当前位置: 仪器信息网 > 行业主题 > >

标准浆料疏解机

仪器信息网标准浆料疏解机专题为您提供2024年最新标准浆料疏解机价格报价、厂家品牌的相关信息, 包括标准浆料疏解机参数、型号等,不管是国产,还是进口品牌的标准浆料疏解机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合标准浆料疏解机相关的耗材配件、试剂标物,还有标准浆料疏解机相关的最新资讯、资料,以及标准浆料疏解机相关的解决方案。

标准浆料疏解机相关的资讯

  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 八年探索,锂电池浆料评价方法终获突破
    近日,中文国家核心期刊《电源技术》2024年第1期和第2期连续发表仪思奇(北京)科技发展有限公司杨正红等两篇论文:《超声/电声谱法测定锂电池浆料的粒度、流变和微观电学参数》(见2024,48(1):95-100)及《用超声/电声谱监测锂电池正极浆料的合浆及包覆质量》(见2024,48(2):284-288)。这预示着在锂电池浆料稳定性和微观电学性质评价方面取得决定性突破。众所周知,在正、负极浆料中,颗粒状活性物质的分散性和均匀性直接影响到锂离子在电池两极间的运动,因此在锂离子电池生产中各极片材料的浆料混合分散至关重要。浆料分散质量的好坏,直接影响到后续锂离子电池生产的质量及其产品的性能。目前对电池浆料的质量监测依据的是剪切流变性能的监测,然而,对相同工艺产生不同流变性质的原因始终是困扰电池浆料质量控制的痛点。据报道,影响锂离子电池浆料流变性的一些主要参数包括:1. 分散相的类型及表面电荷的大小:对于不同种类的正负极活性物质,由于其种类不同,具有不同的水化膨胀特性以及不同的表面电荷,因而不同种类的活性物质其分散特性、胶溶特性以及形成具有一定强度的结构体系的能力也各不相同,其宏观表现是不同种类的活性物质配制而成的浆料具有不同的流变特性。2. 固相的浓度:分散相或固相浓度的大小主要影响浆料的屈服应力和塑性粘度或表观粘度。在一般情况下,固相浓度越大,其屈服应力、塑性粘度或表观粘度越大。3. 固相颗位的大小、形状以及粒径的分布:在固相浓度不变的条件下,颗粒的粒径越小,由于其总的表面积增加,因而浆料的屈服应力和粘度将随之增加。 4. 分散介质本身的粘度:不同的溶剂具有不同的粘度,使得浆料的粘度也将随之变化。5. 温度和压力:在不同的温度和压力下浆料具有不同的流变特性。6. 浆料的pH值。对于锂电池合浆工序而言,合浆的搅拌工艺、粘结剂、固含量和浆料粘度对浆料的稳定性有重大的意义。通过高粘度搅拌工艺,浆料中导电剂是否能较好地分散在主料的表面,均匀地包覆住主料,这将影响极片的导电性,直接影响电池的倍率性能。因此,我国锂电池行业只能通过测粘度对浆料稳定性进行粗放的宏观管理,而缺乏对浆料本身电学性质的研究和监测,极大地影响了锂电池的成品率,导致成本无法下降,品质无法提高。美国和日本锂电企业都是通过超声衰减/电声学技术(ISO 20998/ISO13099)表征浆料中颗粒的电化学性能,进行锂电池浆料及其稳定性精准质控的。为了打破封锁,提高我国锂电池生产品质,根据所掌握的信息,仪思奇对电池浆料品质控制的超声/电声学参数进行了初步探索。美国分散技术公司的DT-1202或DT-1210超声/电声谱分析仪具有在常压条件下测量和计算上述包括粒度及zeta电位等几乎全部涉及的宏观和微观参数的能力(颗粒形状除外),国家标准GB/T 41316-2022《分散体系稳定性表征指导原则》中也推荐了超声/电声学方法。在日本,DT-1202以每年20台的销量早已广泛应用于电池浆料的质量控制中。然而,日本公司在向我国销售电池设备的同时,却对质控仪器及其相关参数对我国严格保密。为打破垄断,提高我国锂电池生产质量,降低消耗,仪思奇科技从成立之初,即与锂电材料企业广泛合作,对电池浆料可能的质控参数进行了一系列探索实验。经过八年的艰苦探索和努力,他们发现锂电池正负极浆料的稳定性化存在着不同的机制,它们的作用可以通过不同的参数表征出来,即宏观电动学参数——Zeta电位和微观电学参数——表面电荷密度。在锂电池浆料的稳定效应中,后者起到更重要的作用。因此,在锂电池浆料的研究或质量监控中,不仅需要关注zeta电位值,更需要关注表面电荷密度值的变化,二者不可偏废。这些微观电学参数也影响着浆料的宏观流变性能。超声衰减谱还可同时测量浆料体系的高频剪切黏度(动力黏度)和体积黏度(纵向黏度),反映了浆料在微观尺度上流变学性质,并且是一种非侵入式和非破环性的方法,为物质的微观结构提供了更深入的信息,有助于判断锂电池浆料工艺不稳定性的原因。研究表明,超声法直接测定锂电池合浆过程中的原浓浆料粒度直观有效,对于工艺质控非常重要。zeta电位作为疏水胶体体系静电排斥效应的表征参数,却很难直接作为电池浆料NMP有机体系的稳定化表征参数。但是在合浆过程中,因导电添加剂团聚的存在,很难均匀包覆在LFP颗粒上,而通过胶体电流(CVI)测定的电声法直接测量锂电池浆料的Zeta电位和双电层厚度可以成为导电剂是否分散和包覆均匀的关键质量控制参数。上述对电池浆料评价方法的突破,对锂电池浆料稳定性和工艺控制的解决方案探索具有重要意义
  • 梅特勒卤素水分仪测定锂离子电池浆料固含量方法
    我们知道,锂电池浆料分为正极浆料和负极浆料两种,正极浆料由粘合剂、导电剂、正极材料等组成;负极浆料则由粘合剂、石墨碳粉等组成。正、负极浆料的制备都包括了液体与液体、液体与固体物料之间的相互混合、溶解、分散等一系列工艺过程,而且在这个过程中都伴随着温度、粘度、环境等变化。 锂离子电池浆料的混合分散过程可以分为宏观混合过程和微观分散过程,这两个过程始终都会伴随着锂离子电池浆料制备的整个过程。合浆后的浆料需要具有较好的稳定性,这是电池生产过程中保证电池一致性的一个重要指标。表征浆料稳定性的主要参数有流动性、粘度、固含量、密度等。 浆料的固含量和浆料稳定性息息相关,同种工艺与配方,浆料固含量越高,粘度越大,反之亦然。在一定范围内,粘度越高,浆料稳定性越高。固含量越高,浆料搅拌时间越短,所耗溶剂越少,涂布干燥效率越高,节省时间。高固含量的浆料还可以减少涂层间厚度,降低电池内阻。 锂电池的生产包括极片制造工艺阶段的浆料制备、浆料涂覆工序是整个锂电池制造的核心内容,浆料的固含量等参数就关系着电池电化学性能的好坏,我们就来探讨一下主流的测量锂离子电池浆料固含量的方法。锂离子电池正负极浆料目前的标准的测试方法为GB/T18856.2-2008 水煤浆试验方法第2 部分 浓度测定。浆料试样的采取与制备按锂离子电池浆料采样方法进行。BINDER FD115 (固含量测定烘箱)1.1 取充分搅拌均匀的浆料试样(3.0±0.2g) 置于预先干燥并称量(称准至0.0002g)过的称量瓶中,迅速加盖,称量(称准至0.0002g),晃动摊平。1.2 打开瓶盖,将称量瓶和瓶盖放入预先鼓风并已经加热到120~125℃的干燥箱中,在鼓风条件下,干燥2h。1.3 从干燥箱中取出称量瓶,立即盖上盖在空气中冷却约3min后放入干燥器中,冷却至室温,MT电子分析天平称量。1.4 进行检查性干燥,每次30min,直到连续两次干燥的试样质量的减少不超过0.003g或质量增加后为止。在后一种情况下,应才有质量增加前一次的质量作为计算依据。由此我们看出此方法的局限性: 目前主流采用是梅特勒的经典型HC103及超越型HX204这两款卤素红外水分仪测量电池浆料的固含量,其测定方法是如何简化测试流程又能和烘箱法的结果保持一致呢? 一:HX204 超越型的卤素水分测定仪,主要的优势为:创新的悬挂式秤盘设计避免了加样腔的热量对秤盘的影响,通过消除对称量单元的负面热效应,改善测定结果。高性能 MonoBloc 称量单元可提供最大量程和最佳分辨率(200g,0.1mg),可满足要求最严苛的任务,可在最短的时间内获得非常可靠的结果。快速加热:先进的卤素灯技术是确保极为精确的快速加热和精确温度控制的关键。第二代卤素加热技术最大程度减少了热物质,通过缩短加热/冷却循环及精确的温度控制增强性能。采用冷仪器进行首次测量,与随后采用热仪器进行测量的精确程度相同。一键水分测定 :One Click™ Moisture 的图形化用户界面可快速、顺畅地执行操作,同时提供实时的干燥曲线和控制图表。了解测量,自动化控制图表可显示每个样品的固含量的含量变化趋势。具有测试方法开发功能。 具有终点判定方法选择功能 二:梅特勒-托利多全新经典HC103水份测定仪 使用 HC103 卤素水份测定仪轻松执行浆料固含量的测定。借助触摸屏操作和用户指导,HC103 使用起来十分方便。 2. 坚固耐用的设计均可确保今后数年内获得可靠的结果。 3. 图形化用户界面:让您倍感舒适自在,只需轻轻一击即可立即开始水份测定。4. SmartCal功能:确保可信水份结果的性能验证,应当在保养间隔期间定期测试卤素水份测定仪,以确保水份测量结果始终正确。通过 SmartCal,我们可提供一种在简单的 10 分钟测试中对您卤素水份测定仪的整体性能进行验证的独特测试物质。5.HC103 和HX204 的最小浆料的称量量为0.1g, 为了保证浆料固含量的准确性及重现性,建议称量量在0.5-3.5 g 左右。对于浆料而言,需要选用可重复使用的不锈钢样品盘及玻璃纤维盘进行测试。 根据正负极浆料水分残留及NMP残留物质的特性,一般可以进行120-155度左右的方法开发,通过测定方法开发功能,以烘箱法的结果进行比对修订及优化,最终形成固定的正负极浆料固含量的标准方法,保存在仪器界面的快捷键中,均匀放置好浆料样品好,一键开始测量,约2-10min自己显示结果。 结论梅特勒公司的HX204和HC103 卤素红外水分仪,非常适合于工厂车间和实验室进行原料,半成品和成品的水分或者固含量的测定。可以在几分钟内提供精确可靠的水分或固含量的信息,确保最佳的产品质量和至高的生产力,助力于锂电池正负极浆料固含量测定,有力保障锂离子电池的性能品质。
  • 人和科仪亮相2022年第八届太阳电池浆料与金属化技术论坛
    上海人和科学仪器有限公司携带具有物联网功能的智能三辊机、超高压纳米均质机、稳定分析仪等在浆料行业具有广泛应用的仪器设备。参加了在常州富力喜来登酒店举办的第八届太阳电池浆料与金属化技术论坛。 TRILOS 智能三辊机 应用于: 浆料的均匀分散 TRILOS 超高压纳米均质机 应用于: 有机载体经微射流均质机预处理后, 可提高分散性,然后与玻璃粉、 银粉混合,制得浆料。 LUMiSizer稳定性分析仪 应用于: 浆料的稳定性的精确快速评价 该论坛主要探讨光伏行业展望与浆料市场前景,太阳电池技术与金属化工艺发展趋势,银浆金属化导电机理与接触机制研究,SE PERC、异质结和TOPCon电池进一步提效降本的浆料和金属化解决方案,激光转印技术实现路径与产业化进展,先进铜电镀技术与应用,银包铜浆料成本优势与电池稳定性研究,丝网印刷和电池烧结技术与设备,钙钛矿叠层电池金属化工艺展望等。会议现场,这些仪器设备一经展出就吸引了大家的目光。通过人和科仪技术工程师们的认真耐心的讲解以及现场样品的演示,使得大家对这些仪器设备有了一个更为直观和细致的了解。现场让大家最感兴趣的就是TRILOS特有的物联网功能。该功能可以全程自动设置并记录设备运行全过程,在方便客户进行数据分析的同时避免人为因素造成的误差。此外,物联网平台还可以接入投料、配料、预混以及在线监测等设备进行联用。 人和公司(www.renhe.net)始终聚焦行业痛点,在解决方案中不断融入符合中国制造2025标准,具有自动化、智能化、数字化、微型化、模块化并带物联网的仪器设备。让客户通过这些仪器设备实时获取生产过程中的信息反馈,进行综合分析,不断优化生产工艺,从而实现在提高产品质量的同时,降低生产成本。
  • 飞纳电镜能谱一体机 Phenom ProX 在利德浆料成功验收
