工,该项研究得以顺利开展。课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作,包括:(1)搭建高重复频率、1um波长的锁模光纤激光器,作为频率梳&ldquo 种子源&rdquo ;(2)研究初始频率和腔内色散的关系,以得到更高信噪比的初始频率信号;(3)利用合适的色散补偿元件对种子源输出的脉冲进行色散补偿,并进行多级反向放大,使其输出功率满足频率梳要求;(4)试验多种光子晶体光纤,以获得更宽的、覆盖可见光域的光谱。通过以上工作的开展,课题组成功研制出了国际首创的500MHz光学频率梳样机,而Menlo公司同类产品重复频率仅为250M。这一技术的产品化将打破外国公司在国内市场的垄断,填补国内外市场的空白。 在第三期项目工作的基础上,张志刚课题组的王爱民副教授申请的&ldquo 20GHz可见光波段天文光学频率梳的研制&rdquo 项目在2012年得到了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在第四期基金的支持下,项目组发展了前期500MHz高重复频率的光学频率梳的研究成果,开展了更加深入的工作,包括:(1)利用FP技术对500MHz重复频率的稳定光梳进行倍频,获得20GHz、1m波段的稳定光学频率梳;(2)对20GHz光学频率梳进行功率放大、脉冲压缩和倍频,实现515nm波段的蓝光飞秒光梳源;(3)利用拉锥光子晶体光纤对飞秒蓝光光梳进行可见光扩谱,达到400-750nm的光谱覆盖。通过这些工作,课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。 这两期项目目前已经结题,其成果已进入产品化阶段,科技转化前景良好。相关成果受到了北京市科委的高度重视。 课题组瞄准研制稳定的、可供频率测量的、基于飞秒光纤激光器的可见光域激光频率梳这一目标,开展了一系列富有成效的工作。课题组成功研制出了一套可直接与天文望远镜对接的20G天文光梳频率标准系统,其工作达到该领域国际前沿水平。 应用前景: 光学频率梳是很多高端研究的基础科学仪器,例如原子跃迁频率的精密测量、光钟的频率的测量、引力波的测量、微重力的测量、系外类地行星的探测等。
  • 亚飞米分辨率双电光梳绝对频率光谱测量
    光学频率梳(Optical frequency comb,简称“光梳”)由大范围、等间隔的梳齿分量构成,每根梳齿均对应绝对频率,如同在光频上的一把梳子(或标尺)。得益于飞秒激光器和非线性光学的发展,1999年美国标准局和德国马普所的研究团队分别在实验上实现了光梳,解决了绝对光频率计量问题,J. L. Hall和T. W. Hänsch因此贡献而分享了2005年诺贝尔物理学奖。光梳的诞生同样给光谱测量领域带来了革命性突破,分辨率提高到皮米量级,光梳光谱学的新技术和新应用也在不断涌现。双光梳光谱学可以充分利用光梳在频率准确度、频率分辨率、光谱范围和脉冲宽度等方面的优势,在诸多基于光梳的测量技术中脱颖而出。在频域上,双光梳光谱学表现为两个有微小重复频率差异光梳的多外差探测,可以将探测光梳记录的待测谱线,如分子吸收谱,从光频转移到射频。双光梳光谱学可以利用光谱交织技术进一步将分辨率提高至几十飞米量级。然而现有方案测量时间大幅增加,使用温度或驱动电流调节时无法提供绝对频率参考,且分辨率仍有进一步提高至光梳梳齿线宽的较大空间。电光调制光频梳(简称“电光梳”)由对连续种子光的电光调制产生,用于构建双光梳系统时其具有天然的互相干性,无需复杂的锁定电路或相位校正算法,可以大幅降低系统复杂度。此外,由于电光梳具有不受谐振腔腔长限制的重复频率以及可自由调节的中心波长,由其构建的更具应用前景的双电光梳系统受到研究人员的广泛关注。上海交通大学何祖源、樊昕昱教授团队提出了一种新型双电光梳光谱测量方案,将光谱测量分辨率进一步提高到亚飞米量级,相较于现有方案提高了两个数量级。该方案利用外调制的稳频光作为扫频电光梳的种子光,可以在实现低频率误差快速光谱交织的同时,提供绝对光频率参考。图1 亚飞米分辨率双电光梳绝对频率光谱测量技术原理示意图研究团队在分析各性能指标的理论限制和相互制约关系的基础上,将光谱测量技术关注的综合性能指标(光谱分辨率、测量带宽以及测量时间)提高至奈奎斯特极限,并且可以通过多次平均提高测量信噪比。该方案用于测量分子吸收谱线和高Q值光纤法布里珀罗腔谐振谱线的实验结果,充分展示了该方案灵活实现超高光谱分辨率、高信噪比和高刷新率的能力。图2 氰化氢(HCN)气体吸收谱线的光谱测量结果图3 光纤法布里珀罗谐振腔反射谱的光谱测量结果该研究成果将推动超精细光梳光谱学的进一步发展,并在温室气体监测、精密光器件测试、生物化学传感,以及诸如电磁诱导透明等物理现象观测中具有非常重要的应用价值。
