当前位置: 仪器信息网 > 行业主题 > >

无痛皮试仪原理

仪器信息网无痛皮试仪原理专题为您提供2024年最新无痛皮试仪原理价格报价、厂家品牌的相关信息, 包括无痛皮试仪原理参数、型号等,不管是国产,还是进口品牌的无痛皮试仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无痛皮试仪原理相关的耗材配件、试剂标物,还有无痛皮试仪原理相关的最新资讯、资料,以及无痛皮试仪原理相关的解决方案。

无痛皮试仪原理相关的资讯

  • 齐赏梧桐春日美,勇登鹏城第一峰
    2013年2月23日,朗诚实业团支部组织共青团员前往深圳梧桐山,进行了主题为&ldquo 健体魄,促和谐&rdquo 的登攀游玩活动,同时也号召、带动了部分同事一起参与到活动中来。 上午九点半,参加活动的员工在深圳梧桐山脚下集合。晴空万里,春意盎然,春风拂面,参加活动员工在吕总的带领下,以十足的干劲,高涨的热情,沿着登山道向顶峰奋勇前进。大家或选择平坦但悠长的盘山公路,边爬边赏沿途山景;或选择富有挑战性却是捷径的泰山涧步道,聆听叮咚山泉,溯溪而上。在攀登的途中,我们相互鼓励,相互扶持,鼓励因身体原因放慢登山脚步的同事,扶持因路途陡峭而难以攀爬的同事,处处尽显朗诚员工团结友爱、不畏艰险、勇攀高峰的精神。 梧桐山山高林密,主峰海拔943.7米,为深圳第一高峰,雄伟的山势与变幻莫测的云雾刚柔相济、与广瀚的大鹏湾山海相互辉映;山里溪涧幽邃、植物茂盛,是珠江三角洲地区珍稀动植物的庇护地和资源库之一。欣赏了沿途&ldquo 稀&rdquo 、&ldquo 秀&rdquo 、&ldquo 幽&rdquo 、&ldquo 旷&rdquo 的梧桐美景,攀上了崎岖陡峭的&ldquo 好汉坡&rdquo ,镌刻&ldquo 鹏城第一峰&rdquo 的巨石赫然眼前,终于成功登临大梧桐顶峰。站在顶峰,举目远望,西可俯瞰深圳市区,南与香港大雾山对峙,向东南远眺,烟波浩淼的大鹏湾海面及美丽的大鹏半岛尽收眼底。历时近六个钟,大家顺利完成了此次登山活动。最后聚集山脚的农家小店,品农家小菜,尝美味窑鸡,享胜利喜悦,真可乐也。 江山如此多娇,我们希望祖国的山河永远蓝天碧水,远离污染,人与环境协调发展,和谐相处;朗诚人的事业是让天更蓝,水更清,生态环境更和谐,朗诚人将竭力为之呼吁,为之奋斗,正如登顶梧桐一样,不畏艰险,勇攀高峰!
  • 无痛且无针头!全球首款注射疫苗机器人来了
    据美国《快公司》杂志网站近日报道,加拿大初创公司Cobionix宣称,他们研制出了全球首款能注射疫苗的机器人Cobi,其能以自主、无痛且无针头方式注射疫苗。据悉,Cobi由一个带有药瓶储存区的机械臂和一个与患者互动的屏幕组成。人们可以通过触摸屏在系统中登记,一个摄像头会录入登记者的身份证或是证明其已经预约接种疫苗或接收药物的证件。在人们完成接种登记手续后,Cobi会拿起一个装有药剂的小瓶,并使用其激光雷达传感器识别患者的身体。这个激光雷达传感器通过发射人眼不可见的光脉冲来测量它与某物体之间的距离。Cobionix公司联合创始人兼首席技术官尼玛扎马尼解释称,该系统基于人工智能创建的三维数字图来定位手臂,并确定注射时的理想高度。机械臂的设计可适应每个人的高度——无论是成人还是儿童。在接种疫苗时,很多人害怕针头,这可能引起头痛,甚至使他们感到恐惧,尤其是儿童,研究显示,三分之二的儿童害怕针头。但使用Cobi注射并不疼,因为它不使用针头,而是通过压力喷射来注射疫苗。药物被装入带有喷嘴的一次性容器中,给药部分由一个活塞和一个环绕着一圈金属丝的磁铁组成,当施加电流时,磁场推动活塞,挤压小瓶,通过喷嘴强力喷出药物,并穿过皮肤毛孔,进入身体。扎马尼解释说:“研制Cobi的目的是缓解医疗保健方面的劳动力短缺,其自主特性大大降低了人们对诊所基础设施的要求,这将有助于覆盖偏远地区人群,在这些地区,人们能够获得的医疗保健服务有限。”Cobionix公司表示,该机器人目前还只是一个工作原型,可能需要两年或更长时间才能上市,而疫苗接种只是它可能执行的众多任务之一,使用人工智能和3D视觉来观察病人情况的Cobi有朝一日可为人类进行超声波检查、抽血和活检。
  • 梧桐已立,有凤来仪
    《庄子秋水篇》中提到“南方有鸟,其名鹓雏,子知之乎?夫鹓雏发于南海而飞于北海,非梧桐不止”。人们常将梧桐比作基业,将凤凰比作贤能,自古贤能择主而事,良禽择木而栖。 2019年1月16日,宁波新芝生物科技股份有限公司研究院在杭州市滨江区正式成立,经过5个月的筹备与建设,在总部领导的大力支持下,研究院初成规模,团队建设有条不紊,产品开发进度符合预期。为满足扩大化的研发、办公需要,研究院正式搬迁至杭州市滨江区滨安路688号——天和高科技产业园。新芝生物杭州研究院作为公司研发能力建设的重要平台,肩负为公司持续发展提供产品研发、技术研究、市场调查、体系建设、人才储备等重要职能,是新芝生物实现未来可持续发展的重要引擎。杭州研究院院长 寿淼钧 宁波新芝生物科技股份有限公司正式任命公司研发副总寿淼钧先生为杭州研究院院长。寿淼钧先生毕业于浙江工业大学,教授级高级工程师,曾获中国仪器仪表学会 “青年科技人才奖”称号,历任中控研发部经理、子公司副总、聚光科技(杭州)股份有限公司研发总监、上海安谱实验科技股份有限公司研发副总、北京吉天仪器有限公司研发副总等职位,拥有丰富的仪器研发管理经验。寿淼钧先生十余年来致力于为全球科研工作者提供优质、稳定、高效、便捷的科研仪器,是行业内资深的研发管理专家,也是兼具市场化思维和产品化能力的复合型人才,与公司的愿景与文化高度吻合,与新芝研究院定位和方向高度匹配。 寿院长通过五个层面汇报了杭州研究院的工作进展和未来规划:(一)确立业务方向公司新时期第一个5年发展规划提出的“成为生物样品制备领域专家”的目标,确立了杭州研究院要在公司总部已有成功产品和品牌的基础上,逐步研发和推出满足市场发展需要的新产品、新技术,与总部产品一起形成更为丰富的产品组合。目前杭州研究院已经有多条产品线在研,未来也将会持续推出更多优秀、先进、可靠的产品。(二)明确组织架构目前已经明确了杭州研究院的组织架构,根据精简高效的原则和IPD流程体系的要求,将矩阵式作为架构核心,健全了各纵向子系统职能岗位的设置。(三)建设研发管理体系确定了以IPD作为杭州研究院的研发过程管理体系,从项目立项、产品需求、系统方案设计、子系统方案和概要设计到详细开发、测试验证、新产品导入、结项,每个过程严格按照质量管理体系PDCA的核心要求做好评审检查管理工作和风险管理工作,通过计划分解、例行会议管理等方式推进开发工作。(四)提升员工能力首先是做好IPD流程体系的培训,并在日常工作中不断强调和贯彻实施;其次是做好子系统的技术培训。重视和推进研究院的知识产权建设,把知识创新转化为公司的核心竞争力。(五)对员工期望寿院长希望战略市场部要做好杭州研究院新产品开发的方向指引者,目标是市场,重点是战略。要充分做好客户需求调研、市场竞争分析、整合行业资源、把握行业发展动态,真正实现从客户中来,到客户中去。希望研发人员能成为“霸气”的人,能研发新技术,推出新产品,搞定新问题,更能认识不足,承认问题,改进自我。宁波新芝生物董事长周芳女士表示:做事最核心的就是解决人的问题,一家负责任的企业是需要能找到人,用好人,留住人。很高兴杭州研究院通过半年的努力已经在寿院长周围凝聚了一批优秀的人才,新芝生物的传统就是乐于分享,希望未来在坐的各位都能把在研究院的工作作为自己的一份事业而不是一份工作,希望大家在未来都能分享到公司发展带来的利益。 周总对杭州研究院寄予厚望,希望新芝人能有五“心”、二“吃”。五“心”:把孝心留给父母,把忠心留给企业,把爱心留给同事,把热心留给社会,自信留给自己。二“吃”:要有吃苦的精神,要能吃得起亏。最后,周总祝各位研究院的同事开心工作,快乐生活。董事长:周芳 总经理:朱佳军 朱总表示为科研服务者提供好的设备是作为仪器生产厂家觉得最有乐趣的事情,能够生产出优质的产品是对社会的回馈,而持续学习则是人与公司持续发展的原动力。朱总希望杭州研究院能在新芝生物30年的发展基础上汲取养分,把年轻人敢作敢想的精神发挥到极致,把产品和服务做到极致,为全球生物研究的科学家提供优质、可靠、专业的服务。杭州研究院建立在高起点、高标准、高质量的基础上,作为一颗“三十而立”的“梧桐树”,希望获得更多有识之士的加盟,共同为中国乃至世界的生命科学事业增添一点光彩。杭州天和高科技产业园简介杭州天和高科技产业园(杭州国家高新区海创基地生物医药园)位于滨江区滨安路688号,是一家以体外诊断产品(IVD)为特色的生物医药与智慧健康专业科技园,也是集孵化器、加速器、产业化为一体的新兴民营高科技园。园区建立了公共孵化大楼、公共实验室,技术开发服务平台,GMP标准厂房等设施,为企业提供包括研发服务、支撑服务、创新创业服务等一系列专业服务共引进海外高层次人才100余名,4名中国科学院院士,11名国家千人计划专家,13名浙江省千人计划专家,109位博士,滨江区创新创业“5050计划”资助项目52项。
  • 英研发早期诊断糖尿病新仪器:诊断方法简易无痛
    牛津研发出早期诊断糖尿病新仪器   中新网1月6日电 据美国媒体报道,通常在儿童或者年轻时被诊断出患有甲型糖尿病的人必须注射胰岛素,并且要小心饮食,以便控制血糖。诊断这种疾病通常需要提取血样,这对很多青少年来说是一种可怕的经历。英国的研究人员说,他们研发出了一种简易无痛初步诊断法,只要提取病人呼吸的样本就可以。   据估计,每年有多达8万名儿童患上甲型糖尿病,如果不治疗,这种免疫性疾病会导致死亡,因此早期发现极为重要。   糖尿病的症状之一是病人呼出的气体带有甜味,牛津大学著名化学教授盖斯· 汉考克说,这是因为病人血液中累积的一种叫做酮类的化学物质所导致的。   他说:&ldquo 这种甜味是一种特殊酮类的气味,叫做丙酮,处于糖尿病酮症酸中毒阶段的病人呼吸中通常带有这种气味,被医生用来作为诊断依据。&rdquo   英国研究人员说,他们研发出一种便携式的呼吸分析仪器,可以探测出病人呼吸中非常少量的丙酮。   牛津医学诊断公司首席执行官伊恩&bull 坎贝尔说,研发这个仪器并不容易,因为人的呼吸中带有百万种化合物的分子,而这个仪器要测试出其中的一种。   他说:&ldquo 我们让病人往这个仪器里吹气,提取我们想要测量的挥发性有机化合物,滤过其余部分,然后把我们想要的分子放进测量空穴。&rdquo   汉考克教授参与了这个仪器的研发,他说,市面上有类似的分析仪器,不过只能放在桌上,很重。   汉考克说:&ldquo 我们的目的是把它做成便携式仪器,可以拿起来,简单地往里面吹气就行了。&rdquo   研究人员说,在一年之内,这种新型分析仪器就可以在医生诊所里投入使用,不久还可能会有更小型的供个人使用的仪器。   可是,研究人员指出,这种呼吸分析仪只能用来做初步检测,要确诊还必须通过适当的血液检查。
  • 复旦大学于敏教授课题组《AJPS》:高精度3D打印用于抗凝药物重组水蛭素 (r-hirudin) 新型微创无痛递药系统的设计制备
