当前位置: 仪器信息网 > 行业主题 > >

激光指向仪标准

仪器信息网激光指向仪标准专题为您提供2024年最新激光指向仪标准价格报价、厂家品牌的相关信息, 包括激光指向仪标准参数、型号等,不管是国产,还是进口品牌的激光指向仪标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光指向仪标准相关的耗材配件、试剂标物,还有激光指向仪标准相关的最新资讯、资料,以及激光指向仪标准相关的解决方案。

激光指向仪标准相关的资讯

  • FDA拟修订激光产品性能标准
    美国食品药物管理局(FDA)正就修订激光产品性能标准的提议向有关方征求意见 评议截止期为 9 月 23 日。该提议旨在:(i) 使当前标准与激光产品和医疗激光产品生产商已使用的国际标准更协调一致 (ii) 降低相关制造商的经济负担 (iii) 增强 FDA 对激光产品的监管有效性 (iv) 更好地保护和促进公众健康。   FDA建议修订适用于激光产品的《美国联邦法规》第 1 章,第 21 款的 J 节。   因为当前激光产品性能标准的最后一次更新是在 1985 年,是基于过时的光生物科学成果,已无法反映该技术性行业的现状。例如,目前广泛应用于半导体和通信行业的激光产品在上次标准更新时还未发明问世。FDA 的修订提议旨在使标准符合当前的科学发展状况,并使其与相关国际标准更协调一致。这些标准包括国际电工委员会(IEC)标准 60825–1《激光产品的安全—第一部分:设备分类和要求》(第二版,2007–03) 经 IEC 更正的 60825–1(第二版,2007),以及 IEC60601–2–22《医用电气设备—第二部分 2–22:外科、美容、治疗和诊断激光设备基本安全和基本性能的特殊要求》(第三版,2007–05)。   目前,美国境内外销售激光产品的生产企业必须遵守 IEC 和 FDA的标准。   统一这些标准就意味着,目前遵守两套不同标准的公司将只需遵守一套标准,除非这些标准有相左之处(如间接辐射限值)。此外,美国FDA也指出这项提议会更好地保护公众健康。   该拟议法规将直接影响激光产品生产企业。一般情况下,含有激光或激光系统的所有产品都均需符合当前性能标准。医用激光产品还要符合 FDA 其他医疗设备相关规定。FDA 计划自《联邦纪事》发布之日两年内实施一项最终法规。
  • CIS标准《金属材料分析用激光诱导击穿光谱仪》拟立项
    按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。近日,中国仪器仪表学会发布了“拟立项(金属材料分析用激光诱导击穿光谱仪)CIS标准的公示通告”。申请项目名称:金属材料分析用激光诱导击穿光谱仪项目申报单位:杭州谱育科技发展有限公司激光诱导击穿光谱法(Laser-induced breakdown spectroscopy;LIBS):通过激光烧蚀待分析物质形成等离子体,其中处于激发态的原子、离子或分子向低能级或基态跃迁时,向外发射特定能量的光子,形成特征光谱,进而获得待分析物质的化学成分或其他特性。激光诱导击穿光谱技术以其无须对块状固体样品预处理,快速、无损、可进行多形态分析以及无辐射危害等特点成为近年来研究的热点,可应用于金属材料化学成分分析、煤炭分析、生物样品分析等领域。但当前在金属材料分析领域分析用的激光诱导击穿光谱仪没有明确的标准来规范此类产品性能和使用安全性等重要参数,导致设备性能良莠不齐,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。目前现行的标准中,GB/T 38257-2019规定了激光诱导击穿光谱法的术语和定义、基本原理、试验条件、设备及装置、样品、试验步骤、数据处理和试验报告。为了规范激光诱导击穿光谱仪自身性能的测定方法,统一有关专业术语,制定仪器性能检测的依据,使检测机构、仪器用户及生产厂家在检校激光诱导击穿光谱仪时有统一的标准方法,杭州谱育科技发展有限公司申报制定团体标准《金属材料分析用激光诱导击穿光谱仪》。该标准的制定将助力我国激光诱导击穿光谱及其在金属行业的发展及应用。据查询目前国际上没有相同的国际标准。制定该标准目前不存在知识产权方面的问题。
  • IEC新设激光气体分析仪国际标准 聚光科技提案全票通过
    近日,从国际电工委员会(IEC)传来消息,由聚光科技代表中国提出并制定的《可调激光气体分析仪国际标准提案》获得全票通过,成为国际电工委员会IEC标准正式项目。 《可调激光气体分析仪国际标准提案》是聚光科技在“激光气体分析”技术的基础上,参考国际规范而制定出的一套关于激光气体分析技术的国际标准提案,该提案在2008年的国际电工会议上获得了17个投票成员国和3个观察员的全票通过,成为IEC标准正式项目。 聚光科技利用激光气体分析技术成功研发出的“激光在线气体分析系统”经浙江省科技厅组织鉴定,总体技术水平达到国际水平,该项成果曾获得国家科技进步二等奖等多项荣誉。 国际电工委员会是世界上成立较早的非政府性国际电工标准化机构,它负责电气和电子工程领域的国际标准化工作,是世界上非常具权威性的国际标准化机构之一,其宗旨是促进电工标准的国际统一,电气、电子工程领域中标准化及有关方面问题的国际合作等。 聚光科技提出并制定的《可调激光气体分析仪国际标准提案》被国际电工委员会立为IEC标准正式项目,这说明聚光科技正在承担起激光气体分析领域的国际标准制定重任。
  • 我国大功率激光器用标准创新打破国外垄断
    全国大功率激光器应用分技术委员会在武汉成立   曾被国外垄断的大功率激光器技术,通过技术标准创新,现已转化为我国具有完全自主知识产权的尖端产品。11月11日,全国光辐射安全和激光设备标准化技术委员会大功率激光器应用分技术委员会,在湖北武汉东湖国家自主创新示范区成立。   大功率激光器是激光产业的高端核心技术。30年来,我国对大功率气体激光器、大功率固体激光器、高功率激光传输聚焦加工系统、大功率激光加工工艺等,实行了引进、吸收和消化,逐步开发出各种大功率的激光焊接、激光切割、激光打孔、激光表面处理的成套设备。随着这些高新技术的广泛应用,使钢铁、汽车、能源、电子、船舶等支柱产业的技术能力和制造水平得到迅速提升。   然而,与美国、欧盟、日本等国相比,目前我国在大功率激光器的制造水平和应用规模上,尚处在初级研制或小规模生产阶段,尤其是高端的大功率激光器与激光加工成套设备几乎全部依赖国外进口。究其原因,主要是我国的大功率激光器尚未达到生产标准化,难以保证产品质量和提高技术档次,同时也限制了发展规模。因此,大功率激光器应用专业的标准研制,是促进我国激光产业科学发展的攻关大课题。   近几年来,武汉华工激光工程有限公司旗下的科威晶激光技术有限公司,在引进生产大功率激光器的过程中,借助武汉华工激光工程有限公司的自主研发和标准创新,成功地开发出4000瓦轴快流二氧化碳激光器。这项拥有完全知识产权的大功率激光器,入选国家重点新产品计划,今年产销量可望达到120台。从此,国产大功率激光器实现了规模化量产,跻身于世界大功率激光器7大生产企业。   武汉华工激光工程有限公司自主制定的大功率激光器生产标准,达到了国外先进水平。自2008年开始,湖北省和武汉市的质监部门积极支持该公司筹备激光领域的国家级标准化分技术委员会,以此提高我国大功率激光器应用专业的整体水平,缩短与国际先进水平的差距。经国家标准化管理委员会批准,由武汉华工激光工程有限公司申办的全国光辐射和激光设备标准化技术委员会大功率激光器应用分技术委员会,正式落户武汉东湖国家自主创新示范区。   在全国大功率激光器应用分技术委员会一届一次工作会议上,确定北京工业大学激光工程研究院院长左铁钏等25位专家担任该委员会委员,武汉华工激光工程有限公司为该委员会秘书处承担单位。   据了解,作为我国激光领域的首个国家级标准化分技术委员会,将站在行业发展的战略高度,对国内外大功率激光器应用加工设备的相关标准进行对比分析 组织编制大功率激光器应用的标准体系,制定大功率激光器应用技术和安全辐射等基础标准。
  • 全球首款电池驱动式IP54防护标准的绝对激光跟踪仪推出
    Hexagon计量产业集团推出全球首款电池驱动式IP54防护标准的绝对激光跟踪仪     新型Leica绝对激光跟踪仪AT401集合多项全球首创技术特点:1. 全球首款可由电池驱动、实现无线操作的激光跟踪仪;2.全球第一款具备IP54防护标准(防尘,防水…)认证的激光跟踪仪;3.极致轻便小巧,在同类产品中重量最轻;4.高精度大量程;5.整合了能量锁 (PowerLock)和目标自动识别(ATR)等业内先进功能,使得三维激光跟踪仪的应用操作变得空前的简易。   2010年4月28日,Hexagon计量产业集团宣布了Leica绝对激光跟踪仪AT401正式面市的消息。这一全新的激光跟踪仪拥有先进的电源管理系统,含两块电池,且允许电池热切换,并可以通过以太网供电运行(PoE+) 集成的WiFi,使得AT401成为一台真正的无线移动式测量机。该系统经过IP54等级认证,不受液体、焊接飞溅物、灰尘干扰,甚至适应雨中操作。   AT401含控制系统在内总重仅为8 KG,高度仅为29 cm,极小的外形结构使得AT401可以在大多数国际航班上作为手提行李进行运输。新型Leica 绝对激光跟踪仪AT401树立了行业便携的新标准。   AT401在水平和垂直轴方向都能实现无级旋转,当快捷释放把手被移走时,AT401在垂直方向的全测量范围将达到+/- 145º ,测量范围高达320m。AT401中的绝对测距仪(ADM)在其全精度认定范围内的最大测量不确定度仅为10微米,并配备多项先进的Leica工业测量技术,如能量锁(PowerLock)光束恢复、目标自动识别(ATR)、免维护Piezo驱动和重力传感器的测量级别精度水准等。   