当前位置: 仪器信息网 > 行业主题 > >

激光测长仪原理

仪器信息网激光测长仪原理专题为您提供2024年最新激光测长仪原理价格报价、厂家品牌的相关信息, 包括激光测长仪原理参数、型号等,不管是国产,还是进口品牌的激光测长仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光测长仪原理相关的耗材配件、试剂标物,还有激光测长仪原理相关的最新资讯、资料,以及激光测长仪原理相关的解决方案。

激光测长仪原理相关的资讯

  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style=" text-indent: 2em " strong 编者按: /strong 如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。 /p p style=" text-indent: 2em text-align: center " strong 激光粒度仪应用导论之原理篇 /strong /p p style=" text-indent: 2em " 当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。 /p p style=" text-indent: 2em " 首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 176, 240) " 【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。 /span /p p style=" text-indent: 2em " 麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。 /p p style=" text-indent: 2em " 现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。 /p p style=" text-indent: 2em " 世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title=" 图1:颗粒光散射示意图.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " 颗粒光散射示意图 /p p style=" text-indent: 2em " 激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。 /p p style=" text-indent: 2em " strong & nbsp 编者结: /strong 明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。 /p p style=" text-indent: 0em text-align: right " (作者:张福根) /p
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 激光粒度原理及应用
    p   粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。 /p p   激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。 /p p    strong 激光粒度仪的光学结构 /strong /p p   激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。 /p p    strong 激光粒度仪的原理 /strong /p p   激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。 /p p   米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。 /p p   为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。 /p p    strong 激光粒度仪测试对象 /strong /p p   1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。 /p p   2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。 /p p   3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。 /p p    strong 激光粒度仪的应用领域 /strong /p p   1、高校材料 /p p   2、化工等学院实验室 /p p   3、大型企业实验室 /p p   4、重点实验室 /p p   5、研究机构 /p p   文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115) /p p br/ /p
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 谈国内外激光粒度仪技术现状及行业亟需解决的问题——珠海真理光学仪器有限公司董事长张福根
    在进入主题之前,我首先要澄清一下,这里的“激光粒度仪”是指基于静态光散射或衍射原理的粒度分析仪器, 测量范围从大约100纳米到几毫米。与之容易混淆的还有另一种也是以激光作为照明光源的粒度分析仪器——动态光散射粒度仪,在国内通常叫作纳米粒度分析仪。本文探讨的产品是指前者。 一提起高端的科学仪器,大多数国人都认为进口的国外仪器比国产仪器先进。但是,对激光粒度仪,我可以很负责任地说,总体上国产仪器与进口仪器水平相当,有些国产品牌甚至领先于世界同行。国外产品的价格确实高,但是技术性能一点都不高。所以,某些国家如果想在激光粒度仪上卡中国的脖子,不仅对中国的粒度仪应用产业丝毫无损,而且还会自行断送国外品牌在中国的市场,对中国的上下游产业发展只有好处,没有坏处。 能不能制造出高水平的科技产品,关键点有三:一是产品的设计,二是供应链(配套原材料),三是制程管理。 就原料供应来说,国内国外的粒度仪厂商都是全球采购的,相互之间没什么差别。具体来说,集成电路和部分电子元件大多是国外生产的,机械零件和光学镜头大多是中国生产的,有些国外品牌甚至连整机都是在中国境内、由中国工人完成组装调试的。某些国产品牌为了宣传自己的粒度仪“高大上”,声称光学镜头是某发达国家生产的,不知真假?但愿是假的;如果是真的,那真要为之惋惜了。其实,国产光学镜头完全能够满足激光粒度仪的使用需求。就连某些著名的进口品牌的镜头都是中国产的,说明国外同行早就认可中国镜头的质量。你又何必花高价到国外采购呢?要说卡脖子,电子元器件真是国产科学仪器“脆弱的要害部位”。激光粒度仪要用到的激光二极管,一些模拟集成电路,单片机等,都需要进口。但这不是我们激光粒度仪的厂商能够解决的。 至于制程管理,需要经验的积累和精益求精的态度。国产品牌或者其主要负责人,进入激光粒度仪行业都已超过20年,而且有些人曾长期在国外同行企业工作,再笨也学会该如何管理了,更何况中国人还是挺聪明的,至少不会在智力上输给西方人。对产品质量的态度,我认为几家主要的国产品牌都是很认真的。或许是激烈竞争的原因,大家都迫切地希望用户使用自己的产品时有良好的体验:精确、稳定、可靠。说到用户体验,我要提一句提外话:目前进口产品在售后服务上给用户的感觉都不太好:不仅服务不及时,态度不友好,而且收费巨贵。在这一点上,国外品牌就大大比不上国产品牌了。 最后一点就是激光粒度仪的设计了,这是硬核技术,也是本文要谈的重点。在供应链和制程管理不相上下的情况下,设计水平的高低决定了激光粒度仪的技术性能的高下。 下面将正式展开对国内外激光粒度仪的认知和设计水平的比较。表述听起来可能比较“学究”,请读者诸君谅解。这是因为不用专业的表达,就无法把其中的要点说清楚,就会显得模棱两可,给人留下质疑的空间。但是我会尽量表达得通俗一点。1. 激光粒度仪的光学模型及简要历史回顾 粒度仪器有多种原理,但大多数都把被测量的颗粒看成一个理想的圆球。尽管实际的颗粒很少是理想圆球,有的甚至远远偏离圆球,但是由于颗粒的数量太大,形状也是千变万化,如果连形状都要考虑进去,是一件无法完成的工作,所以只能把颗粒当作圆球来处理。激光粒度仪也是把颗粒当成理想圆球来处理,全世界的品牌都一样。 1.1 光散射的模型 光是电磁波。在均匀的介质中,光是沿着直线传播的。如果光在传播的途中遇到一个颗粒,光和颗粒就会发生相互作用,光波一部分可能被颗粒吸收,一部分则偏离原来的方向继续传播,后者就称为“光的散射”。这种相互作用遵循电磁波理论,即麦克斯韦方程组。只要颗粒尺寸远大于原子尺度,并且没有原子激发辐射(荧光)现象发生,那么,电磁波理论的正确性是不容置疑的。平面电磁波遇到圆球颗粒后发生的散射现象,可以有严格的数学解,称作“Mie散射理论”。不过这个解在数学形式上非常复杂、计算量庞大,物理意义很抽象。在颗粒直径远大于光波长时,散射现象可以用几何光学近似理论解释,这样物理意义就变得很直观了。 请看图1。在颗粒远大于光波长的情况下,颗粒对光的散射,可以分成两个部分:衍射和几何散射。从无限远(远场)的位置观察,衍射光的偏离角度只跟颗粒在观察面上的投影的大小有关,颗粒越小,衍射角越大,这部分信息可以用来分析颗粒的大小。几何散射光是指光线投射到颗粒表面以后,一部分发生反射,另一部分经过折射进入颗粒内部,又在另一个界面上发生折射(到介质)和反射的现象。散射光场是这两部分光的叠加。图1中只画出了衍射光和一次折射光。从远场看,几何散射光的相对强度分布与颗粒大小无关,只与颗粒的折射率与吸收系数有关。另外,当颗粒很大时,衍射光的分布范围远远小于几何散射光的分布范围,但是由于两种散射光的总能量相同,所以从小角度看,衍射光的强度要远远大于几何散射光的强度。这也是在小角度范围内观察大颗粒的散射光时,可以只考虑衍射光的原因。图1 光散射模型的几何光学近似 激光粒度仪在上世纪70年代初刚出现时,只考虑衍射光,所以颗粒可以看成一个不透光的圆片,见图2。根据光学上著名的巴比涅互补原理,一个不透光的圆片所产生的衍射场与同直径的圆孔所产生的衍射场只在位相上差180°,振幅则完全相同。激光粒度仪直接测量的是光强的分布,它是振幅的模的平方,跟位相没关系,所以一个直径为D的颗粒所产生的衍射光强的分布可以用等直径的圆孔产生的光强分布来代替。图2 从圆球散射到圆孔衍射的简化圆孔的衍射在19世纪末就有解析形式的理论表达。远场的衍射理论称为“夫朗和费衍射理论”。图2还表示出了观察远场衍射的经典装置:在圆孔后放置一个光学透镜,在透镜的焦平面上放置观察屏,这样在屏上看到的图像就是远场衍射光斑。衍射角度为的衍射光落在屏上的位置到屏的中心的距离为( 是透镜的焦距)。顺便科普一个光学名词:如果透镜是对焦平面消像差的,该透镜就称为“傅里叶透镜”。从图2可以看到,远场的衍射光斑由中心亮斑和一系列同心圆环组成,被称为“爱里斑”。理论上可以证明,爱里斑的第一个暗环内包含了大约84%的衍射总光能,所以习惯上把第一个暗环所对应的衍射角称为爱里斑的(角)半径。爱里斑的半径与圆孔直径、也就是颗粒的直径近似成反比,因此屏上的光强分布与颗粒大小之间有一一对应关系。激光粒度仪就是根据这个原理分析颗粒大小的。 1.2 国内外激光粒度仪的发展史 一个10微米的颗粒,如果用0.633微米(红光he-Ne激光波长)的光去照射,那么衍射角就是4.4°;100微米的颗粒,衍射角就是0.44°了。世界上第一台激光粒度仪直到1970年前后(准确的年份有几种说法)才出现,就是因为它首先需要一种单色性、方向性都足够高、强度足够强的光源,这就是激光。所以它只能出现在激光器问世(1961年)之后。另外,探测衍射光场的分布需要硅光电探测器阵列,需要用到集成电路制作工艺;把衍射光的分布转换成粒度分布需要台式计算机,这些条件都是1960年以后才出现的。国内最早开始激光粒度仪研制的是天津大学的张以谟团队,当时是承接了国家科委的六五(1981年到1985年)科技攻关项目。项目于1989年通过了国家科委的技术鉴定。产品名称当时叫做“激光滴谱仪”,设定的应用对象是液体雾滴的粒度测量。比天津大学略晚开展激光粒度仪研制的单位还有上海机械学院(后改名“上海理工大学”)、山东建材学院(后并入济南大学)、四川省轻工业研究院、重庆大学和辽宁(丹东)仪器仪表研究所。从上面的介绍可以看出,国产激光粒度仪的出现时间比世界上最早的同类产品晚了大约20年。早期国产仪器的落后,首先就是因为起步的时间晚。起步晚的原因有这么几个:(1)国外开始研发激光粒度仪的时间正好是中国的文革时期,闭关锁国,国内的科研人员不太了解国外的动态,一直到1970年代末改革开放后,国外的产品卖到中国,以及国内的科研人员到国外进修,才知道有这么一种产品。(2)激光粒度仪的应用对象是从事粉体、浆料、乳液、胶体以及喷雾的科研和生产单位,当时中国在生产和科研两个方面都大幅落后于国外。国内的应用需求对该产品的研发的拉动不强烈。(3)在改革开放前以及改革开放后的很长一段时间,科研由高校和研究机构做,而生产由工厂做。科研单位感受不到应用的需求,而生产单位即使知道有需求,也没有能力设计一款光、机、电和计算机一体化的产品。(4)激光粒度仪作为当时的高精尖产品,需要激光器、电脑、形硅光电池阵列、半导体芯片等元器件和设备的配套,在上世纪六、七十年代,中国很难获得这些东西。目前国内的情况已经完全改观:一是国内需求拉动强烈,二是各种电子元件、计算机软硬件等都能在全球采购,三是国内的研发人员理论基础雄厚,创新意识强,能开展基础理论研究和技术创新。经过30多年的进步,国产激光粒度仪的技术已经能和全球同行并驾齐驱,并有一部分实现了超越。1.3 当前各种品牌对光学模型的应用从1.1节的讨论可以看到,如果只考虑远大于光波长的颗粒,并且只测量小角度的散射光(例如小于5°)的话,用衍射理论基本可以满足粒度测量的要求。衍射理论的优势在于数值计算相对简单,也不需要知道颗粒的光学参数(折射率和吸收系数)。但是如果想把粒度测量下限扩展到接近或小于光的波长,那么就不得不考虑更大角度范围的散射光了。现在的粒度仪测量下限可以达到光波长的1/10左右。图3表示出几种亚微米颗粒的散射光强分布。从图上可以看出,对小颗粒来说,不同粒径散射光强度分布的差别,主要在大角度上,甚至大到180°。这就需要仪器的光学系统能测量0°到180°全角范围的散射光,光学模型也必须用Mie散射理论了。图3 对数极坐标下亚微米颗粒的散射光强分布图中的坐标系是对数极坐标,方位角就是散射角,辐射线的长度是散射光强度的对数。(a)(d)分别表示1µm、0.5µm、0.25µm和0.12 µm的颗粒的散射光强分布。 目前国内国外的厂商,大多数采用复杂但严谨的Mie理论,但也有个别国外厂商还在用衍射理论。从所采用的光学模型来看,国内厂商与国外的主流厂商是同步的。相反,个别国外厂商还在用夫朗和费衍射理论,就显得抱残守缺了。1.4 对光学模型研究的新发现 激光粒度测试技术的研究者和厂商都隐藏着一个困惑:激光粒度仪无法正常测量3微米左右的聚苯乙烯微球。这是为什么? 国内厂商——珠海真理光学仪器有限公司与天津大学的联合团队发现了造成这个困惑的根源:爱里斑的反常变化(ACAD)。