当前位置: 仪器信息网 > 行业主题 > >

标准余弦矫正器

仪器信息网标准余弦矫正器专题为您提供2024年最新标准余弦矫正器价格报价、厂家品牌的相关信息, 包括标准余弦矫正器参数、型号等,不管是国产,还是进口品牌的标准余弦矫正器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合标准余弦矫正器相关的耗材配件、试剂标物,还有标准余弦矫正器相关的最新资讯、资料,以及标准余弦矫正器相关的解决方案。

标准余弦矫正器相关的资讯

  • 1900万!东北大学300kV球差矫正透射电子显微镜采购项目
    项目编号:DDZK202202项目名称:300kV球差矫正透射电子显微镜(进口)预算金额:1900.0000000 万元(人民币)采购需求:300kV球差矫正透射电子显微镜,可实现原子级透射成像(TEM)和扫描透射成像(STEM), 通过球差矫正器,透射成像分辨率≤70pm,扫描透射成像分辨率≤60pm。球差矫正透射电子显微镜配备具有原子级分辨能力的电制冷能谱仪EDS,可进行原子级尺寸的点、线、面的定性定量分析。数量:1套合同履行期限:合同签订后360日内交货。本项目( 不接受 )联合体投标。
  • 中国科学家发现新冠病毒mRNA合成、基因组复制矫正等分子机制
    新冠病毒肺炎疫情至今已造成全球1.4亿人感染和300余万人死亡。随着疫情进展,突变病毒株不断出现,对中和抗体和疫苗的防护效果提出了严重挑战,迫切需要针对各型突变株中高度保守的转录复制过程开展深入研究,阐明关键药物靶点的工作机制,发现能够有效应对各种突变株的抗病毒药物。 新冠病毒是目前已知RNA病毒中基因组最大的一种病毒(约30 kb),其基因组编码了一系列非结构蛋白,并按照一定的空间和时间顺序,形成复杂的超分子蛋白质机器“转录复制复合体”(RTC),负责病毒转录复制的核心过程,包含了众多保守的抗病毒药物设计的关键靶点。由于基因组极大,同时聚合酶复制保守性较差,新冠病毒进化出一种独特的“复制矫正”(proofreading)机制,利用转录复制复合体中关键的nsp14蛋白对复制过程进行矫正,一旦发现聚合酶合成了错误配对的碱基,立刻通过nsp14具有的外切核酸酶(ExoN)将错误碱基处理掉,保证复制的准确进行,这也是病毒逃逸核苷类抗病毒药物的关键途径。同时,nsp14是一个独特的双功能蛋白,除负责复制矫正的外切核酸酶外,还拥有一个N7甲基化酶(N7-MTase),负责mRNA加帽过程关键的第三步催化反应。复制矫正和加帽过程如何进行,特别是两个截然不同的生化过程如何在一个nsp14蛋白中协同作用,是20多年来冠状病毒研究领域中最关键的几个“未解之谜”之一。 2021年5月24日,清华大学饶子和院士、娄智勇教授团队与上科大高岩博士合作在Cell发表研究论文Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis,解析了新冠病毒超分子蛋白质机器“转录复制复合体”关键状态的三维结构,揭示了病毒mRNA加帽、基因组复制矫正、逃逸核苷类抗病毒药物的分子机制。这是该团队在新冠病毒转录复制复合体研究中,继在Science、Cell等期刊上连续发表4项成果后的又一重要工作。 新冠疫情爆发后,清华大学饶子和院士、娄智勇教授团队针对新冠病毒转录复制机制开展的深入研究,先后阐明了“核心转录复制复合体”(C-RTC)[1]、“延伸转录复制复合体”(E-RTC)[2]和“加帽中间态转录复制复合体”[Cap(-1)’-RTC][3]的工作机制。在此基础上,研究团队成功解析了Cap(-1)’-RTC与nsp10/nsp14形成的超级复合体Cap(0)-RTC的三维结构(图1)。 图1 新冠病毒Cap(0)-RTC的工作机制 在该复合体中,nsp9蛋白发挥了“适配器”(adaptor)的作用,通过与nsp14蛋白相互作用,将nsp10/nsp14复合体招募到Cap(-1)’-RTC中,从而利用nsp14的N7甲基化酶结构域完成mRNA加帽过程的第三步关键反应。尤为重要的是,研究团队发现Cap(0)-RTC在溶液状态下会形成稳定的同源二聚体。在二聚体中,解旋酶nsp13通过其1B结构域的重大构象变化,引导模板核酸链反向移动,引发产物链backtracking机制,从而将产物链3’末端传输至另一Cap(0)-RTC的nsp14外切核酸酶结构域的反应中心,完成错配碱基的矫正过程(图2)。 图2新冠病毒复制矫正的in trans backtracking机制 这一发现所提出的in trans backtracking的复制矫正机制,与真核/原核细胞RNA聚合酶Pol II的复制矫正机制具有一定的类似性,表明作为基因组最复杂的RNA病毒,新冠病毒的转录复制过程已与高等生物具有一定的类似性,阐明了冠状病毒研究领域20多年来悬而未决的关键科学问题。同时,复制矫正机制是新冠病毒逃逸核苷类抗病毒药物(如瑞德西韦)的关键机制,一旦核苷类药物被加入RNA产物链中,即会被病毒的复制矫正过程去除,从而丧失抑制活性,目前仅有NHC及其衍生物可以逃逸该过程。该成果也将对未来进一步优化和发展新型核苷类抗病毒药物提供关键的结构基础。 该成果的获得得益于研究团队在冠状病毒转录复制领域中17年多的长期积累。自新冠疫情发生后,研究团队系统研究了新冠病毒转录复制过程,阐明了关键药物靶点蛋白主蛋白酶Mpro和转录复制复合体多个状态三维结构,为认识病毒的生命过程、发展高效抗病毒药物提供了关键信息,先后在Nature[4]、Science[1]、Cell上[3,5]和Nature Communications[2]上发表系列研究论文,是国际上抗新冠药物靶点研究中最为系统、引用最多的工作之一。 清华大学饶子和院士、娄智勇教授/ChangJiang学者特聘教授和上海科技大学的高岩博士为共同通讯作者,清华大学医学院和生命学院的闫利明博士、杨云翔博士,以及博士生李明宇、张盈、郑礼涛、葛基、黄雨岑、刘震宇为共同第一作者。 专家点评(一) 钟南山(中国工程院院士) 从“非典”到“新冠”,科学依靠坚守 基础研究是科技创新的源头,是人类认识自然、适应和改造自然的知识源泉,需要科学家长期的坚守和耕耘。 自2003年“非典”开始,在不到20年的时间里,全球已经出现了3次由冠状病毒导致的传染病。尤其是此次新冠疫情,在全球已经造成超过1亿多人感染,而且随着疫情发展,突变病毒不断出现,一些已有的中和抗体不能很好的中和突变病毒,部分疫苗针对突变病毒的保护效果也有一定程度下降。深入认识病毒的生命周期,开发能够有效应对各种突变病毒的广谱抗病毒药物,将成为今后一段时间抗疫工作的重点内容之一。 目前针对新冠病毒的抗病毒药物研究,主要针对的是病毒转录复制过程的关键靶点蛋白,如蛋白酶和聚合酶等。针对这两个靶点的抑制剂已有相当数量的进入临床实验,例如瑞德西韦(Remdesivir)等。以瑞德西韦为代表的核苷类抗病毒药物主要作用于病毒的聚合酶,在被掺入产物核酸链后,阻断病毒核酸的合成,进而抑制病毒的转录复制过程。然而,在此类抑制剂进入临床研究后,其抗病毒效果与预期有一定差距。除药物代谢等问题外,冠状病毒通过特有的“复制矫正”(proofreading)机制逃逸核苷类抗病毒药物的抑制,可能是此类抗病毒药物抑制效果不佳的一个重要原因,目前仅有NHC及其衍生物能够躲避病毒复制矫正机制的干扰。对这个机制开展深入研究,将为今后发展广谱、高效的抗冠状病毒药物提供关键的科学信息。 子和教授及其团队在新冠疫情爆发后,针对新冠病毒转录复制机制开展了系统研究,先后阐明了“核心转录复制复合体”(C-RTC)[1]、“延伸转录复制复合体”(E-RTC)[2]和“加帽中间态转录复制复合体”[Cap(-1)’-RTC][3]的工作机制。在这些工作的基础上,他们又在世界上第一次成功组装成含有形式复制矫正功能的nsp14蛋白的超分子机器Cap(0)-RTC。通过结构分析,他们发现在Cap(0)-RTC形成的同源二聚体中,解旋酶通过自身构象改变,引导模板核酸链反向移动,引发产物链“回溯”(backtracking)机制,进而将产物链3’末端传输至另一Cap(0)-RTC的nsp14外切核酸酶结构域的反应中心。复制矫正机制是新冠病毒逃逸核苷类抗病毒药物的关键机制,一旦核苷类药物被加入RNA产物链中,在其被聚合酶感知为“错配碱基”后,立刻会被病毒的复制矫正过程去除,从而丧失抑制活性。他们的研究工作,为我们生动展现了这一过程的可能机制。复制矫正的回溯机制,是从低等到高等生物细胞保证基因复制准确性的重要机制,但在病毒中以往还没有发现此类机制。这一研究成果不但发现病毒中的类似机制,是认识生命进化的重要成果,而且为进一步优化和发展新型核苷类抗病毒药物提供了关键的结构基础。 子和教授自2003年SARS爆发后,就一直在冠状病毒转录复制机制研究领域开展工作,至今已坚持了18年。2003年SARS疫情爆发期间,我当时即已了解子和教授在SARS病毒的一系列成果,智勇教授那时才刚刚开始博士阶段的学习。子和教授的研究组在国际上率先解析了SARS-CoV主蛋白酶的三维结构[6],并研发了一系列高效抑制剂[7],他们当时在转录复制复合体上的研究[8]至今仍被国际同行认为是冠状病毒转录复制复合体机制研究的“开篇之作”。这些积累,为新冠疫情爆发后他们在新冠病毒基础研究中取得的一系列重要成果奠定了坚实的基础,通过阐明新冠病毒主蛋白酶和转录复制复合体多个状态的三维结构,为认识该病毒的生命过程、发展高效抗病毒药物提供了关键信息,先后在Nature[4]、Science[1]、Cell[3,5]和Nature Communications[2]上发表系列研究论文,是国际上抗新冠药物靶点研究中最为系统、引用最多的工作之一。 2020年9月11日,习近平总书记在科学家座谈会上总结了新时代科学家精神,强调要有勇攀高峰、敢为人先的创新精神,追求真理、严谨治学的求实精神,淡泊名利、潜心研究的奉献精神,集智攻关、团结协作的协同精神,甘为人梯、奖掖后学的育人精神。18年来,子和教授的团队中有100多人先后参与冠状病毒研究,累计发表50余篇研究论文,引用超过6000余次,均篇引用超过100次,一批早期参与的俊彦陆续成长为国家科研骨干。科学依靠坚守,子和教授团队在冠状病毒的奋斗历程,对科学家精神做了一个很好的诠释。 专家点评(二) 康乐(中国科学院院士) 从结构生物学角度认识新冠病毒的转录复制机制 新冠病毒造成的疫情,是近一个世纪以来人类面对的最大的一次公共卫生事件,深入研究病毒生命周期的分子机制,是认识病毒特征、研发抗病毒手段的关键所在。新冠病毒非常特殊,它的基因组是目前已知RNA病毒中基因组最大的一种,其生命过程所涉及的分子机制也非常复杂。新冠病毒通过两个机制保证蛋白质翻译和相对准确的转录复制过程,一是要在病毒mRNA前端加上一个帽结构(cap),用于维持mRNA的稳定性和蛋白翻译的有效进行;二是通过一个独特的“复制矫正”(proofreading)机制,对病毒基因组的复制实施控制,一旦发现核酸中的错配碱基,随时进行修正。病毒转录复制复合体上的nsp14蛋白参与了这两个关键过程,可通过其C端的N7甲基化酶完成mRNA加帽过程的第三步催化反应,同时还可通过其N端的外切核酸酶完成复制矫正过程。这一现象在“非典”病毒(SARS-CoV)即已发现,但20年来一直无法回答两个截然不同的过程如何由一个蛋白来协同执行,是冠状病毒研究领域中多年来关注的核心基础生物学问题之一。 清华大学饶子和教授、娄智勇教授团队与上海科技大学合作在Cell发表的这一工作,解析了两种不同状态的“Cap(0)转录复制复合体”Cap(0)-RTC的三维结构,发现在转录复制复合体中,病毒编码的nsp9蛋白发挥了“适配器”(adaptor)的作用,将nsp10/nsp14形成的复合体招募到聚合酶上,与聚合酶上的NiRAN结构域共同形成一个“共转录加帽复合体”(Co-transcriptional Capping Complex, CCC),展示了mRNA加帽过程中,mRNA 5’端在多个关键酶分子之间的传输路径,第一次明确揭示了基因组超大的RNA病毒是如何将以聚合酶为中心的“延伸复合体”(Elongation Complex, EC)与“加帽复合体”连接起来。更加重要的是,他们在研究中发现Cap(0)转录复制复合体在溶液状态下会形成稳定的同源二聚体,通过深入研究该二聚体的结构,提出了冠状病毒复制矫正中称之为反式回溯(in trans backtracking)的机制。进一步的研究发现,在二聚体中,一个Cap(0)转录复制复合体的聚合酶催化中心与另一个Cap(0)转录复制复合体的nsp14外切核酸酶结构域催化中心相对,使合成的产物RNA 3’末端能够通过回溯的方式传输到nsp14外切核酸酶结构域进行加工。同时,他们还发现解旋酶nsp13的1B结构域发生了重大构象变化,并通过与模板核酸链的作用,引导模板核酸链反向移动,引发产物链回溯机制。值得指出的是,通过回溯的方式进行复制矫正,在真核/原核细胞中广泛存在,但是在病毒中还是第一次观察到此类机制。虽然该过程与真核/原核细胞Pol II转录过程的复制矫正机制具有一定类似性,但在Pol II的研究中,并未观测到蛋白具有巨大的构象变化,因而Pol II中回溯的驱动力也不是十分明确,而该工作表明解旋酶通过构象变化提供了回溯的驱动力,为深入理解这一基础生物学过程提供了重要的范例。
  • 广州市第一人民医院借助智能数字技术实现下肢复杂畸形微创、三维精准矫正