Leica AT401绝对激光跟踪仪推动了激光跟踪仪在尺寸、重量、量程、精度和可操作性等多方面的进步,并为激光跟踪仪的精度设立了新标准。目前,激光跟踪仪已经广泛分布于航空航天、工程机械、风电、水电、船舶行业及关注大部件和远距离的科学研究中,而Leica AT401绝对激光跟踪仪的创新将会在此基础上大大拓展激光跟踪仪的应用范围。   关于Hexagon计量产业集团   Hexagon计量产业集团隶属于Hexagon AB集团,其麾下拥有全球领先的计量品牌,如Brown & Sharpe、CE Johansson、CimCore、CogniTens、DEA、Leica工业测量系统 (计量分部)、Leitz、m&h、Optiv、PC-DMIS、QUINDOS、ROMER、Sheffield、Standard Gage和TESA。Hexagon计量产业集团代表着无可匹敌的全球客户群,数以百万计的坐标测量机(CMMs)、便携式测量系统、在机测量系统、光学影像测量系统和手持式量具量仪,以及数以万计的计量软件许可。凭借精密的几何量测量技术,Hexagon计量产业集团帮助客户实现制造过程的全面控制,确保制造的产品能够精确的符合原始设计的需要。该集团为全球客户提供测量机、测量系统以及测量软件,并加之以完善的产品技术支持和售后增值服务。更多信息请登录www.hexagonmetrology.com.cn   海克斯康测量技术(青岛)有限公司   地址:青岛市株洲路188号 邮编:266101   电话:0532-8089 5188 传真:0532-80895030   网址:http://www.hexagonmetrology.com.cn   E-mail:info@chinabnsmc.com
  • 激光设备标准委员会落户深圳高新区
    经过国家标准化管理委员会批准,全国光辐射安全和激光设备标准化技术委员会激光材料加工和激光设备分技术委员会在深圳成立,位于高新区的大族激光科技股份有限公司为该委员会的秘书处承担单位,这是高新区成立第一个国家标准技术委员会。   记者了解到,该委员会主要负责激光加工材料的分类、激光加工设备的使用安全要求、激光加工设备电气安全、工业激光的安全等级、激光安全防护、各种激光设备的分类与质量、激光加工工艺、环境保护等领域的国家标准制修订工作。
  • 浅谈激光干涉技术及应用现状
    激光干涉技术主要应用光波的空间相干特性。具体而言,对于两束光波或电磁波等横波,当波长相等、且相位差为2π整数倍时,合成波的振幅叠加增强至最大;当相位差为π奇数倍时,合成波的振幅抵消减小至最小。早在十九世纪下半叶,科学家们就已发明了多种原理干涉结构装置用于科学研究,其中最著名的是迈克尔逊-莫雷干涉试验,该实验采用钠光源平均谱线近似单色光进行干涉测量,从而否定了“以太”的假说。图1 迈克尔逊-莫雷干涉试验激光干涉仪的构成真正促进干涉技术巨大进步的契机是1960年激光器的发明。激光由于具有极窄的谱线,因而具有非常优秀的空间相干性。目前激光干涉仪主要的用途包括精准的尺寸和移动距离测量,测量准确度最高可以达到纳米甚至亚纳米量级。在构成上激光干涉仪最常使用的波长为632.8 nm,对于经典的迈克尔逊干涉测量原理,由激光器中出射的单色激光经过50:50半透半反的分束镜后分为2束光束,其中一束经过固定的光程后被反射镜反射,称为参考光束;另外一束光束由于存在被测对象,被反射镜反射后光程发生改变(距离或折射率变化引起),称为测量光束。当两束光被反射后在分束镜第二次合成并随后照射探测器上被接收后,将产生干涉条纹的移动。由之前的光波的叠加性可知,假设测量光路距离变化为316.4 nm,当只存在一去程一回程的情况下,此时干涉条纹相位变化2π。目前商用激光干涉仪普遍采用两去程两回程,同时采用1024倍电子细分卡,因此分辨率可达0.16 nm。图2 激光干涉仪原理构造激光干涉仪的应用现状1. 在工业领域应用随着理论研究的深入和技术的不断进步,激光干涉测量技术目前精彩纷呈,在多个领域中都得到了非常广泛的应用。 包括单频激光干涉仪、双频激光干涉仪、激光平面干涉仪、法布里-珀罗干涉仪、皮米激光干涉仪、多波长干涉测距等。 单频和双频激光干涉仪。测量具有非接触和无损检测的特点,能够在线测量长度、角度和转速等参数,因此已成为各国精密数控机床在线定位精度测量的最主要标准之一。在精密加工过程中,位置精度是机床的重要指标,激光干涉仪通过在线位置测量、实时数据处理实现机床误差修正。另外在集成电路制造中,激光干涉仪也是光刻机在线位移测量的核心部件。图3 激光干涉仪在精密机床中的应用激光平面干涉仪。激光干涉仪不仅可以用于测量长度、角度以及位移,也可以测量物体的表面形貌。测量基本原理为激光菲索(Fizeau)干涉,激光经过扩束后先后经过参考平面和待测平面,两个平面的反射光发生干涉后产生干涉条纹,通过成像系统接收。分析条纹形状即可判断是否存在缺陷。图4 激光平面干涉仪皮米激光干涉仪。现在随着微纳测量分辨率要求的进一步提高,出现了商品化的皮米激光干涉仪。皮米激光干涉仪采用包覆光纤作为激光传输介质,有效减小了空气折射率扰动对测量的影响;同时在干涉方式上干涉仪采用法布里-珀罗(F-P)干涉仪原理,是一种多倍程干涉,进一步提高了分辨率。 图5 皮米激光干涉仪多波长干涉绝对测距。采用单波长干涉测距虽然分辨率可达到纳米级,但是单波长干涉测距是相对测量,且测量时光路不能中断,而多波长干涉能很好解决这个问题。因为在干涉测距中波长就像一把量尺,但如果测量距离大于这把量尺,则需要多次拼接测量。多波长干涉能形成很长的等效波长,使量尺范围大于被测距离,实现绝对距离测量。图6 多波长干涉绝对测距光相控阵雷达。随着自动驾驶技术的高速发展,现在激光干涉技术也应用在光相控阵(OPA)激光雷达(LiDAR)中。激光雷达会产生一系列密集超短激光脉冲扫描周围物体,通过脉冲返回时长差判断距离和轮廓。光相控阵雷达利用光栅干涉原理,可以通过改变不同狭缝中入射光线的相位差来改变光栅后中央条纹(主瓣)位置,从而控制激光雷达光束的指向和转向。 图7 激光干涉技术在光相控阵雷达中的应用2. 在科学研究方面应用激光干涉引力波天文台(LIGO)。LIGO用于验证广义相对论预言的引力场扰动产生的时空扭曲。它本质上是一个超大型迈克尔逊干涉仪,由2条4千米长的互相垂直的臂构成,同时光线还会在臂内折返300次。当引力波会产生空间弯曲,干涉结果也会轻微变化。2017年美国科学家借助LIGO观测到双中子星合并引力波事件并获得了诺贝尔物理学奖。图8 激光干涉引力波天文台(LIGO)激光全息干涉测量技术。利用非共面多光束干涉可以在空间形成二维或三维周期性强度分布,从而被用来制作二维或三维光子晶体;利用全息干涉技术可用于位移及形变测量、应变与应力分析、缺陷或损伤探测、振动模式可视化及测量、晶体和蛋白质生长过程监测、流体中密度场和热对流场的观察与测量。图9 激光全息干涉测量技术作者:中国计量科学研究院副研究员 李琪
  • 医用激光设备和光辐射安全国际标准研讨会在杭州举行
    2016年10月31日至11月1日,由全国医用光学和仪器标准化分技术委员会、浙江省医疗器械标准化技术委员会主办,浙江省医疗器械检验院承办的“医用激光设备和光辐射安全国际标准研讨会暨标准宣贯会”在杭州召开。来自国家食品药品监督管理总局、省局医疗器械技术审评、质量检验的专家和国内外激光治疗设备生产、经营企业的50余位代表参加了会议。  本次会议邀请IEC/TC 76/WG4召集人Wolfram Gorisch(德国)和Roy Henderson(英国)两位专家分别就“医用激光、强脉冲光设备及其安全使用国际标准解读”和“激光眼防护国际标准新进展”两个议题做了专题报告。为审评机构、检验机构、制造企业在医用激光国际标准和光辐射安全领域的安全有效性标准的把握和理解提供了全新的视角,有利于提高企业对产品安全有效性质控的认识,积极推动分技委及相关标准起草单位在医用激光设备产品标准的制修订工作。  会议中,YY 1475-2016《激光治疗设备Q开关掺钕钇铝石榴石激光治疗机》等5项行业标准的主要起草人围绕基本要求、技术条款、试验方法、实施建议等方面,结合检测过程中常见问题,讲解了标准应用和技术要求编写方面的建议。参会代表就标准中的疑问和标准实施细节等进行了互动交流,对提高产品质量,促进产业健康发展有着积极的推动作用。
  • 关于举办GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会的通知