通常我们都认为颗粒越小,爱里斑越大,于是颗粒大小与爱里斑大小之间有一一对应关系,所以粒度仪能够根据散射光的分布推算粒度分布。但事实上在有的粒径区间,会出现违反上述规律的情况:颗粒越小,爱里斑也越小。我们把这样的粒径区间叫做“反常区”。图4是根据Mie散射理论用数值计算的方法模拟出的聚苯乙烯微球的爱里斑的变化。图中粒径从3微米到3.5微米的爱里斑尺寸的变化就属于反常变化。对聚苯乙烯微球来说,3微米左右正好是在反常区,所以测量出现异常。研究论文发表于2017年。 图4 爱里斑的反常变化现象 该研究揭示出,任何无吸收或弱吸收的颗粒的光散射都存在反常现象。如果颗粒无吸收,则存在无限多个反常区。对粒度测量有影响的主要是第一反常区,其所处的粒径区间大约在0.5微米到10微米,具体位置跟颗粒与分散介质的折射率以及光波长有关。颗粒折射率越大,反常区中心对应的粒径越小。被测颗粒的粒径落在第一个反常区的话,通常的反演算法就难以根据散射光的分布计算出正确的粒度分布。反常现象对激光粒度测量的影响是普遍存在的,这将在第3节继续讨论。 爱里斑反常变化现象的发现与研究,是国内厂商与研究机构对激光粒度测试技术的创造性贡献,当然是世界范围内独一无二的,是领先于世界的。 2. 各种仪器的散射光接收系统 粒度仪的散射光接收系统决定了仪器能否获得充分的颗粒散射光信息,从而准确计算出被测颗粒的粒度分布。它是激光粒度仪的关键技术之一。 亚微米颗粒的散射光能分布见图5,其中假设了探测器的面积与散射角成正比,照明光是线偏振光,偏振方向垂直于散射面。其中图(a)表示全角范围内完整的散射光能分布。从中可以看出,垂直偏振散射光是分布在0°到180°的全角范围内的,对0.3微米以细的颗粒来说,散射光能的主峰分布处在40°到90°的前向大角度上。由于光能分布的主峰位置(如果有)与粒径之间有最显著的特异性,因此获取40°以上的散射光信息对亚微米颗粒测量至关重要。图5 亚微米颗粒的散射光能分布曲线(a) 全角范围的光能分布,(b) 正入射平板玻璃窗口得到的;(c) 斜置梯形玻璃窗口得到的 图6是当前国内外比较有影响力的几种品牌的激光粒度仪的散射光接收系统的光路图。其中图 (a)称为经典光路,又称正傅里叶变化光路。是激光粒度仪发展的早期就开始采用的光路。其特点是用平行激光束垂直入射到测量窗(池),相同角度的散射光通过傅里叶镜头后被聚焦到探测器的一个点上。其缺点是系统能接收的最大散射角受傅里叶镜头的孔径限制。目前能达到的最大孔径角是45°。如果颗粒分散在水介质中,那么对应的最大散射角是32°。这样的系统能测量的最小粒径约为0.4微米。图6 各种散射光接收系统原理图 图6(b)是一种逆(反)傅里叶变换系统。它用会聚光垂直照射到测量池。在小散射角上也能会聚同角度的散射光。但是大角度的聚焦不良,不过可以在光学模型的数值计算上对此进行补偿,并不影响对散射光分布的测量。它的好处是最大接收角不受透镜孔径限制。空气中的最大接收角可达60°或更大,对应于水介质中的散射角为41°以上。如果前向散射角继续增大,大于49°时,就会受到全反射规律的约束,无法出射到空气中,该以上角度称为“全反射盲区”。盲区内的散射光也就无法被探测器接收。这将丢失0.3微米及以细颗粒的散射光能主峰信息,见图5(b)。这种系统一般还设置后向探测器,能接收大于139°的散射光。对0.1左右的颗粒测量有帮助。 图6(c)是一种是多光束方案,是为突破全反射的限制而专门设计的。它用一束光作为主光束,正入射到测量池,用另外一束或两束光作为辅助光束,斜入射到测量池。如果设置后向探测器,则只需一束辅助光。。通常,为了尽量扩大仪器的测量范围,主光束用红色激光,而辅助光束用蓝色LED光源。假设辅助光的对测量池的入射角为45°,那么在该辅助光的配合下,测量盲区可以减小32°。如果只有主光束时散射角测量上限为41°,那么现在的测量上限可达73°。但是它的缺点是,主光束照明情况下的散射光测量和辅助光照明下的测量(如果两束辅助光,也要分别测量)必须分开进行,两次测量的数据拼接,不是一件容易做好的事情。如果辅助光和主光用不同的波长,还需要同时获取两种波长所对应的折射率。有时要得到一种波长的折射率都有困难,两种更难了。 图6(d)称为偏振光强度差(PIDS)方案(该图取自许人良博士未出版的书稿)。其特征是除了正入射的主光束以及配套的双镜头散射光接收系统外,另外串联了一个测量池,并在照明光行进路径的侧面设置对应不同散射角的探测系统。利用90°散射角周围垂直偏振的散射光与平行偏振的散射光的分布差异,分析亚微米颗粒的大小。存在的问题是: (1)主光束获得的信息与PIDS窗口获得的信息之间如何拼接?(2)PIDS测量利用了多种波长的照明光,要想获得多种波长的折射率是非常困难的。 图6(e)称为“斜置平行窗口”方案或“照明光斜入射”方案。作者最早于2010年提出该方案(专利)。它的优点是用一束照明光就可以突破全反射的限制,却没有多光束方案的数据拼接难题。比如说斜置20,被接收的最大散射角就可以增加到60°。但是要完全消除全反射的影响,必须斜置70°。此时入射光在探测平面上不能良好聚焦,从而影响了大颗粒的测量。这是作者没有在真理光学的产品中采用这种方案的原因,但有其他国产品牌在用这种方案。 图6(f)是真理光学在用的“斜置梯形窗口”光学系统。它只需一束照明光。测量池整体倾斜10°,不影响入射光的聚焦,测量池右侧的玻璃做成梯形,让接近或大于全反射临界角的散射光从梯形的斜面出射。这种方案能让前向最大散射角达到80°,使系统能够接收所有亚微米颗粒的散射光能分布的主峰信息,见图5(c)。这是目前前向散射接收角最大的光学系统,而且还只用了一束照明光,没有数据拼接问题。是一种世界领先的方案。3. 反演算法与粒度测试结果的真实性 反演算法就是把仪器测量得到的被测颗粒的散射光分布,结合事先根据光学模型的数值计算得到的预设的各种粒径颗粒的散射光能分布(组成“散射矩阵”),反向计算出被测颗粒的粒度分布的计算机程序。粒度分布是激光粒度仪输出的最终结果,它能否真实反映被测颗粒的粒度,是激光粒度仪性能的最终体现。3.1 获得真实的粒度测试结果的基本条件 能否获得好的粒度分布数据由以下三点决定: (A)充分的被测颗粒的散射光分布信息,最好含有光能分布的主峰(如果有); (B)利用光学模型计算得到的散射光分布与粒度分布之间存在一一对应关系; (C)合理的算法。 各厂商的算法是技术秘密,外人无从知晓与评价。但是可以确定的是,如果条件(A)和(B)有缺失,一定会影响最终的粒度分布结果。从第2节的叙述我们已经看到,现有的各种散射光的接收方案都不能百分之百获得0到180°的散射光信息,但是有的方案好一些,比如图6(f)的方案;有的则有较大的信息缺口,比如图6(a)和(b)所示的方案。作者在第1节中谈到过,真理光学团队发现的爱里斑的反常变化,将导致在被测颗粒是透明的条件下,对于粒径落在第1反常区内的颗粒,条件(B)不能满足。 相对来说,国产的真理光学做得比较好。对条件(A),前向最大散射角(介质中)的接收能力达到80°,能捕获所有颗粒的光能分布主峰,并且只用一束照明光,避免了不同照明光的数据拼接。对条件(B),基于对爱里斑反常变化的原创发现和规律的深入研究,通过软硬件的结合,基本上解决了爱里斑反常变化对粒度分析的影响。 现在国内外各厂商都宣称自己的仪器能测量小到100纳米以细,大到数千微米,全量程无死角的粒度分布,但是上述条件(A) 和(B)的缺失,从客观上限制了这些仪器的测量能力,使得它们宣称的性能难以实现。3.2 国外某仪器有多种反演计算模式,不同模式会给出不同的粒度分析结果 有些国外仪器有多种反演计算模式。同样的被测样品,选不同的模式就会输出不同的结果。图7 国外某仪器不同反演模式输出不同结果的案例 图7是该仪器的实测案例。图7(a)是标称D50为150纳米的聚苯乙烯微球标样的测量结果。选“通用”模式时,D50为121纳米,与样品标称值相差较远,且分布曲线明显展宽;选”单峰窄分布”模式时,D50为148纳米,与样品标称值相符。图7(b)是标称D50为3微米的标样的测量结果。选“通用”模式时,结果呈现多峰,与样品的单分散特征完全不符;选“单峰窄分布”模式时,与样品形态特征及标称值相符。图7(c) 是一个人工配制的3个峰的SiO2 微球。选“通用”模式时,结果只有1个峰,完全失真;选“多峰窄分布”模式时,曲线呈现2个峰,结果比“通用”模式接近真实,但还是有失真。 从使用经验看,该仪器在测量颗粒标准样品时只能用“单峰窄分布”模式去分析。因为颗粒标准物质就是单峰窄分布的,所以这种做法颇有“量身定做”的意味。如果用 “通用”模式分析标准微球时,则经常出错。人们难免要问:“通用”模式连最容易测量的颗粒标准物质都给不出正确的结果,如何保证一般样品的测量结果是正确的?还有一个疑问是:一种仪器的不同模式给出不同的结果,究竟哪一个是正确的结果? 上述问题如果没有合理的解答,那么从基本的科学逻辑出发,我们就可以得出这样的结论:一种仪器有多种分析模式是仪器性能不完善的表现。国产的真理光学的仪器就完全没有这样的问题。它只有一个统一的反演模式,不论测什么样品,都用同样的算法。图8是上述3个样品用国产真理光学仪器测量的结果:150纳米和3微米标样的D50值和分布形态完全符合预期,实际样品的3个峰也能得到正确的体现。图8 国产真理光学的激光粒度仪对三个样品的测量结果3.3 国内外仪器对爱里斑反常现象的处理 爱里斑的反常变化会导致一种散射光能分布对应多种粒度分布的可能性,从而使粒度仪得不到正确的粒度分布结果。图7(b)所示的3微米标样在某国外仪器“通用”模式下给出的完全失真的结果,就是因为3微米标样的构成材料是聚苯乙烯微球,这个粒径正好处在这种材料颗粒的第1个反常区。该国外仪器没能解决这个问题,所以在“通用”模式下得不到正确结果,而只能选用“单峰窄分布”这种量身定做的模式进行“特殊处理”。如果是普通的待测样品,由于事先无法知道被测颗粒的粒度分布特征,不知如何去“特殊”,就难以给出正确的结果。 目前除了真理光学以外,国内外的激光粒度仪厂家的通行做法是,在计算散射矩阵(光学模型)时,即使被测颗粒是透明的,也要人为加一个吸收系数,最常见的数值是0.1。这样在光学模型中就不会出现反常现象,从而使反演结果稳定,或者看上去比较正常。问题在于实际颗粒是无吸收的,人为加吸收必然使测量结果失真。 图9是一个碳酸钙样品的粒度测量结果。该样品经过沉降法的分离,去除了2微米以细的颗粒(可通过显微镜验证)。碳酸钙的折射率是1.69,无吸收。图9(a)是真理光学仪器的测量结果,2微米以细的颗粒含量几乎为零,与预期的一致。图9(b)是在光学模型中加了0.1的吸收系数后的反演结果:在2微米后拖了一个长长的尾巴。我们知道真实的粒度分布中,这个尾巴是不存在的,这是人为加吸收系数所引起的错误结果。有些国外仪器为了避免假尾巴的出现,人为地在1到3微米之间减去一定比例的颗粒含量。这种人为主观的处理会引起新的不良后果:如果在该粒径区域真实存在颗粒,也会被人为减少其含量甚至清零。图8(c)所示的SiO2样品在1微米到3微米之间有一个小峰,但是用该进口仪器测量的结果如图7(c)所示:无论用什么模式分析,这个真实存在的小峰都消失了。图9 在光学模型中给透明颗粒加吸收系数的后果(a)实际的粒度分布 (b)光学模型中加0.1吸收系数后得到的结果 可见,当透明颗粒的粒度分布处在反常区时,通过人为加吸收系数的方法无论怎么做,都有问题。目前国产的真理光学是世界上唯一解决了爱里斑反常变化困扰的厂家。3.4 国内外激光粒度仪对亚微米颗粒的测量能力的比较 采用图6(b)所示的散射光接收系统的仪器是国外品牌,在中国占有很可观的市场份额。然而这种结构由于丢失了0.3微米以细颗粒的光能分布主峰的信息(见图5(b)),从而注定了难以很好地测量0.3微米以细的实际样品(有别于标样,因此通常都用“通用”模式)。图10 某进口仪器和国产真理光学仪器测量纳米硅碳颗粒样品结果的比较 图10是某进口仪器和国产真理光学仪器测量纳米硅碳颗粒样品结果的比较。图10(a)是国外仪器的结果,图10(b)是真理光学的测量结果。两张图中的上图是粒度分布,下图是拟合光能分布与实测光能分布的对比。比较两种结果,可判断真理光学的结果更加真实、可靠。理由是: (A)真理光学的结果拟合残差只有0.43%,而进口仪器的拟合残差高达5.25%。前者拟合更好。 (B)真理光学给出的粒度分布曲线是单峰的,而进口仪器的结果是多峰的。经验告诉我们,正常制造出来的样品极少出现多峰的情况. (C)从光能拟合曲线看,进口仪器在第40单元后测量值(绿线)和拟合值(红线)之间出现较大的偏离,而国产仪器的两条曲线非常一致。 类似的0.3微米以细颗粒的测量案例还有很多。 4. 激光粒度仪行业的未来发展问题 前面三节从激光粒度仪的光学模型、散射光接收系统和反演算法及实际测量能力等三项硬核技术方面对比了国内外激光粒度仪的技术水平和测试性能,表明国产激光粒度仪不会逊色于国外同类产品。真理光学团队发现的爱里斑反常变化现象及规律、独创的斜置梯形窗口克服前向超大角测量盲区以及统一的反演算法等技术,则领先于世界同行。但是,对于激光粒度仪整个行业来说,还存在需要改进甚至急需改进的地方。我的建议如下:(1)国内外的厂家都应正视粒度测量数据对比困难的问题 目前,全球范围内激光粒度仪测量实际样品时给出的数据经常是不可比的。对同一颗粒样品,不同品牌的仪器的测量结果不可比;同一厂家生产的仪器,不同型号之间的结果不可比;更绝的是同一台仪器不同反演模式给出的结果也不可比。到目前为止,对这三个“不可比”,都没有人拿出令人信服的、符合科学的解释。 作者尝试分析一下原因。从理论上说,大家测量相同的样品,使用相同原理的仪器,应该得到相同的结果(在合理的误差范围内)。两个结果如有不同,那么至少有一个结果是错的,甚至两个结果都是错的。这就说明当前国内外的各种激光粒度仪还存在不完善的地方。这些不完善包括:(A)光散射模型上,有的仪器还在使用夫朗和费衍射理论;(B)光的全反射现象的制约,或者大角与小角散射光数据拼接的困难,导致有的仪器没有获得或者没有准确获得大角散光的信息,影响了0.3微米以细颗粒测量的准确性;(C)爱里斑的反常变化引起粒径与散射光分布之间一一对应关系的破坏,除了真理光学,其他品牌都采用人为地在光学模型中给颗粒添加吸收系数的方法来敷衍性地解决,但是没有真正解决,导致结果失真;(D)一种仪器有多种反演算法,从逻辑上就可断定这样的算法是不完善的,而根据作者分析,这个不完善又和不完善点(B)和(C)有关。(E)仪器厂商为了迎合客户的偏好,对原始的粒度分析结果进行了失实的修饰,比如把多峰分布改为单峰分布,把粒度分布中粗、细方向的展宽改窄等等。 仪器技术上的不完善,需要国内外厂家去正视问题,然后改正原先的不足。(2)国内用户应破除对进口仪器的迷信心理 国内很多用户都认为进口仪器就是比国产仪器好。国内用户要是遇到进口仪器的测量结果与国产仪器数据不一致的情况,第一反应就是国产仪器错了。我在前面分析过,进口仪器不比国产仪器好,请用户客观判断。 另一方面,国内有的仪器厂家也拿自己的仪器结果能和国外的结果相一致,来证明自己的高水平。这是自我矮化行为,当然也表明该厂家对自己制造的仪器没有信心。但是国内厂家的这种行为会助长用户原本就有的认为国产仪器水平低的心理。(3)激光粒度仪测量数据的正确运用问题 激光粒度测试报告的核心内容是体积粒度分布。形式上可以是表格或者曲线。有时为了简洁起见,用特征粒径来表示粒度分布。最常见的是D10、D50和D90三个数。其中D50表示样品颗粒的平均粒径(与之并行的也可用D[4,3])),而D10和D90分别表示粒度分布往小粒径和大粒径方向延伸的宽度。在大多数情况下,一个粉体样品的平均粒径和分布宽度(或者均匀性)确定了,其粒度特征也就基本确定了。激光粒度仪国家标准(GB/T 19077-2016/ISO 13320:2009)中明确规定,不允许用D100的数值。这是因为从概率论分析,D100的数值是不稳定的,另外D100实际上并不代表颗粒样品中的最大粒直径。如果把这个值作为最大粒,可能会引发严重的应用后果。 然而在有些激光粒度仪的应用行业,例如电池的正负极材料行业,其国家标准中就把激光粒度仪的Dmax(即D100)作为控制指标。该行业内上下游间的粒度控制指标中,不仅包含了D100,还包还可了D0和Dn10,这些都是误导性的应用。(4) 激光粒度仪的测量下限和上限被严重夸大的问题 目前激光粒度仪的测量范围动辄下限10纳米,上限5000微米以上。这显然被严重夸大了。这会误导客户,扰乱市场。需要行业自律。国家相关组织也要加强督导的力度。
