当前位置: 仪器信息网 > 行业主题 > >

数采仪传输标准

仪器信息网数采仪传输标准专题为您提供2024年最新数采仪传输标准价格报价、厂家品牌的相关信息, 包括数采仪传输标准参数、型号等,不管是国产,还是进口品牌的数采仪传输标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数采仪传输标准相关的耗材配件、试剂标物,还有数采仪传输标准相关的最新资讯、资料,以及数采仪传输标准相关的解决方案。

数采仪传输标准相关的资讯

  • 公开征求|国家生态环境标准《污染物自动监控(监测)系统数据传输技术要求(征求意见稿)》意见
    为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》《中华人民共和国水污染防治法》《中华人民共和国土壤污染防治法》《中华人民共和国海洋环境保护法》《中华人民共和国噪声污染防治法》《中华人民共和国固体废物污染环境防治法》,指导污染物自动监控(监测)系统的建设,规范数据传输,保证各种污染物监控(监测)仪器设备、传输网络和监管部门应用软件系统之间的连通,制定本标准。本标准首次发布于 2005 年,本次为第二次修订,是对《污染物在线自动监控(监测)系统数据传输标准》(HJ 212-2017)的修订。近年来,固定污染源烟气连续监测技术规范、水污染源在线监测技术规范均进行了修订, 生活垃圾焚烧发电、火电、水泥、造纸等行业已出台了关于自动监测数据的标记规则和管理 规定,生态环境部也已制定发布了《污染物排放自动监测设备标记规则》,对自动监测数据 有效性判别和认定做出了规定,为管理部门运用自动监测数据、实现非现场监管执法、提高 监管执法效能、提高自动监测数据有效性方面奠定了基础。由于《污染物在线自动监控(监测)系统数据传输标准》(HJ 212—2017)适用范围越 来越广,其产生的影响也越来越大,污染物排放过程监控逐渐的被重视。随着环境监管的深 入,排污单位在生产和治理过程中的用电监控的重要性日益显现。由此,新标准将排污单位 生产设施及污染治理设施用电监控系统纳入标准,同时也与即将出台的生活垃圾焚烧发电、 火电、水泥、造纸行业的关键工况参数与用电监控的相关技术规范相衔接,为行业管理奠定 基础。新标准对适用范围进行了扩充,适用于直接或间接实施环境监测或污染源监控(监测)的各类仪器仪表数据传输。为切实加强标准的实施,以促进环境监控(监测)及环保物联网的发展,需要从系统构 成角度和技术实现角度两方面入手。系统的各部分设计、生产、使用单位都需要充分理解并在实际工作中运用标准,使标准发挥出应有的作用。附件:征求意见单位名单.pdf污染物自动监控(监测)系统数据传输技术要求(征求意见稿).pdf《污染物自动监控(监测)系统数据传输技术要求(征求意见稿)》编制说明.pdf反馈意见建议格式.doc
  • 商务部推八大标准 建全国肉类蔬菜流通追溯体系
    12月28日,全国肉类蔬菜流通追溯体系建设培训会在成都举行。这是商务部确定上海、成都、大连等10个试点城市后,首次举办追溯体系建设培训会。   商务部预计3年内在全国36个大中城市的大中型批发市场和标准化菜市场建设肉类蔬菜流通追溯体系,通过“索证索票”电子化,增强行政监督、经营者自律和消费者参与能力,实现肉类蔬菜来源可追溯,去向可查证,责任可追究。   商务部拟推出全国肉类蔬菜流通追溯体系的八大标准。12月28日,商务部就《肉类流通追溯基本要求》《蔬菜流通基本要求》《肉类蔬菜流通追溯体系编码规则》《肉类蔬菜流通追溯体系管理平台技术要求》《肉类蔬菜流通追溯体系信息处理要求》《肉类蔬菜流通追溯体系感知技术要求》《肉类蔬菜流通追溯体系传输技术要求》《肉类蔬菜流通追溯体系专用术语标准》8大标准向参会代表征求意见。   根据8大标准的征求意见稿,生猪凭检疫证准入,凭交易凭证、肉类流通服务卡准出,生猪来源信息对接肉品流向信息,屠宰场生猪来源信息与批发、零售终端信息相对接,实现信息环环相扣的追溯要求。   成都市商务局相关负责人表示,成都市从2008年底就开始探索建立以物联网技术为支撑的生猪产品质量安全可追溯体系,目前成都市在屠宰环节有72家生猪定点屠宰企业全部进入追溯系统,每天绑定电子溯源芯片的白条肉达13000头左右。今年成都开始实施蔬菜、水果、食用菌三类食用农产品市场准入管理,启动了小家禽追溯体系建设,下一步成都将抓紧构建蔬菜流通追溯体系。
  • 深圳朗石新一代DT10数据采集传输仪精彩亮相
    生态环境部在2019年发布了HJ 35X-2019系列水污染源在线监测系统新标准。新标准增加了对数据上报的要求,规定了数据传输的频次。数采仪需要分析数据有效性,接受平台反控采样器采样、送样和留样功能,并读取仪器的状态、设置、日志等。新标准对于数采仪的要求更高、规范更加严格。为响应新标准要求,方便用户水质监测运维工作,朗石自主研发了DT10数据采集传输仪(下称数采仪)。DT10数采仪是一款应用于水质在线监测系统进行数据传输上报的仪器,完全符合《污染源在线自动监控(监测)数据采集传输仪技术要求》(HJ 477-2009)的标准及《污染物在线监控(监测)系统数据传输标准》(HJ 212-2017、 HJ/T 212-2005)传输协议。应用范围:可应用于地表水、污染源、水站、自来水厂等水质在线监测系统的数据采集传输,服务于工程项目公司、环境技术服务公司、各类型企业等。 朗石DT10数据采集传输仪产品特点:? 接口类型丰富,并配备以太网、全网通3G/4G等多种通讯方式;? 支持数据“一站多发”、自动补传、手动补发功能;? 新增超标告警及留样控制功能,真正实现“智慧运维”,为企业节省运维成本。 此次新产品发布,朗石公司特别举办了“全网预约免费试用”的活动,欢迎前来朗石官网或微信公众号咨询,
  • 河南研发“无线传输分体式PCR检测仪校准装置” 为战“疫”增添利器
    在感染性疾病的诊断方面PCR技术在感染性疾病中尤其适用于检测一些培养周期长或缺乏稳定可靠检测手段的病原体。PCR的模板可以是DNA,也可以是RNA。模板的取材主要依据PCR的扩增对象,可以是病原体标本如病毒、细菌、真菌等。标本处理的基本要求是除去杂质,并部分纯化标本中的核酸。多数样品需要经过SDS和蛋白酶K处理。难以破碎的细菌,可用溶菌酶加EDTA处理。所得到的粗制DNA,经酚、氯仿抽提纯化,再用乙醇沉淀后用作PCR反应模板。PCR检测仪是用于新冠病毒核酸检测的关键设备,核酸检测是根据病毒的基因序列配制出相对应的引物和探针,利用PCR检测仪对待测样本进行扩增。近日,河南计量院研制出无线传输分体式PCR检测仪校准装置,基于自行设计的多通道温度检测模块,应用无线传输技术实现数据采集分析,设计指标满足《JJF 1527-2015 聚合酶链反应分析仪校准规范》的要求。只需将该装置的检测模块置入待校准的PCR检测仪中,工作人员无需进入实验室内部,即可对仪器进行校准,不但能够节约PCR检测实验室的管理运行成本和宝贵的防护资源,还能极大降低计量人员本身的感染风险,具有较好的推广应用价值。 无线传输是利用无线技术进行数据传输的一种方式。无线传输和有线传输是对应的。随着无线技术的日益发展,无线传输技术应用越来越被各行各业所接受。无线图像传输作为一个特殊使用方式也逐渐被广大用户看好。其安装方便、灵活性强、性价比高等特性使得更多行业的监控系统采用无线传输方式,建立被监控点和监控中心之间的连接。无线传输分为:1、模拟微波传输就是把视频信号直接调制在微波的信道上(微波发射机,HD-630),通过天线(HD-1300LXB)发射出去,监控中心通过天线接收微波信号,然后再通过微波接收机解调出原来的视频信号。2、数字微波传输就是先把视频编码压缩(HD-6001D),然后通过数字微波(HD-9500)信道调制,再通过天线发射出去,接收端则相反,天线接收信号,微波解扩,视频解压缩,临了还原模拟的视频信号,也可微波解扩后通过电脑安装相应的解码软件,用电脑软解压视频,而且电脑还支持录像,回放,管理,云镜控制,报警控制等功能;存储服务器,配合磁盘阵列存储;这种监控方式图像有720*576、352*288或更高的的分辨率选择,通过解码的存储方式,视频有0.2-0.8秒左右的延时。数据采集分析过软硬件结合,可以记录、显示和分析众多生命科学相关信号,可以完全代替传统的纸带记录仪、绘图仪、XY绘图仪、示波器和电压计。把信号变成便于数字处理的形式,以减少数字处理的困难。无论计算机的容量和计算速度有多大,其处理的数据长度总是有限的,所以要把长时间的序列截断。在截断时,会引入一些误差,所以有时要对截取的数字序列加权,如有必要,还可用专门的程序进行数字滤波。然后把所得到的有限长的时间序列按照给定的程序进行运算。例如作时域中的概率统计、相关分析,频域中的频谱分析、功率谱分析、传递函数分析等。数据采集分析应用领域包括:血流动力学、离体组织灌流、离体器官、灌流、微血管张力测定系统、微循环血流测定(激光多普勒)、新陈代谢研究(运动生理学、心肺功能测定)、电生理系统(细胞内、细胞外、电压钳)、超声血流量测定、植入式生理信号(血压、生物电、神经干放电、体温等)无线遥测、心理学、清醒动物血氧饱和度测定、人体无创血压、心输出量测定。PCR检测仪是利用聚合酶链反应技术对特定DNA扩增的一种仪器设备,PCR技术的原理类似于DNA的天然复制过程,其特异性依赖于靶序列两端互补的寡核苷酸引物,由变性-退火-延伸三个基本反应步骤构成。PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为百分百,实际反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,使平均效率达不到理论值。PCR扩增仪通常由热盖部件、热循环部件、传动部件、控制部件和电源部件等部分组成。被广泛运用于医学、生物学实验室中,例如用于判断检体中是否会表现某遗传疾病的图谱、传染病的诊断、基因复制以及亲子鉴定等。PCR检测仪分类PCR仪分为普通PCR仪,梯度PCR仪,原位PCR仪,实时荧光定量PCR仪四类。荧光定量PCR仪光学校准方法实时荧光定量PCR仪特异性更强,自动化程度更高,且有效地解决了PCR污染的问题,应用领域及应用量都不断增加。但其设计更为复杂,温度模块和光学系统设计同时影响其性能和实验准确性,为定量PCR仪校准带来了巨大挑战。采用生物试剂等方式对定量PCR仪荧光部分校准缺乏溯源性,无法分析误差来源,存在较大缺陷。采用Cyclertest 3D optical定量PCR仪光学校准系统对ABI 7500 Fast Real-Time定量PCR仪的温场部分和荧光系统进行了检测并对检测结果进行了分析,结果表明对温度模块和光学系统共同进行检测并分析相关性能够更科学全面地评估定量PCR仪性能,满足定量PCR仪校准需求。
  • 为什么数采仪对在线监测系统来说必不可少?