    p   strong  各有关单位: /strong /p p   由全国纳米技术标准化技术委员会(SAC/TC279)归口的国家推荐性标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》已于2016 年12 月13 日发布,并于2017 年7 月1 日起实施。GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》已于2018 年3 月15 日发布,并将于2018 年10 月1 日起实施。两项标准均为首次制定实施,对拉曼光谱仪器结构、测试方法、校准方法等做了详细规定。 /p p   拉曼光谱技术广泛应用于纳米科技、生物、半导体、考古、宝石及司法鉴定等领域。拉曼光谱测试结果的准确性、一致性是国内/国际间科研交流、对等贸易等不可或缺的坚实基础。同时仪器性能的标准化能够大大助力我国拉曼光谱仪器产业的质量提升,增强国产仪器的市场竞争力。 /p p   为了满足标准使用相关方的实际需求,进一步深化对标准的解读,解答标准使用过程中的疑问,保证标准的有效实施和利用,同时促进标准制定方、仪器制造方和仪器使用方三方的有效合作,由中国计量科学研究院(以下简称:中国计量院)主办的“GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会”拟定于2018 年9 月10 日在湖北省武汉市举办。届时将邀请标准主要起草人及相关专家对标准技术细节进行详细解读。欢迎相关产业、检测机构、仪器厂商技术主管和技术人员参会,就拉曼光谱的生产、使用及国家标准的有效实施进行交流,促进拉曼光谱在更广泛领域的普及和发展。 /p p   同时,将于9 月11 日至13 日召开“国家质量基础设施建设助力质量提升”学术研讨会暨CSTM/FC00 领域委员会及纳标委WG5 工作组2018 年度会议(CSTM/FC00 领域委员会简介见附件1),届时将邀请相关单位领导和专家围绕“国家质量基础设施建设助力质量提升”的主题展开深入探讨,欢迎有关专家学者参会。同时,将召开由CSTM/FC00 领域委员会归口承担的《标准编制说明编写指南》等4 项团体标准的审查会和新标准立项会,欢迎有意向的专家或单位参与标准的制定工作。 /p p   会议事项通知如下: /p p   strong  一、时间和地点 /strong /p p   会议时间:2018 年9 月9 日注册报到,9 月10 日宣贯会议 /p p   会议地点:武汉 东湖开发区 二妃山庄 晴川厅会议室 /p p   地址:武汉东湖高新技术开发区高新大道666 号(光谷生物城内) /p p strong   二、宣贯内容 /strong /p p   1、拉曼光谱的基本原理与应用介绍 /p p   2、国家标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》宣贯 /p p   3、拉曼光谱仪的校准与溯源 /p p   4、国家标准GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》宣贯。 /p p   strong  三、考核与发证 /strong /p p   培训结束后,由中国计量科学研究院颁发培训证书。该证书可作为继续教育的证明。 /p p   strong  四、培训费用 /strong /p p   培训费:1500 元/人,包括讲义、标准复印件、培训证书。 /p p   请将培训费于培训前7 天电汇到中国计量科学研究院账户,汇款 /p p   信息如下: /p p   账户名:中国计量科学研究院 /p p   开户行:交通银行北京分行和平里支行 /p p   账号:110060224018010008693 /p p   行号:301100000074 /p p   电话:010-64524304 /p p   银行汇款时,请备注“2018 拉曼宣贯会+姓名”字样,并详细填 span style=" TEXT-ALIGN: center" 写参会回执(附件2)中的开票信息。 /span /p p style=" TEXT-ALIGN: center" img title=" QQ截图20180906104247.jpg" style=" HEIGHT: 701px WIDTH: 600px" border=" 0" alt=" QQ截图20180906104247.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/0ff14588-62c6-481b-8186-8894a9edc2bc.jpg" width=" 600" height=" 701" / /p p strong   附件: /strong a title=" 附件2. 宣贯会参会回执(1).docx" style=" FONT-SIZE: 12px COLOR: rgb(0,102,204)" href=" https://img1.17img.cn/17img/files/201809/attachment/195c21ad-4283-42f8-8268-18dc4ce79a19.docx" br/ strong    /strong /a strong /strong a title=" 附件1. CSTM-FC00领域委员会简介(1).pdf" style=" FONT-SIZE: 12px COLOR: #0066cc" href=" https://img1.17img.cn/17img/files/201809/attachment/a53999e4-b632-4c8c-96f0-dd03b1a5b066.pdf" strong 附件1. CSTM-FC00领域委员会简介.pdf br/   附件2. 宣贯会参会回执.docx br/    /strong /a strong /strong a title=" 附件3. 酒店交通(1).pdf" style=" FONT-SIZE: 12px COLOR: #0066cc" href=" https://img1.17img.cn/17img/files/201809/attachment/3fd0e349-9265-4ae7-a1dc-8d4930209fd6.pdf" strong 附件3. 酒店交通.pdf /strong br/ /a /p
  • 空间引力波探测星间激光链路构建研究中取得进展
    太极计划通过卫星编队的形式进行空间引力波探测,而构建星间激光链路是其中的关键环节之一。相比应用于星间激光通信、重力场测量等领域的传统星间激光链路构建任务,太极计划需应用有限的星上资源实现三百万公里超远距离激光捕获及1 nrad/Hz1/2量级超高精度指向,因此其实现难度要大得多。为此,提出采用三级捕获探测方案, 通过星敏感器(STR)、CMOS捕获相机及四象限探测器(QPD)逐级探测压制激光指向偏差。目前对该方案的研究仍停留在仿真模拟及关键技术原理方法学论证阶段,并未充分考虑各阶段之间系统参数及核心探测技术之间的耦合关系,亟需通过全流程地面模拟实验进一步验证激光链路方案主要技术指标的可行性。针对上述问题,力学所引力波实验中心与国科大杭州高等研究院太极团队核心成员高瑞弘博士开展了面向太极计划的超高精度星间激光链路构建地面验证技术研究,设计并搭建了激光捕获跟瞄一体化地面模拟实验系统(如图1所示)。该系统在完整还原捕获跟瞄方案光学系统及实施流程的基础上充分考虑了对激光远场波前、高斯平顶光束接收、弱接收光强等空间实际运行情况的模拟。系统采用小口径光阑结合大发散角出射光,依据合理的参数设计及器件选型,在实验室近场传输情况下实现了双端近似夫琅禾费衍射模拟及高斯平顶光束接收。图1 捕获跟瞄一体化地面模拟实验系统实物图。光学平台上放置有CMOS及QPD两级探测器,利用自研的上位机软件可实现捕获-跟瞄全流程自动模拟。模拟实验采用DWS信号实时监测激光指向角度变化,图2所示的实验数据展示了由初始指向—扫描开环捕获—闭环捕获—精密指向的全流程指向角度变化,实现了对初始时刻百微弧度量级指向偏差的逐级压制。图2 捕获-跟瞄全流程模拟实验yaw方向角度变化。在激光捕获探测技术方面,首次提出并采用了改进的质心算法,在百皮瓦级弱光情况下实现了亚像素级光斑中心定位精度。在QPD前设计了共轭成像系统,降低了beam-walk对DWS技术非线性误差产生的影响,提高了精密指向阶段角度测量精度。在QPD探测器处,激光捕获及激光精密指向结果如图3所示,对应到实际400倍放大率的望远镜前均能满足太极计划要求,充分验证了目前拟采用方案的可行性。图3 (a)激光捕获完成后角度残余误差示意图。(b) 激光精密指向阶段残余指向抖动幅度谱密度曲线。综上所述,该项研究工作从物理实验的角度出发,设计并搭建了星间激光链路构建地面模拟实验系统。一方面为相应关键技术研究提供了模拟实验平台,验证了关键技术间的耦合关系,提出方法学上的改进策略并指导器件参数选择;另一方面,充分验证了整个方案的可行性,为未来方案转入工程化实现阶段提供完备的理论验证及技术支持。相关研究成果近期在国际顶级光学期刊《Optics and Lasers in Engineering》上发表。
  • 中国仪器仪表学会标准化工作委员会激光拉曼专业技术委员会成立
    关于“中国仪器仪表学会标准化工作委员会激光拉曼专业技术委员会”成立的通报  各相关单位和专家:  中国仪器仪表学会标准化工作委员会(SCIS)为了做好有序承接政府转移职能,完成好国家标准委的团体标准试点工作,根据目前标准制定工作的进展和需要,特成立激光拉曼技术相关仪器仪表的“中国仪器仪表学会标准化工作委员会激光拉曼专业技术委员会”(成员名单附后)。同时,专业技术委员会的成员将成为中国仪器仪表学会标准化工作委员会秘书处专家库的储备专家,以参加后续开展的标准化技术工作,为学会开展的标准相关工作咨询、评审和专业支持。  针对上述的标准专业技术委员会工作,如有意见或建议,或者有意参加相关工作的专家或单位,请随时联系我们。  感谢对我们工作的支持!  联系人:郭晓维  地 址:北京市海淀区锦秋国际大厦A座2308室  电 话:86-10-82800385,18601013495  传 真:86-10-82800485  email: scis@cis.org.cn  2016年1月4日  附:中国仪器仪表学会标准化工作委员会激光拉曼专业技术委员会成员名单姓 名工作单位职务/职称戴连奎浙江大学控制学院教授姜育强利谱科技(北京)有限公司总裁杜一平华东理工大学分析测试中心副主任/教授张 炜中国科学院重庆绿色智能技术研究院副主任/副研究员陈 达天津大学精密仪器与光电子工程学院研究员邱宪波北京化工大学教授张克非北京赛诺飞拓科技有限公司总工程师/高级工程师杨海峰上海师范大学教授康怀志厦门大学高级工程师刘国坤厦门大学环境与生态学院副教授张孝芳北京科技大学高级工程师刘 俊新疆出入境检验检疫局高级工程师阮伟东吉林大学超分子结构与材料国家重点实验室副教授郑军伟苏州大学能源学院教授施光海中国地质大学珠宝学院教授兰 延国土资源部珠宝玉石首饰管理中心深圳珠宝研究所所长/高级工程师赵 冰吉林大学超分子结构与材料国家重点实验室教授