  • 线下培训 | 大昌华嘉激光粒度仪 4月用户培训会
    Microtrac 粒度仪培训大昌华嘉一直秉承着用户至上的宗旨,为广大客户提供高品质和先进技术的仪器,并提供完善的技术支持和售后服务。针对粒度分析概念解析和各种粒度分析方法的比较;软件辅助功能介绍;仪器维护保养,简单故障排查及答疑;麦奇克有限公司(Microtrac Inc.)是世界上知名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。培训内容抢先预告:了解颗粒基本概念、粒度测量方法、激光衍射基本理论,数据解析及误差原因分析,课程共计2天时长。Day1:颗粒的基本概念及粒度测量的方法介绍;激光衍射法测量粒度的基本原理;在选择样品分散方法的基本原则以及影响测量结果的因素分析。Day2:软件功能培训;典型样品测量方法实例,上机实践;硬件的日常维护保养等问题答疑。报名付费及联系方式用户须知:本次培训为期两天,培训费用1500元/人(含培训资料,午餐)1)请您准备两分钟的介绍(简单介绍您的应用和希望解决的问题);2)2021年4月22日 上午9:00 签到收款账号信息如下:公司名称:大昌洋行(上海)有限公司公司地址:上海市外高桥巴圣路275号40楼层西部位税务登记号:9131000060734095X4开户行:德意志银行(中国)有限公司上海分行账号:3502283015行号:712290000012欢迎感兴趣的各位扫码踊跃报名!联系热线:400-821-0778邮箱:ins.cn@dksh.com↓↓↓ 地铁12号线虹梅路站7号口300米↓↓↓ 地铁9号线漕河泾站3号口800米
  • 北大开发出新型激光增强表面等离激元探测技术
    记者从北京大学获悉,该校马仁敏研究员和戴伦教授合作,实现了一种新型激光增强表面等离激元探测技术。  这种新型探测技术的强度探测品质因子比传统的表面等离激元(SPR)探测器高400倍左右。同时成本低,尺寸仅为微米量级,在一根头发丝的端面上即可制备数以千计的探测器。  “该探测器所具有的极高灵敏度、低成本和小体积的特点可能会使其在疾病的早期诊断、公共场所的安全监测和环境食品卫生等领域发挥重要的作用。”马仁敏说。  表面等离激元是一种局域在金属介质界面的局域电磁模式,通过将光频段的电磁波与贵金属中的自由电子的振荡耦合,将电磁场的能量限制在很小的尺度内,其振荡频率对周围环境非常敏感。通过探测由周围折射率变化引起的等离激元共振模式的变化形成的表面等离激元探测器是一种实时和不需要荧光标记的新型探测器。近20年以来,其在疾病诊断、生物化学研究与应用和环境监控等领域取得了非常大的成功。  马仁敏说,用于产生等离激元共振的金属中自由电子的振荡所带来的欧姆损耗在传统的等离激元探测器中不可避免,从基本物理原理上来讲,是进一步提高探测器灵敏度的障碍。马仁敏研究小组将激光原理引入到了表面等离激元探测器中,利用激光中的受激辐射光放大补偿了欧姆损耗,在前期气相超灵敏爆炸物检测的基础上(Nature Nanotechnology, 2014),实现了液相激光增强表面等离激元(LESPR)探测器。  新的探测器主要包括金属层和增益介质层,增益介质层形成在金属层上 在增益介质层和金属层的界面上形成表面等离激元模式,此模式由增益介质层的边界限制从而形成表面等离激元激光腔 待测液体覆盖在增益介质层上 激发光经过待测液体入射至增益介质层,增益介质在激发光的泵浦下产生受激辐射,经由激光腔反馈放大产生表面等离激元激光,该表面等离激元激光的波长和强度与待测液体的折射率有关。  在实验中应用了戴伦教授合成的发光波长在700纳米左右的硒化镉纳米晶体作为增益材料,其发光波长正好位于生物组织和水散射和吸收较小的700纳米到900纳米的窗口波长。相比于通常应用于等离激元激光中的金属银,他们使用了金。  “金虽然具有较高的欧姆损耗,但其化学性质远比银稳定,适合应用于生物和其他复杂环境的应用。”戴伦教授说。  在实验中,除了预期的激光效应补偿欧姆损耗使得等离激元共振的谐振线宽显著变窄意外,他们还发现激光增强表面等离激元探测器具有传统表面等离激元探测器所不具有的高斯光谱线型和无背景辐射的优点。  “这些特点使激光增强表面等离激元探测器具有高达84000的强度探测品质因子,比传统的表面等离激元探测器的强度探测的品质因子高400倍左右。”马仁敏说,“同时,因为使用了微腔效应,整个激光增强表面等离激元探测器的尺寸仅为微米量级,在一根头发丝的端面上即可制备数以千计的探测器,具有低成本、小型化、规模化集成的优点。”  该工作目前已被领域内的知名期刊Nanophotonics接收发表,北京大学博士后王兴远,博士生王逸伦和王所为文章共同第一作者,马仁敏研究员和戴伦教授为通讯作者。同时他们也为该探测器申请了发明专利。
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm, (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 金属加工机床消费增长拉动激光干涉仪需求
    p style=" text-align: center "   中国金属加工机床消费、生产和外贸情况 /p p   2017年中国金属加工机床消费总额299.7亿美元,同比增长7.5%。其中,金属切削机床消费额184.0亿美元,同比增长7.8% 金属成形机床消费额115.7亿美元,同比增长7.0%。金属加工机床消费总体呈现明显的恢复性增长,同比增速较2016年同期回升了6.1个百分点。 /p p   从生产看,2017年金属加工机床总额245.2亿美元,同比增长5.1%。其中,金属切削机床133.5亿美元,同比增长3.6% 金属成形机床111.7亿美元,同比增长7.1%。金属加工机床生产小幅回升,金属成形机床增速仍高于金属切削机床。从增速变化看,金属加工机床同比增速较2016年同期下降0.4个百分点,其中金属切削机床和金属成形机床呈现分化趋势,前者下降2.1个百分点,后者上升1.7个百分点。 /p p   从进出口方面看,2017年金属加工机床出口总额32.9亿美元,同比增长11.4%。其中,金属切削机床21.8亿美元,同比增长13.2% 金属成形机床11.1亿美元,同比增长8.0%。2017年金属加工机床进口总额87.4亿美元,同比增长16.3%。其中,金属切削机床72.3亿美元,同比增长18.4% 金属成形机床15.1亿美元,同比增长7.3%。进出口逆差35.9亿美元,同比增长33.5%,增速较2016年同期上升了64.2个百分点。从今年全年贸易逆差的增速变化可以很明显地看出进口强劲回升的势头。 /p p   综合上述消费、生产和进出口的数据,中国金属加工机床消费市场呈现“总量趋稳、结构升级”的新特征。2017年国内金属加工机床产量增长回稳,同比增长5.3%。国产机床的消费额占比为70.8%,较2016年同期上升2.7个百分点。国产数控机床消费额占比为74.9%,较2016年同期上升1.7个百分点。未来中国金属加工机床消费市场将呈现温和增长的趋势。 /p p style=" text-align: center "   金属加工机床消费增长拉动激光干涉仪需求 /p p   我国目前金属加工机床正由中低端向高端产品升级,在我国金属加工机床升级过程中,对激光干涉仪需求明显增大,像沈阳机床、北京精雕等一次性购买几十台激光干涉仪,各中小型机床厂需求也很强烈,机床干涉仪在机床导轨定位精度、重复定位精度、反向间隙、俯仰偏摆以及旋转轴精度测量方面有着广泛的应用,也是目前最为有效的检测手段。 /p p br/ /p
  • 上海光机所在空气激光的远程探测应用研究中取得新进展
    相干拉曼散射是一种重要的非线性光谱技术,已被广泛用于物质检测、燃烧诊断、生物显微等领域。传统的相干拉曼光谱技术,通常需要多束激光实现分子振转相干性的激发与探测,并对多光束间的时空控制提出了很高的要求。因此,发展单光束相干拉曼散射技术是极具吸引力的研究方向,加州大学伯克利分校、德州农工大学、以色列魏茨曼科学研究所等科研机构都开展了相关研究。然而,以往方法通常需要使用空间光调制器对飞秒激光进行时间、频谱、偏振整形,不能用于大能量飞秒激光,而且拉曼激发光和探测光波长相近,导致拉曼信号的信噪比较低,难以进行痕量分子的灵敏检测。针对上述问题,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室研究团队基于空气激光的独特时频性质和远程产生能力,提出了一种新型单光束相干拉曼散射技术,实现了空气中温室气体SF6的定量测量,检测灵敏度达到千分之四的水平 [Opt. Lett. 47, 481 (2022)]。随后,该团队将基于空气激光的相干拉曼散射技术与种子放大技术、偏振滤波技术相结合,实现了浓度低至万分之三的温室气体检测,并展示了该技术在多组分同时测量、12CO2与13CO2精准分辨方面的独特优势,开拓了空气激光在远程探测领域的初步应用 [Ultrafast Science 2022, 9761458 (2022), 入选期刊封面论文和2021-2022年度10篇高影响力论文]。最近,该研究团队进一步发展了电子共振增强的单光束相干拉曼散射技术,利用一束飞秒激光同时构建了拉曼共振和电子共振双共振条件,通过电子共振将拉曼信号提高了1-2个数量级。单光束电子共振增强相干拉曼散射不仅要求利用一束激光同时完成分子的相干振动的激发与探测过程,而且还要求激发光或探测光与待测物质的电子态跃迁共振,因此一直以来未见报道。该团队利用空气激光巧妙地解决了这一难题,发展的新技术不仅发挥了空气激光频谱窄、与泵浦光束天然重合的优势,而且空气激光频率与CO2+跃迁的完美匹配为拉曼散射创造了电子共振条件,为大幅提升拉曼散射效率提供了简单有效的方法。相关成果发表在近期的Laser Photonics Reviews上。基于空气激光的相干拉曼光谱技术体现了空气激光在时间、空间、频率三大维度上的独特优势,并结合了飞秒激光多组分激发和空气激光高光谱分辨的双重优势,具备多组分同时检测和同位素分子甄别的独特能力,为复杂大气分子灵敏探测提供了全新技术方案。此外,该技术以天然产生的空气激光为探测光,将传统多光束相干拉曼散射简化为单光束,光路简单,无需多光束多色场时空精密控制,适用于高温高压湍流环境和复杂大气环境的远程探测,是一种简单实用的共性光谱技术。相关工作得到了国家自然科学基金重点项目、面上项目、中科院基础研究领域青年团队计划、上海市优秀学术带头人等项目的支持。图1 单光束电子共振增强相干拉曼散射的基本原理图2 不同浓度CO2气体中测得的拉曼光谱,阴影区为电子共振增强的相干拉曼信号
  • 岛津SALD激光衍射粒度仪25周年优惠活动登场
    为综合・ 全面地捕捉粉体物性,岛津公司提供为数众多的粉体测试仪器,助推粉体技术的发展。2013年,岛津激光衍射粒度仪SALD产品系列迎来了25周年。25年来,岛津不断研发出性能更为卓越,使用更为方便、高效的激光粒度仪产品。 SALD-2300激光衍射粒度仪是岛津SALD系列的主力机型,获得世界各地用户的高度好评。SALD-2300可以提供更加广泛的测量范围,并可方便、高效的进行精密测定的粒度仪,其粒径测量范围可达17纳米到2500微米。并且,通过对光路和检测器的优化,灵敏度提高10倍,因此能够轻松应对浓度在0.1ppm到200000ppm之间的样品。 SALD-2300采用了单一高能半导体光源设计,在测定过程中无需切换光源,因此其最短测量间隔仅为1秒,并可连续进行测定,从而可快速对粒子发生的团聚或分散过程进行实时监测,确认样品的状态变化。该光源能量更高,可测定对光吸收严重的粒子,同时具有开机预热时间短,寿命更长的优点。 全新配备的Wing SALDII系列软件着重解决了激光粒度折射率选择的难题,独家配备了自动选择折射率功能。以往,人们都是使用文献中给出的折射率数据,但是折射率会受到粒子粒径和形状的影响,因此这种方法并不可靠。岛津公司在世界上首次在软件中开发了基于LDR原理(光强分布再计算)的自动折射率选择功能,能够根据样品所得粒度数据给出5种最佳推荐折射率,并给出置信度。 为了答谢广大用户多年来的支持,自2013年5月1日起至2013年12月31日,针对SALD-2300及进样器进行优惠促销。 SALD-2300+MS-23湿法测定系统 SALD-2300+DS5干法测定系统 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312 · 浦西分公司 (021) 2201-3888 · 广州分公司 (020) 8710-8661 · 四川分公司 (028) 8619-8421 · 沈阳分公司(024) 2341-4778 · 西安分公司(029) 8838-6350 · 乌鲁木齐分公司(0991) 230-6271 · 昆明分公司(0871) 315-2986 · 南京分公司(025) 8689-0258 · 重庆分公司(023) 6380-6068 · 深圳分公司(0755) 8287-7677 · 武汉分公司(027) 8555-7910 · 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 空间引力波探测星间激光链路构建研究中取得进展