    p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 108px" title=" 2.png" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/uepic/2f4ede14-87a6-4ade-8bfd-9402d76e9ce7.jpg" width=" 600" height=" 108" / /p p br/ /p p 湖南利德电子浆料股份有限公司成立于 2008 年,原隶属于湖南利德集团,是原集团的电子材料事业部,单独成立的具有独立法人资格的股份制公司,公司坐落于湖南株洲(国家)高新区金龙路国投众普森科技园,是专门从事电子浆料研发、生产与销售的高新技术企业。 /p p br/ /p p 公司从事电子浆料开发生产已有十余年历史,专注于研发和生产各种厚膜行业用电子浆料,产品包括各种银浆、电阻浆和介质浆,其中银浆和介质浆全为无铅环保产品。所有产品均遵循环保,节能的理念,且经过与客户使用条件几乎相同的测试与试验,力图真实体验客户感受。公司采取自主研发和与高校合作方式,先后承担了国家“863”项目、国家中小企业创新基金项目及湖南省重点科技项目,形成了具有完全自主知识产权的多系列电子浆料产品。 /p p br/ /p p strong Phenom SEM 的应用 /strong /p p 应用领域:太阳能电池浆料、金属基板浆料、汽车玻璃热线浆料、银钯浆料及普通浆料、低温浆料及导电胶。 /p p br/ /p p 样品 纯 Al 浆料 /p p br/ /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 303px" title=" Snip20150922_115.png" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/uepic/f629b550-2c06-49cf-8612-052ce76be860.jpg" width=" 600" height=" 303" / /p p br/ /p p 利用四分割背散射探头的 Topo 模式,可以清楚的分辨 Al 浆料表面的凸起和凹陷,观察其形貌。同时,在 Full 模式下通过被加强的对比度,分辨出轻重元素,找到并排除样品中的杂质。 /p p br/ /p p 样品 太阳能背板 Al 浆截面 /p p br/ /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 638px" title=" 飞纳电镜铝浆截面.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/uepic/b28a9b82-1ef2-4de6-b74e-814acb9e9563.jpg" width=" 600" height=" 638" / /p p br/ /p p 太阳能电池板背部设计的环保型导电铝浆,与晶体硅片实现完美的热膨胀匹配,转换效率高,其中的鼓包是需要工艺中排除的缺陷,利用飞纳电镜扫描区域的旋转,将基板置于水平位置,利于观察分析和排除缺陷。 /p p br/ /p p 样品 Ag 粉 /p p br/ /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 480px" title=" 飞纳电镜 Ag 粉.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/uepic/ea574af0-c3a2-4144-8ae6-606d7f9f71e7.jpg" width=" 600" height=" 480" / /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 600px HEIGHT: 335px" title=" 飞纳电镜利德表格.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/uepic/aa1eea30-4098-4048-b75f-f8ed2d7cce81.jpg" width=" 600" height=" 335" / /p p style=" TEXT-ALIGN: center" br/ /p p 利用飞纳全景拼图软件,可在较大区域中采集500张高倍银颗粒图像,然后利用飞纳颗粒系统软件,对其进行单颗粒识别和颗粒参数的统计分析。 /p p br/ /p p strong 客户选购 Phenom 飞纳的原因 /strong /p p 客户购买主要是基于飞纳独特的双低倍导航(快速寻样)、优越的抗震性能和小巧的体积。 /p p 2015 年 8 月 22 日,Phenom 飞纳电镜在利德浆料历时四天的培训验收工作顺利完成,感谢公司领导及同事的支持,也祝愿利德浆料在 Phenom 飞纳电镜的协助下,领军行业,把握脉搏,精益求精,走向卓越。 /p
  • 锂电池浆料与性能之间的桥梁——流变仪
    p   随着近些年新能源汽车、数码电子产品等锂离子电池应用领域的大力发展和推广,锂离子电池市场迅猛发展,预计2020年全球锂离子电池市场规模有望达到4500亿元。 /p p   相比于传统的镍氢电池,铅酸电池来说,锂离子电池具有能量密度高,无记忆效应,环境污染小等特点。 /p p   锂离子电池的主要材料有正负极、电池隔膜、电解液,这也是锂电池目前研究的热点领域和对象。其中在电极的制备过程中,锂电池浆料的性质,尤其是浆料的流变特性对最终电池的储电性能具有很大程度上的影响。 /p p   锂离子电池浆料含有活性材料及多种非活性物质,通过将其涂覆于金属集流体上来制备锂离子电池的电极。 /p p   锂离子电池中需要添加各种导电剂和粘结剂以形成导电网络,颗粒聚集在浆料中产生不均匀性,会导致复合电极中出现裂纹和空隙,使电子通路出现中断,从而影响电池性能。因此,制作分散均匀的、稳定的浆料成为重中之重。 /p p   锂离子电池浆料多为黑色不透明粘性流体或胶体状态,肉眼无法直接观测到分散是否均匀,不同分散状态的浆料又有着不同的粘度趋势。因此,流变特性是分析锂离子电池浆料分散状态的重要手段。 /p p   流变仪可在接近真实加工条件下,对样品在力、热作用下的行为进行研究,如样品的流动特性、加工过程中的结构变化、降解及混合质量等性质。锂离子电池浆料的流动特性与固含、搅拌工艺及加料顺序等都有很大的关系。另外,浆料的粘度和沉降稳定性也会对后续的涂布过程产生影响。 /p p   多项研究表明,锂电池的性能与浆料的粘度、添料次序、浆料固含、混合工艺、粘结剂种类、导电剂种类、溶剂种类、添加剂种类有关,且它们均是通过影响锂电池浆料的流变特性而影响最终的重放电性能。在体系相同的情况下,浆料的表观粘度基本与浆料的分散情况相关,浆料的分散程度越好,浆料的表观粘度越低。 /p p   制作分散均匀而稳定的浆料已成为提高锂离子电池性能的重要手段,流变仪则已成为锂电池开发研究过程中不可或缺的仪器。 /p
  • 热管理相变浆料PCM的稳定性表征
    PCM 浆料由于其高效的传热和热能存储特性,是高效热能管理的替代解决方案,受到越来越多关注。PCM 浆料有多种类型,例如冰浆、笼状物浆料和盐水合物 PCM 浆料 (SHPCMS)、微胶囊化 PCM 浆料 (MPCMS)、形状稳定 PCM 浆料 (SSPCMS) 和相变乳液 (PCE)。PCE 中的 PCM 液滴/颗粒可以在表面活性剂的帮助下分布到不混溶的载体流体中,这简化了材料的制备,使其成为一种有前途的 PCM 浆料。由于晶体生长的固有特性和与温度相关的固体分数,原始盐水合物 PCM 浆料无法呈现出良好的流动性和稳定性特征,有研究发现,表面活性剂和稳定剂的共同作用可以抑制晶体颗粒的生长,从而有助于浆体稳定性。本文基于为最佳开发盐水合物 PCM 浆料而提出的一种方法,介绍了 CaCl2&sdot 6H2O 浆料的制备、特性和性能改进。通过重力和离心稳定性测试研究了浆料的稳定性,以验证稳定剂的有效性。材料: 六水氯化钙 (CaCl2&sdot 6H2O)——基料;六水氯化锶 (SrCl2&sdot 6H2O) ——成核剂;十六烷基二甲基甜菜碱 (C16H33N+(CH3)2CH2COO-)——两性离子表面活性剂;聚乙烯醇 PVA——稳定剂;水杨酸钠——添加剂。浆料稳定性表征进行两组稳定性试验,其中设置了冷水浴系统以方便进行重力稳定性试验。在重力稳定性试验中,将装在单独试管中的不同CaCl2&sdot 6H2O浆料样品浸入浴中,观察颗粒沉降过程。晶体颗粒的沉降导致相分离界面,其变化由数码相机记录。本研究进行了大约一周的重力稳定性试验。另一项稳定性测试是在基于LUMiFuge的加速力场下进行的。它被用来深入了解不同添加剂对稳定性增强的影响。与重力稳定性试验相比,它依靠透射率百分比对时间的积分来分析浆料样品的“不稳定指数”,避免了在没有明显相分离的情况下引入的不确定性,并允许加速沉降过程。在本研究中,使用 LUMiFuge进行稳定性测试的转速在 30 分钟的测试期内设定为 1000 r/min。图1 重力稳定性试验中晶体颗粒的沉降过程(浆体样品从左到右分别为:原始CaCl2&sdot 6H2O浆体;添加成核剂;添加成核剂和表面活性剂;添加成核剂、表面活性剂和稳定剂)a) 刚生成时;b) 5分钟后;c) 15分钟后;d) 1小时后;e) 18小时后;f) 2天后;g) 4天后;h) 7天后。 图 2. 加速稳定性试验中不同 CaCl2&sdot 6H2O 浆料样品的不稳定性。 图1比较了不同浆料样品的重力稳定性,图2进一步展示了部分浆料样品在离心场下的稳定性测试,以深入了解不同添加剂提高稳定性的机理。稳定性测试在 15℃的水浴或环境空气中进行(分别用于重力和离心稳定性测试),浆料的质量固体分数约为 17w.t.%。从图1 可以清楚地看到,原料 CaCl2&sdot 6H2O 浆料迅速分层,在整个过程中呈现出沉积层高度最低和上方清澈透明溶液。原料 CaCl2&sdot 6H2O 浆料的相对较大的粒径是阻碍布朗运动的关键因素,导致沉降过程更快。重力稳定性试验中,添加成核剂和同时添加成核剂和表面活性剂的样品的沉降层高度在前18小时内相似(见图1)。有趣的是,沉降高度出现了交叉,添加成核剂和表面活性剂的样品在第一个小时内呈现出较快的分离过程,而之后速度减慢。这种交叉现象在加速稳定性试验中得到了证实,如图2所示。在重力稳定性试验中,添加成核剂的样品的沉降高度在18小时后继续略有降低,而同时添加成核剂和表面活性剂的浆料样品没有明显变化(见图1)。一开始的相似是因为晶体颗粒经历了一个长大过程,布朗运动对这些尺寸较小的颗粒影响较大。交叉现象可能是由于表面活性剂在晶粒表面积累起缓冲作用,阻碍了晶粒与溶液中分子的碰撞,从而抵消了部分布朗运动的影响。 但随着晶体的生长,由于仅含成核剂的 CaCl2&sdot 6H2O 浆料的粒径较大,布朗运动的相对影响减弱(图3b和c)。此外,在含成核剂和表面活性剂的浆料中,针状晶粒的尺寸相对较小,长宽比较大,在两性离子表面活性剂电位引入的排斥力的帮助下,可以形成更高的沉积层。图2证实了在加速稳定性测试中,含成核剂和表面活性剂的浆料样品的不稳定性低于仅含成核剂的浆料样品。相比之下,在重力和离心稳定性试验中,含有所有添加剂的浆料样品仅观察到轻微的分层。除了小粒径的影响外,PVA 在水杨酸钠的帮助下引入的综合效应也起到了一定作用,水杨酸钠作为支撑基质来容纳和隔离晶体颗粒。为了区分水杨酸钠的影响,在离心稳定性试验中测试了含有成核剂、表面活性剂和水杨酸钠的额外浆料样品。如图2所示,额外浆料样品的分层似乎经历了较慢的沉降过程,但最终的不稳定性与同时含有成核剂和表面活性剂的浆料样品相同。这是由于水杨酸钠的存在通过重构胶束增加了粘度,但粘度的增加与PVA和水杨酸钠共同的基质支持作用不同。图3. 不同浆料样品的晶体颗粒形态特征:a) 原始 CaCl2&sdot 6H2O 浆料;b) 添加成核剂;c) 添加成核剂和表面活性剂;d) 添加成核剂、表面活性剂和稳定剂。
  • 祝贺东莞卓高电子购买冠亚陶瓷浆料固含量检测仪
    秋天,是丰收的季节!粮食收购正紧锣密鼓的进行着,东北市场那是一片火热,冠亚粮食快速水分仪在粮食收购过程中扮演着重要的角色,销售团队奔波于各个粮库之间,忙的不可开交,水分仪供不应求!南方市场也不示弱,国庆后上班天,东莞市卓高电子科技有限公司就迫不及待的等我们送货过去! 东莞卓高电子此次购买的是一款SFY系列陶瓷浆料固含量测定仪,主要检测用于锂电池电极涂层的陶瓷浆料固含量,陶瓷浆料的固含量对电池的隔热、绝缘效果有着的影响!所以浆料固含量的有效控制对产品的质量起着决定性的作用!此款仪器不仅操作便捷(取样放进仪器,仪器自动检测),检测结果稳定、准确,检测的时间也大大的缩短,只需几分钟,同时该仪器还可广泛的应用于化工原料、塑胶、医药、粉体、颗粒、半固体等等的水分检测!冠亚许工现场给实验人员指导培训!东莞卓高电子致力于为国内高端锂离子电池安全提供解决方案,目前主要从事高端锂离子电池用隔膜和铝塑包装膜的研发和生产,客户均为国内新能源业界领先企业。其在东莞的横沥镇和寮步镇均设有分厂,企业的良好发展离不开先进的硬件配套设施,卓高认识到这点,他们选择了冠亚,也希望卓高电子越做越大,越做越强! 卓高电子生产车间在这个丹桂飘香的金秋十月,虽然你很不情愿,但长假真的结束了,关于假期,每个人的记忆点都不一样,但有一些是共通的,比如:堵在路上、景区看“人海”等等,不管怎样,都已远去,希望大家带着愉快的心情,全身心的投入到工作当中,打响2016年的后一场战役!!!