  • 陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知
    各会员单位及有关单位:根据《陕西省质量认证认可协会团体标准制修订工作程序》要求,陕西省质量认证认可协会对《细粒土颗粒分析试验激光粒度仪法》、《水质 可溶性阳离子(锶、钡)的测定 离子色谱法》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述申报的团体标准符合立项条件,现批准立项。请起草单位按照《中华人民共和国标准化法》的有关要求严格把控标准质量,切实提高标准制定的质量和水平,增加标准的实用性和实效性,按期完成标准编制的相关工作。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。联系方式:联系人:刘耕典电话:029-87299220;18791486587邮箱:SXQCABZ@163.com地 址:陕西省西安市未央区未央路与凤城南路南100米荣民中央国际1606室陕西省质量认证认可协会2023年03月10日陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知.pdf
  • 陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知
    各会员单位及有关单位:根据《陕西省质量认证认可协会团体标准制修订工作程序》要求,陕西省质量认证认可协会对《细粒土颗粒分析试验激光粒度仪法》、《水质 可溶性阳离子(锶、钡)的测定 离子色谱法》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述申报的团体标准符合立项条件,现批准立项。请起草单位按照《中华人民共和国标准化法》的有关要求严格把控标准质量,切实提高标准制定的质量和水平,增加标准的实用性和实效性,按期完成标准编制的相关工作。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。联系方式:联系人:刘耕典电话:029-87299220;18791486587邮箱:SXQCABZ@163.com地 址:陕西省西安市未央区未央路与凤城南路南100米荣民中央国际1606室 陕西省质量认证认可协会2023年03月10日陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知.pdf
  • 中国土壤学会公开征求团体标准《土壤环境微塑料监测技术规范/标准——激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》意见
    根据团体标准制修订计划和标准起草有关规定,经制订《土壤环境微塑料监测技术规范/标准——激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》标准项目起草组认真研究、讨论,并开展调研,现已完成征求意见稿编制工作。现在网上公开征求意见,请于2024年5月8日前将修改意见填写在《意见反馈表》中,并将反馈表电子版(PDF签字扫描件和word版)发至联系人邮箱。逾期视为无意见。联系人:王艳华联系电话:13991828224联系邮箱:yhwang930@foxmail.com附件下载:附件.zip附件1 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》征求意见稿.pdf附件2 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》编制说明.pdf附件3 《土壤环境微塑料监测技术规范标准——激光显微拉曼光谱傅里叶变换红外光谱-光学显微镜法》意见反馈表.docx中国土壤学会2024年4月8日
  • 我国激光气体分析仪国际标准提案获IEC全票通过
    近日,从国际电工委员会(IEC)传来消息,由聚光科技代表中国提出并制定的《可调激光气体分析仪国际标准提案》获得全票通过,成为国际电工委员会IEC标准正式项目。   《可调激光气体分析仪国际标准提案》是聚光科技在“激光气体分析”技术的基础上,参考国际规范而制定出的一套关于激光气体分析技术的国际标准提案,该提案在2008年的国际电工会议上获得了17个投票成员国和3个观察员的全票通过,成为IEC标准正式项目。   聚光科技利用激光气体分析技术成功研发出的“激光在线气体分析系统”经浙江省科技厅组织鉴定,为国内首创,总体技术水平达到国际先进,其关键技术指标达到国际领先,该项成果曾获得国家科技进步二等奖等多项荣誉。   国际电工委员会是世界上成立最早的非政府性国际电工标准化机构,它负责电气和电子工程领域的国际标准化工作,是世界上最具权威性的国际标准化机构之一,其宗旨是促进电工标准的国际统一,电气、电子工程领域中标准化及有关方面问题的国际合作等。   聚光科技提出并制定的《可调激光气体分析仪国际标准提案》被国际电工委员会立为IEC标准正式项目,这说明聚光科技正在承担起激光气体分析领域的国际标准制定重任。
  • 激光器光束质量分析检测技术介绍
    如今,激光器已经广泛应用于通信、焊接和切割、增材制造、分析仪器、航空航天、军事国防以 及医疗等领域。激光的光束质量无论对于激光器制造客户还是激光器使用客户都是重要的核心指标之 一。许多客户依赖激光器的出厂报告,从而忽略了对于激光器光束质量测试的重要性,往往在后面激 光器使用过程中达不到理想的效果。通过下方的对比图可以看出,同样的功率情况下(100W),如果焦点产生微小的漂移,对于材 料加工处的功率密度足足变化了 72 倍!所以,激光器仅仅测试功率或能量是远远不够的。对于激光光束质量的定期检测,如激光光斑尺寸大小、能量分布、发散角、激光光束的峰值中心、几何中心、高斯拟合度、指向稳定性等等,都是非常必要的。我公司对于激光光束质量的测试有着丰富且**的经验,对于不同波长、不同功率、不同光斑大小的激光器都可以提供具有针对性的测试系统和方案。相机式光束分析仪相机式光束分析仪采用二维阵列光电传感器,直接将辐照在传感器上的光斑分布转换成图像,传输至电脑并进行分析。相机式光斑分析仪是目前使用*多的光斑分析仪,可以测试连续激光、脉冲激光、单个脉冲激光,可实时监控激光光斑的变化。完整的光束分析系统由三部分构成:(1)相机针对用户激光波长以及光斑大小不同的测量需求,SPIRICON 公司推出了如下几类面阵相机:● 硅基 CMOS 相机通常为 190nm ~ 1100nm;● InGaAs 面阵相机通常为 900 ~ 1700nm;● 热释电面阵相机则可覆盖13 ~ 355nm 及 1.06 ~ 3000μm。相机的芯片尺寸决定了能够测量的光斑的*大尺寸,而像素尺寸则决定了能够测量的*小光斑尺寸;通常需要 10 个像素体现一个光斑完整的信息。相机型号SP932ULT665SP504S波长范围190-1100nm340-1100nm芯片尺寸7.1×5.3mm12.5×10mm23×23mm像.大.3.45x3.45μm4.54×4.54μm4.5x4.5μm分.率2048x15362752×21925120×5120相机型号 XC-130 Pyrocam III HR Pyrocam IV波长范围900-1700nm13-355nm&1.06-3000µ m13-355nm&1.06-3000µ m芯片尺寸9.6*7.6mm12.8mm×12.8mm25.6mm×25.6mm像元大小30*30um75µ m×75µ m75µ m×75µ m分辨率320*256160×160320×320灵敏度64nw/pixel(CW)0.5nJ/pixel(Pulsed)64nw/pixel(CW) 0.5nJ/pixel(Pulsed)饱和度 1.3 μW/cm2 @ 1550 nm3.0W/cm2 (25Hz)4.5W/cm2(50Hz))3.0W/cm2 (25Hz)4.5W/cm2(50Hz)) (2)光束分析软件Spiricon 光斑分析软件BeamGage 界面人性化,操作便捷, 功能强大,其Ultra CAL**逐点背景扣除技术,可将测量环境中的杂散背景光完全扣除掉,使得测量结果真实,得到更精准的ISO 认证标准的光斑数据(详情见 ISO 11146-3-2004)。(3)附件针对用户的特殊要求或者激光的特殊参数设定,SPIRICON 公司推出了一系列光束分析仪的附件,如:分光器、衰减器、衰减器组、扩/缩束镜、宽光束成像仪、紫外转换模块等等。对于微米量级的光斑,传统面阵相机受到像素的制约,无法成像或者无法显示完整的光斑信息。我们有两类光束分析仪可供选择。狭缝扫描光束分析仪NanoScan 2s 系列狭缝扫描式光束分析仪,源自2010 年加入OPHIR 集团的PHOTON INC。PHOTON INC 自 1984 年开始研发生产扫描式光束分析仪,在光通讯、LD/LED 测试等领域享有盛名。扫描式与相机式光斑分析仪的互补联合使得OPHIR 可提供完备的光束分析解决方案。扫描式光束分析是一种经典的光斑测量技术,通过狭缝 / 小孔取样激光光束的一部分,将取样部分通过单点光电探测器测量强度,再通过扫描狭缝 / 小孔的位置,复原整个光斑的分布。扫描式光束分析仪的优点 :● 取样尺度可以到微米量级,远小于 CCD 像素,可获得较高的空间分辨率而无需放大;● 采用单点探测器,适应紫外 ~ 中远红外宽范围波段;● 适应弱光和强光分析;扫描式光束分析仪的缺点 :● 多次扫描重构光束分布,不适合输出不稳定的激光;● 不适合非典型分布的激光,近场光斑有热斑、有条纹等的状况。扫描式光束分析仪与相机式光束分析仪是互补关系而非替代关系;在很多应用,如小光斑测量(焦点测量)、红外高分辨率光束分析等方面,扫描式光束分析仪具备独特的优势。