当前位置: 仪器信息网 > 行业主题 > >

热膨胀系数检测

仪器信息网热膨胀系数检测专题为您提供2024年最新热膨胀系数检测价格报价、厂家品牌的相关信息, 包括热膨胀系数检测参数、型号等,不管是国产,还是进口品牌的热膨胀系数检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热膨胀系数检测相关的耗材配件、试剂标物,还有热膨胀系数检测相关的最新资讯、资料,以及热膨胀系数检测相关的解决方案。

热膨胀系数检测相关的资讯

  • 具有负泊松比与负膨胀系数的新型双负超材料
    负泊松比材料在受到压缩载荷时横向收缩,负热膨胀系数材料在受热时发生收缩现象。而负泊松比和负热膨胀系数相结合的新型超材料为材料的特殊需求提供了进一步的可能性。香港城市大学深圳研究院介绍了一种具有负泊松比与负热膨胀系数的双负超材料(Extreme Mechanics Letters, 2019)。这种新型超材料基于传统的星型内凹结构。为了提高该结构的负泊松比,研究者分别在结构和排列方式上进行了创新。这种结构和排列上的创新使得超材料在受到外界力/位移载荷时呈现出内凹变形机制,从而表现出负泊松比。图1(a), (b)新构型超材料的结构以及(c), (d)两种不同的排列方式。为了得到负热膨胀系数,在一个结构中引入了两种热膨胀系数不同的材料(图1a)。蓝色的杆的热膨胀系数较小,而红色的杆热膨胀系数较大。研究者用大量的数值模拟对新构型超材料的负热膨胀系数进行了验证。在加热时红色的杆因为需要伸长的更多而使得垂直方向蓝色的杆发生弯曲,从而减小了整个结构所占有的空间,表现出负的热膨胀系数(图2)。图2新构型超材料受热变形图。为了验证该超材料的负泊松比行为,研究者们采用摩方P130 打印机对材料进行了制备。并用试验和数值仿真相结合的方法对其负泊松比行为进行了验证,两者吻合的较好。由于材料打印的尺寸在微米级别,这也为材料在声学、光学等方面的应用提供了可能性。图3新构型超材料电镜观测图以及受力变形图。该研究工作发表于Extreme Mechanics Letters,香港城市大学深圳研究院陆洋老师为通讯作者。摩方nanoArch® P130打印的轻质高强结构材料,最小杆径8 μm。深圳摩方材料科技有限公司持续助力香港城市大学深圳研究院在超材料领域的研究及应用,其自主研发的nanoArch® P130 3D打印机精度高达2微米。除上述研究工作中的超材料应用外,另一重要的应用是轻质高强力学超材料,具有超轻质量和超高强度。其优异的力学性能得益于其中的微晶格结构,如上图所示,这些微晶格结构非常复杂,使用传统的二维制造技术无法加工制作,而摩方的微尺度3D打印技术则可以快速高效加工出这种复杂三维微结构,且具有极高的打印分辨率(图中微点阵结构,最小杆径8 μm)。BMF nanoArch® P130打印系统
  • 德国Neaspec推出全新功能模块,助力热膨胀及拉曼研究领域
    德国Neaspec公司推出的neaSNOM超高分辨散射式近场光学显微系统和nano-FTIR纳米傅里叶变换红外光谱仪以其稳定的性能,高的空间分辨率和的客户体验,自面市以来,在等离子激元、物质鉴别、二维材料、生物成像等领域均获得了广泛好评和青睐。目前国内已有清华大学、南开大学、中科院物理所等数所高校和机构用户使用Neaspec产品进行更深层次的科学研究,并给出高的评价。“NeaSNOM显微镜系统大地促进了我们的贵金属纳米结构表面等离激元研究”,中山大学陈焕君教授如是说。 Neaspec公司也秉承一贯的立创新和开拓进取精神,努力为客户提供优质的服务和便捷的实验工具。近期,Neaspec公司推出了全新的Photo Thermal Expansion(PTE+)和Tip Enhanced Raman Spectroscopy(TERS)功能模块,期待可以更好地服务广大科研工作者。 Photo Thermal Expansion(PTE+)功能模块基于被检测物质在激光照明下的热膨胀,通过机械变化的检测还原物质的吸收光谱。对于热膨胀系数较大物质,尤其是高分子材料,PTE模块可以提供良好的吸收谱线,对物质鉴别、材料分析工作是很好的补充。 Tip Enhanced Raman Spectroscopy(TERS)功能模块将大拓展现有产品应用领域。物质的拉曼光谱不同于吸收或者反射光谱,反映的是非弹性散射光性质,可以得到分子振动、转动方面的信息。但是由于其信号弱,一般难以直接应用于实际分析。针增强拉曼光谱利用了AFM探针纳米的曲率半径,对物质的拉曼信号可以起到良好的增强作用。Neaspec公司基于该技术,与s-SNOM技术结合,推出了该项全新模块,以期在分子检测方面为科研工作者提供更大的便利。相关产品链接neaSNOM超高分辨散射式近场光学显微镜http://www.instrument.com.cn/netshow/C170040.htmnano-FTIR纳米傅里叶红外光谱仪http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • XRD冷热台助力我国零膨胀钛合金特殊材料研发
    在航空航天、微电子器件、光学仪器等精密仪器设备中应用的结构部件,对尺寸稳定性有极为严苛的要求。由于温度升高或降低而导致的材料形状变化对其功能特性和可靠性有着很大影响。因此,具有近零热膨胀性能的钛合金在需要高尺寸稳定性的结构中具有极高的应用价值。例如,美国国家航空航天局已针对太空望远镜所需的超高稳定性支撑结构,使用这类钛合金制造了镜体支架。在激光加工领域,已有使用这种材料制造的光学透镜筒体,解决了透镜焦点热漂移的问题。这类材料特殊的热膨胀性能与其内部αʺ马氏体物相的各向异性热膨胀行为有关。但是,现有的通过冷加工工艺获得的低热膨胀系数限制于单相马氏体相区,即使用温度上限通常小于~100℃,限制了其在工程领域的广泛应用。近期东莞理工学院中子散射技术工程研究中心王皓亮博士在冶金材料领域的TOP期刊《Scripta Materialia》上发表题目为《Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb》的研究论文。论文介绍了在宽温域线性零膨胀钛合金特殊热膨胀性能形成机理方面取得的新的进展。论文第一作者为东莞理工学院机械工程学院王皓亮博士,通讯作者为机械工程学院孙振忠教授,共同通讯作者为比利时鲁汶大学Matthias Bönisch博士,合作作者有中国散裂中子源殷雯研究员和徐菊萍博士等。王皓亮博士主要从事金属材料物相晶体结构、微观组织及应力分析;钛合金固态相变及功能性研究;高等级耐热钢焊接接头蠕变失效预测研究。1.拉曼光谱在材料研究中的应用(图1.Ti22Nb合金通过析出纳米尺寸第二相获得的宽温域零膨胀性能)研究人员利用中子衍射技术表征材料微观结构的巨大优势,配合使用XRD冷热台(变温范围 -190℃到600℃ ,温控精度±0.1℃,文天精策仪器科技(苏州)有限公司)实现测试样品的温度变化,精确鉴定了线性零膨胀Ti22Nb钛合金中的物相组成,证实了依靠溶质元素扩散迁移形成的等温αʺiso相也具备调控热膨胀系数的功能。相对于冷加工材料,该研究中通过机械+热循环处理获得的双相复合材料,其低热膨胀行为的作用范围被拓宽至300℃。结合其他原位X-ray衍射和EBSD/TKD电子显微表征技术,在纳米到微米尺寸范围内全面分析了材料微结构要素,澄清了热循环过程中纳米尺寸αʺiso相的形成路径,揭示了微观晶格畸变/相变应变、晶体学取向参量和宏观热膨胀系数的之间的定量关系,为设计具有较宽使用温度范围的低/负热膨胀钛合金提供了新的途径,是从理论研究向技术和产品层面跃进的重要依据和前提。 (图2.(a)不同状态Ti22Nb合金中子衍射谱线,(b)原位升降温XRD谱线(c)母相及析出相衍射峰强度随温度演化规律)(图3.原位升降温XRD测试)图4.原位XRD冷热台
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • TA 仪器推出三条全新热膨胀仪产品线
    美国特拉华州纽卡斯尔市。 2017 年 3 月 1 日 - TA 仪器隆重推出三条全新热膨胀仪产品线,性能卓越的 800 平台喜迎新成员:DIL 820、DIL 830 和 ODP 860。这三款系列仪器均采用 TA 的专属真实差分技术,与强劲的竞争对手的系统相比,测量精确度超出十倍,进一步巩固了 TA 作为全球热分析技术领导者的杰出地位。 这三条新热膨胀仪产品线均基于获得专利的光学传感器,能够以高达 1nm 的分辨率分析样品。每款系统均配备新型高速、无温度梯度加热炉,确保温度控制达到最佳状态,缩短不同测试之间的停机时间。 TA 热膨胀仪属于高精度系统,设计用于测量动态热力变化引发的样本尺寸变化。这些热膨胀仪广泛应用于材料科学、陶瓷制造以及金属加工等领域的众多应用。它们在研究环境和生产控制过程中表现出众。 谈及本次发布的这款新产品,TA 仪器的高温产品经理 Piero Scotto先生 表示:“这是行业领先的热膨胀仪产品。通过将崭新系统设计与差分技术(每款仪器的核心)完美相融,TA 已经成为这一产品领域的新晋市场领导者。TA 仪器提供品类齐全的热膨胀仪,其优异性能和优惠价格符合所有用户的不同需求。 这款新平台由以下部件组成:精确测量尺寸变化的 DIL 830 系列高分辨率卧式推杆热膨胀仪、适用于精密烧结研究的 DIL 820 系列创新型立式推杆热膨胀仪以及执行非接触式样品测试的 ODP 860 多模光学膨胀测量平台。TA 仪器是沃特世公司(纽约证交所:WAT)的子公司,是热分析、流变测量和微量热测量领域分析仪器的领先制造商。公司总部位于美国特拉华州纽卡斯尔市,于 24 个国家/地区设立了办事机构。联系人:-全球营销总监 Ed Moriarty电话:302-427-1033 emoriarty@tainstruments.com TA仪器中国市场主管 Vivian Wang 电话 021-34182128vwang@tainstruments.com
  • 我司自动快速热膨胀相变仪中标
    我司中标中科院金属研究所“全自动快速热膨胀相变仪”招标采购项目  我司北京销售部,在北京销售部经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中科院金属研究所的青睐,成功中标其“全自动快速热膨胀相变仪”招标采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。
  • 德国耐驰60周年回顾系列(三):膨胀计到底能用来做什么?