    先来科普一下,什么是数采仪。数采仪即数据采集传输仪,是指具有采集、存储各种类型监测仪表的数据,并具有向上位机传输数据功能的数据处理单元。它是现场分析仪表与上位机系统的连接纽带,主要应用在环境在线监控系统的现场端。数采仪的工作原理数采仪工作原理示意图如上图所示,数采仪通过数字通道、模拟通道、开关量通道采集在线监测仪表的监测数据、状态等信息,然后借助传输网络将数据、状态传输至上位机;上位机通过传输网络发送控制命令,数采仪根据命令控制在线监测仪表工作。在整个环境在线监测系统中,上位机是在线监测系统软件平台的统称,下位机是现场仪器仪表的统称。为什么需要数采仪必要性打造全省统一、功能一致、上下贯通的信息平台,从而实现企业、运维单位、县、市、省级监控平台信息同步,是建立在线监测系统的初衷。该系统生成的数据作为环保部门监管执法的参考标准,这就对数据来源、采集频次、格式乃至精度都提出了明确要求。不同品牌厂家的在线监测仪表有着各自的数据传输方式,如果直接由在线监测仪表进行数据传输,数据接口的不一致将导致环保部门管理混乱。数采仪的作用就能很好地解决这一混乱局面,可以实现数据的集中上传管理,并能保证数据不被篡改。前端仪器与上位机采用数据采集传输仪连接后,符合国家标准的“现场仪表+数采仪”模式,便很好地实现了管理上的归一化。因此,数采仪是污染源在线监测系统必备组件之一。迫切性2020年3月开始推行实施的《水污染源在线监测系统(CODCr、NH3-N 等)安装技术规范》(HJ 353-2019)对数据控制单元提出新的要求——数采仪除能实现控制整个水污染源在线监测系统内部仪器设备联动,自动完成水污染源在线监测仪表的数据采集、整理、输出及上传至监控中心平台外,还要能够接受监控中心平台命令控制水污染源在线监测仪表运行的功能。然而,目前市面上大多数采仪还不具备反控功能,并不符合新国标的要求,朗石数采仪应运而生。朗石解决方案朗石自主研发的新一代DT10智能数采仪全面满足新国标要求,符合《污染源在线自动监控(监测)数据采集传输仪技术要求》(HJ 477-2009)及《污染物在线监控(监测)系统数据传输标准》(HJ 212-2017/ HJ/T 212-2005)传输协议。产品优势:7寸触摸彩屏,操控更方便长时间稳定无故障运行,保障水质在线监测系统稳定运转,运维用户更省心数据传输连续、快速、可靠,一站多发,满足各级国控、省控及市控需求智慧运维,大幅度提升企业管理效率,实现对运维工作的数字升级管控远程诊断排查,快速聚焦,缩短现场排查时间12年工业设备研发经验,水质监测方案解决专家多对一客服团队,10min内响应,24小时问题解决
  • 标准解读丨食品接触材料新国标即将实施
    食品接触材料中高关注物质的风险问题近年来受到广泛关注,今年2月份发布的GB31604.52-2021《食品安全国家标准 食品接触材料及制品芳香族伯胺迁移量的测定》和GB31604.51-2021《食品安全国家标准 食品接触材料及制品1,4-丁二醇迁移量的测定》将在今年8月22日正式实施。 近年来受到广泛关注的食品接触材料中风险物质有芳香族伯胺、氯丙醇、壬基酚、PFAS、矿物油等,还有长久以来大家关注的增塑剂、双酚A双酚S等物质。这其中非有意添加物(NIAS)越来越受到重视。 非有意添加物(NIAS)芳香族伯胺类、亚硝胺、壬基酚、PFAS、矿物油等… … 食品接触材料中芳香族伯胺检测芳香族伯胺(PAAs)限量要求 1、国内法规目前正在起草的产品标准中,部分标准考虑将芳香族伯胺纳入管控范围。如在GB 4806产品标准中,《食品安全国家标准 食品接触用复合材料及制品(征求意见稿)》规定芳香族伯胺的迁移量为不得检出(DL=0.01 mg/kg)。 2、国外法规欧盟(EU) No 10/2011塑料法规中PAAs迁移总量不得超过0.01mg/kg,并且部分物质限量可能还会降低。欧洲药品与医疗质量管理局(EDQM) 2021年5月19日发布了《食品接触用纸和纸板材料及制品合规指南》中对于毒性分类1A/1B的物质,特定迁移限量为DL=0.002mg/kg, PAAs总迁移量不得检出(DL=0.01 mg/kg)。 芳香族伯胺检测方案 采用岛津三重四极杆液相色谱质谱联用仪和限用物质方法包,方法包中包括芳香族伯胺、全氟类化合物和偶氮染料类物质,给定了化合物MRM参数、碰撞能量和电压,轻松实现方法开发。 LCMS-8045/8050三重四极杆液相色谱质谱联用仪 限用物质方法包:芳香胺类、全氟类化合物、偶氮染料等94种 芳香胺方法条件如下色谱柱:Shim-pack FC-ODS(2.1mm ID×150mm,3μm)流动相:5mmol/L乙酸铵水溶液(A相),乙腈(B相)分析时间:13分钟 二、食品接触材料中1,4-丁二醇检测 1,4-丁二醇在食品包装材料中作为印刷油墨中的溶剂或助剂,GB 9685-2016《食品安全国家标准 食品接触材料及制品用添加剂使用标准》和GB 4806.6-2016《食品安全国家标准 食品接触用塑料树脂》中规定了特定迁移总量(以1,4-丁二醇计)或1,4-丁二醇特定迁移量,限量指标均为5 mg/kg。 GB31604.51-2021《食品安全国家标准 食品接触材料及制品1,4-丁二醇迁移量的测定》采用GC(FID)方式进行检测。 GC-2030气相色谱仪 特点:• 全新智能交互界面,触屏完成仪器操作并了解仪器运行状态• ClickTek技术全面提升用户分析体验,色谱柱安装和仪器维护进入徒手时代• 检测器选择多样化以及定制化系统满足个性化分析要求 参考文献:食品接触用纸和纸板材料及制品终产品合规方案(欧盟篇) 来源FCM之家
  • 欧盟食品安全局公布样品描述标准指南文件
    2010年1月29日,欧盟食品安全局(EFSA)公布了食品和饲料“样品描述标准”,其中详细说明了在残留监控和控制计划中(样品描述、分析方法和分析结果),食品和饲料样品以及其化学污染物和残留水平分析结果的数据组成和结构。样品描述标准包括一系列标准化的数据单元(描述样品和分析结果属性的条目,如来源国名称、产品名称、分析方法、检测限和结果等)、监控术语和提高数据准确性的确证准则。数据提供者和数据整理者可以使用这些标准来精确描述所分析的样品,从而有助于评估工作。   数据收集科技工作组(TWG-DC)受欧盟食品安全局的委托收集和分析食品、饲料和水中有害的或有益的化学物质测量数据,其主要目标是建立一个尽可能全面的样品数据描述方式来促进其应用于食品和饲料中的安全性评估工作。TWG-DC认为一个标准的样品描述方式是支持欧盟和各成员国之间数据传输协调的第一步(包括定义变量和术语、一个标准的数据传送模板和机制)。其最关键的完成实施此标准的要素就是建立一套维护和评估规划。
  • 环标《污染源在线自动监控(监测)数据采集传输仪技术要求》发布
    为贯彻《中华人民共和国环境保护法》,规范污染源在线自动监控(监测)系统建设工作,实施国家环境保护标准《污染源在线自动监控(监测)系统数据传输标准》(HJ/T 212),统一性能指标,确保现场监测数据准确传输,制定本标准。本标准规定了污染源在线自动监控(监测)系统中数据采集传输仪的技术性能要求和性能检测方法。本标准适用于数据采集传输仪的选型使用和性能检测 对于污染源在线自动监控(监测)系统中具有数据采集传输功能的现场监测仪表,只规定其用于数据采集传输功能部分的性能指标和校验方法。   附录:污染源在线自动监控(监测)数据采集传输仪技术要求(HJ 477-2009)
  • 新技术实现太赫兹波“绕障”传输
    当前无线通信系统依靠微波辐射来承载数据,未来数据传输标准将利用太赫兹波。与微波不同,太赫兹信号可被大多数固体物体阻挡。在《通信工程》杂志上发表的一项新研究中,美国布朗大学和莱斯大学研究人员描述了他们如何通过弯曲光线来绕过这些固体障碍,从而解决未来无线通信的这一难题。大多数用户可能使用Wi-Fi基站,让整个房间充满无线信号。无论用户移动到哪里,他们都能保持连接。但在更高频率下,信号将是定向光束。如果用户四处移动,该光束必须跟随才能保持连接。一旦移到光束之外或有物体阻挡,用户就不会收到任何信号。研究人员通过创建太赫兹信号来规避这个问题。该信号可沿着障碍物周围的弯曲轨迹行进,而不是被障碍物阻挡。研究团队引入了自加速梁的概念。这些光束是电磁波的特殊配置,当它们穿过空间时会自然地向一侧弯曲。团队设计了发射器,以便系统操纵电磁波的强度和时间。凭借这种操纵光的能力,研究人员可使波更有效地协同工作,以便在固体物体阻挡部分光束时维持信号。光束沿着发射器中的模式重新排列数据来适应阻挡。当一种模式被阻止时,数据传输将切换到下一种模式,从而保持信号链路完好无损。通过使用这些弯曲光束,研究人员希望未来能使无线网络更加可靠,即使在拥挤或有阻碍的环境中也是如此。未来在办公室或城市等经常出现物理障碍的地方,将可实现更快、更稳定的互联网连接。
  • 药典新标准丨这才是“药包材环氧乙烷测定”的正确打开方式
    导读2023年1月,国家药典委员会发布了4209《药包材环氧乙烷测定法》公示稿,用于检测经过环氧乙烷灭菌的预灌封注射器组合件、滴眼剂瓶等药品包装材料中环氧乙烷残留量。国家药典委员会公告截图药包材中为什么存在环氧乙烷?又为什么需要对它进行测定?检测方法是什么呢?我们一起来看一看!Part 01环氧乙烷小科普Ethylene Oxide无菌供应的药品包装材料有一部分采用环氧乙烷灭菌,它容易残留于药包材中。环氧乙烷虽是一种良好的灭菌剂,但同时也是一种中枢神经抑制剂、刺激剂和致癌物质,可通过皮肤、口服和胃肠接触进入全身循环,国际癌症研究机构于1994年公布的致癌物清单中,已将环氧乙烷划分为1类致癌物。《国家药包材标准》2015年版中YBB00112004-2015《预灌封注射器组合件(带注射针)》已经规定了环氧乙烷残留量不得过1 μg/mL,测定方法为YBB00242005-2015《环氧乙烷残留量测定法》。此次4209《药包材环氧乙烷测定法》公示稿对原有测定方法【第一法(外标法)和第二法(标准曲线法)】进行了更新,并增加了第三法(气质联用色谱法),用于药包材中环氧乙烷定性验证。面对药包材中环氧乙烷检测方法升级,岛津公司已建立完善的应用方案,以助力相关机构和企业从容应对。Part 02分析利器Analysis toolNexis GC-2030 + HS-20 NXGCMS-QP2020 NX + HS-20 NXPart 03应用方案(标准版)Application scheme4209《药包材环氧乙烷测定法》公示稿中,第一法第二法均采用的是气相色谱法,参考4209色谱条件,环氧乙烷色谱峰良好,色谱图如下:环氧乙烷对照品GC谱图(2 μg/mL)系统适应性药包材中聚对苯二甲酸乙二醇酯(PET)材料的分解有可能产生乙醛,因此环氧乙烷和乙醛有可能同时存在于同一产品中,它们在色谱柱上的保留行为相近,二者需要完全分离,才能对环氧乙烷准确定量。实验结果表明,环氧乙烷和乙醛分离度为2.687,两化合物完全分离,满足公示稿的系统适应性要求。(分离情况见下图)。环氧乙烷和乙醛GC谱图(20 μg/mL)标准曲线线性在公示稿要求的0.4 ~ 20 μg/mL浓度范围内,环氧乙烷标准曲线线性相关系数为0.999,线性关系良好。环氧乙烷标准曲线定性验证公示稿中新加入了第三法,此方法为气相色谱质谱联用法,主要用于环氧乙烷定性验证。采用4209第三法色谱条件,环氧乙烷GCMS谱图如下,分离情况良好。环氧乙烷对照品GCMS谱图(10 μg/mL)基于预灌封注射器组合件中环氧乙烷残留量不得过1 μg/mL的限量要求(YBB00112004-2015)以及4209《药包材环氧乙烷测定法》公示稿中标准曲线浓度最低点为0.4 μg/mL,下图展示了0.2 μg/mL环氧乙烷的质量色谱图及信噪比,仪器灵敏度完全满足限量标准及公示稿要求。环氧乙烷对照品(0.2 μg/mL)与空白样品(预灌封注射器组合件)对比图样品谱图取某批次预灌封注射器组合件,按照公示稿供试品溶液的制备方法处理样品后上机分析,使用GC法和GCMS法均未检出环氧乙烷,预灌封注射器组合件样品谱图如下。预灌封注射器组合件样品谱图Part 04应用方案(加强版)Application scheme采用GCMS-QP2020 NX结合HS-20 NX,建立了环氧乙烷残留量的GCMS定量方法,对预灌封注射器组合件中环氧乙烷定量分析。与GC法相比较,GCMS法灵敏度更高,抗干扰能力更强。分离度环氧乙烷和乙醛有相似的性质及质谱图,在公示稿方法三条件下,环氧乙烷和乙醛分离度为1.847,色谱柱分离良好,满足公示稿的要求。环氧乙烷和乙醛GCMS谱图(10 μg/mL)标准曲线线性GCMS法具有更高的灵敏度,环氧乙烷标准曲线浓度范围为0.2 ~ 20 μg/mL,标准曲线如下图,线性相关系数R为0.9999,线性关系良好。环氧乙烷GCMS谱图对比图(0.2 μg/mL)重复性重复性实验中,取标准曲线最低浓度点环氧乙烷对照品溶液(0.2 μg/mL),平行制备6份样品,连续进样,环氧乙烷峰面积RSD(%)为3.5%,GCMS谱图对比图如下。环氧乙烷GCMS谱图对比图(0.2 μg/mL)小编说岛津秉承“以科学技术向社会做贡献”的宗旨,为了更好地服务客户,想您所想,及您所需,及时快速地推出应用方案。希望药包材中环氧乙烷的标准版和加强版应用方案能够助力您快速应对4209《药包材环氧乙烷测定法》公示稿的检测要求。请关注岛津应用云,相关应用持续更新中。“药典标准”系列预告l 药包材溶出物测定篇l 橡胶密封件表面硅油量测定篇l 预灌封注射器钨溶出量测定篇l 药包材金属元素、金属离子测定篇撰稿人:包晓明 于爽— End —本文内容非商业广告,仅供专业人士参考。如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn
  • 中国仪器仪表学会标准转化为ASTM国际标准发布实施
    ASTM(国际材料与试验协会)标准D1076-23“Standard Specification for Rubber—Concentrated, Ammonia Stabilized, Creamed, and Centrifuged Natural Latex”于日前发布实施。其中,中国仪器仪表学会标准T/CIS 17002-2018《胶乳水份测定 微波透射法》被转化为该标准中的方法B。  ASTM International国际标准组织是当前世界上最大的标准组织之一,是一个独立的非政府标准化工作机构。ASTM拥有来自全球140多个国家的3万多世界顶级的技术专家和商业专家会员。ASTM在材料特性和性能、试验方法和程序标准方面,在国际范围内有很大的影响力。  微波传输法测定胶乳水份技术,是我国首创的水份测定技术,其原理与ISO标准、我国的国家标准及其他可看到的国外标准方法不同。与其他的测试方法相比,本标准方法具有测量过程样品准备简单、高效;测量时间短,测量效率有几个数量级的提升 测量准确,测量的重复性和再现性好;操作简便,方便于现场检测或在线检测 测试成本低,对测试环境要求低 整个测试过程节能、减排、环保绿色等优点。  中国仪器仪表学会2018年发布了该团体标准后,于2019年6月在ASTM橡胶专业技术委员会(ASTM/D11)季度工作会议上,将本标准英文版作了专题介绍并作为ASTM标准新提案。2020年初,ASTM International来函通知,他们决定将 “中国仪器仪表学会标准《胶乳水份测定 微波透射法》修订为ASTM International 标准D1076-15的内容”,商议我们开展相关修订。  日前,ASTM关于橡胶的新版标准D1076-23已经发布。他们在发布的该标准中清晰的标注出中国仪器仪表学会的贡献(见图中圈出内容),以此体现对知识产权的尊重。  我们相信,该标准方法在国际范围的发布和实施,一定会对相关行业和产业产生明显效益,会对具有创新和突破的微波传输法测定水份技术的发展和推广产生明显的推动作用。  ASTM通报中国仪器仪表学会,本标准方法的发布,已经引起了某个国家对该技术在其他方面应用的考虑。  另外,中国仪器仪表学会制定发布的团体标准,转化为ISO(国际标准组织)标准的将会在2024年有陆续完成并发布。