  • 浆料流动合成怎么破?Vapourtec在连续泵送浆料实验中的优越性
    2021 年 9 月 14 日,《绿色化学》上发表了一篇题为“Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment”(“利用新型固体处理设备在水中连续泵送浆态Fe/ppm Pd纳米颗粒催化Suzuki–Miyaura偶联反应”)的论文。▲ 原文链接:https://pubs.rsc.org/en/content/articlelanding/2021/gc/d1gc02461b/unauth该论文中,Lipshutz 团队使用 Vapourtec E系列和V-3 泵的组合,描述了一种在流动中进行 Suzuki-Miyaura 反应的新颖且环保的方法。当应用该解决方案时,可以连续运行 1.5 小时,从而生产 20 克药物中间体。(点击可查看大图)将三个准备好的注射器插入交叉混合器中,将交叉混合器直接插入 2 mL 反应器盘管。然后将反应器盘管连接到 T 型混合器中,其中 2-甲基四氢呋喃通过止回阀垂直输送到该流中作为在线萃取器。交叉混合器、反应盘管和在线萃取装置在运行期间保持95°C温度稳定。将运行前的萃取混合物通过 Vapourtec E 系列蠕动泵输送,该蠕动泵作为保持 2.2 bar 的背压调节器。反应以 200 µL/min 的组合流速运行四个停留时间(40 分钟),达到稳定状态。在总共五个停留时间(50分钟)内收集反应物,同时使用 2-MeTHF 以 200 µL/分钟的速度进行在线萃取。分离合并的水相和有机相,减压蒸发溶剂。用200mL水处理残余有机物,导致固体沉淀。将该固体通过过滤回收,溶解在DCM中,并通过硅胶塞,得到灰白色固体产物(431mg,97%产率)。摘自原文,Lipshutz 团队说:“While other commercial systems were considered, the Vapourtec E-Series reactor system was chosen due to its inclusion of peristaltic pumps as the primary mode of delivering reagents together with an internalized, probe-monitored heating well for the reactor coil. This instrument has been reported to accommodate light slurries in suspension while our examination of this system found that the NPs suspended in an aqueous micellar medium could be easily pumped without clogging”[1] 译文:虽然考虑了其他商业系统,但选择了 Vapourtec E 系列反应器系统,因为它将蠕动泵作为输送试剂的主要模式,以及用于反应器线圈的内部化、探针监控的加热模块。据报道,该仪器可容纳悬浮的轻质浆液,而我们对该系统的检查发现,悬浮在水性胶束介质中的纳米颗粒可以轻松泵送而不会堵塞。论文报道了开发普及流动化学过程的初步努力,将异质纳米催化剂应用于水性胶束实现 Suzuki-Miyaura 偶联反应。悬浮在水性胶束介质中的多相催化剂在进入管式反应器之前被连续泵送和预混合。Lipshutz 的团队利用了Vapourtec多功能V-3 泵,不仅能够泵送浆料,而且还可以用作动态背压调节器而不会堵塞合成通道。该合成路线合成了超过 13 g/h 的 API 中间体。V-3泵解决Suzuki-Miyaura偶联反应的技术难点对于大多数合成化学家来说,Suzuki-Miyaura偶联可能是实验室中最常见的交叉偶联反应。这种有用的反应由 Pd(0)介导,在碱存在下在有机硼和卤化物化合物之间形成 C-C键。在连续流动中,多相催化通常是通过将催化剂填充在柱式反应器中来完成的。这种简单的方法使大多数研究团队在过去十年中探索了流动中的Suzuki反应。如果没有合适的系统,处理流动中的固体是一项挑战。对于大多数泵来说,几乎不可能泵送固体,而且当固体通过时,大多数背压调节器会堵塞。Vapourtec开发了V-3泵,旨在克服这些问题。这些蠕动泵能够在压力下工作,提供平稳的泵送流速,控制反应器的压力。Vapourtec提供更环保的合成途径全球环境问题意味着我们需要不断努力寻求比当前批处理过程更可持续的解决方案,例如连续流动,提供了更环保的途径。在这篇论文中,Lipshutz团队通过使用水溶液和使用可以在下游进一步回收的纳米粒子,将这种绿色方法提升到了一个新的水平。相比于传统釜式合成方式,该反应技术具有传质传热效率高、本质安全、过程重复性好、产品质量稳定、连续自动化操作和时空效率高等诸多优势,Vapourtec流动合成仪用于化学合成中的研究越来越多。流动化学系统专业厂家Vapourtec成立于2003年,已有17年生产经验。作为专业生产流动化学系统的厂家,一直致力生产实验室级别的流动化学系统的研发生产。Vapourtec设计和生产流动化学合成系统持续领先于市场,提供了新的连续化学合成能力,并且始终保持着技术兼容性,从而使得即使最早期的用户仍可利用最新技术发展提供的优势。目前推出两个系列产品:▲ R-Series 一个高度特定的模块化系统,能够独立操作或与其他设备的集成,提供多功能的自动化流动合成▲ E-Series 一个易于使用的入门级系统平台,适合新用户和学校实验室教学。参考文献[1] A. B. Wood et al., “Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment,” Green Chem., 2021, doi: 10.1039/D1GC02461B.[2] Vapourtec Ltd, “Application Note 51 – Palladium on Charcoal Slurries in Continuous Flow Hydrogenation,” 2017.[3] Vapourtec Ltd, “Application Note 54 – Selective hydrogenation of O-benzyl vanillin using hydrogen gas and a palladium on charcoal slurry,” 2017.
  • 锂电浆料福音 看低场核磁如何畅泳比表面检测——访仪思奇(北京)科技发展有限公司总经理杨正红
    p style=" text-indent: 2em text-align: justify " span style=" text-indent: 2em " 众所周知,目前测量比表面积最主流的方法之一是气体吸附法。但是该法只能测干燥固体的比表面,对于分散在液体中的样品却爱莫能助。而对于需要通过制浆过程形成的终产品,样品在悬浮液状态下的比表面信息却非常重要。 /span /p p style=" text-indent: 2em text-align: justify " 有绳结就有解绳人,近日,仪思奇(北京)科技发展有限公司宣布代理的新产品Xigo系列胶体和悬浮液颗粒比表面积分析仪,则能够通过专利的核磁共振技术,测定胶体、乳液和悬浮液中颗粒的比表面积!仪器信息网编辑采访了仪思奇(北京)科技发展有限公司总经理、北京粉体技术协会专家委员杨正红,请其对Xigo系列胶体和悬浮液颗粒比表面积分析仪的特性、技术原理和应用场景进行了解读,并探访了其背后的故事。访谈详情摘录如下,以飨读者。 /p p style=" text-indent: 2em text-align: justify " strong 原理核心是核磁共振的弛豫时间 /strong /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(0, 176, 240) " strong 仪器信息网: /strong /span 请您介绍下Xigo系列胶体和悬浮液颗粒比表面积分析仪的核磁共振技术原理和仪器的创新优势? /p p style=" text-indent: 2em text-align: justify " strong 杨正红: /strong Xigo系列润湿颗粒比表面分析仪所采用的原理是基于这样一种现象:当磁场改变时,与颗粒表面接触的或附着在界面上的液体分子与内部的液体分子行为存在很大的差异。界面上液体分子呈现受严格约束的运动状态,而内部自由的液体分子却是可以随意运动的。在颗粒表面液体的核磁共振驰豫时间远小于液体内部的驰豫时间,其差别可以达到几个数量级。悬浮液中颗粒的驰豫时间是这两个驰豫时间的平均值:分别是对颗粒表面液体与自由液体相对总量加权得到的驰豫时间,从而可以直接推导出颗粒的总比表面积。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 313px " src=" https://img1.17img.cn/17img/images/201907/uepic/6bd151e3-d331-4e87-a962-ca24a1af820e.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 500" height=" 313" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 这种方法的驱动力是“溶剂”液体的驰豫和在颗粒表面的液体驰豫之间的差异。文献证明,这种差异在低频时比在高频时更大,也就是说,在比较10兆赫和100兆赫时,差异系数达到了3。所以Xigo选用的电子设备支持高达100兆赫的频率,但测量采用的是13MHz的低场核磁。 /p p style=" text-indent: 2em text-align: justify " 这种方法的最大特点就是不仅可以测量比表面积,同时可以对应粒度分布。因为润湿比表面积对应于粒度分布比直接测量粒度分布更加敏感,并且测量时间少于5分钟,测量速度与粒度分布测量相近。但是,它可以在悬浮液状态下直接测量,不用稀释样品,无需样品制备;样品用量少,无破环性,样品可以储存和重新测量。这种测量方法适用任何类型的颗粒(乳液和悬浮液),适用于至少含有一个氢原子的任何液体,包括液体混合物(混溶),仪器同时具有较宽的浓度范围0.01%至60+%(最好高于1%)。样品可以储存和重新测量。该仪器的软件标准模式(QC模式)用于比表面测量;但在高级模式(R& amp D模式)下,就是一台独立工作的经典核磁共振谱仪(小核磁)。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 505px " src=" https://img1.17img.cn/17img/images/201907/uepic/6b139658-4476-479c-8d39-70fae28362c3.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 500" height=" 505" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong Xigo系列胶体和悬浮液颗粒比表面积分析仪具体参数 /strong /p p style=" text-indent: 0em " script src=" https://p.bokecc.com/player?vid=600B7C8565C464A49C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script strong br/ /strong /p p style=" text-indent: 0em text-align: center " strong Xigo系列胶体和悬浮液颗粒比表面积分析仪视频实操简介 /strong /p p style=" text-indent: 2em text-align: justify " strong 类比气体吸附仪 分散性检测是最大优势 /strong /p p style=" text-indent: 2em text-align: justify " strong span style=" color: rgb(0, 176, 240) " 仪器信息网: /span /strong Xigo系列胶体和悬浮液颗粒比表面积分析仪,与气体吸附仪相比有哪些优势和侧重点?这系列仪器具体有那几款型号? /p p style=" text-indent: 2em text-align: justify " 杨正红:气体吸附仪测定的是固体,用于原料的检验;而Xigo测定的是中间体,就是将原料制成浆料后的分散效果的质量控制和评价。其作用,我用下面这个经典案例来说明: /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 294px " src=" https://img1.17img.cn/17img/images/201907/uepic/4a2ab58a-7383-42ae-9fc1-1b9068422772.jpg" title=" 3_看图王.jpg" alt=" 3_看图王.jpg" width=" 500" height=" 294" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 当TiO2颗粒得到很好地分散时,色素性能就得到优化。BET计算的是粉体比表面积,无法判定它在液体中的分散效果。而Xigo系列测定的是润湿颗粒的比表面,可以给出分散效果的明确判断。即分散不好时,比表面明显低于样品BET值,当分散很好时,其值与BET值一致。 /p p style=" text-indent: 2em text-align: justify " Xigo系列润湿颗粒比表面分析仪目前有四款型号,分别是Area(基本型)、Drop(可用于水中油或油中水的测定)、Flow(用于改变条件的连续监测)和Chek(工厂在线应用): /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 87px " src=" https://img1.17img.cn/17img/images/201907/uepic/8d2562b4-4d59-4899-8c4c-f29c9ae707b8.jpg" title=" 4.png" alt=" 4.png" width=" 500" height=" 87" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 目前Area已经能测量多孔材料。例如,多孔石墨烯悬浮液表现出两种不同的弛豫,一种与颗粒的外表面有关,另一种与颗粒内的液体有关。通过观察弛豫峰的大小和弛豫时间,科学家可以研究孔隙率和孔径分布的变化。目前,我已经委托工厂将Drop发展到纳米泡测量,即由液-液界面发展到液-气界面的应用 。 /p p style=" text-indent: 2em text-align: justify " strong 最大应用空间:锂电浆料涂覆工艺质控 /strong /p p style=" text-indent: 2em text-align: justify " strong span style=" color: rgb(0, 176, 240) " 仪器信息网: /span /strong Xigo系列仪器应用最广泛的行业领域有哪些? /p p style=" text-indent: 2em text-align: justify " strong span style=" text-indent: 2em " 杨正红: /span /strong span style=" text-indent: 2em " 该仪器应用的最大福音是锂电池浆料的涂覆工艺质量控制,过去两年,效仿于日本电池厂,我们一直致力于用电声法zeta电位及微观电学性质得到锂电池浆料的质量控制评判标准。但是,由于外方技术保密和浆料难以稳定的原因,我们对质控参数的摸索进展缓慢。而Xigo测量简单,只出一个数据,对锂电池浆料非常适用,对DT系列超声和电声法粒度和zeta电位仪是一个很好的补充。与DT一样,日本是Xigo的最大市场,丰田、尼桑、三菱和三星等著名公司都是Xigo的用户。另外,Xigo对于石墨烯、碳纳米管、银浆以及电子浆料等行业也都是切实可行的监测和评估手段,对于陶瓷、药物、化妆品、催化剂、墨水甚至纸浆和粘土等行业都是分散稳定性简单易行的质控手段。 /span /p p style=" text-indent: 2em text-align: justify " 无论电池、医药、催化剂和电子工业,在工艺生产过程中,粉体原料都需要调成浆料与添加剂充分混合再形成终产品。然而,在液体中混合颗粒并不容易做到均匀,颗粒必须分散得很好才能发挥作用,比如电池浆料中导电剂。这就造成了相同工艺但不同批次之间,或相同配方不同批号之间的性能差异。虽然我们有动态光散射技术、超声法粒度和zeta电位技术或多重光散射技术来测定浆料性质,但这些技术要么需要其它参数的输入才能准确计算,要么出一条曲线或参数需要有丰富的经验和积累去解读,这样就很难适应现场环节质控的需求。这样,就呼唤更好的工具来快速测量液体中的颗粒,简单地判定颗粒的分散程度,以控制分散,提高产品性能。Xigo利用核磁共振驰豫时间的测定,探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,计算液体或浆料体系中颗粒比表面积的技术,恰好符合这一需求,尤其是对石墨烯和碳纳米管、化妆品和墨水行业。 /p p style=" text-indent: 2em text-align: justify " strong 缘起20年前 萌芽10年前 & nbsp /strong /p p style=" text-indent: 2em text-align: justify " span style=" color: rgb(0, 176, 240) " strong 仪器信息网: /strong /span 请您介绍下生产Xigo系列产品的美国Xigo Nanotools公司,仪思奇为何选择代理该款产品?目前在全世面范围内有哪些厂商具有这类型仪器?在中国是否有同类产品的竞争对手? /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 363px " src=" https://img1.17img.cn/17img/images/201907/uepic/ba48e836-1fce-485c-a51e-1783d406fd60.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 500" height=" 363" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图左:Xigo公司CEO Sean Race;图右:仪思奇(北京)科技发展有限公司总经理杨正红 /strong /p p style=" text-indent: 2em text-align: justify " strong 杨正红: /strong 西戈纳米工具公司(Xigo nanotools)由Sean Race和David Fairhurst博士于2005年在美国创立,其使命是为新兴的纳米材料行业提供新的创新“工具”。其目标是为科学家、研究人员和公司用户提供占地面积小,易于使用的纳米科学研究和精确测量工具。Xigo公司的CEO Sean Race原来是Bohlin 仪器公司的美国总裁,该公司于2003年底被马尔文帕纳科收购,David 曾经是布鲁克海文仪器公司(Brookhaven Instruments)副总裁,《Particle Sciences》的执行副总裁。 /p p style=" text-indent: 2em text-align: justify " 早在1988年,我在北京大学天然药物及仿生药物国家重点实验室负责仪器管理的时候, 有机会到德国Bruker公司培训。在那里,我就看到并了解了如何用核磁共振技术通过测量弛豫时间计算食品当中水含量的技术和仪器。所以,当我在2009年PittCon上看到Xigo测量润湿颗粒比表面的仪器,并不感到奇怪,只是并不清楚它的应用点在哪里。随着仪思奇(北京)科技发展有限公司的成立,作为一家中关村高新技术企业和新仪器技术研发及应用推广与服务平台,我们的工作重心也从仪器推广为主,转向了提供解决方案为主,而美国西戈纳米工具(Xigo nanotools)和法国高端技术(Cordouan Technologies)的产品恰恰是我们缺乏和正在寻找的纳米科学的解决方案,是对仪思奇现有技术手段的完美补充,有些技术填补了国内空白。而Xigo也正在探索扩大中国市场应用的途径,我的动向也自然引起了他们的关注。可以说,10年后我们是在理念、市场、应用和彼此需求几乎趋同的情况下水到渠成,再次自然交集在一起的。 /p p style=" text-indent: 2em text-align: justify " strong 附:采访嘉宾简介 /strong /p p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% width: 150px height: 180px float: left " src=" https://img1.17img.cn/17img/images/201907/uepic/01ce4eb2-6368-43bc-ba99-1d36d59cf04f.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 150" height=" 180" border=" 0" vspace=" 0" / 杨正红,仪思奇(北京)科技发展有限公司总经理,现为国际标准化组织颗粒表征筛分法以外的粒度分析方法技术委员会(ISO/TC24/SC4)专家委员,全国颗粒表征与分检及筛网标准化技术委员会颗粒分技术委员会委员,中国颗粒学会第七届理事会高级理事,中国化工学会化肥专业委员会第十届委员会专家委员,北京粉体技术协会专家委员。 /p p style=" text-indent: 2em text-align: justify " 1985年毕业于北京大学药学院,师从著名化学家,我国生物无机化学学科的开拓者, 中科院院士王夔教授。留校任教至副研究员期间,主要从事自由基生命科学研究并担任天然药物及仿生药物国家重点实验室仪器组组长,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。 /p p style=" text-indent: 2em text-align: justify " 1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家。2000年以来,有近20篇颗粒特性分析的论文发表。2004年起,先后被英国马尔文仪器公司聘为市场部经理及北方区经理,并同时担任美国康塔仪器公司中国区经理,北京代表处首席代表。 /p p style=" text-indent: 2em text-align: justify " 这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。《物理吸附100问》于2016年12月出版发行。 /p
  • 醉美红枫——2018海能植树节
    春风拂绿地, 美景恰自来。 又是一年春盛时, 恰逢播种季, 春种一片醉美红枫, 待秋来, 收获一抹秋意浓。 2018年3月12日下午,也就是植树节当天,海能植树节活动正式开始!活动地点在海能科学仪器产业园,与往年不同,今年种植的树种是红枫。海能家人们个个干劲十足,集合领到自己的红枫苗后,迅速投入到植树活动中。挖坑、扶苗、培土、浇水......家人们配合默契,不久,一棵棵红枫苗就已经整齐地挺立在园区中。 绿色孕育着希望,不只是新栽的树苗,企业发展也需要脚踏实地,用心栽培,海能也会抓住时机,不负春光,蓄力待发,朝更好的未来前进!