    本文作者:Aileen Sammler 作为德国耐驰60周年纪念的宣传活动的一部分,本文将详细介绍膨胀计的不同应用领域。  耐驰获得专利的最新技术  德国耐驰拥有极佳的膨胀测量系统——测量单元的功能设置在许多国家获得专利,并具有许多优点,例如:  初始样品长度不限范围以及在更高分辨率下的长度变化  明确的低恒定接触力  力控制调节,推杆无冲击且可重复移动  初始样品长度的自动识别  图:DIL 402 Expedis®  Supreme代表了顶尖的膨胀计技术:自动测定样品长度、在非常广的测量范围内保持恒定的分辨率、测量系统极好的温度稳定性以及双吊炉扩展的温度范围。除此之外,测量系统还可以进行力调制,从而连接热机械分析(TMA)。图:DIL 402 HT Expedis® –2800°C高温版本:无论在航空航天、发电、石油和天然气行业还是要求极严的研究项目中,最高温度可达2400°C或2800°C的石墨炉都能为金属、合金、陶瓷和复合材料的热膨胀测定提供了恰到好处的配置。图:手套箱版本的DIL 402 Expedis® Supreme,适用于对氧气或水分敏感的材料,以及用户必须避免接触样品的情况。膨胀计的外壳完全由不锈钢制成。因此,不存在与样品或环境相互作用的塑料零件。膨胀计可以测量各种材料如今,膨胀计可用于测量各种材料——从塑料、陶瓷、玻璃到建筑材料。玻璃成分的变化也可以通过测量热膨胀系数或测定玻璃化转变温度快速而容易地确定。此外,相变会影响建筑材料(如混凝土)的膨胀和收缩行为。这些对使用它们的系统的统计可靠性和使用寿命有重大影响。通过膨胀计,可以研究膨胀和收缩等尺寸变化,以及体积变化。几十年来,这些方法已成功地在工业和研究中心应用了数十年,如瑞士日内瓦附近的欧洲核子研究中心。耐驰期待着膨胀测量未来数十年依然可以“发光发热”。你知道吗?德国耐驰(NETZSCH-Gerätebau)不仅仅在高温领域表现极佳,在低温膨胀计领域也处于第一梯队,可以实现最低至-260°C的膨胀测量。例如,这些膨胀计用于磁悬浮列车的功能测试。图:DIL 402ED点击直达:热膨胀仪专场德国耐驰展位
  • 我司中标快速热导率仪、热膨胀仪项目
    2009年12月15日,我司北京销售经理以真诚的销售服务成功中标中国地震局地质研究所“快速热导率仪项目”。欢迎广大客户咨询本公司产品。  我司中标沈阳工业大学材料学院“热膨胀仪项目”
  • 反常热膨胀光学晶体研究获进展 有望提升精密光学仪器稳定性
    近日,中国科学院理化技术研究所研究员林哲帅、副研究员姜兴兴等提出实现晶体热膨胀的超各向异性,为光学晶体反常热膨胀性质的调控提供了全新的方法,对于光学晶体中轴向反常热膨胀性质的功能化具有重要意义。   在外界温度变化时,常规光学晶体因“热胀冷缩”效应,无法保持光信号传输的稳定性(如光程稳定性等),限制了其在复杂/极端环境中精密光学仪器的应用。探索晶体的反常热膨胀性质如零热膨胀,“对冲”外界温场对晶体结构的影响是解决这一问题的有效途径。   然而,通过晶格在温度场作用下的精巧平衡来实现零热膨胀颇为困难,一方面,热膨胀率严格等于零的晶体在自然界中不存在;另一方面,目前化学组分调控晶体热膨胀性质的方法,例如多相复合、元素掺杂、客体分子引入和缺陷生成等,影响晶体的透光性能,不利于光学应用。如何在严格化学配比的晶体材料中,利用其本征的热膨胀性能来实现大温度涨落下的光学稳定性,具有重要的科技意义。   该研究团队提出实现晶体热膨胀的超各向异性,即沿晶体结构的三个主轴方向分别具有零、正、负热膨胀性,来调控光学晶体反常热膨胀性质的新方法。研究通过数学推导严格证明了当沿着三个主轴方向分别具有零、正、负热膨胀时,晶体具有最大的热膨胀可调性,可实现热膨胀效应和热光效应的精巧“对冲”,获得完全不随温度变化的光程超级稳定性。   研究在具有高光学透过的硼酸盐材料中探索,系统分析了晶格动力学特征。在此基础上,研究在AEB2O4 (AE=Ca或Sr)中发现了首个沿着三个主轴方向零、正、负热膨胀共存的特性。原位变温X射线衍射实验证明AEB2O4晶体具有宽的零、正、负热膨胀共存的温区(13 K ~ 280 K)。   在相同温度区间内,光程的变化量比常规光学晶体(石英、金刚石、蓝宝石、氟化钙)低三个数量级以上。第一性原理结合变温拉曼光学揭示了AEB2O4这种新奇的热膨胀性质源自离子(AEO8)基团拉伸振动和共价(BO3)基团扭转振动之间热激发的“共振”效应。相关研究成果发表在Materials Horizons上。   近年来,该团队致力于光电功能晶体反常热学和反常力学性能的研究,发现了系列具有负热膨胀、零热膨胀、负压缩以及零压缩性能的光电功能晶体,有望为复杂/极端环境下光学器件的稳定性和灵敏度问题提供解决方案。
  • 北京大学引进德国巴赫BAEHR光学热膨胀仪
    德国巴赫(BAEHR)热分析公司DIL806光学热膨胀仪进入我国最高学府-北京大学 DIL806光学膨胀仪是目前世界上唯一利用光学原理进行测量的热膨胀仪,技术上比传统热膨胀仪更胜一筹。具体表现在: 1、利用光学原理测量是绝对测量,无需对测量结果进行校正(传统热膨胀仪是相对测量,必须对测量结果进行校正); 2、测量系统无需与试样接触,没有附加的外力作用在试样上,测量更准确; 3、对试样的外形没有严格要求,外形不规则试样,薄试样,甚至发生固-液-固相转变过程的试样,均可进行完美地测试,极大地扩展了热膨胀仪的应用范围。 Disc furnace – 盘式加热炉 Sample – 被测试样 Sender – 激光发送器 Receiver – 激光接收器 北京仪尊科技有限公司是德国巴赫热分析公司在我国的唯一代理,如想更详细地了解该仪器,请登录我公司网站,或与我公司直接联系: 电话:010-84831960 84832051 邮箱:sales@esum.com.cn 网站:www.esum.com.cn
  • 我司中标沈阳工业大学材料学院“热膨胀仪项目”
    我司北京销售经理以真诚的销售服务成功中标沈阳工业大学材料学院“热膨胀仪项目”。欢迎广大客户咨询本公司产品。
  • 我司成功中标中国矿业大学热膨胀仪采购项目
    2010年1月14日,我司北京销售部,在北京销售经理的直接参与下,共同努力,精诚合作,终于用自己熟练的专业知识,完美的服务能力,赢得中国矿业大学的青睐,成功中标其“热膨胀仪”采购项目。 在此我们恭喜北京销售部的所有同仁,并预祝大家不断取得新的更好的成绩。
  • 德国耐驰60周年回顾系列(一):最古老!陶瓷行业诞生的膨胀计
    本文作者:Aileen Sammler德国耐驰公司(NETZSCH-Gerätebau GmbH)将在2022年正式庆祝公司成立60周年的纪念日。为此,我们将关注耐驰仪器背后的故事——耐驰分析仪器及其在过去几十年中的发展。1月份,我们将从膨胀计开始,它是德国耐驰历史上最古老的仪器之一。1962年,德国耐驰公司(NETZSCH-Gerätebau GmbH,NGB)在塞尔布成立。在过去的60年里,德国耐驰已经成为世界领先的热分析制造商之一。我们为我们的员工感到自豪,他们以非凡的决心和毅力推动着耐驰前进。我们感谢与我们的客户和合作伙伴间彼此信任和富有成效的合作。我们共同倡导质量、专业、创新和可持续性,并将在未来几十年继续坚守。德国耐驰多年来一直由Thomas Denner博士和Jürgen Blumm博士成功地管理。Thomas Denner博士非常清晰地记得他在塞尔布的开始:“当我2004年开始在耐驰工作时,我对员工的积极特别印象深刻。从公司成立的第一天起,我还偶然结识了一些同事。一方面,我感觉到他们有着精明的头脑,另一方面非常愿意探索未知。他们对过去取得的成就的自豪感和可持续发展的追寻今天也能感受得到。这将使我们能够在未来几个月里向你们展示我们的许多不同的系统和设备,它们最初出现在热的材料表征,目前采用了当今最先进的技术延续至今。我们将从一个仪器开始,这个仪器在很多年前就已经是一篇博士论文的焦点,最近又在一篇论文的背景下得到了解决,并立即带来了专利技术。我自豪地期待着接下来的耐驰60年主题月。”耐驰历史回顾早在20世纪50年代,在Netzsch兄弟的管理下,就建立了完整的陶瓷产品生产线。在向精细陶瓷行业的客户提供完整的生产设备的过程中,这些客户还要求能够购买相关的测试或实验室设备。这就是决定开发和制造用于建立陶瓷实验室的专用仪器的原因。这种设备的开发最初是从小规模做起的:这些想法被纳入了前耐驰公司(Maschinenfabrik Gebrüder Netzsch)学徒车间的测试仪器中。为了加强“测试仪器”部门的开发、生产和销售活动,耐驰公司(NETZSCH-Gerätebau GmbH)于1962年6月27日成立,总部设在塞尔布。随后,最早陶瓷行业实验室仪器的研制成果之一是:通过热膨胀测量装置,促进陶瓷碎片和釉料膨胀系数的协调。为此,研制了膨胀计。膨胀计——过去和现在德国耐驰膨胀计(简称DIL)的发展可以追溯到瓷器行业,也可以追溯到耐驰的诞生地——德国上UpperFranconi的塞尔布。使用膨胀计的目的是能够准确了解瓷碟在烧制过程中可能发生的膨胀,以防止裂纹和断裂的形成,并确定最终产品的准确尺寸。如今,膨胀计是研究陶瓷、玻璃、金属、复合材料和聚合物以及其他建筑材料长度变化的首选方法。它用于获取有关热行为和工艺参数或烧结和交联动力学的信息。膨胀计用于质量保证、产品开发和基础研究。第一台膨胀计在塞尔布使用图:60年代最早使用的膨胀计之一,曾在Rosenthal使用,现在在塞尔布Porzellanikon德国陶瓷博物馆展出(Porzellanikon德国陶瓷博物馆,位于象征欧陆三百年瓷器发展的历史重镇—德国塞尔布市(Selb),由德国名瓷罗森塔(Rothantal)1866年创立的厂房改建,总占地11,000平方米。Porzellanikon不仅是德国首家陶瓷博物馆,更是全欧洲最大的陶瓷博物馆,其不同于一般博物馆,展示的不只是瓷器的过去,更是它的现在与未来,从艺术、历史、商业到尖端科技,勾勒出一个清晰完整的瓷器现代新风貌,更是承载着欧洲陶瓷历史与艺术的珍贵宝库。)塞尔布——世界瓷都。Rosenthal、Hutschenreuther或Villeroy&Boch等名字在国际上都很有名,与Upper Franconia的这座小城有着密切的联系。60多年前,这家瓷器厂的前所有者Philipp Rosenthal给Erich Netzsch打电话。“我们杯子的把手在烧制过程后会断裂。我们需要一些东西来确定瓷器的膨胀行为,以优化生产过程,”这次谈话可能就是一切的开始。这就是膨胀计的诞生!顺带一提,在Rosenthal工作了近30年后,第一台测量设备于1996年移交给了塞尔布Porzellanikon德国陶瓷博物馆,在那里仍然可以欣赏它。从X-Y绘图仪的打印输出到Digital Proteus® 评估图:Stefan Thumser(前排,左三)和服务部门的同事(1997年)Stefan Thumser于1984年开始他作为能源设备的机电和电子技术员的学徒生涯。作为德国耐驰客户服务部门的长期支柱,他负责耐驰设备的调试、故障排除和基础培训,目前拥有38年的经验和专业知识。几十年来,他积极参与了膨胀计的开发,今天,他随时报告膨胀计取得的进展。Stephan Thumser回忆道:“过去操作膨胀计是真正的手工工作。除了插入样本,许多设置都必须手动选择。这些有时就要花一个小时。如今,你不必再担心这个问题了。只需插入样本,然后通过软件控制开始测量。”图:1979年为陶瓷制造商 Rosenthal定制的膨胀计。这种膨胀计仍然可以在塞尔布的Rosenthal 直销中心看到。“在膨胀计的历史发展过程中,最显著的差异是在测量评估领域。这过去是通过记录仪器以模拟格式进行的,例如2通道记录仪、X-Y绘图仪或所谓的KBK-6彩色点阵打印机。获得的测量数据无法 1:1转换为测量结果,因为样品架和推杆的固有膨胀作为误差包含在记录中。而手动校正这些测量值很费力,通常需要数小时的详细工作。如今,只需点击鼠标和/或通过Proteus® 软件即可完成。在测量后的几秒钟内,自动校正后完整曲线出现在计算机上。一次测量的准备工作,包括设置测量范围和开始位置,以及通过质量流量控制器调节气体,现在只需按下一个按钮即可完成。”即使在早期,质量、创新和客户满意度也是耐驰的首要任务。因此,膨胀计多年来不断改进。Stefan Thumser接着说:“2015年,随着新的DIL 402 Expedis® 仪器系列的开发,在一台仪器上安装两个熔炉也成为可能,可以进行更快、更灵活的操作。”图:用于手动测量评估的旧KBK打印机(6色多通道打印机)点击下方链接直达:热膨胀仪专场德国耐驰展位