    下肢畸形临床较常见,患者不仅下肢功能受到严重限制,晚期还会造成关节退变引起骨关节炎。而且影响患者外观和步态异常等造成患者心理压力、影响患者心理健康,因此需要早诊断、早治疗。21岁的钱小姐,正值花样年华却遭受此病痛烦扰,由于双下肢的严重畸形,且已错过最佳诊疗时机,不少医院同行都表示束手无策,不敢妄下决断。但是钱小姐经介绍找到了华南理工大学医学院教授、广州市第一人民医院关节外科丁焕文主任医师,在计算机技术、3D打印、虚拟仿真、XR技术以及白光三维扫描等医工结合高新技术的配合运用之下,解决了钱小姐的人生厄运,为她开启了美好的全新人生篇章。钱小姐治疗过程中广州市第一人民医院进行了临床决策和手术具体实施。国家人体组织功能重建工程技术研究中心辅助完成了手术导板、个性化外固定支架和钙磷基植入体3D打印。华南理工大学医学院解剖教研室虚拟解剖应用研究团队辅助进行了手术虚拟仿真,完善和优化了手术方案。诺曼数字医疗科技有限公司辅助完成了手术三维设计、手术导板三维设计和医学3D模型平面三维渲染显示。广州联睿智能科技有限公司采用XR技术进行了患者畸形状态、手术方案、手术效果预测等3D显示,辅助医患沟通、病例讨论和术前讨论过程。先临三维科技股份有限公司辅助进行了术前、术中、术后下肢外观白光三维扫描,术前白光扫描了解下肢畸形状态,术中白光扫描引导手术导板精准安放,术后白光扫描评估患者下肢畸形矫正情况和引导矫形过程。治疗经过病例简介:21岁女性。因双下肢畸形、跛行步态7年余就诊。体查:患者身高148cm,双下肢严重畸形,左侧明显(图1)。右膝关节屈曲挛缩,右膝活动度120°-25°-0°。2019年10月行左股骨、胫骨截骨矫形+术后缓慢撑开延长术(图2)。2020年11月23日行右股骨、胫骨微创截骨三维精准矫形+外固定术(图3)。术后1年余左股骨、胫骨正侧位片显示左股骨延长区域愈合、胫骨延长区域有明显骨痂生长(图4),左下肢延长12cm,遗留左小腿外旋畸形,(图5),采用3D打印个性化外固定支架非手术矫正(图6)。新兴科技助力诊疗,术前精准定量诊断树蚁智能数字精准外科云服务系统团队在获得患者CT数据之后即刻进行了三维重建(图7),借助3D虚拟模型,更细致了解患肢在三维层面的畸形程度。同时对下肢的解剖参数精确测量,建立了以下三维数字化定量精准诊断:1.右下肢严重畸形:①双股骨前倾角增大1.7144°②右股骨远端关节面后倾32.2495°③右股骨远端内翻股骨角88.3453°④右胫骨远端外翻,胫骨角92.1646°⑤右胫骨扭转角减少-3.6716°⑥右下肢短缩畸形。2.左下肢矫形术后明确患情后丁焕文教授带领广州市第一人民医院临床研究团队制定了以下治疗计划:1.右股骨、胫骨微创截骨三维精准矫形外固定+术后缓慢撑开延长术2.左小腿个性化外固定架更换遗留外“八”字畸形矫正术手术三维设计和虚拟仿真优化手术方案为更好的解决钱小姐右下肢畸形、短缩问题,丁焕文教授带领树蚁智能数字精准外科研究团队开始紧锣密鼓的进行手术三维规划,由于右下肢存在不同程度的短缩、外翻畸形和股骨远端关节面后倾造成膝关节不能伸直等问题,丁焕文教授团队在左下肢矫正基础上再次对右下肢进行个性化手术三维设计,依次从右股骨头对齐、确定右股骨髁上截骨位置,将股骨进行矫形(图8-9),包括恢复了股骨远端的前倾角和后倾角,同时对远端内翻畸形等进行进行全方位精准矫正。完成右股骨矫形之后,进一步对右胫骨进行三维精准截骨矫形设计,包括截骨位置的选择,矫正恢复下肢力线(图10),再利用CAD软件进行外固定架置钉与截骨导板的设计与3D打印制作(图11)。最后华南理工大学医学院虚拟解剖应用研究团队进行了双下肢畸形三维精准矫形手术虚拟仿真,优化和完善了手术方案。VR科技术前引热议所有术前准备妥当之后在手术当日交班现场,丁焕文教授还拿出了一项吸引眼球的新兴科技,那就是虚拟仿真技术,丁焕文教授与树蚁精准外科云辅助系统、广州联睿智能科技有限公司联合攻关建立了医学3D模型XR显示系统,一排VR眼镜摆在交班室的会议桌上,各位医生护士争相观看,在该系统辅助下VR远程显示病变状态、手术方案和手术效果等。在VR眼镜系统里镶嵌了钱小姐完整的手术设计过程,借助VR眼镜进行了一次完美的术前讨论。(图12)白光扫描术中放异彩术中为了将设计的置钉定位导板安装妥帖,丁教授使用先临三维白光三维扫描技术——EinScan Pro 2X Plus多功能手持三维扫描仪对患者腿部进行扫描(图13),EinScan Pro 2X Plus采用非接触式白光扫描技术,扫描幅面大,细节精度高,因此可以无创、快速高效的获取患者腿部表面高精数据(图14),形成相应的文件。然后利用3D数据在电脑上进行畸形状态评估、术中辅助手术导板快速匹配和精准安放,评估术后畸形矫形手术效果和引导术后矫形过程。术中AR配准引导手术导板精准定位为了进一步验证术中导板与体表的贴合位置,丁焕文教授术中放置手术导板后将正侧位外观照片网上传送给华南理工大学自动化学院李彬教授实验室,进行手术导板术中AR即时配准(图15),通过这种跨越空间的远程交流,进一步体现了创新科技的优越性,进行了远程医疗创新形式的探索,也成功让手术导板能够更准确的贴合患肢,提高了外固定置钉精准度,防止截骨位置发生偏差。个性化手术导板引导完成微创截骨与三维精准矫形手术在王迎军院士领衔的国家人体组织重建工程技术研究中心赵娜如教授、刁静静博士等辅助下,完成了个性化磷酸钙可再生修复体、手术导板和个性化外固定架的CAD设计和3D打印。借助这一系列新兴科技手段,钱小姐的手术按时顺利完成,导板引导外固定螺针(图16)准确打入股骨与胫骨,截骨位置选择十分准确,通过短于2cm的小切口完成微创截骨,安装外固定架后完成矫形。遗留部分畸形采用个性化外固定架非手术矫正(图17)。术后三维评估针对左下肢术后残留的外”八“字畸形和轻微小腿向内成角畸形(图18),CAD设计和3D打印个性化外固定进行非手术矫正,使患者避免了再次手术(图19)。就这样一台复杂疑难下肢畸形矫正手术得以精准、安全和轻松解决。外固定架矫形成功,下肢延长未来可期在手术完成的第二天钱小姐精神状态良好,还在麻醉中的双下肢也没有丝毫不适。进行术后的X线片与CT扫面以及三维重建评估,都提示下肢矫形效果很好。为了下肢功能更好康复,指导、鼓励其积极进行床边、床旁运动。身高148cm的患者术后摇身一变成为160cm的窈窕淑女。术后三维评估患者双下肢解剖参数完全恢复(图20)。END文章源自于广州市第一人民医院 丁焕文教授团队
  • 3D扫描+3D打印技术,开启骨科微创精准矫正手术“私人定制”时代
    数字科技的发展,正在不断改变医疗治疗手段。作为一种新兴的前沿技术,3D数字化为骨科医生新型治疗方式的实施提供了技术支撑,以其高效、准确的特征,助力开启骨科微创精准矫正手术“私人定制”时代。本期,小编将分享一则来自广州市第一人民医院的案例——在三维扫描和3D打印导板辅助下,实现胫骨后倾畸形微创三维精准矫正。该案例由丁焕文教授带领的医疗团队进行诊断及手术,树蚁医疗团队进行数字化设计,先临三维进行术前、术中、术后的下肢准确三维数据的获取。◆案例背景◆“医生伯伯,我老是被同学说腿怪怪的。”在广州第一人民医院9岁小李妹妹对医生这样说道。据患者家属描述,2016年9月小李妹妹因夹伤所致右下肢膝关节骨折,彼时当地医院对其进行了固定手术。但术后却逐步出现右下肢畸形,且越来越严重以致步态异常。小李妹妹的腿部状况;X线片在丁焕文教授的安排下小李妹妹进行X线片、CT、MR等传统影像检查,患儿X线片和CT扫描二维断面图像均发现患者右膝有严重后倾畸形改变。于是,拿到CT数据的树蚁智能数字精准外科云服务系统团队使用建模软件对患者的全下肢进行了精准分离式三维重建,对小李妹妹重建后的患处进行了解剖方位对齐和多方位的精准三维测量,发现小李妹妹因为骨骺外伤和多年肢体畸形原因,右下肢短缩明显,达41mm。临床诊断:右膝部畸形1. 矢状面畸形:胫骨平台后倾26.4736°2. 额状面畸形:内翻6°3. 右下肢短缩畸形(41mm)◆手术三维设计方案◆41mm不是一个很短的距离,在手术中,不能一次性撑开和简单的运用钢板解决问题。因此,树蚁团队第一时间为小李妹妹进行了手术三维规划,运用基于人体解剖学、树蚁Z字截骨新方案为基础,确定截骨位、截骨线。确定“Z”形截骨线,确定胫骨近端及远端辅助右胫骨截骨导板设计并匹配、3D虚拟场景构建与树蚁系统云端显示明确患情后,丁焕文教授带领广州市第一人民医院临床研究团队制定了以下治疗计划:选用数字化3D打印技术辅助下行右胫骨远端精准截骨矫形、外固定+术后缓慢撑开延长术。三维模拟手术效果(树蚁系统云端数据)◆3D数字化技术应用◆术前,为了手术可以准确无误的进行,丁教授使用先临三维白光三维扫描技术——EinScan Pro 2X Plus多功能手持三维扫描仪对患者腿部进行扫描,为截骨设计了专用的手术辅助Z字截骨导板,并使用CAD设计和3D打印技术,精准定制手术导板和个性化外固定架,让手术导板能够更准确的贴合患肢,提高外固定置钉精准度,防止截骨位置发生偏差,达成微创截骨,帮助患者避免再次手术。腿部3D扫描过程腿部彩色3D扫描数据高精度3D数字化技术的应用优势:EinScan Pro 2X Plus多功能手持三维扫描仪采用非接触式白光扫描技术,扫描幅面大,细节完善,精度高,单幅精度最高可达0.04mm,因此可以无创、快速高效地获取患者腿部表面的高品质数据,形成相应的3D文件,以进行CAD设计及数据存档。术中,为了将设计的置钉定位导板安装妥帖,丁教授利用扫描所获取的3D数据在电脑上进行畸形状态评估、辅助手术导板快速匹配和精准安放。同时,术后可将3D数据用于评估畸形矫形手术效果和引导术后矫形过程。辅助导板3D扫描术中皮外导板使用情况三维预后良好(树蚁系统云端数据)◆未来可期◆小李妹妹术后三天借助拐杖落地行走术后为了更加确保疗效,丁教授常规安排了小李妹妹进行了X线片、CT扫描等术后评估检测,证实小李妹妹右下肢的力线完全正常,手术效果良好。先临三维提供了下肢外观白光三维扫描,辅助术前导板定制设计、术中导板精准安放、术后评估效果及引导矫正。借助于高精度3D数字化技术,这样一台复杂疑难下肢畸形矫正手术得以精准、安全和轻松解决。丁焕文教授:现为华南理工大学医学院教授、人体解剖教研室主任,临床医学和生物医学工程专业硕士研究生导师,第二附属医院暨广州市第一人民医院骨科主任医师。现学术任职为SICOT数字骨科学会常委、中国生物材料学会生物材料临床试验研究分会副主任委员、中华医学会医学工程分会数字骨科学组委员、中国医师协会骨科医师分会3D打印骨科学组委员等。树蚁医疗:丁教授基于自身21年研究数字化精准骨科,依靠华南理工大学医学院虚拟应用解剖与外科手术虚拟仿真研究中心、国家人体组织功能重建工程技术研究中心,在积累了众多数字化手术使用案例后成立的一个技术转化型医疗服务公司。*图文信息来源于 广州市第一人民医院 丁焕文教授团队 树蚁医疗团队
  • 1200万!北京大学物理学院聚光镜球差矫正透射电子显微镜采购项目
    项目编号:0873-2201HW3L0546项目名称:北京大学物理学院聚光镜球差矫正透射电子显微镜采购项目预算金额:1200.0000000 万元(人民币)采购需求:1.本次招标共1包:包号名称数量预算金额(人民币万元)是否接受进口产品投标1聚光镜球差矫正透射电子显微镜1台1200是 本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得拆包,不完整的投标将被拒绝。本项目为非专门面向中小企业采购。本项目所属行业为工业。2.招标内容及用途:用于教学科研以上货物及服务的供应、运输、安装调试、培训及售后服务具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。3.需要落实的政府采购政策:本项目落实节约能源、保护环境、促进中小企业发展、支持监狱企业发展、促进残疾人就业等政府采购政策。合同履行期限:合同签订之日起至质保期满结束。本项目( 不接受 )联合体投标。
  • 1360万!北京大学物理学院聚光镜球差矫正透射电子显微镜采购项目
    项目编号:0873-2201HW3L0255项目名称:北京大学物理学院聚光镜球差矫正透射电子显微镜采购项目预算金额:1360.0000000 万元(人民币)采购需求:1.本次招标共1包:包号名称数量预算金额(人民币万元)是否接受进口产品投标1聚光镜球差矫正透射电子显微镜1台1360是 本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得拆包,不完整的投标将被拒绝。本项目为非专门面向中小企业采购。本项目所属行业为工业。2.招标内容及用途:用于教学科研以上货物及服务的供应、运输、安装调试、培训及售后服务具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。3.需要落实的政府采购政策:本项目落实节约能源、保护环境、促进中小企业发展、支持监狱企业发展、促进残疾人就业等政府采购政策。合同履行期限:合同签订之日起至质保期满结束。本项目( 不接受 )联合体投标。
  • 2788万!FEI Electron Optics B.V.中标中国科学院地质与地球物理研究所球差矫正透射电子显微镜采购项目
    一、项目编号:OITC-G240270056(招标文件编号:OITC-G240270056)二、项目名称:中国科学院地质与地球物理研究所球差矫正透射电子显微镜采购项目三、中标(成交)信息供应商名称:建发(北京)有限公司供应商地址:北京市东城区广渠门内大街43号12层43-(12)1201室中标(成交)金额:2788.5948000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 建发(北京)有限公司 球差矫正透射电子显微镜 FEI Electron Optics B.V. Spectra 300 1套 US$3,880,000.00 五、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院地质与地球物理研究所     地址:北京市朝阳区北土城西路19号        联系方式:李金华, 010-82998323      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:窦志超、王琪 010-68290523            3.项目联系方式项目联系人:窦志超、王琪电 话:  010-68290523
  • 2900万!北京大学材料科学与工程学院双球差矫正透射电子显微镜和场发射透射电镜采购项目
    项目编号:0873-2201HW3L0547项目名称:北京大学材料科学与工程学院双球差矫正透射电子显微镜和场发射透射电镜采购项目预算金额:2900.0000000 万元(人民币)采购需求:1.本次招标共1包:包号名称数量预算金额(人民币万元)是否接受进口产品投标1双球差校正透射电子显微镜1台2900是场发射透射电子显微镜1台是 本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得拆包,不完整的投标将被拒绝。本项目为非专门面向中小企业采购。本项目所属行业为工业。2.招标内容及用途:用于教学科研以上货物及服务的供应、运输、安装调试、培训及售后服务具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。3.需要落实的政府采购政策:本项目落实节约能源、保护环境、促进中小企业发展、支持监狱企业发展、促进残疾人就业等政府采购政策。合同履行期限:合同签订之日起至质保期满结束。本项目( 不接受 )联合体投标。
  • FEI公司将为美国TEAM计划建造世界上最高分辨率的电子显微镜