  • 【梅特勒托利多天平新品专栏】如何应对多通道数据传输
    手工记录,不仅麻烦且容易出错。随着智能与自动化发展,越来越多的用户对天平有数据传输的需求。梅特勒托利多新一代全新和标准天平注重数据传输方案的解决,可帮助用户应对多样的数据传输需求。需求1:将天平的称量数据传输到电脑上的EXCEL里解决方案:Drop to cursor方案优势:无需任何软件,只需要一根数据线即可实现天平到电脑EXCEL数据的传输,并且支持传输时间、日期、样品ID号、单位等信息。需求2:将天平的称量数据导出到U盘里解决方案:U盘导出方案优势:可一键将称量数据导出到U盘,支持时间、日期、ID、结果状态等一系列信息,并且配有导出成功提醒,方便得知导出状态。需求3:同时传输几台天平的数据到系统里,最好还能对每台天平的称量数据进行图表分析解决方案:EasyDirect Balances方案优势:可同时管理几台天平的称量数据;可轻松查看结果并按日期、仪器、用户或样品进行筛选。将结果可视化为图表,以评估目标和允差范围,并进行统计以进行有效分析;支持XML、CSV、XLSX或PDF等格式每天、每小时甚至立即可以自动导出需要的数据;可提供调平、测试、校正和维修状态信息,为用户提供所有连接仪表的简单操作概览。需求4:将天平的称量数据传输到内部数据管理系统解决方案:MT-SICS方案优势:天平可以直接将称量数据传输到客户的数据管理系统,方便称量数据的采集和分析。下图为:某光伏客户太阳能电池偏在进行丝网印刷时,需要将电池片的银浆印刷量传输到客户的数据管理中。天平客户的系统操作界面客户的数据管理系统需求5:在一台天平上,配套外界设备(如:打印机等)并同时实现上述多种传输方式解决方案:多通道传输方案优势:可实现同时传输数据至不同设备,为数据管理和天平使用提供了更多的灵活性,基于此方案的典型应用,如:打印数据的同时,保存打印格式数据至U盘(软/硬备份一键完成);将数据同时传至企业内部管理系统和MT其他分析仪器等。梅特勒托利多新一代高级和标准天平提供丰富的接口,比如RS232,USB-A,USB-C以及LAN接口,满足客户多样性的有线和无线数据传输需求。
  • 迷你《星际迷航》:中科大实现单光子高维量子态瞬间传输
    p style=" text-indent: 2em " 《星际迷航》式的“瞬间传输”虽然只停留在科幻作品中,但量子信息学家们对于“瞬间传输”一个粒子的量子态已经有了经验。 /p p style=" text-indent: 2em " 这种被称作“量子隐形传态”(quantum teleportation)的技术,本质上是不改变一个粒子(如一个光子)位置的情况下,把其上的特定信息在遥远的另一个粒子上重建起来,中间无需具体的传送物质,就像是魔术里面的“大变活人”。 /p p style=" text-indent: 2em " 只不过,过去科学家们只做到了二维量子态的隐形传态,近日,中国科学技术大学郭光灿院士团队李传锋、柳必恒研究组报告了最新进展:利用6光子系统,他们对单光子的三维量子态实时了高效的隐形传送。 /p p style=" text-indent: 2em " 郭光灿团队认为,高维量子隐形传态相比起二维系统具有信道容量更高、安全性更高等优点。相关技术可用于其他高维量子信息研究,为构建高效的高维量子网络打下坚实基础。 /p p style=" text-indent: 2em " 量子隐形传态 /p p style=" text-indent: 2em " 量子隐形传态需要基于一种量子世界里的奇妙现象实现,那就是“量子纠缠”。 /p p style=" text-indent: 2em " 处于纠缠态的两个微观粒子不论相距多远都存在一种关联,其中一个粒子状态发生改变(比如人们对其进行观测),另一个的状态会瞬时发生相应改变,仿佛“心灵感应”。比方说,如果一个光子的偏振态是“向上”的,那么另一个光子的偏振态必然是“向下”的。 /p p style=" text-indent: 2em " 制备出这样一对纠缠起来的光子,科学家们就可以进一步开展“大变光子”的演示。 /p p style=" text-indent: 2em " 我们假设小红想把手上1号光子的量子态传给小明。那么,科学家就制备出一对纠缠起来的2号光子和3号光子,通过光纤传输、或是通过卫星分别发给小红和小明。接着,小红对1号光子和2号光子进行一种特定的操作,称为“贝尔态测量”(BSM)。根据量子的一些基本特性,1号光子和2号光子经过测量之后,他们的量子态会改变,与2号光子处于纠缠态的3号光子也会发生相应变化。在得到某一个测量结果时,小明手上的3号光子恰好会变到1号光子最初的状态,隐形传态就此完成。 /p p style=" text-indent: 2em " 1993年,IBM的查尔斯· 本内特(Charles H. Bennett)和其他5位科学家一起提出了这个奇妙的构想,后来在1997年由奥地利因斯布鲁克大学的蔡林格(Anton Zeilinger)团队首次实现了单光子自旋态的传输。 /p p style=" text-indent: 2em " 2017年,“墨子号”量子通信实验卫星宣布实现了卫星和地面站之前遥远的星地量子隐形传态。 /p p style=" text-indent: 2em " 从二维到多维 /p p style=" text-indent: 2em " 不过,此前实验通常传输的是光子的偏振态这个量。偏振态是一个二维态,可以在二维空间中由两个本征矢量描述。 /p p style=" text-indent: 2em " 但郭光灿团队认为,光子自然存在其他一些多维态,例如轨道角动量、时间模式、频率模式和空间模式等,多维系统在量子世界里更为普遍。因此,要完全远程重建单光子的量子态,需要进行多维态的隐形传送。 /p p style=" text-indent: 2em " 论文指出,传送高维量子态主要存在两大挑战。一是要产生高质量的高维纠缠态,这是量子隐形传态的基础。 /p p style=" text-indent: 2em " 为此,李传锋、柳必恒等人从2016年开始就采用光子的路径自由度编码,解决路径比特相干性问题,制备出高保真度的三维纠缠态。他们也解决路径维度扩展问题,实现了32维量子纠缠态,此外,他们实现了高维量子纠缠态在11公里光纤中的有效传输。 /p p style=" text-indent: 2em " 二就是要对光子实施高维贝尔态测量。理论研究表明,在线性光学体系中,必须采用辅助粒子才能实现高维量子隐形传态。 /p p style=" text-indent: 2em " 在量子隐形传态原本的模型里只有三个光子,郭光灿团队发现,利用? log2(d )? -1个辅助纠缠光子对,就可高效实现d维量子隐形传态。也就是说,传输3维量子态,需要1对辅助纠缠光子。 /p p style=" text-indent: 2em " 在这里,小红想要把1号光子的三个空间模式量子态传给小明,除了双方各自得到纠缠起来的2号光子和3号光子以外,小红还要在辅助纠缠光子对4号和5号的帮助下进行高维贝尔态测量,把测量结果通过传统信道(比如打电话)告知小明。最后,小明要根据小红的测量结果对手上的3号光子执行适当的操作,就能把它转变为1号光子的初始状态。 /p p style=" text-indent: 2em " 实验结果表明,量子隐形传态保真度达59.6%,以7个标准差超过了经典极限值1/3,证实了三维量子隐形传态过程的量子特性。 /p p br/ /p
  • SAXS有奖征文精选 | 膜孔道的溶剂化环境调控,实现锂离子选择性传输
    一、介绍 锂资源作为电子设备和电动汽车的关键原料,被誉为 "白色黄金"。为了确保锂资源的稳定供应,人们开始尝试从盐湖中提取锂资源。然而,盐湖中含有大量与Li+离子化学性质相似的Mg2+离子,这极大地增加了盐湖提锂的难度。因此,实现离子的高效分离以及盐湖提锂成为当前研究的重点。目前的研究主要集中在调控膜的尺寸和电荷量,以实现Li/Mg分离。研究表明,许多生物离子通道通过离子与孔道官能团之间的溶剂化/配位相互作用实现对离子的高效分离。然而,对于这种溶剂化/配位相互作用选择性机制在Li/Mg分离的研究仍然相对较少。二、测试和结果Li+/Mg2+离子分离膜的设计原理 由三醛基间苯三酚(Tp)制成的COF以其化学稳定性和与多种酰肼衍生物单体的兼容性而著称。这使得我们能够在图1中很好地研究膜的孔道环境和选择性之间的关系。因此,我们利用Tp与连接不同数量环氧乙烷(EO)单元的酰肼单体制备了膜,这些膜具有不同数量的EO单元,并将其命名为COF-EOx,其中x代表EO单元的数量。 图 1. COF-EOx的化学结构。 我们使用掠入射小角XRD衍射 (GIWAXS)技术评估了以COF-EO2/PAN 膜为代表的COF膜的结晶度。尽管活性COF层非常薄,而且腙键连接的COF具有一定的柔性,这导致该类COF的信号较弱,但XEUSS 3.0*仍然观察到了它们的衍射峰,表明其良好的结晶度(见图2)。此外,我们对COF-EO2/PAN膜进行了取向分析,证实了PAN基底上的COF膜在平面方向上没有优先取向,Qz = 0处的圆形模式证明了这一点(见图2)。这可能是孔道内的醚氧链官能团影响了最终的结果。 图2.(A)PAN基底和(B)COF-EO2/PAN膜对应的2D-GIWAXS图像。(C)上述2D-GIWAXS图像对应的一维图。 为了探究不同长度醚氧链COF膜对Li+和Mg2+跨膜传输的影响,我们首先进行了分子动力学(MD)模拟。结果显示,随着醚氧链长度的增加,Li+和Mg2+的跨膜能垒逐渐下降。这表明,醚氧链在促进离子传输方面发挥了重要作用。有趣的是,含有最长醚氧链的COF-EO4膜在Li+和Mg2+离子间的跨膜能垒上并未显示出最大的差异。相反,COF-EO2膜显示出最高的跨膜能垒差(见图2A),表明醚氧链能够有效调节COF膜的孔道环境,优化其分离Li+和Mg2+的性能。膜孔径的测量 随后,我们通过测量不易水合的四甲基氯化铵、四乙基氯化铵、四丙基氯化铵、四丁基氯化铵和四戊基氯化铵溶液的跨膜电导率,拟合出了COF-EOx/PAN膜的孔径。根据拟合结果,COF-EO0/PAN、COF-EO1/PAN、COF-EO2/PAN、COF-EO3/PAN和COF-EO4/PAN的孔径分别为2.86、2.51、2.13、1.98和1.82 nm(见图3B)。这个结果表明,不同长度的醚氧链对COF膜的孔径影响不大,这表明在水溶液中,醚氧链可以自由运动。研究Li+和Mg2+的跨膜选择性 接着我们测试了孔道醚氧链的长度对Li+和Mg2+相对扩散速率的影响。结果显示Li+和Mg2+的相对离子通量与EO单元数量呈现出明显的火山状曲线关系(见图3C,插图)。具有中等长度醚氧链的COF-EO2/PAN膜展现出Li+和Mg2+离子相对迁移率的最大差异。这一发现与MD模拟的结果非常吻合。考虑到这些差异,为了量化醚氧链对Li+和Mg2+离子跨膜传输的影响,我们首先测量了COF-EOx/PAN在单盐条件下的离子通量,并将这些膜与不含醚氧链的COF-EO0/PAN进行了比较。我们的研究结果表明,增加醚氧链的长度可以增强离子传输,因为随着EO单元数量的增加,传输速度持续增加(见图3A)。值得注意的是,含有四个EO单元的COF-EO4/PAN对Li+和Mg2+离子的传输速度最高,超过COF-EO1/PAN对Li+和Mg2+传输速度的两个数量级以上。我们注意到这些膜的孔径随着醚氧链长度的增加而略有减小,这更加为醚氧链在离子传输中的促进作用提供了确凿的证据。图3. 离子跨膜行为的研究。(A) 根据PMF曲线得出的Li+和Mg2+离子穿过COF-EOx的跨膜自由能垒;(B) 四烷基铵阳离子与Cl-离子跨膜的相对迁移率;(C) COF-EOx/PAN在两侧注入相同浓度梯度溶液的条件下记录的I-V图(插图:COF-EOx/PAN的Vr)。 为了对这些实验观察结果做出合理解释,我们测量了COF-EOx/PAN中的Li+和Mg2+离子浓度。我们发现,Li+和Mg2+离子的电导率都高于体相值,并且随着醚氧链长度的增加,偏离更为明显(见图4B)。这表明,具有较长醚氧链的膜孔道能吸附更多的Li+和Mg2+离子。为了定量评估COF-EOx/PAN膜的跨膜能垒,我们测量了离子跨膜的表观活化能。结果表明,随着膜孔道EO单元数量的增加,Li+和Mg2+的表观活化能降低,而COF-EO2的Li+和Mg2+跨膜活化能差异最大,这与MD模拟和电化学实验结果一致(见图4D)。基于上述结果,我们认为基于配位化学的离子识别(通过促进传输机制发生)可用于合理解释选择性分离(见图4E)。图4. (A) 在1 M单盐条件下测试的LiCl和MgCl2穿过COF-EOx/PAN的离子通量,以及通过DFT计算得出的Li+和Mg2+与COF-EOx的结合能;(B) COF-EOx/PAN的电导率与氯化锂浓度的关系;(C) MD计算得出的Li+(虚线)和Mg2+(实线)穿过COF-EOx的PMF曲线(灰色背景代表离子进入COF孔道的区域;(D)在1 M单盐条件下测试的COF-EOx/PAN膜上的LiCl和MgCl2跨膜活化能以及相应的Li+/Mg2+选择性,以及(E)推测的离子跨膜传输机理。 为了进一步评估COF-EOx/PAN膜的分离性能,我们使用含有相同Li+和Mg2+离子浓度(0.025-1 M)的混合溶液进行了扩散实验。Li+和Mg2+离子的二元盐选择性峰值在15到331之间(见图5A)。与单盐条件相比,COF-EOx/PAN在二元体系下测试的Li+/ Mg2+选择性更高,这可能是因为在二元体系下,由于离子存在竞争作用,Mg2+离子的通量极大地减少。为了定量分析这一现象,我们将二元体系中的离子通量与单盐溶液中的离子通量进行了归一化处理。分析表明,在二元体系下,Li+和Mg2+离子的通量分别减少至0.34-0.60和0.06-0.19。因此,导致了Li+/ Mg2+选择性的增加(见图5B)。电驱动二元盐体系下的Li+/Mg2+分离性能的研究 为了研究COF-EOx/PAN在实际应用中的性能,采用了类似工业电渗析的装置,并在5 mA cm-2的电流密度下评估了其性能。实验中使用了0.1 M LiCl和0.1 M MgCl2的二元水溶液作为进料液。结果表明,COF膜的Li+/Mg2+分离比随着膜中醚氧链上EO单元数量的增加而变化。在电驱动条件下,虽然观察到离子通量显著增加,但COF膜仍然实现了高达1352的Li+/Mg2+分离比,远超过COF-EO2/PAN在扩散渗析条件下的分离比,成为迄今为止报道中性能最优的锂镁分离膜之一。此外,COF-EO2/PAN的Li+/Mg2+选择性超过了ASTOM标准两个数量级。