  • SPME+GCMS分析方便面酱料包中的邻苯二甲酸酯
    2011年6月媒体报道多款内地制造的方便面调味粉和酱料含塑化剂。这类化学物质属于环境激素,它们进入人体后,可干扰人体内分泌系统和生殖系统,并被怀疑与儿童性早熟有关,是造成男性生殖问题的&ldquo 罪魁祸首&rdquo 。Sigma-Aldrich旗下子品牌Supelco积极响应热点事件,近期出版的Supelco色谱分离通讯(Reporter)第30期中就中国热门的方便面中邻苯二甲酸酯的检测提供了详细新颖的解决方案&mdash &mdash SPME-GC-MS方法分析方便面酱料包中的邻苯二甲酸酯。 SPME+GCMS 适用于从油脂基体的方便面酱料包中萃取邻苯二甲酸酯,而无须任何溶剂处理,省去了复杂的油类和脂肪预处理步骤。采用高温顶空SPME法提取邻苯二甲酸酯,直接GC-MS系统进行分析。该方法非常地简单、快速、高效,整个前处理过程总共只需要42分钟,其中12分钟为手动操作时间。 应用文章提供了该方法的详细说明,在100&mu g/kg-2000&mu g/kg范围内具有良好的线性,并分析了鸡肉、牛肉口味方便面酱料包中16种邻苯二甲酸酯的含量。本文同时检测了加标鸡肉、牛肉口味酱料样品中邻苯二甲酸酯,每个基质均进行三次平行实验,提供回收率、平均回收率和重现性%RSD数据。实验数据表明,采用SPME-GC-MS方法分析方便面酱料包中的邻苯二甲酸酯,具有高灵敏度,可定量、可重现的优点。若想知悉更详细的信息,您可以联系我们021-61415566-8242索取全文。 SPME方法如下: 样品制备:100&mu m PDMS萃取头(货号57300-U)顶空90℃,30min 解析:260℃,4min 色谱柱:SLB-5ms 20m× 0.18mmI.D., 0.18um(货号28564-U) MSD接口:330℃ 扫描:SIM 载气:氦气,0.6mL/min恒流 衬管:SPME专用0.75mm I.D.(货号2637501) 美国Supelco公司成立于1966年,一直致力于色谱耗材的研究和生产,是色谱耗材的专业生产公司。超过40年在色谱和分析领域的技术经验,拥有多项专利技术,提供范围广泛的产品:气相色谱柱(包括手性柱)和配件、液相色谱柱(包括手性柱)和配件、固相萃取小柱和装置、固相微萃取手柄和萃取头、空气检测产品、分析标准品和样品瓶等。1993年,Supelco正式加入美国Sigma-Aldrich公司,成为Sigma-Aldrich公司旗下分析业务的专业品牌。
  • 种下一个春天——海能仪器植树节
    春姑娘来了,舒展着婀娜的舞姿来了~春风一顾,万物生长,唱响一曲绝美的春日赞歌!春天是一个适合撒欢的季节~您有多久没活动过筋骨了?怎么舍得浪费这大好春光?  2016年3月12日,“海能仪器植树节”——绿化海能家园,种下希望,种下一个春天!走起~  3月12日上午9点30分,海能家人们在科研楼前集合完毕,植树活动开始啦~家人们个个热情高涨:认领树苗、挖坑、扶苗、培土、浇水……不管做什么都认真细致,看着树苗挺直站立在海能产业园的土地上,家人们兴奋之情溢于言表。    随后,家人们还将为每株树苗带上爱心标牌,让小树伴着我们一起成长!  在春天出发,唤起蓬勃的生命力,像树一样永远积极向上!种下一个春天,种下希望,在新的海能家园中,展现全新的自己!
  • 植树节献礼丨重大突破,朗石重金属监测仪电极终身免维护!
    时逢植树节,朗石来献礼!礼是什么?问就是,电极终身免维护的重金属监测仪!NanoTek 9000 多参数重金属在线分析仪是朗石创新研发的,专门用于水中痕量重金属自动监测的仪器。它采用阳极溶出伏安法原理,可稳定、准确监测水中镉、铅、铜、锌等重金属的含量,测定下限达μg/L级别。阳极溶出伏安法阳极溶出伏安法是指在一定的电位下,使待测金属离子部分还原成金属并溶入微电极或析出于电极的表面,然后向电极施加反向电压,使微电极上的金属氧化而产生氧化电流,根据氧化过程的电流一电压曲线进行分析的电化学分析法。阳极溶出伏安法的优势在于在合适的工作电极、合适的分析环境条件下,可以对水质中μg/L数量级的重金属进行精确的定量分析。基于聚合物修饰电极技术,朗石成功破局,创新研发了电极终身免维护的NanoTek 9000多参数重金属监测仪。电极终身免维护创新地解决了电极需打磨维护的问题,行业内首次实现了工作电极终身免维护。 测量周期短、废液量低独特的流程及反应体系,极大缩短多参数一次的测量周期同时节省了废液量,废液量低至40mL。定量下限低测量算法的优化,大大提升了仪器低浓度监测的准确性,定量下限得以突破,定量下限低至0.5ppb。朗石成立初期,自主研发的多参数重金属监测仪在云南省环境监测站的重大建设采购项目中,与来自美国、英国、澳大利亚的进口设备进行技术比对,凭借良好的准确性和稳定性成为了云南省环境监测站的最终选择,成就了“国产品牌击败洋品牌”的佳话。项目验收现场朗石人践行“绿水青山就是金山银山”,在实现多参数重金属准确监测的基础上不断突破创新,坚定地“守护水安全,创新水智慧”,为客户持续创造更大价值!
  • 杨正红总经理出席第63届ISO/ TC24/SC4国际标准化会议
    在德国柏林西南约27公里的小镇波茨坦因美国、英国、苏联三国首脑于1945年7月17日召开二战后处置德国的“波茨坦会议”而著名。2022年的9月26日至28日国际标准化组织颗粒表征筛分法以外的粒度分析方法技术委员会(ISO/TC24/SC4)第63届会议在此举行,对颗粒表征技术的国际标准进行制定与修订。由于疫情影响,本届会议采用线上和线下同时进行,中国派出了20人左右的空前规模的专家代表团。仪思奇(北京)科技发展有限公司杨正红总经理作为中国颗粒表征与分检及筛网标准化技术委员会委员(SAC/TC168)和ISO注册专家出席了会议,并参加了WG1(粒度分析结果的数据表达)、WG3(孔径分布和孔隙率)、WG8(图像法粒度分析)、WG14(超声法)以及WG17(Zeta 电位测定方法)工作组会议。本次会议大大的突破是中国代表团提出的《颗粒表征 彩色图像法》通过立项讨论。仪思奇科技为此次国际标准立项做出了自己的贡献。本次会议还提出了采用频率相关衰减和声速的测量来确定纵向黏度的超声学流变学指南,指出它实际上是独有的测定体积黏度的方法。通过声学/超声衰减光谱测定剪切黏度的方法,为微观黏度的测定提供了一种非侵入性和非破坏性的方法。此外,用电声电震法测量多孔材料的zeta电位也被列入标准讨论之中,并进入委员会草案阶段。美国分散技术公司(DTI)专注于非均相体系表征的科学仪器业务。他们开发的基于超声法原理的仪器主要应用于在原浓分散体系中表征粒径分布、zeta电位、流变学、固体含量、孔隙率,包括CMP浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,药物乳剂等,并可应用于多孔固体。DTI领导组织参与ISO超声法粒度分布国际标准和电声法测量zeta电位国际标准的定制。DT-300电声法zeta电位分析仪曾获得2013年科学仪器行业倍受关注的国外仪器奖。
  • 中国光伏行业协会就相关标准征求意见
    p & nbsp & nbsp 根据中国光伏行业协会2019年第一批光伏协会标准制修订计划安排,《晶体硅光伏电池用浆料 第1部分 背场铝浆》(计划号20190011-CPIA)、《晶体硅光伏电池用浆料 第2部分 背面银浆》(计划号20190012-CPIA)由中国光伏行业协会标准化技术委员会负责归口管理,由广州市儒兴科技开发有限公司牵头起草。 /p p & nbsp & nbsp 经过前期调研、资料收集、标准起草、会议讨论等工作,目前标准编制组已完成上述标准的征求意见稿。 br/ /p p & nbsp & nbsp 根据《光伏协会标委会标准制修订程序》要求,现对上述光伏行业协会标准征求意见稿进行公开征求意见,周期为1个月。请各单位组织有关人员研究,将意见于2020年09月04日前发送标准编制组并抄送中国光伏行业协会标准化技术委员会秘书处。 br/ /p p 联系方式如下: br/ /p p 广州市儒兴科技开发有限公司 br/ /p p 欧阳洁瑜 15013001611 jieyu.ouyang@rutech.com br/ /p p 标委会秘书处(中国电子技术标准化研究院) br/ /p p 王赶强 010-64102897 wanggq@cesi.com /p
  • 862项标准获批,涉及半导体、化工检测和检测仪器等领域
    2020年12月25日,工信部发布《中华人民共和国工业和信息化部公告》,批准《霍尔元件 通用技术条件》等669项行业标准,批准《白云石标准样品》等76项行业标准样品,批准《高纯铝锭》等23项行业标准外文版,批准《75℃热稳定性试验仪校准规范》等94项行业计量技术规范。在669项标准中,多项标准涉及半导体行业(包括了半导体器件、半导体设备和半导体材料等方面)和多种化学品的检测。此外,94项行业计量技术规范涉及了热稳定性试验仪、便携式挥发性有机物泄漏检测仪、漆膜弯曲试验仪、漆膜附着力测定仪、直流辉光放电质谱仪、双联电解分析仪等多种分析检测仪器,相关标准如下:附件:23项行业标准外文版编号、名称、主要内容等一览表.doc94项行业计量技术规范编号、名称、主要内容等一览表.docx76项行业标准样品目录.docx669项行业标准编号、名称、主要内容等一览表.doc半导体相关标准(部分)标准号标准名称标准内容JB/T 9473-2020霍尔元件 通用技术条件本标准规定了霍尔元件的术语和定义、基本参数和符号、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于非集成的半导体霍尔元件。JB/T 9481-2020扩散硅力敏器件本标准规定了扩散硅力敏器件的术语与定义、分类与命名、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于半导体扩散硅力敏器件。HG/T 5736-2020高纯工业品过氧化氢本标准规定了高纯工业品过氧化氢的分型、要求、试验方法、检验规则、标志、标签、包装、运输和贮存。本标准适用于高纯工业品过氧化氢。该产品主要用于太阳能光伏行业、液晶显示器件和半导体行业制程的清洗或刻蚀,以及其他对高纯过氧化氢有需求的行业。XB/T 515-2020钪铝合金靶材本标准规定了钪铝合金靶材的要求、试验方法、检验规则与标志、包装、运输、贮存及质量证明书。本标准适用于铸造法制得的钪铝合金靶材,主要用于半导体及光电等领域。QC/T 1136-2020电动汽车用绝缘栅双极晶体管(IGBT)模块环境试验要求及试验方法本标准规定了电动汽车用绝缘栅双极晶体管(IGBT)模块环境适应性要求和试验方法。本标准适用于电动汽车用IGBT模块,其他半导体器件模块可参考使用。SJ/T 11761-2020200mm及以下晶圆用半导体设备装载端口规范本标准规定了晶圆承载器与晶圆制造/检测设备之间的机械端口要求,主要包括晶圆承载器在设备上的位置和方向。本标准适用于加工直径200 mm及以下晶圆的半导体设备装载端口。SJ/T 11762-2020半导体设备制造信息标识要求本标准规定了半导体设备制造信息标识的术语和定义、设计和原则、使用及相应的综合标签库。半导体设备制造信息标识包括半导体制造设备选择、安装、使用和维护时需要的各种类型的技术和商业信息。信息类型包括操作手册/指南、安装手册、维护手册、维护计划、备件/零部件清单、维修/故障排除手册、发行说明、培训手册等。SJ/T 11763-2020半导体制造设备人机界面规范本标准规定了半导体制造设备人机界面的术语和要求。本标准适用于半导体制造设备。SJ/T 10454-2020厚膜混合集成电路多层布线用介质浆料本标准规定了厚膜混合集成电路多层布线用介质浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于与金、钯银导体浆料相匹配的厚膜混合集成电路多层布线用介质浆料。SJ/T 10455-2020厚膜混合集成电路用铜导体浆料本标准规定了厚膜混合集成电路用铜导体浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于厚膜混合集成电路用铜导体浆料。化工检测相关标准(部分)标准号标准名称标准内容SH/T 1829-2020塑料 聚乙烯和聚丙烯树脂中微量元素含量的测定 电感耦合等离子体发射光谱法 本标准规定了采用电感耦合等离子体发射光谱法(ICP-OES)测定聚乙烯和聚丙烯树脂中镁(0.10 mg/kg~50.00 mg/kg)、铝(0.20 mg/kg~100.00 mg/kg)、钙(0.40 mg/kg~130.00 mg/kg)、锌(0.50 mg/kg~200.00 mg/kg)、铬(0.10 mg/kg~3.00 mg/kg)、钛(0.10 mg/kg~6.00 mg/kg)等微量元素含量的方法。 本标准适用于粉末状、颗粒状聚乙烯和聚丙烯树脂。SH/T 1830-2020丙烯腈-丁二烯橡胶中壬基酚含量的测定 气相色谱-质谱法 本标准规定了采用气相色谱-质谱法测定丙烯腈-丁二烯生橡胶中壬基酚含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,壬基酚单组分含量最低检出限为1.4mg/kg。SH/T 1831-2020丙烯腈-丁二烯橡胶中游离丙烯腈含量的测定 顶空气相色谱法 本标准规定了采用顶空气相色谱法测定丙烯腈-丁二烯生橡胶中游离丙烯腈含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,游离丙烯腈含量最低检出限为1.8mg/kg。SH/T 1832-2020异戊二烯橡胶微观结构的测定 核磁共振氢谱法 本标准规定了采用核磁共振氢谱法测定异戊二烯橡胶(IR)中顺式1,4结构(cis-1,4)、反式1,4结构(trans-1,4)和3,4结构(3,4)含量的方法。 本标准适用于异戊二烯生橡胶。SH/T 1142-2020工业用裂解碳四 液态采样法 本标准规定了采取供分析用的工业用裂解碳四以及其他碳四液态烃类样品的设备和方法。 本标准适用于采取工业用裂解碳四及其他碳四液态烃类样品。SH/T 1482-2020工业用异丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异丁烯纯度及烃类杂质的含量。 本标准适用于纯度大于98.00%(质量分数),丙烷、丙烯、异丁烷、正丁烷、反-2-丁烯、1-丁烯、顺-2-丁烯、丙炔、1,3-丁二烯、正戊烷、异戊烷等烃类杂质含量不小于0.0010%(质量分数)的工业用异丁烯测定。SH/T 1483-2020工业用碳四烯烃中微量含氧化合物的测定 气相色谱法 本标准规定了用气相色谱法测定工业用碳四烯烃中的微量含氧化合物含量。 本标准适用于工业用碳四烯烃中微量二甲醚、甲基叔丁基醚、甲醇和叔丁醇等含氧化合物的测定,其最低测定浓度为0.0001%(质量分数)。SH/T 1492-2020工业用1-丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用1-丁烯的纯度及其烃类杂质含量。 本标准适用于纯度不小于99.00% (质量分数),丙烷、丙烯、异丁烷、正丁烷、乙炔、反-2-丁烯、异丁烯、顺-2-丁烯等烃类杂质含量不小于0.001%(质量分数),丙二烯、丙炔含量不小于2mL/m3,1,3-丁二烯含量不小于10 mL/m3或0.001%(质量分数)的工业用1-丁烯试样的测定。SH/T 1549-2020工业用轻质烯烃中水分的测定 在线分析仪使用导则本标准规定了测定轻质烯烃气体中微量水分的在线分析仪的工作原理、一般特征、分析程序和结果报告等要求的指南。本标准适用于工业用轻质烯烃中水分的测定。SH/T 1763-2020氢化丁腈生橡胶(HNBR)中残留不饱和度的测定 碘值法 本标准规定了用韦氏(Wijs)试剂测定氢化丁腈生橡胶(HNBR)残留不饱和度(即碘值)的方法。 本标准适用于氢化丁腈生橡胶。SH/T1814-2020乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的测定 本标准规定了用分光光度法和电感耦合等离子体发射光谱法测定乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的方法。 本标准适用于以齐格勒-纳塔型催化剂(铝-钒催化剂)生产的钒含量范围在0.5 µg/g~40 µg/g的乙丙橡胶。SH/T 3042-2020合成纤维厂供暖通风与空气调节设计规范 本标准规定了合成纤维(涤纶、锦纶、维纶、腈纶、氨纶)厂供暖、通风与空气调节设计的空气计算参数和设计要求。 本标准适用于新建、扩建和改建的合成纤维厂的生产厂房及辅助建筑物的供暖、通风与空气调节设计。SH/T 3523-2020石油化工铬镍不锈钢、铁镍合金、镍基合金及不锈钢复合钢焊接规范 本标准规定了铬镍不锈钢、铁镍合金、镍基合金、不锈钢复合钢的材料、焊接工艺评定、焊工考试、焊接工艺、焊接检验和焊后热处理要求。 