    能源部TEAM 计划目标于直接观察0.5 埃尺度 [2004 年11 月29 日] FEI 公司(NASDAQ:FEIC)宣布,联合承担TEAM 计划的几家实验室,已选择FEI 公司作为建造世界上最高分辨率(扫描)透射电子显微镜的研发合作伙伴。TEAM 计划是由美国能源部基础能源科学司投资数千万美元资助的显微学项目。该项目将促成一台新型显微镜的诞生。这台能在前所未有的0.5 埃分辨率下直接观察和分析纳米结构的显微镜,必将创造卓越的新科学良机。0.5 埃大约是碳原子尺寸的三分之一,也是原子尺度研究的一个关键尺寸。 在此项独一无二的计划中,电子显微学领域颇有建树的五家主要实验室(阿贡国家实验室,Brookhaven 国家实验室,劳伦斯伯克力国家实验室,橡树岭国家实验室,Frederick Seitz 材料研究室)通力合作,并筛选出FEI 公司为研发伙伴。每家实验室分别在这项雄心勃勃的使命中担当不同的角色,以期实现(甚至在三维空间)直接观察原子尺度的有序度、电子结构、单体纳米结构的动态。提议中的电子显微镜,自成一小型材料科学实验室,可进行实时的分析和特征描述,以促进独特的多学科交叉研究。 像差矫正电子显微技术将是TEAM 显微镜的核心。为达到0.5 埃分辨率而需要的更密集、更明亮的电子束,也会导致更强的样品信息、更高的图像衬度、更灵敏的分析本领以及史无前例的空间分辨率。成功开发新型像差矫正器将展现最基本的原子世界景观。矫正器的设计和开发,将与CEOS 公司(FEI 公司在尖端矫正器技术上的协作单位)合作完成。 “TEAM 协作团体考察了FEI 公司,以及公司的发展规划和在尖端电子光学上的历史记录,得出结论该公司是促成这项热望中的计划成功的最佳伙伴。”TEAM 科学总监暨伯克力国家电镜中心主任Uli Dahmen 指出:“FEI 公司全新的矫正器专用平台,因为能满足像差矫正仪器严格的稳定性要求,是TEAM 显微镜的最可行的出发点。有FEI 公司作为合作伙伴,我们有信心实现TEAM 计划的挑战性目标。” “我们对被有威望和有国际声誉的TEAM 计划选中而感到自豪,” FEI 公司董事长、总裁兼执行总监Vahé Sarkissian 说:“这将给我们机会以提升我们的电子光学才能,保持在高分辨成像和分析领域的世界领先地位,保持纳米技术时代的重要设备厂商地位。FEI 公司承诺:通过与TEAM计划等的合作,与CEOS 公司的联系,我们将竭尽全力完成任务。” “我们十分自豪,TEAM 计划首肯了我们常规推广的、用于超高分辨率的300 千伏(扫描)透射专用矫正电镜。” FEI 公司(扫描)透射电镜事业部副总裁George Scholes 说。“几年来我们致力于开发具有前所未闻的可靠性和不可比拟的重复性的系统。在此过程中,我们认真听取了TEAM伙伴和其它(扫描)透射电镜科学泰斗的建议。”他补充道:“我们深感激动,将要出台的新矫正器专用平台就已被TEAM 选中。我们坚信,我们的努力将重建纳米尺度研究、发现、开发的准则。” 科研人员和工业界用户的最大收益之一,是新平台所提供的极为重要的变通性,以适应于今后的部件升级发展。将来FEI 公司和TEAM 计划所做的(扫描)透射电镜技术革新,能在这一系统上进行翻新改造。 “成功制做了200 千伏透射和扫描透射电镜的球差矫正器之后,我们很高兴被选中为TEAM计划300 千伏球差/色差矫正器的开发伙伴。” 位于德国海德堡的CEOS 公司的创办人之一Max Haider 博士说:“我们自信我们今天在FEI 公司超稳定平台上所做的工作,必将为科学家们提供新的装备,以迎接前沿开发和研究的挑战。” 关于FEI 公司: FEI 公司服务于纳米技术的装备,以聚焦离子束和电子束技术为特色,提供最高分辨率小于1 埃的3D 特征描述、分析及修改功能。公司在北美和欧洲拥有研究开发中心,在全球四十多个国家经营销售和提供维修服务。FEI 公司将纳米尺度呈献给研究人员和生产厂商,协助将本世纪一些最杰出的理念变成现实。更多的信息可在FEI 公司网页上找到:http://www.feicompany.com 关于TEAM 计划: 能源部电子束微特征描述中心提议,引导开发尖端像差矫正电子显微镜,提供必要的基础设施,使该设备能广泛地被科学界用户利用。五家在电子显微学卓有成绩的单位阿贡、Brookhaven、橡树岭、劳伦斯伯克力国家实验室、Frederick Seitz 材料研究室,将联手在国家电镜中心(运作于劳伦斯伯克力国家实验室)建造第一台TEAM电镜。更多信息,请访问: http://ncem.lbl.gov/team3.htm 和http://www.anl.gov/Media_Center/News/2004/MSD041112.html 关于CEOS公司: CEOS公司(Corrected Electron Optical Systems或矫正电子光学系统)是带电粒子透镜像差矫正器的代表。由M. Haider博士和J. Zach博士八年前在德国海德堡成立的公司,专门从事高尖端电子光学部件的研究和开发。更多信息见: http://www.ceos-gmbh.de 此新闻发布具有瞻前性的陈述,对预期产品的论述。影响到这些超前性陈述的可能因素包括(并不局限于项目的改变和取消):FEI 公司、供应商或项目伙伴在实现项目预期计划上的技术能力局限性;执行中产生的延迟因素或与预期结果相异的结论;意料之外的技术需求;主要供应商或项目伙伴破产。欲了解这些或其它有可能造成与预期目标不符的因素,请参阅10-K 和10-Q 表格,以及美国证券交易委员会的文件。FEI 公司将不予进一步陈述。 中文版译注: 1. TEAM为Transmission Electron Aberration-corrected Microscope 的字头缩写,意为透射电子像差矫正显微镜。 2. (扫描)透射电子显微镜的英文原文是scanning/transmission electron microscope 或(S)TEM,意为带有或不带有扫描透射功能的透射电子显微镜。 3. 任何中文版疑义,以英文版为准。
  • ”陕西科技大学和日本电子低维材料科学共建实验室”揭牌
    陕西科技大学举办电子显微学前沿国际论坛暨GrandARM球差矫正电镜开幕式10.20-10.22日,电子显微学前沿国际论坛和日本电子GrandARM球差矫正电镜开幕式在陕西科技大学举办。在周廉院士和相关领导致辞后,本次论坛的第一项内容便是在与会专家代表见证下,由日本电子董事福山幸一先生(Koichi Fukuyama)和陕西科技大学黄剑锋副校长共同为陕西科技大学和日本电子“SUST-JEOL低维材料科学共建实验室”揭牌。日本电子董事福山幸一在揭牌致辞中表示:“在中日和平友好条约签订40周年之际,作为全球顶尖的科学仪器制造商,日本电子将以创造和开发为基本理念,通过提供世界最高水准的解决方案在民间方面加强同陕西科技大学和中国科学界的科学交流和沟通,为中日两国科学进步和社会发展做出贡献。” 陕西科技大学材料原子●分子科学研究所刚刚安装了一台配置前沿技术的,由日本电子株式会社生产的JEM-ARM300F(GrandARM)双球差矫正透射电镜。该设备可在原子级水平研究和构筑新材料,建立材料微观结构和宏观性能之间的联系,为宏观上材料的性能优化提供研究基础。该设备是目前中西部地区最先进的双球差矫正电镜之一,配置了更高信息分辨率的冷场枪,带有一体化的12极子球差矫正器,作为球差矫正电镜的核心,该矫正器也是目前世界上最先进的商业化球差电镜矫正器,除此外该设备还具备大极靴间距,可以提供强大的原位观察分析能力。以此设备为纽带,双方签订协议设立共建实验室,未来就产品售后服务、技术培训、多场耦合原位分析技术开发等展开共同合作。日本电子的应用工程师Ichiro Ohnishi 博士在大会报告中给大家分享了利用GrandARM超高分辨率和超强的能谱分析能力得到的一些令人震惊的成果。 揭牌仪式后,参会专家先后参观了材料原子●分子科学研究所和GrandARM实验室,并拍照留念。 本次论坛主题为:电子显微学理论与测试技术;能源、信息、生物等功能材料中的组分、超微结构表征;原位电子显微技术。中国工程院院士周廉、吴以成、陈祥宝、毛新平、李卫、周济,中国科学院院士黄维、世界陶瓷科学院院士Yuichi Ikuhara、新加坡国立大学Stephen J. Pennycook、布鲁克海文国家实验室朱溢眉等专家学者近300人参加了本次论坛及开幕式。邀请院士、杰青、千人、长江等专家作大会报告,主要围绕电子显微技术在纳米能源材料和光电薄膜材料的分析与设计、合金的强化机制、金属氧化物的相转变等方面的应用,从各个方面展示了电子显微学在材料学研究中的最新研究成果。 中共西安市委、西安市人民政府把此次国际论坛及开幕式作为2018年全球硬科技创新暨“一带一路”科技合作大会的分论坛,对本次论坛和开幕式的召开提供了大力支持。
  • 全国电子光学仪器与应用学术会议通知
    2009年全国电子光学仪器与应用学术交流研讨会将于2009年4月下旬在北京召开。会议由中国电子显微镜学会电子光学与仪器专业委员会主办,届时召开电子光学与仪器专业委员会委员会议。 会议主席:姚骏恩(中国工程院院士) 学术委员会主任:朱静(中国科学院院士) 学术委员会副主任:王琛、韩立、王荣明 组织委员会主任:张永明 组织委员会委员:(按姓氏笔画序) 王荣明、王琛、马瑗、田地、朱明、朱衍勇、刘总顺、李吉学、李艳秋、陈文雄、周剑雄、张永明、施明哲、韩立、韩晓东、姚琲、程志英、戴宏 电子光学是研究带电粒子束的基础学科,它是扫描电子显微镜、透射电子显微镜、质谱仪等现代大型科学仪器的关键组成部分,对于科学研究和国民经济发展起到重要的作用。自上世纪,随着机械加工能力的不断提升和计算机技术的飞速发展,电子光学设计和制造能力得到不断增强;电子光学类仪器已成为物质科学、纳米科技、生命科学和信息科学等领域开展研究工作的重要手段,并在冶金地矿、石油化工、航天航空、机械制造等传统行业和生物工程、新材料、新能源、半导体科技、微纳制造等新兴产业中得到广泛的应用。近年来,球差矫正技术的突破与发展将电子显微镜的分辨率提升到了新的高度,围绕着球差矫正器所开展的电子光学设计正在成为国内外相关仪器研究工作的热点之一。同时,以电子光学、离子光学为核心的微纳尺度加工和检测仪器及其配套设备、功能部件的发展与应用都在不同程度地促进着各相关行业科技水平的快速提升。很多相关仪器的科技发展表明,电子光学设计和制造技术在未来科学仪器中将占有着非常重要的位置。 自20世纪60年代起,中国开始电子光学的自行设计和制造工作,目前,国内具备了扫描电子显微镜的设计、制造和生产能力。但要加速创新发展,我国在电子光学与仪器方面需要不断引进国内外先进技术的理念;同时,国内在仪器配套和功能部件的研究及应用等项目中所取得的科技成果和成功经验需要进行有效的推广;为此,国内的专家、学者希望通过加强业内交流,共同献计献策为我国的科学仪器事业做出贡献。中国电子显微镜学会电子光学与仪器专业委员会将致力于搭建国内专家合作与交流的平台,计划开展系列电子光学设计、制造、仪器及应用方面的学术交流活动,并邀请国内外本领域的专家学者就其研究动态作相关报告,同时也将邀请国内外的知名企业介绍相关技术的最新进展。会议欢迎国内外在电子光学设计、制造、仪器与应用方面开展研究工作的专家、学者踊跃参加研讨,也非常欢迎对这方面工作有兴趣的专家和青年科技工作者积极参与。 中国电子显微镜学会拟于2009年4月24日-25日在北京举办首届电子光学仪器技术与应用交流会。会议的研讨内容包括:电子光学和离子光学设计、制造方面的研究成果与技术改进,仪器和配套设备、功能部件技术的最新进展,电子显微镜技术探讨,微束仪器远程共享,电子显微镜等仪器在重要领域和产业的应用等。 本研讨会征文要求提供论文详细摘要稿(原稿)1份和论文全文稿1份(原稿)。论文详细摘要稿在会议专集刊登,论文全文稿将择优录用刊载于《电子显微学报》。文章撰写可参阅《电子显微学报》征稿简则,详细介绍请登陆学报网页:www.dzxwxb.ac.cn。 会议论文截稿日期:2009年4月1日; 文章传递:请将电子邮件发送到学会秘书处:myuan2007@yahoo.com.cn 或 mayuan@kyky.com.cn; 文章要求:未在其他正式刊物上发表过的研究工作结果(递交论文同时请给出联系电话、地址、邮编、Email及手机)。 本次会议是我国电子光学仪器与应用研究领域同行的一次聚会。届时将邀请国内知名学者对该学术领域的热点问题作特邀报告,会议组织专题讨论和学术交流,期间拟举行电子显微镜等相关仪器的参观。 中国电子显微镜学会热诚欢迎全国高等院校、科研院所和企业等从事相关领域研究和应用开发的同行踊跃投稿,莅临本次会议。我们真诚期待着国内同行于2009年4月24-25日相聚在北京。 联系方式: 中国电子显微镜学会办公室 马瑗、胡萍 010-82673560   中国电子显微镜学会   “电子光学仪器与应用研讨会”会议筹备组   2009年3月3日
  • 清华两个分析实验室获科技部国家仪器中心命名
    6月16日,清华大学电子能谱实验室及电子显微镜实验室被科技部正式批准为国家大型科学仪器中心。其中,以纳米扫描俄歇系统为核心仪器,依托清华建设的能谱中心正式命名为北京电子能谱中心 以300kV配有物镜球差矫正器的场发射枪分析型透射电子显微镜为核心、依托清华建设的电子显微镜中心正式命名为北京电子显微镜中心。   国家大型科学仪器中心是以大型或超大型科学仪器为核心组建的开放性的研究、服务单位,是该类仪器高水平的应用研究中心、人员培训中心和具有权威性的分析测试服务中心。1998年国家科技部发布了《国家大型科学仪器中心管理暂行办法》,并陆续建设了北京质谱中心、北京核磁共振仪器中心、西安加速器质谱中心等13个国家级仪器中心。这些中心的建设,对国家科研平台建设、资源共享及科技创新都起了很好的推动作用。   按照《国家大型科学仪器中心管理暂行办法》的规定,仪器中心的建立,应依托在有条件的大学、研究所或其他单位,一般不单独新建。因此,只有具备了很好的学术、技术、仪器条件,并且在相关学术领域享有声誉的实验室才有可能向科技部申请并被选择为国家级仪器中心依托单位。清华大学在材料的结构、表面分析方面有很好的条件,电镜、能谱、X射线衍射等仪器平台具有很高水平。自2000年以来,清华大学一直积极争取在校内设立国家级电镜中心、能谱中心、X射线衍射仪等仪器中心。电镜中心和能谱中心的正式命名,标志着这项工作取得了实质性的进展。目前,全国13个仪器中心中有3个设在高校,分别是北京核磁共振仪器中心(北大)、北京电子能谱中心(清华)和北京电子显微镜中心(清华)。   北京电子能谱中心由科技部和清华大学共同出资购置PHI 700纳米扫描俄歇微探针系统和PHI Quantera 扫描成像X射线光电子能谱仪各一台,与校分析中心原有的俄歇能谱仪、电子能谱仪共同组成北京电子能谱中心,是国内仪器水平、分析测试水平最高的电子能谱中心之一,能够为材料表面分析和相关的分析测试技术研究提供强有力的支持。   该中心2003年3月开始筹建,2005年3月仪器安装,5月开始运行。12月通过国家技术监督局国家实验室计量认证复审,实验室能力及产品质量检验符合GB/T 15481-2000的要求,能够向社会提供公正、科学、准确的数据和优质的服务。2006年9月“中心”通过了由ISO/TCL国际标准委员会举办的第五次俄歇电子能谱“栅网法”国际标准比对实验能力验证,这是中国表面分析实验室首次参加的国际最高级别的比对,标志着中心实验室能力验证工作水平已达到了国际先进水平。2006年12月,北京电子能谱中心(筹)领导小组、管理委员会和技术委员会正式成立,薛其坤院士担任中心主任。   北京电子显微镜中心由科技部和北京市科委、清华大学共同出资,购置一台高点分辨、高空间分辨、高能量分辨的透射电子显微镜,与学校电镜室原有的6台电子显微镜和各类制样设备一起共同组成北京电子显微镜中心。新购电镜到位后,北京电子显微镜中心将成为国内最高水平的电子显微镜实验室,使我校材料学科的条件水平得到新的提高,并为我国材料科学领域的科学研究、技术研发和人才培养发挥更大的作用。   该中心于2006年3月开始筹建,并将于今年8月开始运行。2006年12月,北京电子显微镜中心(筹)领导小组、管理委员会和技术委员会正式成立,朱静院士担任中心主任。   这两个国家大型科学仪器中心在清华得到正式命名之后,能够进一步提高“中心”所在实验室的学术声望,更好地开展分析测试服务和学术交流,并在国家的支持下不断发展,同时也将促进清华相关学科的发展。
  • 2010年上半年上市仪器新产品:光谱类