  • 德国耐驰热膨胀仪 DIL 402 Expedis:突破量程与分辨率的局限
    对于传统的热膨胀仪,测试量程与分辨率这两个参数很难两全。如果分辨率上升,测量范围通常下降,反之亦然。德国耐驰公司热膨胀仪DIL 402 Expedis通过新型自反馈光电位移测量系统 NanoEye 克服了这一技术上的矛盾。Nanoeye是一种新型的自反馈光电位移测量系统,在过去尚不可能实现的测量范围内具有良好的线性度和最大的分辨率。这是市场上第一个支持调制力(振荡型载荷)的水平膨胀仪系列,藉此打破了膨胀测量和热机械分析(TMA)之间的鸿沟。  热膨胀仪DIL 402 Expedis分为:Classic,Select ,Supreme三个版本。后两个版本是专门为研发和复杂的工业应用而设计的:即全面的、配置齐全的Supreme版本和可升级的Select版本。       功能原理  在测试中,如果样品膨胀,图形中的所有绿色部分都会在线性导轨(蓝色)的引导下向后移动。光电解码器直接在适当的刻度上确定相应的长度变化。     识别功能与数据库  用于识别和解释DIL测量的包括几个耐驰的数据库,其中有来自陶瓷、无机、金属、合金和聚合物或有机领域的上百条数据。此外,还可以创建特定于用户的库。它们可以与计算机网络中的其他用户共享。  识别允许从测量曲线的绝对值、斜率或形状中识别未知样本。这也为比较已知的样品与未知样品、评价材料质量提供了可能性。所有测量值都可以存储在庞大的数据库中,并且始终可用于识别或质量评价。
  • 热分析在高分子材料中的应用(DSC/TGA/导热系数/TMA/DMA)
    热分析是测量材料热力学参数或物理参数随温度变化的关系,并对这种关系进行分析的技术方法。对材料进行热分析的意义在于:材料热分析能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用。由于热性能是材料的基本属性之一,对材料进行热分析可以鉴别材料的种类,判断材料的优劣,帮助材料与化学领域的产品研发,质检控制与工艺优化等。既然热分析是对材料进行质量控制的重要技术手段,那么热分析到底是如何进行的呢?根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,而常用的热分析方法(如下图所示)包括:差示扫描量热(DSC)、热重分析(TGA)、导热系数测试、热机械分析(TMA)、动态热机械分析(DMA)等5种方法。根据不同的热分析方法采用不同的热分析仪器设备,对材料的热量、重量、尺寸、模量/柔量等参数对应温度的函数进行测量,从而获得材料的热性能。接下来,让我们简单了解一下这5种热分析方法:(1)差示扫描量热(DSC)差示扫描量热法(DSC)为使样品处于程序控制的温度下,观察样品和参比物之间的热流差随温度或时间的函数。材料的固化反应温度和热效应测定,如反应热,反应速率等;物质的热力学和动力学参数的测定,如比热容,转变热等;材料的结晶、熔融温度及其热效应测定;样品的纯度等。(2)热重分析(TGA)热重分析法(TGA)用来测量样品在特定气氛中,升温、降温或等温条件下质量变化的技术。主要用于产品的定量分析。典型的TGA曲线可以提供样品易挥发组分(水分、溶剂、单体)的挥发、聚合物分解、炭黑的燃烧和残留物(灰分、填料、玻纤)的失重台阶。TGA这种方法可以研究材料和产品的分解,并得出各组分含量的信息。TGA曲线的一阶导数曲线是大家熟知的DTG曲线,它与样品的分解速率成正比。在TGA/DSC同步测试中,DSC信号和重量信息可以同时记录。这样就可以检测并研究样品的吸放热效应。下图中的黑色曲线为PET的TGA曲线,绿色为DTG曲线。下面的为在氮气气氛下的DSC曲线。右侧红色的DSC曲线显示了玻璃化转变、冷结晶和熔融过程。在测试过程中的DSC信号 (左)可以用样品质量损失进行修正。蓝色为未修正的DSC曲线,红色为因质量损失而修正的曲线。图 使用TGA/DSC(配备DSC传感器)测试的PET曲线分解过程中,化学骨架和复杂有机组分或聚合物分解形成如水、CO2或者碳氢化合物。在无氧条件下,有机分子同样有可能降解形成炭黑。含有易挥发物质的产品可以通过TGA和傅里叶红外(FTIR)或者质谱联用来判定。(3)导热系数测试对于材料或组分的热传导性能描述,导热系数是最为重要的热物性参数。LFA激光闪射法使用红外检测器连续测量上表面中心部位的相应温升过程,得到温度升高对时间的关系曲线,并计算出所需要的参数。稳态热流法热流法(HFM)作为稳态平板法的一种,可用于直接测量低导热材料的导热系数。(4)热机械分析(TMA)热机械分析,指在使样品处于一定的程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量材料的膨胀系数和相转变温度等参数。一条典型的TMA曲线表现为在玻璃化转变温度以下的膨胀、玻璃化转变(曲线斜率的变化),玻璃化转变温度以上的膨胀和塑性变形。测试可以以膨胀模式、穿透模式或者DLTMA模式(动态负载TMA模式)进行。膨胀模式的测试目的是表征样品的膨胀或收缩。基于这个原因,仅使用较小的力来保证探头和样品接触完好。测试的结果就是热膨胀系数。下图是0.5mm的样品夹在2片石英盘之间测试的膨胀曲线。样品先在仪器中升温至90˚C消除热历史。冷却至室温后,再以20K/min的升温速率从30˚C升温到250˚C,测试的探头为圆点探头,同时探头上施加很小的力0.005N。图2中上部的曲线显示样品在玻璃化转变之前有很缓慢的膨胀。继续升温,膨胀速率明显加快,这是因为在样品在经历玻璃化转变后分子的运动能力提高。之后冷结晶和重结晶发生,样品收缩。高于150˚C样品开始膨胀直至熔融。熔融伴随着样品粘度降低和尺寸减小。图 膨胀模式测试的PET的TMA曲线穿透模式主要给出温度相关的信息。样品的厚度通常不是很重要,因为探头与样品的接触面积在实验中持续变化。刺入深度受加载的力和样品几何形状的影响。在穿透模式测量中,把0.5mm厚的样品放在石英片上,圆点探头直接与样品接触。试验条件为从30˚C升温到300˚C,升温速率20K/min,加载力0.1和0.5N。这时样品未被刺入。在穿透测试过程中,探头一点一点地刺入样品。纵坐标信号在玻璃化转变发生时明显的减小,冷结晶发生时保持基本不变,到熔融又开始减小(图下图)。图 TMA穿透模式测试PETDLTMA是一种高灵敏度测试物理性能的方法。和DSC相比,它可以描述样品的机械行为。在DLTMA模式下,加载在样品上的力以给定频率高低切换。它可以测试出样品中微弱的转变,膨胀和弹性(杨氏模量)。样品刚度越大,振幅越小。图4测试的样品玻璃化转变在72˚C,之后为液态下的膨胀。振幅大是因为样品太软。然后会出现冷结晶,PET收缩,振幅开始减小。140˚C,样品重新变硬,继续膨胀直至160˚C。图 DLTMA(动态负载TMA模式)测试PET(5)动态热机械分析(DMA)使样品处于程序控制的温度下,并施加单频或多频的振荡力,研究样品的机械行为,测定其储能模量、损耗模量和损耗因子随温度、时间与力的频率的函数关系。热分析技术的实际应用热分析技术在材料领域应用广泛,如高分子材料及制品(塑料、橡胶、纤维等)、PCB/电子材料、金属材料及制品、航空材料、汽车零部件、复合材料等领域。下面通过我们实验室技术工程师做的两个热分析测试案例来展示它的应用:1.高分子材料的热裂解测试玻纤增强PA66主要应用于需要高刚性和尺寸稳定性的机械部件护罩。玻纤含量影响到制件的拉伸强度、断裂伸长率、冲击强度等力学性能。2.PCB板的爆板时间测量将样品升温到某一温度后,保持该温度并开始计时,样品发生爆板现象的时刻与保温初始时刻的时间间隔为爆板时间。其实,对于不同的材料和关注点的不同,我们所采用的热分析方法也存在差异,通常会根据实际样品情况和测试需求来选择不同的分析方法。例如,高分子材料:想要了解它的特征温度、耐热性等性能,要用DSC分析;想要了解它的极限耐热温度、组份含量、填料含量等,要用TGA分析。
  • 德国耐驰60周年回顾系列(二):“纳米眼”带来膨胀计分辨率变革
    本文作者:Aileen Sammler 作为德国耐驰60年发展回顾的一部分,本文将介绍德国耐驰总经理Jürgen Blumm博士在其论文中对膨胀计的研究,以及已获专利的纳米眼测量系统是如何彻底改变膨胀计的。1995年,Jürgen Blumm在耐驰应用实验室开始了他的职业生涯。通过与维尔茨堡大学合作的烧结优化研究项目,他将他的论文专注于“烧结过程前后高性能陶瓷的热特性”这一主题。测量方法扩展并结合了他的博士论文,为烧结过程的分析提供了一种全新的方法。动力学模拟计算为陶瓷材料烧结过程的优化做出了开创性的贡献。Jürgen Blumm是最早利用膨胀计(DIL)研究多步烧结动力学的人之一。图:在2002年NGB成立40周年之际展示膨胀计——左起:Jürgen Blumm博士、Dagmar Schipanski教授、Hans Peter Friedrich博士和Wolf Dieter Emmerich博士(1974年至2005年任耐驰总经理)Jürgen Blumm博士论文节选:“在高性能陶瓷的生产中,在大多数情况下,粉末状的原材料会被添加剂(粘合剂、烧结添加剂)抵消。然后,粉末通过模压工艺(如压制)转化为坯体。”然后,通过烧结过程使材料凝固,凝固过程中粉末颗粒粘合在一起,孔隙率降低。烧结通常是热处理的一部分,在此过程中的温度控制对陶瓷的结构性能具有决定性影响。在当今许多工业领域,材料和部件都采用了计算机辅助建模和制造工艺优化的方法。例如,多年来,铸造技术中优化凝固过程的模拟程序得到了广泛应用。然而,在陶瓷元件的生产中,这些方法尚未建立。通过膨胀计测量长度变化,并随后对测量数据进行热动力学评估,可以深入了解烧结过程中的复杂过程和反应过程,而仅仅通过膨胀测量是无法实现的。此外,热动力学分析的使用还提供了通过计算机辅助模拟优化陶瓷材料致密化的可能。”获得专利的纳米眼测量系统:膨胀计的一场革命谁还记得?过去,长度变化是通过感应式位移传感器检测的。这种模拟测量原理表现出不便的非线性,必须反复手动校准。现在,德国耐驰的专利纳米眼测量系统具有100%的线性。由于校准是在测量系统的制造过程中进行的,因此不再需要校准。2015年,德国耐驰通过DIL Expedis® 系列引入了膨胀计测量系统的革命性新概念。当时新集成的纳米眼测量系统基于光电测量传感器和力的施加的相互作用,其在致动器的帮助下被精确控制。从那时起,无论样品的膨胀或收缩如何,都可以施加10mN到3N之间的恒定力。在此之前,不可能在保持相同分辨率的同时增加测量范围。纳米眼测量系统提供了以前无法实现的分辨率,在高达50 mm的整个测量范围内,分辨率高达0.1 nm,且具有完美的线性。耐驰(NETZSCH Gerätebau)机械开发负责人Fabian Wohlfahrt博士解释说:“已获专利的测量系统的其他重要技术特性包括无摩擦膨胀、力控制回路,以及通过自动样本长度测量提高测量范围,同时提高分辨率和减少操作员影响。”自2012年以来,Fabian Wohlfahrt博士一直在耐驰工作,他撰写了关于纳米眼膨胀计测量系统开发的博士论文。但耐驰不仅使膨胀行为的测定更加准确,还简化了在开始测量之前正确插入样品的过程。多点触控软件功能可帮助用户在插入样本后正确安装样本。此外,不再需要手动确定样本长度。如今,纳米眼膨胀计测量系统自动处理所有这些任务。照片:纳米眼测量单元示意图点击直达:热膨胀仪专场德国耐驰展位
  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.