    复旦大学于敏教授课题组《AJPS》:高精度3D打印用于抗凝药物重组水蛭素 (r-hirudin) 新型微创无痛递药系统的设计制备抗凝治疗通常被用作心脑血管疾病治疗的首选策略,且此类患者大多需要长期甚至终身服用抗凝药物。直接口服抗凝剂有导致胃肠道出血的风险,尤其是对于有胃肠道疾病如胃肠道溃疡的患者,这种出血是致命的。皮下或静脉注射给药或可规避胃肠道出血的风险,但是注射给药需专业人员辅助,这对长期用药的患者而言极其不便,注射引起的疼痛亦会导致患者用药依从性较差。此外,皮下注射抗凝剂还会导致皮下出血淤青,增加感染风险,给抗凝药物临床应用带来了极大的不便。透皮给药作为一种前瞻性给药策略,可以补充注射和口服给药的局限性 (图1)。图1. 临床抗凝药物给药方式及不良反应微针 (Microneedle,MN) 作为微米级的微创设备,可通过破坏皮肤最外层角质层产生短暂的疏水性毛孔,将治疗药物输送至表皮中,被认为是最有前途的透皮给药系统之一。目前,微针的制备主要通过微模型浇铸法,但是用于微模型制备的方法大多局限于光刻或者化学蚀刻,工艺复杂、周期长且成本高,限制了微针的多样性和个性化发展。高精度 3D 打印是近年来新兴的一种微模型制备方法,由于该法简单高效且成本相对较低,已广泛应用于生物医药的各领域,为微针阵列模型的设计制备提供了新的选择。图2.微针阵列模型的设计与打印 A. 1#微针阵列模型的计算机模拟(左)、打印预览(中)及3D 打印微针的长度(右);B.2#微针阵列模型的计算机模拟(左)、打印预览(中)及3D 打印微针的长度(右);C.设计模型和打印模型对比 近期,复旦大学代谢分子医学教育部重点实验室于敏教授团队联合复旦大学药学院沈腾老师提出了一种基于 3D 打印技术的微模型制备方法。该团队利用新型超高精度 3D 打印技术 (nano Arch P140,摩方精密) 实现了个性化设计的微针阵列模型的制备,并通过开发一条新的模型复刻工艺成功制备了基于 3D 打印模型的微针模具,最终制备了 r-hirudin 新型微创无痛递药系统。该方法成功解决了以光敏树脂为打印材料的微针阵列表面 PDMS 无法固化导致的模型翻制问题,同时进一步拓展了 3D 打印在微针阵列设计制备领域的应用。利用高精度 3D 打印制备的微针阵列拥有较高的分辨率,打印的微针形貌特征保留完整、尺寸均一,为载药微针的定性与定量分析奠定了基础。相关成果以“Design and fabrication of r-hirudin loaded dissolving microneedle patch for minimally invasive and long-term treatment of thromboembolic disease” 为题发表在《Asian Journal of Pharmaceutical Sciences》期刊上。 在该研究中,首先利用计算机辅助的模型设计对目标微针阵列进行设计优化,分别按需设计了两款不同参数的微针阵列模型,如图 2A所示,考虑到 3D 打印分辨率的限制,绘制微针长度为 1000 μm,允许微针有 100-200 μm 的长度损失,设置微针形状为五棱锥形,底边长度分别为 150 μm 和 100 μm,将微针有序排列成 10 × 10 的微针阵列 (图 2B)。将设计图纸输出导入 3D 打印软件进行打印,最终获得基于光敏树脂的微针阵列模型。与设计模型相比,微针的高度发生了100-200μm 的损失 ,但在允许范围之内,微针针体形貌保存完整,不同微针个体尺寸均一 (图 2C),提示高精度 3D 打印在微针阵列模型制备方面具有巨大的应用潜力。图3.微针模具及 3DMN 制备流程图 由于以光敏树脂为打印材料的微针阵列模型在用 PDMS 进行模型翻制时在接触表面 PDMS 无法固化,所以选择明胶作为中间过渡材料替代直接使用 PDMS 进行微针模具制备,开发一条新的模型制备工艺(图 3),并通过该路线成功制备了微针制备模具。将该模具应用于r-hirudin 递药系统的制备,通过连续的微模型浇铸并辅以恒温真空制备r-hirudin 荷载的 3DMN。对 3DMN 进行表征分析并在实验动物体内进行微针给药的药效学与药物代谢动力学分析,结果显示 3DMN 给药可以实现快速的透皮药物递送,血药浓度在给药后 0.5 h 达到峰值 (图 4D-F),血液的凝固时间在 3DMN 给药后显著延长 (图 4A-C)。对 3DMN 给药的生物利用度(BA) 进行分析,发现 3DMN 给药相对于皮下注射给药的BA可达50% (图 4G-F)。该结果初步验证了基于高精度 3D 打印的微针阵列模型制备的 3DMN 在介导透皮 r-hirudin 递送中的可行性。 图4. 3DMN 介导的r-hirudin 透皮递送的体内药效学与药物代谢动力学研究 A-C. 血液凝固时间随给药时间的变化;D-F. 血清 r-hirudin 浓度随时间变化曲线;F. 不同给药方式血清药物浓度随时间变化曲线 G. 不同给药方式血清药物浓度参数 进一步研究 3DMN 在血栓性疾病防治中的应用,分别构建肾上腺素/Ⅰ型胶原混合物尾静脉注射诱导的急性肺栓塞动物模型和三氯化铁损伤诱导的肠系膜微动脉血栓动物模型,将载药 3DMN 用于动静脉血栓的预防性治疗,研究发现3DMN 介导的r-hirudin 用药可以显著抑制急性肺栓塞模型小鼠肺部血管栓塞的形成 (图 5C-D),提高小鼠的存活率 (图 5A-B)。此外还观察到,3DMN 介导的 r-hirudin 用药同样可以显著三氯化铁损伤诱导的肠系膜动脉血栓的形成,降低血栓发生率 (图 6)。以上结果进一步说明 3DMN 可用于动静脉血栓的预防性用药,而高精度 3D 打印技术的出现不仅丰富了微针多样性,也为未来临床用药个体微针量身定制提供了基础,具有极大的经济效益与社会效益。图5. 3DMN 在预防急性肺栓塞中的应用A-B. 3DMN 给药对急性肺栓塞小鼠生存率的影响;C. 小鼠肺部组织石蜡切片 HE 染色;D. 小鼠肺部 CT 扫描图图 6. 3DMN 在预防肠系膜微动脉血栓中的应用 A. 血小板在血管损伤部位聚集的体内成像;B. 血栓形成率的统计分析图;C. 血栓形成长度统计分析图官网:https://www.bmftec.cn/links/10
  • 太原理工大学一实验室获批教育部重点实验室
    2010年6月7日,教育部下发《教育部关于2010年度省部共建教育部重点实验室立项建设的通知》(教技函〔2010〕52号),文件批准依托太原理工大学而建的“原位改性采矿重点实验室”为2010年度立项建设的省部共建教育部重点实验室,建设期1~2年。   根据该文件精神,2010年教育部共批准建立19个实验室为省部共建教育部重点实验室,“原位改性采矿重点实验室”是此次批准立项的山西省唯一的一个重点实验室。
  • 北大荒集团黑龙江梧桐河农场有限公司130.00万元采购空气压缩机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 [公开招标]2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 黑龙江省-佳木斯市-汤原县 状态:公告 更新时间: 2022-12-12 [公开招标]2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 【信息时间:2022-12-12 】 招标公告 一、项目基本情况 1.项目编号:A2301010892003291001001 2.项目名称:2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 3.采购方式:公开招标 4.预算金额:人民币130万元 5.采购需求:空气压缩机4台、压力平衡罐4个等,具体详见招标文件 6.项目实施地点及交货时间:北大荒集团黑龙江梧桐河农场有限公司,货物进场时间2023年2月28日前、货物安装调试时间2023年6月30日前。 7.本项目(是/否)接受联合体:否 8.本项目(是/否)允许转包、分包:否 9.本项目分为一个包。 二、申请人的资格要求: 1.投标人应符合《中华人民共和国政府采购法》第二十二条规定的条件。 2.具有营业执照独立法人资格; 3.法定代表人身份证复印件; 4.需提供近三年(2019年至2021年)内无重大违法违纪行为声明。 三、获取招标文件 1.获取招标文件时间:2022年12月12日23:00时至2022年12月20日00:00时(北京时间)。 2.地 点:北大荒电子招标平台。 3.方 式:投标人用已办理的CA锁在“北大荒电子招标平台”点击该项目选择“我要报名”-完善投标信息-填写发票信息。完成报名后可在“招标文件领取”页面免费下载招标文件。 四、提交投标文件 1.提交投标文件截止时间及地点:2023年1月4日9:00时(北京时间),在北大荒电子招标平台网上递交。在投标文件截止时间后递交的投标文件,系统将不予接收。 2.开标时间及地点:2023年1月4日9:00时(北京时间),线上开标,投标人无需到达开标现场。 五、公告期限 2022年12月12日23:00时至2022年12月20日00:00时(北京时间)。 六、其他补充事宜 1.本次招标公告在中国招标投标公共服务平台(www.cebpubservice.com)、北大荒电子招标平台(www.bdhzb.cn)及黑龙江公共资源交易网(http://www.hljggzyjyw.org.cn/)发布。 2.现场踏勘:无。3.投标人提问、质疑以及招标人对招标文件的澄清均通过网上进行。 七、注册通知 投标人须在“北大荒电子招标平台”(www.bdhzb.cn)进行用户注册,具体操作请参阅北大荒电子招标平台首页通知公告栏2021年5月18日发布的《关于平台用户入库及CA办理的通知》办理。入库办理咨询电话:0451-55195701,0451-55195778,CA办理咨询电话:0451-55195720。 八、对本次招标提出询问,请按以下方式联系 1.招 标 人:北大荒集团黑龙江梧桐河农场有限公司 地 址:北大荒集团黑龙江梧桐河农场有限公司 联 系 人:栾女士 联系电话:0468-3800215 2.招标代理机构:北大荒招标有限公司 地 址:黑龙江省哈尔滨市香坊区珠江路29号 联 系 人:薛女士 联系电话:0451-55195758 北大荒招标有限公司 2022年12月12日 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:空气压缩机 开标时间:2023-01-04 09:00 预算金额:130.00万元 采购单位:北大荒集团黑龙江梧桐河农场有限公司 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:北大荒招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 [公开招标]2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 黑龙江省-佳木斯市-汤原县 状态:公告 更新时间: 2022-12-12 [公开招标]2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 【信息时间:2022-12-12 】 招标公告 一、项目基本情况 1.项目编号:A2301010892003291001001 2.项目名称:2022年北大荒集团黑龙江梧桐河农场有限公司浸种催芽设备更新项目 3.采购方式:公开招标 4.预算金额:人民币130万元 5.采购需求:空气压缩机4台、压力平衡罐4个等,具体详见招标文件 6.项目实施地点及交货时间:北大荒集团黑龙江梧桐河农场有限公司,货物进场时间2023年2月28日前、货物安装调试时间2023年6月30日前。 7.本项目(是/否)接受联合体:否 8.本项目(是/否)允许转包、分包:否 9.本项目分为一个包。 二、申请人的资格要求: 1.投标人应符合《中华人民共和国政府采购法》第二十二条规定的条件。 2.具有营业执照独立法人资格; 3.法定代表人身份证复印件; 4.需提供近三年(2019年至2021年)内无重大违法违纪行为声明。 三、获取招标文件 1.获取招标文件时间:2022年12月12日23:00时至2022年12月20日00:00时(北京时间)。 2.地 点:北大荒电子招标平台。 3.方 式:投标人用已办理的CA锁在“北大荒电子招标平台”点击该项目选择“我要报名”-完善投标信息-填写发票信息。完成报名后可在“招标文件领取”页面免费下载招标文件。 四、提交投标文件 1.提交投标文件截止时间及地点:2023年1月4日9:00时(北京时间),在北大荒电子招标平台网上递交。在投标文件截止时间后递交的投标文件,系统将不予接收。 2.开标时间及地点:2023年1月4日9:00时(北京时间),线上开标,投标人无需到达开标现场。 五、公告期限2022年12月12日23:00时至2022年12月20日00:00时(北京时间)。 六、其他补充事宜 1.本次招标公告在中国招标投标公共服务平台(www.cebpubservice.com)、北大荒电子招标平台(www.bdhzb.cn)及黑龙江公共资源交易网(http://www.hljggzyjyw.org.cn/)发布。 2.现场踏勘:无。3.投标人提问、质疑以及招标人对招标文件的澄清均通过网上进行。 七、注册通知 投标人须在“北大荒电子招标平台”(www.bdhzb.cn)进行用户注册,具体操作请参阅北大荒电子招标平台首页通知公告栏2021年5月18日发布的《关于平台用户入库及CA办理的通知》办理。入库办理咨询电话:0451-55195701,0451-55195778,CA办理咨询电话:0451-55195720。 八、对本次招标提出询问,请按以下方式联系 1.招 标 人:北大荒集团黑龙江梧桐河农场有限公司 地 址:北大荒集团黑龙江梧桐河农场有限公司 联 系 人:栾女士 联系电话:0468-3800215 2.招标代理机构:北大荒招标有限公司 地 址:黑龙江省哈尔滨市香坊区珠江路29号 联 系 人:薛女士 联系电话:0451-55195758 北大荒招标有限公司 2022年12月12日
  • 磐诺移动监测实验室,助力乐山五通桥园区VOCs第一阶段走航监测工作!