    因全球科技、经济发展的需要,光谱技术和光谱仪器在上世纪四五十年代跳出了科学实验范畴成为广泛应用的分析检测手段之后得到了快速发展,成为现代科技必不可少的精密检测分析手段,为现代天文学、航空航天、分子生物学、现代医学、环境和生态等新科技的建立和发展提供了基础。   从技术层面上来看,光谱仪器得到了长期研究,理论上已趋完善,目前以及将来的发展是将其作为一种分析手段加以实用化。追求仪器的灵敏度已经不是主要问题,而如何提高仪器的稳定性和作为一种分析方法的准确性和标准化,以及扩展其应用范围将是光谱仪器主要的发展方向。   2010年上半年,各大分析仪器公司推出多台光谱仪器新品,让人振奋的是我国光谱仪器与技术水平较高,可以说,国产部分光谱仪器已达国际先进水平。其中给编者印象最深的是:   上海光谱的SP-3880原子吸收分光光度计采用横向可变交、直流磁场塞曼背景校正一体化设计,实现背景有效扣除。这项技术的应用对于提高背景校正的正确性、准确度和精密度,以及对特定背景的形态研究都有重要意义。   沈阳华光推出的 LAB600原子吸收分光光度计增加了钨灯,与氘灯配合,使原子吸收光谱仪具备了波长范围190-900nm的紫外-可见分光光度计的功能,实现了一台仪器两用。并且该仪器将火焰原子化器的燃烧头与电热氢化物原子化器形成一体,可以很方便的切换。   光谱仪器未来的主要发展方向是:小型、快速、专用,小型化可便携、方便现场检测,测定速度快则适应应急监测,专用化因其功能专一、可靠性良好。赛默飞世尔科技推出的NanoDrop 2000c分光光度计是专为蛋白质定量分析设计,岛津推出的EDX-LE能量色散型X射线荧光专用于RoHS/ELV/法规限制的有害元素筛选分析。   原子光谱:   上海光谱仪器有限公司SP-3880原子吸收分光光度计 SP-3880AA   1、国内外首创交、直流塞曼背景同时校正技术。充分利用可变磁场电源,创造一种交流、直流磁场双检测器的测量方式,实现了交、直流塞曼效应原子吸收背景的同时较正,易于校正快速变换的背景信号。   2、国内首创的开关型石墨炉直流加热电源技术。   沈阳华光精密仪器有限公司原子吸收分光光度计(AAS) LAB600 LAB600   1、独特的元素灯仓设计(国家专利)。可以同时支持8支元素灯的非传统转动式灯仓。大容量的元素灯设计在使用时无须频繁的更换元素灯 在选择元素灯的时候,元素灯不用转动,完全避免了低熔点元素灯在转动过程中受损的可能。2、元素灯自动识别功能。3、精确的燃气流量管理。4、火焰、石墨炉、氢化物电加热原子化器自动切换。5、配置石墨炉自动进样器后可以实现多元素全自动无人值守自动分析操作。6、火焰异常自动检测、燃气泄漏自动检测、载气压力自动检测等安全措施有效保障仪器的安全使用。7、智能采样控制。8、系统状态监控日志。   北京纳克分析仪器有限公司 ICP-AES电感耦合等离子体原子发射光谱仪(ICP-AES)Plasma1000 Plasma1000   全自动化控制,所有功能实现电脑设置(点火、熄火、功率等参数设置) 实时功率控制 自动匹配调谐 光室恒温 自动峰位校正 蠕动泵进样,泵速连续可调 针对不同样品有多种进样系统可以选择(普通进样系统、耐高盐进样系统、耐氢氟酸进样系统) 防紫外线辐射、防高频辐射观察玻璃,使操作更安全。   利曼中国 Q2 ION全谱直读光谱仪 Q2 ION   Q2直读光谱仪采用了许多最新的技术,是一台科技含量非常高的仪器,主要有以下几个方面。   (1)平面视场CCD光学系统   Q2直读光谱仪采用了布鲁克的最新专利技术——平面视场CCD光学系统,通过该技术可以直接将色散后的所有谱线聚焦于线状CCD上,并完整收集所有谱线信息。此外Q2使用的是最新一代的非镀膜CCD检测器,该检测器性能不会受涂层的影响,并可以延长使用寿命。   (2)动态温度补偿技术   在Q2直读光谱仪中还采用了一项新技术——动态温度补偿技术(AAC),在光谱仪的设计中,保证所有材料的热胀冷缩系数严格匹配,确保了仪器即便在10℃至45℃的外界温度变化下也具有极其优异的稳定性,该技术的应用简化了仪器结构,提升了仪器性能,开创了光谱仪全新的设计理念。   荷兰帕纳科公司Axios mAX波长色散X射线荧光光谱仪兰帕纳科公司 Axios mAX   AxiosmAX: 增强版的X射线荧光光谱仪系列,将SST-mAX X射线光管,及帕纳科专利的ZETA技术融入备受认可的X射线荧光光谱系统——Axios系统,新的性能超越了目前 所有X射线光管的生命周期。   岛津国际贸易(上海)有限公司能量色散型X射线荧光分析装置EDX-LE EDX-LE   1、专用于RoHS/ELV/法规限制的有害元素筛选分析的X射线荧光分析装置   2、配备无需液氮型电子制冷(Si-PIN检测器)检测器,因此在实现降低运作成本和更易维护   3、具有X射线管自动老化功能。装置如长期不运行,该装置可自动运行该功能。   4、最近几年在众多企业中实施的自行检测有害元素Cl的检测分析,也可通过筛选分析简单的检测出来   5、1分钟内可完成测试得到结果,推荐该装置作为中国版RoHS第2步的应对手段   分子光谱:   赛默飞世尔科技NanoDrop 2000c分光光度计 NanoDrop 2000c   NanoDrop 2000c分光光度计利用创新样品保持系统,可将微量蛋白质样品保持在两个测量表面之间,无需稀释即可定量分析2µ L蛋白质样品。比色皿的淘汰允许光程的实时变化,可减少测量时间并增加可测蛋白质浓度的动态范围。在5秒内准确测量2µ L蛋白质样品。   爱色丽公司MA94和MA96多角度分光光度仪 MA系列   手持式MA94和MA96多角度分光光度仪是爱色丽MA68II的新一代产品和改进版本。MA68II多年来一直都是各行业中许多制造商不可或缺的工具。MA94配有3个压力传感器,可迅速提示工作人员仪器是否已放置在正确的读数位置,从而确保对平坦、柔性和弯曲表面的色彩的可靠测量。除了压力传感器,使用爱色丽专有的JOBS工作流程功能,该功能具有文本和可视双重提示,仪器可显示当前即将对零部件的哪些部位进行测量,可还记录X-Color QC® 软件分析所需的数据。MA94采用卤钨灯光源对测试表面进行照明,可在两秒内从5个观测角度进行测量。   更高版本的MA96拥有MA94的所有功能,但不同之处在于MA96可从6个观测角度进行测量,其中一个角度为-15°,能够为特殊效果颜料和涂料的测量数据收集提供更多信息。   海洋光学Jaz-ULM-200 新型光学测量系统 Jaz系列   新型的Jaz-ULM-200尺寸小巧,拥有强大的微处理器和低功耗显示面板,可以替代标准光学计量仪和辐射计量仪,其组件包含有CCD光谱仪模块、带显示面板的微处理器模块,用于LED、灯、平板显示器、其它辐射源及太阳辐射的光谱辐射分析。   不同于传统的测光仪表,JAZ的用户可以脱离计算机获取、处理及存储完整的光谱数据。系统的三键设计简化了操作,即使操作人员不是光谱专家,也可以进行快速、精准的测量。除Jaz-ULM-200的光谱仪和微处理器以外,它还包含以太网模块,使用户可以通过因特网与JAZ相连。此外还可以配置一个可充电的锂离子电池模块(包含SD存储卡接口),使JAZ成为一个便携式设备。JAZ附加的系统组件包括一个直接连接在设备上的余弦校正器,用于收集180°视野以内的辐射 一个带肩带的包装箱和一个有内衬的工具盒,用于放置所有相关的设备。软件包括Jaz系统软件和JAZ-A-IRRAD。   了解更多光谱仪器请访问仪器信息网光谱专场   了解更多新品请访问仪器信息网新品栏目
  • 直播预告!iCEM 2022之电镜实验操作技术及经验分享专场篇
    2022年7月26-29日,仪器信息网(www.instrument.com.cn) 与中国电子显微镜学会(www.china-em.cn)将联合主办“第八届电子显微学网络会议(iCEM 2022)”。iCEM 2022将围绕当下电子显微学研究及应用热点,邀请业界知名电子显微学专家线上分享精彩报告。分设:电子显微学技术及应用进展、原位电子显微学技术及应用、电子显微学技术在先进材料中的应用、电镜实验操作技术及经验分享、电子显微学技术在材料领域应用、电子显微学技术在生命科学领域应用6个主题专场,诚邀业界人士报名参会。主办单位仪器信息网、中国电子显微镜学会参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/iCEM2022或扫描二维码报名以下为“电镜实验操作技术及经验分享”专场预告(注:最终日程以会议官网发布为准)专场四:电镜实验操作技术及经验分享(7月27日下午)专场主持人:陈明霞 西安交通大学 高级工程师时间报告题目演讲嘉宾14:00--14:30球差矫正透射电镜安装指标、操作和数据处理常用技术张宏(兰州大学 讲师)14:30--15:00冷冻电镜数据收集策略常圣海(浙江大学 助理研究员)15:00--15:30透射电子显微镜原位研究中的样品制备方法熊雨薇(东南大学 助理工程师)15:30--16:00北京大学冷冻电镜平台Cryo-ET技术流程秦昌东(北京大学 博士后)16:00--16:30电镜生物样品低温保存的方法分析陈明霞(西安交通大学 高级工程师)16:30--17:00离子抛光电镜制样技术与应用马晓丽(上海交通大学 材料科学与工程学院 高级工程师(实验系列))17:00--17:10电镜选型如何实现降本增效?王利影(仪器信息网导购平台 运营经理)嘉宾简介及报告摘要西安交通大学 高级工程师 陈明霞【个人简介】陈明霞,中国电子显微镜生物医学专业委员会委员,中国电子显微镜学会教育(实验技术与培训)委员会生物医学委员,中国研究型医院学会超微与分子病理学专业委员会电镜诊断与技术学组委员,陕西省电镜学会副理事长,陕西省电镜学会常务理事,陕西省分析测试协会理事,西安交通大学分析测试共享中心技术委员会委员, 原西安交通大学医学部电镜室主任。1980年至今一直从事电子显微镜技术工作,承担本科生、七年制、八年制及研究生《医学电子显微技术》《细胞超微结构病理与电镜技术》理论及实验课教学任务,参编教材并参与完成多项科研项目,熟练掌握电镜样品制备技术及电镜下细胞超微结构观察,主要工作是电镜下细胞超微结构观察及协助临床诊断疾病。报告题目:电镜生物样品低温保存的方法分析【摘要】 在电镜实验样品过程中,常常遇到由于温度不正常造成细胞损伤的情况,特别是低温对细胞的损伤多见,针对此情况,我们做了温度对组织细胞影响的实验,实验结果是样品在戊二醛固定液内结冰,其细胞微结构的损伤较样品直接结冰的损伤更严重。兰州大学 讲师 张宏【个人简介】张宏,女,硕士生导师,兰州大学电镜中心图像球差矫正透射电镜主管。西北四省电子显微学会秘书长。2011年于兰州大学物理学院材料物理专业获学士学位,2016年于兰州大学物理学院凝聚态物理专业获博士学位,师从彭勇教授。2013年于英国Sheffield大学工程材料和电子与电器工程系做访问学生。2015年-2017年于美国阿贡国家实验室电镜中心ANL-EMC做联合培养博士生,师从Dean J. Miller和文建国。2017年11月起至今在兰州大学工作,管理电镜中心物镜矫正球差电镜。目前主要研究方向包括功能材料原子尺度结构与电子结构、电镜原位科研仪器的研发与应用、纳米焊接技术开发及焊接机理研究。在功能材料构效关系相关领域发表论文30余篇,参与发明专利6篇。主持国家自然科学基金青年基金1项,甘肃省科技计划1项。报告题目:球差矫正透射电镜安装指标、操作和数据处理常用技术【摘要】 基于Spectra 300球差矫正透射电镜,报告将介绍交流Image球差矫正器、Probe球差矫正器、不同探头原子像、原子EDS-Mapping、衍射标定等电镜操作和数据处理常用软件和技术。浙江大学 助理研究员 常圣海【个人简介】常圣海,男,2005-2009就读于吉林大学并获学士学位,2009-2015年就读于中国科学院生物物理研究所并获博士学位。2015年至今在浙江大学医学院工作,任助理研究员,主要负责冷冻电镜的维护和技术支持,多年来一直从事生物大分子的结构生物学研究,以第一作者或共同一作发表sci文章四篇,并协助多个项目组开展冷冻电镜相关的研究。2018年度分别获得浙江省和浙江大学优秀机组等奖励。报告题目:冷冻电镜数据收集策略【摘要】 高质量的冷冻电镜照片是获取高分辨三维重构结果的重要保证。本次报告将分享关于冷冻电镜数据收集过程中一些自己的心得和感悟,主要包括: K2相机和Falcon4相机重构结果的比较;SerialEM和EPU数据收集软件的对比等。东南大学 助理工程师 熊雨薇【个人简介】熊雨薇,东南大学助理工程师,2019年开始负责东南大学-FEI纳皮米中心电镜、原位样品杆的管理、培训以及样品的分析测试工作。参与江苏省重点研发项目课题1项,国自然基金项目1项,参与发表SCI论文10篇,以第一发明人获发明专利1项。报告题目:透射电子显微镜原位研究中的样品制备方法【摘要】 基于“在TEM中建立纳米实验室”的想法,利用原位透射电子显微技术,将电、热、光、液体等引入TEM中,可以实现对材料进行调控和测试,并能够以原子级的分辨率实时记录所有过程。本报告结合日常工作,讨论不同原位杆的实验原理和样品制备方法。北京大学 博士后 秦昌东【个人简介】秦昌东 博士 北京大学高宁组郭强组联合培养博士后。 2021年博士毕业于北京工业大学固体所,博士期间师从隋曼龄教授、闫鹏飞研究员使用先进的电子显微学技术手段研究锂离子电池的微观结构和性能构效关系,积累了丰富的透射电镜和双束扫描电镜经验,具有坚实的显微镜理论基础和丰富的实际操作与样品制备经验。目前,主要是在北京大学冷冻电镜平台基于冷冻透射电子显微镜(Cryo-TEM)和冷冻双束扫描电子显微镜 (Cryo-FIB) 开展结构生物学(包含原位结构生物学)的相关前沿技术方法的研究。在原位结构生物研究方面,配合团队,搭建了原位结构生物学平台,利用学科交叉优势,创新性的将材料科学中双束提取透射电镜样品的方法引入到冷冻双束中,为细胞组织样品的原位结构生物学研究奠定了基础。报告题目:北京大学冷冻电镜平台Cryo-ET技术流程【摘要】 冷冻电子断层成像技术(Cryo-electron tomography,Cryo-ET)是一项高分辨、跨尺度的原位冷冻电镜技术,可以获得细胞和组织样品原位三维高分辨率超微结构、生物大分子的原位结构信息以及蛋白质机器原位相互作用信息。本技术流程基于最新冷冻聚焦离子束(Cryo-FIB),成功利用多种方法制备了生物含水切片样品,对比了常温和冷冻制样的区别,并总结了制样和数据收集过程中的一些技术难点和详细的解决方案,并对未来基于Cryo-FIB的Cryo-ET研究做了展望。上海交通大学 高级工程师 马晓丽【个人简介】马晓丽,工学博士,高级工程师(实验技术)。2010年博士毕业于上海交通大学材料学院后,留校至学院实验管理中心工作,主要负责电镜制样设备和透射电镜的测试分析服务工作,并担任实验室资质认定(CMA)检测人员和内审员。工作以来,主持国家自然科学青年基金项目1项,参与4项国家自然科学基金项目。主持上海交大决策咨询课题实验技术重点课题1项,主持上海交大实验室创新研究课题1项。以第一发明人获实验方法的授权发明专利3项,发表实验技术和实验教学论文20余篇。获得上海交通大学晨星青年学者奖励计划(教辅类)和实验系列卓越奖励计划支持。报告题目:离子抛光电镜制样技术与应用【摘要】 离子抛光是EBSD样品制备的主要方法之一。本报告主要介绍选定DOE试验设计方法,以金属基复合材料为研究对象,设计合理的截面离子抛光工艺实验,分析工艺参数与抛光质量的关系,并建立相关预测模型,优化截面离子抛光电镜制样的操作流程,形成具有实际参考价值和可推广性的截面离子抛光标准化工艺。仪器信息网导购平台 运营经理 王利影【个人简介】2021年加入仪器信息网,现任仪器信息网导购平台运营经理,负责行业应用栏目的运营工作。报告题目:电镜选型如何实现降本增效?