  • 高铁检测仪器-梅特勒托利多 强强合作
    高铁检测仪器-梅特勒托利多强强合作,共同推进热分析仪器在材料行业的创新性应用。上海梅特勒总部,梅特勒热分析专家培训高铁工程师热分析技术和实际上机操作。梅特勒热分析家族-热重分析仪(TGA)使用热重分析仪(TGA)进行成分分析、残留检测和热稳定性分析微克级分辨率的微量和超微量天平,我们的TGA仪器可在整个测量范围内,提供值得信赖的结果。梅特勒热分析家族-同步热分析仪(TGA/DSC)TGA/DSC测得的重量变化和热流,可提供有关成分、相变和化学反应的更多信息梅特勒热分析家族-差示扫描量热仪(DSC)DSC采用配备120对热电偶的创新型DSC专利传感器,确保具有无与伦比的灵敏度。 梅特勒热分析家族-闪速差示扫描量热仪(Flash DSC)科研神器-超高升温与降温速率升温速率6~3000000/min梅特勒热分析家族-热机械分析仪(TMA)通过热机械分析仪,可对材料进行简便可靠的热膨胀系数测定梅特勒热分析家族-动态热机械分析仪(DMA)动态机械分析仪用于测量材料的机械性能和粘弹性能。
  • 德国林赛斯与国检集团顺利签订战略合作协议
    2019年10月23日,中国建材院/国检集团与德国林赛斯公司在国检集团举行签约仪式。经过双方认真讨论和仔细研究,就涂层材料热膨胀应用等方面建立合作伙伴关系。随着科学技术的发展,对工程材料表面性能要求越来越高。涂层技术是一种重要的现代表面处理技术和材料复合技术,涂层与基体形成的复合体可广泛地应用于石油化工、国防军工、航天航空、机械电子等领域。国检集团作为国内首家在上海A股上市的第三方检测机构具有雄厚的综合实力,在涂层方面的研究更是得到国际上的认可。对涂层热膨胀系数、涂层残余应力国际专利的分析方法拥有完全的自主知识产权。同时德国林赛斯公司作为国际知名的热分析仪器设备公司,在热分析/热物性领域不断推陈出新,热分析事业部的业务涉及所有用于研发或质量控制的热分析设备。 此次双方合作可以实现优势互补,既有利于涂层的热膨胀系数及残余应力测试技术在全球范围内得到推广应用,也可增加理学仪器的应用功能范围,提高涂层材料热物理性能测试领域的竞争力。
  • ?国内首个薄膜材料检测实验室挂牌光谷
    本报讯(记者王大千)武汉在攻克纳米级薄膜材料检测的世界难题上再出硕果——“功能薄膜材料物理性能检测技术湖北省工程实验室”在武汉未来科技城挂牌成立,该实验室由武汉嘉仪通科技有限公司与华中科技大学共同筹建。随着新材料的发展与应用,纳米级薄膜材料在许多领域中被广泛使用,国际上却没有可直接检测薄膜热特性的设备。“1纳米仅为1根头发丝直径的六万分之一,如何检测薄膜的热特性成为国际难题。”嘉仪通公司总经理王愿兵表示,过去需要先把薄膜沉积得很厚,再把待测薄膜材料刮下来,形成一定质量的粉末后,才能进行破坏性检测。经多年技术攻坚,华中科技大学“长江学者”缪向水教授团队,率队研发出我国首台光功率热分析仪,检测薄膜厚度可至5纳米。据介绍,光功率热分析仪是将激光照射到纳米薄膜材料表面上,通过反射光功率检测薄膜的相变温度点和热膨胀系数。这项科技成果在嘉仪通成功转化,并走向产业化。作为国内首家功能薄膜材料物理性能检测技术研究基地,本次组建省级工程实验室后,将下设薄膜材料热分析、薄膜材料样品制备与加工、薄膜材料电磁分析、薄膜材料力学分析、薄膜材料光学分析5个垂直研究实验室。“薄膜材料是对全球科技进步的颠覆性技术,随着薄膜技术越做越薄,需要颠覆性的测试设备。”清华大学教授、国家重点研发计划专家组组长潘峰告诉长江日报记者,科技部已设立材料基因组重大研发专项,其中一个重要任务就是攻克高通量的表征检测技术,湖北可依托薄膜检测研发的领先优势,作出更大的科学贡献。
  • nano-FTIR:攻克化学检测科研难题,实现高分子材料纳米级高灵敏度研究
    背景介绍傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。衰弱全反射红外光谱(ATR-IR)是用于材料的宏观化学信息分析的技术。该技术将样品压在衰弱全反射(ATR)晶体表面,通过红外光在晶体/样品界面的反射得到高分子样品的吸收光谱。然而,ATR-IR的空间分辨率受到光的衍射极限的限制,并不能得到样品纳米级别的化学信息,因此无法用于材料微观化学信息的研究。近年来,新兴起的纳米傅里叶红外光谱仪Nano-FTIR因可在纳米尺度下实现对几乎所有材料的化学分辨而受到广泛关注。该技术是基于全新的散射式近场光学技术(s-SNOM)研发的,能够在10 nm的空间分辨率下实现对材料的红外光谱表征,且得到的光谱与传统FTIR,ATR-IR的红外光谱有极高的一致性。同时,该技术具有无损伤、无需染色标记、快速且适用性广等优点,是纳米级别的化学分析利器。为了使大家对纳米傅里叶红外光谱仪Nano-FTIR有更为直观、高效的了解,我司特别安排了专门的网络线上讲座,为您详细介绍纳米傅里叶红外光谱仪nano-FTIR的基本原理、技术特点及在Science、Nature Communications、Nano Letters等顶尖期刊上的前沿应用案例。感谢兴趣的老师可在本文“直播预告”部分扫码预约。图1. neaspec散射式近场光学显微镜(s-SNOM)及纳米傅里叶红外光谱仪Nano-FTIR必看案例案例1:高分子纳米材料的鉴别及与传统红外光谱数据库的对照德国阿尔弗雷德纬格纳研究所的Gerdts教授利用散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对高分子材料进行了微观鉴别的研究。该课题组测量了高分子样品的近场红外成像以及红外吸收光谱,得到了高分子材料的纳米分辨率的相分布信息。同时,该团队测量了常见高分子的近场吸收光谱,并与通过ATR-IR得到的吸收光谱进行比较,发现用neaspec Nano-FTIR得到的近场吸收光谱与ATR-IR得到的光谱有极高的一致性,可直接对照传统IR光谱数据库。因此,散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)可应用于纳米高分子及环境中高分子样品的鉴别。相关研究成果发表于Analytical Methods, 2019, 11: 5195-5202。图2. LDPE聚合物颗粒PS介质混合物样品的光学超分辨成像。(a) 拓扑结构成像以及对应的(b) 机械信号的相位图和 (c) 近场红外的振幅图。(d) 通过 (c) 中所示路径的直线扫描得到的在1300 - 1700 cm-1区域内的近场红外的相位图。(e) LDPE和PS区域对应的近场红外的相位图。(f) 和 (g) 分别对应 (c) 中A, B区域的高分辨率近场红外相位图。可以看到LDPE/PS界面的近场红外的相位图中峰的移动。图3. (a) 用Nano-FTIR得到的PLA样品对应的近场红外的振幅(Sn),实部(Re),相位(φn),虚部(Im)图。所得结果为三个样品点结果的均值,测量用时为7分钟。(b) Nano-FTIR得到的近场红外的虚部(Im)图与ATR-IR得到的PLA样品的光谱的对照。Nano-FTIR与ATR-IR得到的光谱高度吻合。01案例2:纳米傅里叶红外光谱仪(Nano-FTIR)对单层二维高分子聚合物的研究二维高分子聚合物作为一种新型有机二维材料,近年来在薄膜和电子设备的应用上受到广泛关注。相较于石墨烯由石墨自上而下的剥离合成路径,二维聚合物的合成路径可以采取自下而上的单体聚合反应,也因此具备更大的灵活性。如何优化合成路径以得到高品质的二维高分子聚合物是目前该领域的重大挑战之一。德国慕尼黑技术大学的Lackinger教授开发了一种有机单体分子自组装的光聚合合成路线,并利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对fantrip单体分子和其聚合物进行了吸收光谱的研究,验证了聚合反应的机理。该合成方法与传统的热聚合方法相比,大大减少了二维聚合物的缺陷密度,提升了材料均一性。相关研究成果发表于Nature Chemistry, 2021, 13: 730-736。研究人员利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)的近场光学技术的高灵敏度,测量了fantrip有机单体分子及其二维聚合物的纳米傅里叶红外吸收光谱。所得光谱与DFT计算结果一致,证明了单体分子参与光聚合反应形成二维高分子。该技术得到的近场吸收光谱与传统FTIR光谱对应,而传统FTIR或ATR-IR的灵敏度无法测量该单层分子材料的吸收光谱。同时,纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)的近场光学技术采用纯光学信号测量,而非基于材料热膨胀系数的机械信号。该技术灵敏度极高,可测量热膨胀系数低的材料,如二维材料,无机材料等。且对薄膜样品的破坏性极小,因此可用于单层分子自组装材料的研究。图4. Fantrip单体分子(上)及其二维聚合物(下)的纳米傅里叶红外吸收光谱。柱形图为DFT计算得到的fantrip单体分子(红色)及其二维聚合物(蓝色)所对应的红外吸收光谱。02案例3:石墨烯电解液界面的纳米红外研究ATR-IR是应用于电极电解液的原位界面表征的常用方法。然而该技术的探测深度在微米级别,而电极电解液的界面,如双电层,一般在纳米级别。因此ATR-IR得到的界面光谱信号受到电解液主体信号的严重干扰。加州大学伯克利分校的Salmeron教授利用nano-FTIR对石墨烯电解液界面进行原位研究,通过nano-FTIR可达10 nm的超高空间分辨率(探测深度),对非热膨胀样品(石墨烯)的高敏感度,及无损伤的特点,实现了对单层石墨烯电解液界面的原位表征,真正获得了双电层的化学信息。研究人员发现,相较于传统的ATR-IR,nano-FTIR的红外光谱中可观测到界面独有的离子配位体,这得益于nano-FTIR的高灵敏度与高空间分辨率。同时,nano-FTIR支持样品台的接电设计,研究人员通过改变石墨烯电极的电压,观测到红外光谱的变化,说明了界面化学成分的变化,即双电层的变化。相关研究成果发表于Nano Letters, 2019, 19: 5388-5393.图5. 单层石墨烯电解液nano-FTIR原位研究实验设计示意图。图6.(a)ATR-FTIR和nano-FTIR的(NH4)2SO4水溶液红外光谱。(b)nano-FTIR在+0.5V和0V vs. Pt的红外光谱。0V数据取2个位置共64组光谱的平均值,+0.5V数据取5个位置共112组光谱的平均值。03案例4:对多组分高分子材料的纳米成分分析西班牙巴斯克大学的Hillenbrand教授利用nano-FTIR实现了多组分高分子材料的纳米成分分析。研究人员通过检测聚苯乙烯(PS),聚丙烯酸(AC)以及聚偏氟乙烯(FP)混合样品的纳米区域的红外光谱,并与标准样品的纳米红外光谱做对比,得到样品组分的纳米分布图,分辨率达到了30 nm。通过分析样品C-F(1195cm-1),C=O(1740cm-1)及C-O(1155cm-1)峰的强度及波数的空间分布图,可得到对应的高分子组分及组成结构的空间分布。相关研究成果发表于Nature Communications, 2017, 8,14402. Nano-FTIR可以得到材料纳米分辨率的化学信息,分辨率最高可达10 nm,是传统FTIR和ATR-IR无法企及的。图7. nano-FTIR对高分子复合材料的表征。包括(a)拓扑结构成像,(b)相应位置的纳米红外光谱,以及(c),(d)基于纳米红外光谱的组分分布图。04纳米傅里叶红外光谱仪nano-FTIR的技术优势极大地突破了传统红外光谱的空间分辨率极限,可达10 nm得到的谱图与传统红外谱图有极高的一致性探测光学信号而非机械信号,灵敏度极高,适用于热膨胀系数低的系统可同时得到光谱及成像结果测样时间短操作和样品准备简单——仅需要常规的AFM样品准备过程扫描上方二维码,即可咨询前沿设备!