    挥发性有机物英文缩写VOCs(volatile organic compounds),是指熔点低于室温而沸点在50-260℃的挥发性有机化合物,主要来源于工业生产、有机溶剂使用、机动车尾气排放等。VOCs是大气中细颗粒物(PM2.5)和臭氧等污染物生成的重要前体物之一,有效控制VOCs排放,对于改善大气环境质量、提升人民群众环境幸福感具有重要的意义。众所周知,生态环境部于2018年初制定《工业园区挥发性有机物(VOCs)试点监测方案》,选取:黑龙江省大庆市石油化工园区、四川省乐山市盐磷化工园区、山东省淄博市化工园区、江苏省泰州市工业涂装园区4家园区开展试点工作。作为监测试点园区之一,如何有效进行科学监测,摸清污染家底,发力开展治理,为环境监管工作提供数据支撑,更大程度发挥试点作用,成为乐山五通桥区盐磷化工循环产业园区园区最为关注的问题。此次,在乐山市环境科学研究所组织下,磐诺携手相关单位,凭借VOCs移动监测实验室,成功助力园区第一阶段VOCs走航监测工作。走航监测工作取得了圆满成功,这也是磐诺环境VOCs移动监测实验室工作状态下的初次亮相。监测车搭载了在线GC-MS、在线GC、便携式GC、空气6参数仪、气象5参数仪、移动摄影系统等多种先进设备,实现了多功能集成,可实现对环境空气中117项VOCs、57项原PAMS物质等污染物的自动连续监测,为相关部门提供有力的数据保障。面对不同领域的用户,磐诺移动监测实验室为大家提供更为灵活的选择。全面的在线及离线仪器,满足大气、水、土壤等各领域用户需求多款车型及装修方案,完全自定义搭配【购买+租赁】两种服务模式,经济更省心助力园区工作,提供专业技术支持,磐诺,一直在行动!
  • 栽下“梧桐树” ,引得“凤凰”来——浅看怀柔科学仪器高质量发展之道
    高质量发展是“十四五”乃至更长时期我国经济社会发展的主题,关系我国社会主义现代化建设全局。科学仪器作为一项具有复杂而精密的技术体系,其制造水平是衡量一个国家高端制造能力的重要指标之一,与国家经济高质量发展息息相关。十四五期间,各项政策频频释放利好信号,科学仪器行业如何夯实产业发展基础,提升产业链、供应链韧性?又该如何抢抓科学仪器国产替代的重大发展机遇?带着这些问题,我们共同走进怀柔科学城以及ACCSI2023。全链条融合,怀柔栽好“梧桐树”科学仪器产业链位于行业中游,上游主要为各类仪器部件供给,下游主要为各大科研主体,从中游来看,科学仪器又可与试剂耗材、各类实验室服务相互配套,进而为下游提供完整的科学服务解决方案。怀柔科学城的谋篇布局,成功链接了科学仪器产业链的上下游。据统计,截至2020年底,中国科学院有18家科研院所和中国科学院大学入驻怀柔科学城,科研人员约2000名。北京大学、清华大学、有研科技集团、机械科学研究总院集团、中航工业综合技术研究所等高校院所和中央企业已入驻怀柔科学城。动力电池、轻量化材料成形技术与装备等2个国家制造业创新中心落户。 据不完全统计,截至2020年底,在怀柔科学城工作和生活的科研人员超过5000人,硕士生和博士生超过1万人。预计2025年,在怀柔科学城工作和生活的科研人员将达至到1.5万人。当前,怀柔科学城正充分利用科学设施平台集群优势,集中力量培育研发设计、分析检测认证、技术转移、创业孵化等科技服务业态,对于推动科学仪器行业产业全链条集群化发展创造了众多利好条件。夯实创新基础,“高精尖”产业引领发展北京怀柔科学城作为原始创新、基础研究的主战场,肩负着提升我国前沿领域源头创新能力的重要职责,与此同时,怀柔还具备科学设施、产业布局规划、产业扶持政策等方面的优势。四大高精尖产业,引领区域经济高质量发展。科学仪器和传感器产业聚焦科学仪器和智慧城市感知体系两个重点领域,引导科学仪器和传感器产业领域创新要素聚集,构建产业生态完善、平台创新活跃的国际尖端科学仪器和传感器产业高地新材料领域依托大科学装置和科技研发平台,充分利用中科院和北京地区高校院所的创新资源,促进产学研用深度融合,壮大提升纳米材料领域,培育发展催化材料、清洁能源材料等关键战略材料,面向下游应用延伸产业链,在医药健康、新能源等领域开展示范应用,形成产业转化生态链条。生命健康领域致力于发展细分领域生物医药产业,支持现有企业发展壮大,鼓励企业和高校院所在生物医学成像、干细胞和再生医学、诊断试剂、包装材料、生物制药、中药等领域深耕细作,培育更多医药健康“隐形冠军”企业。商业航天领域积极发挥空间环境地基综合监测网(子午工程二期)、空间科学卫星系列及有效载荷研制测试保障平台、太空实验室地面实验基地、空间天文与应用研发实验平台、深部资源探测技术装备研发平台等科学设施平台作用,充分利用科研、人才、成果资源,着力培育地球与空间探测相关业态。锚定ACCSI2023,抢占科学仪器发展“快车道”ACCSI2023,围绕 “创新发展,产业互联”主旋律,与怀柔科学城强强联合,聚力突破创新,筑牢产业之基,共同赋能促进产业创新集群融合发展。本届大会设置20+分论坛,邀请数百位业界大咖出席,将有2000+专业听众参会。届时,更将有“怀柔区高端仪器装备和传感器产业推介会暨怀柔区重点企业新品发布会”等独家论坛同期召开。ACCSI2023官网(全日程):https://www.instrument.com.cn/accsi/2023/index为促进中国科学仪器行业健康快速发展,搭建科学仪器行业“政、产、学、研、用、资、媒”等各方有效交流平台,助推北京市“两区”建设,服务首都科技创新,“2023第十六届中国科学仪器发展年会(ACCSI2023)”将于2023年5月17-19日在北京雁栖湖国际会展中心召开。ACCSI2023以“创新发展 产业互联”为主题,由仪器信息网(instrument.com.cn)主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网(woyaoce.cn)、北京怀柔仪器和传感器有限公司等单位协办,中国仪器仪表行业协会、中国仪器仪表学会等单位支持。联系方式报告及参会报名:010-51654077-8229 13671073756 杜女士赞助及媒体合作:010-51654077-8015 13552834693魏先生微信添加accsi1或发邮件至accsi@instrument.com.cn(注明单位、姓名、手机)咨询报名。 2023第十六届中国科学仪器发展年会组委会
  • 国瑞力恒发布国瑞力恒 土壤VOCs检测仪 PID光离子化检测原理新品
    GR-3012C型手持式VOCs检测仪产品概述 土壤VOCs检测仪 PID光离子化检测原理GR-3012C型手持式VOCs检测仪(以下简称检测仪)是我公司研发的一款PID光离子化检查原理快速测量总挥发性有机物浓度的手持式仪器。本仪器主要用于现场检测环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度,根据不同的需求可选配不同量程的传感器。适用范围土壤VOCs检测仪 PID光离子化检测原理适用于环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度。配备专门的土壤打孔器和取样管可实现对土壤挥发在空气中的有机挥发性气体进行快速检测。依据标准土壤VOCs检测仪 PID光离子化检测原理HJ 1019—2019 《地块土壤和地下水中挥发性有机物采样技术》GB 12358-2006 《作业场所环境气体检测报警仪通用技术要求》GB 37822-2019 《挥发性有机物无组织排放控制标准》GB 20950-2007 《储油库大气污染物排放标准》技术特点土壤VOCs检测仪 PID光离子化检测原理1. 可选择不同量程的传感器,分辨率可达1PPB,测量量程可达10000PPM;2. 内置上百种VOCs气体的校正系数,测量数据更准确;3. 高灵敏度、高稳定性、响应迅速;4. 传感器气室外置,更换传感器方便; 5. 采用进口采样泵,负载能力强,使用寿命长; 6. 电子流量计、闭环流量控制,流量不受管道负压影响,测量数据更稳定;7. 内置高能锂电池,一次充电可连续工作8小时;8. 便携式,体积小、重量轻;9. 配备蓝牙打印功能,打印项目可自由选择; 10. 报警功能,上、下限报警值可任意设定。11. 测量数据包括平均值、峰值、TWA值、STEL值等多种浓度信息技术指标 表1技术指标主要参数参数范围分辨率准确度采样流量0.7L/min0.01L/min优于±5%VOCs传感器10000PPM1ppb负载流量 20kPa 工作温度(-20~+60)℃数据存储能力1000组电池工作时间大于8小时仪器噪声60dB(A)整机重量约0.9kg外型尺寸(长×宽×高)200×100×50功耗5W创新点:传感器量程精度做了很大的变化,10000ppm分辨率可达到1ppb国瑞力恒 土壤VOCs检测仪 PID光离子化检测原理
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • Winner311XP喷雾粒度仪助力雾化吸入式疫苗研发
    Winner311XP喷雾粒度仪助力雾化吸入式新冠疫苗研发截至6月16日,全球新冠确诊达到176303596例;死亡病例达到3820026例。现在成百上千万的确诊病例,数十上百万的死亡病例,在一条条的新闻报道前面,都成了冷冰冰的数字。看着它一天天的上涨,就仿佛急救室里,任你如何电击,也没有任何波澜的绿色线条,配着哔哔哔的仪器声,让人近乎窒息。幸运的是,我们生在中国。对于战胜新冠病毒疫情,除了治疗以外就是预防,研制有效的疫苗就是预防形式。6月3日中国工程院院士-陈薇院士提到,其团队正在研究双非疫苗,即非注射、非冷链疫苗。我们都知道现在疫苗都是通过注射,但其实还可以通过别的方式接种的,比如雾化吸入,其实雾化吸入疫苗早已经有过应用,比如流感疫苗就有注射、雾化吸入、鼻喷入等应用。吸入式疫苗是通过口腔、鼻腔等黏膜部位给药,刺激鼻腔黏膜和呼吸道黏膜产生免疫反应的疫苗类型,这种疫苗并非是新冠疫苗,在去年,流感疫苗就已经研发出鼻喷的疫苗剂型,通过鼻腔给药的方式让人体产生对流感病毒的免疫力。 鼻喷器也可以应用新冠疫苗方面 鼻喷疫苗使用的是“黏膜接种”技术。其中鼻喷流感疫苗早在2003年和2012年批准美国和欧盟这些发达国家就以批准使用,在全球范围内,鼻喷疫苗已经使用了数亿剂次,安全性已经得到了验证。下图装置为一种雾化给药装置,该装置由推杆,储液管,阻断器,伞状喷雾器,限位剂量器等零件组装而成。预期用途是将液体药剂转化为雾状粒子,并喷洒在人体表面组织(或器官)表面,使之充分接触,从而使给药效果大化。 鼻喷疫苗的优点 鼻腔给药雾化装置是一体化设计无污染风险;透气阻菌包装,微粒化喷头,药物快速吸收,无针无痛:伞状喷雾,不会对人体造成任何损伤、或刺激。准确给药,病人可自行用药;不需要无菌技术、静脉导管或其他侵入式装置;提高患者的依从性;简单易用、安全和方便;。 鼻喷疫苗产生效果的关键点 鼻喷式疫苗接种或者治疗给药最核心点是要让喷入鼻腔的雾化效果要好,而雾化效果的好坏关键点是:雾滴粒径、喷雾角、喷雾缕等指标。 有效雾化颗粒直径与其沉积部位的关系: 疫苗雾滴粒径大小和分布的重要性 雾化吸入治疗是呼吸系统疾病治疗方法中一种十分有效的治疗方法。雾化治疗一般采用雾化器将药液雾化成微小颗粒,使药物通过呼吸吸入的方式进入呼吸道和肺部,从而达到无痛和迅速有效治疗的目的。雾化的药物液滴的大小直接影响药物的吸收效果。如果液滴大,雾化快,导致患者吸入过多的水蒸气,使呼吸道湿化,呼吸道内原先部分堵塞支气管的干稠分泌物吸收水分后膨胀,加大呼吸道阻力,可能会产生缺氧现象,且会使药液结成水珠挂在内腔壁上,对药物需求量大,造成浪费的现象,并且对于疾病雾化治疗的效果不佳。所以,雾化出来的粒度决定了雾化器的治疗效果和质量。 Winner311XP喷雾粒度仪的作用 济南微纳颗粒仪器股份有限公司研究开发的Winner311XP喷雾激光粒度分析仪能够对雾化液滴、烟雾、油雾等雾滴颗粒的粒度分布进行快速准确的测试分析并给出测试报告。