本标准适用于石油化工、煤化工、天然气化工设备与管道的焊条电弧焊、钨极气体保护焊、熔化极气体保护焊和埋弧焊。SH/T 3545-2020石油化工管道工程无损检测标准本标准规定了石油化工金属管道射线检测、超声检测、磁粉检测、渗透检测、衍射时差法超声检测、相控阵超声检测和便携式荧光光谱检测的工艺要求及质量评定。本标准适用于下列管道无损检测的质量评定:1)公称厚度为2 mm~100 mm的金属管道对接焊接接头、支管连接焊接接头的射线检测与质量评定;2)公称厚度大于或等于6 mm、外径大于等于108 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的超声检测与质量评定;3)铁磁性材料的表面和近表面缺陷磁粉检测与质量评定;4)表面开口缺陷的渗透检测与质量评定;5)公称厚度为16 mm~100mm、外径大于等于273 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的衍射时差法超声检测与质量评定;6)公称厚度3.5 mm~60 mm、外径大于等于57 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的相控阵超声检测与质量评定;奥氏体不锈钢管道对接焊接接头的相控阵超声检测与质量评定按附录M的规定进行;7)金属材料(包括熔敷金属)中金属元素的便携式荧光光谱检测。行业计量技术规范(部分)技术规范编号技术规范名称技术规范主要内容JJF(石化)030-202075℃热稳定性试验仪校准规范本校准规范适用于爆炸品分类用的75℃热稳定性试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)031-2020固体氧化性试验装置校准规范本规范适用于固体氧化性试验装置的校准,不适用于氧化性固体重量试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)032-2020易燃固体燃烧速率试验装置校准规范本校准规范适用于易燃固体燃烧速率试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)033-2020便携式挥发性有机物泄漏检测仪(氢火焰离子法)校准规范本规范适用于量程小于50000µmol/mol的便携式挥发性有机物(VOCs)泄漏检测仪(氢火焰离子法)的校准,其他相似原理和用途的仪器校准可参照本规范。其主要内容包含本规范的适用范围、引用的技术文件、计量性能、校准条件、校准方法、校准结果、校准时间间隔和不确定度评定示例等。JJF(石化)034-2020石油化工产品软化点试验仪(环球法)校准规范本规范适用于环球法测定软化点的软化点试验仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)035-2020漆膜弯曲试验仪(圆柱轴)校准规范本规范的校准适用于测试漆膜圆柱弯曲试验时用的漆膜弯曲试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)036-2020漆膜附着力测定仪(划圈法)校准规范本规范的校准适用于测试漆膜划圈试验用的漆膜附着力试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)037-2020橡胶门尼黏度计校准规范本规范规定了橡胶门尼黏度计的计量特性、校准条件、校准用设备及校准方法。本规范适用于橡胶门尼黏度计的校准。JJF(石化)038-2020硫化橡胶回弹性试验机校准规范本规范规定了硫化橡胶回弹性试验机的计量特性、校准条件、校准用设备及校准方法。本规范适用于硫化橡胶回弹性试验机的校准。JJF(石化)039-2020橡胶阿克隆磨耗试验机校准规范本规范适用于橡胶阿克隆磨耗试验机的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。JJF(石化)040-2020橡胶压缩应力松弛仪校准规范本规范适用于橡胶压缩应力松弛仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。
  • 材料限制标准过低 3D打印只是"看上去很美"?
    2013年4月11日,一场以“新产业革命”为主题的国际论坛在五台山召开,英国《经济学家》杂志主笔保罗麦基里远渡重洋前来参会,并随后对中国的3D打印等数字制造企业一探究竟。   在其《第三次工业革命》一文中,保罗麦基里将3D打印列为推动第三次工业革命转型动力之一,从而引爆3D打印讨论热潮的。而除了用手中笔提醒人们注意3D打印的保罗,近日来,打印衣服、自行车、假肢,甚至步枪、人体器官……3D打印机新的造物成果频频见诸报端。这一切似乎在向人们表明,3D打印改变传统制造业和我们的生活,都只是时间问题了。   然而,事实真的如此吗?   光“概念美”显然不够美   4月2日,3D打印概念股出现暴跌,板块内个股超声电子、机器人触及跌停,深天马A跌近7%,其他多个个股也均有不小的跌幅。   其实在两个月前的美国,3D概念股暴跌的景象已经发生过一次。   2月14日,做空机构香橼公司发布了针对美国3D打印龙头公司3D Systems的做空报告,指出3D打印技术已被过分炒作,3D公司股票估值过高,存在严重泡沫化。受此影响,美国3D打印概念股集体随即迎来大幅下跌,在报告公布后的两个交易日中,3D系统公司和其主要竞争对手Stratasys公司以及刚刚上市的ExOne公司跌幅均接近10%。   概念美,瓶颈多,短时间内难以纾解商业化难题——这是概念股暴跌背后映射出3D产业面临的真正问题。   3D打印产业发展的窘况,看数字便一目了然:2012年,全球3D打印机全行业销量只有不到5万台,这其中的两万台还是由龙头企业Stratasys一家售出的,另外有4000多台都是中关村企业太尔时代研制售出的。   与反映投资者对3D打印“信心指数”不稳定的股价相对应的,是3D打印底气不足的市场规模。根据美国消费者电子协会发布的最新年度报告,全球3D打印市场经过10余年的发展,仅有21亿美元的总量,即使以目前表现的约20%的年增速,未来几年内,全球3D打印产业的产值也不过是微软、苹果这种美国IT巨头单个公司产值的零头。   是什么在阻碍3D打印奔向千家万户和大工厂的脚步?   被材料“绑架”的神笔马良   “连机器带物料差不多两万块钱,用了整整四个小时才打印出一个小小的手环。”一位购买了3D打印机的用户徐天舒在微博上抱怨。   在他看来,3D打印机目前只能小规模打印一些复杂的物件,除了对个人用户来说成本太高,有限的材料选择也是很大的问题。“打印来打印去,不管是打印玩偶还是模型,都是固定的一种材料,时间长了新鲜感也就没了。”   除了个人用户对打印体验丰富性的要求,对工业级用户而言,材料的稀缺也让3D打印机是暂时只能用于小规模试制的“奢侈品”。一家已采用3D打印的医疗器械公司负责人向记者透露,工业级3D打印机使用的材质几乎不能通过淘宝等电商平台买到,很多只能匹配生产厂家提供的耗材,大多是国外进口,价格非常昂贵。   材料的限制“绑”住了用户的使用热情,也“绑”住了3D打印设备厂商阔步向前的步伐。   十多年前,曾任教于清华大学高分子材料研究所的冯涛尝试一边做3D打印设备,一边研发3D打印材料。然而,巨额的投资需求和短期内极小的市场回报,使他和团队不得不暂缓了工程塑料等材料的研制。   而今,冯涛是一家3D打印公司的掌门人,但情况依然没有好转。   虽然国际上先进的3D打印企业已能实现工程塑料、尼龙、树脂、石膏粉等十多种3D打印材料的打印,但是在国内,3D打印材料严重受限的“缺钙”现象丝毫没有好转——自主研发的3D打印机大多只能打印金属、ABS这区区两种材料,并且每一台机器只能打印一种材料,无法实现打印材料的自由切换。   “即便美国最先进的厂家有10多种打印材料,要想让3D打印进入大众消费领域,他们这个数量也远远不够。”冯涛说。   北京航空航天大学材料学院教授、凭借飞机钛合金大型复杂整体构件激光成形技术获得国家技术发明一等奖的王华明介绍,之所以材料如此稀缺,是因为3D打印所用的材料是一套与传统材料学不同,需结合精密仪器、3D打印工艺和材料本身的相对独立的研发系统。在可应用的材料方面,所有的3D打印设备厂家都是白手起家。对于绝大多数企业来说,3D打印市场培育尚处初期,投资研发新材料的动力严重不足。   3D打印能打印人耳、肝脏等人体器官的消息频见报端,王华明则认为,“真正能打印出人体器官,那一定是生物组织工程的突破,而绝非3D打印机的功劳。”   “个性”也需“标准”牵手   假如材料问题解决了,成本也降下来了,能够帮人们随时随地实现个性打印,3D打印机是不是就能畅通无阻地“飞入寻常百姓家”呢?   答案依然是否定的,事情远非这么简单。   “打印精度是否达到厂家宣称的标准、喷头是不是容易堵,这些产品特性都没有官方的评价机制,只能上网查查、凭网友和同行的口碑推荐了。”一位想要购买一台桌面3D打印机的首饰设计师向记者表达了困惑。   她的担心绝非个例。记者调查发现,市场上专业3D打印设备公司的桌面3D打印机售价一万到三万元不等。然而,在一些硬件社区,只需花六千元就能买到一台DIY的3D打印机。   相差1到5倍的价格,质量上的差别,买家却很难从权威机构的质量认证标准上获得辨别。   事实上,中国机械工程学会特种加工分会此前已牵头制定了3D打印技术相关的安全标准、产品标准,但是对于这一标准,从业多年、被业界公认为3D打印行业专家的冯涛认为,“现有标准定得太低、太粗糙,几乎任何一家3D打印企业都能轻易达标。对维护行业健康竞争发展,对消费者权益也更为重要的具体的产品检测方法、检测标准,这些都没有明确的规定。”   冯涛认为,当3D打印机像手机、电视这种成熟的产品或电子仪器一样,由第三方机构都可对其产品达标情况进行检验时,3D打印机才有可能真正地“飞入寻常百姓家”。   市场培育的过程虽然漫长,却极少有人否认3D打印机的发展前景。“20年前机器人刚刚兴起时,发展也极其缓慢,但随着这一两年富士康等制造企业大规模启用工业机器人,工业机器人的发展拐点已经到来。同样是制造业变革的一部分,3D打印机肯定会与机器人一样,也会迎来这一天。”冯涛说。
  • 深度聚焦:石墨烯检测与标准高峰论坛众咖云集
    p style=" text-align: justify text-indent: 2em " 2018年9月19日-9月21日,古都西安迎来了石墨烯年度国际盛会——2018中国国际石墨烯创新大会。在大会的“石墨烯检测与标准分论坛”上,瑞典皇家工程科学院院士、瑞典查尔莫斯理工大学教授、国家千人计划专家刘建影,中国计量科学研究院纳米新材料计量研究所副研究员任玲玲,中科院宁波材料技术与工程研究所研究员刘兆平等学术大咖结合石墨烯制备和重点应用领域,就石墨烯检测和相关标准制定的前沿工作和探索,进行了精彩的主题报告和学术研讨。论坛由中国石墨烯产业技术创新战略联盟标准委员会秘书长戴石峰主持,吸引了百余位石墨烯检测专家学者、用户单位检测负责人以及相关企业高层参加。 br/ strong /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/566e71a1-bb80-4d55-8731-5f2c439a1525.jpg" title=" IMG_5307.JPG" alt=" IMG_5307.JPG" / /p p style=" text-align: center text-indent: 0em " strong 中国石墨烯产业技术创新战略联盟标准委员会秘书长戴石峰主持 br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/b6f2f76d-973a-4ed4-a69c-774bc1a9bf68.jpg" title=" IMG_5316.JPG" alt=" IMG_5316.JPG" / br/ 广西柳工机械股份有限公司研究总院新技术研究所副所长林博 /strong br/ /p p style=" text-align: justify text-indent: 2em " 林博副所长 span style=" text-indent: 2em " 介绍了石墨烯增强极压锂基润滑脂应用开发及标准制定的工作筹备和思考。润滑脂在装载机工作装置、回转减速机输出齿轮及齿圈的润滑领域有重要应用,石墨烯润滑脂相比于标杆润滑脂具有更好的挤压抗磨性(常用四球试验机和Timken试验机进行检测评价),并能减少磨损和举升异响等行业“痛点”。但目前石墨烯改性润滑脂的的关键性能指标和测试方法不统一,测试方法和评价体系不全面,且与实际应用的关联性有待提升。林博表示柳工机械正在联合相关单位筹备相关团体标准的制定工作,预计将于2019-2020年完成团标的理化性能交叉测试、台架与整车测试、全工况、全地域小批量测试、可靠性检验与质量说明书等四个阶段的标准研制工作。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/19323c9c-bfdc-41ed-947a-59934b2a208f.jpg" title=" IMG_5361.JPG" alt=" IMG_5361.JPG" style=" text-align: center text-indent: 2em " / /p p style=" text-align: center text-indent: 0em " strong 瑞典皇家工程科学院院士、瑞典查尔莫斯理工大学教授、国家千人计划专家刘建影 /strong /p p style=" text-align: justify text-indent: 2em " 刘建影院士做了题为《高导热石墨烯散热材料检测与表征方法建议》的报告。石墨烯散射材料在CPU、传感器、LED等光电元器件具有重要意义,刘建影院士表示,相比于商用普及的碳化膜,石墨烯薄膜在横向均热和纵向散射方面都具有更好的热导率,但是界面把控是保证其良好性能的关键。石墨烯薄膜的热导率与厚度成反比,一般来说常用拉曼光谱仪进行其热导率检测,然而在极薄区间的检测误差较大。刘建影结合自己的科研经验,介绍了几种新颖的热导率检测手段:Hot Disk、Laser Flash、Joule Heating、3ω、Thermal bridge method、ASTM D5470 technique、PPR和IR imaging and Resistance thermometers。他特别推荐了真空焦耳加热的检测方法,表示在极薄石墨烯材料的热导率检测方法中,该方法和热桥法是误差较低的两种方法,而真空焦耳加热的方法速度快于热桥法。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/426518b3-4057-425b-93e3-740e8081bef8.jpg" title=" IMG_5421.JPG" alt=" IMG_5421.JPG" / /p p style=" text-align: center " strong 中国计量科学研究院纳米新材料计量研究所副研究员任玲玲 /strong /p p style=" text-indent: 2em text-align: justify " 任玲玲副研究员以《石墨烯材料层表征方法研究与实例》为题做了报告,她介绍了石墨烯材料标准化的需求,她强调在术语方面首先要明确石墨烯、石墨烯材料以及石墨烯材料质量高低三个概念。她特别强调评价是否为石墨烯材料的关键指标为小于10个石墨烯层堆垛而成的二维材料。从测量需求的角度,任玲玲通过粉体材料、浆料、薄膜、消费品、测试方法/测量设备等维度进行了讲解。石墨烯材料的检测主要需要用到电子显微镜、近探针显微镜、光散射光谱、材料分析、功能性测试等五大类仪器设备,任玲玲强调石墨烯测量结果的准确性保证需要满足三个条件:测量设备做好校准与溯源;测量方法要进行国际国内比对和量值等效一致性工作;测量样品的取样要具有代表性。 br/ /p p style=" text-align: center text-indent: 0em " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/67064b87-52bf-4c10-b013-7419e719d78e.jpg" title=" IMG_5473.JPG" alt=" IMG_5473.JPG" / br/ 山东欧铂新材料有限公司副总经理、研发总监赵永彬 /strong /p p style=" text-indent: 2em text-align: justify " 赵永彬副总经理介绍了石墨烯重防腐涂料在化工领域的评价检测情况。石墨烯防腐涂料的化学、电化学防腐作用明显,但是该涂料的均一和分散非常重要。如果分散不好,产生大量团聚现象,不但不防腐还会加速腐蚀。因此石墨烯防腐涂料的标准制定工作亟待进行。