参考文献:1. Meyns M, Primpke S, Gerdts G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging [J]. Analytical Methods, 2019, 11: 5195-5202.2. Grossmann L, King B T, Reichlmaier S, et al. On-Surface Photopolymerization of Two-Dimensional Polymers Ordered on the Mesoscale [J]. Nature Chemistry, 2021, 13: 730-736.3. Lu Y, Larson J M, Baskin A, et al. Infared Nanospectroscopy at the Graphene-Electrolyte Interface [J]. Nano Letters, 2019, 19: 5388-5393.4. Amenabar I, Poly S, Goikoetxea M, et al. Hyperspectral Infared Nanoimaging of Organic Samples based on Fourier Transform Infared Nanospectroscopy [J]. Nature Communications, 2017, 8: 14402.直播预告报告简介如何实现在纳米尺度下对材料进行无损化学成分鉴定是现代化学的一大科研难题。现有的一些高分辨成像技术,如电镜或扫描探针显微镜等,这些技术鉴定化学成分的能力较弱。另一方面,红外光谱具有很高的化学敏感度,但是其空间分辨率却由于受到二分之一波长的衍射极限限制,只能达到微米级别,因此也无法进行纳米级别的化学鉴定。德国neaspec公司利用其独有的散射型近场光学技术发展出纳米傅里叶红外光谱nano-FTIR,这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,得到的红外光谱与传统FTIR和衰弱全反射ATR-IR的红外光谱有极高的对应度,因此可以在纳米尺度下实现对几乎所有材料的化学分析,分辨率高达10 nm。本报告详细阐述了纳米傅里叶红外光谱仪nano-FTIR的基本原理、技术特点及在Science、Nature Communications、Nano Letters等顶尖期刊上的前沿应用案例,展现了其在纳米尺度下进行化学分析的巨大前景。主讲人张瑞显 博士化学专业博士,毕业于美国伊利诺伊大学厄本那香槟分校。主要研究方向为新型材料的表面光谱表征及在能源存储领域的应用。在Quantum Design中国子公司,从事表面光谱相关设备的产品推广、客户挖掘及销售业务。直播入口扫描上方二维码无需报名直接观看!报告时间2021年10月18日14:00-14:30
  • nano-FTIR:攻克无损化学检测科研难题,实现高分子材料纳米级无损研究
    背景介绍傅里叶红外光谱(FTIR)是学术界以及工业界表征鉴别材料的常用手段。衰弱全反射红外光谱(ATR-IR)是用于材料的宏观化学信息分析的技术。该技术将样品压在衰弱全反射(ATR)晶体表面,通过红外光在晶体/样品界面的反射得到高分子样品的吸收光谱。然而,ATR-IR的空间分辨率受到光的衍射限的限制,并不能得到样品纳米别的化学信息,因此无法用于材料微观化学信息的研究。近年来,新兴起的纳米傅里叶红外光谱仪Nano-FTIR因可在纳米尺度下实现对几乎所有材料的化学分辨而受到广泛关注。该技术是基于全新的散射式近场光学技术(s-SNOM)研发的,能够在10 nm的空间分辨率下实现对材料的红外光谱表征,且得到的光谱与传统FTIR,ATR-IR的红外光谱有高的对应性。同时,该技术具有无损伤、无需染色标记、快速且适用性广等优点,是纳米别的化学分析利器。图1. neaspec散射式近场光学显微镜(s-SNOM)及纳米傅里叶红外光谱仪Nano-FTIR 必看案例 案例1:高分子纳米材料的鉴别及与传统红外光谱数据库的对照德国阿尔弗雷德纬格纳研究所的Gerdts教授利用散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)对高分子材料进行了微观鉴别的研究。该课题组测量了高分子样品的近场红外成像以及红外吸收光谱,得到了高分子材料的纳米分辨率的相分布信息。同时,该团队测量了常见高分子的近场吸收光谱,并与通过ATR-IR得到的吸收光谱进行比较,发现用neaspec Nano-FTIR得到的近场吸收光谱与ATR-IR得到的光谱有高的对应度,可直接对照传统IR光谱数据库。因此,散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)可应用于纳米高分子及环境中高分子样品的鉴别。相关研究成果发表于Analytical Methods, 2019, 11: 5195-5202。图2. LDPE聚合物颗粒PS介质混合物样品的光学超分辨成像。(a) 拓扑结构成像以及对应的(b) 机械信号的相位图和 (c) 近场红外的振幅图。(d) 通过 (c) 中所示路径的直线扫描得到的在1300 - 1700 cm-1区域内的近场红外的相位图。(e) LDPE和PS区域对应的近场红外的相位图。(f) 和 (g) 分别对应 (c) 中A, B区域的高分辨率近场红外相位图。可以看到LDPE/PS界面的近场红外的相位图中峰的移动。图3. (a) 用Nano-FTIR得到的PLA样品对应的近场红外的振幅(Sn),实部(Re),相位(φn),虚部(Im)图。所得结果为三个样品点结果的均值,测量用时为7分钟。(b) Nano-FTIR得到的近场红外的虚部(Im)图与ATR-IR得到的PLA样品的光谱的对照。Nano-FTIR与ATR-IR得到的光谱高度吻合。 案例2:纳米傅里叶红外光谱仪(Nano-FTIR)对单层二维高分子聚合物的研究二维高分子聚合物作为一种新型有机二维材料,近年来在薄膜和电子设备的应用上受到广泛关注。相较于石墨烯由石墨自上而下的剥离合成路径,二维聚合物的合成路径可以采取自下而上的单体聚合反应,也因此具备更大的灵活性。如何优化合成路径以得到高品质的二维高分子聚合物是目前该领域的重大挑战之一。德国慕尼黑技术大学的Lackinger教授开发了一种有机单体分子自组装的光聚合合成路线,并利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)对fantrip单体分子和其聚合物进行了吸收光谱的研究,验证了聚合反应的机理。该合成方法与传统的热聚合方法相比,大大减少了二维聚合物的缺陷密度,提升了材料均一性。相关研究成果发表于Nature Chemistry, 2021, 13: 730-736。研究人员利用纳米傅里叶红外光谱仪Nano-FTIR(德国Neaspec公司)的近场光学技术的高灵敏度,测量了fantrip有机单体分子及其二维聚合物的纳米傅里叶红外吸收光谱。所得光谱与DFT计算结果一致,证明了单体分子参与光聚合反应形成二维高分子。该技术得到的近场吸收光谱与传统FTIR光谱对应,而传统FTIR或ATR-IR的灵敏度无法测量该单层分子材料的吸收光谱。同时,纳米傅里叶红外光谱仪Nano-FTIR (德国Neaspec公司)的近场光学技术采用纯光学信号测量,而非基于材料热膨胀系数的机械信号。该技术灵敏度高,可测量热膨胀系数低的材料,如二维材料,无机材料等。且对薄膜样品的破坏性小,因此可用于单层分子自组装材料的研究。 图4. Fantrip单体分子(上)及其二维聚合物(下)的纳米傅里叶红外吸收光谱。柱形图为DFT计算得到的fantrip单体分子(红色)及其二维聚合物(蓝色)所对应的红外吸收光谱。 案例3:石墨烯电解液界面的纳米红外研究ATR-IR是应用于电电解液的原位界面表征的常用方法。然而该技术的探测深度在微米别,而电电解液的界面,如双电层,一般在纳米别。因此ATR-IR得到的界面光谱信号受到电解液主体信号的严重干扰。加州大学伯克利分校的Salmeron教授利用nano-FTIR对石墨烯电解液界面进行原位研究,通过nano-FTIR可达10 nm的超高空间分辨率(探测深度),对非热膨胀样品(石墨烯)的高敏感度,及无损伤的特点,实现了对单层石墨烯电解液界面的原位表征,真正获得了双电层的化学信息。研究人员发现,相较于传统的ATR-IR,nano-FTIR的红外光谱中可观测到界面有的离子配位体,这得益于nano-FTIR的高灵敏度与高空间分辨率。同时,nano-FTIR支持样品台的接电设计,研究人员通过改变石墨烯电的电压,观测到红外光谱的变化,说明了界面化学成分的变化,即双电层的变化。相关研究成果发表于Nano Letters, 2019, 19: 5388-5393.图5. 单层石墨烯电解液nano-FTIR原位研究实验设计示意图。 图6.(a)ATR-FTIR和nano-FTIR的(NH4)2SO4水溶液红外光谱。(b)nano-FTIR在+0.5V和0V vs. Pt的红外光谱。0V数据取2个位置共64组光谱的平均值,+0.5V数据取5个位置共112组光谱的平均值。案例4:对多组分高分子材料的纳米成分分析西班牙巴斯克大学的Hillenbrand教授利用nano-FTIR实现了多组分高分子材料的纳米成分分析。研究人员通过检测聚苯乙烯(PS),聚丙烯酸(AC)以及聚偏氟乙烯(FP)混合样品的纳米区域的红外光谱,并与标准样品的纳米红外光谱做对比,得到样品组分的纳米分布图,分辨率达到了30 nm。通过分析样品C-F(1195cm-1),C=O(1740cm-1)及C-O(1155cm-1)峰的强度及波数的空间分布图,可得到对应的高分子组分及组成结构的空间分布。相关研究成果发表于Nature Communications, 2017, 8,14402. Nano-FTIR可以得到材料纳米分辨率的化学信息,分辨率高可达10 nm,是传统FTIR和ATR-IR无法企及的。图7. nano-FTIR对高分子复合材料的表征。包括(a)拓扑结构成像,(b)相应位置的纳米红外光谱,以及(c),(d)基于纳米红外光谱的组分分布图。 纳米傅里叶红外光谱仪nano-FTIR的技术优势:☛ 大地突破了传统红外光谱的空间分辨率限,可达10 nm;☛ 得到的谱图与传统红外谱图有高的一致性;☛ 探测光学信号而非机械信号,灵敏度高,适用于热膨胀系数低的系统;☛ 可同时得到光谱及成像结果;☛ 测样时间短;☛ 操作和样品准备简单——仅需要常规的AFM样品准备过程。 参考文献:1. Meyns M, Primpke S, Gerdts G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging [J]. Analytical Methods, 2019, 11: 5195-5202.2. Grossmann L, King B T, Reichlmaier S, et al. On-Surface Photopolymerization of Two-Dimensional PolymersOrdered on the Mesoscale [J]. Nature Chemistry, 2021, 13: 730-736.3. Lu Y, Larson J M, Baskin A, et al. Infared Nanospectroscopy at the Graphene-Electrolyte Interface [J]. Nano Letters, 2019, 19: 5388-5393.4. AmenabarI, Poly S, Goikoetxea M, et al. Hyperspectral Infared Nanoimaging of Organic Samples based on Fourier Transform Infared Nanospectroscopy [J]. Nature Communications, 2017, 8: 14402.