Win311XP喷雾激光粒度仪是以Mie散射为原理,针对国家药典中对吸入型气雾剂、喷雾剂、粉雾剂等粒度要求而研发的台式喷雾激光粒度仪,可以对各种小型喷雾装置进行测试,融和了济南微纳多种研发技术,外观小巧,能很好地对小型喷雾粒度进行测试,并实现数据的快速采集,能够可靠地在喷雾过程中实时连续测量雾化液滴的粒度分布,1分钟内即可完成测量,并提供详细的数据报告。能够有效指导生产厂家进行成品检验和科技研发。 Winner311XP喷雾粒度仪采用了单光束平行光路和双镜头双阵列探测器技术,保证了不同角度散射光的采集。激光器发出的细窄光束,通过扩束镜进行会聚后发散,然后再通过一个准直透镜将出射光变成平行光,当平行光束通过测试区域时,由于雾滴的遮挡,光束向四周散射,由于不同粒度的颗粒的散射角度不同,我们在光路的前方以及上方设计了多个探测器来收集不同角度的散射光,之后探测器将接收到的光信号传输转换为电信号并通过计算机进行计算,得出颗粒的粒度分布。Winner311XP喷雾粒度分析仪使用平行平晶来对平行光进行校准,并使用国家标样来对测试数据进行标定,能够很好地保证测试数据的准确性和重复性。 Winner311XP喷雾粒度仪测试步骤: 1 开启Winner311XP,首次使用时需要验证光路是否为平行光,在测试区域放置一块平晶,观察通过平晶前后面反射后的两个光斑重叠区域是否存在明暗相间条纹,如果是,就证明是光束平行性较好,满足测试要求,否则就需调节光路。 2 联机测试,观察背景是否为稳定、均匀的能谱图,否则需要调节探测器,使其中心小孔位于主光汇聚位置,并保证透过小孔的出射光斑为圆形光斑。光路正常后测试背景,背景测试完毕后进入能谱测试界面。 3 组装某医疗器械公司生产的雾化器,雾化杯里加入药液至刻度线,打开开关,预先雾化1-2分钟,使雾化气流稳定。 4 然后将雾化杯口对准winner311XP的测试区域,握住雾化杯,保持平稳,且保持每次测量时位置不变。当雾滴通过主光束时即开始数据采集,电脑开始显示采集到的能谱图,并在能谱图稳定后保存数据。 测试结果分析 由测试报告得出,该样品(雾化装置)的雾化粒径基本控制在10μm以内:D10值:小于2.587μm的粒径颗粒体积含量占全部颗粒的10%;D50值(中值粒径):该样品的所有粒径的颗粒中,大于4.135μm的颗粒占50%,小于4.135μm的颗粒也占50%;D90值:小于6.334μm的粒径颗粒体积含量占全部颗粒的90%;平均粒径:该样品雾化后雾滴颗粒的平均粒径是4.320μm; 结论: 雾化液滴的粒度、雾化夹角、雾化缕直接关系到雾化治疗的效果好坏,通过激光粒度测试技术(Winner311XP激光粒度分析仪)能够快速准确测试分析雾滴粒径分布,重现性1%,并详细给出特殊尺寸的雾滴的累积百分数;通过喷雾图像采集分析系统(Winner311- Imaging)能够快速准确的测量雾化夹角,是测试雾化器雾滴粒径分布的一项新技术;能够为雾化器厂商提供准确的数据来检验雾化器的性能。
  • 高精密3D打印技术解决透皮给药微针的加工难题
    行业背景一直以来,我们常用的临床医疗给药方式有口服药剂、注射针剂、外用涂抹等。不同的给药方式会各有优劣。口服药剂服用方便,需要首先通过肠胃吸收,这样药效会有所降低,并且对肝脏等器官产生较强的副作用;注射针剂存在使用不便、产生疼痛、制备成本高、过程复杂等特点。外用涂抹膏药因为皮肤的隔离,药物的吸收效率低,并且给日常生活行动带来不便。临床上一般不同的药物有效成分会根据自身的理化性质、药理学等因素而采用不同的给药医疗方式。随着科技的发展,研究人员逐步开发了一种新型的医疗给药方式——微针透皮给药,它既能实现有效给药,又操作简单并且让患者获得良好体验。上世纪90年代,世界上第一个微针是用硅材料制备而成的。由于硅材料具有脆性,且不适合作为模具来大批量复制,因此近年来微针的制备材料研究的重点逐步转移到金属、陶瓷以及聚合物材料。目前微针透皮给药已经在药物治疗、美容祛斑、整形植发等消费市场领域获得应用推广,并且市场上已经出现一批规模化量产的公司,中国的微针市场给药系统产品主要是国外品牌,医疗方面的以欧美国家居多,美容方面以日韩品牌为主。国际上有3M、Zosano Pharma、Corium、Becton-Dickinson(BD)等;国内有中科微针(北京)、揽微医疗、纳通生物、和心诺泰等。加工方法由于表皮厚度高达1500μm,因此针长度达1500μm足以将药物释放到表皮中。长度较大且直径较粗的针可深入真皮层,容易损伤神经并引起疼痛。微针长度大多数150-1500μm,直径50~250μm,尖端宽度为1~25μm。微针常见的形状是圆锥形、圆柱形、三棱锥、四棱锥等。微针根据种类不同(固体型,包被型,中空型、溶解型等)以及材料的需求,制作的工艺也不一样,硅材料常见加工方法有硅蚀刻;金属材料常见的加工方法激光切割;陶瓷材料加工方法陶瓷烧结光刻。而聚合物材料常用的加工方法是微立体光刻3D打印技术。近些年来3D打印技术获得快速发展,相对于传统加工工艺,3D打印技术能够灵活、自由的设计各种复杂三维的结构。目前市场上普通3D打印技术(SLA、FDM等)加工的精度低,表面粗糙,远远满足不了微针加工技术要求。而双光子激光直写(TPP)3D打印技术,虽然加工的精度高,但是加工幅面小、速度极慢,对于大幅面、规模化生产显然不太适宜。面投影微立体光刻(PμsL)3D打印工艺能够加工并兼顾快速、高精度、大幅面的特点,可以满足上述微针尺寸要求,并且加工出来的微针表面光滑程度高,为微创、无痛的微针治疗效果提供技术支持,也为快速、高效产业化生产提供可行性方案。目前,已经和国内多所科研高校、相关企业进行合作。面投影微立体光刻(PμsL)工艺助力微针的制备面投影微立体光刻(PμsL)基于数字DMD(Digital Micromirror Device)芯片作为动态掩模,通过精密的光路投影系统,在树脂液面进行整面曝光打印。因此,与普通的微立体光固化工艺相比,除了成型精度高以外,打印的速度得到大大提升。由于微针需要具有良好的力学性能和生物相容性才能满足其应用的安全性要求,所以微针的选材、结构设计及其相应的制备技术直接关系到微针的效能。一般而言,微针的表面越光滑,微针才能更好的发挥安全、无痛以及定量释放的优势。下图是深圳摩方材料科技有限公司基于面投影微立体光刻(PμsL)工艺的3D打印系统nanoArch® S130设备加工的阵列微针结构,该微针底部直径0.198mm,高度0.572mm,针尖的最尖端宽度仅0.006mm!加工的微针表面光滑,针尖细节更加明晰。该微针打印材料属于丙烯酸聚合物类固体型微针,通常研究人员使用该聚合物打印出针尖形态阳模,通过二次倒模形成实际需要的医用聚合物材料针尖结构,比如形成溶解型微针。最近,国外研究机构美国罗格斯大学Howon Lee和意大利比萨大学Giuseppe Barillaro合作团队从寄生虫的微钩,蜜蜂的尾刺针,豪猪的针毛研究发现一种具有高组织粘附力的微观倒刺结构。这些复杂的微观结构对于传统加工工艺而言是一种巨大的挑战。研究人员通过4D打印技术制造具有后向曲面倒钩以增强组织附着力的仿生微针。通过系列实验测试发现该种倒刺结构的仿生微针的组织附着力是普通微针的18倍!在组织中具有持续、定量释放药物的行为。文章链接地址:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201909197结论尽管目前微针在药物治疗、美容祛斑、整形植发等获得广泛应用,并且衍生一批产业化公司。但是微针治疗市场竞争较为混乱、竞争格局并不明晰、技术水平良莠不齐。我们经常会在一些公共场所见到微针治疗的相关广告。未来随着微加工技术的发展和相关的药理学研究的进展,微针治疗会获得广泛的认可,市场规模扩大、市场竞争更加规范。而高精密3D打印作为一种具有复杂三维、灵活自由、快速设计的微细加工技术,目前已经被众多前沿的科研机构以及知名规模化企业所采用,进一步深化课题研究程度,提高了企业的创新性及生产效益。
  • 高精密3D打印技术解决透皮给药微针的加工难题
    行业背景一直以来,我们常用的临床医疗给药方式有口服药剂、注射针剂、外用涂抹等。不同的给药方式会各有优劣。口服药剂服用方便,需要首先通过肠胃吸收,这样药效会有所降低,并且对肝脏等器官产生较强的副作用;注射针剂存在使用不便、产生疼痛、制备成本高、过程复杂等特点。外用涂抹膏药因为皮肤的隔离,药物的吸收效率低,并且给日常生活行动带来不便。临床上一般不同的药物有效成分会根据自身的理化性质、药理学等因素而采用不同的给药医疗方式。随着科技的发展,研究人员逐步开发了一种新型的医疗给药方式——微针透皮给药,它既能实现有效给药,又操作简单并且让患者获得良好体验。上世纪90年代,世界上第一个微针是用硅材料制备而成的。由于硅材料具有脆性,且不适合作为模具来大批量复制,因此近年来微针的制备材料研究的重点逐步转移到金属、陶瓷以及聚合物材料。目前微针透皮给药已经在药物治疗、美容祛斑、整形植发等消费市场领域获得应用推广,并且市场上已经出现一批规模化量产的公司,中国的微针市场给药系统产品主要是国外品牌,医疗方面的以欧美国家居多,美容方面以日韩品牌为主。国际上有3M、Zosano Pharma、Corium、Becton-Dickinson(BD)等;国内有中科微针(北京)、揽微医疗、纳通生物、和心诺泰等。加工方法由于表皮厚度高达1500μm,因此针长度达1500μm足以将药物释放到表皮中。长度较大且直径较粗的针可深入真皮层,容易损伤神经并引起疼痛。微针长度大多数150-1500μm,直径50~250μm,尖端宽度为1~25μm。微针常见的形状是圆锥形、圆柱形、三棱锥、四棱锥等。微针根据种类不同(固体型,包被型,中空型、溶解型等)以及材料的需求,制作的工艺也不一样,硅材料常见加工方法有硅蚀刻;金属材料常见的加工方法激光切割;陶瓷材料加工方法陶瓷烧结光刻。而聚合物材料常用的加工方法是微立体光刻3D打印技术。近些年来3D打印技术获得快速发展,相对于传统加工工艺,3D打印技术能够灵活、自由的设计各种复杂三维的结构。目前市场上普通3D打印技术(SLA、FDM等)加工的精度低,表面粗糙,远远满足不了微针加工技术要求。而双光子激光直写(TPP)3D打印技术,虽然加工的精度高,但是加工幅面小、速度极慢,对于大幅面、规模化生产显然不太适宜。面投影微立体光刻(PμsL)3D打印工艺能够加工并兼顾快速、高精度、大幅面的特点,可以满足上述微针尺寸要求,并且加工出来的微针表面光滑程度高,为微创、无痛的微针治疗效果提供技术支持,也为快速、高效产业化生产提供可行性方案。目前,已经和国内多所科研高校、相关企业进行合作。面投影微立体光刻(PμsL)工艺助力微针的制备面投影微立体光刻(PμsL)基于数字DMD(Digital Micromirror Device)芯片作为动态掩模,通过精密的光路投影系统,在树脂液面进行整面曝光打印。因此,与普通的微立体光固化工艺相比,除了成型精度高以外,打印的速度得到大大提升。由于微针需要具有良好的力学性能和生物相容性才能满足其应用的安全性要求,所以微针的选材、结构设计及其相应的制备技术直接关系到微针的效能。一般而言,微针的表面越光滑,微针才能更好的发挥安全、无痛以及定量释放的优势。下图是深圳摩方材料科技有限公司基于面投影微立体光刻(PμsL)工艺的3D打印系统nanoArch® S130设备加工的阵列微针结构,该微针底部直径0.198mm,高度0.572mm,针尖的最尖端宽度仅0.006mm!加工的微针表面光滑,针尖细节更加明晰。该微针打印材料属于丙烯酸聚合物类固体型微针,通常研究人员使用该聚合物打印出针尖形态阳模,通过二次倒模形成实际需要的医用聚合物材料针尖结构,比如形成溶解型微针。最近,国外研究机构美国罗格斯大学Howon Lee和意大利比萨大学Giuseppe Barillaro合作团队从寄生虫的微钩,蜜蜂的尾刺针,豪猪的针毛研究发现一种具有高组织粘附力的微观倒刺结构。这些复杂的微观结构对于传统加工工艺而言是一种巨大的挑战。研究人员通过4D打印技术制造具有后向曲面倒钩以增强组织附着力的仿生微针。通过系列实验测试发现该种倒刺结构的仿生微针的组织附着力是普通微针的18倍!在组织中具有持续、定量释放药物的行为。文章链接地址:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201909197结论尽管目前微针在药物治疗、美容祛斑、整形植发等获得广泛应用,并且衍生一批产业化公司。但是微针治疗市场竞争较为混乱、竞争格局并不明晰、技术水平良莠不齐。我们经常会在一些公共场所见到微针治疗的相关广告。未来随着微加工技术的发展和相关的药理学研究的进展,微针治疗会获得广泛的认可,市场规模扩大、市场竞争更加规范。而高精密3D打印作为一种具有复杂三维、灵活自由、快速设计的微细加工技术,目前已经被众多前沿的科研机构以及知名规模化企业所采用,进一步深化课题研究程度,提高了企业的创新性及生产效益。官网:https://www.bmftec.cn/links/10