赵永彬从应用范围、实验测试方法、规范化文件储存运输等维度分享了有关标准化的思考,并表示,10月26日,欧铂新材料将召开石墨烯防腐涂料标准制定启动会议。石墨烯在石墨烯涂料中的含量一般较低,不易检测且成本较高,报告中,赵永彬还分享了通过晶型显微镜观测涂料流体去评估石墨烯涂料中石墨烯存在性的方法。 br/ /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201809/uepic/891daa67-a3e0-4eb4-8936-95e5bb5126d2.jpg" title=" IMG_5520.JPG" alt=" IMG_5520.JPG" / br/ /strong /p p style=" text-align: center " strong 合肥国轩高科动力能源有限公司材料研究院郑刚博士 /strong /p p style=" text-align: justify text-indent: 2em " 郑刚博士分享了石墨烯复合碳基到点浆料的表征与测试方法。石墨烯在动力电池方向具有重要的应用,具体应用领域主要集中在复合材料、加热膜、涂覆集流体、导电剂等方面,其中石墨烯复合导电剂是当下石墨烯在动力电池领域最广泛的应用场景,可大幅降低导电剂的用量,且可改善孔隙结构,提高压实密度。郑刚表示,当前石墨烯复合导电剂的评测体系存在石墨烯质量,导电剂、分散剂含量与类别确定,浆料性能快速判定等重点与难点问题,并就上述维度分享了相关研究与思考。 br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/4688db04-f6c2-4adf-90e1-443fa45a1636.jpg" title=" IMG_5565.JPG" alt=" IMG_5565.JPG" / br/ /p p style=" text-align: center " strong 中科院山西煤炭化学研究所副研究员陈成猛 /strong /p p style=" text-align: justify text-indent: 2em " 中科院山西煤炭化学研究所的陈成猛副研究员则介绍了一种石墨烯材料表面含氧官能团测试方法标准。他表示,石墨烯含氧官能团· 缺陷、杂质· 金属和酸根离子、比表面积· 层数· 片状大小是石墨烯的几个关键控制指标。其中含氧官能团的种类和含量,对石墨烯导电导热性、润湿性、酸碱性、表面活性都有显著影响,目前石墨烯的含氧官能团主要有FT-IR、XPS、EA、AES、EELS、Boehm滴定等常用检测方法。陈成猛表示,Boehm滴定法在石墨烯含氧官能团定量分析、精确度、分析区域等维度都具有突出优势。他介绍了Boehm滴定的原理和测试流程,并分享了与之相关的石墨烯国家标准审定的第一个测试类标准20160467-T-491 《纳米技术 石墨烯材料表面含氧官能团的定量分析 化学滴定法》。 br/ /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/d01a1dbe-18a6-403b-a6a7-b42166b05d5e.jpg" title=" IMG_5604.JPG" alt=" IMG_5604.JPG" / br/ /strong /p p style=" text-align: center " strong 北京市理化分析测试中心副研究员刘伟丽 /strong /p p style=" text-align: justify text-indent: 2em " 刘伟丽研究员介绍了石墨烯粉体材料中阴离子含量测试方法的开发工作。石墨烯粉体生产的过程中,阴离子杂质由于多种引入因素已成为必然存在的杂质类型之一,其种类和含量水平,对石墨烯粉体产品的性能和应用有影响。刘伟丽详细介绍了其团队的成果《石墨烯粉体中水溶性阴离子含量的测定 离子色谱法》,该方法的检测过程需要经过石墨烯分体样品研磨处理、溶解提取、过滤净化、离子色谱仪检测等流程,适用于对石墨烯粉体中水溶性氟离子、氯离子、亚硝酸根离子、硝酸根离子、溴离子、亚硫酸根离子、硫酸根离子、磷酸根离子等8中阴离子含量的测定。能够同时定多种离子,测定结果准确、快速、灵敏度高。 br/ /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201809/uepic/cae15bdb-9d23-46a6-9a60-aede0683b3e2.jpg" title=" IMG_5638.JPG" alt=" IMG_5638.JPG" / br/ /strong /p p style=" text-align: center text-indent: 0em " strong 中科院宁波材料技术与工程研究所研究员刘兆平 /strong /p p style=" text-align: justify text-indent: 2em " 刘兆平研究员做了题为《石墨烯材料绿色制造指南思考和建议》的报告。他解读了国家绿色制造相关政策、发展规划以及绿色制造标准体系。石墨烯虽然被誉为新材料之王,但其主要制备工艺制备工艺(化学气相沉积、液相剥离、氧化还原、插层剥离等)都会带来不同类型的的废气、废水、废渣污染。而石墨烯本身进入水体也会吸附到正在腐烂的动植物产生的有机物上,带来环境风险,影响人体健康。刘兆平从能源、环境、资源、经济四个维度讲解了全球范围内的石墨烯绿色制造经验,表示要建立低能耗、低物耗、绿色环保、可回收,面向石墨烯绿色制造技术全生命周期的标准体系。 br/ /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/f5e7c803-d92d-4042-81a9-d9661f791fc0.jpg" title=" IMG_5323.JPG" alt=" IMG_5323.JPG" / br/ 论坛现场 /strong /p p style=" text-indent: 2em " 一连串的精彩主题报告让听众受益匪浅,也极大地调动了现场参会嘉宾的热情,每个报告的交流环节提问的嘉宾都络绎不绝,会议时间甚至不得不临时调整延长。会后,参会嘉宾纷纷向报告的专家们表示感谢,并继续进行深入的交流互动。 /p
  • 第六届全国微束分析技术标准宣贯及其在材料研究中应用研讨会通知
    p   随着社会生产力水平的不断发展和各行各业现代化程度的不断提高,普及和提高行业标准化程度已经成为引领经济发展、规范生产行为、促进生产协作的有效手段,也是国家大力提倡的与国际接轨的重要指标之一。全国微束分析标准化技术委员会承担着我国微束分析行业技术标准的制订、宣传、贯彻、推广等任务,旨在为行业技术制定标准和提供技术指导。 /p p   电子显微镜(以下简称电镜)作为最常见的微束分析仪器之一,是人类直接观察微观世界的有力工具。近年来,电镜广泛应用于生命科学和材料科学的各个领域,特别是2017年诺贝尔化学奖授予在冷冻电镜领域做出杰出贡献的三位科学家,使全球的电镜工作者受到了巨大的鼓舞和鞭策。在可预见的将来,以电镜为代表的大型科学仪器的持有量将持续快速增长,对电镜的相关操作、制样、维护、维修人员的需求量也会持续增加。 /p p   为进一步推动微束分析技术标准化工作,促进广大电镜技术工作者之间的交流与合作,满足各单位在质量认证、计量认证、实验室认证与认可等工作中的需要,将举办第六届微束分析标准宣传贯彻及实施和应用研讨会,以使我国各微束分析实验室、相关的科研和企事业单位能更好地执行这些标准,提高分析技术水平及技能,提供更好、更准确的分析结果,提高产品的质量,促进国民经济发展。 /p p   一、组织委员会 /p p   本次宣贯会由全国微束分析标准化技术委员会(SAC/TC38)主办,全国纳米技术标准化技术委员会和广东省工业分析检测中心协办,北京理化分析测试技术学会承办。 /p p   会议组织委员会名单如下:陈家光、陈振宇、丁泽军、范光、高灵清、龚沿东、葛广路、洪健、洪崧、贺连龙、鞠新华、李香庭、李玉武、柳得橹、刘芬、毛骞、马通达、孙振亚、汤斌兵、王孝平、魏宝和、吴文辉、伍超群、杨勇骥、许钫钫、徐坚、姚雷、姚文清、曾荣树、曾毅、曾荣光、章晓中、张作贵、赵江、祝建、朱如凯、钟振前。注:姓名按首字母顺序排序。 /p p   二、大会报告专家 /p p   三、会议时间 /p p   2019年11月24日-28日(报到时间:2019年11月24日) /p p   四、会议地点:广州京溪礼顿酒店 标间/单间 450元/天/间(含早餐) /p p   (住宿统一安排,费用自理。) /p p   五、会议费及培训费:1800元/人。 /p p   六、本次拟宣贯的微束分析技术标准主要内容: /p p   1.中国电子探针、扫描电镜国家标准研制的发展 /p p   2.植物病毒的电子显微镜检测 /p p   3.纳米材料生物效应研究及标准化 /p p   4.EDS分析国家标准中几个关键问题解读 /p p   5.如何获得准确的能谱定量结果 /p p   6.研究并讨论微束分析实验室认可和微束分析实验室比对分析等有关问题 进一步讨论实施微束分析实验室比对分析的有关事宜。 /p p   七、日程安排见第二轮通知。(请参会人员于2019年11月20日前将会 /p p   回执发送至会务组) /p p   八、会务组联系方式: /p p   单位名称:北京理化分析测试技术学会 /p p   通信地址:北京市海淀区西三环北路27号 北科大厦 邮编:100089 /p p   联 系 人:朱凌云:010-68722460 13717666003 spnh88@126.com /p p   网 址:www.lab.org.cn /p p   咨询电话:章燕 010-68731259 伍超群 13660034359 /p p   九、付款信息: /p p   汇款户名:北京理化分析测试技术学会 /p p   汇款银行:华夏银行北京紫竹桥支行 /p p   帐 号:4043200001801900001154 /p p style=" text-align: right "   全国微束分析标准化技术委员会(SAC/TC38) /p p style=" text-align: right "   全国纳米技术标准化技术委员会 /p p style=" text-align: right "   广东省工业分析检测中心 /p p style=" text-align: right "   北京理化分析测试技术学会 /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201911/attachment/2ada361e-c967-4280-85c7-16f540422f4f.pdf" title=" 第六届全国微束分析技术标准宣贯会(4).pdf" 第六届全国微束分析技术标准宣贯会(4).pdf /a /p p br/ /p
  • 江西食检检出腌腊肉过氧化值不符合标准
    腌腊肉主要包括以畜禽肉或其可食内脏为原料,辅以食盐、酱料硝酸盐或亚硝酸盐、糖或香辛料等,经原料整理、腌制或酱溃、清洗造型、晾晒风干或烘烤干燥等工序加工蔼成的一类生肉制品。也是人们日渐青睐的传统食物之一。近期,江西省市场监督管理局组织食品安全监督抽检食用农产品、餐饮食品、蛋制品、炒货食品及坚果制品、罐头、冷冻饮品、茶叶及相关制品7大类食品共224批次样品,发现食用农产品、餐饮食品、冷冻饮品共10批次不合格产品,涉及微生物污染、农兽药残留、食品添加剂和质量指标问题。其中一批次过氧化值不符合国家标准。由横峰县欢乐家人餐馆销售的腌腊肉,过氧化值不符合食品安全*家标准规定。检验机构为江西省产品质量监督检测院。过氧化值是衡量油脂在自动氧化初期阶段酸败程度的指标,以每千克油脂中的活性氧毫克当量表示。过氧化值是一种指示油脂氧化酸败程度的关键指标,具有重要意义。首先,在我国食品卫生标准中对食用油脂及含油脂的加工食品的过氧化值具有明确的要求和限制,是食品卫生监督、检测时的一个常规分析。过氧化值含量越高,说明油脂和脂肪酸被氧化程度越高,食用油的变质就越严重,对人体的危害也越大。食用过氧化值超标的食品可能会导致腹泻,加速衰老,皮肤长斑等多种不良后果。深圳市芬析仪器制造有限公司生产的食品过氧化值含量检测仪能够快速检测食用油、食品等中的过氧化值的总量。适用于粮油监测中心、粮油饲料生产加工、食品加工贸易、畜禽养殖户自查、工商质监部门用于市场快速筛查等。
  • 第四届全国微束分析技术标准宣贯及其在材料研究中应用研讨会
    p   随着我国工业、农业、教育、医疗卫生及科学研究等各个领域的迅速发展以及与国际接轨进程的加速,标准化工作的意义越来越重要。多年来,在国家标准化管理委员会与中国科学院的领导与支持下,全国微束分析标准化技术委员会在开展微束分析技术领域标准化工作中取得了出色的成绩,同时也积累了大量的经验与成果,其中,制定并出版相关技术标准近50项。 /p p   为满足各单位在质量认证、计量认证、实验室认证与认可等工作中的需要,似举办第四届微束分析标准宣传贯彻及实施和应用研讨会,以使我国各微束分析实验室、相关的科研和企事业单位能更好地执行这些标准,提高分析技术水平及技能,提供更好、更准确的分析结果,提高产品的质量,促进国民经济发展。 /p p   会议网站: a href=" http://meeting.lab.org.cn/default.php?hyid=99" target=" _self" title=" " http://meeting.lab.org.cn/default.php?hyid=99 /a /p p   一、 组织委员会 /p p   本次宣贯会由全国微束分析标准化技术委员会(SAC/TC38)主办,全国纳米技术标准化技术委员会协办,北京理化分析测试技术学会承办。 /p p   会议组织委员会名单如下:陈家光、陈振宇、程斌、丁泽军、范光、高灵清、龚沿东、洪健、李香庭、李玉武、刘安生、柳得橹、刘芬、毛骞、邱丽美、孙振亚、王孝平、王海、魏宝和、吴文辉、吴正龙、杨勇骥、俞彰、许钫钫、徐坚、谢景林、姚文清、曾荣树、曾毅、张萌、章晓中、张增明、张作贵、赵江、祝建、庄世杰。注:姓名按首字母顺序排序。 /p p   二、 会议时间 /p p   2017年8月24日-28日(报到时间:2017年8月24日) /p p   三、 会议地点: /p p   兰州饭店 甘肃省兰州市城关区东岗西路四百八十六号 /p p   标间:380元/间天 单间:340元/间天(住宿统一安排,费用自理。) /p p   四、 会议费及培训费:1600元。 /p p   五、 本次拟宣贯的微束分析技术标准主要内容: /p p   1.X射线能谱及波普定量分析有关的文字标准,以提高各X射线能谱实验室的定量分析水平,使其能真正实现有标样的定量分析 /p p   2.微束分析术语有关的标准,如:电子探针显微分析术语、扫描电子显微术术语等 /p p   3.扫描电镜分辨率、放大倍数以及与微米、纳米级物体测量的有关技术标准 /p p   4.电子背散射衍射分析方法、钢铁材料缺陷电子束显微分析方法有关的文字标准 /p p   5.微束分析标准化动态 /p p   6.研究并讨论微束分析实验室认可和微束分析实验室比对分析等有关问题 进一步讨论实施微束分析实验室比对分析的有关事宜。 /p p   六、 大会报告详见二轮通知。 /p p   七、 汇款信息:汇款户名:北京理化分析测试技术学会 /p p   汇款银行:华夏银行北京紫竹桥支行 /p p   帐 号:4043200001801900001154 /p p   行 号:3041 0004 0067 /p p   八、 会务组联系方式: /p p   单位名称:北京理化分析测试技术学会 /p p   通信地址:北京市海淀区西三环北路27号 北科大厦 邮编:100089 /p p   联 系 人:朱凌云:010-68722460 手机:13717666003 邮箱:spnh88@126.com /p p   王 晨:010-88517114 手机:18101083321 邮箱:lhxh88@126.com /p p   咨询电话:章燕 010-68454626 刘芬 010-62553516 /p p style=" text-align: right "   全国微束分析标准化技术委员会(SAC/TC38) /p p style=" text-align: right "   全国纳米技术标准化技术委员会 /p p style=" text-align: right "   北京理化分析测试技术学会 /p p br/ /p p 附: /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201706/ueattachment/8e5f0eab-ff27-4a53-888e-b0531a7ef514.pdf" 厂商邀请函.pdf /a /p p br/ /p
  • 第六届全国微束分析技术标准宣贯及其在材料研究中应用研讨会通知