  • 北京大学王兴军团队提出:全芯片化的微波光子频率测量系统
    移动通信、雷达、卫星遥感、电子对抗以及基础仪器科学等领域的进步,促使着微波系统向着高频、宽带、大动态范围、多功能的方向发展。面对这些新的发展需求,传统的微波技术在微波信号的产生、传输、处理、测量等各个方面均面临巨大挑战。微波光子学融合了微波技术和光电子技术,即利用光电子学的方法处理微波信号,可以突破传统射频电子器件的性能瓶颈,被认为是下一代各类微波系统应用的解决方案之一。传统微波光子系统一般使用分立的光电子器件与电学模块搭建链路,这使得微波光子系统样机或产品具有重量大、功耗高、稳定性差等不足。因此,实现微波光子系统的微型化、片上化和集成化,是推动微波光子技术真正落地与广泛应用的关键,也是近年来学术界和产业界关注的焦点。然而,目前已报道的研究工作仍未能实现微波光子系统的完全芯片化集成,需要借助分立的光电子器件(例如:激光器、调制器等)或电子器件(例如:电学放大器等)来构建完整的系统链路,这在成本、体积、能耗、噪声方面严重制约着微波光子技术的工程化与实用化。鉴于此,近日,北京大学电子学院区域光纤通信网与新型光通信系统国家重点实验室王兴军教授研究团队提出了融合硅基光电子芯片、磷化铟芯片和 CMOS 电芯片的多芯片平台混合集成方案,首次实现了微波光子系统光-电链路的完全集成化拉通。基于该技术方案,研究团队设计实现了一款全芯片化的微波光子频率测量系统,整体尺寸约为几十 mm²,功耗低至 0.88 W,可实现对 2-34 GHz 宽频段微波信号瞬时频率信息的快速、精准测量。该成果发表在 Laser & Photonics Reviews,题为“Fully on-chip microwave photonic instantaneous frequency measurement system”。北京大学博士研究生陶源盛与北京大学长三角光电科学研究院杨丰赫博士为论文的共同第一作者,王兴军教授为论文通讯作者。该团队设计的全芯片化微波光子频率测量系统原理如图1所示,他们在硅光芯片上有源集成了高速调制器(用于微波信号加载)、载波抑制微环、可调谐光学鉴频器和光电探测器等器件。基于磷化铟平台实现高性能的分布式反馈(DFB)激光器,并通过端对端对接耦合方式与硅光芯片实现互连。为在保证系统测量精度的条件下降低对后端采样与处理电路的要求,他们将硅光芯片的弱光电流输出通过金线键合的方式直接连接至 CMOS 跨阻放大芯片的输入。经跨阻放大后的电信号,仅需通过低速采样电路采集,通过离线处理即可还原出输入高频微波信号的瞬时频率信息。图1:全芯片化的微波光子频率测量系统。(a)系统三维示意图;(b)磷化铟激光器芯片与硅光芯片的光学显微图;(c)系统整体的集成封装实物图。图源:Laser Photonics Rev.2022, 2200158, Figure 1面向电子对抗、雷达预警等实际应用场景,研究人员们在实验演示了该全芯片化微波光子频率测量系统对多种不同格式、微秒级快速变化的微波信号频率的实时鉴别。如图 2 所示,依次是对 X 波段(8-12 GHz)范围内的跳频信号(Frequency hopping, FH)、线性调频(Linear frequency modulation, LFM)和二次调频(Secondary frequency modulation, SFM)三类信号的频率-时间测量结果,误差均方根仅 55-60 MHz,是迄今为止同类型集成微波光子系统所展示出的最佳性能。图2:复杂微波信号频率的动态测量结果。(a)跳频信号(Frequency hopping, FH)的频率测量;(b) 线性调频(Linear frequency modulation, LFM)的频率测量;(c)二次调频(Secondary frequency modulation, SFM)信号的频率测量图源:Laser Photonics Rev.2022, 2200158, Figure 4未来展望 本工作所提出的多平台光电混合集成工艺方案,除适用于微波测量应用,对于研究微波信号产生、信号处理、信号传输等其他各种类型微波光子系统的集成化、微型化也具有很高的参考价值,为推动微波光子技术的工程化应用提供了一种通用性的解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制