    太极计划通过卫星编队的形式进行空间引力波探测,而构建星间激光链路是其中的关键环节之一。相比应用于星间激光通信、重力场测量等领域的传统星间激光链路构建任务,太极计划需应用有限的星上资源实现三百万公里超远距离激光捕获及1 nrad/Hz1/2量级超高精度指向,因此其实现难度要大得多。为此,提出采用三级捕获探测方案, 通过星敏感器(STR)、CMOS捕获相机及四象限探测器(QPD)逐级探测压制激光指向偏差。目前对该方案的研究仍停留在仿真模拟及关键技术原理方法学论证阶段,并未充分考虑各阶段之间系统参数及核心探测技术之间的耦合关系,亟需通过全流程地面模拟实验进一步验证激光链路方案主要技术指标的可行性。针对上述问题,力学所引力波实验中心与国科大杭州高等研究院太极团队核心成员高瑞弘博士开展了面向太极计划的超高精度星间激光链路构建地面验证技术研究,设计并搭建了激光捕获跟瞄一体化地面模拟实验系统(如图1所示)。该系统在完整还原捕获跟瞄方案光学系统及实施流程的基础上充分考虑了对激光远场波前、高斯平顶光束接收、弱接收光强等空间实际运行情况的模拟。系统采用小口径光阑结合大发散角出射光,依据合理的参数设计及器件选型,在实验室近场传输情况下实现了双端近似夫琅禾费衍射模拟及高斯平顶光束接收。图1 捕获跟瞄一体化地面模拟实验系统实物图。光学平台上放置有CMOS及QPD两级探测器,利用自研的上位机软件可实现捕获-跟瞄全流程自动模拟。模拟实验采用DWS信号实时监测激光指向角度变化,图2所示的实验数据展示了由初始指向—扫描开环捕获—闭环捕获—精密指向的全流程指向角度变化,实现了对初始时刻百微弧度量级指向偏差的逐级压制。图2 捕获-跟瞄全流程模拟实验yaw方向角度变化。在激光捕获探测技术方面,首次提出并采用了改进的质心算法,在百皮瓦级弱光情况下实现了亚像素级光斑中心定位精度。在QPD前设计了共轭成像系统,降低了beam-walk对DWS技术非线性误差产生的影响,提高了精密指向阶段角度测量精度。在QPD探测器处,激光捕获及激光精密指向结果如图3所示,对应到实际400倍放大率的望远镜前均能满足太极计划要求,充分验证了目前拟采用方案的可行性。图3 (a)激光捕获完成后角度残余误差示意图。(b) 激光精密指向阶段残余指向抖动幅度谱密度曲线。综上所述,该项研究工作从物理实验的角度出发,设计并搭建了星间激光链路构建地面模拟实验系统。一方面为相应关键技术研究提供了模拟实验平台,验证了关键技术间的耦合关系,提出方法学上的改进策略并指导器件参数选择;另一方面,充分验证了整个方案的可行性,为未来方案转入工程化实现阶段提供完备的理论验证及技术支持。相关研究成果近期在国际顶级光学期刊《Optics and Lasers in Engineering》上发表。
  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • 激光痕量气体监测仪的新进展:性能和噪音分析
    激光痕量气体监测仪的新进展:性能和噪音分析(Recent progress in laser?based trace gas instruments: performance and noise analysis ,J. B. McManus M. S. Zahniser D. D. Nelson J. H. Shorter S. C. Herndon D. Jervis M. Agnese R. McGovern T. I. Yacovitch J. R. Roscioli, Appl. Phys. B (2015) 119:203–218)摘要我们用一些近来的数据回顾了使用中红外量子级联激光器,带间级联激光器和锑化二极管激光器的发展。这种监测仪主要用于高精度和高灵敏度测量大气中的痕量气体。在高性能软件的控制下,利用吸收光谱进行快速扫描,集成和高精度拟合。通过中红外波段,实现了出色的灵敏度。Aerodyne监测仪证明了在自然情况下痕量气体的测量精度达到1012级别,可实时测量CO2,CO,CH4,N2O和H2O的同位素。我们还描述信号处理方法,以识别和降低测量噪音。光谱信息分析的原理是将光谱加载到数组中并利用滤波片,傅立叶分析,多元拟合和成分分析进行处理。我们提供一个仪器噪音分析的实例,噪音是由电子信号与光干涉条纹混合形成。引言随着各种中红外单片固态激光器的问世,使用基于中红外激光仪器,对大气痕量气体的高精度测量已经成为常规,包括量子级联激光器(QCL),带间级联激光器(ICL)和基于锑化物的二极管激光器(TDL)。在3μm附近的波长范围内有缺口,但现在,设计人员有更多选择,在3μm附近的波长区域频率使用混合技术。在本文中,我们回顾Aerodyne Research,Inc.(下称ARI)公司使用中红外激光监测仪测量不同的痕量气体,并达到高灵敏度和/或高精度水平。这些仪器基于快速扫描和精确光谱拟合的直接吸收光谱,在高性能软件的控制下,在中红外波段,利用长光程,在减压情况下,通过热电冷却的激光和探测器实现出色的灵敏度。这里介绍了两种仪器:单激光仪器,光程长度最大为76 米;双激光仪器,光程长度最大为210 米。通过仔细选择波长,我们可以用单激光器同时测量多种气体。根据吸收率来说,仪器噪音在1 s的平均值为?5×106,可以测量1012级别大气中的气体]。这些仪器可以在多种环境中使用,包括实验室,偏远现场和移动平台(如卡车,轮船和飞机)。ARI公司仪器介绍及其性能一般来说,对于高浓度气体,几毫米的测量光程可能就足够了;但对于痕量气体来说,则需要数百米光程。Aerodyne气体监测仪仪器使用中红外快速频率扫描,直接吸收光谱并进行精确光谱拟合。仪器在减压池中利用较长吸收光程的新型红外激光源,对多种气态分子提供灵活而直接的高精度测量。光谱仪的基本配置比较简单:首先是激光源,然后是多反腔,最后是探测器。图1显示了这种装置。多反腔有确定的路径长度,符合标准的激光可以传输到检测器,对样品气体的测量基于比尔-兰伯特定律。在许多情况下,激光扫描气体出现多个吸收峰,从而测量多个不同气体。让两道或更多激光通过吸收室,或者使用单个检测器时分复用,可以测量更多的气体。Aerodyne监测仪尽可能使用反射光学元件,光学系统几乎没有色散。通过选择不同波段激光和激光驱动,选择峰值灵敏度不同的检测器来匹配,测量给定单一气体或一组气体。对于不同的测量目的,选择不同的吸收光程。一般多反腔的光程为7–76 米,一般使用宽带透镜;对于浓度非常低的气体,210米光程的窄带高反射率透镜可以提高灵敏度。仪器的优化在过去的几年中,我们持续对仪器进行了改进,比如使用了新型的电流驱动器,它提供了QCL高顺从电压情况下的低噪音电流。我们还设计了低噪音激光驱动和其他电子设备,降低整个系统的噪音。使得平均1s采样情况下,吸收噪音为?5×106,在均时100 s具有更高的精度,这相当于约5×10-7的最终吸收噪音。很多因素使得噪音超过检测器限度,特别是窄带电子噪音和光学干涉条纹。中红外激光微量气体仪器由Aerodyne Research,Inc.生产的操作软件“ TDLWintel”控制,让每条激光可以设置为时分复用。TDLWintel可控制监测仪的操作并实时处理数据。两种激光电流斜率由TDLWintel定义,然后对检测到的信号采样(16位A / D在?1-1.5 MHz下运行),同步求平均,基于HITRAN参数以及测得的温度和压力的曲线,与计算出的吸收值拟合,可以对多达16种气体混合比实时记录。数据可以以10Hz采样频率记录,最大有效数据率由泵抽速和吸收池的大小决定。实验过程中一些情况,比如阀门开关或背景消减,也可由TDLWintel软件控制。我们展示了单激光(76米光程)和双激光监测仪(76米或者210米光程)的气体测量噪音结果(平均1s),分别在表1和表2中,测量噪音为以空气中的混合比表示,同时提供了噪音的不确定性。根据不同的吸收路径和测量情况,吸收噪音最佳的结果在1s内约为?5×106。仪器适用在各种环境中,无论是在实验室还是在野外实验中。野外现场包括偏远位置或在移动平台(例如轮船,卡车和飞机)上。我们在最近20年在许多野外现场使用过这些仪器。在过去的几年中,Aerodyne “移动实验室”已配备了多种气相仪器(单激光和双激光监测仪)以及测量颗粒物和较重的有机化合物配套仪器。如测量天然气中的甲烷排放,或者测量两种气体示踪物(例如,亚硝酸盐氧化物和乙炔),移动实验室可以直接开到附近,测量示踪气体以及甲烷。另外,通过测量乙烷(常见天然气的成分),我们可以区分来自天然气设施的甲烷和来自生物来源的甲烷。仪器的噪音分析 了解测量噪音源对于保持仪器性能水平至关重要,通常将重点放在最终的噪音源分析和讨论上,例如探测器噪音,激光噪音或散射噪音。其他噪音源,统称为“技术噪音”,可能来自光学和电子方面,并可能是噪音的主要来源。而在在短时间尺度上的噪音可能是更长的时间范围的漂移。不同的噪音源可能表现出不同的功率谱密度(PSD),例如检测器噪音,而Johnson噪音通常具有平坦的PSD(即白噪音),而激光噪音会表现出闪烁噪音(1 / f PSD)。噪音可能会在频谱中产生随机波动,或者它可能具有窄带频率。另一个复杂因素是信号处理算法对噪音信号的响应。对于Aerodyne,混合比噪音是对噪音信号,以及压力和温度变量中多元拟合的结果。了解和减少噪音的第一步是使用Allan–Werle方差工具分析混合比噪音图(方差作为平均时间的函数)以及功率谱,并将噪音划分类型。Allan-Werle方差工具是一种通用工具,可以评估短时噪音和平均时间极限。按类型划分噪音有助于指示其来源。三种常用噪音包括是暗噪音,轻噪音和成比例噪音。 “暗噪音”(即,在检测器被堵塞的情况下报告的混合比)包括检测器噪音,基本电子(Johnson)噪音以及其他多余的电子噪音。“轻噪音”(正常光照水平但吸收深度很小)包括所有暗噪音加激光噪音(1/f,即闪烁噪音和散射噪音),激光驱动电流噪音(产生幅度波动)和干涉条纹的变化。 “比例噪音”(吸收深度较大时看到的多余噪音)包括激光驱动电流噪音,压力和温度噪音以及峰值位置运动结合调谐率误差。频谱数组处理将频谱分解为许多部分,并显示出较多变量。通常应用于频谱数组的处理工具包括减去偏移量,平均值,拟合度,统计量度,变量[p],[q]或这两者的傅立叶变换,相关性,和主成分分析。尽管有很多处理的实例,但是很难提出一个通用的分析方法,帮助我们了解所看到的一切。即使我们“解剖”光谱并找到大的干涉条纹,这不一定意味着干涉条纹是多余噪音的来源,比如干涉条纹不动或它们的频率太高而无法影响拟合。为了确定,我们需要确定导致多余的噪音因素,该因素的短期波动应与混合比的波动匹配。我们通过一个噪音分析的例子说明了分析过程。结果表明,多余噪音是由两种波的混合,即光学干涉条纹和电子信号混合导致的,产生的低频成分,明显影响混合比的测定,而任一单一波则对结果几乎没有影响。结论 我们对当前Aerodyne Research,Inc.生产的微量气体激光测量仪器进行了综述。提供了一组气体,以及同位素比的测量结果。仪器在性能上的改进包括降低了电源和激光驱动噪音。另外,制造工序变得更加精简。目前吸收噪音在1s内达到?5×106。然而,为获得最佳性能,仍然需要对噪音做进一步的探索。本文中的实例显示,多余噪音是由两种波的混合,由光学干涉条纹和电子信号混合导致。仪器的相关优势1. 持续对仪器的改进及噪音的分析,测量痕量气体的精度更高,测量气体达到ppt级别,甚至在10Hz的频率仍然保持极高的精度;2. 一次同时测量多种气体,消除了多台仪器测量时气体产生的系统误差并大大提高效率;3. 仪器适用于多种环境,满足实验室测量,野外远程测量和移动测量需求。 欲了解该产品的更多特点,欢迎咨询联系澳作生态仪器有限公司
  • 未来5年激光产业将以每年20%的速度增长
    日前,由中国中小企业国际合作协会主办,湖北省工商联、湖北省企业国际合作协会等单位共同承办的首届国际激光产业高峰论坛在武汉光谷希尔顿酒店召开。作为全球首届全产业链的国际激光盛会,激光产业链上中下游200余家上市公司,数百家大中型企业、大专院校、研究机构等近800余位专家学者参会,会上成立了全国第一家以产业化为宗旨的激光行业协会,并设立了一支50亿元规模的产业基金。多家国外大型激光企业参会人员表示,看好光谷激光产业市场,想在光谷设立分部。   &ldquo 随着国家新一轮产业政策的调整,激光产业将获得更多的发展机遇,预计未来5年内,激光产业将以每年20%的速度增长。&rdquo 中国中小企业国际合作协会副会长、中国国际贸易促进委员会副会长董松根在致辞中说。   激光企业又该如何打造自己的核心竞争力呢?他表示,希望中国激光企业以激光产业协会为平台,上中下游产业链企业能开展更紧密的合作。   东湖高新开发区管委会副主任夏亚民介绍,现在正是激光行业发展的冲刺时期,东湖高新技术开发区作为全国第二个国家自主创新示范区,将大力推进光谷近200家激光企业的发展。目前光谷已经准备规划建设一个激光产业园,并将出台专门支持激光产业发展的优惠政策。   为了进一步服务国内激光企业,全国第一家以产业化为宗旨的激光行业协会,即中国中小企业国际合作协会激光产业分会成立。为帮助数千家中小型激光企业解决融资难的问题,并帮助激光企业并购、重组、上市,会上还设立了全国第一支50亿元规模的激光产业基金,协会还与招商银行签订100亿元授信资金合作战略。   会议期间,参会企业代表通过激光加工、激光产业、激光企业融资等不同主题的演讲,讲述激光行业发展现状和发展趋势。据了解,国际激光产业高峰论坛以后将每年举办一次。
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 研究生利用激光遥感制作实时监测雾霾探测仪
    历经连续多天的雾霾天气,北京终于拨霾见日,大快人心。然而,民众对空气质量的担忧恐慌情绪,却不会像雾霾一样散去。面对日益紧迫的雾霾问题,除了戴上防霾口罩,我们又能做些什么?......雾霾之下,没有看客,我们每个人都应该积极行动起来,你知道吗?西安的一群大学生为我们做了一个良好的表率。  前不久,西安理工大研究生代晨昱和同学们发明了一款便携式雾霾空间分布激光探测仪,可以实时监测大气污染物的仪器,打破了传统环保部门测量大气污染物的方法,将激光遥感技术应用到了雾霾监测领域。据悉,该仪器还荣获了陕西省大学生课外学术科技作品大赛一等奖。  打破陈规 用激光遥感监测领域  目前,相关部门监测大气污染物主要采用的是直接称重、多点监测、人工取样等方法,上述方法都仅是单点测量。例如直接称重法,是抽取等量空气将污染物停留在过滤膜上,直接称其重量,计算单位体积中的污染物浓度。而多点监测需要架设许多仪器,不仅耗时耗力,还不具有实时性。因为大气是流动的,往往当工作人员把仪器上的数据整理出来时,污染源的位置、雾霾污染的空间分布等已经发生了变化。  实际上,城市每个区域的PM2.5数值都不一样,而且数据也是不断变化的,这就让代晨昱萌生了用专业知识发明一种可以实时监测大气污染物的仪器的想法。经过近两年努力,他和同学们完成了设计发明工作。探测仪弥补了现有雾霾探测仪无法进行大面积探测的缺陷,大大拓展了探测距离。这款仪器的夜间探测距离为10-20 km,白天探测距离为5-8km。  探测仪整体系统主要由激光发射系统、光学接收系统、光电探测系统、数据采集处理系统及三维扫描控制系统五部分组成。代晨昱解释,这套系统主要运用了光散射和光测距两大原理。由激光发射系统发出脉冲激光进入大气,激光与大气中的雾霾颗粒发生散射后,由光学接收系统接收后向散射回波信号,再由光电探测系统将光信号转换为电信号,最后由数据采集处理系统利用模拟探测方式完成数据采集与处理。  实时监测,雾霾无处逃遁  这款便携式雾霾空间分布激光探测仪,相较于单点测量,扩大了探测范围,还可对污染源的位置、污染程度、污染物的扩散方式及传播途径进行实时监测,继而对雾霾污染的出现提前预警,使有关部门前移工作关口,采取应对措施缓解污染问题。弥补了现有雾霾探测仪无法进行大面积探测的缺陷,大大拓展了探测距离。这款仪器的夜间探测距离为10-20 km,白天探测距离为5-8km。  以城区面积约为860余平方公里的西安市为例,实验表明,4-6台探测仪就可以实现整个西安市区的覆盖探测,工作效率着实提升了不少。  代晨昱表示,这款仪器可以与现有的颗粒物监测仪器设备配合工作,不仅可以弥补现有仪器的缺陷,配合工作后测试出来的结果精度更高。他们也期待可以和有关单位部门、企业合作,为治污减霾贡献出自己的一份力量。  年轻的大学生也懂得要以己之力,为社会贡献一份力量。身为地理信息行业的从业者,手握各种地理空间技术,在这场休戚与共的雾霾反击战中,也应多思考,多行动,多出力,守护苍穹之下的那片蓝天。
  • 助力氨逃逸监测,众瑞ZR-3230型便携式激光氨气分析仪新品上市!