因此,在使用COF-EO2/PAN进行电渗析处理后,西台吉尔盐湖(中国)的模拟溶液中Li+/Mg2+的摩尔比从0.06显著提升至10.9,而阿塔卡马盐湖(智利)模拟溶液中Li+/Mg2+的摩尔比从0.61提高至230。这些结果表明,COF-EO2/PAN在盐湖提锂应用中具有巨大的潜力。另外,COF-EO2/PAN还展现出卓越的长期稳定性。尽管选择性随时间略有下降,但通过用去离子水清洗膜,其选择性至少可以在10个周期后完全恢复。COF-EO2/PAN在不同条件下展现的全面稳定性和优异的选择性,使其成为盐湖提锂工业中理想的膜材料。图5. (A) 在二元盐体系下测试的LiCl和MgCl2在COF-EOx/PAN中的离子通量以及相应的LiCl和MgCl2的选择性(各为 1 M,误差条代表三个不同测量值的标准偏差);(B) 在二元盐体系下测试的LiCl和MgCl2的离子通量与在单盐条件下测试的离子通量(各为1 M)的归一化通量;(C) COF-EO2/PAN对Li+/Mg2+的选择性和对LiCl的离子通量与其他膜材料的比较。三、结论 在本研究中,我们通过一系列系统性研究深入探讨了醚氧链对COF膜在离子进膜、跨膜扩散以及选择性方面的影响。我们的研究成果揭示了一个重要发现:与Mg2+的传输相比,醚氧链替代的离子水合物对Li+的传输更为有利。此外,Li+和Mg2+与膜中密集分布的醚氧链形成的络合作用导致了膜孔道内离子的富集,有效地将离子与体相溶液隔离。这一富集效应在静电排斥力的作用下促进了离子通过膜的传导。Li+与Mg2+跨膜传导的活化能差异决定了膜的选择性特征。在分子层面上,离子选择性的机理研究表明,通过调节离子与膜之间的结合能,可以在保持高离子通量的同时提升离子选择性。Author: Qingwei MENGZhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China参考文献:[1] Meng, Qing-Wei, et al. "Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes." Proceedings of the National Academy of Sciences 121.8 (2024): e2316716121.随后,我们通过测量不易水合的四甲基氯化铵、四乙基氯化铵、四丙基氯化铵、四丁基氯化铵和四戊基氯化铵溶液的跨膜电导率,拟合出了COF-EOx/PAN膜的孔径。根据拟合结果,COF-EO0/PAN、COF-EO1/PAN、COF-EO2/PAN、COF-EO3/PAN和COF-EO4/PAN的孔径分别为2.86、2.51、2.13、1.98和1.82 nm(见图3B)。这个结果表明,不同长度的醚氧链对COF膜的孔径影响不大,这表明在水溶液中,醚氧链可以自由运动。
  • 新能源汽车引领下年更新159条标准——2021汽车材料及零部件测试标准盘点
    2021年可谓标准“元年”,中共中央、国务院印发《国家标准化发展纲要》,将推动标准化与科技创新互动发展作为重要任务之一,研究制定新能源汽车、智能网联汽车和机器人等领域关键技术标准,推动产业变革。我国是汽车产销第一大国,随着新能源汽车、智能网联汽车技术的快速发展和应用,充分发挥标准的引领和规范作用,已成为支撑我国汽车产业转型升级和高质量发展的推动力。回顾过去这一年,我国批准发布大量汽车标准,本文就国家标准、行业标准及主流团体标准进行了简要盘点,以飨读者。国家标准国家标准分为强制性标准和推荐性标准两种,强制性标准主要包括汽车的安全性标准、汽车排放物的控制标准、汽车操声限制标准、汽车燃油消耗量限制标准等。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的国家标准共58项。序号标准号标准名称发布日期实施日期1GB 17675-2021汽车转向系 基本要求2021/2/202022/1/12GB 19578-2021乘用车燃料消耗量限值2021/2/202021/7/13GB 26512-2021商用车驾驶室乘员保护2021/2/202022/1/14GB/T 39851.2-2021道路车辆 基于控制器局域网的诊断通信 第2部分:传输层协议和网络层服务2021/3/92021/10/15GB/T 39895-2021汽车零部件再制造产品 标识规范2021/3/92021/10/16GB/T 39897-2021车内非金属部件挥发性有机物和醛酮类物质检测方法2021/3/92021/10/17GB/T 39896-2021厢式货车系列型谱2021/3/92021/10/18GB/T 32694-2021插电式混合动力电动乘用车 技术条件2021/3/92021/10/19GB/T 26779-2021燃料电池电动汽车加氢口2021/3/92021/10/110GB/T 19753-2021轻型混合动力电动汽车能量消耗量试验方法2021/3/92021/10/111GB/T 19237-2021汽车用压缩天然气加气机2021/3/92021/10/112GB/T 18386.1-2021电动汽车能量消耗量和续驶里程试验方法 第1部分:轻型汽车2021/3/92021/10/113GB/T 39901-2021乘用车自动紧急制动系统(AEBS)性能要求及试验方法2021/3/92021/10/114GB/T 39899-2021汽车零部件再制造产品技术规范 自动变速器2021/3/92021/10/115GB 9656-2021机动车玻璃安全技术规范2021/4/302023/1/116GB 40164-2021汽车和挂车 制动器用零部件技术要求及试验方法2021/4/302022/1/117GB/T 40032-2021电动汽车换电安全要求2021/4/302021/11/118GB/T 31498-2021电动汽车碰撞后安全要求2021/8/192022/3/119GB/T 40432-2021电动汽车用传导式车载充电机2021/8/192022/3/120GB/T 40494-2021机动车产品使用说明书2021/8/192022/3/121GB/T 40499-2021重型汽车操纵稳定性试验通用条件2021/8/192022/3/122GB/T 40501-2021轻型汽车操纵稳定性试验通用条件2021/8/192022/3/123GB/T 40509-2021汽车转向中心区操纵性过渡特性试验方法2021/8/192022/3/124GB/T 40507-2021乘用车 自由转向特性 转向脉冲开环试验方法2021/8/192022/3/125GB/T 40512-2021汽车整车大气暴露试验方法2021/8/192022/3/126GB/T 40521.1-2021乘用车紧急变线试验车道 第1部分:双移线2021/8/192022/3/127GB/T 40521.2-2021乘用车紧急变线试验车道 第2部分:避障2021/8/192022/3/128GB/T 38146.3-2021中国汽车行驶工况 第3部分:发动机2021/8/192022/3/129GB/T 40429-2021汽车驾驶自动化分级2021/8/192022/3/130GB/T 24347-2021电动汽车DC/DC变换器2021/8/192022/3/131GB/T 40428-2021电动汽车传导充电电磁兼容性要求和试验方法2021/8/192022/3/132GB/T 34015.4-2021车用动力电池回收利用 梯次利用 第4部分:梯次利用产品标识2021/8/192022/3/133GB/T 40433-2021电动汽车用混合电源技术要求2021/8/192022/3/134GB/T 40430-2021道路车辆 基于控制器局域网的诊断通信 符号集2021/8/192022/3/135GB/T 34015.3-2021车用动力电池回收利用 梯次利用 第3部分:梯次利用要求2021/8/192022/3/136GB/T 14172-2021汽车、挂车及汽车列车静侧倾稳定性台架试验方法2021/8/192022/3/137GB/T 40822-2021道路车辆 统一的诊断服务2021/10/112022/5/138GB/T 40861-2021汽车信息安全通用技术要求2021/10/112022/5/139GB/T 5334-2021乘用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/140GB/T 39851.3-2021道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求2021/10/112022/5/141GB/T 33598.3-2021车用动力电池回收利用 再生利用 第3部分:放电规范2021/10/112022/5/142GB/T 38775.7-2021电动汽车无线充电系统 第7部分:互操作性要求及测试 车辆端2021/10/112022/5/143GB/T 12678-2021汽车可靠性行驶试验方法2021/10/112022/5/144GB/T 27840-2021重型商用车辆燃料消耗量测量方法2021/10/112022/5/145GB/T 19754-2021重型混合动力电动汽车能量消耗量试验方法2021/10/112022/5/146GB/T 40712-2021多用途货车通用技术条件2021/10/112022/5/147GB/T 40711.2-2021乘用车循环外技术/装置节能效果评价方法 第2部分:怠速起停系统2021/10/112022/5/148GB/T 38775.5-2021电动汽车无线充电系统 第5部分:电磁兼容性要求和试验方法2021/10/112022/5/149GB/T 40578-2021轻型汽车多工况行驶车外噪声测量方法2021/10/112022/5/150GB/T 12535-2021汽车起动性能试验方法2021/10/112022/5/151GB/T 40625-2021汽车加速行驶车外噪声室内测量方法2021/10/112022/5/152GB/T 5909-2021商用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/153GB/T 40711.3-2021乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调2021/10/112022/5/154GB/T 39037.1-2021用于海上滚装船运输的道路车辆的系固点与系固设施布置 通用要求 第1部分:商用车和汽车列车(不包括半挂车)2021/10/112022/5/155GB/T 40711.4-2021乘用车循环外技术/装置节能效果评价方法 第4部分:制动能量回收系统2021/10/112022/5/156GB/T 40855-2021电动汽车远程服务与管理系统信息安全技术要求及试验方法2021/10/112022/5/157GB/T 40857-2021汽车网关信息安全技术要求及试验方法2021/10/112022/5/158GB/T 40856-2021车载信息交互系统信息安全技术要求及试验方法2021/10/112022/5/1行业标准汽车行业标准主要包括汽车整车、发动机及各大总成的性能要求、技术条件等表明产品本身质量水平的标准。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的行业标准共9项。序号标准号标准名称发布日期实施日期1QC/T 1149-2021大件运输专用车辆2021/5/172021/10/11QC/T 1152-2021电动摩托车和电动轻便摩托车用DC/DC变换器技术条件2021/8/212022/2/12QC/T 1153-2021汽车紧固连接螺栓轴力测试 超声波压电陶瓷片法2021/8/212022/2/13QC/T 1154-2021汽车微电机用换向器2021/8/212022/2/14QC/T 1155-2021汽车用USB功率电源适配器2021/8/212022/2/15QC/T 1156-2021车用动力电池回收利用 单体拆解技术规范2021/8/212022/2/16QC/T 271-2021微型货车防雨密封性试验方法2021/8/212022/2/17QC/T 550-2021汽车用蜂鸣器2021/8/212022/2/18QC/T 62-2021摩托车和轻便摩托车减震器2021/8/212022/2/19QC/T 942-2021汽车材料中六价铬的检测方法2021/8/212022/2/1团体标准本文仅整理由中国汽车工程学会(CSAE)批准发布的团体标准,共92项。中国汽车工程学会标准化工作最早始于2006年,2014年入选首批团体标准试点单位。以下标准自发布之日起生效。序号标准号标准名称发布日期1T/CSAE 172-2021电动乘用车剩余里程准确度评价试验方法2021/2/262T/CSAE 173-2021基于道路载荷谱的汽车用户使用与试验场试验相关性分析评价规程2021/3/293T/CSAE 174-2021汽车产品可靠性增长开发指南2021/3/294T/CSAE 175-2021汽车可靠性设计的用户定义方法2021/3/295T/CSAE 176-2021电动汽车电驱动总成噪声品质测试评价规范2021/3/296T/CSAE 177-2021电动汽车车载控制器软件功能测试规范2021/4/127T/CSAE 179-2021汽车用高韧性热镀铝硅合金镀层热冲压钢板技术要求2021/4/128T/CSAE 180-2021轻型汽车道路行驶工况2021/4/129T/CSAE 40-2021乘用车塑料前端框架技术条件2021/4/1210T/CSAE 178-2021电动汽车高压连接器技术条件2021/5/1311T/CSAE 181-2021汽车室内润滑脂气味测试及评价方法2021/5/1312T/CSAE 182-2021汽油机油低速早燃性能测试方法2021/5/1313T/CSAE 184-2021电动汽车动力蓄电池健康状态评价指标及估算误差试验方法2021/5/1314T/CSAE 185-2021自动驾驶地图采集要素模型与交换格式2021/5/1315T/CSAE 186-2021电动汽车动力蓄电池箱火灾用气体防控装置2021/5/1316T/CSAE 183-2021燃料电池堆及系统基本性能试验方法2021/6/1117T/CSAE 75.2-2021汽车防锈包装规程 第2部分:动力总成及其主要零部件2021/6/1118T/CSAE 191-2021全球典型地区气候环境老化严酷度分级2021/6/1119T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1120T/CSAE 193-2021汽车用自攻螺钉在热塑性塑料上拧紧扭矩性能试验方法2021/6/1130T/CSAE 199-2021汽车用高真空压铸铝合金减振器支座技术条件2021/6/3031T/CSAE 200-2021汽车用铝合金直锻工艺轮毂技术条件2021/6/3032T/CSAE 201-2021汽车用薄钢板冲压极限减薄率测试方法
  • 中国仪器仪表学会标准转化为ISO标准发布实施!