  • 1200℃单双温区开启式真空气氛管式电炉:工作原理与优势
    在科研和工业生产中,电炉是不可或缺的重要设备。其中,1200℃单双温区开启式真空气氛管式电炉因其高精度、高效率的工作特点,被广泛应用于各种高温实验和材料制备。那么,这种电炉是如何工作的,它又具备哪些优势呢?接下来,让我们一起深入了解。  1200℃单双温区开启式真空气氛管式电炉的工作原理涉及到多个方面。在加热原理上,电炉主要依靠电力产生热量,通过高温电阻丝将电能转化为热能。这种方式的优点是能量转化效率高,加热速度快。在温度控制方面,电炉采用了先进的PID温度控制系统,可以实现对温度的精确控制。同时,由于采用先进的智能芯片控制,温度波动小,精度高。气氛控制是这种电炉的另一大特点。通过向炉内通入特定的气体,可以创造出不同的气氛环境,如还原性、氧化性或中性气氛,以满足不同实验和材料制备的需求。  1200℃单双温区开启式真空气氛管式电炉的优势有哪些呢?首先,其加热速度快,可以在短时间内达到高温,且温度均匀性非常好。这大大缩短了实验时间,提高了工作效率。其次,由于采用了先进的智能控制系统,电炉的操作非常简便。用户只需设定温度和时间等参数,电炉即可自动完成实验过程。此外,这种电炉还具有高可靠性和长寿命的特点。由于其内部采用优质材料和精密制造工艺,电炉的使用寿命长,可靠性高。  1200℃单双温区开启式真空气氛管式电炉还具有多种安全保护功能。例如过温保护、过流保护等,确保实验过程的安全可靠。  1200℃单双温区开启式真空气氛管式电炉以其高效、精确、安全的特点,成为科研和工业生产中的重要工具。无论是材料合成、化学反应还是高温烧结等应用场景,这种电炉都能提供出色的性能表现。随着技术的不断进步和应用需求的增加,我们有理由相信,未来的1200℃单双温区开启式真空气氛管式电炉将会更加智能化、高效化、安全化,为科研和工业生产带来更多的便利和可能性。
  • 之江实验室开展人工嗅味觉传感器研发 获阶段性成功
    浙江的之江实验室超级感知研究中心研究专家王镝及其团队开展的人工嗅味觉传感器及相关技术研发,已取得手持式呼吸丙酮检测设备、微型化嗅觉传感器样机1.0等阶段性重要成果。  目前,大部分的气体检测设备主要针对有毒、有害气体监测,在智能技术迭代、应用场景开拓等方面仍有很大的“淘金”空间。  比起感知声、光、电、力等信号的物理传感器,感知化学信号的气体传感器应用拓展相对缓慢,这背后有复杂的技术原因。“由于现实中的气体样品混杂了大量不同种类的气体分子,导致气体传感器易受干扰,可靠性相对较差。而且气体传感器的敏感材料需要暴露在外部气体环境中工作,可能受化学物质影响,导致器件的稳定性不佳。”王镝说。  据悉,在大量的物联网应用场景催化,以及通信技术和人工智能技术的赋能下,气体传感器的开发在不断推进,其应用场景从用于毒害气体检测逐渐向医疗护理、可穿戴设备、食品安全等领域拓展。  王镝介绍,如在医疗领域,二氧化碳浓度曲线是判断病人肺通气情况的依据,某些气体标志物浓度曲线反映了慢性疾病的发展趋势。在人工智能技术赋能传感器后,智能气体传感器不仅能检测气体、绘制曲线,还可以判断疾病发展程度,减轻医护人员压力,使疾病监测和健康管理成为可能。  气体传感器在医疗领域已有不少应用案例。王镝及其团队研制的手持呼吸丙酮检测设备就是其中之一。其原理是利用气体传感器,检测人呼气中的丙酮含量,从而实现快速、无痛的I型糖尿病检测。相较传统的血液检查,呼气式检测的诊疗体验更佳。  “当人体内胰岛素水平低时,无法将葡萄糖转化成能量,转而分解脂肪。作为脂肪分解后的副产品之一,丙酮会随呼吸排出体外。”王镝说,“我们研制的手持呼吸丙酮检测设备采用比色式技术路线,通过检测气敏材料的颜色变化,测量人呼气成分中的丙酮含量。”  据悉,被试者只需向设备吹气,在气体通过检测单元时,丙酮敏感材料会特异性地与其中的丙酮发生反应,并改变颜色,引起传感器中的光信号变化,最终转化为电信号将丙酮含量数据输出。  “我们正在研制‘日抛’贴片式丙酮传感器,这种传感器成本低,能够全天候自动测量皮肤挥发的丙酮气体。”王镝说,未来,在与人工智能技术结合后,贴片丙酮传感器可以辅助糖尿病的诊断、监测和用药指导。  面对气体传感器及其应用的“星辰大海”,王镝说,其团队并未止步于研制单一气体传感器,而是瞄准与智能设备兼容的高集成阵列式嗅觉器件,目前已取得阶段性研究成果。“我们希望用小小的手机插件,同时辨别几十种气体,让食品安全信息唾手可得、环境监测数据尽在掌握、可穿戴设备更加‘聪明’,获取更全面、精确的健康数据和环境信息,为智慧生活装上机灵的‘电鼻子’。”
  • “等效原理实验用喷泉式高精度原子干涉仪”通过验收
    12月21日至22日,中国科学院武汉物理与数学研究所承担的中国科学院重大科研装备研制项目——“等效原理实验用喷泉式高精度原子干涉仪”通过了由中科院计划财务局组织的现场测试和验收。来自中科院的管理专家和来自中科院上海光机所、中国计量院、华中科技大学、武汉大学、华中师范大学的专家参加了验收会。与会领导和专家在认真听取了项目负责人王谨研究员所作的仪器研制工作报告、财务报告以及测试专家组所作的测试报告后,对取得的成果表示了充分的肯定,并就下一步如何充分利用该科研装备开展研究工作提出了很好的建议。   “等效原理实验用喷泉式高精度原子干涉仪”研制项目综合运用了超高真空、磁屏蔽、激光、磁光阱、原子喷泉等多项复杂技术,实施方案具有创新性。经过三年多的不懈努力,课题组逐项攻克各单项技术难题,完成了方案设计、部件加工、单元测试、安装调试等一系列任务。整套仪器自2010年4月28日起在原子频标实验大楼安装调试,2010年12月8日完成全部安装调试任务。经过现场测试,原子喷泉上抛高度为6米,原子干涉条纹对比度为76%,主要技术指标达到项目任务书的要求,标志着喷泉式高精度原子干涉仪在武汉物理与数学所研制成功。该仪器的整体高度为12.6米,设计的原子最大上抛高度为10米,是目前国际上最高的喷泉式原子干涉仪。   验收专家组认为,喷泉式高精度原子干涉仪的研制成功,为基于自由下落微观原子的重力加速度精确测量和等效原理检验实验提供了平台,也为利用原子干涉仪开展精密测量物理实验研究创造了条件。   据悉,在武汉建设大型喷泉式高精度原子干涉仪研究平台的最初设想,是2007年5月在中科院武汉物理与数学所学科发展战略研讨会上由冷原子物理研究组提出的,该设想于2007年10月正式付诸实施,先后得到了中科院科研装备研制项目、中科院武汉物理与数学所前沿部署项目和国家自然科学基金委仪器研制重点项目的资助。   验收会议现场   现场测试   等效原理实验用喷泉式高精度原子干涉
  • 阿蛋学仪器 | 色谱分离的原理 So Easy !
    广州绿百草推出全新连载短篇小说【阿蛋学仪器】, 不定期的跟大家讲述关于学渣阿蛋在工作后不得不学习仪器知识的苦逼经历。夸张的剧情下都是以现实为原型,记得准时关注哦!夏天的风正暖暖吹过,穿过头发穿过耳朵.........话说在那天气晴朗万里无云的某个周末,正在抠着大脚丫吃着冰西瓜思考人生意义的胖##突然接到领导的一个任务。“喂。小胖呀~ 上头下了个任务,要拍一个化学知识视频,我看你一向最受学生欢迎,就随便摆弄一下吧。课题已经帮你选好了,色谱分析原理。”“额,不不不,虽然为了科学教育的发展我上刀山下火海都在所不辞,但是......”“别啰嗦,就这么定了。告诉你啊,给我做的好好的,不然你今年的考评....88”嘟嘟嘟。。。胖##现在已经无法继续好好玩耍了,学生喜欢他都是因为他风流一趟玉树临风知识渊博心地善良从不让人挂科呀~真是。。。冷冷清清凄凄惨惨戚戚呀~内心再抗拒,生活还是要继续的。胖##叫来了以前跟他一起打LOL的阿蛋,浑浑噩噩迷迷糊糊想了三天三夜的剧本,终于开拍了。( 导演和其它演员的召唤,这里就不详细说啦哈! )导演:色谱分析原理So Easy 剧组 Action!!!场景预设 ——色谱柱:为一间双门房子,一门可进,一门可出。分析的样品:胖##,高大威猛略胖。阿蛋,形象气质佳小明星(剧情需求,大家多多包涵,少吐些。)Part 1 —— 反相柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:众美女都喜欢帅哥,不断有人拉阿蛋的手并要求合影签名。胖##由于高大威猛,也有部分小萝莉喜欢,但是还是比阿蛋少,走的自然比阿蛋快。结果胖##和阿蛋的距离越来越远,出门的时候,已经分离的很好了。分离度3.0,柱效15万/m。反相柱分离注意事项:1)不可用于分离帅得离谱的人(非极性太强的物质),会造成美女互相踩伤践踏拥挤的现象,造成柱堵塞,柱压升高;心脏不好的美女会由于过于激动而休克,甚至兴奋而死,造成柱子过早老化,降低柱效。另外,还会造成吸附现象,出峰时间太久甚至不出峰。2)不可用于分离过于猥琐丑陋可怕的人(极性太强的物质),会导致美女流失,造成柱效下降,出峰时间太快,影响分离效果。不过这时有个色谱柱再生方法可以回复柱效,就说“牛掰了”的鞋正挥泪大甩卖,美女将迅速赶回,恢复柱效!Part 2 —— 正相柱分析原理屋子里有一大群男子,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:阿蛋由于太帅招人嫉妒率先被赶出来。胖##被同胞惺惺相惜,留下来吃饭唱K看电影,最后才依依不舍的含泪送别。分离度2.8,柱效13万/m。正相柱分离注意事项:并不适用于分离Gay男(无保留物质)。Part 3 —— 体积排阻色谱柱分析原理屋子里面变成了溶洞效果,溶洞里的洞有大有小,非常好玩。胖##和阿蛋从一个门进入,穿过溶洞,从另一个门出来。结果:本以为阿蛋个头小灵活,会早点爬出来,谁知是体积庞大的胖##先出来啦。因为两人一钻溶洞,便仿佛回到了童年,逮着洞就想钻。阿蛋个子小,钻来钻去玩得不亦乐乎。而胖##在意思到自己已非3岁的小胖胖后,害怕被小洞卡住而崴了,只好作罢,沿大路走了出来,扼腕叹息“时光蹉跎,青春少年已不复!”Part 4 —— 离子对色谱柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。胖##痛苦回忆:美女都喜欢帅哥,不断有人拉住阿蛋吟诗作对自拍萌萌哒,拉胖##的仅有几个发育不全的小萝莉。结果胖##和阿蛋渐行渐远。。。胖##对策:往事不堪回首,所以第二天再过这间屋子的时候,带上了他的必杀技——萌萌哒小鲜肉胖小子。结果:胖##抱着胖小子和阿蛋一起穿过屋子,美女们发现居然还有个小鲜肉,纷纷过来捏捏小脸蛋。“美女,敢吃青椒吗?” 胖小子搭配美女的功夫一点也不含糊呢。胖##色眯眯的看着围着的众美女,美其名曰为胖小子报仇,把美女的脸蛋一一捏了个编。直到胖小子微怒言 “爸比,我饿了!” ,才恋恋不舍的抱起小胖,发话 “最后再捏一遍!......” 阿蛋在门口,秒倒!Part 4 拍摄花絮 ——1)观众问:美女为什么喜欢小鲜肉抛弃阿蛋呢? 回复:现在流行小鲜肉。另外,女人总是有母爱的,这是与生俱来的本能,所以此处美女年龄要大些。呵呵。2)拍完这段以后,导演“卡”了N次。因为胖小子被捏后没有表现出天真烂漫可爱的样子,反而哭了N次,最终拍得胖小子又累又饿又痛才终被导演放行。3)Case结束时,镜头正面是胖##得意而归的表情,远端发现众美女一脸哀怨的正在揉脸,忿忿曰“死胖子,手够狠啊!̷�!”By the way, 这次拍摄的视频非常受欢迎,胖##终于又能在领导的眼皮底下好好思考人生了!想知道阿蛋后续又有怎样的遭遇?记得持续关注广州绿百草微信公众号~我们会不定期推出续集哦~关注广州绿百草微信公众号,获取更多资讯!