  • 沃特世扩展分析标准品与试剂产品线
    最新发布的质量控制标准品和经认证的溶剂瓶可提高实验室整体效率   2012年,沃特世(Waters® )公司(纽约证券交易所代码:WAT)面向科学实验室推出了分析标准品与试剂产品,其中包括200余种预先配制的标准品和试剂。有了这些产品,科研人员通过沃特世一家供应商便可获得所有试剂,范围涵盖预配制小分子单一成分标准品、多成分试验混合标准品以及蛋白质消化物和糖苷标准品。   一年后,沃特世隆重推出质量控制标准品(Quality Control Reference Materials, QCRM)和经认证的溶剂瓶,进一步完善了这一产品线。沃特世质量控制标准品(QCRM)可用于对LC系统性能进行常规基准测试和故障排除,使科研人员无需再自行制备标准品。通过这些标准品,科研人员可以确保系统处于最佳运行状态,避免收集到不准确的数据。它们还可以用来更早地发现系统问题,从而缩短仪器停机时间、防止珍贵样品的浪费。   沃特世全新经认证的溶剂瓶采用专利工艺制造,最大程度降低背景噪音,为科研人员获得可靠、一致和高质量的结果提供保证。经认证的溶剂瓶到货时即可使用,可用于任何LC系统,包括UPLC、LC/UV和LC/MS。这些独特的溶剂瓶可以防止由高TOC、玻璃的化学干扰以及玻璃基质水解腐蚀引起玻璃老化而导致的鬼峰和基线噪音。   &ldquo 通过和客户交流,我们发现他们还需要一系列的标准品来帮助他们清楚了解从化学品到硬件的整体系统性能水平,&rdquo 沃特世消耗品业务部副总裁Mike Yelle说,&ldquo 质量控制标准品和经认证的溶剂瓶加入到这一产品线后可帮助科学家获得更高质量的结果和一致性。&rdquo   沃特世分析标准品与试剂可一直追溯至原材料,便于实验室管理人员和审计人员对化学测量的质量进行评估。此外,沃特世分析标准品与试剂的配制极其精确,大大消除了不同实验、不同仪器和不同实验室之间差异性的可能来源。   关于沃特世公司(www.waters.com)   50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。   作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。   2012年沃特世公司拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 环保税开征倒计时 多地确定税额标准
    p style=" text-align: center "   img src=" http://img1.17img.cn/17img/images/201712/noimg/476bba61-a78f-4773-a216-20149d6c2359.jpg" title=" 环保税.jpg" /   /p p & nbsp & nbsp 距离环保税开征不足1个月,各地都在积极运用法律授权,有效地根据各自环境承载能力、污染物排放现状和经济社会生态发展目标要求来细化环保税政策、调整税率。专家提醒,各地采取不同的政策以后,应避免可能会引发的地区间税收竞争和税负转嫁。 /p p   《中华人民共和国环境保护税法》(以下简称环保税法)将于2018年1月1日起施行。根据该法,应税大气污染物的税额幅度为每污染当量1.2元至12元,水污染物的税额幅度为每污染当量1.4元至14元。具体税额可由各地在法定税额幅度内确定。距环保税开征不足1个月,在10倍的较大空间内,各地如何抉择? /p p   高低并存 /p p   综合考量多方因素 /p p   日前,北京市应税大气污染物和水污染物适用税额标准获市人大常委会审议通过,分别为每污染当量12元和14元,按法定幅度“顶格”执行。从目前各地发布的方案来看,环保税税额标准相对较高的有北京、上海、天津、河北、山东等地。以应税大气污染物适用税额标准为例,河北按照国家规定最低标准的8倍、5倍、4倍执行 上海二氧化硫、氮氧化物的税额标准分别为每污染当量6.65元和7.6元 山东二氧化硫、氮氧化物每污染当量6元。 /p p   与此形成鲜明对比的是,另一些地方则按照法定最低限额征收,比如陕西、青海、甘肃、宁夏、新疆等地,多集中于西部地区。湖南、四川、贵州、山西等地的税额标准比最低限额略高,如山西大气污染物适用税额为每污染当量1.8元,水污染物适用税额为每污染当量2.1元。 /p p   中央财经大学公共财政与政策研究院院长乔宝云告诉《经济日报》记者:“环保税主要具备两个功能,一是把污染控制在更加合理的范围内 二是补偿污染产生的社会成本。污染物因种类、地点以及时间等因素的不同,所产生的社会成本也是不一样的。因此,不同区域会选择不同税额,同一区域在税额设定上也会有不同的分档或分类。以北京为例,其经济发展水平比较高,污染产生的社会成本大,因而环保税额也会较高。” /p p   “各个地方都在积极运用法律给予地方的授权,有效地根据各自环境承载能力、污染物排放现状和经济社会生态发展目标要求来细化环保税政策、调整税率,这也符合环保税立法初衷。”中国政法大学财税法研究中心主任施正文接受记者专访时表示。 /p p   划档分类 /p p   创新税额设定方式 /p p   在环保税具体税额设定上,一些地方也创新方式,划档分类、设置过渡期税额等。比如,河北将环保税大气主要污染物和水主要污染物税额标准分为三档,分别按照国家规定最低标准的8倍、5倍、4倍执行。与北京相邻的13个县(市、区)、雄安新区及相邻的12个县(市、区)执行一类标准。河北省人大常委会财经工委相关负责人表示,将环保税主要污染物税额标准按地域分为三档,分区域实施不同的税额标准,能够有效引导河北省发展方式转变和产业转型升级。 /p p   除了根据不同城市分档,上海、山东、浙江、湖北等地也根据不同污染物设定了不同税额标准。比如,湖北在水污染物的税额上,废水中的化学需氧量、氨氮、总磷和五项主要重金属(铅、汞、铬、镉、类金属砷)的税额为每污染当量2.8元,其余水污染物的税额为每污染当量1.4元。 /p p   施正文说:“采用分类、分档的税额设定方式,需要进一步细化纳税人类别和污染物排放种类的认定,这对监测技术、企业管理、征管条件等提出了更高要求。” /p p   辽宁、云南还设立了过渡期税额。辽宁在两年过渡期内执行环保税法规定的最低征收标准,到2020年再重新确定税额标准 2018年,云南大气污染物每污染当量1.2元,水污染物每污染当量1.4元 从2019年1月份起,大气污染物每污染当量2.8元,水污染物每污染当量3.5元。 /p p   “设定阶段性的过渡税额便于纳税人预期和规划,从而及时调整其环境行为的对策和做法,有助于更好发挥环保税收政策的引导和调节作用。这种创新方法是值得鼓励的。”施正文评价说。 /p p   加强探索 /p p   合力谋求最佳路径 /p p   税额标准确定后,如何推动环保税更好地落地生根成为各地面临的重要命题。当前,各地竞相快马加鞭为环保税开征做好全方位准备。北京市地税局相关负责人告诉记者:“北京市出台《北京市地方税务局贯彻落实环境保护税法工作方案》,整合机构人员编制,成立专门机构负责环保税新增税种业务 并通过到环保相关部门调研,实地走访重点企业,与专家座谈了解费改税对企业负担产生的影响,对缴纳排污费的企业信息逐一核实和摸底调查,目前已完成首轮环保税纳税人的清册建立工作。原有7600多家征收排污费的企业已移交地税部门。” /p p   “环保税作为地方收入,能够调动地方积极性,让地方更有效地防控环境污染。同时,也会产生一些新的挑战。”乔宝云指出,比如跨区域污染问题如何统筹处理 如何科学准确地监测污染,让征管更加合理、成本更低 环保税的收入与治理污染的支出之间是否需要连接,该如何连接 环保税政策与碳排放权交易等相关政策的关系如何等等,这些问题都需要长期探索,通过协力实践来谋求最佳路径。 /p p   “各地采取不同的政策,应避免可能会引发的地区间税收竞争和税负转嫁。需要注意的是,税率高的地方不一定治理污染的效果就最好。”施正文说,比如某一家企业生产的产品供不应求,它可以通过提高价格把税负转嫁给消费者,却没有矫正自身排污行为。施正文建议,应建立完善环保税法实施跟踪评价机制,比如税法施行1年以后,要对各地政策实施效果开展客观评估,根据评估结果进一步调整完善。 /p
  • 燕山大学单一来源采购FEI环境气氛球差校正电镜
    2015年4月10日,中国政府采购网发布消息称:燕山大学将采取单一来源采购方式采购环境气氛球差校正透射电子显微镜。拟邀单一来源产品生产商:FEI Electron Optics B.V. 拟采用单一来源产品代理商:FEI香港有限公司。   据介绍,采取单一来源采购方式的原因和理由是:透射电子显微镜对于材料科学的研究至关重要。只有借助透射电镜,才能对材料进行原子尺度结构的观察,从而研究材料的物理化学特性。常规的透射电镜因为要求样品处于高真空状态,因此只能静态的观察其二维形态与结构。而某些材料本身存在着因外界条件的变化而产生物理化学特性的变化,这些变化的条件与变化本身对于研究这些材料的特殊性能尤为重要。因此,需要这样一款特殊的透射电子显微镜,能够原位的观察样品随着不同条件改变而发生的结构变化。   2005年FEI公司推出了世界上首台带球差矫正系列的透射电子显微镜Titan。Titan的问世给从事物理,化学和材料科学的研究人员提供了崭新的研究手段。Titan可以在亚埃尺度下对材料的内在结构进行观察。目前Titan已被全世界众多顶级大学和研究所所采用。   Titan ETEM是Titan系列中一款特别的产品。一般常规的透射电镜是在高真空中观察样品,而Titan ETEM是可以在不同的气氛环境中,如Ar, CO, CO2, H2, He, H2O, N2, N2O, O2, Xe等气氛中,在不同的温度下来观察样品。加上它所带的球差矫正器可以消除图像的离域,这使得它可以获取清晰的固体-气体界面上的原子像。在原子尺度下直接观察材料的表面在不同的气体作用下的变化。从而来了解气固反应的物理化学机理。例如它可以在高温下在不同的气体环境中对金刚石进行原子尺度的观察,来研究金刚石的相变-金刚石的非晶转变或者金刚石的升华。另外它有内置的质谱仪,用来实时监测样品周围的气体分压。从而准确的知道反应时的气体条件。从已经发表的专业文献上看到用这款仪器拍摄的不同金属材料的氧化还原反应的原子像,气体分子在纳米金属颗粒表面吸附的原子像。目前Titan ETEM是世界上唯一一款同时带球差矫正和带环境气体的透射电镜。它的特点是可以在原子尺度下实时观察气-固反应,从而来研究其机理。   目前拥有原位环境气氛球差校正技术的电子显微镜厂家只有FEI公司,其他厂家尚无同类型产品。FEI香港有限公司是FEI公司在中国的全资子公司。燕山大学特申请该采购项目实行单一来源采购方式。
  • 美国MeadowlarkOptics公司推出全球响应速度最快的纯相位液晶空间光调制器
    摘 要:传统的液晶空间光调制器作为一种高单元密度的新型波前矫正器件, 一直受限于液晶的刷新速度,在许多的应用领域无法满足科研人员的需求。美国Meadowlark Optics公司20多年以来一直致力于研发高响应速度的空间光调制器,近期Meadowlark Optics宣布推出液晶刷新速度(0-2π)高达600Hz@532nm 500Hz@635nm的高速型SLM,其控制器的帧频为833Hz。 引 言:这款高速型液晶空间光调制器的分辨率为512x512,像素25um,开孔率:96%,通光口径:12.8x12.8mm 相信这款空间光调制器的出现,可以为天文自适应,生物显微自适应等对空间光调制器的刷新速度有较高要求的客户带来便利。此款产品由上海昊量光电独家代理。 液晶空间光调制器的工作原理Meadowlark Optics公司使用的液晶材料为超高速液晶,利用液晶的双折射效应及扭曲特性,当光进入双频液晶空间光调制器后,对应的O光和e光的折射率不同导致光束中的o光和e光分离。o光和e光在液晶空间光调制器中的传输速度不同,同时利用液晶的扭曲效应,在SLM两端施加不同的电压时液晶分子会发生不同角度的偏转,因此液晶空间光调制器可以对每一个像素点实现不同的相位调制(如下图所示)。 结论 高速型液晶空间光调制器以其液晶响应速度快,校正单元多(512*512)等特点受到越来越多的科研人员的青睐。目前在天文望远镜观测、大气湍流模拟、自适应光学算法模拟、眼底成像、双光子显微镜、超分辨显微成像等领域发挥着越来越重要的作用。此款产品由上海昊量光电独家代理。 关于我们:上海昊量光电设备有限公司专注于光电领域的技术服务与产品经销,致力于引进国外顶级光电器件制造商的技术与产品,为国内客户提供优质的产品与服务。我们力争在原产厂商与客户之间搭建起沟通的桥梁与合作的平台。
  • 预算再超1亿元!复旦大学12月仪器采购意向最新公布!
    26日最新消息,复旦大学最新公开仪器采购意向,复旦大学本月第二次发布政府超1亿元采购意向,涉及飞行时间质谱仪等科学仪器!共计20项,总金额超过1亿元。我国仪器市场迎来新一波仪器采购大潮。为便于供应商及时了解政府采购信息,根据《财政部关于开展政府采购意向公开工作的通知》(财库〔2020〕10号)等有关规定,现将复旦大学2022年12月政府采购意向公开如下:采购单位采购项目名称采购品目采购需求概况预算金额(万元)预计采购日期复旦大学飞行时间二次离子质谱仪 A02100407质谱仪详见项目详情 800.0000002022年12月复旦大学高通量介孔储能材料原位电化学聚光镜单球差透射电镜 A02100301显微镜详见项目详情 1900.0000002022年12月复旦大学多功能多气氛环境介孔催化剂评价用图像矫正器透射电镜 A02100301显微镜详见项目详情 1300.0000002022年12月复旦大学原位X射线衍射仪 A02100405射线式分析仪器详见项目详情 200.0000002022年12月复旦大学复杂结构解析及电热功能原位分析高通量-高分辨表征平台 A02100301显微镜详见项目详情 580.0000002022年12月复旦大学真空转移型高分辨场发射扫描电子显微镜 A02100301显微镜详见项目详情 560.0000002022年12月复旦大学原位催化型XPS互联高空间分辨表征系统 A02100301显微镜详见项目详情 540.0000002022年12月复旦大学超灵敏高通量无标记筛选仪 A02100406波谱仪详见项目详情 400.0000002022年12月复旦大学动态蒸气吸附智能重量分析仪 A02100403热学式分析仪器详见项目详情 200.0000002022年12月复旦大学动态追焦原位拉曼光谱系统 A02100404光学式分析仪器详见项目详情 290.0000002022年12月复旦大学多功能磁性测量系统 A02100414多种原理分析仪详见项目详情 310.0000002022年12月复旦大学原位超低压-低损伤离子减薄制样平台 A02050999其他金属加工设备详见项目详情 180.0000002022年12月复旦大学复杂三维结构解析超薄冷冻制样系统 A02050907金属切割设备详见项目详情 140.0000002022年12月复旦大学高低温SQUID磁学测量系统 A02100206测磁仪器详见项目详情 450.0000002022年12月复旦大学材料加工-原位加热-结构表征双束多功能综合平台 A02100301显微镜详见项目详情 360.0000002022年12月复旦大学400M液体核磁共振谱仪 A02100406波谱仪详见项目详情 480.0000002022年12月复旦大学低温高磁场综合物性测量系统 A021127综合测量仪详见项目详情 490.0000002022年12月复旦大学材料热性能宽域值测试系统 A02100403热学式分析仪器详见项目详情 140.0000002022年12月复旦大学纳米级高分辨三维X射线显微成像系统 A02100405射线式分析仪器详见项目详情 550.0000002022年12月复旦大学高分辨X射线衍射仪 A02100405射线式分析仪器详见项目详情 190.0000002022年12月
  • Illumina入选!2017美股市场“表现最佳”的生物科技公司TOP4
    p strong   1、Align Tech /strong /p p   Align Tech总部位于加利福尼亚州圣何塞,是一家全球性医疗器械公司,该公司主要产品包括Invasalign清除矫正器(一种近乎隐形的、可摘戴的、佩戴舒适的牙齿矫治器),iTero口内扫描仪和OrthoCAD牙科专业数字服务等。2012年以来,公司的年收入已经增长了一倍多,预计到2020年将达到20亿美元。2017年前九个月,该公司报告称销售收入高达11亿美元,当时的净收入达到了2.21亿美元。 /p p   Align Tech股票目前交易价格为223.71美元。 /p p strong   2、Vertex制药 /strong /p p   Vertex总部位于波士顿,从事用来治疗罕见病(如囊肿纤维化)的新型小分子药物的发明、开发及销售。 2017年12月12日,公司宣布与CTISO共同开发和营销CRISPR药业。旗下CTX001是一种针对β-地中海贫血和镰状细胞病的基因疗法。 /p p   该公司第三季度营收同比增长了34%,因此管理层将全年销售目标从至少19亿美元上调至至少21亿美元。随着其药物越来越多地被市场接受,收益将可能大大增加,这无疑使投资者兴奋不已。 /p p   顶点股票目前交易在149.01美元。 /p p strong   3、Intuitive Surgical /strong /p p   Intuitive位于加利福尼亚州桑尼维尔,是一家主营达芬奇手术系统(机器人辅助手术设备)的开发商和营销商。该公司正渐渐在手术机器人领域占据有利市场地位。2017年第三季度,该公司营业收入比两年前增长了37%,第三季度营业利润率从2015年的32.2%上升至34.6%。 /p p   Intuitive Surgical股票目前交易价格为366.80美元。 /p p strong   4、Illumina /strong /p p   总部位于圣地亚哥的Illumina公司是DNA测序技术的主导力量,致力于创造更便宜、更快速、更便捷的基因技术。该公司凭借这些优势业绩也得以增长,市场对Illumina的高利润消耗品的需求也随之增加。2017年前九个月,营业额由2016年的17.8亿元增至19.7亿元,与此同时,净利润由3.39亿元增至6.58亿元。由于基因测序对下一代药物至关重要,而Illumina是市场份额领先者,所以这家公司的股价一直在上涨也就不足为奇了。 /p p   11月29日,该公司在法国埃维里的Genopole校区开设了第一个法国解决方案中心。这个客户培训中心每年将向最多1000位科学家提供最新基因组技术的演示和指导。 /p p   Illumina高级副总裁兼欧洲 、中东和非洲地区总经理Paula Dowdy说“作为全球基因组领域领导者,Illumina无与伦比的成功和声誉将会Genopole校园的完美契合,它将我们业务所需的关键要素汇聚到一起。” /p p   目前Illumina股价为216.57美元。 /p p   参考来源: /p p   4 Top-Performing S& amp P 500 Biotech Stocks of 2017 /p p /p
  • 第二届低维材料应用与标准研讨会在西安隆重开幕