  • 静态力学分析
    p style=" text-align: center " strong 原创: 徐颖【苏大】 江苏热分析 /strong /p p   研究物质形变或力学性质与温度关系的方法,常称之为热机械分析法,该法包括热膨胀法(DIL)、静态热机械分析(TMA)和动态热机械分析(DMA)三种技术,它们之间的差别最主要的来自于它们测量时负载力的不同。热膨胀法是测量试样负载力为零,即仅有自身重力而无外力作用时,在程序温度控制下,膨胀或收缩引起的体积或长度的变化 静态热机械分析是测量材料在静态负载力(非交变负荷)作用下,形变与温度间关系的技术 动态热机械分析是在程序控制温度下,测量材料在动态负载力(交变负荷)下动态模量和力学阻尼(或称力学内耗)与温度关系的一种技术。 /p p strong 一、TMA基本原理和结构 /strong /p p   静态热机械分析仪是在热膨胀仪的基础上发展起来的,它的基本原理和热膨胀仪相同,不仅可以替代热膨胀仪,而且在结构和功能上有进一步的扩充和提升。 /p p   (1) 可以设定试样所受负荷的大小,改变负荷会得到不同的热形变曲线,因此负荷大小成为一个重要的实验参数。而且将负荷大小设置为与材料实际使用中所受的力相近,热形变曲线更有实用价值。此外选用合适的负荷大小,可以得到更理想的曲线。 /p p   (2) 可选用更多不同的探头,大多配备拉伸、压缩、穿透(或称针入)和弯曲等探头,除了能测定热膨胀系数和各种相变点之外,还可以研究定应变的应力松弛和定应力的蠕变等力学性能。图1是DIL和TMA可选用探头和基本原理示意图。 /p p style=" text-align: center " img title=" 图1 热膨胀和热机械分析原理示意图.jpg" alt=" 图1 热膨胀和热机械分析原理示意图.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/ef21716a-4636-4630-8ec4-1facf9de83a5.jpg" / /p p style=" text-align: center " strong 图1 热膨胀和热机械分析原理示意图 /strong /p p style=" text-align: center " strong (a)热膨胀和TMA装置原理 1—仪器的基本形式 2—水平热膨胀 /strong /p p style=" text-align: center " strong 3—垂直热膨胀或TMA 4—TMA的垂直膨胀(天平型) (b)TMA的应力类型 /strong /p p   TMA按机械结构形式不同,可以分为天平式和直筒式两大类。天平式TMA的施力方向(拉伸还是压缩)和大小是通过刀口式天平来控制的,再根据试样与天平的相对位置又可分为上皿式和下皿式。直筒式TMA根据施力控制原理、方式不同可分为三种:弹簧型,通过顶部加压砝码和弹簧相互协调控制负载的方向和大小 磁力型,通过磁钢和控制磁拉力线圈中直流电的方向来决定负载的方向和大小 浮子型,通过浮子、浮液和顶部加压砝码来控制负载,浮子材料使用低密度的聚合物,而浮液采用高密度氟氯硅油。 /p p   以上这些分类实际上是依据TMA施力方式不同来分的,仪器其他部分:炉体、温度控制、气氛控制等雷同于差热仪、热重仪。而位移检测系统则都是由差动变压器将位移转变为电压信号,经相敏放大器、有源滤波器、电压放大器、A/D转换器后再进行数据处理。 /p p strong 二、操作模式 /strong /p p   TMA的操作模式可分为五种: /p p   (1) 标准模式,可进行3个实验程序。一个是线性升温时负载力保持恒定,监测位移的变化,则得到最经典的热膨胀曲线 如果线性升温保持恒定的应变,检测力的变化,可用于评价薄膜或纤维的收缩力。恒温条件下,往往设置力呈线性变化,监测其所产生的应变,可获得力位移曲线和模量信息。 /p p   (2) 应力/应变模式,有2个实验程序。在恒温条件下,施加线性变化的应力或应变,测量对应的应变或应力,从而得到应力/应变图谱及相关的模量信息。所计算出的模量可以分别作为应力、应变、温度或时间的函数来表示。图2就是保持恒温,应力线性增加,所获得的应力/应变曲线。该曲线的形状受所设温度及样品加工工艺的影响。 /p p style=" text-align: center " img title=" 图2 温度恒定,线性应力作用下所得应力_应变曲线.png" alt=" 图2 温度恒定,线性应力作用下所得应力_应变曲线.png" src=" https://img1.17img.cn/17img/images/201812/uepic/63918f4f-cced-471e-9587-5358e2d3a7ea.jpg" / /p p style=" text-align: center " strong 图2 温度恒定,线性应力作用下所得应力/应变曲线 /strong /p p   (3) 蠕变/应力松弛模式,可进行2个实验程序。一个是蠕变实验,即应力保持恒定,监测应变随时间的变化,获得柔量数据 另一个是应力松弛实验,应变保持恒定,监测应力的衰减,获得松弛模量数据。二者均为瞬态测试,可评估材料形变及回复性质。 /p p   (4) 动态TMA模式,在线性升温条件下,对样品施以正弦变化的力。测量由此产生的正弦变化的应变。通过应力、应变数据计算储能模量E& #39 、损耗模量E〞和损耗因子Tanδ对时间、温度或应力的关系,一般适用于薄膜的研究。 /p p   (5) 调制TMA模式,类似于调制DSC,是温度控制方式在传统的线性升温的基础上叠加一个设定振幅和周期的正弦波温度变化程序,将原始信号(总位移和热膨胀系数)解析成可逆和不可逆部分,可逆部分可获得相变信息(如Tg),不可逆部分得到具有时间依赖性的动力学过程(如应力松弛)。 /p p strong 三、TMA典型谱图及解析 /strong /p p   图3是比较典型的热膨胀曲线图,TMA(或DIL)确定线膨胀系数的公式为: /p p style=" text-align: center " img title=" 式1-1.jpg" alt=" 式1-1.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/66c902b0-66e8-461f-9910-a288f34faefc.jpg" / /p p   式中l0为样品原始长度,Δl/ΔT为热膨胀曲线的斜率。相应的体膨胀系数γ的计算公式如下: /p p style=" text-align: center " img title=" 式1-2.jpg" alt=" 式1-2.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/0a79f259-09f2-436d-82c0-69a18aeaef5b.jpg" / /p p 其中V0为样品原始体积,ΔV/ΔT为热膨胀曲线的斜率。 /p p style=" text-align: center " img title=" 图3 热膨胀曲线以及线膨胀系数α的确定.png" alt=" 图3 热膨胀曲线以及线膨胀系数α的确定.png" src=" https://img1.17img.cn/17img/images/201812/uepic/480a5479-2a22-47f0-9e37-465d8ca4609b.jpg" / /p p style=" text-align: center " strong 图3 热膨胀曲线以及线膨胀系数α的确定 /strong /p p   热膨胀曲线也可以确定材料的玻璃化转变温度Tg,图4是比较常见的高分子材料和金属的热膨胀曲线,从(a)中可以看到聚苯乙烯PS的膨胀曲线突变处所做的外推温度就是Tg。如果将热膨胀曲线对温度一阶求导,如图5-7下方,将得到一个类似于DSC在Tg处台阶的曲线,更容易确定Tg值。 /p p style=" text-align: center " img title=" 图4常见的热膨胀曲线(a)聚苯乙烯PS;(b)高(低)密度聚乙烯PE;(c)金属Al、Pt和玻璃.jpg" alt=" 图4常见的热膨胀曲线(a)聚苯乙烯PS;(b)高(低)密度聚乙烯PE;(c)金属Al、Pt和玻璃.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/ab420d73-d6f7-40f3-8a62-8586c92c66fa.jpg" / /p p style=" text-align: center " strong 图4常见的热膨胀曲线(a)聚苯乙烯PS (b)高(低)密度聚乙烯PE (c)金属Al、Pt和玻璃 /strong /p p style=" text-align: center " img title=" 图5 TMA热膨胀曲线及其一阶导数曲线确定Tg.jpg" alt=" 图5 TMA热膨胀曲线及其一阶导数曲线确定Tg.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/79777183-9912-4ea3-a0ef-34a0ee703a9b.jpg" / /p p style=" text-align: center " strong 图5 TMA热膨胀曲线及其一阶导数曲线确定Tg /strong /p p style=" text-align: center " img title=" 图6 几种不同类型的热机械曲线示意图.jpg" alt=" 图6 几种不同类型的热机械曲线示意图.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7ec3e314-83b7-4eac-b62f-5d60ce321bb8.jpg" / /p p style=" text-align: center " strong 图6 几种不同类型的热机械曲线示意图 /strong /p p style=" text-align: center " strong (a) 非晶态无定形线形聚合物的温度—形变曲线 /strong /p p style=" text-align: center " strong (b) 非晶态无定形线型和交联型聚合物的蠕变曲线,1-线型 2-交联型 /strong /p p style=" text-align: center " strong (c) 不同力学状态高聚物的应力松弛曲线,1-玻璃态 2-高弹态 3-粘流态 /strong /p p   上文曾经提到TMA除了热膨胀法曲线之外,还可以研究保持应变恒定时的应力松弛和恒定应力下的蠕变行为,如图6。TMA所测的形变,除了一部分是样品自身膨胀或收缩引起的形变之外,还有一部分是应力引起的,这部分形变是分子相对移动时释放能量(粘性响应)或储藏能量(弹性响应)的结果,因此TMA所测形变实际上是膨胀行为和粘弹效应的加合。 /p p strong 四、TMA实验方法 /strong /p p   TMA是研究形变的技术,因此样品尺寸是否准确计量、是否稳定很重要,选用样品要求形状规整、无缺陷(气泡或裂纹),块状样品上下两面要求平行且光滑,复合材料尤其是高聚物中添加了无机填料要考虑两相间是否相溶,必要时类似于DSC测试要考虑去除热历史的影响。由于TMA的样品用量相对比TG和DSC要大,扫描速率相对的设定慢一些为好,一般5℃/min 保护气常用氮气或空气,流量10-50ml/min。 /p p   此外由于TMA配备有各种探头,了解这些探头的功能以及何种形态的样品适用于何种探头 了解测试的目的,在多种实验模式中选择合适的实验程序 负载力是TMA测试的一个重要参数,其大小的设定等等,这些往往依赖于实验人员的经验。 /p p   块状样品,一般适用的探头有:压缩探头、三点弯曲探头、针入(或称穿透)探头 所应用的测试有:线性膨胀系数、玻璃化转变温度、软化点、熔点、蠕变和松弛等等。 /p p   膜和纤维样品,一般适用的探头有:拉伸探头、针入探头 所测的参数:杨氏模量、玻璃化转变温度、软化点、蠕变、固化、交联密度和硬度等等。 /p p   粘性流体和胶,一般适用的探头有:剪切探头和针入式探头 适用的测试:粘性、凝胶化、胶体-熔体转变温度、固化和剪切模量。 /p p & nbsp /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
  • 安捷伦、安图相继中标中西部地区药检仪器采购项目
    2010年3月25日,五矿国际招标有限责任公司发布公告,在“食品药品监督管理系统中西部地区药检仪器设备配备项目”公开招标中,最终安捷伦科技以385万元人民币中标12台高效毛细管电泳仪,郑州安图实业有限公司以635万元人民币中标20台线热膨胀系数测定仪。五矿国际招标有限责任公司曾于2010年3月4日发布该项目的中标公告,其中12台高效毛细管电泳仪及20台线热膨胀系数测定仪因其他原因没有开标。详情请见附件。   食品药品监督管理系统中西部地区药检仪器设备配备项目评标结果公告   采购人名称:国家食品药品监督管理局   采购代理机构名称:五矿国际招标有限责任公司   采购代理机构地址:北京市海淀区三里河路5号中国五矿大厦D座206   采购代理机构联系人:王超 李合英   联系方式:010-68494321、010-68494346   项目名称:食品药品监督管理系统中西部地区药检仪器设备配备项目   采购方式:公开招标   招标编号:0716-1041YJ110055   招标公告日期:2010年2月11日   定标日期:2010年3月25日   评标结果: 货物名称 中标商名称 中标金额 (单位:人民币元) 高效毛细管电泳仪 安捷伦科技(上海)有限公司 3,850,000 包号 包名称 中标商 中标金额 (人民币元) 11 线热膨胀系数测定仪 郑州安图实业有限公司 6,350,000   评标委员会名单:杨新科、蒋鸿文、李亚凤、刘载文、张淑军、卢日刚、马鹏飞   五矿国际招标有限责任公司   2010年3月25日 相关链接:中西部地区将采购1亿元原子吸收光谱仪 中西部地区1亿元原子吸收光谱仪采购项目开标
  • “薄膜材料热特性测试技术及仪器”通过2018年度教育部科研优秀成果奖候选审查公示
    p   2018年8月31日,教育部公布了《关于2018年度高等学校科学研究优秀成果奖(科学技术)通用项目/候选人形式审查结果的公示》。推荐工作截止后,累计收到高校、专家推荐或提名的项目与候选人共计1266项,经审查合格的有1069项,《薄膜材料热特性测试技术及仪器》位列技术发明奖候选名单。 /p p style=" text-align: center " strong 薄膜材料热特性测试技术及仪器 /strong /p p   主要完成单位: span style=" color: rgb(255, 0, 0) " strong 华中科技大学,武汉嘉仪通科技有限公司 /strong /span /p p   新材料是国家重点部署的五大颠覆性技术领域,颠覆性的新材料迫切需要颠覆性的测试技术,我国2万亿新材料产业的蓬勃发展催生了巨大的材料检测仪器需求。材料表征测试是决定产品质量的关键因素,是新材料研发不可或缺的重要手段,也是构建材料数据库和材料计算模型的基础,但是目前的材料测试技术尤其是热性能测试手段极其匮乏。此外,材料的薄膜化和小尺寸化是当前新材料产业的发展趋势,随着薄膜厚度逐渐减小到纳米尺度,传统的基于热量检测的热特性测试仪器由于热量检测灵敏度受限,对纳米尺度薄膜的热特性测试束手无策,且通常为破坏性的,并忽略薄膜材料本身显著的尺寸效应,因而带来极大的测试误差甚至完全不能反映薄膜材料的热性能。 /p p   围绕上述技术难点,在国家863等项目支持下,经过7年攻关,本项目突破了传统热分析仪器对薄膜材料热特性检测的限制,(1)提出了一种基于材料反射率变化原理的薄膜材料相变温度的新测试方法,发明了薄膜材料相变温度测试的新技术,实现了厚度低至5 nm薄膜材料相变温度原位、高灵敏度检测,填补了薄膜材料相变温度测试仪器的国内外空白 (2)提出了一种基于单一光源分束干涉的薄膜材料热膨胀系数测试方法,将可测量厚度下限提升了625倍,通过设计光路引入切换挡板,研发出基于光干涉原理的薄膜材料热膨胀系数测试设备,实现了透光材料和非透光材料的光干涉检测 (3)发明了薄膜材料热导率和热电参数动态测试方法,有效降低了黑体辐射及常规单点或稳态测量引起的误差,并设计横向双电极结构实现了基于频域动态法的薄膜面内热导率测量,开发出薄膜热电参数测试系统,实现了薄膜材料塞贝克系数的测试。项目共获授权发明专利13项(其中美国专利1项)、实用新型专利8项、计算机软件著作权4项。项目技术已实现产业化,开发出的薄膜材料相变温度、热膨胀系数、热导率及赛贝克系数等一系列热性能测试仪器已销售百余台,并出口至美国加州大学伯克利分校、英国南安普敦大学等海外市场,成功实现了国产自主材料测试仪器在国际市场上的突破。仪器在武汉新芯、武汉天马、福耀集团、清华大学和中国计量院等三十多家单位实现了示范应用,应用单位武汉新芯使用薄膜热导率测试仪和热膨胀系数测试仪突破了硅片翘曲的瓶颈问题,显著提高了存储器产品良率。 /p p   本项目近三年累计新增利润约1.1965亿元,新增税收1218.3万元。本项目开发的仪器已为包括3项国家“973”计划项目和30项国家自然科学基金在内的国家级项目提供了关键的测试数据,已有36篇SCI论文使用本项目仪器并标注了仪器型号。仪器荣获“湖北省十大科技事件”、“武汉地区最具影响力十大科技事件”等奖励,并被美国陶瓷学会主页报道,测试方法及结果被国际权威杂志Annu. Rev. Mater. Res.综述文章及权威学者Matthias Wuttig等多次引用。鉴定委员会认为该成果“创新突出,整体处于国际先进水平,在纳米级薄膜的相变温度测试以及薄膜面内热导率测试等方面达到国际领先水平”。 /p
  • Cell:细胞如何避免过度膨胀?