    近日,由中国仪器仪表学会主导编制的国际标准ISO 23745:2024《船舶和海洋技术 船载气象仪器通用技术条件》正式发布。这是继中国仪器仪表学会标准转化为ASTM标准正式发布实施之后,中国仪器仪表学会标准国际化工作取得又一丰硕成果。至此,中国仪器仪表学会制定发布的团体标准,在全世界最具权威、标准占主导地位的标准化组织ISO也开始了转化发布。中国仪器仪表学会于2018年完成制定并发布的团体标准T/CIS 47001-2018《船舶气象仪通用技术规范》,该标准于2020年5月被国际标准组织(ISO)批准制定为ISO标准,由中国主导,中国仪器仪表学会任工作组组长单位,工作组成员国包括中国、韩国、德国、美国和俄罗斯。图1. ISO官网发布版面船舶气象仪是安装在船舶上的一个系统,测量气象参数例如但不限于空气温度、相对湿度、风向、风速、大气压力、能见度和海面温度等,在将相关数据存储和传输到船舶相关系统同时,也可以无线方式传输到网络空间。对于这些气象参数的使用,一是安装气象仪的船舶本身,另外就是其他航船的实时共享和岸基气象系统的共享。考虑到散布到大洋各处的船舶气象仪给出的实时实地气象数据的重要性,世界气象组织(WMO)和联合国海委会(IOC)都对船舶气象仪给出的气象数据共享非常重视,并于2001年联合建立了国际志愿船观测(VOS)计划,动员各国气象(或海洋)部门招募航行船舶免费开展海上观测并汇交气象数据,使协议方无偿获得航行海洋气象预报保障服务。但是,由于国际上没有关于船舶气象仪或系统的统一技术规范或标准,各个船舶气象仪给出的气象参数的共享时存在很多问题,例如,各个气象数据上传时的格式、风向等方向性参数的基准、速度等相对量计算数学模型等不尽相同,苦于没有一致性的规范,使各个船舶气象仪给出的数据在共享使用时产生混乱和困难。在本项ISO标准讨论立项时,ISO秘书处注意到了WMO的应用需求,并正式向WMO征询意见,WMO立即就表示出了极大的重视,并在后续整个的本项ISO标准制定过程中全程关注,并持续的给出了专业的技术意见。本标准的制定,填补了国内外船舶气象仪标准空白,满足了船舶气象仪行业和国际气象组织(WMO)的需求,适应了全球范围气象大数据的应用需求。本标准的发布体现了中国仪器仪表学会标准工作国际化的良好成效,是中国仪器仪表学会高质量发展和创建“特色一流”学会的又一重要成果 。后续,中国仪器仪表学会将继续开展国际沟通与合作,推进仪器仪表领域相关国际标准制定和新项目的立项工作,为仪器仪表产业创新发展和质量提升提供高质量标准支撑。图2. ISO23745:2024(英文版)封面
  • 北京中科科尔推出不含塑化剂流体传输方案
    近日,媒体爆出酒鬼酒塑化剂含量严重超标,继接二连三的塑化剂风暴之后,此次塑化剂事件再次引起公众关注。据报道称,酒品中的塑化剂主要来源于塑料接酒桶、塑料输酒管、酒泵进出乳胶管、封酒缸塑料布、成品酒塑料内盖、成品酒塑料袋包装、成品酒塑料瓶包装、成品酒塑料桶包装等。溶进白酒产品塑化剂最高值是酒泵进出乳胶管,目前所有白酒企业都在使用该设备。每10米乳胶管可在白酒中增加塑化剂含量0.1mg/kg,有些企业在工艺流程中使用一次酒泵(50米乳胶管),有些企业则多达4~5次。北京中科科尔仪器有限公司最新推出MasterflexTYGON® E-LFL系列泵管,不含塑化剂,满足USP6级,EP3.2.9,ISO10993和FDA要求,不含BPA或邻苯二甲酸盐,保护环境,更具可持续性,对产品、人体和环境更安全,特别适用于实验室、食品饮料和生物制药应用,安全无毒可通过环氧乙烷或高温高压消毒。广泛的抗化学腐蚀性,容许传输各种流体,所有透明TYGON蠕动泵管中,使用寿命最长。适用于Masterflex蠕动泵的各种尺寸泵管,确保传输性能最佳。应用通用实验室生物制药生产过滤和发酵高粘度流体传输食品饮料,化妆品解决方案一完整MasterflexL/S变速泵系统流速范围:0.28~1700mL/min驱动器:标准数字驱动器0.1~600rpm泵头:L/SEasy-Load2泵头泵管:TYGON® E-LFLL/S精密泵管或高效精密泵管解决方案二完整MasterflexI/P无刷工艺泵系统流速范围:0.41~8.0LPM驱动器:I/P无刷工艺驱动器33~650rpm泵头:I/PEasy-Load泵头泵管:TYGON® E-LFLI/P精密泵管或高效精密泵管相关链接1:http://www.keerinstrument.com.cn/index.php/products/detail/id/841相关链接2:http://www.keerinstrument.com.cn/index.php/products/detail/id/785相关链接3:http://www.keerinstrument.com.cn/index.php/products/detail/id/787
  • 重点基础材料技术提升与产业化专项部署12个重点任务 多项涉检测和标准要求
    p   2月19日,科技部网站发布国家重点研发计划“重点基础材料技术提升与产业化”重点专项2016年度项目申报指南。 /p p   本专项围绕钢铁、有色金属、石化、轻工、纺织、建材等6个方面重点基础材料技术提升与产业化部署31个重点研究任务,专项实施周期为5年,即2016~2020年。按照分步实施、重点突出原则,2016年启动其中12个重点研究任务共37个子任务:高品质特殊钢、高强度大规格易焊接船舶与海洋工程用钢、大规格高性能轻合金材料、高精度铜及铜合金材料、化纤柔性化高效制备技术、高性能工程纺织材料制备与应用、基础化学品及关键原料绿色制造、合成树脂高性能化及加工关键技术、塑料轻量化与短流程加工及功能化技术、制笔新型环保材料、水泥特种功能化及智能化制造技术、特种功能玻璃材料及制造工艺技术等。 /p p   值得注意的是,在2016年启动的31个子任务中,有多项明确了对检测方法和标准的建设要求。其中,在聚酯、聚酰胺纤维柔性化高效制备技术中就明确指出要申报或授权发明专利8项,建立检测方法和标准5项 高品质原液着色纤维开发及应用方面要求建立原液着色纤维制备与应用的检测、评价、标准规范和技术服务体系。申报或授权发明专利10项,建立检测方法和标准10项 高性能聚酯、聚酰胺66工业丝制备技术方面建立高性能工业丝质量控制、检测标准及评价方法体系,实现万吨规模高品质聚酯、聚酰胺66工业丝产业化示范。 /p p   更多详细内容请参阅附件: img src=" /admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201602/ueattachment/d54037ed-4ba1-4bbd-8f9e-f5dcaeee2609.doc" 重点基础材料技术提升与产业化重点专项2016年度项目申报指南.doc /a br/ /p
  • 新标准实施丨X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法
    导读随着国家标准《GB/T 40196-2021 X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法》于2021年12月1日正式实施,标志着防腐木材和木材防腐剂中重金属分析已从传统繁复的湿化分析向智能化高效化能谱仪的快速分析迈进。岛津EDX-7000能量色散型X射线荧光光谱仪快速无损分析防腐木材和木材防腐剂的重金属分析应用也早已完成,您准备好了吗? 法规解读据统计,我国防腐木年生产量约500万立方米,年产值约1000亿元,各类型防腐剂消费总量约3000吨,其中铜铬砷(CCA)和季铵铜(ACQ)木材防腐剂总生产量占90%以上。目前,我国现阶段市场上流通的防腐木平均每立方米载药量远低于户外最低C3类4.0kg/m³使用要求。数据表明防腐木行业发展及其市场秩序已经偏离相关标准规范。而《GB/T 40196-2021》标准的制定将会给防腐木行业产品快速检测、快速分析数据、在线指导生产带来革命性的突破,助推防腐木行业高质量发展。 铜铬砷(简称CCA),主要成分为铜、铬和砷盐或其他氧化物的混合物;季铵铜(简称ACQ),是铜盐(以氧化铜计)与季铵盐化合物(以二癸基二甲基氯化铵计)的混合物。 CCA和ACQ都是木材防腐剂中能抑制木材腐朽菌、霉菌、变色菌、昆虫和海生动物在木材中生长的活性成分。CCA木材防腐剂和ACQ木材防腐剂适用于建筑用材、园林景观用材、矿用木材、铁道枕木、船用木材、海洋用材及其他工业用材和农用木材等的防腐、防虫(蚁)、防海生钻孔动物处理。 《GB/T 40196-2021 X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法》国家标准,规范了能量色散型X射线荧光光谱仪如何建立工作曲线,如何对防腐木材和木材防腐剂中的氧化铜、三氧化铬、五氧化二砷含量进行分析。岛津是如何应对的呢? 岛津应对方案根据铜、铬和砷元素浓度与X荧光强度成正比例关系的原理,利用岛津EDX-7000能量色散型X射线荧光光谱仪建立防腐木材和木材防腐剂中Cu、Cr、As的工作曲线,然后采用工作曲线法进行防腐木材和木材防腐剂中Cu、Cr、As的含量分析。 • EDX-7000能量色散型X射线荧光光谱仪特点 工作曲线由于不同基体对X荧光的吸收与增强不同,故要建立铜铬砷防腐木材、铜铬砷木材防腐剂、季铵铜防腐木材、季铵铜木材防腐剂四种基体的工作曲线,根据不同基体选择对应的工作曲线进行分析。 图2 防腐木材粉压片样及木材防腐剂液体样 下面以铜铬砷防腐木材为例,进行介绍。元素氧化物的校准曲线如下图。图3. 元素氧化物校准曲线 各元素氧化物的检出限如下。元素氧化物的检出限(单位:%)按标准要求,连续3次分析实际样品,三次结果极差要求0.3%。选择4个样品进行测试,极差远小于0.3%。同时,与客户提供的参考值吻合良好。 实际样品分析结果(单位:%)说明:样品3次分析结果极差满足标准不大于0.3%的要求。 结语岛津EDX-7000能量色散型X射线荧光光谱仪能够按照标准《GB/T 40196-2021 X射线荧光能谱仪测定防腐木材和木材防腐剂中CCA和ACQ的方法》的方法,对防腐木材和木材防腐剂中的氧化铜、三氧化铬、五氧化二砷含量进行分析,操作简单,无需化学前处理。为木材市场上标准的应对提供了良好的支持! 本文内容非商业广告,仅供专业人士参考。
  • 第六届全国微束分析技术标准宣贯及其在材料研究中应用研讨会通知
    p   随着社会生产力水平的不断发展和各行各业现代化程度的不断提高,普及和提高行业标准化程度已经成为引领经济发展、规范生产行为、促进生产协作的有效手段,也是国家大力提倡的与国际接轨的重要指标之一。全国微束分析标准化技术委员会承担着我国微束分析行业技术标准的制订、宣传、贯彻、推广等任务,旨在为行业技术制定标准和提供技术指导。 /p p   电子显微镜(以下简称电镜)作为最常见的微束分析仪器之一,是人类直接观察微观世界的有力工具。近年来,电镜广泛应用于生命科学和材料科学的各个领域,特别是2017年诺贝尔化学奖授予在冷冻电镜领域做出杰出贡献的三位科学家,使全球的电镜工作者受到了巨大的鼓舞和鞭策。在可预见的将来,以电镜为代表的大型科学仪器的持有量将持续快速增长,对电镜的相关操作、制样、维护、维修人员的需求量也会持续增加。 /p p   为进一步推动微束分析技术标准化工作,促进广大电镜技术工作者之间的交流与合作,满足各单位在质量认证、计量认证、实验室认证与认可等工作中的需要,将举办第六届微束分析标准宣传贯彻及实施和应用研讨会,以使我国各微束分析实验室、相关的科研和企事业单位能更好地执行这些标准,提高分析技术水平及技能,提供更好、更准确的分析结果,提高产品的质量,促进国民经济发展。 /p p   一、组织委员会 /p p   本次宣贯会由全国微束分析标准化技术委员会(SAC/TC38)主办,全国纳米技术标准化技术委员会和广东省工业分析检测中心协办,北京理化分析测试技术学会承办。 /p p   会议组织委员会名单如下:陈家光、陈振宇、丁泽军、范光、高灵清、龚沿东、葛广路、洪健、洪崧、贺连龙、鞠新华、李香庭、李玉武、柳得橹、刘芬、毛骞、马通达、孙振亚、汤斌兵、王孝平、魏宝和、吴文辉、伍超群、杨勇骥、许钫钫、徐坚、姚雷、姚文清、曾荣树、曾毅、曾荣光、章晓中、张作贵、赵江、祝建、朱如凯、钟振前。注:姓名按首字母顺序排序。 /p p   二、大会报告专家 /p p   三、会议时间 /p p   2019年11月24日-28日(报到时间:2019年11月24日) /p p   四、会议地点:广州京溪礼顿酒店 标间/单间 450元/天/间(含早餐) /p p   (住宿统一安排,费用自理。) /p p   五、会议费及培训费:1800元/人。 /p p   六、本次拟宣贯的微束分析技术标准主要内容: /p p   1.中国电子探针、扫描电镜国家标准研制的发展 /p p   2.植物病毒的电子显微镜检测 /p p   3.纳米材料生物效应研究及标准化 /p p   4.EDS分析国家标准中几个关键问题解读 /p p   5.如何获得准确的能谱定量结果 /p p   6.研究并讨论微束分析实验室认可和微束分析实验室比对分析等有关问题 进一步讨论实施微束分析实验室比对分析的有关事宜。 /p p   七、日程安排见第二轮通知。(请参会人员于2019年11月20日前将会 /p p   回执发送至会务组) /p p   八、会务组联系方式: /p p   单位名称:北京理化分析测试技术学会 /p p   通信地址:北京市海淀区西三环北路27号 北科大厦 邮编:100089 /p p   联 系 人:朱凌云:010-68722460 13717666003 spnh88@126.com /p p   网 址:www.lab.org.cn /p p   咨询电话:章燕 010-68731259 伍超群 13660034359 /p p   九、付款信息: /p p   汇款户名:北京理化分析测试技术学会 /p p   汇款银行:华夏银行北京紫竹桥支行 /p p   帐 号:4043200001801900001154 /p p style=" text-align: right "   全国微束分析标准化技术委员会(SAC/TC38) /p p style=" text-align: right "   全国纳米技术标准化技术委员会 /p p style=" text-align: right "   广东省工业分析检测中心 /p p style=" text-align: right "   北京理化分析测试技术学会 /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201911/attachment/2ada361e-c967-4280-85c7-16f540422f4f.pdf" title=" 第六届全国微束分析技术标准宣贯会(4).pdf" 第六届全国微束分析技术标准宣贯会(4).pdf /a /p p br/ /p
  • 第六届全国微束分析技术标准宣贯及材料科学应用研讨会召开
    p   2019年11月25日至28日,“第六届全国微束分析技术标准宣贯及其在材料科学中应用研讨会”在花城广州召开。 /p p   会议由全国微束分析标准化技术委员会(SAC/TC38)主办,全国纳米标准化技术委员会(SAC/TC279)和广东省工业分析检测中心协办,理化分析测试技术学会承办。会议特别邀请了中国科学院院士、中国科学院地球化学研究所谢先德院士做特邀报告。来自全国各地50余位微束分析行业专家学者参加了本次会议。 /p p   会议由全国微束分析标准化技术委员会秘书长刘芬研究员主持。 /p p   深圳大学特聘教授、全国微束分析标准化技术委员会副主任委员徐坚教授致开幕辞。徐教授结合自己曾经担任国际标准化组织微束分析技术委员会(ISO/TC202)主席的经历,阐述了中国标准对于提升国家形象的重大意义,介绍了我国微束分析标准化工作近年来的发展,强调标准强则国强,希望大家群策群力,助力我国早日成为标准化强国。 /p p   广东省工业分析检测中心的唐维学主任作为东道主,对前来参会的嘉宾代表表示热烈欢迎,并介绍了广东省工业分析检测中心,以及中心近年来在标准化工作中取得的成绩。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/b81761fd-a402-439f-9cb5-152535e7e845.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p   span style=" color: rgb(0, 176, 240) "  合影由左至右:伍超群高工(广东省工业分析检测中心)、徐坚教授(深圳大学)、谢先德院士(中国科学院地球化学研究所)、唐维学主任(广东省工业分析检测中心)、刘芬研究员(全国微束分析标准化技术委员会) /span /p p   会议正式开始,谢先德院士的报告《微束分析在鉴定陨石中细小新矿物上的应用》,从地球地质科学专业角度阐述了陨石鉴定工作中的多种微束分析技术在不同分析尺度上的应用,其中特别提到了借助微束分析手段,发现了新矿物的过程。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/f7be8f13-75a6-43ef-98a7-b42b1cfc01b2.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p   随后,多位微束行业大咖次第登场,从严肃的学术科研,到接地气的技术应用,干货满满,高潮迭起。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/501dea28-b73a-417d-9e2d-7bfc94b51264.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图:《纳米材料生物效应研究及标准化》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——解放军第二军医大学 杨勇骥研究员 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/c744bac7-ae59-4974-992e-ddeed99ec7d8.