    导读ZR-3230型便携式激光氨气分析仪是基于TDLAS(可调谐半导体激光吸收光谱)原理,用于测量固定污染源排气中氨气浓度的便携式仪器。高温伴热减少管路吸附,取样管与工况参数模块集成一体化设计,具有测量精度高、可靠性好、响应速度快等特点。产品广泛应用于环保、检测公司、工矿企业(电厂、钢铁厂、水泥厂、糖厂、造纸厂、冶炼厂、陶瓷厂、锅炉炉窑,以及铝业、镁业、锌业、钛业、硅业、药业,包括化肥、化工、橡胶、材料厂等)、卫生、劳动、安监、军事、科研、教育等领域。
  • 激光外差干涉技术在光刻机中的应用
    激光外差干涉技术在光刻机中的应用 张志平*,杨晓峰 复旦大学工程与应用技术研究院上海市超精密运动控制与检测工程研究中心,上海 201203摘要 超精密位移测量系统是光刻机不可或缺的关键分系统之一,而基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。目前应用于光刻机的超精密位移测量系统主要有双频激光干涉仪和平面光栅测量系统两种,二者均以激光外差干涉技术为基础。本文将分别对这两种测量系统的原理、优缺点以及在光刻机中的典型应用进行阐述。关键词 光刻机;外差干涉;双频激光干涉仪;平面光栅1 引言集成电路产业是国家经济发展的战略性、基础性产业之一,而光刻机则被誉为集成电路产业皇冠上的明珠[1]。作为光刻机三大指标之一的套刻精度,是指芯片当中上下相邻两层电路图形的位置偏差。套刻精度必须小于特征图形的1/3,比如14 nm节点光刻机的套刻精度要求小于5.7 nm。影响套刻精度的重要因素是工件台的定位精度,而工件台定位精度确定的前提则是超精密位移测量反馈,因此超精密位移测量系统是光刻机不可或缺的关键分系统之一[2-4]。随着集成电路特征尺寸的不断减小,对位置测量精度的需求也不断提高;同时,为了满足光刻机产率不断提升的需要,掩模台扫描速度也在不断提高,甚至达到 3 m/s 以上;此外,为了满足大尺寸平板显示领域的需求,光刻机工件台的尺寸和行程越 来越大,最大已达到 1. 8 m×1. 5 m;最后,为了获得工件台和掩模台良好的同步性能,光刻机还要求位置测量系统具备多轴同步测量的功能,采样同步不确定性优于纳秒级别[5-8]。 综上,光刻机要求位置测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程、数米每秒测量速度、闭环反馈以及多轴同步等特性。目前,在精密测量领域能同时满足上述测量要求的,只有外差干涉测量技术。 本文分别介绍外差干涉测量技术原理及其两 种具体结构——双频激光干涉仪和平面光栅测量系统,以及外差干涉技术在光刻机中的典型应用。 2 外差干涉原理 2. 1 拍频现象 外差干涉又称为双频干涉或者交流干涉,是利用“拍频”现象,在单频干涉的基础上发展而来的一 种干涉测量技术。 假设两列波的方程为 x1 = A cos ω1 t , (1) x2 = A cos ω2 t 。 (2) 叠加后可表示为(3)拍频定义为单位时间内合振动振幅强弱变化 的次数,即 v =| (ω2 - ω1)/2π |=| v 2 - v 1 | 。 (4) 波 x1、x2 以及合成后的波 x 如图 1 所示,其中包 络线的频率即为拍频,也称为外差频率。如果其中一个正弦波的相位发生变化,拍频信号的相位会发生完全相同的变化,即外差拍频信号将完整保留原始信号的相位信息。 图 1. 拍频示意图Fig. 1. Beat frequency diagram对于激光而言,因为频率很高(通常为 1014 Hz 量级),目前的光电探测器无法响应,但可以探测到两束频率相近的激光产生的拍频(几兆到几十兆赫兹)。因此拍频被应用到激光领域,发展成激光外差干涉技术。2. 2 外差干涉技术 由拍频原理可知 ,所谓外差就是将要接收的信号调制在一个已知频率信号上,在接收端再将该调制信号进行解调。由于高频率的激光信号相位变化难以精确测量,但利用外差干涉技术可以用低频拍频信号把高频信号的 相位变化解调出来,将大大降低后续精确鉴相的难度。因此,外差技术最显著的特点就是信号以交流的方式进行传输和处理。 与单频干涉技术相比,外差干涉技术的突出优点是:1)由于被测对象的相位信息是加载在稳定的差频(通常几兆到几十兆赫兹)上,因此光电探测时避过了低频噪声区,提高了光电信号的信噪比。例如在外界干扰下,测量光束光强衰减 50% 时,单频干涉仪很难正常工作,而外差干涉仪在光强衰减 90% 时仍能正常工作 ,因此更适用于工业现场 。 2)外差干涉可以根据差频信号的增减直接判别运动方向,而单频干涉技术则需要复杂的鉴相系统来 判别运动方向。单频干涉技术与外差干涉技术对比如表 1 所示。表 1. 单频干涉技术与外差干涉技术对比Table 1. Comparison between homodyne interferometry and heterodyne interferometry3双频激光干涉仪 3. 1 双频激光干涉仪原理 双频激光干涉仪是在单频激光干涉仪的基础上结合外差干涉技术发展起来的,其原理如图 2 所 示。双频激光器发出两列偏振态正交的具有不同频率的线偏振光,经过偏振分光器后光束被分离。 图 2. 双频激光干涉仪原理图Fig. 2. Schematic diagram of dual frequency laserinterferometer设两束激光的波动方程为 E1 = E R1 cos ( 2πf1 t ) E2 = E R2 cos ( 2πf2 t ) , (5) 式中:ER1和 ER2为振幅;f1和 f2为频率。 偏振态平行于纸面的频率为 f1 的光束透过干涉仪后,被目标镜反射回干涉仪。当被测目标镜移动时,产生多普勒效应,返回光束的频率变为 f1 ± Δf, Δf 为多普勒偏移量,它包含被测目标镜的位移信息。经过干涉镜后,与频率为 f2 的参考光束会合,会合后光束发生拍频,其光强 IM函数为 (6) 式(6)包含一个直流量和一个交流量,经光电探测器转换为电信号,再进行放大整形后,去除直流量,将交 流量转换为一组频率为 f1 ± Δf- f2的脉冲信号。从双频激光器中输出频率为 f1 - f2 的脉冲信 号,作为后续电路处理的基准信号。测试板卡采用减法器通过对两列信号的相减,得到由于被测目标 镜的位移引起的多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为 (7) 式中:λ 为激光的波长;N 为干涉的条纹数。因此, 只要测得条纹数,就可以计算出被测物体的位移。 3. 2 系统误差分析 双频激光干涉仪的系统误差大致由三部分组成:仪器误差、几何误差以及环境误差,如表 2 所示。 三种误差中,仪器误差可控制在 2 nm 以内;几何误 差可以通过测校进行动态补偿,残差可控制在几纳米以内;环境误差的影响最大,通常可达几十纳米到几微米量级,与测量区域的环境参数(温度、压 力、湿度等)有关,与量程几乎成正比,因此大量程测量时,需要对环境参数进行控制。 表 2. 双频激光干涉仪系统误差分解Table 2. System error of dual frequency laser interferometer4 平面光栅测量系统 双频激光干涉仪在大量程测量时,精度容易受 温度、压力、湿度等环境因素影响,研究者们同样基于外差干涉原理研发了平面光栅测量系统,可克服双频激光干涉仪的这一缺点。 4. 1 基于外差干涉的光栅测量原理 众所周知 ,常规的光栅测量是基于叠栅条纹的,具有信号对比度差、精度不高的缺点。基于外差干涉的光栅测量原理如图 3 所示,双频激光器发出频率 f1 和 f2 的线偏振光,垂直入射到被测光栅表面,分别进行+1 级和−1 级衍射,衍射光经过角锥反射镜后再次入射至被测光栅表面进行二次衍射, 然后会合并沿垂直于光栅表面的方向返回。由于被测光栅与光栅干涉仪发生了相对运动,因此,返回的激光频率变成了 f1 ± Δf和 f2 ∓ Δf,其中 Δf为多 普勒频移量,它包含被测目标镜的位移信息。 图 3. 基于外差干涉的光栅测量原理Fig. 3. Principle of grating measurement based on heterodyne interference会合后的光束 f1 ± Δf 和 f2 ∓ Δf 发生拍频,其频率为 ( f1 ± Δf ) - ( f2 ∓ Δf ) = ( f1 - f2 ) ± 2Δf。(8) 式(8)的信号与双频激光器中输出频率为 f1 - f2 的 参考信号相减,得到多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为(9) 式中 :p 为光栅的栅距 ;N 为干涉的条纹数 。 因此,只要测得条纹数 ,就可以计算出被测物体的位移。 上述原理推导是基于一维光栅刻线的,只能测量一维运动。为了获得二维测量,只需将光栅的刻线由一维变成二维(即平面)即可。 4. 2 两种测量系统优缺点对比 由此可知,基于外差干涉的光栅测量原理与双频激光干涉仪几乎完全相同,主要的差别是被测对象由反射镜换成了衍射光栅。两种测量系统的优缺点如表 3 所示。表 3. 双频激光干涉仪与光栅测量系统对比Table 3. Dual frequency laser interferometer versus gratingmeasurement system5外差干涉测量在光刻机中的应用 发展至今,面向 28 nm 及以下技术节点的步进扫描投影式光刻机已成为集成电路制造的主流光刻机。作为光刻机的核心子系统之一的超精密工件台和掩模台,直接影响着光刻机的关键尺寸、套刻精度、产率等指标。而工件台和掩模台要求具有高速、高加速度、大行程、超精密、六自由度(x、y 大 行程平动,z 微小平动,θx、θy、θz微小转动)等运动特点,而实现这些运动特点的前提是超精密位移测量反馈。因此,基于外差干涉技术的超精密位移测量子系统已经成为光刻机不可或缺的组成部分。 4. 光刻机中的多轴双频激光干涉仪[10]Fig. 4. Multi-axis dual frequency laser interferometer in lithography machine[10]图 4 为典型的基于多轴双频激光干涉仪的光刻机工件台系统测量方案[10],在掩模台和硅片台的侧面布置多个多轴激光干涉仪,对应地在掩模台和硅 片台上安装长反射镜;通过多个激光干涉仪的读数解算出掩模台和硅片台的六自由度位移。 然而,随着测量精度、测量行程、测量速度等运动指标的不断提高,双频激光干涉仪由于测量精度易受环境影响、长反射镜增加运动台质量致使动态性能差等问题难以满足日益提升的测量需求。因 此,同样基于外差干涉技术的平面光栅测量系统成为了另一种选择[8]。 光刻机工件台平面光栅测量技术首先由世界光刻机制造巨头 ASML 公司取得突破。该公司于 2008 年 推 出 的 Twinscan NXT:1950i 浸 没 式 光 刻机,采用了平面光栅测量技术对 2 个工件台的六自 由度位置进行精密测量。如图 5 所示,该方案在主基板的下方布置 8 块大面积高精度平面光 栅(约 400 mm×400 mm),在两个工件台上分别布置 4 个 平面光栅读数头(光栅干涉仪),当工件台相对于平 面光栅运动时,平面光栅读数头即可测出工件台的 运动位移[2,5,9]。图 5. ASML 光刻机的平面光栅测量方案[2,5,9]Fig. 5. Plane grating measurement scheme of ASML lithography machine[2,5,9]相比多轴双频激光干涉仪测量方案,平面光栅测量方案具有以下优点:1)测量光路短(通常小于 20 mm),因此测量重复精度和稳定性对环境变化不 敏感;2)工件台上无需长反射镜,因此质量更轻、动态性能更好。 然而,平面光栅测量方案也有其缺点:1)大面积高精度光栅制造难度太大;2)由式(9)可知,位移 测量结果以栅距 p 为基准,然而受栅距均匀性限制, 测量绝对精度不高。为了获得较好的精度和线性度,往往需要利用双频激光干涉仪进行标定。 面临极端测量需求的挑战 ,Nikon 公 司 在 NSR620D 光刻机中采用了平面光栅和双频激光干涉仪混合测量的技术方案[9],如图 6 所示。该方案 将平面光栅安装在工件台上表面,而将光栅读数头安装在主基板下表面,同时增加了双频激光干涉仪,结合了平面光栅测量系统和双频激光干涉仪的 优点。在读头与读头切换时采用双频激光干涉仪进行在线校准。 图 6. Nikon光刻机混合测量方案[9]Fig. 6. Hybrid measurement scheme of Nikon lithography machine [9]6激光外差干涉系统的发展趋势 无论是双频激光干涉仪还是平面光栅测量系统,要想获得纳米级测量精度,既需要提高测量系统本身的精度,更需要从使用的角度努力,即“三分 靠做,七分靠用”。 就激光外差干涉测量系统本身而言,误差源主要来自于光学非线性误差。在外差干涉测量系统 中,由于光源及光路传输过程各光学器件性能不理想或装调有偏差,会带来两个频率的光混叠现象, 即原本作为测量信号频率 f1(或 f2)的光中混杂了频 率 f2(或 f1)的光,或原本作为参考信号频率 f2(或 f1) 的光中混杂了频率 f1(或 f2)的光。在信号处理中该混叠的频率信号会产生周期性的光学非线性误差。尽管目前主流的双频激光干涉仪厂家已经将非线性误差控制在 2 nm 以内[10- 12],但应用于 28 nm 以下光刻机时仍然需要进一步控制该误差。国内外众多学者从非线性误差来源、检测和补偿等角度出发,进行了大量研究并取得了丰硕成果[13- 17]。这些成果有望对非线性误差的动态补偿提供理论支持。 从应用角度,研究热点主要集中在应用拓展、 安装误差及其测校算法、环境参数控制及其补偿方法研究等方面。在应用拓展方面,激光外差干涉技术除了应用于测长之外,还在小角度测量、直线度、平面度、反馈测量等方面取得了应用[18- 20]。在安装误差和环境误差补偿算法方面,主要聚焦于多自由度解耦算法、大气扰动补偿等研究方向[4,21- 27]。 7 总结 阐述了光刻机对位移测量系统大量程、亚纳米 分辨率、纳米精度、高测速及多轴同步的苛刻要求。 概述了激光外差干涉技术原理,指出目前为止,激光外差干涉技术是唯一能满足光刻机上述要求的超精密位移测量技术。并综述了两种基于激光外差干涉技术的测量系统:双频激光干涉仪和平面光栅测量系统。总结了这两种位移测量系统在光刻机中的典型应用,以及激光外差干涉技术的当前研究热点和发展趋势。全文详见:激光外差干涉技术在光刻机中的应用.pdf
  • 基于拉曼光谱学的新激光探测仪能“听”出脑内癌细胞
    在脑外科手术中,医生的眼睛在显示屏和病人间来回穿梭会影响他们的专注力。据《新科学家》杂志网站11月7日报道,英国几个大学和医院的科学家合作开发出一种激光探测仪,能把脑细胞光谱信号转换成音频,让医生通过“听”来辨别癌细胞与健康细胞。新技术能帮助医生更快速、更安全地完成脑外科手术。  新激光探测仪在去年研发基础上改进而成。之前的探测仪也能帮助医生辨别脑内癌细胞所在区域,但只能通过显示屏可视化呈现。而新探测仪能将图谱信号转换成音频信号,使医生能“听”出脑内癌细胞,从而将眼睛集中于手术切除部位。参与研究的斯特拉斯克莱德大学的马修贝克表示,新技术能精准地发出信号指导,让医生“目不转睛”地专注于手术。  激光探测仪的工作原理基于拉曼光谱学,可向脑细胞发出激光,并对反射回来的光谱进行分析,形成一个类似细胞指纹的光谱图。光谱图的形状能告诉医生所照射细胞是否癌变。研究团队这次为探测仪安装了一套全新的音频信号软件,该软件能够捕获图谱信号的重要特征,并将这些信号特征转换成声音。  初步检测结果表明,只用耳听,医生依靠激光检测仪辨别出健康细胞和癌变细胞的准确率高达70%。贝克表示,虽然比看光谱信号90%的准确率要低,但他们有信心通过改进继续提高。  对脑癌患者来说,癌变细胞未清除干净会留下复发和转移隐患,而切除健康细胞,神经功能又会受到损害,造成严重的副作用。下一步,他们将争取早日对激光检测仪进行临床试验,以帮助医生尽量将癌变脑细胞清除干净,又不会切除健康细胞。
  • 张福根专栏|激光粒度仪应用导论之结构篇