    p style=" text-align: justify text-indent: 2em " 2019年11月16日,第二届低维材料应用与标准研讨会(LDMAS2019)在西安广成大酒店隆重开幕,国内外著名学者、行业应用及标准化专家、企业领袖齐聚一堂,共同探讨我国低维材料领域的产、学、研、用及标准化工作最新进展。会议由全国纳米技术标准化委员会低维纳米结构与性能工作组和西北工业大学联合主办,西北工业大学分析测试中心承办,参会人数超过300人次,仪器信息网作为协办媒体对会议进行了全程报道。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/664b934c-f97a-4bce-ad2a-48e6d12b51df.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (3).JPG" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (3).JPG" / /p p style=" text-align: center text-indent: 0em " strong 大会现场 /strong br/ /p p style=" text-align: justify text-indent: 2em " LDMAS是我国一年一度的低维材料领域高水平国际学术会议,也是低维材料应用与标准的研讨盛会,始自2018年。会议聚焦石墨烯、碳纳米管等低维材料的制备、表征、物性及器件等基础研究以及相应的产业化应用和标准化,为我国低维材料界同仁提供一个广泛交流的平台。本届会议在大会报告之外,还下设6大分会场,共有55个邀请报告、9个口头报告,以及31个张贴报告。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/37912a22-6d88-4a20-9c2b-2b729a01e273.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (2).JPG" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (2).JPG" / /p p style=" text-align: center text-indent: 0em " strong 刘峰 /strong br/ /p p style=" text-align: justify text-indent: 2em " 大会开幕式由西北工业大学分析测试中心副主任甘雪涛主持。大会组委会主席、西北工业大学分析测试中心主任刘峰致辞并欢迎各位嘉宾的到来。现如今材料学研究正向低维深入钻研,刘峰呼吁参会嘉宾在LDMAS2019上积极碰撞出灵感的火花,为低维材料的研究与应用贡献更多真知灼见。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/d24a3767-6370-4330-ae38-d027bb475f0c.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (4).JPG" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (4).JPG" / /p p style=" text-align: center " strong 葛广路 /strong /p p style=" text-align: justify text-indent: 2em " 全国纳米技术标准化技术委员会常务副主任、国家纳米科学中心葛广路研究员致辞并预祝大会圆满成功。他从三个方面强调了标准化对低维纳米乃至整个纳米技术产业的重要意义:一是促进成果转化。通过标准化研究稳定地复现纳米材料的独特性能,促进科研成果产业转化;二是提升产品质量。通过共建纳米产品的市场准入门槛与技术标准体系,提升产品研发质控的稳定性和可靠性;三是支撑产业的发展。规范纳米市场秩序,促进低维材料产业间的贸易往来。 /p p style=" text-align: justify text-indent: 2em " 据了解,本届会议也是西北工业大学分析测试中心和全国纳米技术标准化技术委员会的第一次合作。双方都表示未来将在纳米技术领域的测试 方法、技术规范、性能评价等方面,开展更密切深入的交流与合作。 /p p style=" text-align: justify text-indent: 2em " 开幕式后是大会报告环节,ISO/TC229主席Denis KOLTSOV、东南大学孙立涛教授、西安理工大学施卫教授相继围绕低维材料标准化趋势,原子尺度的制造、表征与应用,太赫兹辐射研究等维度做了精彩的学术报告,分享并与参会嘉宾讨论了最新研究成果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/f7d12050-9fb9-4e0c-a392-cc21d46fa3fc.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (5).JPG" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (5).JPG" / /p p style=" text-align: center text-indent: 0em " strong 报告嘉宾:ISO/TC229主席Denis KOLTSOV /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:《Trends and developments in Standards for Low-Dimensional》 /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/1c2620ad-4c6f-45a9-88b7-8d4912041ab9.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (6).JPG" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (6).JPG" / /strong /p p style=" text-align: center text-indent: 0em " strong 报告嘉宾:东南大学孙立涛教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:《原子尺度制造与应用》 /strong /p p style=" text-align: justify text-indent: 2em " 随着纳米技术与电子信息产业的快速发展,核心材料与元器件的特征加工尺寸已走向7纳米。能够在原子尺度上进行及精准的材料结构表征,探索精准的调控与实现原子尺度制造的方法,是实现相关结构组装与应用的基础。孙立涛介绍了其研究团队自主搭建的可实现原子分辨的原位-多场加载研究系统,并探索了材料原子尺度下的精准表征、制造及其在电子器件、能源和环保领域的应用。孙立涛指出,原子制造是多学科交叉前沿研究的基础和保障,是未来芯片制造的重要支撑,以此为基础的芯片产业前沿研究将带动中国的创新能力持续提升。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/d3216b2c-0423-442c-b66a-bdae25f2cf12.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (9).JPG" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (9).JPG" / /p p style=" text-align: center text-indent: 0em " strong 报告嘉宾:西安理工大学施卫教授 /strong /p p style=" text-align: center text-indent: 0em " strong 报告题目:《弱光触发强电场GaAsPCA载流子雪崩猝灭及太赫兹辐射研究》 /strong /p p style=" text-align: justify text-indent: 2em " 最新研究表明,微量的细胞、生物大分子在生命环境中的快速变化过程(PS-MS)直接关系到生命体的病变和药理作用,该过程可以用太赫兹时域光谱检测技术实现。而提升太赫兹光电导天线的功率,可以助力相关技术实现对含水样品、飞摩尔量级样品的测量,以及对PS时间分辨的瞬态测量。施卫表示,这一项研究对理解重大生命现象,研究重大疾病致病机理以及研发抗癌化疗药物等新的靶向药物具有重要意义。其研究团队通过用nJ量级弱光飞秒激光出发GAAs PCA,实现了具有载流子雪崩倍增和猝灭的工作模式,这种非线性效应可以产生强太赫兹电磁辐射,进而实现了对太赫兹光电导天线功率的提升。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/36b63f9a-5246-468b-b72e-f7fe75389f7e.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕.JPG" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕.JPG" / /p p style=" text-align: center text-indent: 0em " strong 甘雪涛 /strong /p p style=" text-align: justify text-indent: 2em " 大会期间,甘雪涛副主任介绍了西北工业大学分析测试中心建设及运行情况。西北工业大学分析测试中心成立于2016年1月,目前已成功构建了以14台套高端先进大型设备为主,20余台套中端通用大型设备为辅的分析测试体系。是西北工业大学为学校科研、教学和社会提供分析测试服务的公共大平台。以双球差矫正透射电镜及配套原位样品杆为例,已成功构成国际领先的电子显微分析平台。甘雪涛表示,中心配备有25人的专业专职检测专家团队,已取得了国军标GJB9001质量体系认证和CNAS检测实验室认可的资质,并且实现了面向全社会的开放共享,可以为校内外科研机构和企业单位提供7× 24小时的优质检测及认证服务。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 664px height: 829px " src=" https://img1.17img.cn/17img/images/201911/uepic/1f3d7462-1b74-4c1b-843b-266cb36a3213.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (10).jpg" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (10).jpg" width=" 664" height=" 829" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 同期展览掠影 /strong /p p style=" text-align: justify text-indent: 2em " 会议同期还设置了低维材料及仪器设备展区,众多分析测试仪器设备生产企业参展,包括赛默飞、HORIBA、布鲁克、深圳新威尔、上海巨纳、上海谱幂精密仪器等。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 664px height: 904px " src=" https://img1.17img.cn/17img/images/201911/uepic/5368bb35-dd6d-4eac-ad32-d61e64435d0e.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (11).jpg" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (11).jpg" width=" 664" height=" 904" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 部分分会场热况 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 664px height: 910px " src=" https://img1.17img.cn/17img/images/201911/uepic/94421f44-0e9c-4c4e-830e-e9ce992784e1.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (12).jpg" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (12).jpg" width=" 664" height=" 910" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center text-indent: 0em " strong 张贴海报展区 /strong /p p style=" text-align: justify text-indent: 2em " 据悉,LDMAS2019将持续两天,与会专家将围绕低维材料的制备和表征分析,纳米能源与信息功能材料,半导体低维结构及器件,低维纳米光电显示,低维纳米生物与医学,低维宽禁带及超宽禁带半导体材料与应用,低维材料应用探索、产业化和标准化等主题开展专题研讨。全国纳标委低维工作组年会及委员扩大会议也将在大会同期举行,总结并展望规划低维材料相关的国家标准项目。仪器信息网也将全程跟踪,实时带来最新的报道。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/ba33a617-d6f8-46ea-819a-4e537735f9b1.jpg" title=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (7).JPG" alt=" 第二届低维材料应用与标准研讨会在西安隆重开幕 (7).JPG" / /p p style=" text-align: center " strong 合影留念 /strong /p
  • 了解球差校正透射电镜,从这里开始
    p   作者:Mix + CCL br/ /p p & nbsp & nbsp & nbsp strong 前言: /strong /p p   球差校正透射电镜(Spherical Aberration Corrected Transmission Electron Microscope: ACTEM)随着纳米材料的兴起而进入普通研究者的视野。超高分辨率配合诸多分析组件使ACTEM成为深入研究纳米世界不可或缺的利器。本期我们将给大家介绍何为球差,ACTEM的种类,球差的优势,何时才需要ACTEM、以及如何为ACTEM准备你的样品。最后我们会介绍一下透射电镜的最前沿,球差色差校正透射电镜。 /p p    strong 什么是球差: /strong /p p   100 kV的电子束的波长为0.037埃,而普通TEM的点分辨率仅为0.8纳米。这主要是由TEM中磁透镜的像差造成的。球差即为球面像差,是透镜像差中的一种。其他的三种主要像差为:像散、彗形像差和色差。透镜系统,无论是光学透镜还是电磁透镜,都无法做到绝对完美。对于凸透镜,透镜边缘的会聚能力比透镜中心更强,从而导致所有的光线(电子)无法会聚到一个焦点从而影响成像能力。在光学镜组中,凸透镜和凹透镜的组合能有效减少球差,然而电磁透镜却只有凸透镜而没有凹透镜,因此球差成为影响TEM分辨率最主要和最难校正的因素。此外,色差是由于能量不均一的电子束经过磁透镜后无法聚焦在同一个焦点而造成的,它是仅次于球差的影响TEM分辨率的因素。 /p p style=" text-align: center" img style=" width: 450px height: 246px " src=" http://img1.17img.cn/17img/images/201803/insimg/565984ed-0352-4b62-8539-a16db18b6f6b.jpg" title=" 1.jpg" height=" 246" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " strong 图1:球差和色差示意图 /strong /p p 自TEM发明后,科学家一直致力于提高其分辨率。1992年德国的三名科学家Harald Rose (UUlm)、Knut Urban(FZJ)以及Maximilian Haider(EMBL)研发使用多极子校正装置(图3)调节和控制电磁透镜的聚焦中心从而实现对球差的校正(图4),最终实现了亚埃级的分辨率。被称为ACTEM三巨头的他们也获得了2011年的沃尔夫奖。多极子校正装置通过多组可调节磁场的磁镜组对电子束的洛伦茨力作用逐步调节TEM的球差,从而实现亚埃级的分辨率。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/2080a2cf-4ab3-41ab-b731-7719f0c32d28.jpg" title=" 2.jpg" / /p p style=" text-align: center "   strong  图2 三种多极子校正装置示意图 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/090bb4c0-aeea-4ab4-8601-79bcf74b7c8e.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 图3 球差校正光路示意图 /strong /p p    strong ACTEM的种类: /strong /p p   我们在前期TEM相关内容已经介绍了透镜相关内容,TEM中包含多个磁透镜:聚光镜、物镜、中间镜和投影镜等。球差是由于磁镜的构造不完美造成的,那么这些磁镜组都会产生球差。当我们矫正不同的磁透镜就有了不同种类的ACTEM。回想一下STEM的原理,当我们使用STEM模式时,聚光镜会聚电子束扫描样品成像,此时聚光镜球差是影响分辨率的主要原因。因此,以做STEM为主的TEM,球差校正装置会安装在聚光镜位置,即为AC-STEM。而当我们使用image模式时,影响成像分辨率的主要是物镜的球差,此种校正器安装在物镜位置的即为AC-TEM。当然也有在一台TEM上安装两个校正器的,就是所谓的双球差校正TEM。此外,由于校正器有电压限制,因此不同的型号的ACTEM有其对应的加速电压,如FEI TITAN 80-300就是在80-300 kV电压下运行,也有专门为低电压配置的低压ACTEM。 /p p    strong 球差校正电镜的优势: /strong /p p   ACTEM或者ACSTEM的最大优势在于球差校正削减了像差,从而提高了分辨率。传统的TEM或者STEM的分辨率在纳米级、亚纳米级,而ACTEM的分辨率能达到埃级,甚至亚埃级别。分辨率的提高意味着能够更“深入”的了解材料。例如:最近单原子催化很火,我们公众号也介绍了大量相关工作。为什么单原子能火,一个很大的原因是电镜分辨率的提高,使得对单原子的观察成为可能。浏览这些单原子催化相关文献,几乎无一例外都用到了ACTEM或者ACSTEM。这些文献所谓的“单原子催化剂”,可能早就有人发现,但是因为受限于当时电镜分辨率不够,所以没能发现关键的催化活性中心。正是因为球差校正的引入,提高了分辨率,才真正揭示了这一系列催化剂的活性中心。 /p p    strong 何时才需要用球差校正电镜呢? /strong /p p   虽然现在ACTEM和ACSTEM正在“大众化”,但是并非一定要用这么高大上的装备。如果你想观察你的样品的原子级结构并希望知道原子的元素种类(例如纳米晶体催化剂等),ACSTEM将会是比较好的选择。如果你想观察样品的形貌和电子衍射图案或者样品在TEM中的原位反应,那么物镜校正的ACTEM将会是更好的选择。就纳米晶的合成而言,球差校正电镜常用来揭示纳米材料的细微结构信息。比如合成一种纳米核壳材料,其中壳层仅有几个原子层厚度,这个时候普通电镜下很难观察到,而球差电镜则可以拍到这一细微的结构信息(请参见夏幼男教授的SCIENCE,349,412)。 /p p    strong 如何为ACTEM准备你的样品: /strong /p p   首先如果没有合作的实验室的帮助,ACTEM的测试费用将会是非常昂贵的。因此非常有必要在这里介绍如何准备样品。在测试之前最好尽量了解样品的性质,并将这些信息准确地告知测试者。其中我认为先用普通的高分辨TEM观察样品是必须的,通过高分辨TEM的预观察,你需要知道并记录以下几点:一、样品的浓度是否合适,目标位点数量是否足量 二、确定样品在测试电压下是否稳定并确定测试电压,许多样品在电子束照射下会出现积累电荷(导电性差)、结构变化(电子束的knock-on作用)等等 三、观察测试目标性状,比如你希望测试复合结构中的纳米颗粒的原子结构,那么必须观察这些纳米颗粒是否有其他物质包覆等,洁净的样品是实现高分辨率的基础 四、确定样品预处理的方式,明确样品测试前是否需要加热等预处理。五、拍摄足量的高分辨照片,并标注需要进一步观察的特征位点。在ACTEM测试中,与测试人员的交流非常重要,多说多问。 /p p    strong 球差色差校正透射电镜: /strong /p p   球差校正器经过多年的发展,在最新的五重球差校正器的帮助下,人类成功地将球差对分辨率的影响校正到小于色差。只有校正色差才能进一步提高分辨率,于是球差色差校正透射电镜就诞生了。我们欣赏一下放置在德国Ernst Ruska-Centre的Titan G3 50-300 PICO双球差物镜色差校正TEM (300 kV分辨小于0.5埃)以及德国乌尔姆大学的TitanG3 20-80 SALVE 低电压物镜球差色差校正TEM (20 kV 分辨率小于1.4埃)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/04b96c4d-c6fe-40d2-85c0-b86ce091e6e8.jpg" title=" 4.jpg" / /p p style=" text-align: center " strong 图4 Titan G3 50-300 PICO、TitanG3 20-80 SALVE及其矫正器 /strong /p