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:《如何获得准确的能谱定量结果》 /span br/ span style=" color: rgb(0, 176, 240) " /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——中国科学院上海硅酸盐研究所 曾毅研究员 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/a1d740cb-8d9a-4953-92fa-fbe1948df894.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:《中国电子探针、扫描电镜国家标准研制的发展》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " ——中国地质科学院矿产资源研究所 陈振宇(教授级高工) /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/54e17e67-f3fd-4ba5-ab3f-0ef3c03833d7.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:《电子探针在材料研究中的应用状况》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——华南理工大学测试中心 雷淑梅高工 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/aa9f29c5-ce35-425b-8481-3ddcfa55942a.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:《实验室认可微束分析标准的注意事项》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——广东省工业分析检测中心 伍超群高工 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 216px " src=" https://img1.17img.cn/17img/images/201911/uepic/890e711e-1bfc-4f52-a200-3142762eb7da.jpg" title=" 8.jpg" alt=" 8.jpg" width=" 450" height=" 216" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span    span style=" color: rgb(0, 176, 240) " 图:《植物病毒的电子显微镜检测》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——浙江大学 洪健研究员 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/91a5b1d8-1784-497a-953a-18066c4b2edd.jpg" title=" 9.jpg" alt=" 9.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:《EDS分析国家标准中几个关键问题解读》 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   ——中国科学院上海硅酸盐研究所 李香庭研究员 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 499px " src=" https://img1.17img.cn/17img/images/201911/uepic/2160f912-2420-49fa-ac60-c74506334975.jpg" title=" 10.jpg" alt=" 10.jpg" width=" 500" height=" 499" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 562px " src=" https://img1.17img.cn/17img/images/201911/uepic/ac1ad370-9793-412b-a214-60554d2d9bd8.jpg" title=" 11.jpg" alt=" 11.jpg" width=" 500" height=" 562" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:精彩报告 豪华阵容 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201911/uepic/35b8dd3d-f18c-402f-a193-96f14c72ae50.jpg" title=" 12.jpg" alt=" 12.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:会场报告座无虚席 /span /p p   此外会议还得到了布鲁克(北京)科技有限公司、阿美特克商贸(上海)有限公司和牛津仪器科技(上海)有限公司、北京中镜科仪技术有限公司等厂家的大力支持。 /p p   布鲁克、阿美特克和牛津仪器三家公司的技术精英也分别介绍了各自公司在微束分析技术创新中的工作进展。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 227px " src=" https://img1.17img.cn/17img/images/201911/uepic/cc58a0f8-d6ed-4dda-b87e-1d7ad75e33db.jpg" title=" 13.jpg" alt=" 13.jpg" width=" 450" height=" 227" border=" 0" vspace=" 0" / /p p   其中,牛津仪器科技(上海)有限公司自2019年8月起,成为全国微束分析标准化技术委员会单位委员,由徐宁安高工担任联络员。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 298px " src=" https://img1.17img.cn/17img/images/201911/uepic/f95de6d9-0018-4f54-831c-60e44a6acf1a.jpg" title=" 14.jpg" alt=" 14.jpg" width=" 450" height=" 298" border=" 0" vspace=" 0" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 图:刘芬秘书长特别向徐宁安高工颁发了单位委员聘书 /span /p p   本次标准宣贯及技术应用研讨会在短短三天内获得了可喜的成效。对于广大电镜技术工作者之间的交流与合作起到了积极的促进作用,部分解答了参会代表在质量认证、计量认证、实验室认证与认可等工作中的遇到的难题,进一步推动了微束分析技术标准化工作的良性有序发展。 /p p   下一届“全国微束分析技术标准宣贯及其在材料科学中应用研讨会”将于2020年10月25-27日在河南开封举行。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 332px " src=" https://img1.17img.cn/17img/images/201911/uepic/3eefae4f-fcdb-4a28-9bf7-7ad0a6716e44.jpg" title=" 15.jpg" alt=" 15.jpg" width=" 500" height=" 332" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图:参会代表合影 /span br/ /p p    strong 全国微束分析标准化技术委员会(SAC/TC38)简介: /strong /p p   全国微束分析标准化技术委员会(SAC/TC 38)成立于1984年,负责全国电子探针、扫描电镜、电子显微镜、离子探针等一类微束原位的分析领域本身的标准化工作,也包括其它重要相关学科中以微束分析为主要研究工具的标准化工作。全国微束分析标准化技术委员会委员由来自生产、教学、科研各方面及全国各地区的专家组成,目前为第六届,有32名委员,设有3个单位委员。已发布和实施国家标准102项,另有9项国家标准在制定中。在国际标准化组织(ISO)中对口国际标准化组织微束分析技术委员会(ISO/TC 202)。值得一提的是,成立于1991年的ISO/TC 202是由中国倡导成立、并设立秘书处的我国第一个国际标准化组织技术委员会 即“先有TC38,后有TC202”。ISO/TC 202和SAC/ TC38的秘书处目前均设立在中国科学院化学研究所。 /p p style=" text-align: right " “微束分析标准化与中镜科仪”提供资料 /p
  • 复享光学-R1在手性超表面非对称光学传输效率测量中的应用
    【概述】光学手性超构表面是由亚波长尺度单元所组成的平面或准平面光子器件。非对称传输是手性超表面的一大光学特性,该特性可应用于集成光路中的光学二极管,与电二极管类似,光学二极管要求器件具有单向性。目前,单层手性超材料中,非对称传输率在理论上被限制在 25% 以内,并伴随很高的吸收损耗,这成为该材料作为光学二极管的应用阻碍。而通过多层三维结构去实现非对称传输,虽然能将传输率突破 25%,但是其加工工艺更加复杂、困难,尤其是亚微米尺度以下的多层结构精准对准目前还很难实现。图1,单层手性超表面2022年,南开大学泰达应用物理学院齐继伟副教授在 Optical Express 上发表了一篇题为《Asymmetric reflection based on asymmetric coupling in single-layer extrinsic chiral metasurfaces》的文章。作者制作了一种单层手性超表面,创新地以圆偏振光斜入射反射的形式提升了非对称传输率,获得了与三维结构相当的非对称传输率。 【样品 & 测试】作者采用电子束光刻技术与金属镀膜技术在石英基底上制备了横向周期 1000nm,纵向周期 650nm 的单层 U型分裂环,该分裂环厚度 100nm,环形宽度 200nm,环形半径 350nm。为观测不同角度倾斜入射的反射情况,作者使用了复享光学的角分辨光谱仪R1,借助设备的自动旋转模块,灵活调整入射角与接收角,实现多角度反射光谱测量。同时,得益于角分辨光谱仪中的通用光学元件插口,作者使用线性偏振片与四分之一波片形成左旋与右旋圆偏振光,轻松获得合适的实验条件。图2,测试示意图作者通过模拟和测量左旋圆偏振光与右旋圆偏振光倾斜入射时超表面的反射光谱,并对比了正向入射与反向入射在 30°~45° 之间的测量结果,如图3 所示。研究发现,在 1120nm 处,右旋圆偏光正向入射与左旋圆偏振光反向入射的反射光谱均呈现出较宽的反射峰;在 1650nm 和 1075nm 处,右旋圆偏光反向入射与左旋圆偏振光正向入射的反射光谱分别显示出相对较窄反射峰。这一结果与 COSMOL 的模拟结果一致。通过理论分析结合实测光谱,作者发现 1120nm 处的反射峰源于四极局域表面等离子体共振模式,而 1650nm 和 1075nm 处的反射峰则源于表面晶格模式。这些发现为深入理解手性超表面的光学特性提供了重要线索。图3,U型分裂环超表面30°~45°反射光谱:(a,b)COSMOL模拟结果;(c,d)角分辨光谱仪测量结果进一步研究中,作者分别对比左旋圆偏振光与右旋圆偏振光正反向反射效率差异,如图4 所示。值得注意的是,反射效率差异在 1000~1600nm 波段最高可达 40%,突破了二维非对称传输理论效率 25% 的限制。图4,圆偏振光非对称反射效率测量结果【总结】作者制备了一种基于单层手性超表面,旨在实现巨大的非对称反射,并将圆偏振光斜入射反射作为关键步骤。复享光学的角分辨光谱仪R1 具备高度适应性,能够轻松适应不同的实验条件,包括变化角度、偏振、相位延迟等参数。这一设备对研究以调控光束特性为主要功能的超表面至关重要。图5,文章对复享光学 R1 的标注【参考文献】 ✽ Fu, Xianhui, et al.Asymmetric reflection based on asymmetric coupling in single-layer extrinsic chiral metasurfaces. Optics Express (2022).
  • 大连化物所设计开发出具有K+高效传输能力的离子传导膜
    近日,中科院大连化学物理研究所储能技术研究部(DNL17)李先锋研究员团队与分子反应动力学国家重点实验室分子模拟与设计研究组(1106组)李国辉研究员团队合作,在离子传导膜材料的结构设计与研究方面取得新进展。团队通过对膜内离子传输通道的设计,实现了K+快速传输,并对膜结构和离子传输机理进行了详细地研究和探讨。   具有快速离子选择性传输能力的膜材料在工业分离、能源等应用领域具有广阔的应用前景。这些应用场景通常涉及从复杂混合物中分离特定离子,因此设计具有高效离子选择性传导的膜材料至关重要,但仍然存在挑战。在本工作中,团队通过金属离子与聚苯并咪唑的配位构建了具有可控离子传输通道的膜材料。研究表明,Zn2+与聚苯并咪唑PBI配位得到均匀的聚合物配位网络,形成连续的水通道,并暴露出更多的极性基团,促使K+的快速传输。团队通过分子动力学模拟计算K+在聚合物网络中的运输行为,揭示K+与聚合物链上的-N=相互作用,并靠近链段的含氧醚键,从而快速通过聚合物膜。 同时,配位膜的自由体积增大,形成亚纳米级分子通道。纳米通道的物理约束和膜的静电相互作用使K+在浓盐和浓碱溶液中的迁移不受溶液浓度的影响,迁移数高达0.9,与阳离子交换膜相当。采用K+高效传输离子传导膜组装碱性锌铁液流电池,可有效缓解电池运行过程由于锌沉积带来的离子强度失衡进而导致水迁移的问题。研究提供了一种通过金属离子配位调节聚合物链结构,进而调控聚合物膜离子传输特性的策略;同时加深了对金属配位聚合物膜离子传输机制的理解。   相关研究成果以“Metal-coordinated polybenzimidazole membranes with preferential K+ transport”为题,于近日发表在《自然—通讯》(Nature Communications)上。该工作的共同第一作者是我所DNL17博士研究生吴金娥、1106组副研究员廖晨伊。上述工作得到国家自然科学基金、中科院电化学储能技术工程实验室等项目的支持。
  • BOD测量数据无线传输!动态过程,一目了然!
    生化需氧量(Biochemical Oxygen Demand,BOD),是指水体中的好氧微生物在一定温度条件下,一定时间内,将水中有机物分解成无机质,在此过程中所需要的溶解氧量。 BOD可反映水体被有机物污染的程度,水体中所含有机物越多,则需要消耗的溶解氧量也越多,BOD值也越大。 图1 健康水体中的有机物含量少,溶解氧多,可供鱼类等水生生物呼吸之用(源/Quikr Exam) 为了使样品具有可比性,我们常用一个时间段内的溶解氧量的消耗量来表征BOD值。例如,我们通常设定实验温度为20℃,用水样培养微生物,测定水中溶解氧的消耗情况。如果这一时间段是5天,就称为5日生化需氧量,记做BOD5,单位一般用mg/L来表示。数值越大,说明水中含有的有机物越多,污染也越严重。表1 受有机物污染程度不同的水体测量得到的BOD值 人们通常用稀释接种法来测量生化需氧量,计算公式如下: BOD=(D1-D2)/ P 其中,BOD是生化需氧量(mg/L);D1是稀释水样的初始溶解氧量(mg/L);D2是稀释水样经20℃恒温培养箱培养n天之后的溶解氧量(mg/L);P是稀释因子,表示为水样体积(mL)与稀释后水样体积(mL)的比值。 这种测量方法有不足之处。例如,只有“点”上的数据,无法获得变化“过程”中的BOD数据;另外,如果想继续测量水样BOD在其他时间点的数据,如BOD20,样品测量瓶需取出恒温培养箱,测试样品就会被干扰,导致后续的测量数据准确度下降。而且,样品BOD的平台期是在什么时间达到的也不清楚。 针对这一测量难题,意大利VELP公司推出了BOD EVO无线传输自动测定仪。 BOD EVO无线传输自动测定仪采用压强传感器对样品生化需氧量进行测量。经稀释接种或含菌的水样被置于密闭的培养瓶中,水样中溶解氧不断被消耗,使得密闭样品瓶内的压强降低,仪器内置的压强传感器可一直监测此压强变化,根据压差变化,计算水样的BOD值。 这种测量方法有其一系列独到优点。 模拟自然条件,结果更真实可靠传统方法,样品接种稀释后满瓶测量,不再为样品提供多余氧气,且静置放置数天,这样瓶内微生物代谢产物容易集结,易产生区域性溶解氧匮乏,生化反应受抑制可能性加大;BOD EVO培养瓶内样品上方所含21%氧气不断溶入水样中,搅拌子连续搅拌,可为微生物生长提供充分的溶解氧和有机物。测量结果更真实可靠。 操作简单,测量方便传统法操作繁琐、准备样品时间长,量程窄,一般BOD值大于100mg/L时需稀释,且需人工测量初始、终止溶解氧量,在培养过程中需要专人看管。BOD EVO操作简单,软件功能强大,可预先设置好采样时间间隔,自动连续测量溶解氧。无线数据盒能自动接收传感器发送的数据,并将其传输到计算机中。整个测量过程,无需专人看管。专业软件允许实验员对数据进行监控、记录和分析,可自动生成实验报告。 无线数据传输BOD EVO可连续显示记录生化需氧量数据传统方法监测到的是“点”上的数据,如BOD5。若想了解整个过程的动态数据,几乎无法实现。BOD EVO连续显示各时间点的耗氧量并存储BOD数据,从而直观了解样品耗氧动力学过程。 BOD EVO可深入研究样品有机物生化降解过程根据水样耗氧曲线,可深入研究水样有机物生化降解反应过程中的“滞后现象”等。不得不说,BOD EVO是生化需氧量测量领域的一款革命性产品。
  • 第四届全国微束分析技术标准宣贯及其在材料研究中应用研讨会