    p style=" text-indent: 2em " span style=" font-family:宋体" 经典的激光粒度仪的光学结构如下图所示。它由激光器、空间滤波器、准直镜、测量池、傅里叶透镜和环形光电探测器这列组成。此外还有数据采集板和计算机。从激光器发出的激光束经过空间滤波器后,变成一束发散但波前纯净的光束,经准直透镜后,变成一束平行光,照射到测量池中的待测颗粒上,被颗粒散射。散射光透过测量池的玻璃,被傅里叶透镜收集起来。在傅里叶透镜的后焦面上,放置了一个环形探测器阵列。探测器阵列由数十个独立的探测单元组成,每个单元都是一个环带,所有环带对应于相同的圆心。环带的平均半径从圆心往外数呈指数式增长,理想情况下环带的有效探测面积与环带的平均半径成正比。环带的共同圆心上开了一个直径约 /span 100 span style=" font-family:宋体" 微米的通孔(也有做成实心反射面的)。通孔的中心(也是环带的圆心)位于光学系统的光轴上。通孔的后方斜置了一个独立的探测器,通常被称为“零环探测器”或“中心探测器”,而中心外的其他单元从里往外数分别称为 /span 1 span style=" font-family:宋体" 环、 /span 2 span style=" font-family:宋体" 环、 /span 3 span style=" font-family:宋体" 环, /span ?? span style=" font-family:宋体" 。未经散射的光被聚焦到中心孔内,穿过探测器阵列平面,照射到零环探测器上。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201808/insimg/60fa3bb2-9d98-450f-b12b-5e01a5441cfe.jpg" title=" 图2.jpg" / /p p style=" text-align: center text-indent: 2em " span style=" font-family:宋体" 激光粒度仪工作原理示意图 /span /p p style=" text-indent: 2em " span style=" font-family:宋体" 傅里叶透镜把相同散射角的光线聚焦到探测平面相同的半径位置上,因此每个探测单元接收到的散射光代表一个确定的散射角范围内散射光能的总和。未被颗粒散射的光被聚焦到中心探测器上。该探测器根据测量池中放入被测颗粒前后接收到的光信号的相对变化(称为“遮光比或遮光度”),可以判断待测颗粒在测量池中的浓度。颗粒浓度应该控制在适合的范围内,以保证散射信号既有足够高的信噪比,又不会发生复散射(即入射光只被颗粒散射一次)。其他探测单元用来接收散射。散射光被探测器转换成电信号,再经数据采集板放大和 /span A/D span style=" font-family:宋体" 转换,变成数字信号,然后传输给计算机。计算机软件根据散射光能分布计算散射颗粒的粒度分布。这个计算过程是一个求解高阶、病态的线性方程组的过程,行业中通常称为“反演过程”,具体的算法称为“反演算法”。计算机同时还担负整个仪器系统的协调控制任务。 /span /p p style=" text-align: center text-indent: 0em " span style=" font-family:宋体" img src=" http://img1.17img.cn/17img/images/201808/insimg/a2d22faa-0b31-42c2-bba4-f49b51e620e4.jpg" title=" 微信图片_20180803162750.png" / /span /p p br/ /p p style=" text-indent: 2em " strong span style=" font-size:15px line-height:107% font-family:宋体" 编者按: /span /strong span style=" font-size:15px line-height:107% font-family:宋体" 本文带我们了解了激光粒度仪的基本结构,与“激光粒度仪应用导论之原理篇”一起,为读者构建了激光粒度仪的理论基础,然而掌握理论不等于善于应用,编者通过走访和论坛冲浪发现,不少激光粒度仪初级用户在解读粒度分析报告时都犯了难。别着急,张福根博士系列专栏——激光粒度仪应用导论之报告解读篇,就将照方抓药,为你答疑解惑。 /span /p p style=" text-indent: 2em text-align: right " span style=" font-size:15px line-height:107% font-family:宋体" (作者:张福根) /span /p p br/ /p
  • 浅谈激光干涉技术及应用现状
    激光干涉技术主要应用光波的空间相干特性。具体而言,对于两束光波或电磁波等横波,当波长相等、且相位差为2π整数倍时,合成波的振幅叠加增强至最大;当相位差为π奇数倍时,合成波的振幅抵消减小至最小。早在十九世纪下半叶,科学家们就已发明了多种原理干涉结构装置用于科学研究,其中最著名的是迈克尔逊-莫雷干涉试验,该实验采用钠光源平均谱线近似单色光进行干涉测量,从而否定了“以太”的假说。图1 迈克尔逊-莫雷干涉试验激光干涉仪的构成真正促进干涉技术巨大进步的契机是1960年激光器的发明。激光由于具有极窄的谱线,因而具有非常优秀的空间相干性。目前激光干涉仪主要的用途包括精准的尺寸和移动距离测量,测量准确度最高可以达到纳米甚至亚纳米量级。在构成上激光干涉仪最常使用的波长为632.8 nm,对于经典的迈克尔逊干涉测量原理,由激光器中出射的单色激光经过50:50半透半反的分束镜后分为2束光束,其中一束经过固定的光程后被反射镜反射,称为参考光束;另外一束光束由于存在被测对象,被反射镜反射后光程发生改变(距离或折射率变化引起),称为测量光束。当两束光被反射后在分束镜第二次合成并随后照射探测器上被接收后,将产生干涉条纹的移动。由之前的光波的叠加性可知,假设测量光路距离变化为316.4 nm,当只存在一去程一回程的情况下,此时干涉条纹相位变化2π。目前商用激光干涉仪普遍采用两去程两回程,同时采用1024倍电子细分卡,因此分辨率可达0.16 nm。图2 激光干涉仪原理构造激光干涉仪的应用现状1. 在工业领域应用随着理论研究的深入和技术的不断进步,激光干涉测量技术目前精彩纷呈,在多个领域中都得到了非常广泛的应用。 包括单频激光干涉仪、双频激光干涉仪、激光平面干涉仪、法布里-珀罗干涉仪、皮米激光干涉仪、多波长干涉测距等。 单频和双频激光干涉仪。测量具有非接触和无损检测的特点,能够在线测量长度、角度和转速等参数,因此已成为各国精密数控机床在线定位精度测量的最主要标准之一。在精密加工过程中,位置精度是机床的重要指标,激光干涉仪通过在线位置测量、实时数据处理实现机床误差修正。另外在集成电路制造中,激光干涉仪也是光刻机在线位移测量的核心部件。图3 激光干涉仪在精密机床中的应用激光平面干涉仪。激光干涉仪不仅可以用于测量长度、角度以及位移,也可以测量物体的表面形貌。测量基本原理为激光菲索(Fizeau)干涉,激光经过扩束后先后经过参考平面和待测平面,两个平面的反射光发生干涉后产生干涉条纹,通过成像系统接收。分析条纹形状即可判断是否存在缺陷。图4 激光平面干涉仪皮米激光干涉仪。现在随着微纳测量分辨率要求的进一步提高,出现了商品化的皮米激光干涉仪。皮米激光干涉仪采用包覆光纤作为激光传输介质,有效减小了空气折射率扰动对测量的影响;同时在干涉方式上干涉仪采用法布里-珀罗(F-P)干涉仪原理,是一种多倍程干涉,进一步提高了分辨率。 图5 皮米激光干涉仪多波长干涉绝对测距。采用单波长干涉测距虽然分辨率可达到纳米级,但是单波长干涉测距是相对测量,且测量时光路不能中断,而多波长干涉能很好解决这个问题。因为在干涉测距中波长就像一把量尺,但如果测量距离大于这把量尺,则需要多次拼接测量。多波长干涉能形成很长的等效波长,使量尺范围大于被测距离,实现绝对距离测量。图6 多波长干涉绝对测距光相控阵雷达。随着自动驾驶技术的高速发展,现在激光干涉技术也应用在光相控阵(OPA)激光雷达(LiDAR)中。激光雷达会产生一系列密集超短激光脉冲扫描周围物体,通过脉冲返回时长差判断距离和轮廓。光相控阵雷达利用光栅干涉原理,可以通过改变不同狭缝中入射光线的相位差来改变光栅后中央条纹(主瓣)位置,从而控制激光雷达光束的指向和转向。 图7 激光干涉技术在光相控阵雷达中的应用2. 在科学研究方面应用激光干涉引力波天文台(LIGO)。LIGO用于验证广义相对论预言的引力场扰动产生的时空扭曲。它本质上是一个超大型迈克尔逊干涉仪,由2条4千米长的互相垂直的臂构成,同时光线还会在臂内折返300次。当引力波会产生空间弯曲,干涉结果也会轻微变化。2017年美国科学家借助LIGO观测到双中子星合并引力波事件并获得了诺贝尔物理学奖。图8 激光干涉引力波天文台(LIGO)激光全息干涉测量技术。利用非共面多光束干涉可以在空间形成二维或三维周期性强度分布,从而被用来制作二维或三维光子晶体;利用全息干涉技术可用于位移及形变测量、应变与应力分析、缺陷或损伤探测、振动模式可视化及测量、晶体和蛋白质生长过程监测、流体中密度场和热对流场的观察与测量。图9 激光全息干涉测量技术作者:中国计量科学研究院副研究员 李琪
  • 激光雷达 lidar
    激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。   成像激光雷达可水下探物   美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。 美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。 History and Vision History Velodyne's expertise with laser distance measurement started by participating in the 2005 Grand Challenge sponsored by the Defense Advanced Research Projects Agency (DARPA).A race for autonomous vehicles across the Mojave desert, DARPA's goal was to stimulate autonomous vehicle technology development for both military and commercial applications. Velodyne founders Dave and Bruce Hall entered the competition as Team DAD (Digital Audio Drive), traveling 6.2 miles in the first event and 25 miles in the second. The team developed technology for visualizing the environment, first using a dual video camera approach and later developing the laser-based system that laid the foundation for Velodyne's current products. The first Velodyne LIDAR scanner was about 30 inches in diameter and weighed close to 100 lbs. Choosing to commercialize the LIDAR scanner instead of competing in subsequent challenge events, Velodyne was able to dramatically reduce the sensor's size and weight while also improving performance. Velodyne's HDL-64E sensor was the primary means of terrain map construction and obstacle detection for all the top DARPA Urban Challenge teams. Vision Velodyne's ultimate vision for its LIDAR technology is simple: to save lives. We see the day where this sensor technology is deployed on every vehicle in the world. While traditional LIDAR sensors have relied on fixed electronics and rotating mirrors to deliver a 3-D terrain map, the rotation of an entire array of multiple fixed lasers has proven to be a quantum leap forward in sensing technology. This accomplishment has been termed a "disruptive event" by car safety research groups, who see the technology as a reason to rethink all that we know about vehicle sensors and the safety systems they enable. Until the day when we help eliminate automobile-relatedcasualties, Velodyne plans to market its unique LIDAR technology wherever sophisticated 3-D environment understanding is required: robotics, map capture, surveying, autonomous navigation, automotive safety ystems, and industrial applications. 激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • 2013年激光行业前景分析