  • MARS!世界第一台无磁场球差校正透射电镜诞生
    p    strong 仪器信息网讯 /strong 2019年5月24日,英国Nature Communications在线杂志正式介绍了由东京大学大学院工学系研究科附属综合研究机构柴田直哉与日本电子子株式会社合作开发的,无磁场球差校正扫描透射电镜MARS机型Magnetic-field-free Atomic Resolution STEM)的开发理念与部分实验结果。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 462px " src=" https://img1.17img.cn/17img/images/201907/uepic/f191488a-c234-40a9-9a86-d9ee1b30ad90.jpg" title=" 0.jpg" alt=" 0.jpg" width=" 300" height=" 462" border=" 0" vspace=" 0" / /p p   1931年,鲁斯卡和诺尔研制成了世界上第一台透射电镜(TEM),自此以后,研究人员一直在追求提高TEM的空间分辨率。由于电子是带电粒子,研究人员一直在遵循布施(Busch)于1926年的发现:使用轴对称的磁场和静电场来控制电子束。88年来,使用高稳定性和易操控性的高磁场镜被认为是TEM的最佳选择。理论上TEM的空间分辨率受制于和入射电子束能量以及磁透镜的能力,通过各级透镜放大,TEM可以形成各种初级图像和衍射盘,最后的图像质量被各级透镜的综合性能差影响。为了获得更好的分辨率,现代TEM的发展与如何设计出低差系数透镜(如球差、色差)紧密结合在了一起。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/2b3ee416-49ec-47f5-99ce-66857fcfd993.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 300" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 安装在英国钻石光源的JEOLJEM-ARM300F(GrandARM) /span /p p   1995年,Haider教授设计出了划时代的球差校正器,使得TEM(STEM)的分辨率首次达到了亚埃及尺度。最新的记录2018年,JEOL独立开发的最新差校正器使得商业化300kV球差电镜达到了40.5pm的分辨率。现在,各种单原子图像表征已经变得较为容易,单原子的电场结构也有了相关报道。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 339px " src=" https://img1.17img.cn/17img/images/201907/uepic/ad3e5a56-57f9-4919-9811-53cb550ac456.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 339" border=" 0" vspace=" 0" / /p p   但是,上述方法需要将样品放入2~3T的超高磁场环境以减少焦距。这种高磁场环境使得磁性材料的物理结构发生非常大的变化。因此洛伦茨模式(或者洛伦茨透镜),一种完全关闭物镜磁场以牺牲分辨率的方法被广泛用来观察磁性材料。现在,东京大学与日本电子株式会社联合研发了一种相反极性的前后反对称透镜设计,配合最新的五阶自动调整新型球差矫正器,使得样品可以处在完全无磁场的环境中,电镜仍然保证原子级的分辨率。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 201px " src=" https://img1.17img.cn/17img/images/201907/uepic/7ee1e85e-68d0-40b1-97d5-9873bdc5d661.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 201" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 全新的物镜设计 /span /p p   配有该球差矫正器的机型目前定名为MARS。目前实验数据来看,MARS测角台内800μm× 800μm× 200μm空间磁场分布可被观察到,这一大小完全覆盖球差透射电镜观察的样品自身(一般大小在100nm× 100nm× 50nm)。通过测量,样品上的残余磁场小于0.2mT,比普通球差电镜低10000倍。一般情况下,磁性样品的拍摄存在两个难点:1)自身结构会被电镜的强磁场坏境破坏,2)由于样品自身磁场的影响,使得完全消除物镜残存象散非常困难。但是使用MARS机型,可以直接观察软磁性硅钢样品(Fe-3wt%Si),得到了143pm的分辨率。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 190px " src=" https://img1.17img.cn/17img/images/201907/uepic/60d624f6-b48a-47b8-ab69-7bb0456cab3f.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 190" border=" 0" vspace=" 0" / /p p   MARS机型还可以搭载如电子全息、差分衬度STEM探测器(SAAF)、叠层衍射成像探测器(4D Canvas)、能量损失谱(EELS)以及大固体角EDS。这种多用途设计,使得该设备将拥有巨大的应用前景。 /p
  • 精确跟踪芯片蚀刻过程,用高分辨率光谱仪监测等离子体
    在半导体行业,晶圆是用光刻技术制造和操作的。蚀刻是这一过程的主要部分,在这一过程中,材料可以被分层到一个非常具体的厚度。当这些层在晶圆表面被蚀刻时,等离子体监测被用来跟踪晶圆层的蚀刻,并确定等离子体何时完全蚀刻了一个特定的层并到达下一个层。通过监测等离子体在蚀刻过程中产生的发射线,可以精确跟踪蚀刻过程。这种终点检测对于使用基于等离子体的蚀刻工艺的半导体材料生产至关重要。等离子体是一种被激发的、类似气体的状态,其中一部分原子已经被激发或电离,形成自由电子和离子。当被激发的中性原子的电子返回到基态时,等离子体中存在的原子就会发射特有波长的辐射光,其光谱图可用来确定等离子体的组成。等离子体是用一系列高能方法使原子电离而形成的,包括热、高能激光、微波、电和无线电频率。实时等离子体监测以改进工艺等离子体有一系列的应用,包括元素分析、薄膜沉积、等离子体蚀刻和表面清洁。通过对等离子体样品的发射光谱进行监测,可以为样品提供详细的元素分析,并能够确定控制基于等离子体的过程所需的关键等离子体参数。发射线的波长被用来识别等离子体中存在的元素,发射线的强度被用来实时量化粒子和电子密度,以便进行工艺控制。像气体混合物、等离子体温度和粒子密度等参数都是控制等离子体过程的关键。通过在等离子体室中引入各种气体或粒子来改变这些参数,会改变等离子体的特性,从而影响等离子体与衬底的相互作用。实时监测和控制等离子体的能力可以改进工艺和产品。一个基于Ocean Insight HR系列高分辨率光谱仪的模块化光谱装置用于监测等离子体室引入不同气体后,氩气等离子体发射的变化。测量是在一个封闭的反应室中进行的,光谱仪连接光纤和余弦校正器,通过室中的一个小窗口观察。这些测量证明了模块化光谱仪从等离子体室中实时获取等离子体发射光谱的可行性。从这些发射光谱中确定的等离子体特征可用于监测和控制基于等离子体的过程。等离子体监测可以通过灵活的模块化设置完成,使用高分辨率光谱仪,如Ocean Insight的HR或Maya2000 Pro系列(后者是检测UV气体的一个很好的选择)。对于模块化设置,HR光谱仪可以与抗曝光纤相结合,以获得在等离子体中形成的定性发射数据。从等离子体室中形成的等离子体中获取定性发射数据。如果需要定量测量,用户可以增加一个光谱库来比较数据,并快速识别未知的发射线、峰和波段。监测真空室中形成的等离子体时,一个重要的考虑因素是与采样室的接口。仪器部件可以被引入到真空室中,或者被设置成通过视窗来观察等离子体。真空通管为承受真空室中的恶劣条件而设计的定制光纤将部件耦合到等离子体室中。对于通过视口监测等离子体,可能需要一个采样附件,如余弦校正器或准直透镜,这取决于要测量的等离子体场的大小。在没有取样附件的情况下,从光纤到等离子体的距离将决定成像的区域。使用准直透镜可以获得更局部的收集区域,或者使用余弦校正器可以在180度的视野内收集光线。测量条件HR系列高分辨率光谱仪被用来测量当其他气体被引入等离子体室时氩等离子体的发射变化。光谱仪、光纤和余弦校正器通过室外的一个小窗口收集发射光谱,对封闭反应室中的等离子体进行光谱数据采集(图1)。图1:一个模块化的光谱仪设置可以被配置为真空室中的等离子体测量。一个HR2000+高分辨率光谱仪(~1.1nm FWHM光学分辨率)被配置为测量200-1100nm的发射(光栅HC-1,SLIT-25),使用抗曝光纤(QP400-1-SR-BX光纤)与一个余弦校正器(CC-3-UV)耦合。选择CC-3-UV余弦校正器采样附件来获取等离子体室的数据,以解决等离子体强度的差异和测量窗口的不均匀问题。其他采样选项包括准直透镜和真空透镜。结果图2显示了通过等离子体室窗口测量的氩等离子体的光谱。690-900纳米的强光谱线是中性氩(Ar I)的发射线,400-650纳米的低强度线是由单电离的氩原子(Ar II)产生的。图2所示的发射光谱是测量等离子体发射的丰富光谱数据的一个例子。这种光谱信息可用于确定一系列关键参数,以监测和控制半导体制造过程中基于等离子体的工艺。图2:通过真空室窗口测量氩气等离子体的发射。氢气是一种辅助气体,可以添加到氩气等离子体中以改变等离子体的特性。在图3中,随着氢气浓度的增加添加到氩气等离子体中的效果。氢气改变氩气等离子体特性的能力清楚地显示在700-900纳米之间的氩气线的强度下降,而氢气浓度的增加反映在350-450纳米之间的氢气线出现。这些光谱显示了实时测量等离子体发射的强度,以监测二次气体对等离子体特性的影响。观察到的光谱变化可用于确保向试验室添加最佳数量的二次气体,以达到预期的等离子体特性。图3:将氢气添加到氩等离子体中会改变其光谱特性。在图 4 和 5 中,显示了在将保护气添加到腔室之前和之后测量的等离子体的发射光谱。 保护气用于减少进样器和样品之间的接触,以减少由于样品沉积和残留引起的问题。 在图 4中,氩等离子体发射光谱显示在加入保护气之前,加入保护气后测得的发射光谱如图5所示。保护气的加入导致了氩气发射光谱的变化,从400纳米以下和~520纳米处的宽光谱线的消失可以看出。图4:加入保护气之前,在真空室中测量氩等离子体的发射。图5:加入保护气后,氩气发射特性在400纳米以下和~520纳米处有明显不同。结论紫外-可见-近红外光谱是测量等离子体发射的有力方法,以实现元素分析和基于等离子体过程的精确控制。这些数据说明了模块化光谱法对等离子体监测的能力。HR2000+高分辨率光谱仪和模块化光谱学方法在测量等离子体室条件改变时,通过等离子体室的窗口测量等离子体发射光谱,效果良好。还有其他的等离子体监测选项,包括Maya2000 Pro,它在紫外光下有很好的响应。另外,光谱仪和子系统可以被集成到其他设备中,并与机器学习工具相结合,以实现对等离子体室条件更复杂的控制。以上文章作者是海洋光学Yvette Mattley博士,爱蛙科技翻译整理。世界上第一台微型光谱仪的发明者海洋光学OceanInsight,30年来专注于光谱技术和设备的持续创新,在光谱仪这个细分市场精耕细作,打造了丰富而差异化的产品线,展现了光的多样性应用,坚持将紧凑、便携、高集成度以及高灵敏度、高分辨率、高速的不同设备带给客户。2019年,从Ocean Optics更名为Ocean Insight,也是海洋光学从光谱产品生产商转型为光谱解决方案提供商战略调整的开始。此后,海洋光学不仅继续丰富扩充光传感产品线,且增强支持和服务能力,为需要定制方案的客户提供量身定制的系统化解决方案和应用指导。作为海洋光学官方授权合作伙伴,爱蛙科技(iFrogTech)致力于与海洋光学携手共同帮助客户面对问题、探索未来课题,为打造量身定制的光谱解决方案而努力。如需了解更多详情或探讨创新应用,可拨打400-102-1226客服电话。关于海洋光学海洋光学作为世界领先的光学解决方案提供商,应用于半导体、照明及显示、工业控制、环境监测、生命科学生物、医药研究、教育等领域。其产品包括光谱仪、化学传感器、计量检测设备、光纤、透镜等。作为光纤光谱仪的发明者,如今海洋光学在全球已售出超过40万套的光纤光谱仪。关于爱蛙科技爱蛙科技(iFrogTech)是海洋光学官方授权合作伙伴,提供光谱分析仪器销售、租赁、维护,以及解决方案定制、软件开发在内的全链条一站式精准服务。
  • 胶原蛋白企业亮出检测报告自证清白 各自执行企业标准
    10月8日,有媒体声称其自行送检的7款口服胶原蛋白产品中3款并未检出胶原蛋白的特征氨基酸&mdash &mdash 羟脯氨酸。对于这一结果,相关企业均强烈否认并亮出检测报告自证清白。据了解行业内一直未形成对于胶原蛋白产品的统一标准,各大公司执行自己的企业标准。   胶原蛋白产品不含胶原蛋白? 涉事企业强烈否认   胶原蛋白可谓命运多舛,日前又被爆成分争议&ldquo 不含胶原蛋白&rdquo 。昨日,有媒体声称其自行送检的7款口服胶原蛋白产品中,汤臣倍健胶原蛋白粉、颜如玉胶原蛋白口服液、无限极美姿力胶原蛋白果味饮料等3款产品中,并未检出胶原蛋白的特征氨基酸&mdash &mdash 羟脯氨酸。另外Fancl、Lumi、丸美、安婕妤4款产品胶原蛋白含量则远低于宣称的含量。不过,报道未披露具体数据,也未交代其送检机构。对于这一结果,相关企业均强烈否认并亮出检测报告&ldquo 自证清白&rdquo 。   记者了解到,目前胶原蛋白产品始终未有统一标准,特异性指标也未能明确,造成行业频频陷入舆论危机。   从成本看似无造假必要   汤臣倍健昨日在给本报的声明说,其胶原蛋白采购自法国罗赛洛公司,检测显示羟脯氨酸含量为9.33%,并能提供检测报告。该公司指,一直严守法律法规以及食品安全标准。   无限极声明表示,报道提及的产品其生产标准在广东省卫生厅备案,原料经第三方权威机构检测完全符合国家相关法律法规和标准,昨日已再次送检,结果会及时公布。   而广州颜如玉医药科技有限公司的声明则称,上述口服液取得国家保健食品批准证书,标志性成分为低聚肽而非羟脯氨酸。此外,有关产品是海洋鱼皮胶原低聚肽口服液,而不是胶原蛋白口服液,用评价胶原蛋白的方法来评价低聚肽是不专业的,&ldquo 被检产品未经我们公司确认,是否属实,不得而知。&rdquo   羟脯氨酸是胶原蛋白18种氨基酸中的一种,为胶原蛋白特有,但从成本角度看,企业似乎并无造假必要。南海水产研究所一位研究员昨日对本报说,只要采用一般鱼类的&ldquo 边角料&rdquo 进行水解就能提取,&ldquo 甚至不法之徒用皮革的下脚料,也能得到羟脯氨酸。&rdquo   记者翻查资料发现,乳业之前曾热炒&ldquo 皮革奶&rdquo ,即添加皮革下脚料来&ldquo 增加&rdquo 蛋白质,科研人员就是通过检测奶中是否含有羟脯氨酸来辨别的。&ldquo 普通猪皮中就能弄出羟脯氨酸。&rdquo 上述研究员说。   各公司执行自己的标准   不过,胶原蛋白近期先后被质疑功效、涉嫌违法宣传,还是让这种在近年被不断应用于食品、保健品、化妆品中的成分受到了高度关注。记者了解到,事实上目前胶原蛋白仍未有国标,消费者对其作用也是&ldquo 蒙查查&rdquo 。   目前,我国已认可胶原蛋白、胶原肽的保健功效只有保护皮肤水分、增加骨密度、增强免疫力三项。但市民麦小姐说,她选购胶原蛋白的理由是冲着它&ldquo 可以修复肌肤、保持弹性,人变得更年轻。&rdquo   据记者昨日获得的一份由中国食品科学技术学会在2011年撰写的胶原蛋白标准研讨会摘要显示,在2010年国内胶原蛋白年产值保守估计已经达到100亿元,产能在600多吨或日本的十分之一。   该学会指出,在胶原蛋白生产过程中都存在水解或酶解过程,最终很多产品已经以多肽的形式存在,因此行业内一直未形成对于胶原蛋白产品的统一标准。此外,行业也需要明确胶原蛋白的特异性指标,例如羟脯氨酸的含量比例,或者是甘氨酸、脯氨酸和羟脯氨酸的总含量占到蛋白质的50%左右。   记者还了解到,《水解胶原蛋白》国标曾在2007年对外征求意见,但该稿一度被业内指出&ldquo 操作性不够好&rdquo ,而且最终版本始终未能落地。目前各大公司执行自己的企业标准。   胶原蛋白或将   禁止以口服液形式销售   国庆长假期间,国家食品药品监督管理总局在官方网站征求对保健食品监管新规的意见,提出拟于2014年1月1日起,禁止食品以片剂、胶囊、口服液、丸剂等形状生产销售,&ldquo 如仅取得食品生产许可(QS标志),国家食药总局拟于2014年1月1日起,禁止其以片剂、胶囊、口服液、丸剂等形状生产销售 禁止营养补充剂宣称有保健功能。&rdquo   而据记者走访药店、超市、便利店以及从业界了解得知,目前市面上充斥的大量胶原蛋白产品刚好就处于此政策&ldquo 打击&rdquo 范围内:基本上既属于普通食品,又主要以口服液形式存在。&ldquo 不少消费者将胶原蛋白口服液当美颜饮料喝,而且相信了其铺天盖地宣传的保健功效,但实际上它作为普通食品,功效推广属于违法,而且口服液形式也会暗示和催眠消费者,其具有不错的保健功效甚至药效。&rdquo 一位行业观察人士表示,胶囊和口服液暗示产品的药用性太强,的确应进行规范整顿。