  • 从口感到数据:手持式辣度检测仪的工作原理与应用
    辣椒的独特辣味为美食增添了无数风味,那么如何快速准确测量不同辣椒计辣椒制品的辣度呢?手持式辣度检测仪通过电化学测量方法,将辣味从主观感受转化为可量化的数据,为食品加工和质量控制提供了有力支持。了解更多手持辣度检测仪产品详情→https://www.instrument.com.cn/show/C578542.html工作原理:电化学测量辣味手持式辣度检测仪的核心在于其电化学测量原理。辣椒素类物质是辣味的主要来源,其中包括辣椒素和二氢辣椒素,它们共同构成了辣椒素类物质的90%左右。检测仪利用一次性三电极片,在电位作用下,辣椒素在工作电极表面富集,然后在特定的工作电压下进行氧化还原反应。这个过程中,辣椒素得失电子所产生的电流信号,会在显示器上呈现出相应的氧化还原峰。通过对峰电流大小的分析,仪器可以精确地定量检测出样品中辣椒素的含量,从而提供一个客观的辣度数据。优势:便捷、快速、可靠手持式辣度检测仪以其便捷性和快速性,显著提升了辣度检测的效率。首先,仪器设计紧凑、便于携带,适合在实验室外进行现场检测。其次,电化学测量方法使得检测过程不再依赖复杂的前处理步骤,只需简单操作即可获得准确结果。再者,检测仪的高灵敏度使得它能够对辣椒素进行精准的定量分析,这对于食品生产商在进行产品配方调整和质量控制时至关重要。应用:从田间到餐桌的全程监测手持式辣度检测仪还能适应各种辣椒及其制品的检测需求,无论是干辣椒、鲜辣椒还是辣椒粉,都可以通过这款仪器进行快速测定。对于辣椒种植者来说,仪器可以帮助他们在田间快速检测辣椒的辣度,以决定收获时机。食品加工企业则可以通过检测仪对原材料和成品进行质量控制,确保产品符合既定的辣度标准。在餐饮行业,手持式辣度检测仪还可以用于检测不同菜品的辣度,满足顾客对辣味的不同需求。总的来说,手持式辣度检测仪以其电化学测量原理和多功能应用,帮助行业实现了从口感到数据的科学转化。不仅提高了辣度检测的效率和准确性,更为食品行业的品质提升提供了重要的技术支持。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 盘点:三代PCR仪原理及应用
    p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 前言 /span /strong /p p   人类对于核酸的研究已经有100多年的历史。20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。Khorana于1971年最早提出核酸体外扩增的设想:经过DNA变性,与合适引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因。 /p p   但由于测序和引物合成的困难,以及70年代基因工程技术的发明使克隆基因成为可能,所以,Khorana的设想被人们遗忘了。 /p p   1985年,美国科学家穆利斯在高速公路的启发下,经过两年的努力,发明了PCR(聚合酶链式反应)技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。从此,PCR技术开始走进生命科学界,应用于各大小实验室,成为生命科学实验室不可或缺的技术手段和工具,极大地推动了生命科学的研究进展。穆利斯也因此而获得1993年的诺贝尔化学奖。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/42353234-b84b-4124-8228-ad9e5dd139c7.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 穆利斯 /span /strong br/ /p p   PCR是分子生物学研究极其重要的工具,是一种用于放大扩增特定的DNA片段的分子生物学技术,基本原理是在试管中模拟细胞内的DNA复制,即人为创造核酸半保留复制条件,使目的DNA在细胞外完成扩增的过程,它可被看作是生物体外的特殊DNA复制。 /p p   根据PCR原理,商业公司在PCR仪的基础功能上不断进行创新和改进。至今,PCR仪已经更新至第三代技术。为方便读者朋友理解,本文将对三代PCR仪的原理、特点、主要厂商及产品、应用领域做一系统梳理。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第一代——标准PCR仪 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/41d48cc2-6454-41a4-80a2-32d8206eeb55.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 标准PCR反应过程 /span /strong br/ /p p   标准PCR仪也叫做终点PCR仪,是指目的基因仅经过预变性、变性、退火、延伸阶段产生大量的核酸序列的PCR仪,PE-Cetus公司推出的世界上第一台PCR自动化热循环仪属于此种。根据PCR退火温度和扩增条件(细胞内/外),标准PCR又可以分为三类:普通PCR、梯度PCR和原位PCR。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/2749e6d5-017a-46c5-9cae-a379b96def96.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p    strong 普通PCR仪 /strong :一般把一次PCR扩增只能运行一个特定退火温度的PCR仪,称之为普通PCR仪。如果要用它做不同的退火温度则需要多次运行。主要是用作简单的、对单一退火温度的目的基因的扩增。 /p p   主要应用于科研、教学、临床医学、检验、检疫等。 /p p    strong 梯度PCR仪 /strong :普通PCR仪衍生出的带梯度PCR功能的基因扩增仪。梯度PCR仪每个孔的温度可以在指定范围内按照梯度设置,一次性PCR扩增可以设置一系列不同的退火温度条件(通常12种温度梯度)。由于被扩增的DNA片段不同,其最佳退火温度也不同,通过梯度设置,可一次性筛选出最佳的退火温度。这样既可节省试验时间,提高实验效率,又能节约实验成本。在不设置梯度的情况下亦可当做普通的PCR用。 /p p   梯度PCR仪多应用于科研、教学机构。 /p p    strong 原位PCR仪 /strong :是将PCR技术的高效扩增与原位杂交的细胞定位结合起来,用于从细胞内靶DNA的定位分析的细胞内基因扩增仪,从而在组织细胞原位检测单拷贝或低拷贝的特定DNA或RNA序列。原位PCR技术的待检标本一般先经化学固定,以保持组织细胞的良好形态结构。细胞膜和核膜均具有一定的通透性,当进行PCR扩增时,各种成分,如引物、DNA聚合酶、核苷酸等均可进进细胞内或细胞核内,以固定在细胞内或细胞核内的RNA或DNA为模板,于原位进行扩增。 /p p   原位PCR仪对于在分子和细胞水平上研究疾病的发病机理和临床过程及病理的转变有着重要意义。 /p p   需要说明的是,以上三种类型PCR仪并非是对立的,许多普通PCR仪结合了以上两种或者两种以上功能。 /p p   市售标准PCR仪种类繁多,国内外公司都有相应产品,赛默飞旗下PCR仪占据国内生命科学实验室的半壁江山,其次分别是是伯乐、罗氏和艾本德。 /p p style=" text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 此处列出部分在仪器信息网参展并且是仪器信息网新品或者仪器信息网“绿色仪器”的一代PCR仪。 /span /strong /p p style=" text-align: center text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201812/uepic/d7059e6f-1922-4b57-b5f8-f58abfaedd51.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " Eppendorf Mastercycler X50 梯度 PCR 仪(绿色仪器) /span /strong /p p   艾本德此款PCR仪采用2D-梯度技术,能够同时优化退火与变性条件,升温速度高达10° C/s,10台仪器可直接并组成网,适用于高通量应用或者人员众多需求复杂的实验室。 /p p   strong span style=" color: rgb(0, 112, 192) "   /span /strong a href=" https://www.instrument.com.cn/netshow/C273735.htm" target=" _self" title=" 详情请点击" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/cd7674e4-20aa-44cb-8e24-97e172abc108.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 力康Trident 960基因扩增仪(新品) /span /strong /p p   此款基因扩增仪与今年5月上市,创新点在于它是多模块PCR仪,可同时运行三种控温程序 界面采用安卓系统,操作体验大幅提升 最大升温速率达到6℃/s。 /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/netshow/C288657.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第二代——qPCR(实时定量PCR) /span /strong /p p   1996年Applied Biosystems(现被赛默飞收购)公司推出了实时荧光定量PCR(RTFQ PCR)技术,并发明了世界上第一台荧光定量PCR仪,开始了从定性到定量的跨越。 /p p   实时定量PCR仪是指在PCR反应体系中加入能够指示DNA片段扩增过程的荧光染料(SYBR Green等)或荧光标记的特异性的探针(TaqMan Probe等),在普通PCR仪设计基础上增加荧光信号激发和采集系统和计算机分析处理系统,形成了具有荧光定量PCR功能的仪器,通过对PCR过程中产生的荧光信号积累实时监测整个PCR过程,再结合相应的计算机软件对所获得的荧光信号数据进行分析,计算待测样品特定DNA片段的初始浓度。 /p p   目前根据荧光信号反应样品浓度主要有两种该方法: /p p    strong 1.Taqman探针法 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a439631b-e389-434b-9801-df6dd2552a4a.jpg" title=" taqman.jpg" alt=" taqman.jpg" / /p p style=" text-indent: 2em " 探针两端分别为报告荧光基团R和荧光淬灭基团Q,当探针完整时,R发出的荧光被Q吸收,检测不到荧光信号。探针随机结合到DNA单链上,PCR扩增时,探针被水解,R与Q分离,R发出的荧光就会被检测到。每扩增一条DNA链都会生成一个荧光分子。 /p p    strong 2. SYBR Green Ι染料法 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/38bc15e1-e944-4d6b-b2e8-8cba519b1f26.jpg" title=" ranliao.jpg" alt=" ranliao.jpg" / /p p style=" text-indent: 2em " SYBR Green Ι是一种只有在和双链DNA结合时才会发荧光的染料。在PCR变性时,无荧光产生,到了复性和延伸阶段则能检测到荧光信号。 /p p   实时荧光定量PCR仪主要应用于病原体检测、药物疗效考核、肿瘤基因检测、基因表达研究、转基因研究、单核苷酸多态性(SNP)及突变分析等细分研究方向,广泛应用于临床医学检测、生物医药研发、食品行业等研究领域。 /p p   目前市售qPCR仪种类繁多,伯乐、罗氏、赛默飞均推出系列定量PCR仪产品,国内生物公司也相继进入这一市场,并取得了不错的口碑,如博日、力康、福生生物等。 /p p style=" text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 本篇列出部分在仪器信息网参展的新品qPCR仪: /strong /span /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f9abfbd2-a173-48ae-925e-cdd3516dc9e2.jpg" title=" olumeikesi.jpg" alt=" olumeikesi.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 鲁美科斯实时荧光定量PCR AriaDNA-4(新品) /span /strong br/ /p p   鲁美科斯此款荧光定量PCR仪主要创新点如下: 1.采用专利冻干微芯片技术,实现超微量进样分析,和常规PCR试剂和样品大大减少,普通PCR15微升,LUMEX实时微芯片PCR进样量1-2微升,节省进样量和后续使用成本 2.专利冻干微芯片技术,避免试剂冷链储存,动感试剂涂布在芯片上,可实现一次性检测多种DNA和RNA样品,实现常温储存运输。 /p p    a href=" https://www.instrument.com.cn/netshow/C278549.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d3a9640c-b164-4331-9c13-5879ae51e203.jpg" title=" 天隆科技.jpg" alt=" 天隆科技.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 天隆科技Gentier 96E实时荧光定量PCR检测系统(优秀新品) /span /strong /p p   Gentier 96E实时荧光定量PCR检测系统是天隆科技最新一代、为满足高端用户的实验需求而量身定制。该款产品具有科学高效的温控系统与光电系统、强大易用的软件分析功能、人性化的操控方式、六通道同步检测等诸多优势,能够轻松实现下游多重基因检测、定量分析、SNP分析、HRM分析等应用。 /p p   strong span style=" color: rgb(0, 112, 192) "   /span /strong a href=" https://www.instrument.com.cn/netshow/C260668.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第三代——dPCR(数字PCR) /span /strong /p p   不同于qPCR 对每个循环进行实时荧光测定的方法,数字 PCR 技术是在扩增结束后对每个反应单元的荧光信号进行采集。 /p p   数字PCR是一种基于PCR反应(聚合酶链反应)的单分子绝对定量技术。如图1,在数字PCR的过程中:(a) PCR反应体系(含有荧光染料或探针)被分割为数以万计的均一微液滴,(b) 其中部分微液滴内会含有一个或多个模板,(c) 将这些微液滴收集到试管内进行PCR反应,其中含有模板的微液滴会产生扩增产物,由此具有较强的荧光,成为阳性微液滴,(d) 在PCR反应完成后,依次对每个微液滴内的荧光进行检测,(e) 根据微液滴信号的峰值高度,绘制出微液滴荧光分布的散点图,(f) 通过合理的荧光分类阈值将微液滴内的荧光强度数字化,判断出其中具有较强荧光的阳性微液滴(图1f中绿色的数据点,称为“1”)和具有较弱荧光的阴性微液滴(图1f中蓝色的数据点,称为“0”),并通过“1”和“0”的个数来实现绝对定量。因此,与实时定量PCR不同,数字PCR不需要使用标准曲线,即可直接对核酸拷贝数的绝对值进行定量。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d60f8316-ce67-4b06-81fb-9f90f95250f2.jpg" title=" 数字PCR的原理示意图.jpg" alt=" 数字PCR的原理示意图.jpg" width=" 427" height=" 489" style=" width: 427px height: 489px " / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 数字PCR原理示意图 /span /strong /p p   最后通过直接计数或泊松分布公式计算得到样品的原始浓度或含量。 /p p   迄今为止,目前市面上常见的数字PCR仪器主要有两种,根据微反应的形成原理不同,主要分为 “芯片数字PCR”与“微滴数字PCR”两类。 /p p    strong 1.芯片数字PCR /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f4f13392-c096-4bbd-abde-2bd2e3719bb7.jpg" title=" 芯片数字PCR.jpg" alt=" 芯片数字PCR.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 芯片数字PCR原理图 /span /strong br/ /p p    strong 2.液滴数字PCR /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/1f2874f7-5e13-494d-a138-f50fbd7fe98b.jpg" title=" 22.jpg" alt=" 22.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 微液滴数字PCR原理图 /span /strong /p p   液滴数字PCR源于乳液PCR( emulsion PCR) 技术,即将DNA模板与连接引物的磁性微球以极低的浓度(比如单拷贝) 包裹于油水两相形成的纳升至皮升级液滴中进行 PCR 扩增,扩增后的产物富集在磁性微球上,收集破乳后进行测序。通过油水两相间隔得到的以液滴为单位的 PCR 反应体系,比微孔板和 IFC 系统更容易实现小体积和高通量,而且系统简单,成本低,因此成为理想的数字PCR技术平台。 /p p   数字PCR技术主要应用于不稳定性分析、肿瘤早期研究、产前诊断、致病微生物检测、癌症标志物稀有突变检测等研究领域,也用于验证NGS中的低频突变、 DNA甲基化检测、突变多重检测等方向。 /p p   基于数字PCR精准、灵敏、高效的应用场景,巨头公司(伯乐、罗氏和赛默飞)纷纷在这一领域布局,并相继推出数字PCR产品,许多国产数字PCR厂商如泛生子、顺德永诺生物、科维思、 诺禾致源、小海龟科技也争相进入市场,数字PCR大有可为。 /p p    strong span style=" color: rgb(192, 0, 0) " 本篇列出在仪器信息网参展的部分数字PCR仪产品 /span /strong strong span style=" color: rgb(192, 0, 0) " : /span /strong /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/f8fdec21-ba5e-48ef-b8dc-c83c1ba0d937.jpg" title=" 11.jpg" alt=" 11.jpg" style=" text-align: center " / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 伯乐QX200 微滴式数字PCR系统 /span /strong br/ /p p   Bio-Rad的技术主要来源于QuantaLife公司,QuantaLife 利用油包水微滴生成技术开发了微滴式数字PCR技术,这也是最早出现的相对成熟的数字PCR平台,在运行成本和实验结果稳定性方面都基本达到了商品化的标准。2011年,QuantaLife 公司被Bio-Rad公司收购,其微滴式数字PCR仪产品更名为QX100型号仪继续在市场上销售,这个早期型号为dPCR概念的普及和应用领域的拓展发挥了重要作用。2013年该公司又推出了升级型号QX200。 /p p    a href=" https://www.instrument.com.cn/netshow/C293849.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a75e17b8-0d45-4394-9f8e-afb3ad61b6c7.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 赛默飞QuantStudio 3D Digital PCR System /span /strong /p p   Applied Biosystems于2013年也推出了产品,Quant Studio 3D数字PCR系统。采用高密度的纳升流控芯片技术,样本均匀分配至20,000个单独的反应孔中。在整个工作流程中,样本之间保持完全隔离,可以有效地防止样品交叉污染,减少移液过程,简化操作步骤。同时芯片式设计避免了微滴式系统可能面临的管路堵塞问题。作为Applied Biosystems在OpenArray芯片平台之外推出的全新的芯片式数字PCR系统,值得一提的是,这个全新的系统在设计理念上综合考虑了系统稳定性与运行成本因素,直接反映了该系统“适合所有分子生物学实验室使用的数字PCR系统”的市场定位。2013年,Thermo Fisher收购Applied Biosystems。 /p p    a href=" https://www.instrument.com.cn/netshow/C194603.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/35dde0a8-6e31-4ee4-b590-e7284aa84e5e.jpg" title=" 13.jpg" alt=" 13.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " Naica crystal微滴数字PCR系统 /span /strong /p p   NaicaTMcrystal 微滴数字PCR系统是法国Stilla公司开发的下一代核酸绝对定量技术。使用cutting-edge微流体创新型芯片——Sapphire芯片作为数字PCR过程的唯一耗材。样品通过毛细通道网格以30,000个微滴的形式进入2D芯片中,可称作Crystal微滴。PCR扩增实验在芯片上实现。对微滴成像用以检测包含扩增片段的微滴。最后一步是对阳性微滴计数从而得到精准的核酸绝对数量。 /p p    a href=" https://www.instrument.com.cn/netshow/C277808.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/80eaf629-bff9-48a9-af5b-629dcf2eb49c.jpg" title=" 14.jpg" alt=" 14.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 新羿TD-1 微滴式数字PCR系统 /span /strong /p p   新羿TD-1微滴式数字PCR系统由Drop Maker 样本制备仪和 Chip Reader 生物芯片阅读仪及其他相关试剂耗材构成。Drop Maker 样本制备仪采用光、机、电一体化设计,配套具有自主知识产权的微流控芯片,可以将水相样本快速制备成纳升体积的液滴,液滴数与样本体积相关,30微升样本可制备约5万个液滴。液滴尺寸均一,并可在PCR扩增后保持稳定。 /p p   Chip Reader R1生物芯片阅读仪采用光、机、电一体化设计,及激光共聚焦原理,配套具有自主知识产权的微流控芯片,可以准确快速地定位、识别纳升体积微液滴,获取其荧光信号值。经过泊松统计分析,提供研究者所需的阳性、阴性液滴数绝对数值,从而推算出起始靶标核酸分子精确浓度。Chip Reader R1 生物芯片阅读仪兼容Taqman水解探针和EVAGreen检测。 /p p    a href=" https://www.instrument.com.cn/netshow/C289823.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p    span style=" color: rgb(0, 0, 0) " strong 与传统定量 PCR 不同,数字 PCR 通过直接计数的方法,可以实现起始 DNA 模板的绝对定量但是,目前的数字 PCR 技术仍然存在一些不足,制约了该技术广泛应用。例如,数字 PCR 自身特点决定了其分析的样品通量很低,基本每块芯片上万个反应单元都是针对单一样本的分析。而荧光检测技术的局限性限制了多个芯片的同时检测,因此该技术目前在常规基因表达分析中不具备优势。此外,数字PCR技术的灵敏度(分辨率) 和准确性有待进一步提高和优化,在临床诊断中需要进行大量的比较和验证实验(对照传统方法) 。基于精密仪器和复杂芯片的数字 PCR 技术成本高昂,也是制约其广泛应用的一个原因。 /strong /span /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 小结 /span /strong /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/31e8b226-4e10-4fd4-b9e4-40cf1c10a698.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 582" height=" 265" style=" text-align: center width: 582px height: 265px " /    span style=" text-align: center " /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td width=" 121" valign=" top" style=" border-width: 1px border-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " 代次 /span /span /p /td td width=" 151" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px word-break: break-all " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 标准 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第一代) /span /span /p /td td width=" 142" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 定量 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第二代) /span /span /p /td td width=" 146" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 数字 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第三代) /span /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px word-break: break-all " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 定量能力 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 定性 /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 半定量 /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 绝对定量 /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 分子数灵敏度 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 100 /span span style=" line-height: 150% color: rgb(51, 51, 51) " 个分子 /span /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 10 /span span style=" line-height: 150% color: rgb(51, 51, 51) " 个分子 /span /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 1 /span span style=" line-height: 150% font-family: 宋体 color: rgb(51, 51, 51)" 个分子 /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 稀有突变灵敏度 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 10-50% /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 1-5% /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 0.1% /span /p /td /tr /tbody /table p style=" text-indent: 2em " PCR技术已在生命学、医学诊断、遗传工程、法医学和考古学等领域广泛应用,在临床检验中的应用,对疾病的诊断提高到基因水平,众多的疑难病症得到及时确诊和有效的治疗。 br/ /p p   对于不同的应用场景,三代PCR各有优势,但是可以看出,数字PCR具有绝对定量的优势,是未来临床标准化分子诊断的首选技术。 /p p   相信在未来的几年里将会不断有新的技术和产品出现,不断扩展其应用范围,使之成为新一代分子诊断工具。 /p p strong 附: a href=" https://www.instrument.com.cn/zc/133.html" target=" _self" 仪器信息网PCR仪专场 /a /strong /p
  • 粮食真菌毒素检测仪:荧光定量原理守护食品安全
    粮食真菌毒素检测仪采用荧光定量快速检测原理,主要应用于粮油、谷物、饲料等多种领域,对多种真菌毒素进行准确检测,为确保食品安全贡献力量。荧光定量快速检测原理即粮食真菌毒素检测仪通过特定的荧光信号,准确、快速地识别和测量样品中的真菌毒素含量。这项技术具有高效、灵敏度高、操作简便等特点,使得检测过程更加迅速和可靠。核心特性及优势全方位检测:涵盖多种真菌毒素,包括黄曲霉毒素B1、黄曲霉毒素M1、玉米赤霉烯酮等,实现全面监测。任意样品数量:粮食真菌毒素检测仪允许用户既可单个或少量样本随到随检,也可大量样本同时检测。内置定量标准曲线:在检测过程中无需使用外部标准品进行校准,避免了操作人员与呕吐毒素直接接触的可能,从而提高了操作的安全性。随到随检:检测仪器的便携性使其适用于现场检测,无论是在生产线上、仓库中,还是在野外环境中,都能轻松进行检测操作。多领域应用:适用于粮库、谷物生产企业、饲料厂、畜牧养殖企业、食品加工厂、第三方检测机构等多个行业。应用场景保障粮库质量:对存储的粮食进行定期检测,预防真菌毒素污染。提升饲料质量:对饲料原料进行检测,确保畜牧养殖健康生长。食品生产控制:在食品生产过程中对油脂、面粉等原材料进行检测,确保成品质量。第三方检测服务:为各行业提供真菌毒素检测服务,为食品安全保驾护航。通过使用粮食真菌毒素检测仪,我们能够更全面地了解食品和饲料的安全状况,从而更好地保障我们的健康。
  • 注射针尖穿刺力测试仪----原理与应用解析