自研自产的焦斑分析仪系统及附件STD 型焦斑分析系统● 功率密度 / 能量密度较大,NA 小于 0.05(约 3°),且焦点之前可利用距离大于 100mm,应当考虑使用本型号。● L 型焦班分析系统的标准版,采用双楔,镜头在双楔之间。● 综合考虑了整体空间利用率、对镜头的保护等因素。● 可进一步升级成为双楔在前的型号,以应对特别大的功率密度 /● 能量密度。● 合适用户 : 科研和工业的传统激光用户,高功率高能量激光用户, 超长焦透镜用户,小 NA 客户。02 型焦班分析系统● 功率密度 / 能量密度较小,或 / 和 NA 大于 0.05(约 3°),或 / 和焦点之前可利用距离小于100mm,应当考虑使用本型号。● 比 STD 更好调节;物镜更容易打坏。● L 型焦班分析系统,采用双楔,镜头在双楔之前。如遇弱光,可定制将双楔换为双反射镜。● 02 型机架不用匹配镜头尺寸,通用,可按需选择镜头。● 非常方便对焦。● 合适用户 : 使用小于 100mm 透镜甚至显微镜头做物镜的用户(表面精密加工);LD/ LED+ 微透镜的生产线做质检附件STA-C 系列 可堆叠 C 口衰减器&bull 18mm 大通光孔径。&bull 输入端为 C-Mount 内螺纹,输出端为 C-Mount 外螺纹。&bull 镜片有 1°倾角,因而可以堆叠使用。&bull 标称使用波段 350-1100nm。VAM-C-BB VAM-C-UV1 可切换式衰减模组&bull 18mm 通光孔径。&bull 标准品提供两组四片可推拉式切换的中性密度滤光片。&bull 用于需要快速改变衰减率的测量过程。&bull BB 表示宽波段,即 400-1100nm,提供 1+2、3+4 两组四片中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供 0.1+0.2、0.3+0.7 两组四片中性密度滤光片镜组。LS-V1 单楔激光采样模组&bull 20mm 大通光孔径。&bull 内置单片 JGS1 熔石英楔形镜采样片,易于拆卸和更换的楔形镜架。&bull 标称使用波段 190-1100nm。其他波段可定制。&bull 633nm 处 P 光采样率 0.6701%;S 光采样率 8.1858%。&bull 355nm 处 P 光采样率 0.7433%;S 光采样率 8.6216%。&bull 前端配模组母接口;后端配模组公接口及 C-Mount 外螺纹接口。DLS-BB 双楔激光采样模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,无需考虑偏振方向。&bull 标称使用波段 190-1100nm,其他波段可定制。&bull 633nm 处采样率 0.05485%。&bull 355nm 处采样率 0.06408%。&bull 后端可配 C-Mount 外螺纹接口。SAM-BB-V1 SAM-UV1-V1 采样衰减模组&bull 20mm 大通光孔径。&bull BB 表示宽波段,即 400-1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 前端配模组母接口;后端配 C-Mount 外螺纹接口。DSAM-BB DSAM-UV1 双楔采样衰减模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,633nm 处采样率 0.05485%;无需考虑偏振方向。&bull BB 表示宽波段,即 400——1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350——400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 后端配 C-Mount 外螺纹接口对于大功率激光器客户,如增材制造应用以及光纤激光器客户,我们还有专门的光束分析仪系统BeamCheck 和 BeamPeek 集成 CCD 光束分析仪直接探测高功率激光的光斑,以及一台功率计用于实时监测测量激光的功率。特殊的分束系统使其可以直接用于高功率激光,极小部分功率被分配给光束分析仪进行光斑分析,而大部分功率由功率计直接探测激光功率。可在近场或焦点处测量。BeamCheck 可持续测量不大于600W 的增材加工激光,BeamPeek 体积更为小巧,可测量*大1000W 的增材加工激光不大于2 分钟,然后自然冷却后进行下一轮测试。 型号BeamCheck BeamPeek波长范围1060-1080nm532nm 1030-1080nm功率测试范围0.1-600W10-1000W可持续测试性持续测试焦点漂移准确度±50µ m接口方式GigE Ethernet仪器尺寸406.4mm×76.2mm×79.4mm
  • 中国土壤学会立项《土壤环境微塑料监测技术规范/标准--激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》团体标准
    各会员及有关单位:根据《中国土壤学会团体标准管理办法(试行)》规定,经自愿申请、专家评审论证,确定《土壤环境微塑料监测技术规范/标准--激光显微拉曼光谱/傅里叶变换红外光谱-光学显微镜法》1项团体标准符合立项要求,准予立项。特此公告。请标准起草单位按照相关要求开展团体标准制定工作,严把标准质量关,确保按时完成相关工作。如对以上标准项目存在异议,请在公告之日起5个工作日内将意见反馈至我会标委会秘书处。联系人:严卫东 蒋宇霞电话:025-86881532Email:sssc@issas.ac.cn中国土壤学会2024年1月8日
  • 我国紫外激光器产业化关键技术取得突破
    清华大学等单位共同承担的“十二五”863计划新材料领域“紫外激光器产业化关键技术及应用”课题取得重要进展,于近日通过技术验收。   课题组解决了厘米级BBSAG晶体生长、非线性晶体超光滑表面加工、工业级应用的全固态激光器整机装配等工艺难点,突破了高光束质量紫外频率变换、非线性光学晶体的寿命及抗损伤、光束指向稳定性等多项关键技术,开发出10-30W不同功率级别的全固态紫外激光器和新型的BBSAG四倍频器件,产品性能达到国外同类产品水平,形成了一套拥有自主知识产权的全固态紫外激光核心技术,并实现了紫外激光器在微加工成套设备上的试用。   课题实施期间,BBSAG晶体生长技术已经转移到福建福晶科技股份有限公司,该公司及下属公司已经实现BBSAG晶体的生产并出口到欧美等发达国家。经过本课题支持,课题组成功研制出最大输出功率达30W的紫外激光器,各项指标均达到甚至超过国际光电子公司紫外高功率激光器指标水平。该课题成果的产业化,将打破国外在紫外激光器市场中的垄断,极大地提升我国激光微加工制造产业的核心竞争力。
  • 蓝菲光学发布激光雷达(LiDAR)长距离灵敏度标准测试目标板新品
    激光雷达(LiDAR)长距离灵敏度标准测试目标板为什么灰色的卡片、织物和纸张会让你处于劣势? 在成像应用中,您选用的灰色目标板必须适用于各种照明环境,并且仍能保持其外观。 最重要的是,它必须具有均匀的光谱响应。 它还必须具有耐热和物理耐久性,紫外光稳定性,热稳定性,无光泽,无偏振和无荧光。 如果您使用的灰色目标板不符合这些要求,则需要Permaflect目标板。 Permaflect目标板可单独购买或购买蓝菲光学的LiDAR测试目标板套件。 大面积的暗、灰、白目标板是激光雷达系统动态范围内精确评估短程和远程灵敏度的理想目标。 蓝菲光学的标准LiDAR测试目标板套件包括三种反射水平:10%,50%和80%,坚固的便携箱,可容纳3块Permaflect目标板以及光谱反射和均匀性测试报告,方便存储和运输。特点:轻量级可定制均匀性好耐久性易于清洗应用:激光雷达(LiDAR)飞行时间(TOF)地面实况成像仪校准传感器/光源补偿灰纸的高级替代品Permaflect不同反射率漫反射板创新点:在成像应用中,您选用的灰色目标板必须适用于各种照明环境,并且仍能保持其外观。 最重要的是,它必须具有均匀的光谱响应。 它还必须具有耐热和物理耐久性,紫外光稳定性,热稳定性,无光泽,无偏振和无荧光。 如果您使用的灰色目标板不符合这些要求,则需要Permaflect目标板。 大面积的暗、灰、白目标板是激光雷达系统动态范围内精确评估短程和远程灵敏度的理想目标。 激光雷达(LiDAR)长距离灵敏度标准测试目标板
  • 全国光辐射安全和激光设备标准化技术委员会非相干光辐射分技术委员会开始筹建
    关于对拟筹建的全国光辐射安全和激光设备标准化技术委员会非相干光辐射分技术委员会进行公示的通知   各有关单位:   根据《全国专业标准化技术委员会管理规定》,经研究,现对拟筹建的全国光辐射安全和激光设备标准化技术委员会非相干光辐射分技术委员会筹建方案(见附件)公开征求意见。有关方面可对该方案提出意见和建议,并将书面意见于2012年8月9日前返回国家标准化管理委员会。   联系方式:   北京市海淀区马甸东路9号 邮编:100088   国家标准委工业二部   电话:010-82262961 E-mail: zhangcy@sac.gov.cn   国家标准委综合业务管理部   电话:010-82262930 E-mail: huhx@sac.gov.cn   二○一二年七月九日   附件:全国光辐射安全和激光设备标准化技术委员会非相干光辐射分技术委员会拟筹建方案.doc
  • 《锂电池电极材料粒度分布检测 激光衍射法》行业标准公开征求意见