    所有细胞都有一个最为基础的功能,即控制自己的体积避免过度膨胀。数十年来,人们一直在寻找实现这一功能的蛋白,现在来自斯克里普斯研究所(Scripps Research Institute)的科学家们终于找到了它。这个称为 SWELL1 的蛋白解决了一个重要的细胞生物学谜题,并且与健康和疾病有着密切的关联。例如,该蛋白的功能出现异常,会造成一种严重的免疫缺陷。 论文资深作者、斯克里普斯研究所教授 Ardem Patapoutian 表示:&ldquo 认识这种蛋白及其编码基因,为人们开辟了新的研究方向。&rdquo 相关研究作为封面文章发表在近期的《细胞》(Cell)杂志上。 揭晓谜底 水分子能够轻松穿过绝大多数细胞的膜,而水分子的流动倾向于平衡膜内外的溶质浓度。&ldquo 实际上水是跟着溶质走的,&rdquo 文章的第一作者 Zhaozhu Qiu 说。&ldquo 细胞外溶质浓度减少或者细胞内溶质浓度增加,都会使细胞被水充满。&rdquo 几十年前人们通过实验发现,细胞膜上存在着某种离子通道,能够作为细胞膨胀的关键安全阀,他们将这种未知离子通道称为 VRAC (体积调控的阴离子通道)。当细胞膨胀时 VRAC 就会开启,允许氯离子和其他一些带负电的分子流出。这时水分子也会跟着流出,从而减轻细胞的膨胀。 &ldquo 在过去三十年中,科学家们已经知道 VRAC 通道的存在,但对它并不了解,&rdquo Patapoutian 说。 由于技术限制,人们一直未能找到组成 VRAC 的蛋白及其编码基因。现在,Qiu及其同事在这项新研究中进行了快速的高通量荧光筛选。他们改造人类细胞使其产生一种特殊的荧光蛋白,当细胞膨胀 VRAC 通道打开时,这种蛋白发出的光会淬灭。 在诺华制药研究基金会基因组学研究所(Genomics Institute of the Novartis Research Foundation)的自动化筛选专家的帮助下,研究人员培养了大量供筛选的细胞,并通过RNA干扰分别在这些细胞中阻断不同基因的活性。他们主要寻找能持续发光的细胞,持续发光表明基因失活破坏了细胞的 VRAC 。 研究团队经过几轮测试,最终找到了一个基因。2003年科学家曾发现过这个基因,并将其称为LRRC8,不过当时人们只知道它可能编码一个跨膜蛋白。现在,研究人员将它重新命名为 SWELL1 。 涉及的疾病 研究人员通过进一步实验发现, SWELL1 的确位于细胞膜上,而且该蛋白的特定突变能改变 VRAC 通道的性能。&ldquo 它至少是 VRAC 通道的一个主要部件,是细胞生物学家长期追寻的蛋白,&rdquo Patapoutian 说。 下一步,研究团队将进一步研究 SWELL1 的功能。例如,在小鼠模型中观察不同细胞类型缺乏 SWELL1 所造成的影响。 2003 年人们最初发现这个基因,是因为该基因突变会导致一种非常罕见的无丙种球蛋白血症(agammaglobulinemia)。这种疾病的患者缺乏生产抗体的B细胞,因此很容易受到感染。这也说明, SWELL1 是B细胞正常发育所需的蛋白。 &ldquo 此前有研究指出,因为中风会导致脑组织肿胀,所以这种体积敏感性的离子通道与中风有关。另外,这种蛋白可能还涉及了胰腺细胞的胰岛素分泌。&rdquo Patapoutian 说。&ldquo 这样的线索有待我们一一解析。&rdquo
  • 丹迪发布显微数字图像相关系统 新品
    仪器简介:DIC(Digital Image Correlation)数字图像相关技术是一种非接触式测量材料全场应变、位移的光学测量技术,该技术几乎适用于任何材料且测试面积广、结果精确。Dantec Q-400μDIC丹迪公司研发生产的一款专门用于测量微电子元件、生物材料变形的显微DIC测量仪,可测量一些显微结构的翘曲实验、热膨胀系数等,具有精度高,体积小等优点。技术参数:测量维度:二维、三维测量区域:0.1mm×0.1mm至17mm×17mm测量精度:位移(1μm),应变(0.005%)主要特点:精度高、测量范围广、无接触、方便使用创新点:显微结构测量,可检测100微米至15mm范围的试件 可以直接测量构件的翘曲、热膨胀系数 显微数字图像相关系统
  • 直播预告!第四届材料表征与分析检测技术网络会议之热性能分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/ 热性能主题专场会议日程:报告时间报告题目报告人专场四:热性能(12月15日下午)14:00--14:30高性能热电材料与近室温制冷器件中国科学院物理研究所研究员 赵怀周14:30--14:50锂离子电池热性能表征和失效分析沃特世科技-TA仪器部门TA仪器高级热分析应用专家 林超颖14:50--15:10高压重量法在储氢材料研究中的应用沃特世科技-TA仪器部门服务工程师 陈刚直播抽奖:Waters-TA定制三合一数据充电线10个15:10--15:40电子封装碳基热管理材料中国科学院宁波材料技术与工程研究所研究员 林正得15:40--16:10反钙钛矿化合物的反常热膨胀性质及其关联物性的研究北京航天航空大学教授 王聪16:10--16:50有机硅在热界面材料应用研究现状中国科学院深圳先进技术研究院研究员 曾小亮直播抽奖:《2021年度科学仪器行业发展报告》5本嘉宾介绍:中国科学院物理研究所研究员 赵怀周中科院物理所研究员,课题组长。长期从事热电材料、热电输运新机制、热电器件与应用系统研究。在新型高性能近室温热电材料、热电器件和热电应用系统研究方面积累了丰富的经验,取得重要创新成果,在基于镁基新材料的下一代热电制冷模块研究方面形成了国际特色。先后在Joule、Nat. Comm、Sci. Adv 、JACS、ACS Nano、Nano Energy、和Adv. Funct. Mater等著名刊物发表第一或者通讯论文70余篇,申请及授权国际国内专利10余项,文章引用次数2000余次。主持及参与国家自然科学联合重点及面上基金、国家重点研发计划等重要课题10余项。在国内外大型学术会议担任分会场主持人和特邀报告人二十余次,担任第12届中国热电材料大会会议主席。第三届中国发明协会发明创业成果奖二等奖(排序第一位)。【摘要】 报告聚焦热电材料和技术在全固态制冷方面的原理、优势和广泛应用,介绍了物理所热电研究团队近年来在热电新材料、新器件与新型应用系统方面的创新性工作。主要包括: (1)制备出全尺度可服役的基于Mg3(Sb,Bi)2新材料的热电制冷器件,基于新材料在性能投入比方面的显著优势,其有望颠覆一直以来行业上基于碲化铋的传统热电半导体制冷材料体系。(2)助力解决热电领域卡脖子材料与设备问题,在碲化铋缩颈热挤压制造相关设备和工艺方面获得进展,对实现我国热电制冷微器件的国产化有帮助作用。申请及授权发明专利和实用新型专利多项。该技术近期已在广西见炬科技有限公司、河北东方电子有限公司等热电企业获得推广。 (3) 提出地热-热电协同空调系统的思路并制造出原理样机。该系统可以替代现有商业空调的功能,同时具备分立式管理、无震动噪音和零碳排放的优势,有望实现规模应用。沃特世科技-TA仪器部门高级热分析应用专家 林超颖浙江大学高分子材料硕士,现任美国TA仪器高级热分析应用专家。长期从事各类材料的热分析、力学性能表征及失效分析等工作。【摘要】 锂离子电池在使用过程中,一旦正极材料、负极材料、电解液等的分解,或隔膜熔断、破裂导致正负极材料直接接触,或由于热管理设计缺陷导致锂离子电池出现安全性能的问题,会严重危害生命和财产安全。TA仪器从锂离子电池的热性能和力学性能出发,全方位剖析锂离子电池的安全性能。沃特世科技-TA仪器部门服务工程师 陈刚2000年毕业于华东理工大学,本科学历。从事德国Rubotherm磁悬浮天平系列设备的中国国内技术支持和售后服务近16年。曾多次前往德国原厂接受培训。熟悉国内磁悬浮天平用户及应用情况,对高压吸附领域有一定了解。曾工作于荷兰安米德公司,北京儒亚公司,于2017年加入美国TA公司,并工作至今。【摘要】 磁悬浮天平的发明是重量法应用领域里具有革命意义的里程碑。大大拓宽了重量法的应用范围,并附带了独特的性能优势。磁悬浮天平也为储氢材料研究带来了积极的帮助。中国科学院宁波材料技术与工程研究所研究员 林正得林正得,博士,研究员,博士生导师。入选2014年中国科学院"百人计划"、2013年浙江省"千人计划"等人才项目。2008年博士毕业于台湾清华大学材料科系。2012–2014年于美国麻省理工学院(MIT)电子学实验室和机械系担任博士后,2014年6月加入中国科学院宁波材料所。自加入材料所以来,已发表了ACS Nano、Advanced Science、Biosensors & Bioelectronics等SCI论文149篇,全部文章的引用数高于10,000次。现担任Biosensors & Bioelectronics期刊副主编。团队目前围绕着石墨烯应用开展研究课题,包含:导热应用、热界面材料、以及生医传感器件。【摘要】 近年来,基于氮化镓等第三代半导体的高频率、大功率芯片得到了国家和产业的重点关注与广泛应用;为了提升内核效能,新一代芯片架构正朝向微缩化和3D互联方向发展,致使芯片的功率密度大幅提高,发热量随之迅猛增加。芯片的“热失效”成为了制约5G、航空航天等精密装备内功率器件发展的主要瓶颈之一。要解决目前电子封装的散热难题,需要对既有热管理材料进行升级迭代,并有效连接与统合这些部件,形成从芯片至散热器的最优传热路径。本团队针对电子封装中“芯片–衬底–均热板–热沉”热输运串联系统的关键零部件进行了攻关开发,克服了复合材料中二维材料填料的“定制调控排列取向”与“强化异质传热界面”两个共性难题,研发出“超低热阻碳基热界面材料”、“轻质高导热碳/铝散热器”、“柔性绝缘氮化硼导热膜”等系列新型热管理材料,从而提出面向新一代芯片架构的综合解决方案,实现拥有自主知识产权的创新技术与产品。北京航天航空大学教授 王聪北京航空航天大学集成电路科学与工程学院教授,博士生导师。在Adv. Mater.,Phys. Rev. 系列, Chem. Mater. Appl. Phys. Lett.,等刊物上发表论文超过240篇, SCI收录200篇以上,SCI他引超过3500次,H=33,2020-2021两年连续被国际机构爱思唯尔(Elsevier)评为“中国被高引学者”;授权国家发明专利14项。2012年获得教育部自然科学二等奖。中国物理学会理事,中国晶体学会理事。