    p   随着我国工业、农业、教育、医疗卫生及科学研究等各个领域的迅速发展以及与国际接轨进程的加速,标准化工作的意义越来越重要。多年来,在国家标准化管理委员会与中国科学院的领导与支持下,全国微束分析标准化技术委员会在开展微束分析技术领域标准化工作中取得了出色的成绩,同时也积累了大量的经验与成果,其中,制定并出版相关技术标准近50项。 /p p   为满足各单位在质量认证、计量认证、实验室认证与认可等工作中的需要,似举办第四届微束分析标准宣传贯彻及实施和应用研讨会,以使我国各微束分析实验室、相关的科研和企事业单位能更好地执行这些标准,提高分析技术水平及技能,提供更好、更准确的分析结果,提高产品的质量,促进国民经济发展。 /p p   会议网站: a href=" http://meeting.lab.org.cn/default.php?hyid=99" target=" _self" title=" " http://meeting.lab.org.cn/default.php?hyid=99 /a /p p   一、 组织委员会 /p p   本次宣贯会由全国微束分析标准化技术委员会(SAC/TC38)主办,全国纳米技术标准化技术委员会协办,北京理化分析测试技术学会承办。 /p p   会议组织委员会名单如下:陈家光、陈振宇、程斌、丁泽军、范光、高灵清、龚沿东、洪健、李香庭、李玉武、刘安生、柳得橹、刘芬、毛骞、邱丽美、孙振亚、王孝平、王海、魏宝和、吴文辉、吴正龙、杨勇骥、俞彰、许钫钫、徐坚、谢景林、姚文清、曾荣树、曾毅、张萌、章晓中、张增明、张作贵、赵江、祝建、庄世杰。注:姓名按首字母顺序排序。 /p p   二、 会议时间 /p p   2017年8月24日-28日(报到时间:2017年8月24日) /p p   三、 会议地点: /p p   兰州饭店 甘肃省兰州市城关区东岗西路四百八十六号 /p p   标间:380元/间天 单间:340元/间天(住宿统一安排,费用自理。) /p p   四、 会议费及培训费:1600元。 /p p   五、 本次拟宣贯的微束分析技术标准主要内容: /p p   1.X射线能谱及波普定量分析有关的文字标准,以提高各X射线能谱实验室的定量分析水平,使其能真正实现有标样的定量分析 /p p   2.微束分析术语有关的标准,如:电子探针显微分析术语、扫描电子显微术术语等 /p p   3.扫描电镜分辨率、放大倍数以及与微米、纳米级物体测量的有关技术标准 /p p   4.电子背散射衍射分析方法、钢铁材料缺陷电子束显微分析方法有关的文字标准 /p p   5.微束分析标准化动态 /p p   6.研究并讨论微束分析实验室认可和微束分析实验室比对分析等有关问题 进一步讨论实施微束分析实验室比对分析的有关事宜。 /p p   六、 大会报告详见二轮通知。 /p p   七、 汇款信息:汇款户名:北京理化分析测试技术学会 /p p   汇款银行:华夏银行北京紫竹桥支行 /p p   帐 号:4043200001801900001154 /p p   行 号:3041 0004 0067 /p p   八、 会务组联系方式: /p p   单位名称:北京理化分析测试技术学会 /p p   通信地址:北京市海淀区西三环北路27号 北科大厦 邮编:100089 /p p   联 系 人:朱凌云:010-68722460 手机:13717666003 邮箱:spnh88@126.com /p p   王 晨:010-88517114 手机:18101083321 邮箱:lhxh88@126.com /p p   咨询电话:章燕 010-68454626 刘芬 010-62553516 /p p style=" text-align: right "   全国微束分析标准化技术委员会(SAC/TC38) /p p style=" text-align: right "   全国纳米技术标准化技术委员会 /p p style=" text-align: right "   北京理化分析测试技术学会 /p p br/ /p p 附: /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201706/ueattachment/8e5f0eab-ff27-4a53-888e-b0531a7ef514.pdf" 厂商邀请函.pdf /a /p p br/ /p
  • “随钻成像测井仪器及井地数据传输系统”成果发布
    5月30日,由科技部、国家发展改革委、工业和信息化部、国务院国资委、中国科学院、中国工程院、中国科协、北京市政府共同主办的2023中关村论坛举行重大科技成果专场发布会,从面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康四大板块发布了20项成果。中国科学院地质与地球物理研究所“随钻成像测井仪器及井地数据传输系统”作为20项成果之一在本次发布会上正式向社会发布。   开发深层和非常规油气是保障我国未来能源安全的举措。随钻成像测井仪器利用井下传感器探测地层特性,在钻井过程中给钻头装上“眼睛”,是石油工业最核心的技术之一。中国科学院地质与地球物理研究所智能导钻科研团队攻克了强振动冲击条件下动态测量等多项关键技术,自主研制了高温石英加速度计、压力传感器等5种井下核心传感器,成功开发出地质参数成像测井仪器,实现了从随钻一维曲线测井到二维成像测井的技术跨越;同时,研发出将井下数据实时传输至地面的泥浆连续波高速传输系统,并取得了最高速率每秒12比特的重大技术突破,为油气高效开发提供了有力支撑。   在发布会现场,中国科学院地质与地球物理研究所所长底青云院士作为成果单位代表发表感言时表示:油气产业正在从资源为王向技术为王转变,解决深层油气、非常规油气“高效、低成本”开发这一难题,唯一的出路只有“技术创新”,研究所将持续开展技术攻关,创新井下智能钻进装备技术,实现自主钻遇油气藏,助力复杂油气高效勘探开发。   近十年来,研究所聚焦国家重大需求,布局攻关探测传感器与专用芯片等关键核心技术,研发深地精准探测技术与装备、深层油气高效开发技术与装备,支撑我国深层和非常规油气等资源的精准探测和高效开发。科研团队齐心协力,不断攻坚克难,取得了一系列的重大成果。本次发布的“随钻成像测井仪器及井地数据传输系统”作为智能导钻专项第一阶段成果实现了从关键技术突破、关键器件研制、系统集成和现场应用的全链条创新。科研团队将继续攻关深层、非常规油气勘探开发前沿理论和关键技术,在服务国家重大需求方面做出应有的贡献。
  • 第六届全国微束分析技术标准宣贯及其在材料研究中应用研讨会通知
    p   随着社会生产力水平的不断发展和各行各业现代化程度的不断提高,普及和提高行业标准化程度已经成为引领经济发展、规范生产行为、促进生产协作的有效手段,也是国家大力提倡的与国际接轨的重要指标之一。全国微束分析标准化技术委员会承担着我国微束分析行业技术标准的制订、宣传、贯彻、推广等任务,旨在为行业技术制定标准和提供技术指导。 /p p   电子显微镜(以下简称电镜)作为最常见的微束分析仪器之一,是人类直接观察微观世界的有力工具。近年来,电镜广泛应用于生命科学和材料科学的各个领域,特别是2017年诺贝尔化学奖授予在冷冻电镜领域做出杰出贡献的三位科学家,使全球的电镜工作者受到了巨大的鼓舞和鞭策。在可预见的将来,以电镜为代表的大型科学仪器的持有量将持续快速增长,对电镜的相关操作、制样、维护、维修人员的需求量也会持续增加。 /p p   为进一步推动微束分析技术标准化工作,促进广大电镜技术工作者之间的交流与合作,满足各单位在质量认证、计量认证、实验室认证与认可等工作中的需要,将举办第六届微束分析标准宣传贯彻及实施和应用研讨会,以使我国各微束分析实验室、相关的科研和企事业单位能更好地执行这些标准,提高分析技术水平及技能,提供更好、更准确的分析结果,提高产品的质量,促进国民经济发展。 /p p   一、 组织委员会 /p p   本次宣贯会由全国微束分析标准化技术委员会(SAC/TC38)主办,全国纳米技术标准化技术委员会和广东省工业分析检测中心协办,北京理化分析测试技术学会承办。 /p p   会议组织委员会名单如下:陈家光、陈振宇、丁泽军、范光、高灵清、龚沿东、葛广路、洪健、洪崧、贺连龙、鞠新华、李香庭、李玉武、柳得橹、刘芬、毛骞、马通达、孙振亚、汤斌兵、王孝平、魏宝和、吴文辉、伍超群、杨勇骥、许钫钫、徐坚、姚雷、姚文清、曾荣树、曾毅、曾荣光、章晓中、张作贵、赵江、祝建、朱如凯、钟振前。注:姓名按首字母顺序排序。 /p p   二、 会议时间 /p p   2019年11月24日-28日(报到时间:2019年11月24日) /p p   三、 会议地点:广州京溪礼顿酒店 标间/单间 450元/天/间 (住宿统一安排,费用自理。) /p p   四、 会议费及培训费:1800元/人。 /p p   五、 本次拟宣贯的微束分析技术标准主要内容: /p p   1. 中国电子探针、扫描电镜国家标准研制的发展 /p p   2. 植物病毒的电子显微镜检测 /p p   3. 纳米材料生物效应研究及标准化 /p p   4. EDS分析国家标准中几个关键问题解读 /p p   5. 如何获得准确的能谱定量结果 /p p   6.研究并讨论微束分析实验室认可和微束分析实验室比对分析等有关问题 进一步讨论实施微束分析实验室比对分析的有关事宜。 /p p   六、 日程安排见第二轮通知。(请参会人员于2019年11月1日前将会议回执发送至会务组) /p p   七、 会务组联系方式: /p p   单位名称:北京理化分析测试技术学会 /p p   通信地址:北京市海淀区西三环北路27号 北科大厦 邮编:100089 /p p   联 系 人:朱凌云:010-68722460 13717666003 spnh88@126.com /p p   网 址:www.lab.org.cn /p p   咨询电话:章燕 010-68731259 伍超群 13660034359 /p p style=" text-align: right "   全国微束分析标准化技术委员会(SAC/TC38) /p p style=" text-align: right "   全国纳米技术标准化技术委员会 /p p style=" text-align: right "   广东省工业分析检测中心 /p p style=" text-align: right "   北京理化分析测试技术学会 /p p   第六届全国微束分析技术标准宣贯及其在材料研究中应用研讨会 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border: none" tbody tr style=" height:31px" class=" firstRow" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 单位名称 /span /p /td td width=" 505" colspan=" 5" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" br/ /td /tr tr style=" height:38px" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 38" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 详细地址 /span /p /td td width=" 217" colspan=" 3" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 38" br/ /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 38" p style=" text-align:center line-height:28px vertical-align:baseline" span style=" font-family:宋体" 邮 /span span style=" font-family:宋体" 编 /span /p /td td width=" 167" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 38" br/ /td /tr tr style=" height:29px" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 姓 /span span & nbsp & nbsp & nbsp /span span style=" font-family:宋体" 名 /span /p /td td width=" 36" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 性别 /span span style=" font-family:宋体" 别 /span /p p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 职务 /span /p /td td width=" 83" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 职 /span span style=" font-family:宋体" 务 /span /p /td td width=" 97" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 部门名称 /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 电 /span span style=" font-family:宋体" 话 /span /p /td td width=" 167" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 29" p style=" text-align:center line-height:29px vertical-align:baseline" span style=" font-family:宋体" 手 /span span style=" font-family:宋体" 机 /span /p /td /tr tr style=" height:34px" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 36" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 83" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 97" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 167" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td /tr tr style=" height:34px" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 36" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 83" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 97" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 167" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td /tr tr style=" height:34px" td width=" 108" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 36" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 83" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 97" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td td width=" 167" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 34" br/ /td /tr tr style=" height:36px" td width=" 60" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" margin-top:0 margin-right:8px margin-bottom: 0 margin-left:8px margin-bottom:0" span style=" font-family:宋体" 备 /span span & nbsp /span span style=" font-family:宋体" 注 /span /p /td td width=" 553" colspan=" 6" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 36" p style=" text-indent: 14px line-height: 24px vertical-align: baseline" span 1 /span span style=" font-family:宋体" 、本表格可复印,请认真填写报名回执表, /span span 11 /span span style=" font-family:宋体" 月 /span span 1 /span span style=" font-family:宋体" 日前发至会务组 /span /p p style=" line-height: 24px vertical-align: baseline" span style=" text-decoration:underline " span & nbsp /span /span /p /td /tr /tbody /table p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201909/attachment/c7cf7a1d-89b6-4dc4-b0cc-47354a23d6c1.pdf" title=" 第六届全国微束分析技术标准宣贯会.pdf" 第六届全国微束分析技术标准宣贯会.pdf /a /p p br/ /p
  • 超190个!统一预制菜标准为何“吵翻天”?