    2024年4月8日,工业和信息化部印发《工业和信息化部办公厅关于印发2024年第一批行业标准制修订计划的通知》(工信厅科〔2024〕18号),由中国电子技术标准化研究院(赛西,CESI)归口管理并组织起草的行业标准SJ/T xxxx《锂离子电池电极材料粒度分布检测方法 激光衍射法》(计划号:2024-0318T-SJ)计划正式下达。该标准由宁德时代新能源科技股份有限公司、中国电子技术标准化研究院、广东邦普循环科技有限公司等参与起草。近日,起草组已完成征求意见1稿的编制工作,为保证项目的进度和质量,现向各相关单位征求意见,请于2024年7月31日前将意见反馈至zhaolx@cesi.cn。工作组秘书处将择期组织召开标准征求意见1稿讨论会,具体时间另行通知。中国电子技术标准化研究院作为工信部锂离子电池及类似产品标准工作组的组长和秘书处单位,将充分依托该工作组,联合国内锂/钠离子电池领域产、学、研、用等单位共同开展该标准的编制工作。工作组成员单位可直接联系项目组负责人报名并获取征求意见稿,非工作组成员单位如需参与该标准制定并反馈意见,请先联系工作组秘书处加入工作组或项目组。工信部锂离子电池及类似产品标准工作组秘书处:刘 冉 冉电话:010-64102192邮箱:liurr@cesi.cn激光衍射法是锂离子电池电极材料粒度分布最常用的检测方法 。为帮助业内人士深入了解激光衍射法等粒度表征技术及应用的最新进展,促进跨领域交流与合作,仪器信息网与中国颗粒学会将于2024年7月23-24日联合举办第五届颗粒研究应用与检测分析网络会议,会议特别设置电池材料与颗粒分析表征、多孔材料与颗粒分析表征、超微及纳米颗粒分析表征、颗粒与健康四个专场。一键免费报名参会:https://www.instrument.com.cn/webinar/meetings/particuology2024/点击图片直达会议页面
  • 中国国际科技促进会发布《激光照明用稀土荧光陶瓷可靠性性能的试验方法》和《稀土激光荧光陶瓷热稳定性的测定》两项团体标准
    根据《中国国际科技促进会团体标准管理办法》的要求,《激光照明用稀土荧光陶瓷可靠性性能的试验方法》和《稀土激光荧光陶瓷热稳定性的测定》两项团体标准已经完成立项、编制起草、征求意见、评审、修改、审查、批准及备案等标准制定流程,经中国国际科技促进会标准化工作委员会审批通过,正式发布,现予以公告,即日起实施。详情见正式文件。 中国国际科技促进会标准化工作委员会2023年7月17日关于《激光照明用稀土荧光陶瓷可靠性性能的试验方法》团体标准发布的公告.pdf关于《稀土激光荧光陶瓷热稳定性的测定》团体标准发布的公告.pdf
  • 创三个世界第一!全球首颗激光二氧化碳探测卫星发射成功
    4月16日2时16分,长征四号丙运载火箭在太原卫星发射中心升空,将世界首颗具备二氧化碳激光探测能力的卫星——大气环境监测卫星送入预定轨道,发射任务取得圆满成功。星箭均由中国航天科技集团有限公司八院抓总研制。,时长00:30摄影:郑逃逃大气环境监测卫星是《国家民用空间基础设施中长期发展规划(2015-2025年)》中的科研卫星,运行705公里的太阳同步轨道,整星发射重量约2.6吨,装载了大气探测激光雷达、高精度偏振扫描仪、多角度偏振成像仪、紫外高光谱大气成分探测仪及宽幅成像光谱仪等五台遥感仪器,是一颗集CO2激光主动探测、细颗粒物立体探测、气态污染物探测和地表环境探测的多要素综合监测卫星。长征四号丙运载火箭发射升空。吴敬博 摄大气环境监测卫星的成功发射和在轨应用标志着我国在大气遥感领域达到国际领先水平,卫星在轨应用后将实现对生态环境、气象和农业等多领域定量遥感服务能力的跨越式提升,为我国实现减污降碳协同增效、建设美丽中国的目标提供有力支撑。首次搭载大气探测激光雷达大气环境监测卫星在CO2探测手段和精度、细颗粒物主被动探测和偏振交火探测体制上,创造了三个世界第一。二氧化碳探测,激光雷达出奇效。大气环境监测卫星实现国际上首次搭载大气探测激光雷达这一主动探测载荷,实现主动激光CO2高精度、全天时、全球探测,探测精度大幅提升至优于1ppm,达到国际最高水平,为我国实现“碳达峰、碳中和”目标提供最精准的遥感数据支撑。同时,大气探测激光雷达通过对大气进行分层“CT”扫描,国内首次实现全球气溶胶光学厚度、形状和尺寸等垂直分布信息的获取。PM2.5监测,综合手段创新高。大气环境监测卫星国际上首次采用了主被动结合、多手段综合的探测体制,通过装载不同类型、不同原理的载荷,将主动发射激光接收的回波信号和被动接收的太阳光反射信号相结合,综合反演多种遥感数据,实现对近地面细颗粒物(PM2.5等)浓度的高精度监测,为大气污染精准防治提供科学数据支撑。中国航天科技集团八院供图偏振交火,信息融合效率高。大气环境监测卫星国际首次采用融合反演级偏振交火探测技术,获取气溶胶光学厚度、粒子尺度等多种参数,通过空间、辐射和偏振维度的信息融合,大幅提升细颗粒物探测精度,达到国际先进水平。此外,紫外高光谱大气成分探测仪及宽幅成像光谱仪也将大幅提升气态污染物以及地表环境监测能力,紫外谱段高光谱大气观测以及宽幅多光谱观测空间分辨率提升一倍。首次创新应用无控制点激光光轴自标定技术大气环境监测卫星每天可绕地球飞14轨,激光雷达不分白天黑夜全天时工作,可谓是一个兢兢业业的“劳模”。除了敬业之外,它还是一个十足的“强迫症”,时刻不忘摆正自己的姿态,以保证极高的指向测量精度,为此还在国内首次创新应用了无控制点激光光轴自标定技术。 中国航天科技集团八院供图这一“神技”顺利施展的前提是要有一把能够实时提供绝对姿态信息的“标尺”,也就是“司机”的“眼睛”——星敏感器。激光雷达自身发射的光源分束后经星敏感器支架上的棱镜反射,建立起激光雷达与星敏感器的在轨标校系统,这样激光雷达就可以借助星敏感器这双“慧眼”实时明确自己“身在何方”。据中国航天科技集团八院控制所卫星姿轨控分系统副主任设计师孙尚介绍,为提供高精度在轨三轴惯性测量精度,姿轨控分系统采用了高精度多头星敏感器。“好比用‘三只眼睛’同时定位,利用一个‘大脑’融合处理出更高精度的姿态测量数据。”据悉,“十四五”期间我国还将发射高精度温室气体综合探测卫星,与大气环境监测卫星组网观测,进一步提升我国天基碳监测能力和水平,为我国生态文明建设,实现“双碳”目标贡献航天力量。
  • 上海光机所在液晶光学相控器件激光辐照效应方面取得新进展
    近期,中国科学院上海光学精密机械研究所薄膜光学实验室赵元安研究员团队与上海理工大学、苏州科技大学合作在液晶光学相控器件激光辐照效应方面取得新进展,研究厘清了液晶可变相位延迟器(LCVR)在连续激光加载下相位调控性能退化机理,并提出了性能退化补偿的预配置方法,为相关器件设计以及在高功率激光中的实际应用提供了指导方向,相关研究成果发表于Optical Materials 。   液晶相控器件可以实现对光束振幅、偏振、波前和指向等参数的调节,在激光点火、激光加工、光电对抗等高功率激光系统中有着广泛应用和研究,激光加载产生的热效应造成器件性能退化及失效的问题一直困扰着其在激光系统中的应用。   在该研究中,研究人员集成相位、温升在线测量技术并结合温度场建模分析,证实加电工作状态下LCVR的相位调控能力退化归因于连续激光加载导致的温升不但改变了液晶折射率,还影响了液晶分子在加电状态下的偏转角。上述性能退化可通过事先绘制不同激光功率下的相位响应曲线,通过降低电压进行预配置补偿,从而实现LCVR在更高功率激光辐照下按照预设相位调控参数输出。这些结果阐明了热沉积引起液晶相位器件相位调控能力退化的基本机制以及相应的补偿手段,为液晶相控器件的设计优化和实际应用提供了重要参考。   相关研究得到了国家自然科学基金、脉冲功率激光技术国家重点实验室开放基金的支持。图 1 (a)不同激光功率加载下LCVR的温度随时间的变化;(b)不同激光功率加载下LCVR的相位延迟随电压的变化;(c)不同激光功率加载下LCVR的相位延迟随电压的变化(第二次实验)。
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style=" text-indent: 2em " strong 编者按: /strong 如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。 /p p style=" text-indent: 2em text-align: center " strong 激光粒度仪应用导论之原理篇 /strong /p p style=" text-indent: 2em " 当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。 /p p style=" text-indent: 2em " 首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 176, 240) " 【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。 /span /p p style=" text-indent: 2em " 麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。 /p p style=" text-indent: 2em " 现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。 /p p style=" text-indent: 2em " 世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title=" 图1:颗粒光散射示意图.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " 颗粒光散射示意图 /p p style=" text-indent: 2em " 激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。 /p p style=" text-indent: 2em " strong & nbsp 编者结: /strong 明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。 /p p style=" text-indent: 0em text-align: right " (作者:张福根) /p