    激光是20世纪60年代发展起来的一门新兴科学。它是一种具有亮度高、方向性好、单色性好等特点的相干光。   激光应用于材料加工,使制造业发生了根本性变化,解决了许多常规方法无法解决的难题。在航天工业中,铝合金用激光焊接的成功被认为是飞机制造业的一次技术大革命。激光加工技术在汽车工业中的使用,实现了汽车从设计到制造的大变化,优化汽车结构,减轻了汽车自重,最终使汽车性能提高,耗油量降低。激光精加工和激光微加工不仅促进了微电子工业的发展,而且为微型机械制造提供了条件。另外,传统加工方法大都为力的传递,因此加工速度受到限制,而激光加工更多地是光的传递,惯性小,柔性大,而且激光能量密度高,加工速度可以很快,激光加工被誉为“未来制造系统共同的加工手段”。总之激光加工技术在世界范围内的迅猛发展正在引起一场新的工业革命,最终使材料加工业从目前的电加工时代过渡到光加工时代。   2012年在全球经济低迷不振的大环境下,激光器制造商在“经济余震”中所经历的不确定性和担忧,在经济大衰退之后的几年内将依然存在。然而从长远销售预期来看,在很多几乎不受地域或者全球性经济衰退影响的领域,激光正在作为一种成熟的、对经济增长发挥重要作用的技术,呈现出上扬态势。尽管预计全球债务危机将会限制2013年的某些资本设备支出,但是激光器有望凭借“能实现制造自动化、提高效率、降低能耗,进而使企业在经济风暴中更具竞争力”的优势脱颖而出。   半导体制造业发展迅速,“绿色”技术无疑具有光明的未来,这就要求有新的激光加工工艺与技术来获得更高的生产品质、成品率和产量。除了激光系统的不断发展,新的加工技术和应用、光束传输与光学系统的改进、激光光束与材料之间相互作用的新研究,都是保持绿色技术革新继续前进所必须的。2013年激光技术在半导体行业将会取得怎样的成绩呢?   半导体市场:黯然神伤   虽然智能电子设备组件的微加工将继续为光纤激光器制造商带来利好势头,但是主要依赖于半导体资本设备采购的激光器制造商,将在2013年遭遇坎坷。   “随着半导体行业从45nm转向20nm甚至更高的节点,需要更多的制造步骤处理更多的层和新材料,这导致资本强度增加。”半导体设备暨材料协会(SEMI)行业研究与统计高级总监DanTracy表示,“2010年和2011年,半导体行业在产能扩充方面实现了坚挺恢复,同时也转向了更加先进的工艺技术。而2012年产能扩张的减少,为半导体行业带来了更多不确定性,一些分析师预计2013年半导体行业的资本支出将出现负增长。”Tracy还补充道,半导体资本设备市场存在着周期性,最近报道的设备数据反映了2012年下半年更加低迷的行业状况。2012年10月的订单出货比为0.75,订单量约比2011年10月下跌20%。   “对于微电子行业来讲,2012年将是一分为二的年头,”相干微电子部门营销总监DavidClark表示,“预计2013年传统消费电子产品,如笔记本电脑、PC、数码相机、硬盘驱动器和电视机将非常不景气,但是平板电脑和智能手机以及相关组件将会以惊人的速度增长。这无疑是个好消息,因为这些移动设备组件很多都是使用相干的激光器制造的,相干的这部分业务将会继续强劲增长。”Clark补充说,“如果基于Windows8的超级本和平板电脑在企业市场获得真正成功,相信这必将刺激2013年IC销售额的限制增长。”   ICInsihts公司也看到了类似趋势,其预计2013年电子设备的销售额将增长5%,2012年的增长率为3%。Clark对更长远的趋势也持乐观态度,他表示,“4G-LTE无线网络建设、互联网流量的持续增长、云计算的采用一级即将向450nm晶圆的迁移,所有这些都将促使未来几年内半导体资本支出方面出现重大投资。”   相干2012年第四财季(截至2012年9月29日)的销售额,从上年同期的2.08亿美元下降到1.89亿美元 与上个季度相比,订单量下降近23%。相比之下,Newport则由于研发市场和工业市场的强劲表现而实现了创纪录的销售额 当然半导体资本支出的疲软也使其受到了一定影响,其第四财季(截至2012年9月29日)微电子业务销售额比上年同期下降了9.7%,降至1.1亿美元。   作为一家主要为半导体行业提供光刻光源的供应商,Cymer公司2012年第三季度(截至2012年9月30号)的总营收约为1.32亿美元,基本与上年同期持平,但低于2012年第二季度1.49亿美元的总营收。2012年10月,Cymer公司被荷兰ASML公司以大约26亿美元的价格收购 2012年第三季度,Cymer出货了27套紫外系统,并向ASML交付了其首款极紫外光源,曝光功率为30W。   Cymer公司和日本Gigaphoton公司是业界领先的极紫外光源制造商,依据摩尔定律,他们会继续享受业务增长。但是研究超短、超高功率激光脉冲(如用于光与物质相互作用研究的极强光设施)的激光器制造商,正在寻求超越摩尔定律。   “早在2007年,来自美国能源部基础能源科学顾问委员会的一份报告就显示,当集成电路制造达到分子级或纳米级的时候,其将远远超越摩尔定律的限制。一个基于纳米芯片的超级计算机,可以舒适地握在掌中,且耗电极低。”CalmarLaser公司营销总监TimEdwards说,“这使得激光产业令人兴奋不已——没有激光发挥举足轻重的作用,分子尺度的未来将无法实现。飞秒光纤激光器制造商始终致力于提升脉冲到脉冲之间的稳定性,以满足眼科、光谱、DNA分析、分子成像、薄膜太阳能电池加工以及计量等应用的苛刻要求,所有这些都提供了广阔的科研激光市场,但是不知为何激光市场并未快速增长。”   随着激光技术的发展,激光技术必将在未来的半导体行业发展中扮演越来越重要的角色。接下来为激光技术在半导体行业的一些应用:   1 激光技术在晶片/芯片加工领域的应用   1.1在划片方面的应用   划片工艺隶属于晶圆加工的封装部分,它不仅仅是芯片封装的关键工艺之一,而是从圆片级的加工(即加工工艺针对整片晶圆,晶圆整片被同时加工)过渡为芯片级加工(即加工工艺针对单个芯片)的地标性工序。从功能上来看,划片工艺通过切割圆片上预留的切割划道(street),将众多的芯片相互分离开,为后续正式的芯片封装做好最后一道准备。   目前业界讨论最多的激光划片技术主要有几种,其主要特征都是由激光直接作用于晶圆切割道的表面,以激光的能量使被作用表面的物质脱离,达到去除和切割的目的。但是这种工艺在工作过程中会产生巨大的能量,并导致对器件本身的热损伤,甚至会产生热崩边(Chipping),被剥离物的沉积(Deposition)等至今难以有效解决的问题。 与很多先行技术不同,传统旋转砂轮式划片机的全球领导厂商东京精密公司和日本著名的激光器生产商滨松光学联合推出了突破传统理念的全新概念的激光划片机MAHOH。其工作原理摒弃了传统的表面直接作用、直接去除的做法 而采取作用于硅基底内的硅晶体,破坏其单晶结构的技术,在硅基底内产生易分离的变形层,然后通过后续的崩片工艺使芯片间相互分离。从而达到了无应力、无崩边、无热损伤、无污染、无水化的切割效果。   1.2在晶片割圆方面的应用   割圆工艺是晶体加工过程中的一个重要组成部分。早期,该技术主要用于水平砷化镓晶片的整形,将水平砷化镓单晶片称为圆片。随着晶体加工各个工序的逐步加工,在各工序将会出现各种类型的废片,将这些废片加工成小直径的晶片,然后再经过一些晶片加工工序的加工,使其变成抛光片。   传统的割圆加工方法有立刀割圆法、掏圆法、喷砂法等。这些方法在加工过程中对晶片造成的损伤较大,出片量相对较少。随着激光加工技术的发展,一些厂家对激光加工技术引入到割圆工序,再加上较为成熟的软件控制,可以在一个晶片上加工出更多的小直径晶片。   2 激光打标技术   激光打标是一种非接触、无污染、无磨损的新标记工艺。近年来,随着激光器的可靠性和实用性的提高,加上计算机技术的迅速发展和光学器件的改进,促进了激光打标技术的发展。   激光打标是利用高能量密度的激光束对目标作用,使目标表面发生物理或化学的变化,从而获得可见图案的标记方式。高能量的激光束聚焦在材料表面上,使材料迅速汽化,形成凹坑。随着激光束在材料表面有规律地移动同时控制激光的开断,激光束也就在材料表面加工成了一个指定的图案。激光打标与传统的标记工艺相比有明显的优点:   (a)标记速度快,字迹清晰、永久   (b)非接触式加工,污染小,无磨损   (c)操作方便,防伪功能强   (d)可以做到高速自动化运行,生产成本低。   在晶片加工过程中,在晶片的特定位置制作激光标识码,可有效增强晶片的可追溯性,同时也为生产管理提供了一定的方便。目前,在晶片上制作激光标识码是成为一种潜在的行业标准,广泛地应用于硅材料、锗材料。   3 激光测试技术   3.1激光三角测量术   微凸点晶圆的出现使测量和检测技术面临着巨大的挑战,对该技术的最基本要求是任一可行的检测技术必须能达到测量微凸点特征尺寸所需的分辨率和灵敏度。在50μm节距上制作25μm凸点的芯片技术,目前正在开发中,更小凸点直径和更节距的技术也在发展中。另外,当单个芯片上凸点数量超过10000个时,晶圆检测系统必须有能力来处理凸点数迅速增加的芯片和晶圆。分析软件和计算机硬件必须拥有足够高的性能来存储和处理每个晶圆上所存在的数百万个凸点的位置和形貌数据。   在激光三角检测术中,用一精细聚焦的激光束来扫描圆片表面,光学系统将反射的激光聚焦到探测器。采用3D激光三角检测术来检测微凸点的形貌时,在精度、速度和可检测性等方面,它具有明显的优势。   3.2颗粒测试   颗料控制是晶片加工过程、器件制造过程中重要的一个环节,而颗粒的监测也就显得至关重要。颗粒测试设备的工作原理有两种,一种为光散射法 另一种为消光法。   对于悬浮于气体中的颗粒,通常采用光散射法进行测试,同时某些厂家利用这种工作原理生产了测试晶片表面颗粒的设备 而对于液体中的颗粒,这两种方法均适用。   4 激光脉冲退火(LSA)技术   该技术通过一长波激光器产生的微细激光束扫描硅片表面,在一微秒甚至更短的作用时问内产生~个小尺寸的局域热点。由于只有上表面的薄层被加热,硅片的整体依然保持低温,使得此表面层的降温速率几乎和它的升温速率一样快。从固体可溶性的角度考虑,高峰值温度能够激活更多的掺杂原子,此外正如65nm及以下工艺所求的那样,较短的作用时间可以使掺杂原子的扩散降到最低。退火处理的作用范围可以限制在硅片上的特定区域而不会影响到周围部位。   该技术已经应用于多晶硅栅极的退火,在减少多晶硅的耗尽效应方面取得了显著的效果。K.Adachi等将闪光灯退火和激光脉冲退火处理的MOS管的Ion/Ioff进行了比较,在pMOS-FET和nMOSFET中,采用激光脉冲退火处理的器件的漏极电流要大10%,器件性能的增强可以直接归因于栅电极耗尽效应的改善和寄生电阻的减小。
  • 博采众长、智不可挡,2023慕尼黑华南激光展成功谢幕
    三日展会期间,LEAP Expo下辖的慕尼黑华南电子展、慕尼黑华南电子生产设备展、慕尼黑华南激光展,联合同期举办的中国(深圳)机器视觉展暨机器视觉技术及工业应用研讨会,让专业观众与买家饱享眼福与近距离体验、探索电子智能制造带来的魅力与成果。2023 LEAP Expo大数据:90,000平米展示面积,944家参展商及品牌,超35,000名专业观众LEAP Expo展示范围涵盖半导体、嵌入式系统、传感器、电源、无源元件、连接器、印刷电路板、智能网联&新能源汽车、自动化与运动控制、测试测量、表面贴装、点胶注胶&化工材料、线束加工、半导体封装及制造、智慧工厂、激光组件及激光设备、高端智能装备及自动化、先进光源和激光器件、激光加工控制及配套系统、工业智能检测与质量控制技术、精密光学、激光加工服务、3D打印/增材制造技术、机器视觉核心部件及插件、智能视觉装备等多个板块的新品及先进技术,助推电子智能制造产业创新融合,尊享一站式采购体验。慕尼黑展览(上海)有限公司首席运营官路王斌表示:“华南地区是中国经济快速发展的重要区域,用户需求猛增,催生很多新技术、新产品的开发,中国智能制造得以稳步向前。慕尼黑华南激光展在展示激光智造技术及装备、激光器件、提供优质激光加工服务的同时,也在不断研究激光应用的热点方向。除了传统半导体、电子等传统应用行业,新能源汽车是激光技术的一个重点应用赛道。展会将新能源产业上下游需求端与激光企业紧密结合,为应用市场提供更多创新前沿的激光技术与解决方案,力求推进新能源汽车这个智能制造的新代名词的快速发展。”乘新浪潮,激光智能制造未来可期深圳,向来以其创新和高科技产业著称,作为中国的科创中心,正着力发展以先进制造业为主体的“20+8”产业集群,众多科技新兴企业在这座城市“安营扎寨”。在深圳推进新型工业化的过程中,新能源汽车成为其最亮眼的经济数据之一。而激光作为先进的加工利器,扮演着不可或缺的角色。目前,就深圳宝安而言,激光与增材制造产业集群共有规上企业221家,未来还将继续加速推动深圳激光谷建设,并积极开展主动式、清单化、实用型企业服务,精准引育优质企业,扶持激光产业聚链成群、集群成势。慕尼黑华南激光展今年继续选择深圳作为办展基地,整合华南智能制造核心资源,紧扣热点,联结智能制造装备与新能源、消费电子、医疗、半导体、5G、汽车、集成电路等终端应用,为华南地区的激光技术潜在用户提供个性化的产品及行业解决方案。大族激光南方销售中心销售总监安军辉说道:“华南地区激光行业很活跃,包括激光焊接、激光切割,以及激光技术在3C电子、新能源、动力电池等方面的应用都很广泛。在慕尼黑华南激光展这个平台以及得益于华南地区的激光发展,众多激光同行企业能有很好的良性竞争,共同推进技术不断进步和提升、满足应用需求。”深圳市创鑫激光股份有限公司营销中心销售总监蒋明表示:“本次参加慕尼黑华南激光展,我们深刻感受到激光技术的应用范围不断扩大,激光焊接进入高速发展期,客户对激光焊接的技术参数、应用需求越来越多,对品牌服务、性能等要求也越来越高。”江苏凯普林光电科技有限公司产品部产品经理周瑞顶说:“通过参加慕尼黑华南激光展,得以和行业专家接触交流,使我们能够了解市场动态、技术趋势等关键信息,知晓未来的发展方向,从而能更好地创造技术产品、提供价值、为客户提供更好的服务。”唤醒制造基因,共同打造创新高地中国消费者对新能源汽车的接受度提高,促使新能源汽车市场需求不断增长,乘着新能源东风,国内激光产业再次飞跃,激光技术在整车白车身制造、锂电池、电机及其他零部件制造环节中发挥着不可替代的作用。本届慕尼黑华南激光展现场因需打造“激光+”主题区,现场由公大激光、联赢激光、飞博、长光华芯、大湾区硬科院接力解说,向现场观众介绍了应用于新能源动力电池焊接制造、电动汽车关键零部件制造、汽车电子透明塑料加工等方面的相关激光器产品,展示新能源及新能源车领域内激光智能制造及检测等各个环节下的新风向、新技术及最新解决方案,助推新能源制造行业的绿色、高质量长远发展。大湾区硬科院副院长孙涛评价道:“我们要感谢主办方搭建了一个这么好的平台,三天展会期间,我们见到了很多老朋友、老客户,也结识了很多新朋友、新客户,也发掘了很多新的产业需求,感到收获很大。今后,我们也会积极地参与像慕尼黑华南激光展这样的展会,而且,我们也希望利用自己的专长为激光产业或为中国制造业贡献自己的力量。”武汉锐科光纤激光技术股份有限公司中东及非洲大区销售总监赵斌表示:“非常感谢主办方搭建了这样一个供中国激光行业同行们交流的平台,可以互相了解和学习。”远东卓越科技董事长蓝远东评价道:“慕尼黑华南激光展是一个聚焦工业智能制造发展的平台,在这里我们展示了新技术,也很高兴看到展位上很多客户前来交流,未来我们会带着更好的方案参加展会。”求贤若渴,金玉满堂,光电人才后生可畏技术进步离不开源源不断的新鲜血液的注入。为给光电企业输送优质技术人才、吸引后生力量、推动光电行业技术创新与革新,本届慕尼黑华南激光展现场设立了“光电人职业中心”,由参展企业人资与初出茅庐的莘莘学子们一对一深入洽谈,不论是企业还是求职者都受益匪浅。初创企业,大有作为,推波助澜作为对激光行业初创企业的鼓励与支持,使其能有更多机会面市推广,本届展会现场继续开设Start-ups初创专区,汇集顺远光学、明曜光声、中红外激光研究院、大威激光、伽蓝特、中辉激光、微米光学、光盾科技、卫是、光库智能、灵动智能、光缘、团诚等13家企业。虽说处于初创阶段,但这些企业也可谓人才济济,其中也已拥有自主知识产权,获得多项发明专利,并始终攻坚克难,根据用户需求优化和开发新产品。现场这些企业分别展示了各自在激光标刻、医疗美容、激光3D打印、激光清洗、激光焊接、精密切割、超大幅面和科研军事、国防、电子元器件、机械零件、工业等多个领域相关产品。多领域买家团采购需求旺盛本届慕尼黑华南激光展与激光应用领域行业协会与机构建立密切合作,邀请到电子、医疗、智能机械、智能装备、动力电池等激光重点应用行业的买家团。光越科技采购经理表示:“我们这次参加了慕尼黑华南激光展的买家tour活动,感到非常满意。这是一次很好的现场体验式采购之旅,因为它提供了直观的产品展示和详细解释,完全符合用户的需求和期望。通过主办方的精心安排与对接,组织展商的专业人士向我们介绍产品的特点、功能和优势,让我们更深入地了解产品及服务,使我们在采购选型时有了更全面的评估,对现场许多展品都有采购意向。”剖析激光热点,共话激光智造,为行业赋能展会同期举办华南国际光子智能制造及应用技术大会,下设《激光技术创新持续赋能智能制造》及新能源汽车激光“智”造技术论坛。大会诚邀来自高校、研究院、企业等的激光、光电、高端装备领域的学者、技术专家、核心代表,结合最新研究成果和成功应用案例,分析核心技术,解读光电技术与智能制造技术,探讨全球激光与智能装备发展的新趋势。话题包括但不限于:激光焊接技术发展及其在汽车制造领域的应用研究、千瓦连续绿光激光器助力动力电池制造升级、蓝光激光器及其在新能源有色金属焊接中的应用、全新车型车身铝激光焊接应用及质量控制、激光技术在锂电池制造中的应用、激光焊接熔深实时监控技术及其应用、激光清洗技术及其在汽车制造方向的应用等。上海艾姆倍新能源科技有限公司CTO李树成表示:“这次展会给激光解决方案商和新能源汽车行业搭建了个非常好的交流平台,让用户更加深刻了解到现阶段激光技术状态和未来激光加工行业的一些趋势。”为期三天的展会圆满谢幕,慕尼黑华南激光怀着感谢与不舍送别各位展商、观众、行业伙伴与媒体朋友们,有了你们的支持,展会才得以成功落地。未来,慕尼黑华南激光展将继续与产业上下游建立密切合作、坚固纽带,深度挖掘激光在智能制造的巨大潜力和无限可能,助力激光在未来科技产业的赛道上散发更大的光辉、创造更辉煌的成绩,为中国制造业转型升级做贡献。下一站激光、光电行业国际盛会2024年3月20-22日上海新国际博览中心慕尼黑上海光博会等您来!