    “目前一部分人对预制菜在特定场景的应用提出质疑,首先是不了解什么是预制菜。”预制菜进校园风波后,农业农村部食物与营养发展研究所副研究员刘锐对身边朋友做过简单调研,持反对意见的朋友中,很多人说不清什么是预制菜,“他们反对的重点更多是食品添加剂和塑料容器。”“预制菜”概念于2021年底首次被提出,目前尚未有统一国家标准,这也是教育部现阶段不建议预制菜进校园的主要原因。按照广义预制菜概念,具有即食、即热、即烹、即配特点的成品菜、自加热食品、速冻食品、生鲜净菜等都可归为“预制菜”。而在餐饮业看来,餐企使用的食材预处理,不同于销售给消费者的预包装食品。相关记者近期对60款广义预制菜统计发现,有51款产品分别按照已有细分食品行业国家标准、行业标准、企业标准执行,共涉及标准16个。还有9款对产品中的不同原料分别执行对应标准。同时,据不完全统计,目前现存有效、经地方政府、行业组织发布的预制菜团体标准、地方标准有164个,加上一些企业标准,总数超190个。对于预制菜是否需要制定统一标准,业内出现不同声音。有观点认为,很多食品行业在被套上“预制菜”标签前,已有各自的标准,预制菜涵盖类型较广泛,制定统一标准存在难度。也有行业人士认为,制定预制菜统一标准势在必行,尤其应制定预制菜的食品安全标准。校园“遇阻”“预制菜对连锁餐饮企业的影响是非常大的,给很多餐饮企业的经营造成困惑。这主要集中在一些文章抛出‘连锁餐饮用的都是料理包’‘连锁餐饮等于预制菜’等惊人观点,引发消费者的误会。有的文章汇总还引用了我们协会发布的《2021年中国连锁餐饮行业报告》。”中国连锁经营协会常务副秘书长王洪涛接受记者采访时说。而日前发生的“预制菜进校园”事件,更是将公众对预制菜的质疑搬到了聚光灯下。今年9月初,江西省赣州市蓉江新区学生家长在问政平台反映,幼儿园午餐改为配餐制,由中央厨房统一配送,餐盒是塑料且回收重复使用,听说是预制菜,担心对孩子身体不好。蓉江新区社会事务管理局回复称,餐盒材料是食品级PP材质,有检验合格证。由于中央厨房存在人员运营管理问题,根据建议,立即停止了对幼儿园中央厨房配餐。几乎同一时间,江苏省无锡市一所小学家长在学校“阳光食堂”微信监督平台发现,制作学生餐的预制牛柳疑似过期一年。后经当地市场监管部门调查,“过期牛柳”照片系相关企业员工为图方便,搜索以前存在电脑中的牛柳图片上传导致。尽管监管部门对家长疑虑给予了解答,但并没有打消人们对预制菜的担忧。网上有人还分享如何辨别预制菜的小技巧,说油爆、拉面、醋熘土豆丝等“预制菜做不了”。9月22日,教育部对“预制菜进校园”明确表态,“经研究,鉴于当前预制菜还没有统一的标准体系、认证体系、追溯体系等有效监管机制,对预制菜进校园应持十分审慎态度,不宜推广进校园。”江苏省消保委、福建省福州市市场监管局、北京市海淀区市场监管局等也均公开倡议,餐饮服务经营者公示预制菜使用信息。认知偏差消费者的质疑与监管部门的表态,无疑给近年大热的预制菜行业泼了一盆冷水。在没有统一标准的情况下,消费者现阶段对预制菜的理解与生产企业、餐饮商家的认知存在一定偏差。相关调研显示,预制菜始于20世纪60年代的美国,兴于70年代末、80年代初的日本。预制菜需求大的日本每年以20%以上的速度递增,目前渗透率已达到60%以上。在国内,预制菜更为业内熟知的名称是“净菜”“半成品菜”,最早可见于连锁快餐企业的中央厨房供应链,用以解决中餐标准化和烹饪效率等问题。调研显示,日本预制菜在企业端与消费者端的比例是6:4,在国内这一比例约为8:2,中餐企业依然是国内预制菜的最主要销售渠道。关于预制菜的概念,记者注意到,“预制菜第一股”味知香在招股书中将半成品菜描述为以农产、畜禽、水产品等为主要原料,经过洗、切及配制加工等处理后可直接烹饪的预制菜品。国海证券研报则将预制菜分为即食食品、即热食品、即烹食品、即配食品四大类。如按照上述定义和分类,成品预制菜、自加热食品、速冻食品、生鲜净菜等都可归为“预制菜”,概念十分宽泛。“我们作为从业人士很无奈,外界对预制菜的理解从根子上就有问题。”千味央厨董事会秘书徐振江认为,市场上存在两种预制菜概念,一种是狭义预制菜,指的是复热概念的成品菜料理包。另一种是广义预制菜,将净菜、速冻食品、餐饮半成品等包含了进去,“这两种产品目前在终端市场都非常多,消费者顾虑更多的是第一种。”“我们想特别澄清,社会和行业理解的预制菜是指连锁餐饮的供应链管理,经过多年发展已经可以实现将原材料做预处理,包括肉类的切割、蔬菜的去皮清洁切块、调味料的复配等,以实现标准化,提升企业管理效率。”中国连锁经营协会常务副秘书长王洪涛说。他认为,连锁餐饮企业的供应链管理,重点是将食材进行预处理,为餐厅提供服务,这是餐饮业标准化、规模化发展的必要条件。“关键在于这种食材的预处理,虽然大多是在食品厂里生产出来的,并取得了生产许可证,但不应和那些深加工、长保质期、销售给消费者端的预包装食品混为一谈。广义分析,无论怎么定义预制菜,连锁餐饮与预制菜都是两个行业。”标准繁多没有统一标准是不是预制菜的“原罪”?在多数业内人士看来,预制菜并非无标准可依。“我们生产预制菜的每一个环节都有标准,原材料有生鲜食材的标准,预包装食品也有相应标准……现有标准足够行业使用。”叮咚买菜预制菜负责人欧厚喜说。广州雪印食品股份有限公司总经理李煌也认为,预制菜概念2021年底出来后,很多传统食品产业如罐头、火腿肠、速冻食品、方便食品等都被纳入预制菜范畴,各个细分行业原本就在执行各自的生产标准,进行食品生产也需要取得生产许可证,并非外界所说的没有标准。记者近期走访商超,对销售的60款广义预制菜进行统计发现,有18款产品执行的是SB/T10379-2012《速冻调制食品》标准,占比30%。产品类型主要包括水产制品、菜肴制品、非即食速冻熟(生)制品、花色面米制品等,比如蒜蓉粉丝扇贝、麻辣小龙虾、羊肉串、腌制鸡翅等水产、肉类冻品,也有椒香小酥肉、烤鳗鱼等低温成品预制菜肴。此外,有6款产品采用的是GB2726-2016《熟肉制品》国标,占比10%,集中在扒鸡、烤鸭等熟肉制品,以及筋头巴脑、羊蝎子火锅等常温成品预制菜肴。5款采用GB19295-2021《速冻面米与调制食品》国标,占比8.3%,主要为汤圆、肉包等速冻食品,以及扬州炒饭等低温预制菜肴。4款采用GB/T23586-2009《酱卤肉制品》标准,占比6.7%,如酱香鸡、卤羊杂等。3款采用GB10136-2015《动物性水产制品》国标,如海鲜煲粥什锦、深海鳕鱼排等,占比5%。3款采用QB/T5471-2020《方便菜肴》标准,占比5%,如即食型方便菜肴椒麻三脆、非即食型日式牛肉寿喜锅等。3款采用SB/T10648-2012《冷藏调制食品》标准,占比5%,如半成品菜豌豆牛肉粒、预拌菜酱爆猪肝等。另有3款分别执行SB/T10652-2012《米饭、米粥、米粉制品》标准、SB/T10631-2011《马铃薯冷冻薯条》标准、GB7098-2015《罐头食品》国标。未执行现有国家或行业标准,执行企业标准的产品有6款,占比10%,如自热食品酸豆角肉末盖浇饭、田园蔬菜沙拉等净菜,以及清洗、切割、拼配好的火锅拼盘等。还有9款预制菜采用混合标准,即产品中的不同原料分别执行对应标准,约占15%。如“良食记”的香辣味烤鱼,其中调理鮰鱼执行的是SB/T10379-2012《速冻调制食品》标准,烤鱼酱执行的是GB31644-2018《复合调味料》国标,炒制辣椒执行的是GB/T15691-2008《香辛料调味品通用技术条件》,蔬菜包执行的是GB2714-2015《酱腌菜》国标。又如“盒马工坊”香干炒芹菜(半成品菜-净菜组合),香芹组合配料执行的是企业标准,豆腐干则是GB/T22106-2008《非发酵豆制品》标准。制定扎堆事实上,在原有各细分行业的标准基础上,一些地方政府部门和行业组织也推动预制菜专门标准的建立,并在2022年迎来一波预制菜标准制定高潮。2022年6月6日,京东超市联合中国预制菜产业联盟发布并实施首个《佛跳墙预制菜标准》。2022年6月2日,中国烹饪协会发布《预制菜》团体标准。2022年5月31日,广西南宁市市场监管局发布《预制菜术语》《预制菜分类》《预制菜冷链配送操作规范》3项地方标准。2022年5月23日,山东临沂市食品工业协会主要起草的《预制菜加工技术规范》团体标准发布。2022年4月27日,江苏省餐饮服务标准化技术委员会、江苏省餐饮协会牵头的《预制菜点质量评价规范》团体标准发布……据记者不完全统计,目前现存有效、经地方政府、行业组织发布的预制菜团体标准、地方标准有164个,如果再加上企业标准,总数超190个。在这164项标准中,有80个涉及菜肴加工,如酸菜鱼、徽州毛豆腐、佛跳墙等菜肴的制作,占比接近一半。有28项标准针对细分品类设置,如中国出入境检验检疫协会的《预制菜速冻包馅面米制品》团标、中国水产流通与加工协会的《水产品预制菜》团标等,占比17.1%。另有13项团体标准涉及预制菜的整体概念与分类,占比7.9%,如保定市市场监管局的《预制菜术语》地方标准、中国烹饪协会的《预制菜》团体标准、中国食品药品企业质量安全促进会的《预制菜》团体标准等。另有15项标准涉及“预制菜”的品质管理,11项标准与预制菜冷链配送有关。还有一些预制菜标准“剑走偏锋”,如《预制菜产业园区建设指南》《微波炉-预制菜专用烹饪功能评价方法》《预制菜自动售卖机》等。中国农业科学院农业质量标准与检测技术研究所博士生导师、质量安全与营养品质评价岗位科学家佘永新在接受媒体采访时认为,这些标准大多数是对产品属性的简单描述,还有一些标准是缺失的,特别是卫生标准、加工规范类标准。比如对冷藏类的预制菜目前没有比较适合的标准可参考,冻结预制菜直接引用冷冻食品标准又要求太低。需要对标准进行重新制修订,出台真正适合预制菜的标准。一位参与预制菜地方标准的制定者告诉记者,一些预制菜标准是为了完成上级部门任务,有些是把原有细分行业的国家标准重新编辑出台,没有实质性的创新内容。千味央厨董事会秘书徐振江也认为,目前这些预制菜标准不具有约束力,更多是行业自律层面的呼吁,比如保障产品营养、健康、美味,很难有统一的标尺。各种扶持政策和行业标准出台背后,是各方力量对预制菜行业话语权的争夺。现有一些预制菜团体标准对口味、口感等指标要求过细,但口味实则具有地域特点,因此很多标准不具有应用意义,“我认为制定预制菜标准应更多从食品安全角度入手。”意见分化对于是否需要制定预制菜统一标准,业内意见也出现分化。中国连锁经营协会常务副秘书长王洪涛认为,目前预制菜出台这么多标准,侧面验证了两件事情,一是预制菜备受关注,二是预制菜没有全国性的统一标准。各方都在从自己的地方或团体、企业视角出发,理解预制菜概念,尝试给出定义。无论当下这些标准执行情况如何,都是规范行业发展的基础。而建立统一的预制菜标准势在必行,“不仅是为了将中央一号文件落地实施,更是为了产业高质量发展。在制定全国统一的预制菜标准过程中,有可能出现概念理解的偏差、产业差异较大、加工标准不一致等问题。”今年3月,全国政协委员、中国工程院院士、北京工商大学校长孙宝国在全国两会期间建议,尽快组织制定预制菜食品安全国家标准,明确预制菜定义、范围以及相关管理原则,同时围绕预制菜全产业链建设配套完善的标准体系,对风味复原、食品添加剂使用、微生物控制、标签标识管理等进行规范。在上述百余项“预制菜”标准中,中烹协《预制菜》团体标准相对受到更多行业人士的认可。该标准制定参与者、农业农村部食物与营养发展研究所副研究员刘锐回忆称,“当时预制菜行业很火,但标准非常少,很多定义和分类都是商业提法,从科学角度并不完善,制定这项团标时得到了很多企业的支持。”历时近半年的标准制定中,刘锐查阅了大量国内外相关标准及学术论文,结果发现国外对预制菜也没有统一的强制性标准,更多的是行业定义与共识,“没有必要制定预制菜统一标准,每个细分行业都有自己的标准,食品安全都能得到保证。预制菜种类很广,原料不同、技术不同、口味不同,非要制定成一个标准才不科学,目前也没有听说预制菜将要制定统一的强制性标准。”李煌也曾参与一些预制菜标准的制定,“我认为暂时没有必要制定统一的强制性标准,如果标准制定过高,会导致一部分人消费不起预制菜。例如,企业按照SC食品标准生产预制菜就能保障产品安全,非要按照GMP药品管理标准生产,会导致企业生产成本上升、产品价格走高。标准最应该解决的是安全性和配料表问题,如果制定得太细,会束缚行业百花齐放。在品牌竞争阶段,企业会在竞争中自觉提升自己的标准。”小编将上述提到的标准进行汇总,有需要可以点击下载!标准号标准名称下载链接GB 2726-2016 食品安全国家标准 熟肉制品GB2726-2016.pdfSB/T 10379-2012 速冻调制食品SBT10379-2012.pdfGB 19295-2021 食品安全国家标准 速冻面米与调制食品GB-19295-2021.pdfGB/T 23586-2009 酱卤肉制品GBT23586-2009.pdfGB 10136-2015 食品安全国家标准 动物性水产制品GB10136-2015.pdfQB/T 5471-2020 方便菜肴QBT5471-2020.pdfSB/T 10648-2012 冷藏调制食品SBT10648-2012.pdfSB/T 10652-2012 米饭、米粥、米粉制品SBT10652-2012.pdfSB/T 10631-2011 马铃薯冷冻薯条SBT10631-2011.pdfGB 7098-2015 食品安全国家标准 罐头食品GB7098-2015.pdfGB 2714-2015 食品安全国家标准 酱腌菜GB2714-2015.pdfGB/T 22106-2008 非发酵豆制品GBT22106-2008dz.pdf
  • 三德科技机器人制样系统、自动存查柜系统、样品自动传输系统在国内首个港口煤炭全链无人采制化平台投用
    据市场一线反馈,近日,三德科技4套机器人制样系统、4套自动存查柜系统、2套样品自动传输系统在国家能源集团数智科技自主研发的国内首个港口煤炭全链无人采制化平台投用。这一方面标志着我国港口煤炭采制化业务实现跨越式发展,进入煤炭采制化业务全工艺链无人化生产阶段,另一方面也意味着三德科技的自动化/无人化系统在港口煤炭领域取得突破。机器人制样系统在珠海港现场该平台可实现煤炭采样、转运、制样、传输、存查、化验全流程标准化、无人化、智能化作业,达到“人与煤样隔离、人与数据隔离”,从根本上避免了人为因素干预,有力保障数据准确性,减少煤炭产运销储用化验环节,降低煤炭销售流通成本,为企业实现绿色、低碳、智能发展提供有力支持,为我国能源行业煤质检测业务智能化转型助力,对行业发展具有重大开创性意义。
  • 2010年第一批原材料工业标准编制通知
    中国石油和化学工业协会、中国钢铁工业协会、中国有色金属工业协会、中国建筑材料联合会、中国黄金协会、中国石化集团公司、全国稀土标准化技术委员会:   根据工业和信息化部《关于开展2010年第一批工业标准计划编制工作的通知》(工信科简函[2009]344号)要求,结合原材料行业特点,现开展2010年第一批原材料工业标准计划的编制工作的有关事项通知如下:   一、编制重点   (一)行业发展急需的标准项目,特别是钢铁、有色、化工等原材料产业调整和振兴规划中所确定的产业发展重点   (二)与原材料产品质量相关的标准项目   (三)标龄超过10年,经复审需及时修订的标准项目。   二、报送的要求   为始原材料工业领域行业标准与国家标准相互协调、互为补充,本次行业标准和国家标准一并编制,分开列表,同时保送。   (一)报送材料(含电子版)   1、申报项目的总体情况说明,包括项目编制的基本情况、编制原则等   2、行业标准项目汇总表(见附表1),行业标准项目建议书(见附表2)   3、国家标准项目汇总表(见附表3),推荐性国家标准项目建议书(见附表4)及标准草案,强制性国家标准项目建议书(见附表5)及标准草案,国家/行业标准化指导性技术文件项目建议书(见附件6)及国家标准草案,研复制国家/行业标准样品项目建议书(见附表7)。   (二)时间安排   请各行业于2010年2月23日前将有关材料(含电子版)送中国有色金属工业标准计量质量研究所。   联系电话:赵军锋:010-62276892   蔚力兵:010-68205591   邮件地址:wangshuying0427@126.com   附表:   1、行业标准项目汇总表   2、行业标准项目建议书   3、国家标准项目汇总表   4、推荐性国家标准项目建议书   5、强制性国家标准项目建议书   6、国家/行业标准化指导性技术文件项目建议书   7、研复制国家/行业标准样品项目建议书   附件:2010年第一批标准计划通知_发_简函344号[1][2]   中国有色金属工业标准计量质量研究所   二OO九年十二月三十日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制