  • 全国激光标准化技术委员会年会将在上海举行
    全国光辐射安全和激光设备标准化技术委员会2010年度年会定于7月24日至28日在上海举行。会议主要进行年度总结、研究委员增补变更、建立第二届标委会筹备组等事宜,并进行一个强制标准项目的会审。   全国光辐射安全和激光设备标准化技术委员会(简称:国家激光标委会, 代号:SAC/TC284)于2006年5月16日在北京成立。   全国光辐射安全和激光设备标准化技术委员会是由中国国家标准化管理委员会批准成立, 负责激光基础技术、激光器件和材料、激光设备(不含文物保护激光设备)、光辐射安全及相关领域的标准化工作,并对口国际电工委员会光辐射安全和激光设备技术委员会(IEC/TC76)的激光标准化管理机构。中国电子科技集团公司第十一研究所为秘书长单位。   第一届全国光辐射安全和激光设备标准化技术委员会委员现由34名,均是来自激光行业的企事业专家,其中工程院院士2位,教授4位,研究员及研究员级高工 15位,高工9位,企业高级行政管理人员4位。主任委员由中国电子科技集团公司第十一研究所韩建忠所长担任,副主任委员四人,分别由中国电子科技集团公司第十一研究所周寿桓院士、北京光电技术研究所陆耀东副所长、北京工业大学激光工程研究院左铁钏院长、武汉楚天激光集团股份有限公司孙文董事长担任,秘书长由中国电子科技集团公司第十一研究所薛峰所长助理担任,副秘书长由机械工业仪器仪表综合技术经济研究所欧阳劲松副总工担任。
  • 祝贺“中国仪器仪表学会标准化工作委员会激光拉曼专业技术委员会”成立,我司张克非高工入选
    关于“中国仪器仪表学会标准化工作委员会激光拉曼专业技术委员会”成立的通报  各相关单位和专家:  中国仪器仪表学会标准化工作委员会(SCIS)为了做好有序承接政府转移职能,完成好国家标准委的团体标准试点工作,根据目前标准制定工作的进展和需要,特成立激光拉曼技术相关仪器仪表的“中国仪器仪表学会标准化工作委员会激光拉曼专业技术委员会”(成员名单附后)。同时,专业技术委员会的成员将成为中国仪器仪表学会标准化工作委员会秘书处专家库的储备专家,以参加后续开展的标准化技术工作,为学会开展的标准相关工作咨询、评审和专业支持。  针对上述的标准专业技术委员会工作,如有意见或建议,或者有意参加相关工作的专家或单位,请随时联系我们。  感谢对我们工作的支持!  联系人:郭晓维  地 址:北京市海淀区锦秋国际大厦A座2308室  电 话:86-10-82800385,18601013495  传 真:86-10-82800485  email: scis@cis.org.cn  2016年1月4日  附:中国仪器仪表学会标准化工作委员会激光拉曼专业技术委员会成员名单姓 名 工作单位 职务/职称戴连奎 浙江大学控制学院 教授姜育强 利谱科技(北京)有限公司 总裁杜一平 华东理工大学分析测试中心 副主任/教授张 炜 中国科学院重庆绿色智能技术研究院 副主任/副研究员陈 达 天津大学精密仪器与光电子工程学院 研究员邱宪波 北京化工大学 教授张克非 北京赛诺飞拓科技有限公司 总工程师/高级工程师杨海峰 上海师范大学 教授康怀志 厦门大学 高级工程师刘国坤 厦门大学环境与生态学院 副教授张孝芳 北京科技大学 高级工程师刘 俊 新疆出入境检验检疫局 高级工程师阮伟东 吉林大学超分子结构与材料国家重点实验室 副教授郑军伟 苏州大学能源学院 教授施光海 中国地质大学珠宝学院 教授兰 延 国土资源部珠宝玉石首饰中心深圳珠宝研究所 所长/高级工程师赵 冰 吉林大学超分子结构与材料国家重点实验室 教授转自仪器信息网,链接:http://www.instrument.com.cn/news/20160105/181568.shtml
  • 由聚光科技等单位牵头起草的《HG/T 5227-2017流态化催化裂化再生烟气激光气体分析仪》化工行业标准于2018年正式实施
    近日,国家工信部发布《HG/T 5227-2017流态化催化裂化再生烟气激光气体分析仪》(以下简称“标准”),标准由聚光科技(杭州)股份有限公司(以下简称“聚光科技”)等三家单位共同参与起草,于2018年4月1日起正式实施。  本标准由中国石油和化学工业联合会提出,聚光科技牵头,联合中国石油化工股份有限公司茂名分公司和天花化工机械及自动化研究设计院共同完成。  本标准规定了流态化催化裂化再生烟气激光气体分析仪的要求、试验条件、试验方法、检验规则、标志、包装、运输和贮存、质量保证期,适用于化工行业使用可调谐半导体激光吸收光谱技术测量流态化催化裂化再生烟气的激光气体分析仪。  这是聚光科技继发布《IEC 61207-Tunable semiconductor laser gas analyzers》国际标准、《GB-T25476-2010可调谐激光气体分析仪》国家标准、《HG/T 4376-2012化工用在线激光微量水分析仪》行业标准后的又一行业标准。聚光科技牵头起草发布关于激光气体分析仪的国际标准、国家标准以及行业标准都充分展示了聚光科技在仪器仪表行业的龙头地位,此次标准的发布又进一步推动了聚光科技在化工行业的领先地位。
  • 生物医学玻璃的激光微加工—芯片实验室
    相信大家在部分科幻电影或动漫中,常常能看到可以植入人体的芯片,用来监控身体各个参数、增强人体机能和神经反应。芯片一旦植入,普通人就变身成为神秘特工或战士。而现实中随着马斯克的脑机接口正在一步步迈向临床,AlphGo把人类棋手完虐等以前只能在科幻电影中见到的“未来科技”,逐步在现实生活中出现的时候,拥有“小身材有大智慧”的AI芯片似乎也能够梦想照进现实了。事实上,如今已有一些“芯片实验室(Lab-on-a-chip)”出现了,并且其发展速度是非常快的!芯片实验室什么是“芯片实验室(Lab-on-a-chip)”?简单地说,能够将整个在实验室中进行的基本操作单位集成到简单微系统上的技术就叫“芯片实验室”。“芯片实验室”中的芯片是作为流体在其中流动的微通道图案,可被模塑或刻蚀。微通道和外部宏观环境之间的连接需要通过若干孔,这些孔穿透芯片,具有不同的尺寸,用于将流体注入芯片或从芯片中移除。在微流控芯片中,根据实验需要,流体被混合、分离或引导。终结果可形成自动复合系统,从而实现高通量检测。在生物医学应用领域,芯片实验室可以实现快速诊断。芯片实验室技术有望成为一种重要的诊断工具。这些微型化的设备使医疗保健服务提供方可以使用非常少量的试剂和测试样本执行一系列诊断测试。此外得益于它们的便携性,还可以在远离实验室环境的现场进行测试。制作芯片实验室(Lab- on-a-chip)或微流控芯片(Microfluidic chip)的材料主要是玻璃,受限于芯片的微尺度特性,在制备过程中,对玻璃进行激光微加工有着很高的要求。制作芯片实验室的大挑战之一是在玻璃芯片内部加工高精度管道、容器和阀门。挑战:玻璃微加工由于其脆性和透明性,玻璃中进行微小的特征加工进行是相当困难的。如果使用常规工具手段,实际上是不可能的。但是快激光器可以胜任这种加工。当脉冲持续时间低于几十皮秒时,激光与材料的相互作用进入冷烧蚀状态,加工质量和精度会变得很高。常规的微制造方法,例如光刻,压印和软蚀刻,已经用于制备微流体芯片。然而,当要实现具有多功能集成的复杂微流控芯片时,这些方法将面临巨大挑战,因为它们需要太多工艺步骤,并且成本很高。刻蚀来啦▲由NKT Photonics的ORIGAMI XP飞秒激光制备的芯片实验室样品大功率快激光脉冲穿透玻璃。紧聚焦的飞秒激光脉冲可以经济地生产具有多功能的通用微流控芯片。短脉冲宽度提供了令人难以置信的峰值功率,即使在透明材料中,也可以进行表面和块状材料内部的改性以进行划线。▲飞秒激光加工的芯片沟道特写快激光确保加工的高精度和高质量。通过利用激光的高度空间选择性,可以将相互作用区域地设置在材料的特定局部区域。这使得飞秒加工技术可以在透明材料中以微尺度对复杂的三维形状进行非常高分辨率的图案化和雕刻。▲深度小于10 μm的沟道特写NKT快激光器可以实现非常精细的深度和通道宽度控制飞秒级短脉冲宽度比材料中的电子-声子耦合过程都短,因此短的飞秒脉冲宽度,意味着在飞秒时间尺度传递能量,这能很好的抑制热影响区的形成和热损害。这种“冷烧蚀”方式实现了高精度和高分辨率的微加工处理,并具有的处理可靠性。紧密聚焦的光束可以在微尺度上非常高分辨率地对复杂形状进行微加工。▲用ORIGAMI XP飞秒激光处理过的芯片实验室样品的特写图片展示为芯片中直径约0.6 mm的圆形储集层NKT Photonics:我们来提供NKT Photonics的快激光提供的短脉冲非常适合用于制备芯片实验室器件。我们强烈建议将ORIGAMI XP用于玻璃和其他透明材料的激光加工。ORIGAMI XP是一款集成、单箱、微焦级飞秒激光器。激光头、控制器和空气冷却系统都集成在一个小巧而坚固的包装中,体积小,甚至可以放在手提行李中! ORIGAMI XP系统基于紧凑的啁啾脉冲放大技术平台,能够在1030 nm处提供高达75μJ的脉冲能量,5 W的平均功率以及小于400 fs的脉冲持续时间。 特点:• 风冷,单箱体,易于集成• • 双输出波长模块• 的脉冲能量和指向稳定性• 工业,坚固的设计• 可以任意方向安装• 实时脉冲能量测量和控制?• 高可靠性• 亦可用水冷 北京凌云光技术集团作为NKT Photonics公司在中国的战略合作伙伴,多年的合作中NKT Photonics公司与凌云始终如一,为客户不断提供更稳定、更先进、更前沿的技术,如果您对以上产品感兴趣,请拨打400 898 0800 电话问询!