    p   随着社会生产力水平的不断发展和各行各业现代化程度的不断提高,普及和提高行业标准化程度已经成为引领经济发展、规范生产行为、促进生产协作的有效手段,也是国家大力提倡的与国际接轨的重要指标之一。全国微束分析标准化技术委员会承担着我国微束分析行业技术标准的制订、宣传、贯彻、推广等任务,旨在为行业技术制定标准和提供技术指导。 /p p   电子显微镜(以下简称电镜)作为最常见的微束分析仪器之一,是人类直接观察微观世界的有力工具。近年来,电镜广泛应用于生命科学和材料科学的各个领域,特别是2017年诺贝尔化学奖授予在冷冻电镜领域做出杰出贡献的三位科学家,使全球的电镜工作者受到了巨大的鼓舞和鞭策。在可预见的将来,以电镜为代表的大型科学仪器的持有量将持续快速增长,对电镜的相关操作、制样、维护、维修人员的需求量也会持续增加。 /p p   为进一步推动微束分析技术标准化工作,促进广大电镜技术工作者之间的交流与合作,满足各单位在质量认证、计量认证、实验室认证与认可等工作中的需要,将举办第六届微束分析标准宣传贯彻及实施和应用研讨会,以使我国各微束分析实验室、相关的科研和企事业单位能更好地执行这些标准,提高分析技术水平及技能,提供更好、更准确的分析结果,提高产品的质量,促进国民经济发展。 /p p   一、 组织委员会 /p p   本次宣贯会由全国微束分析标准化技术委员会(SAC/TC38)主办,全国纳米技术标准化技术委员会和广东省工业分析检测中心协办,北京理化分析测试技术学会承办。 /p p   会议组织委员会名单如下:陈家光、陈振宇、丁泽军、范光、高灵清、龚沿东、葛广路、洪健、洪崧、贺连龙、鞠新华、李香庭、李玉武、柳得橹、刘芬、毛骞、马通达、孙振亚、汤斌兵、王孝平、魏宝和、吴文辉、伍超群、杨勇骥、许钫钫、徐坚、姚雷、姚文清、曾荣树、曾毅、曾荣光、章晓中、张作贵、赵江、祝建、朱如凯、钟振前。注:姓名按首字母顺序排序。 /p p   二、 会议时间 /p p   2019年11月24日-28日(报到时间:2019年11月24日) /p p   三、 会议地点:广州京溪礼顿酒店 标间/单间 450元/天/间 (住宿统一安排,费用自理。) /p p   四、 会议费及培训费:1800元/人。 /p p   五、 本次拟宣贯的微束分析技术标准主要内容: /p p   1. 中国电子探针、扫描电镜国家标准研制的发展 /p p   2. 植物病毒的电子显微镜检测 /p p   3. 纳米材料生物效应研究及标准化 /p p   4. EDS分析国家标准中几个关键问题解读 /p p   5. 如何获得准确的能谱定量结果 /p p   6.研究并讨论微束分析实验室认可和微束分析实验室比对分析等有关问题 进一步讨论实施微束分析实验室比对分析的有关事宜。 /p p   六、 日程安排见第二轮通知。(请参会人员于2019年11月1日前将会议回执发送至会务组) /p p   七、 会务组联系方式: /p p   单位名称:北京理化分析测试技术学会 /p p   通信地址:北京市海淀区西三环北路27号 北科大厦 邮编:100089 /p p   联 系 人:朱凌云:010-68722460 13717666003 spnh88@126.com /p p   网 址:www.lab.org.cn /p p   咨询电话:章燕 010-68731259 伍超群 13660034359 /p p style=" text-align: right "   全国微束分析标准化技术委员会(SAC/TC38) /p p style=" text-align: right "   全国纳米技术标准化技术委员会 /p p style=" text-align: right "   广东省工业分析检测中心 /p p style=" text-align: right "   北京理化分析测试技术学会 /p p   第六届全国微束分析技术标准宣贯及其在材料研究中应用研讨会 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border: none" tbody tr style=" height:31px" class=" firstRow" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 单位名称 /span /p /td td width=" 505" colspan=" 5" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" br/ /td /tr tr style=" height:38px" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 38" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 详细地址 /span /p /td td width=" 217" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 38" br/ /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 38" p style=" text-align:center line-height:28px vertical-align:baseline" span style=" font-family:宋体" 邮 /span span style=" font-family:宋体" 编 /span /p /td td width=" 167" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 38" br/ /td /tr tr style=" height:29px" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 姓 /span span & nbsp & nbsp & nbsp /span span style=" font-family:宋体" 名 /span /p /td td width=" 36" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 性别 /span span style=" font-family:宋体" 别 /span /p p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 职务 /span /p /td td width=" 83" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 职 /span span style=" font-family:宋体" 务 /span /p /td td width=" 97" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 部门名称 /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 电 /span span style=" font-family:宋体" 话 /span /p /td td width=" 167" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 手 /span span style=" font-family:宋体" 机 /span /p /td /tr tr style=" height:34px" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 36" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 83" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 97" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 167" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td /tr tr style=" height:34px" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 36" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 83" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 97" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 167" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td /tr tr style=" height:34px" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 36" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 83" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 97" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 167" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td /tr tr style=" height:36px" td width=" 60" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" margin-top:0 margin-right:8px margin-bottom: 0 margin-left:8px margin-bottom:0" span style=" font-family:宋体" 备 /span span & nbsp /span span style=" font-family:宋体" 注 /span /p /td td width=" 553" colspan=" 6" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-indent: 14px line-height: 24px vertical-align: baseline" span 1 /span span style=" font-family:宋体" 、本表格可复印,请认真填写报名回执表, /span span 11 /span span style=" font-family:宋体" 月 /span span 1 /span span style=" font-family:宋体" 日前发至会务组 /span /p p style=" line-height: 24px vertical-align: baseline" span style=" text-decoration:underline " span & nbsp /span /span /p /td /tr /tbody /table p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201909/attachment/c7cf7a1d-89b6-4dc4-b0cc-47354a23d6c1.pdf" title=" 第六届全国微束分析技术标准宣贯会.pdf" 第六届全国微束分析技术标准宣贯会.pdf /a /p p br/ /p
  • 第六届全国微束分析技术标准宣贯及材料科学应用研讨会召开
    p   2019年11月25日至28日,“第六届全国微束分析技术标准宣贯及其在材料科学中应用研讨会”在花城广州召开。 /p p   会议由全国微束分析标准化技术委员会(SAC/TC38)主办,全国纳米标准化技术委员会(SAC/TC279)和广东省工业分析检测中心协办,理化分析测试技术学会承办。会议特别邀请了中国科学院院士、中国科学院地球化学研究所谢先德院士做特邀报告。来自全国各地50余位微束分析行业专家学者参加了本次会议。 /p p   会议由全国微束分析标准化技术委员会秘书长刘芬研究员主持。 /p p   深圳大学特聘教授、全国微束分析标准化技术委员会副主任委员徐坚教授致开幕辞。徐教授结合自己曾经担任国际标准化组织微束分析技术委员会(ISO/TC202)主席的经历,阐述了中国标准对于提升国家形象的重大意义,介绍了我国微束分析标准化工作近年来的发展,强调标准强则国强,希望大家群策群力,助力我国早日成为标准化强国。 /p p   广东省工业分析检测中心的唐维学主任作为东道主,对前来参会的嘉宾代表表示热烈欢迎,并介绍了广东省工业分析检测中心,以及中心近年来在标准化工作中取得的成绩。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/b81761fd-a402-439f-9cb5-152535e7e845.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p   span style=" color: rgb(0, 176, 240) "  合影由左至右:伍超群高工(广东省工业分析检测中心)、徐坚教授(深圳大学)、谢先德院士(中国科学院地球化学研究所)、唐维学主任(广东省工业分析检测中心)、刘芬研究员(全国微束分析标准化技术委员会) /span /p p   会议正式开始,谢先德院士的报告《微束分析在鉴定陨石中细小新矿物上的应用》,从地球地质科学专业角度阐述了陨石鉴定工作中的多种微束分析技术在不同分析尺度上的应用,其中特别提到了借助微束分析手段,发现了新矿物的过程。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/f7be8f13-75a6-43ef-98a7-b42b1cfc01b2.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p   随后,多位微束行业大咖次第登场,从严肃的学术科研,到接地气的技术应用,干货满满,高潮迭起。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/501dea28-b73a-417d-9e2d-7bfc94b51264.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图:《纳米材料生物效应研究及标准化》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——解放军第二军医大学 杨勇骥研究员 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/c744bac7-ae59-4974-992e-ddeed99ec7d8.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:《如何获得准确的能谱定量结果》 /span br/ span style=" color: rgb(0, 176, 240) " /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——中国科学院上海硅酸盐研究所 曾毅研究员 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/a1d740cb-8d9a-4953-92fa-fbe1948df894.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:《中国电子探针、扫描电镜国家标准研制的发展》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " ——中国地质科学院矿产资源研究所 陈振宇(教授级高工) /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/54e17e67-f3fd-4ba5-ab3f-0ef3c03833d7.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:《电子探针在材料研究中的应用状况》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——华南理工大学测试中心 雷淑梅高工 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/aa9f29c5-ce35-425b-8481-3ddcfa55942a.