  • 激光诱导击穿光谱技术在钾盐和钠盐检测中的应用
    前言激光诱导击穿光谱(LIBS)技术是一种利用高能流激光脉冲击穿样品诱导产生高温等离子体,通过测量等离子体在冷却过程中相应元素所发射的原子或离子光谱谱线进行元素成分定性和定量检测分析的一种发射光谱技术,原理图如图1所示。LIBS不依赖于复杂的样品制备,对样品的破坏极小,对样品的形态无选择性,同时能够进行多元素检测,由于这些优点,LIBS被广泛应用于工业检测领域。图1 LIBS实验原理图氯化钾和氯化钠是常见的盐类,广泛应用于农业和化工行业。氯化钾主要用于生产肥料,提供植物所需的钾元素,促进植物生长;同时也是多种化学品的原料。氯化钠则用于生产盐酸、烧碱和氯化铵等基础化工产品,并在污水处理中充当混凝剂和沉淀剂。尽管两者成分相似,但在具体的应用中还是必须要加以区分,例如在水产养殖中,氯化钾和氯化钠的功效不同,互相替代可能导致生长发育图3 Maria多通道光谱仪氯化钾和氯化钠其外观都为白色晶体状,同样都拥有味咸、易溶于水和甘油的特性。为了便于使用激光脉冲照射,需要对样品进行压片处理,使用压片器将两种样品压制成片状,然后放在样品台上进行测量。实验样品如图4所示。不良或水质急剧变化,进而影响养殖效果。氯化钾和氯化钠的区分难点不仅在于它们的化学性质相似,还包括外观相似,均为白色结晶,容易混淆。如果使用焰色反应等传统的区分方法通常需要复杂的样品制备以及严格的实验条件,这使得快速识别变得困难。LIBS技术能够直接分析样品,无需特殊处理,从而克服了这些困难,实现高效、准确的区分。实验设备和样品本实验中使用的LIBS系统如图2所示,激发光源为输出波长为1064nm的泵浦激光器,激光光束经透镜组反射和聚焦后照射在样品表面,光谱信号由光纤收集。图2 实验设备本实验中使用如海光电Maria多通道光谱仪,如图3所示。Maria是一款集成式多通道光谱仪,最多可以支持8个通道。光谱范围最宽可达190-1100nm。分辨率0.1nm,最短积分时间可设置为10μs,外触发延迟可以控制在1μs±10ns,能够精准捕获等离子体信号,适用于等离子体光谱测量,原子发射、吸收光谱测量,火焰燃烧光谱测量和LIBS等多个领域。图3Maria多通道光谱仪氯化钾和氯化钠其外观都为白色晶体状,同样都拥有味咸、易溶于水和甘油的特性。为了便于使用激光脉冲照射,需要对样品进行压片处理,使用压片器将两种样品压制成片状,然后放在样品台上进行测量。实验样品如图4所示。图4 实验样品,左为氯化钾样品,右为氯化钠样品实验结果和分析通过查询美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)的原子光谱数据库,从中找到钾元素、钠元素、氯元素的常用谱线,数据如表1所示。表1 元素特征谱线元素Element特征谱线(nm)Characteristic spectral lineK766.49、769.896Na818.326、819.482Cl777.109、868.496实验测得的光谱数据如图5所示,根据之前查询的元素特征谱线,可以识别谱峰对应的元素。从图中可以观察到,对于氯化钾样品来说,可以在766.49nm和769.896nm处观察到两条较为明显的钾元素特征谱线;对于氯化钠样品来说,可以在818.326nm和819.482nm处观察到两条较为明显的钠元素特征谱线,钾元素和钠元素的特征谱线能够很清晰地区分。因为两种样品都含有氯元素,所以在777.109nm和868.496nm处两种样品的数据中都能观察到了氯元素的特征谱线,且强度相差不大,这可能因为氯化钾和氯化钠都是离子化合物,均由阳离子和氯阴离子组成,尽管它们的阳离子不同,但都形成相似的晶体结构,这使得它们在相同条件下容易产生相似的光谱特征。图5 氯化钾和氯化钠的光谱图总结本实验中,我们成功识别了氯化钾样品中的钾元素特征谱线(766.49 nm和769.896 nm)以及氯化钠样品中的钠元素特征谱线(818.326 nm和819.482 nm)。此外,实验中也观察到氯元素的谱线,进一步展示了光谱仪在分析离子化合物时的能力。在氯化钾和氯化钠的区分中,与传统的焰色反应相比,LIBS技术无需复杂的样品制备且能够实现多元素的快速检测。这一优势使得LIBS在盐类检测和其他工业应用中具备较高的实用价值。实验中对样品的破坏极小,使得该技术适合于各种样品类型的分析。本实验表明,LIBS技术是一种高效、准确的检测手段,能够在工业领域中快速区分氯化钾和氯化钠等盐类。随着技术的进一步发展,LIBS在更多应用领域的潜力将愈加显现,未来可以为材料分析和工业检测等方面提供更广泛的解决方案。如海光电提供适用于多领域的LIBS系统。仪器推荐
  • 锂电池材料粒度要求高 激光检测担主角
    p style=" text-indent: 2em " span style=" font-family:宋体" 锂电行业近年来正在快速增长,并对多类光学、物性检测领域的仪器设备有着强烈需求。对于锂电池的电池材料来说,粒度、细度的检测是重要的相关参数,因而对激光粒度仪仪器厂商,锂电行业就此成为了他们书写市场红利新篇章的重要笔墨。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/a0946e4d-f5d6-4005-b98d-768e0013fd6b.jpg" title=" 1.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 锂电池 /span /strong /p p style=" text-indent: 2em " span style=" font-family:宋体" 粒度和粒径分布影响着锂电池材料性能的方方面面,特别是在生产流程,粒度粒径的检测有助于试验阶段的通过 /span / span style=" font-family:宋体" 失败检测、过程控制、以及每个工厂的出货控制。对锂电池,特别是聚焦舆论大量视线的锂离子电池,在原材料管控阶段,主要有三类电池材料需要进行粒度检测——正极材料、负极材料和隔膜材料,所需的粒径检测范围在 /span 10nm span style=" font-family:宋体" 到 /span 5mm span style=" font-family:宋体" 之间。 /span /p p style=" text-indent: 2em " span style=" font-family:宋体" 以锂离子电池的正极材料为例,粒径 /span D50 span style=" font-family:宋体" 是关键性的质量控制指标之一,无论是磷酸铁锂电极还是其他主流锂合金氧化物电极都不例外。 /span D50 span style=" font-family:宋体" 是表示粒径大小的典型值,其标准定义是累计分布百分数达到 /span 50% span style=" font-family:宋体" 时对应的粒径值,又名中值粒径、中位径。电池正极对原材料的粒径要求波动范围较大,一般在 /span 1-20 span style=" font-family:宋体" μ /span m span style=" font-family:宋体" 之间。具体指标主要受到材料种类和工艺要求的双重限制。负极材料的粒径对电池的初始放电容量和首次效率等参数有重要影响,还是以锂离子电池为例,其负极石墨材料的平均粒径较为集中地分布在 /span 16-18 span style=" font-family:宋体" μ /span m span style=" font-family:宋体" 之间时,最为合适。电池隔膜,介于正负极材料之间,也是电池结构重要的组成部分,其中需要添加氧化铝等阻燃材料,这些阻燃材料的粒径需求则呈现随着隔膜层厚度不断提升,粒径不断减小的趋势,目前甚至需要达到亚微米甚至纳米级的要求。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/9c1cbb85-5a43-475e-978d-bc165aef7207.jpg" title=" 2.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 锂电池结构示意图 /span /strong /p p style=" text-indent: 2em " span style=" font-family:宋体" 电池的工艺特性、充放电容量、体积能量密度等重要参数都会受到电池材料粒度的影响, /span span style=" font-family:宋体" 而在各种粒度检测方法中,激光粒度仪因具有操作简便、可测颗粒数、等效概念明确、速度快、准确性好等优点,受到锂电市场的青睐。在激光粒度仪的各类技术指标中,“分辨能力”对于电池材料的检测有着极为重要的意义。分辨能力是指激光粒度仪对样品中不同粒径之间的区分能力。这种能力对电池材料的检测非常重要,例如,过小颗粒的石墨粉中往往具有较多的菱方结构,用参有这种石墨材料的锂电池,储锂容量就会比较小,而分辨能力高的激光粒度仪,就能较容易地检测出石墨原材料中的菱方结构。 /span /p p style=" text-align: center text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/f3d5ee0f-102d-47ac-9a4e-773ee5e791bc.jpg" title=" 3.jpg" / /p p style=" text-align: center text-indent: 2em " strong span style=" font-family:宋体" 激光粒度仪原理示意图 /span /strong /p p style=" text-indent: 2em " span style=" font-size:14px font-family:宋体" 评估激光粒度仪分辨能力的方法有很多,最常见的就是测量在已知粒径的标准样品中加入少量比例已知的大 /span span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " / /span span style=" font-size:14px font-family:宋体" 小颗粒样品,看测试结果是否能满足真实的差异。目前在市场上,激光粒度仪的分辨能力往往从散射光能分布角度、信噪比光学电子设计、高精度的模数转换及反演计算水平等角度改进。而具有高品质高分辨率元器件、装配工艺及算法数控优化水平高的激光粒度仪,也越来越为锂电行业所重视。 /span /p
  • 日本开发波长为0.15纳米的原子级激光器
    据《日刊工业新闻》报道,日本电气通信大学、理化学研究所、东京大学等多个大学和研究机构组成的研究团队,最近成功开发波长为0.15纳米的原子级激光器。据称,该激光器的波长是目前世界最短,比现有最短波长激光器的波长小一个数量级。该研究成果已发表在英国《自然》杂志电子版。  研究团队在20微米厚的铜箔上照射X射线,使其产生X射线激光,从而通过微小材料制成高效X射线激光器。据报道,该X射线激光器的研制成功,首次在硬X射线区实现了利用原子能级差的原子级激光器。该激光器在可视光至近红外光谱有广泛应用,但较难使用于包括X射线在内的短波长领域。  研究团队利用X线自由电子激光设备(SACLA:SPring-8 Angstrom Compact Free Electron Laser )去除围绕原子核旋转的电子中最靠近原子核的一个电子,通过几乎同时射入的弱X射线,成功激发了被称为傅立叶极限的理想激光。  报道称,该研究成果的意义还在于,利用作为导线的铜箔可实现理想的X射线激光器,预示了将来使用电路板铜线实现X射线激光器的可能性。
  • 张福根专栏|激光粒度仪应用导论之选型建议篇
    p style=" text-indent: 2em " 实际科研检测生活中,我们先明确该选择什么原理的粒度仪呢?激光粒度仪是根据静态光散射原理(传统上称“衍射法”)测量颗粒大小。可靠的测量范围是0.1微米至1000微米。具有动态范围大、测量速度快、重复性好、分散介质选择余地大、操作方面等优点,缺点是分辨率不高。因此对于粒度分布范围不超出0.1微米至1000微米,对分辨率及少量粗颗粒和细颗粒的测量灵敏度要求不是太高的样品,都可以选用激光粒度仪。 /p p style=" text-indent: 2em " 真正纳米级(100纳米以细)颗粒(是指分散良好的纳米颗粒)的测量,不宜用激光粒度仪。可以选动态光散粒度仪或电子显微镜。但要注意,有的纳米颗粒实际是团聚体,其单体尺寸或许小于100纳米,但团聚体的尺寸在100纳米以粗甚至几个微米,这时仍然应该选用激光粒度仪。 /p p style=" text-indent: 2em " 对分布特别窄的样品,比如复印机和激光打印机用的碳粉、单分散标准颗粒、高精度磨料微粉等等,应该用电阻法颗粒计数器或显微图像法粒度仪。 /p p style=" text-indent: 2em " 如果需要测量粒度分布主峰以外的低含量粗颗粒或细颗粒,就不能按常规方法用激光粒度仪测量。而要用沉降法分离出粗颗粒或细颗粒后再用激光粒度仪测量。也可用其他方法比如显微镜辅助观察。 /p p style=" text-indent: 2em " 接下来就是选什么品牌、什么型号的激光粒度仪的问题了。如果把激光粒度仪的品牌分为国内和国外两类,那么如今国内外品牌仪器在性能上可以说是旗鼓相当。仪器型号如何选择?由于各品牌的型号各自定义,难以用简练统一的标准去分类。下面按照仪器的光学结构划分,讲述各类仪器的测量范围。 /p p style=" text-indent: 2em " 对于只接收前向散射光的仪器,一般而言实际测量下限只能达到0.3微米左右。真理光学的同级别产品由于使用了斜置的平行平板玻璃窗口,下限可以达到0.2微米。 /p p style=" text-indent: 2em " 有前向也有后向接收,但是使用普通平行平板玻璃测量池,单光束正入射的仪器,由于全反射盲区缺口巨大,后向散射光实际难以有效利用,测量下限也只能到0.3微米左右。 /p p style=" text-indent: 2em " 采用红光和蓝光双光束照明的仪器(这类仪器都有后向接收),在结构合理、数据处理良好的情况下,测量下限能达到0.1微米或略小。但是如果结构不合理或者数据处理上有缺陷,则可能在0.3至0.5微米范围内不能正确测量。 /p p style=" text-indent: 2em " 真理光学的LT3600plus由于解决了爱里斑的反常变化问题,采用了改进的梯形窗口玻璃,并且有后向散射光的探测,在0.1微米至1000微米的范围内的任何粒径区间都能得到正确的结果。 /p p style=" text-indent: 2em " 最后,笔者对用户选用激光粒度仪有一点忠告:即使资金充裕,也不要盲目地唯价格论,而要客观、科学地去研究和评估,选择最适合自己科研和检测工作的激光粒度仪! /p p style=" text-indent: 0em text-align: right " span style=" text-align: right " (作者:张福根) /span /p p style=" text-indent: 2em " strong 编者结: /strong 张福根专栏|激光粒度仪应用导论至此连载结束,从原理、结构、到报告解读、参数拾遗、再到性能特点、技术问题、选型建议,张福根博士以其近30年的研究积累,为读者们从浅入深,从内而外地,全方位讲解了激光粒度仪的应用概论。洋洋洒洒几万言的心血结晶,让读者们受益匪浅。更多张福根博士连载章节,可点击 a href=" http://www.instrument.com.cn/zt/YYMMG" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 激光粒度仪应用面面观 /span /a 专题学习浏览。对于本系列文章,读者朋友们有何收获和想法,以后还想了解哪些与粒度粒型检测相关的内容和领域,都欢迎在文章下方畅所欲言,仪器信息网将为你带来更多精彩篇章。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制