  • 激光干涉测量:“聆听”宇宙的声音
    激光干涉测量助力空天探索 在空天探索领域,空间引力波探测是当前国际研究热点,作为人类观测宇宙的新窗口,引力波将为人类探索早期黑洞合并、超新星爆发等宇宙结构形成过程提供观测手段,对探索宇宙起源与演化具有重要的意义。为了探测中低频段的空间引力波,国内外研究人员计划在相距数十万乃至数百万千米的空间轨道上建立超高灵敏度星间激光干涉系统,该方法的本质是将现有的激光干涉超精密测量技术应用到外太空去,突破地面探测臂长的限制,摆脱地面各种干扰源对精密测量的影响。其关键技术是测量相距数百万公里的两个测试质量之间的间距变化,主要包括:测试质量与卫星平台之间的间距变化、两个卫星平台之间的间距变化,前者涉及到测试质量的多个自由度精密检测,探测灵敏度需要在1 mHz~1 Hz频段达到~1 pm/Hz1/2(平动)以及~1 nrad/Hz1/2(转动)水平。揭秘空间引力波探测的原理 空间引力波探测任务需要实现对测试质量皮米量级的平动测量以及纳弧度量级的转动测量,关键技术单元包括:激光外差干涉、差分波前传感以及高精度相位测量三部分,如图1所示,通过测量两测试质量之间的平动转动,获得其间距变化信息,从而探测引力波信号。图1面向空间引力波探测的激光外差干涉多自由度超精密测量技术示意图激光外差干涉 激光外差干涉测量原理如图2所示,频率相近的两束激光(测量光频率f1,参考光频率f2)合束后,合成波(频率为f1+f2)会存在一个包络,其频率为|f1-f2|,这一包络频率也被称为外差频率。 当测试质量在沿测量光传播方向上运动状态改变、或者引力波来临时,干涉仪的测量臂光程发生变化,表现为外差干涉信号的相位波动,即图2中紫色虚线部分。以经典迈克尔逊干涉结构为例,外差干涉信号相位的一个周期变化对应位移变化半波长(光程变化一个波长),有 其中,λ为激光输出波长,L为测试质量的等效位移,φ为外差干涉信号的相位变化。图2 激光外差干涉原理示意图差分波前传感 差分波前传感是一种基于激光波前相位比较的高精度角度测量方法,测量原理如图3所示。测量光与参考光合束后入射至四象限探测器表面,两束光满足干涉条件产生外差干涉信号,照射在探测器四个象限后会分别产生四路干涉信号。当测量目标平动时,四路外差干涉信号相位发生相应波动,与采用普通光电探测器的原理相一致;当测量目标转动时,测量光的波前相对参考光发生偏离,由于四象限探测器具有一定的空间间距,导致四路外差干涉信号的相位波动并不相同,通过对比不同象限的干涉信号相位差异,可以反演得到测量目标在水平方向和竖直方向上的转动角度,有 其中,θh为水平转动角,θv为垂直转动角 ФA/B/C/D为不同象限的外差干涉信号相位变化 kh/v为比例系数,由光束参数以及四象限探测器的几何参数共同决定,实验中常用偏摆镜配合自准直仪进行标定。图3 差分波前传感和四通道拍频信号波形示意图高精度相位测量 高精度相位测量可以通过锁相放大器或者相位计来实现,其基本原理如图4所示,外差干涉信号转化为电信号后与本地时钟(或外部参考)及其正交信号混频,低通滤波后分别得到Q信号(quadrature)和I信号(in-phase),计算I/Q反正切值并作相位解包裹运算得到相位差,Q信号作为相位误差信号反馈至本地可调时钟,更新本地时钟输出频率从而保持与输入外差干涉信号频率一致,形成锁相环路。图4 相位测量基本原理[1]国内外干涉仪研究进展LISA LISA (Laser Interferometer Space Antenna)是于1992年发起的一项探测1 mHz~1 Hz频段引力波信号的科学研究计划,这是最早开始、也是目前国际上发展最成熟的空间引力波探测计划,其中一项关键技术是实现测试质量的超高灵敏度多自由度测量。 2012年,德国汉诺威大学的Marina Dehne等人设计搭建了一套用于验证测试质量干涉仪噪声源及其消除技术的激光外差干涉测量系统,分析了多个噪声源(激光频率、激光强度、激光指向漂移、温度、偏振态、移频驱动边带、杂散光等)对相位读出的影响,并研究了多种噪声消减数据处理方法,在空间引力波探测目标频段成功实现了~1 pm/Hz1/2的超精密位移测量。图5给出了LISA激光干涉平动转动测量技术发展时间线,该计划从提出开始,经历地面模拟论证、噪声源探索、技术卫星验证、光路布局优化测试等,距今已经开展了三十余年,其中用于测试质量多自由度测量的激光外差干涉技术灵敏度已经突破1 pm/Hz1/2和1 nrad/Hz1/2。目前光学干涉平台布局处于优化设计阶段,激光外差干涉超精密测量技术是否能够实现百万公里距离的两测试质量之间的皮米级平动测量并成功探测到宇宙深处的引力波,这仍然需要时间来给出答案。图5 激光干涉平动转动测量技术发展时间线(LISA)太极&天琴 2008年,我国科学家开始探讨中国的空间引力波探测计划,并于2012年正式成立了空间引力波探测工作组,2014年提出基于“日心”轨道和“地心”轨道两个独立的探测方案,即太极计划和天琴计划[2-3]。目前两者均形成了较为完备的星间激光干涉测量方案。 同LISA一样,太极和天琴于2019年分别发射了太极一号和天琴一号技术验证卫星,所搭载的光学干涉平台如图6所示,前者采用殷钢材料制作光学干涉平台基座、后者则采用光粘的方式来提高干涉装置的热稳定性,两者都包含有前端光程参考干涉仪和测试质量测量干涉仪。测试实验最新结果表明,空间激光干涉仪可以实现毫赫兹频段皮米量级的超精密位移测量,标志着我国在空间引力波探测中用于测试质量的激光外差干涉测量技术研究正逐渐走向国际前列。图6 我国空间引力波探测技术验证卫星激光干涉平台(a)太极一号[2](b)天琴一号[4] 其他 2021年,美国德州农工大学提出了一种一体式外差干涉仪,将分光镜波片等关键镜组胶粘成一个整体,提升干涉仪稳定性,并通过抽真空、被动控温、噪声建模消减等措施最终实现了33 pm/Hz1/2@0.1 Hz的平动测量。 2022年,清华大学谈宜东团队提出了一种用于测试质量五自由度测量的偏振复用双光束干涉仪,光路设计如图7所示,包含参考干涉仪(RHI)、双光束干涉仪(DBHI)和偏振复用干涉仪(PMHI),初步实验在10 mHz~1 Hz频段实现了优于10 pm/Hz1/2 以及20 nrad/Hz1/2的平动转动灵敏度测量。图7 偏振复用双光束激光外差干涉五自由度测量系统星辰宇宙,未来可期 “此曲只应天上有,人间难得几回闻”,如果说引力波是携带着浩瀚宇宙信息的乐曲,那么激光干涉超精密测试技术就是用来“听曲”的最灵敏的传声筒。在空间引力波探测领域,我国的激光外差干涉多自由度超精密测量技术相比于欧美LISA团队仍处于跟跑阶段,但未来有希望实现并跑甚至领跑。而且,空间引力波探测中涉及的外差干涉技术,可以对长度量进行高精度、大量程的超精密测量,可扩展应用于下一代高速、超精密二维或三维运动台的精确定位与运动控制,进而支撑我国超精密加工制造、IC 装备及尖端航空航天科技的发展,对于国民经济和工业建设有着重要的实际意义[5]。全文下载:空间引力波探测中的激光干涉多自由度测量技术.pdf参考文献:[1]Schwarze T S.Phase extraction for laser interferometry in space: phase readout schemes and optical testing[D]. Hannover: Institutionelles Repositorium der Leibniz Universität Hannover, 2018.[2] Luo Z R, Wang Y, Wu Y L, et al. The Taiji program: A concise overview[J]. Progress of Theoretical and Experimental Physics, 2021(5), 05A108.[3] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical & Quantum Gravity, 2015, 33(3): 035010.[4]Luo J, Bai Y Z, Cai L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013.[5] 谈宜东, 徐欣, 张书练. 激光干涉精密测量与应用.中国激光,2021,48(15) : 1504001.作者简介 谈宜东,清华大学精密仪器系,长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。 主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等项目40余项。在Nature Communications,PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表 SCI 论文 100余篇,授权发明专利36项,在国际会议Keynote/Plenary/Invited报告40余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。课题组介绍 清华大学精密仪器系激光技术与精密测量应用课题组,在激光器件及其物理效应、精密测量应用等方面开展了大量的工作,构成了从基础器件的设计和发明,到物理现象和效应的发现,进而在发现基础上的仪器发明,直至仪器的推广和应用这一较为完整的体系。先后研制了双折射-塞曼双频激光器及其双频激光干涉仪,实现了成果转化,成规模应用于国家02专项以及中芯国际、吉顺芯等公司进口光刻机干涉仪的替换;基于激光回馈原理的无靶镜纳米测量干涉仪,用于国家多个重点型号工程,包括:高分四号、一号以及激光聚变点火等。课题组还开展了远距离激光侦听、激光回馈调频连续波绝对测距、生化检测、pm量级灵敏度的激光干涉超精密测量技术(引力波专项)等研究。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制