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:《实验室认可微束分析标准的注意事项》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——广东省工业分析检测中心 伍超群高工 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 216px " src=" https://img1.17img.cn/17img/images/201911/uepic/890e711e-1bfc-4f52-a200-3142762eb7da.jpg" title=" 8.jpg" alt=" 8.jpg" width=" 450" height=" 216" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span    span style=" color: rgb(0, 176, 240) " 图:《植物病毒的电子显微镜检测》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——浙江大学 洪健研究员 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/91a5b1d8-1784-497a-953a-18066c4b2edd.jpg" title=" 9.jpg" alt=" 9.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:《EDS分析国家标准中几个关键问题解读》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——中国科学院上海硅酸盐研究所 李香庭研究员 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 499px " src=" https://img1.17img.cn/17img/images/201911/uepic/2160f912-2420-49fa-ac60-c74506334975.jpg" title=" 10.jpg" alt=" 10.jpg" width=" 500" height=" 499" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 562px " src=" https://img1.17img.cn/17img/images/201911/uepic/ac1ad370-9793-412b-a214-60554d2d9bd8.jpg" title=" 11.jpg" alt=" 11.jpg" width=" 500" height=" 562" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:精彩报告 豪华阵容 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/35b8dd3d-f18c-402f-a193-96f14c72ae50.jpg" title=" 12.jpg" alt=" 12.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:会场报告座无虚席 /span /p p   此外会议还得到了布鲁克(北京)科技有限公司、阿美特克商贸(上海)有限公司和牛津仪器科技(上海)有限公司、北京中镜科仪技术有限公司等厂家的大力支持。 /p p   布鲁克、阿美特克和牛津仪器三家公司的技术精英也分别介绍了各自公司在微束分析技术创新中的工作进展。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 227px " src=" https://img1.17img.cn/17img/images/201911/uepic/cc58a0f8-d6ed-4dda-b87e-1d7ad75e33db.jpg" title=" 13.jpg" alt=" 13.jpg" width=" 450" height=" 227" border=" 0" vspace=" 0" / /p p   其中,牛津仪器科技(上海)有限公司自2019年8月起,成为全国微束分析标准化技术委员会单位委员,由徐宁安高工担任联络员。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 298px " src=" https://img1.17img.cn/17img/images/201911/uepic/f95de6d9-0018-4f54-831c-60e44a6acf1a.jpg" title=" 14.jpg" alt=" 14.jpg" width=" 450" height=" 298" border=" 0" vspace=" 0" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图:刘芬秘书长特别向徐宁安高工颁发了单位委员聘书 /span /p p   本次标准宣贯及技术应用研讨会在短短三天内获得了可喜的成效。对于广大电镜技术工作者之间的交流与合作起到了积极的促进作用,部分解答了参会代表在质量认证、计量认证、实验室认证与认可等工作中的遇到的难题,进一步推动了微束分析技术标准化工作的良性有序发展。 /p p   下一届“全国微束分析技术标准宣贯及其在材料科学中应用研讨会”将于2020年10月25-27日在河南开封举行。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 332px " src=" https://img1.17img.cn/17img/images/201911/uepic/3eefae4f-fcdb-4a28-9bf7-7ad0a6716e44.jpg" title=" 15.jpg" alt=" 15.jpg" width=" 500" height=" 332" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:参会代表合影 /span br/ /p p    strong 全国微束分析标准化技术委员会(SAC/TC38)简介: /strong /p p   全国微束分析标准化技术委员会(SAC/TC 38)成立于1984年,负责全国电子探针、扫描电镜、电子显微镜、离子探针等一类微束原位的分析领域本身的标准化工作,也包括其它重要相关学科中以微束分析为主要研究工具的标准化工作。全国微束分析标准化技术委员会委员由来自生产、教学、科研各方面及全国各地区的专家组成,目前为第六届,有32名委员,设有3个单位委员。已发布和实施国家标准102项,另有9项国家标准在制定中。在国际标准化组织(ISO)中对口国际标准化组织微束分析技术委员会(ISO/TC 202)。值得一提的是,成立于1991年的ISO/TC 202是由中国倡导成立、并设立秘书处的我国第一个国际标准化组织技术委员会 即“先有TC38,后有TC202”。ISO/TC 202和SAC/ TC38的秘书处目前均设立在中国科学院化学研究所。 /p p style=" text-align: right " “微束分析标准化与中镜科仪”提供资料 /p
  • 《降解材料快速鉴定裂解气相色谱质谱法》团体标准成功立项
    近日,中国包装联合会发布《关于下达2022年第三批团体标准计划项目的通知》(中国包联质字[2022]34号),北京市检验检测认证中心所属市产品质量监督检验研究院成功立项《降解材料快速鉴定 裂解气相色谱质谱法》团体标准。  此团体标准中研发的生物降解材料快速鉴定方法将通过热裂解方式进入气相色谱,实现短时间内生物降解材质的鉴定,能够有效弥补堆肥法生物分解率检测周期长的不足,大幅提升检测时效,压缩检验周期,有力带动降解材料行业检测水平发展,为包装产业绿色升级提供坚实有力的技术基础,为推动“双碳”战略发挥积极作用。
  • 《降解材料快速鉴定裂解气相色谱质谱法》团体标准成功立项
    近日,中国包装联合会发布《关于下达2022年第三批团体标准计划项目的通知》(中国包联质字[2022]34号),北京市检验检测认证中心所属市产品质量监督检验研究院成功立项《降解材料快速鉴定 裂解气相色谱质谱法》团体标准。 此团体标准中研发的生物降解材料快速鉴定方法将通过热裂解方式进入气相色谱,实现短时间内生物降解材质的鉴定,能够有效弥补堆肥法生物分解率检测周期长的不足,大幅提升检测时效,压缩检验周期,有力带动降解材料行业检测水平发展,为包装产业绿色升级提供坚实有力的技术基础,为推动“双碳”战略发挥积极作用。
  • 标准解读丨食品接触材料新国标即将实施
    食品接触材料中高关注物质的风险问题近年来受到广泛关注,今年2月份发布的GB31604.52-2021《食品安全国家标准 食品接触材料及制品芳香族伯胺迁移量的测定》和GB31604.51-2021《食品安全国家标准 食品接触材料及制品1,4-丁二醇迁移量的测定》将在今年8月22日正式实施。 近年来受到广泛关注的食品接触材料中风险物质有芳香族伯胺、氯丙醇、壬基酚、PFAS、矿物油等,还有长久以来大家关注的增塑剂、双酚A双酚S等物质。这其中非有意添加物(NIAS)越来越受到重视。 非有意添加物(NIAS)芳香族伯胺类、亚硝胺、壬基酚、PFAS、矿物油等… … 食品接触材料中芳香族伯胺检测芳香族伯胺(PAAs)限量要求 1、国内法规目前正在起草的产品标准中,部分标准考虑将芳香族伯胺纳入管控范围。如在GB 4806产品标准中,《食品安全国家标准 食品接触用复合材料及制品(征求意见稿)》规定芳香族伯胺的迁移量为不得检出(DL=0.01 mg/kg)。 2、国外法规欧盟(EU) No 10/2011塑料法规中PAAs迁移总量不得超过0.01mg/kg,并且部分物质限量可能还会降低。欧洲药品与医疗质量管理局(EDQM) 2021年5月19日发布了《食品接触用纸和纸板材料及制品合规指南》中对于毒性分类1A/1B的物质,特定迁移限量为DL=0.002mg/kg, PAAs总迁移量不得检出(DL=0.01 mg/kg)。 芳香族伯胺检测方案 采用岛津三重四极杆液相色谱质谱联用仪和限用物质方法包,方法包中包括芳香族伯胺、全氟类化合物和偶氮染料类物质,给定了化合物MRM参数、碰撞能量和电压,轻松实现方法开发。 LCMS-8045/8050三重四极杆液相色谱质谱联用仪 限用物质方法包:芳香胺类、全氟类化合物、偶氮染料等94种 芳香胺方法条件如下色谱柱:Shim-pack FC-ODS(2.1mm ID×150mm,3μm)流动相:5mmol/L乙酸铵水溶液(A相),乙腈(B相)分析时间:13分钟 二、食品接触材料中1,4-丁二醇检测 1,4-丁二醇在食品包装材料中作为印刷油墨中的溶剂或助剂,GB 9685-2016《食品安全国家标准 食品接触材料及制品用添加剂使用标准》和GB 4806.6-2016《食品安全国家标准 食品接触用塑料树脂》中规定了特定迁移总量(以1,4-丁二醇计)或1,4-丁二醇特定迁移量,限量指标均为5 mg/kg。 GB31604.51-2021《食品安全国家标准 食品接触材料及制品1,4-丁二醇迁移量的测定》采用GC(FID)方式进行检测。 GC-2030气相色谱仪 特点:• 全新智能交互界面,触屏完成仪器操作并了解仪器运行状态• ClickTek技术全面提升用户分析体验,色谱柱安装和仪器维护进入徒手时代• 检测器选择多样化以及定制化系统满足个性化分析要求 参考文献:食品接触用纸和纸板材料及制品终产品合规方案(欧盟篇) 来源FCM之家
  • 【邀请函】第九届全国微束分析技术国家标准宣贯及其在地矿、材料与生命科学研究中应用研讨会
    全国微束分析标准化技术委员会(SAC/TC 38)承担着我国微束分析行业技术标准的制订、宣传、贯彻、推广等任务,旨在为行业技术制定标准和提供技术指导。为进一步推动微束分析技术标准化工作,促进广大电镜技术工作者之间的交流与合作,满足各单位在质量认证、计量认证、实验室认证与认可等工作中的需要,TC38联合中国有色桂林矿产地质研究院有限公司举办“第九届全国微束分析技术国家标准宣贯及其在地矿、材料与生命科学研究中应用研讨会”,为我国各微束分析实验室、相关的科研和企事业单位的标准化工作提供指导,促进微束分析行业技术交流。诚邀微束分析相关标准化人员、国家标准使用者、行业相关技术人员、对标准化工作有兴趣的师生研究人员及相关企业代表参会交流。会议组织委员会主办单位全国微束分析标准化技术委员会(SAC/TC38)中国有色桂林矿产地质研究院有限公司承办单位广西有色金属学会协办单位(以下单位按拼音排序)北京欧波同光学技术有限公司、北京普瑞赛司仪器有限公司、布鲁克(北京)科技有限公司、桂林电子科技大学材料学院、桂林理工大学、国仪量子(合肥)技术有限公司、捷欧路(北京)科贸有限公司、赛默飞世尔电子技术研发(上海)有限公司*名单可能发生变动,请以会议手册为准会议时间地点2023年10月24日-26日(2023年10月23日报到,10月27日离会)桂林宾馆(地址:广西桂林市象山区榕湖南路14号)会议报告与日程大会报告会议日程会议费与报名会议注册费为1600元,提前汇款或现场付款均可。参会代表用餐及住宿由大会统一安排及预定,费用自理。桂林宾馆为参会贵宾提供以下两种标间房型豪华房(320元/天间含早)湖景房(420元/天间含早)参会人员请在2023年10月10日之前通过报名小程序在线填写注册信息。会务组将按照报名登记信息预定房间。注册费汇款账户信息如下:• 收款单位:中国有色桂林矿产地质研究院有限公司• 开户行:中国建设银行股份有限公司桂林高新技术产业开发区支行• 账号:4500 1635 2070 5050 5931• 汇款请注明:桂林宣贯会、单位名称、参会人员姓名会务组联系方式全国微束分析标准化技术委员会王老师,microbeam@iccas.ac.cn,13683643797中国有色桂林矿产地质研究院有限公司唐老师,253968217@qq.com ,15717735923
  • 锂电池材料试验第三讲|锂离子电池涂层隔膜剥离试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第三讲——锂离子电池涂层隔膜剥离试验。锂离子电池涂层隔膜剥离试验涂布质量的好坏直接关系到电池电性能的发挥,剥离强度试验不仅可以有效的鉴定涂布质量,显示浆料涂布强度,均匀性等指标,还可以指导涂布产线的调整,使成品更加均匀可靠。测试类似可以用180度剥离,90度剥离,可变角度的剥离等多种方式,为质控和研发提供较大的扩展空间。整套测试系统由LLOYD高精度测力传感器捕捉力值的变化,采集速率可达每秒8000点,精确捕捉力值瞬间波动量。同时,LLOYD专用NexygenPlus测控软件支持多格式数据输出,及多位置数据输出,为后续数据分析提供了极大的便利性和灵活性。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 国家市场监督管理总局关于对《合成石材试验方法 第7部分:耐氙灯老化性能的测定》等295项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《合成石材试验方法 第7部分:耐氙灯老化性能的测定》等295项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年1月5日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001508,查询项目信息和反馈意见建议。国家市场监督管理总局2023年12月6日部分相关标准如下:#项目中文名称制修订截止日期1合成石材试验方法 第7部分:耐氙灯老化性能的测定制定2024-01-052轻型车辆动力车用铅酸蓄电池 一般要求和试验方法制定2024-01-053纺织品 聚六亚甲基双胍盐酸盐的测定修订2024-01-054环境试验 第2部分:试验方法 试验:倾斜和摇摆制定2024-01-055阴离子交换树脂再生型和碳酸型率的测定方法制定2024-01-056铅及铅合金化学分析方法 第19部分:铜、银、铋、砷、锑、锡、锌、镍、镉、钠、镁、钙、铝、铁、硒和碲含量的测定 电感耦合等离子体原子发射光谱法制定2024-01-057建筑绝热制品 长度和宽度的测定制定2024-01-058锂离子电池正极材料检测方法 浆料粘度的测定修订2024-01-059医药工业洁净室(区)浮游菌的测试方法修订2024-01-0510医药工业洁净室(区)悬浮粒子的测试方法修订2024-01-0511建筑绝热制品 平整度的测定制定2024-01-05
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制