长期从事固体反常热膨胀行为、自旋电子学反铁磁材料及器件、光学薄膜领域的研究工作。【摘要】 反钙钛矿化合物Mn3XN系列材料由于“晶格-自旋-电荷”的强关联性,发现诸多具有应用价值的物理特性,如零/负膨胀、压磁、磁热、近零电阻温度系数、反常霍尔效应等。在NMn6八面体中, Mn-Mn直接交换作用和Mn-X-Mn间接磁交换作用共存,形成复杂的磁结构, 且其磁结构对成分、温度、压力、磁场等的变化非常敏感,因此在多场耦合下产生丰富的物理特性。我们利用变温X射线衍射,中子衍射技术,结合热膨胀仪、差热分析(DSC)、磁、电测量等解析了这类化合物随温度、压力变化的晶体结构和磁结构,热膨胀系数及其关联的磁、电输运行为等。本报告将重点探讨Mn3XN(X: Ga, Ni, Ag, Zn)系列化合物在温度和压力场下的磁结构演变规律,以及由其诱导的物性变化,如负(零)热膨胀、反常电输运、压磁、压热效应等。中国科学院深圳先进技术研究院研究员 曾小亮中国科学院深圳先进技术研究院研究员,工学博士,中国科学院青促会会员、深圳市“孔雀计划”海外高层次人才(C类),入选2022年“全球前2%顶尖科学家榜单”,Google学术总引用次数7276,h指数47,荣获国际知名学术期刊Composites Part A,2020年“Top 5优秀审稿人”、国际学术期刊《Nanomaterials》(JCR 一区,影响因子:5.076)和《Frontiers in Materials》(JCR 二区,影响因子:3.515)的客座主编。以第一作者或通讯作者在Advanced Functional Materials, ACS Nano, Chemistry of Materials, Small等国际期刊上发表SCI论文50多篇,申请专利30多项,合著书籍《聚合物基导热复合材料》。2010年以来,主持或参与国家自然科学基金项目、科技部重点研发专项、科技部重大科技计划“02专项”,广东省创新科研团队项目等项目。【摘要】 在现代电子元器件中,有相当一部分功率转化为热的形式,耗散生热严重威胁电子设备的运行可靠性。更令人担忧的是,随着后摩尔时代的到来,电子元器件的封装技术由传统的二维封装向2.5维或更高级的三维封装方向发展。三维封装技术虽然提高了电子元器件运行速度、实现了电子设备的小型化和多功能化,但是也导致器件所产生的热量进一步的集中,采用常规的热传导技术已经无法实现热量有效传导。“热管理”的问题已经成为阻碍现代电子元器件发展的首要问题之一。有机硅是制备热界面材料最为常用的基础树脂,本报告将围绕如下三个方面阐述有机硅在热界面材料应用研究现状: 1. 芯片热量来源及趋势 2. 有机硅热界面材料研究现状 3. 热界面材料用有机硅未来发展趋势会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • CCATM’2010分场报告会:力学测试、物理检测
    仪器信息网讯 2010年9月13-15日,由中国金属学会、中国机械工程学会主办,国际钢铁工业分析委员会支持,钢铁研究总院承办的“第十五届冶金及材料分析测试学术报告会及展览会(CCATM’2010)”在北京九华山庄隆重召开。 会议现场   大会同期举行了以“力学测试、物理检测”为主题的分会报告,来自冶金及材料分析测试领域的多位知名专家、企业代表及多家仪器厂商做了精彩的报告。现摘录部分精彩报告内容如下。   报告题目:钢铁企业力学性能试验方法与试验设备的发展   报告人:宝钢股份公司研究院 李陈先生   李陈先生介绍在钢铁企业中金属材料力学性能试验研究的任务主要是为企业的产品检验、产品认证、科研研发提供准确、可靠的试验结果,同时也为质量异议以及生产设备安全提供服务。力学性能试验方法和试验设备的开发主要包括:力学性能试验方法的开发、力学试验标准化方面的工作、制修订力学性能试验标准、开发和完善试验设备等。新产品的持续开发以及试验技术与试验设备性能的提高会对力学性能的测试研究不断提出新的研究内容,需要力学性能试验研究人员不断扩大研究领域,为我国冶金工业的由大变强发挥更大的作用。   报告题目:物理性能检测国内外发展动向和现状   报告人:钢铁研究总院 尤清照先生   物理性能检测内容有密度、杨氏模量、切变模量、泊松比、热电势、热扩散率、比热容、热导率、热辐射、热膨胀系数、电阻率、内耗等。尤清照先生介绍了国内外物理性能检测发展的历史,国内外目前有关物理性能检测的学术会议等内容,并指出目前我们的工作领域前景很广,过去我国在这一领域的工作人员忙于日常检测工作,与世界交流较少,没有真正把我们的能力和水平展示出来。此外,真正有水平的东西还是国外仪器测的,这是我们工作中需要改进的地方。此外,尤清照先生还介绍了激光热导仪国内外的发展现状及自己在这方面的一些的研究。   报告题目:MTS Criterion 万能测试系统   报告人:美特斯工业系统(中国)有限公司 王欢先生   王欢先生介绍说MTS Criterion万能测试系统具有高可靠性、高精度和高重复性的测试能力,从而对大批量产品的生产质量实现有力控制,执行高强度工业测试,建立可扩展的行业测试标准。MTS Criterion万能测试系统完整的通用负荷框架组合完全符合最新的全球安全指令,提供全功能、易操作的TestWork软件,全面的测试附件,集成了许多MTS测试创新技术,以最大限度提升测试的保真度、操作效率、易操作性、安全性和可维护性。 报告题目:蔡司电子显微镜   报告人:上海欧波同仪器有限公司 罗俊先生   罗俊先生简要介绍了上海欧波同仪器有限公司、蔡司电子显微镜的发展历史、蔡司EVO系列多功能扫描电镜。最后罗俊先生重点介绍了蔡司场发射扫描电镜具有卓越的低电压成像能力,其中全球独创的Gemini镜筒具有无交叉光路设计,采用了Inlens环形二次电子探测器、电磁/静电透镜组合、ESB背散射电子探测器等。   报告题目:XPS对耐磨涂层的印象评价   报告人:赛默飞世尔科技 Mr. Chris Riley   Mr. Chris Riley介绍了表面分析方法的工业应用、X射线光电子能谱(XPS)的原理、X射线光电子能谱对于金属材料的表面分析的适用性。X射线光电子能谱可用于聚合物包覆的钢结构表面缺陷、钢钝化的研究。在耐磨涂层分析中XPS可以提供样品表面的元素种类、元素形态分析、定量分析以及元素在样品表面的分布情况等。
  • 砂浆收缩膨胀变化试验方法
    砂浆收缩膨胀变化试验方法一、前言:在现代建筑材料科学与工程领域,对砂浆性能的精确测量与评估。随着建筑技术的不断进步和对工程质量要求的日益提高,准确掌握砂浆在不同条件下的收缩与膨胀特性成为确保建筑结构稳定性与耐久性全自动砂浆收缩膨胀仪能够实时、连续地监测砂浆在不同阶段的收缩与膨胀变化,为科研人员、工程师以及建筑行业从业者提供可靠的数据支持。二、设备选择1.全自动砂浆收缩膨胀测定仪:具备高精度传感器,能够准确测量微小的长度变化。具有稳定的结构和良好的温度补偿功能,以确保测量结果的准确性不受环境温度影响。可连接计算机进行数据采集和分析,方便存储和处理大量数据。2.标准模具:符合相关标准要求的模具,确保砂浆试件的尺寸准确。材质应具有良好的耐久性和稳定性,不易变形。三、试验准备1.材料准备:按照所需的配合比准备砂浆原材料,包括水泥、砂、水等。确保原材料的质量符合相关标准要求。2.模具准备:将标准模具清理干净,并在模具内壁涂抹一层脱模剂,以便于试件成型后脱模。3.试件制备:将搅拌好的砂浆倒入模具中,振捣密实,确保试件内部无气孔。按照标准要求进行养护,待试件达到规定的龄期后进行测试。四、测试步骤1.设备安装与调试:将全自动砂浆收缩膨胀测定仪安装在平稳的工作台上,并进行水平调整。连接传感器和计算机,启动测试软件,进行设备调试和校准。2.试件安装:将养护好的砂浆试件从模具中取出,清理表面的杂物。将试件安装在测定仪的测量平台上,确保试件与传感器接触良好。3.开始测试:设置测试参数,如测试时间间隔、温度范围等。启动测试程序,测定仪将自动记录试件的长度变化数据。4.数据采集与分析:测试过程中,计算机实时采集试件的长度变化数据,并绘制出收缩膨胀曲线。根据测试结果,分析砂浆的收缩膨胀性能,包括收缩率、膨胀率、变化趋势等。四、质量控制1.设备校准:定期对全自动砂浆收缩膨胀测定仪进行校准,确保测量结果的准确性。使用标准试件进行校准,验证设备的性能。2.试件制备:严格按照标准要求制备砂浆试件,确保试件的尺寸和质量符合要求。控制搅拌时间、振捣力度等因素,保证试件的均匀性。3.环境控制:测试过程中,保持测试环境的温度和湿度稳定,避免环境因素对测试结果的影响。五、报告生成1.测试结束后,根据测试数据生成详细的测试报告。2.报告内容应包括试件信息、测试参数、收缩膨胀曲线、测试结果分析等。3.报告应具有清晰的格式和准确的数据,以便于用户查阅和分析。测试编号试件编号测试时间初始长度(mm)当前长度(mm)长度变化(mm)收缩/膨胀率(%)备注1A0012024/9/21 8:00100.00100.000.000.00新制试件1A0012024/9/21 12:00100.0099.98-0.02-0.021A0012024/9/21 16:00100.0099.96-0.04-0.041A0012024/9/22 8:00100.0099.92-0.08-0.081A0012024/9/22 12:00100.0099.90-0.10-0.101A0012024/9/22 16:00100.0099.88-0.12-0.122B0012024/9/2 2 18:00100.00100.000.000.00新制试件2B0012024/9/21 12:00100.00100.020.020.022B0012024/9/21 16:00100.00100.040.040.042B0012024/9/22 8:00100.00100.060.060.062B0012024/9/22 12:00100.00100.080.080.082B0012024/9/22 16:00100.00100.100.100.10解释:测试编号:用于区分不同批次的测试。试件编号:对每个试件进行标识。测试时间:记录每次测量的具体时间。初始长度:试件刚制作完成时的长度。当前长度:每次测量时试件的长度。长度变化:当前长度与初始长度之差。收缩/膨胀率:长度变化量与初始长度的比值,乘以 100%。备注:可用于记录一些特殊情况或说明。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制