  • 包装与环境标准化技术委员会成立
    国际标准化组织(IS0)近日通过决议,批准成立IS0/TCl22/SC4包装与环境技术委员会,并由中国和瑞典两国共同承担联合秘书处,中国出口商品包装研究所承担联合秘书处工作并同时作为IS0/TCl22/SC4国内对口单位。   国际标准化组织(IS0)近日通过决议,批准成立IS0/TCl22/SC4包装与环境技术委员会,并由中国和瑞典两国共同承担联合秘书处,中国出口商品包装研究所承担联合秘书处工作并同时作为IS0/TCl22/SC4国内对口单位。这是我国首次参与和承担国际包装标准化技术委员会的工作,由此扩大了中国在国际环保包装标准化领域的作用和影响,有力提升了我国的国际地位。   IS0/TCl22/SC4包装与环境技术委员会的工作,将致力于发展IS0标准,从而达到包装与环境协调发展,既:减少包装对环境的影响:把技术性贸易壁垒的风险降到最低 与现有的标准不冲突。   由于全球环境受到越来越严重的污染威胁,关注包装对于环境的影响已经成为世界共识。目前,欧盟制定的关于包装和环境的标准包括:ENl3427《包装--关于包装和包装废弃物的欧洲标准的使用要求》:ENl3428《包装--制造和成分的特殊要求--预先减少用量》 ENl3429《包装--重复使用》 ENl3430《包装--材料循环再生--包装可回收利用的条件》:ENl3431《包装一能量回收利用--可回收利用的要求--最低热量值陈述》 ENl3432《包装--堆肥和生物降解--可回收利用的条件--试验和验收准则》等欧洲。   协调标准。由日本提出并有中国和韩国等参与的环境意识包装标准包括:TS《包装一一包装和包装废弃物》 TS《包装--预先减少用量》 TS《包装--重复使用》 TS《包装--材料循环再生》 TS《包装--能量回收利用》 TS《包装--化学品回收利用》 TS《包装--堆肥和生物降解有机回收利用》等亚洲标准指南草案。   包装与环境的协调发展已经成为全球性主要课题。我国面临的包装对环境的压力十分突出。科学发展观对循环经济提出了更高要求。我国每年包装材料耗量为3000多万吨,其中产生的包装废弃物约为1600万吨,占城市所有废弃物体积的25%,重量的15%,而且每年以160多万吨的速度增长。   在我国,现已由中国出口商品包装研究所负责组织制定了GB/GB/Tl67161《包装和包装废弃物第l部分:处理与利用通则》 GBl8455《包装回收标志》 GB/Tl6716.2《包装和包装废弃物第2部分:评估方法和程序》 GB/Tl6716.3《包装和包装废弃物第3部分:预先减少用量》 GBITl6716.4《包装和包装废弃物第4部分:重复使用》 GB/Tl6716.5《包装和包装废弃物第5部分:材料循环再生》国家标准,以及GB/Tl6716.6《包装和包装废弃物第6部分:能量回收利用》 GB/Tl67167《包装和包装废弃物第7部分:堆肥和生物降解》等国家标准草案。同时,中国出口商品包装研究所积极参与国际标准化活动,在推进IS0/TCl22/SC4包装与环境分技术委员会的建立和IS0国际标准提案工作中,发挥了大国的责任与作用。   包装对于环境的影响在全世界范围内已成为一个主要议题。全球关于包装与环境的IS0标准将有利于环境保护和促进国际贸易。   包装和环境的国际标准化将立足于全球,欧盟EN标准和亚洲标准指南以及中国国家标准将作为今后IS0国际标准的起点。   中国/瑞典联合秘书处将在WG工作组等项目管理、ISO文件分发、国际秘书的职责划分、区域标准化工作上进行分工合作。   IS0/TCl22/SC4包装与环境技术委员会于2009年12月10~11日在瑞典斯德哥尔摩召开第一次国际会议并正式开展国际标准化活动。在此之前,将于2009年11月9日至l0日在比利时布鲁塞尔召开特别会议,三个对包装与环境标准化工作有重要意义的秘书处参与,分别来自三个国家:中国(IS0/TCl22/SC4联合秘书处),瑞典(IS0/TCl22/SC4联合秘书处)和日本(IS0/TCl22秘书处),中国出口商品包装研究所将作为联合秘书处和国内对口单位出席会议。
  • 聚焦三大体系,《化学物质环境风险评估与管控技术标准体系框架(征求意见稿)》发布
    为落实《新污染物治理行动方案》关于建立完善技术标准体系的有关要求,生态环境部固体废物与化学品司组织有关单位,生态环境部编制了《化学物质环境风险评估与管控技术标准体系框架(征求意见稿)》,现公开征求意见。征求意见截止时间为2024年8月9日。《框架》按照“筛、评、控”和“禁、减、治”的原则编制, 主要包括:总体框架、化学物质环境风险筛查技术标准子体系、环境风险评估技术标准子体系、环境风险管控技术标准子体系等。其中,环境风险管控技术标准子体系又分为源头禁限类、过程减排类及末端治理类。对于化学物质环境管理的命名,《新化学物质申报类名编制导则》(HJ/T 420—2008)和《化学物质环境管理命名规范》(HJ 1357—2024)已分别于2008年1月和 2024 年 3 月发布。化学物质环境风险评估中重点关注的环境与健康危害项目:一、生态毒理项目化学物质环境风险评估中重点关注的生态毒理项目包括:藻类生长抑制毒性、溞类急性毒性、鱼类急性毒性或鱼类胚胎-卵黄囊吸收阶段短期毒性试验、活性污泥呼吸抑制毒性、吸附/解吸附性、蚯蚓急性毒性试验、大型溞繁殖试验、鱼类慢性毒性试验、种子发芽和根伸长试验或陆生植物生长试验、线蚓繁殖试验或蚯蚓繁殖试验、底栖生物慢性毒性试验等。二、健康毒理项目化学物质环境风险评估中重点关注的健康毒理项目包括:急性毒性、皮肤腐蚀/刺激、眼刺激、皮肤致敏、致突变性、反复染毒毒性、生殖/发育毒性、毒代动力学、慢性毒性、致癌性等。三、环境行为项目 化学物质环境风险评估中重点关注的环境行为项目包括:降解性、生物累积性等。附:《化学物质环境风险评估与管控技术标准体系框架(征求意见稿)》.pdf《化学物质环境风险评估与管控技术标准体系框架(征求意见稿)》编制说明.pdf征求意见单位名单.pdf
  • 上海市计量测试技术研究院参与北斗领域相关标准制修订
    近日,上海市计量测试技术研究院参与牵头起草的《北斗卫星导航系统个人搜救示位标性能要求及测试方法》团体标准接受了由上海市计量测试学会、上海卫星导航定位产业技术创新战略联盟、国家卫星导航与定位服务产品质量检验检测中心(上海)组织召开的上海市第三批卫星导航领域团体标准送审稿专家审查会的审查,并形成了对标准的修改建议。该标准的制定规范了北斗卫星导航系统个人搜救示位标的功能和性能要求,为各厂商进行相关产品的研制以及行业主管部门对产品的检验提供依据,支撑和促进北斗短报文服务在搜救领域的推广应用。  此外,上海市计量测试技术研究院受邀参与《基于北斗区域短报文的全球海上遇险和安全服务技术规范》2项国家标准编制。该2项国家标准是北斗系统在全球海上遇险和安全系统(GMDSS)服务领域的首套标准文件,将有助于规范基于北斗GMDSS服务的业务流程和船载终端的研制检验工作,支撑北斗GMDSS的应用推广。后续,我院将在相关主管部门的指导下,积极跟踪及研究建立基于北斗三号区域短报文通信服务的船载终端的测试系统,支撑北斗区域短报文通信服务在海事领域应用的规模化、产业化、国际化发展。近日,上海市计量测试技术研究院参与牵头起草的《北斗卫星导航系统个人搜救示位标性能要求及测试方法》团体标准接受了由上海市计量测试学会、上海卫星导航定位产业技术创新战略联盟、国家卫星导航与定位服务产品质量检验检测中心(上海)组织召开的上海市第三批卫星导航领域团体标准送审稿专家审查会的审查,并形成了对标准的修改建议。该标准的制定规范了北斗卫星导航系统个人搜救示位标的功能和性能要求,为各厂商进行相关产品的研制以及行业主管部门对产品的检验提供依据,支撑和促进北斗短报文服务在搜救领域的推广应用。  此外,上海市计量测试技术研究院受邀参与《基于北斗区域短报文的全球海上遇险和安全服务技术规范》2项国家标准编制。该2项国家标准是北斗系统在全球海上遇险和安全系统(GMDSS)服务领域的首套标准文件,将有助于规范基于北斗GMDSS服务的业务流程和船载终端的研制检验工作,支撑北斗GMDSS的应用推广。后续,我院将在相关主管部门的指导下,积极跟踪及研究建立基于北斗三号区域短报文通信服务的船载终端的测试系统,支撑北斗区域短报文通信服务在海事领域应用的规模化、产业化、国际化发展。
  • 沃特世公司推出可追溯的认证分析标准品与试剂新生产线
    独立来源的随时可用的标准品与试剂可以提高实验室的产能,降低浪费,增加分析结果的可信度 奥兰多,福罗里达州-2012年3月12日 - 沃特世公司(WAT:NYSE)今天启用了一条分析标准品和试剂的新生产线,目前它可以向科研实验室提供200多种预包装的标准品和试剂。沃特世分析标准品和试剂满足了实验室对提高工作量、支持全球化、刺激业务增长和加强合规性的需要。 沃特世公司将在美国科罗拉多州Golden新建成的工厂生产标准品和试剂。全球客户现在可以立即订购沃特世公司的分析标准品和试剂,从小分子、单一化合物标准品、到蛋白酶切和多糖标品,品种繁多。为满足客户需求,沃特世今后还将推出更多新品。 &ldquo 对于认证的LC和LC/MS分析而言,标准品和试剂对获得理想的性能,以及符合法规十分重要。配置过程从纯净的起始材料开始,经过适当的混合,到稳定性分析和准确记录,&rdquo 化学商业运营部高级总监Mike Yelle说。&ldquo 我们调查了上百名科研人员并且发现,目前即使不是绝大多数,也有很多实验室从外部供应商购进化学原料,然后自己亲手配制标准品。说实话,实验室不想再干这些事情了。因为他们的工作不是配制标准品;而是进行化验,发现新成果。因此,我们将配制分析标准品和试剂作为我们的业务。&rdquo 分析标准品和试剂对正确校准、控制、量化和评估分析操作中使用的LC、SFC或LC/MS系统至关重要。而对于一家拥有全球实验室网的组织而言,保持分析与分析、仪器与仪器,以及实验室与实验室之间质量水平的一致性非常重要。而在数据的可比性和可防御性方面,在较长的一段时间内,完全可重复地配制标准品极为关键,因此沃特世公司按照严格的规范生产标准品和试剂。 沃特世标准品和试剂具有绝对的可追溯性,这是她标志性的特征。为了确保真实性,测定的属性必须通过明确与完整的可追溯链条,直接与标准品的来源相关联。 沃特世公司作为一个有资质的,可随时使用的标准品与试剂的单独来源的认证的供应商,它能帮助实验室: 将员工从繁琐和低效的手工操作中解放出来 让员工参与到更有价值的工作中 压缩库存控制/控制运营成本 降低损耗和对环境的影响 简化工作流程/降低运营成本/采用更加一致 更容易地评估分析测定的质量 通过消除标准品和试剂导致的错误,提高了对分析准确性和质量的信心 符合更严格的法规要求 缩短了分析结果的周转时间 沃特世公司为客户提供标准品与试剂的历史可以回溯到很多年前。沃特世公司对每个工序的所有权与控制权,促进了每批次、每月和每年生产的产品性能不变,从而可以确保目前开发出的分析方法在产品的有效期之内始终有效。 沃特世分析标准品和试剂的推出,使沃特世公司实现了它作为端对端系统解决方案供应商的承诺,它为分析测定提供了最佳的设备、信息、色谱柱,现在又为它提供了标准品和试剂。 实验室可以通过www.waters.com网上直接购买沃特世产品。 了解更多信息:www.waters.com/standards 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 赛默飞发布三款用于半导体领域新品 提升实验室分析效率
    p    strong 2017年7月4日,成都 /strong ——近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)亮相成都第 24 届国际集成电路物理与失效分析研讨会 (IPFA 2017),并发布三款用于半导体失效分析工作流程的全新产品,旨在帮助半导体故障分析实验室提升处理样品和获取数据的效率,为寻求快速、高质量的电性和物理失效分析的半导体制造商提供创新解决方案。 /p p   新型 Helios G4 等离子聚焦离子束 (FIB) 系统可对各类半导体器件进行逆向剥层处理,并提供超高分辨率扫描电子显微镜 (SEM) 分析。新型 flexProber 纳米探针量测系统可用于快速电性失效分析的应用。它能对半导体晶片在互连导线和晶体管级别上的故障位置,做出准确的定位。新型 Themis S 透射电子显微镜 (TEM)用在最具挑战性的半导体器件上,可提供原子级分辨率的成像和高产率的元素分析。 /p p   “作为科学服务领域的世界领导者,赛默飞始终立于世界科学发展的前沿,以强大的技术创新领导力,为全球用户提供先进科学服务产品。”赛默飞中国区总裁江志成(Gianluca Pettiti)先生表示:“目前中国的半导体市场充满机遇与挑战,提升产品性能与效率是产业的发展重点。赛默飞始终聚焦中国的科研需求、与本地客户密切协作,致力于帮助客户提高实验室效率,践行我们的本地化承诺。” /p p   “半导体市场不断地快速发展,内存、代工、物联网 (IoT)、先进封装和显示屏市场领域都呈现出强劲的增长”,赛默飞材料与结构分析部亚洲区副总裁荆亦仁阐述道:“这一发展带动了人们对快速、高质量电性和物理失效分析需求的提升。这些新的产品将为我们现有的失效分析解决方案增添新的功能,并提高了机动性”。 /p p   Helios G4 等离子聚焦离子束系统是赛默飞最新一代的双束显微镜。它具有从快速剥层、扫描电子显微镜截面成像到透射电子显微镜样品制备在内的多种功能。半导体剥层技术在 14 nm 以下技术节点器件上的缺陷定位应用变得越来越重要。等离子聚焦离子束搭配Dx 化学气体可用于均匀展露金属层,使赛默飞的纳米探针测量系统能够进行电性故障的定位与分析。 /p p style=" text-align: center " img title=" 赛默飞新型 Helios G4 等离子聚焦离子束 (FIB) 系统.png" src=" http://img1.17img.cn/17img/images/201707/insimg/309a0d7f-1c24-47fd-b0bc-832df82b37cf.jpg" / /p p style=" text-align: center "   赛默飞新型 Helios G4 等离子聚焦离子束 (FIB) 系统 /p p   Helios G4 等离子聚焦离子束系统可支持 7 nm 技术节点以下器件的逆向剥层处理并提供自动终点检测,以在指定的金属层或通过层显露时自动停止蚀刻。它提供比传统 (Ga+) 聚焦离子束系统快 10 到 20 倍的蚀刻速率,使客户能够为纳米探针测量系统、透射电子显微镜以及扫描电子显微镜制备更大面积的样品,并可广泛地应用于先进 (2.5D) 封装、发光二极管 (LED)、显示屏以及微电子机械系统 (MEMS) 。 /p p   新型 flexProber 系统旨在帮助客户对电性失效做出快速定位,并利用低电压扫描电子显微镜来引导精密机械探针到故障电路元件上。准确定位有助于提高后续分析的效率和成本的效益,确保由此定位而制取的透射电镜样品包含了故障区域。专为探针设计的flexProber 系统的扫描电镜,与其前代产品 nProber II 相比分辨率提升了 2 倍。它融入了赛默飞高端纳米探针量测系统的许多功能,适用于广泛的半导体器件类型和不同的制程技术。它提供了入门级配置,同时保留了未来升级到完整纳米探针测量系统的可能性。 /p p style=" text-align: center " img title=" 赛默飞新型 flexProber 纳米探针量测系统.png" src=" http://img1.17img.cn/17img/images/201707/insimg/136972db-c7e7-4224-bdab-7cc10bba0ef1.jpg" / /p p style=" text-align: center "   赛默飞新型 flexProber 纳米探针量测系统 /p p   Themis S 系统是赛默飞行业标准 Themis 系列透射电镜的最新成员。以为20 nm 技术节点以下的半导体器件失效分析为目的,Themis S 系统旨在提供大规模的半导体图像和分析数据,同时Themis S还包括了集成的隔振护罩和完整的远程操作功能。球差矫正器、80-200kV 镜筒、自动对中、XFEG 电子枪和 DualX X 射线能谱仪提供了强大的亚埃级成像能力和快速、准确的元素和应力分析功能。 /p p style=" text-align: center " img title=" 赛默飞新型 Themis S 透射电子显微镜 (TEM).png" src=" http://img1.17img.cn/17img/images/201707/insimg/f73b2fc6-0338-45ed-b133-2065a9429bc7.jpg" / /p p style=" text-align: center "   赛默飞新型 Themis S 透射电子显微镜 (TEM) /p p   “我们客户的半导体器件多种多样,从最先进的 7 到20 nm节点的内存和逻辑器件,到在智能手机和物联网等产品中仍占据重要地位的成熟技术的器件”,荆亦仁表示:“我们的失效分析工具系列可满足不同半导体客户的各种需求。我们期待在中国 IPFA 会议上,与我们的客户面对面探讨我们将如何满足半导体领域不断增长的需求。” /p p    strong 关于赛默飞世尔科技 /strong /p p   赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额180亿美元,在50个国家拥有约55,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。赛默飞的重要应用领域包括食品安全、生物制药、环境及医疗保健等垂直市场。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。 /p p    strong 赛默飞世尔科技中国 /strong /p p   赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约4000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京和苏州运营。我们在全国共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务 位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品 我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。 /p p    strong 媒体垂询: /strong /p p strong   赛默飞世尔科技 /strong /p p   高赫 /p p   公共关系经理 /p p   电子邮件:sura.gao@thermofisher.com /p p   电话:(86-21) 6865 4588-2695 /p p    strong 公关公司 /strong /p p strong   爱德曼国际公关 /strong /p p   秦雯 /p p   电子邮件:Cherry.Qin@edelman.com /p p   电话: (86-21) 6193 7411 /p p & nbsp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制