    注射针尖穿刺力测试仪在制药与包装行业中,注射针尖作为药物传递的直接媒介,其性能的稳定与安全性直接关系到患者的健康与安全。随着医疗技术的不断进步和药品包装的多样化发展,注射针尖在各类薄膜、复合膜、电池隔膜、人造皮肤乃至药品包装用胶塞、组合盖、口服液盖等材料的穿刺应用日益广泛。这些材料不仅需要具备良好的阻隔性以保护药品免受外界污染,还需在针尖穿刺时展现适宜的力学特性,以确保药物输送的顺畅与安全。注射针尖在制药包装行业的应用概述在制药过程中,注射针尖常被用于穿透药品包装材料,以实现药物的精准注入或抽取。无论是液体药品的密封瓶、预充式注射器,还是复杂的医疗装置,都离不开注射针尖的高效与准确。同时,随着环保和可持续性理念的深入人心,制药包装材料正逐步向轻量化、可降解方向发展,这对注射针尖的穿刺性能提出了更高的要求。为何需要注射针尖穿刺力测试仪鉴于注射针尖在制药包装中的核心作用,其穿刺性能的优劣直接影响到产品的使用体验和药品的安全性。因此,对注射针尖在不同材料上的穿刺力进行测试显得尤为重要。注射针尖穿刺力测试仪应运而生,它专为评估针尖在穿透各种材料时所需的力值及拔出时的阻力而设计,能够有效帮助制造商、质检机构及研究人员评估材料的适用性,优化产品设计,确保产品质量。广泛应用领域注射针尖穿刺力测试仪广泛应用于质检中心、药检中心、包装厂、药厂、食品厂等多个领域,成为保障产品安全与质量的重要工具。通过精确测量不同材料在穿刺过程中的力值变化与位移情况,可以深入了解材料的物理特性,为材料选择、工艺改进及质量控制提供科学依据。测试原理详解注射针尖穿刺力测试仪的测试原理基于力学原理与精密测量技术。测试时,首先将待测样品装夹在仪器的两个夹头之间,通过精确控制两夹头的相对运动,使标准要求的穿刺针以设定速度刺入样品。在穿刺过程中,仪器会实时记录并显示穿刺力及拔出力的变化曲线,同时监测针尖的位移情况。这些数据不仅反映了材料对针尖的抵抗能力,还能揭示材料内部的力学结构特性,为材料性能评估提供全面而准确的信息。
  • 2020十大新兴技术揭晓!每一项都可能颠覆我们的生活
    div class=" newsDetail" p 全世界都在竞相研发新冠肺炎疫苗,而前景令人鼓舞,我们可能会在破纪录的时间内研发出疫苗。但在未来新冠疫情仍在蔓延的情况下,技术能帮助我们更快地实现目标吗? /p p br/ /p p 世界经济论坛和《科学美国人》杂志本月10日共同发布的一份最新报告——《2020十大新兴技术》表明,答案是肯定的。 /p p br/ /p p 数字复制品是人类疫苗志愿者的高科技替代品,它可以使临床试验更快、更安全。但根据这份报告,数字复制品并不是唯一将撼动工业、医疗、交通等人类社会方方面面的创新。 /p p br/ /p p 这份报告揭示了2020年十大新兴技术——由世界经济论坛和《科学美国人》杂志召集的国际专家指导小组从75项技术提名中选出。 /p p br/ /p p 从电动飞机到可以“看见”拐角处物体的量子传感器,专家在筛选这十大新兴技术时称,这些技术必须有潜力超越现在,并在将来刺激社会和经济的进步。它们还必须足够新颖(也就是说,目前还没有被广泛使用),但很可能在未来三到五年内产生重大影响。 /p p br/ /p p 以下是报告选出的2020年十大新兴技术。 /p p br/ /p p strong 1、微针——实现无痛注射和抽血 /strong /p p br/ /p p 这些细小的针头不超过一张纸的厚度和一根头发的宽度,却可以帮我们实现无痛注射和抽血。微针可以穿透皮却不会触碰神经末梢,并可以附着在注射器或贴片上,甚至可以混入乳膏中。从此,人们足不出户就可在家中完成抽血,然后可将血液样本送到实验室或当场进行分析。此外,微针技术还能节约设备和人力成本,让医疗服务不足地区的人们更易获得医疗服务。 /p p br/ /p p strong 2、太阳能化学——将二氧化碳变废为宝 /strong /p p br/ /p p 生产我们依赖的许多化学药品都需要化石燃料。但是一种新方法有望通过利用阳光将废二氧化碳转化为有用的化学物质来减少化石燃料的排放。近年来,研究人员开发了能打破二氧化碳中碳与氧之间抗性双键的光催化剂。这意味着我们朝建立“太阳能”精炼厂的方向迈出了关键第一步。该精炼厂可从废气中生产有用的化合物,包括“平台”分子,这些分子可用作合成各种产品(如药品、洗涤剂、化肥和纺织品)的原料。 /p p br/ /p p strong 3、虚拟病人——代替真人临床试验 /strong /p p br/ /p p 如果将真人替换为虚拟的人以使临床试验更快速、更安全的目标听起来很容易,那么其背后的科学原理却绝不简单:从人体器官的高分辨率图像中获取的数据被输入到控制器官功能机制的复杂数学模型中,然后,计算机算法进行解析得到方程,从而生成一个行为与真实器官一样的虚拟器官。这种虚拟器官或身体系统可以在最初的药物和治疗评估中取代真人,使评估过程更快、更安全、更便宜。 /p p br/ /p p strong 4、空间计算——下一代的“大事件” /strong /p p br/ /p p 空间计算是将虚拟现实(VR)和增强现实(AR)应用程序整合在一起的物理和数字世界的下一个步骤。与VR和AR一样,它可以对通过云连接的对象进行数字化处理,使传感器和马达相互反应,并创建真实世界的数字表示形式。如今它又增加了空间映射功能,使计算机“协调器”可以跟踪和控制人在数字或物理世界中移动时物体的运动和交互。该技术将为工业、医疗、交通和家庭中的人机交互方式带来新的发展方向。 /p p br/ /p p strong 5、数字医学——更好地诊断和治疗疾病 /strong /p p br/ /p p 数字医学不会很快取代医生,但是监视病情或管理疗法的应用程序可以提高他们的护理水平,并为获得医疗服务机会有限的患者提供支持。许多智能手表已经可以检测出佩戴者的心律是否不规则,科学家正在研究类似可以帮助缓解患者呼吸障碍、抑郁、阿尔茨海默氏症等病症的工具。含有传感器的药丸也正在研发中,这些药丸将数据发送到应用程序,以帮助检测体温、胃出血和癌性DNA等。 /p p br/ /p p strong 6、电动航空——实现航空旅行脱碳 /strong /p p br/ /p p 电力推进将使航空旅行减少碳排放,大幅削减燃料成本并降低噪音。从空客(Airbus)到NASA,许多组织都在研究这一领域的技术,尽管长途电动飞行可能仍遥遥无期,并且存在成本和监管方面的障碍,但这一领域仍有大量投资。大约有170个电动飞机项目正在开发中,主要用于私人、公司和通勤旅行。 /p p br/ /p p strong 7、低碳水泥——帮助应对气候变化 /strong /p p br/ /p p 如今,全球每年生产约40亿吨水泥,而这一过程中燃烧化石燃料的排放量约占全球二氧化碳排放量的8%。随着未来30年城市化进程的加快,这一数字将增至50亿吨。研究人员和初创企业正在研究低碳方法,包括调整生产水泥过程中所用成分的平衡,采用碳捕获和存储技术以消除排放物,以及将水泥从混凝土中全部清除。 /p p br/ /p p strong 8、量子传感——让汽车“看见”拐角 /strong /p p br/ /p p 想象一下可以“看见”拐角处物体的自动驾驶汽车,或可以监视人的大脑活动的便携式扫描仪。量子传感可以使这些想象成为现实。量子传感器通过利用物质的量子性质,以极高的精确度进行操作,例如,将处于不同能量状态的电子之间的差异用作基本单位。这些系统大多数都是复杂且昂贵的,但是科学家正在开发更小、更实惠的设备,并将可能会开拓新的用途。 /p p br/ /p p strong 9、绿色氢气——填补可再生能源巨大空白 /strong /p p br/ /p p 氢气燃烧时,唯一的副产品是水,而当通过可再生能源进行电解制氢时,氢气就变成“绿色”无污染的了。今年早些时候,有人预测,到2050年,绿色氢能源行业的潜在市场规模可能接近12万亿美元。为什么?因为它可以通过帮助降低运输和制造业等部门的碳含量而在能源转型中发挥关键作用,而这些部门由于需要高能燃料而难以电气化。 /p p br/ /p p strong 10、全基因组合成——或将改变细胞工程 /strong /p p br/ /p p 设计基因序列所需技术的改进使打印越来越多的遗传物质和更广泛地改变基因组成为可能。这可以让人们深入了解病毒是如何传播的,或有助于生产疫苗和其他治疗方法。在未来,它可以帮助可持续地从生物质或废气中生产化学品、燃料或建筑材料。它甚至可以让科学家设计抗病原体的植物,或者让我们编写自己的基因组。这为遗传病的治疗打开了新大门。 /p p br/ /p p 世界经济论坛称,将通过其技术先锋社区和全球未来理事会网络等工作,支持并帮助推动这种对经济增长和社会未来福祉至关重要的创新。 /p p style=" text-align:right " br/ /p /div
  • 注射剂瓶胶塞穿刺力测试仪的原理与应用
    注射剂瓶胶塞穿刺力测试仪的原理与应用在现代医疗与制药行业中,注射剂瓶作为药物传输的关键容器,其密封性与安全性直接关系到患者的健康与生命安全。而注射剂瓶的胶塞,作为连接瓶体与外部世界的“门户”,不仅需具备良好的密封性能,还需在药物输送过程中承受各种穿刺操作而不失效,确保药物的无菌、无污染传递。因此,使用三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02对其进行穿刺力测试,成为了保障药品质量与患者安全不可或缺的一环。注射剂瓶胶塞的使用用途与重要性注射剂瓶胶塞,作为药品包装系统的重要组成部分,其主要功能在于提供可靠的密封屏障,防止药品在储存和运输过程中受到外界污染,同时确保在药物使用过程中(如注射给药)能够顺利穿刺而不泄漏。其材质多为橡胶或热塑性弹性体,需具备良好的弹性、耐化学性、生物相容性及适当的硬度,以适应不同药物的存储需求和穿刺操作。穿刺力测试的必要性与意义随着医疗技术的不断进步和药品包装的多样化发展,对注射剂瓶胶塞的性能要求也日益严格。穿刺力测试作为评估胶塞质量的重要手段之一,旨在模拟实际使用过程中穿刺针或输液针等医疗器械对胶塞的穿刺行为,通过量化分析穿刺过程中的力值变化与位移变化,评估胶塞的耐穿刺性能、密封保持能力及可能的破损风险。这对于确保药品在传输过程中的完整性和无菌性至关重要,直接关系到患者的用药安全与治疗效果。注射剂瓶胶塞穿刺力测试仪的测试原理与技术应用济南三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02采用力学测试技术,将试样装夹在测试仪器的两个夹头之间,通过精密控制的相对运动,使标准要求的穿刺针以恒定速度或预设条件刺入试样。在此过程中,仪器实时记录并显示穿刺力(即刺破试样所需的最大力)和拔出力(即将穿刺针从试样中拔出时所需的力)等关键参数。这些数据不仅反映了胶塞的物理强度特性,还能揭示其潜在的密封失效风险,为产品设计与质量控制提供科学依据。注射剂瓶胶塞穿刺力测试仪的广泛应用领域由于穿刺力测试技术的广泛适用性和重要性,其应用范围已远远超出了注射剂瓶胶塞本身,涵盖了各种薄膜、复合膜、电池隔膜、人造皮肤、药品包装用胶塞、组合盖、口服液盖以及各类医疗穿刺器械(如注射针、穿刺针、输液针、采血针等)的穿刺力强度试验。这些测试在质检中心、药检中心、包装厂、药厂、医疗器械厂等单位得到了广泛应用,成为保障产品质量、提升生产效率、降低安全风险的重要工具。总之,三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02作为现代医疗与制药领域的一项重要检测设备,通过科学、精准的测试手段,为药品包装与医疗器械的安全性与有效性提供了坚实保障。
  • 莱恩德首发|抗生素检测仪的原理、应用和发展趋势
    点击此处可了解更多产品详情:抗生素检测仪 随着抗生素的广泛使用,细菌耐药性的问题日益严重。为了有效控制抗生素的使用,避免耐药性的产生,开发了抗生素检测仪。本文将介绍抗生素检测仪的原理、应用和发展趋势。    一、抗生素检测仪的原理    抗生素检测仪主要基于微生物学原理,通过测量细菌生长抑制率来检测抗生素浓度。该仪器利用微孔板技术,将待测样品中的细菌与特定浓度的抗生素共培养,通过测量细菌生长抑制率,计算出抗生素浓度。该仪器可检测多种抗生素,包括β-内酰胺类、大环内酯类、氨基糖苷类等。    二、抗生素检测仪的应用   抗生素检测仪在临床医学、药理学和微生物学等领域具有广泛的应用价值。在临床医学中,抗生素检测仪可用于监测感染患者的抗生素浓度,指导医生合理用药。在药理学中,抗生素检测仪可用于研究新药和优化现有药物的疗效。在微生物学中,抗生素检测仪可用于检测病原菌对不同抗生素的敏感性,为医生提供针对性的抗生素治疗方案。    三、抗生素检测仪的发展趋势    随着科学技术的不断发展,抗生素检测仪也在不断升级和完善。未来,抗生素检测仪将朝着更快速、更准确、更便携的方向发展。同时,随着大数据和人工智能技术的普及,抗生素检测仪将实现智能化分析和预测,为临床决策提供更加准确的支持。此外,随着新材料和新技术的出现,抗生素检测仪的制造也将更加环保和可持续。    总之,抗生素检测仪在控制抗生素使用、预防细菌耐药性产生方面具有重要作用。未来,随着科学技术的不断进步,抗生素检测仪将会得到更加广泛的应用和发展。莱恩德首发|抗生素检测仪的原理、应用和发展趋势
  • 便捷式溶解氧分析仪测量原理分两种方法,你可知?
    溶解于水中的分子态氧称为溶解氧,水中溶解氧的多少是衡量水体自净能力的一个指标。  溶解氧值是研究水自净能力的一种依据。水里的溶解氧被消耗,要恢复到初始状态,所需时间短,说明该水体的自净能力强,或者说水体污染不严重。否则说明水体污染严重,自净能力弱,甚至失去自净能力。  便捷式溶解氧分析仪是针对水质中溶解氧分析的智能在线分析设备,其测量原理分为极谱膜法与光学荧光法两种。  1、极谱膜法:  原理是氧在水中的溶解度取决于温度、压力和水中溶解的盐。其传感部分是由金电极(阴极)和银电极(阳极)及KCl或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流。根据法拉第定律:流过溶解氧电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。  2、光学荧光法:  荧光法的测量原理是氧分子对荧光淬灭效应。传感膜片被一层荧光物质所覆盖,当特定波长的蓝光光源照射到传感膜片表面的荧光物质时,荧光物质受到激发释放出红光。由于氧分子会抑制荧光效应的产生,导致水中的氧气浓度越高,释放红光的时间就越短,理论上红光释放时间与溶解氧浓度之间具有可量化的相关性,从而通过测定红光的释放时间计算出溶解氧浓度。
  • 技术原理:浊度仪测浊度采用的原理
    浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。水中含有泥土、粉尘、微细有机物、浮游动物和其他微生物等悬浮物和胶体物都可使水中呈现浊度。浊度仪采用90°散射光原理。由光源发出的平行光束通过溶液时,一部分被吸收和散射,另一部分透过溶液。与入射光成90°方向的散射光强度复合雷莱公式:IS = ×I0其中:I0---------------入射光强度;IS----------散射光强度;N-------单位溶液微粒数;V-----------微粒体积;-------入射光波长 ;K-----------系数;在入射光很定条件下,在一定浊度范围内,散射光强度与溶液的浑浊度成正比。上式可 表示为 =K’N (K’为常数) 根据这一公式,可以通过测量水样中微粒的散射光强度来测量水样的浊度。浊度仪分为便携式,台式和在线浊度仪。台式一般用于实验室检测浊度;便携式和在线浊度仪一般用于现场检测。便携式用于不连续的检测,在线浊度仪用于连续,现场浊度监测。它可以实时,连续监测浊度,一般用于自来水厂,污水厂,渠道,水利设施,防洪监测,水池等处。
  • 电位滴定仪的原理
    电位滴定仪(Potentiometric Titrator)是一种常用的滴定仪器,其原理基于电位测量的方法。它通过测量反应溶液中电位的变化来确定滴定过程中滴定剂的添加量,从而确定待测溶液中所含物质的浓度。以下是电位滴定仪的原理:1.电位测量: 电位滴定仪通过电极对反应溶液的电位进行测量。通常使用的电极包括指示电极(如玻璃电极)和参比电极(如银/银氯化钾电极)。指示电极感应到溶液中所含物质的变化,而参比电极提供一个稳定的参考电位。2.滴定过程: 在滴定过程中,待测溶液(被滴定物)与滴定剂(滴定液)发生化学反应,导致溶液中所含物质浓度的变化。滴定过程中滴定剂逐渐添加到待测溶液中,直至达到滴定终点。3.终点检测: 滴定终点通常是指滴定反应完全完成时的状态。在电位滴定中,终点的检测基于电位的变化。在滴定过程中,当滴定剂与待测溶液中的物质完全反应时,反应溶液的电位会发生明显的变化。这个变化被用来指示滴定终点。4.记录数据: 电位滴定仪会记录滴定过程中电位的变化,并将数据转换为体积-电位曲线或体积-导电度曲线。通过分析曲线,可以确定滴定终点的位置,从而计算出被滴定物的浓度。5.自动化控制: 现代电位滴定仪通常配备了自动化控制系统,可以自动控制滴定剂的添加速率,并在检测到电位变化时停止滴定,从而提高滴定的准确性和可重复性。综上所述,电位滴定仪利用电位测量的原理来确定滴定过程中滴定剂的添加量,并通过分析电位的变化来检测滴定终点,从而实现对待测溶液中所含物质浓度的测量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制